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1. Introduction 

Indurkhya et al. introduce a random model of distributed programs in [3]. This model supposes 

that a distributed program consists of N modules, each having a random non-negative execution time. 

The modules' execution" times are assumed to be independent and identically distributed. The 

program's modules are partitioned among P processors; a module will communicate with any other 

given module with probability p. Given that two modules in different processors communicate, "the 

delay cost of that communication is random, independent and identically distributed as the cost of any 

other interprocessor communication. Then in [3], the problem of optimally distributing the modules of 

such a program is analyzed under several simplifying assumptions." A number of these assumptions 

concern the measurement of the cost of a partition: the cost function adopted is the sum of the 

expected execution time of the busiest processor with the expected total communication cost. This cost 

function was adopted for tractability reasons; thi~ function does not take into account any time that a 

module must wait for a communication to reach it More significantly, their an"alysis assumes that for 

independent random variables X1,x2, ... ,xn, 

E[max{Xl •... ,xn}] == max{E[Xtl •... ,E[Xn]}· " 

This assumption (which we will call AI) is false; for example, the expected maximum of two indcpen-

dent identically distributed exponential random variables with mean ~ is 1..).1. There is some error 
2 " 

analysis for this assumption in [3]; however, we will show that this analysis does not apply at a solu-

tion point given by approximation AI. A fuller analysis of the expected maximum statistic is found in 

the study of order statistics [1]. 

The main result in [3] is that when the random program is partitioned for a system of homo gcne-

ous processors, the optimal partition has one of two extreme forms. Either the modules are distributed 

as evenly as possible among the processors, or all modules are assigned to the same processor. As this 

conclusion rests on a mathematically incorrect assumption, a natural question is whether this result is 
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rigorously true. In this paper we show that for a broad class of module execution time probability dis­

tributions, the result is always true for two processors. We also point out that the error analysis given 

in [3] does not apply at a solution point derived in [3], and illustrate, by example that the mechanism 

given in [3] for determining the optimal two processor partition is flawed as a result of the erroneous 

assumption. We provide a counter-example to a P processor theorem in [3], and again show how this 

error follows. directly from assumption AI. 

This paper is organized in the following fashion. Section II introduces the problem's computa­

tional model, illustrates the problems with using assumption AI, and shows that the error analysis in 

[3] for this assumption fails at a critical point, Section III treats the optimal partitioning for two proces­

sors, and gives the same result as given in [3]: the optimal partition either assigns all modules to one 

processor, or distributes them as evenly as possible. Section IV considers the P processor ~~lts given 

in [3]. We give a counter-example to Theorem 2 in [3], and show why this theorem fails. The failure 

of this theorem invalidates the proof of the main P processor result in [3]. Section V summarizes our 

results. 

ll. Computational Model 

Consider a distributed computer system consisting of P identical processors which communicate ' 

over some common bus. The program to be distributed consists of N modules; for simplicity we 

assume that N is even. Each module has a random execution time, distributed as a non-negative ran­

dom variable R with finite mean r. A module's exeeution time is assumed to be independent of any 

other. In addition, we assume that R is in a certain sense bounded by the exponential random variable 

exp(r) with mean r. We assume that exp(r) is stochastically more variable than R, denoted exp(r) ~ R 

(see [4] for a 'discussion of this relation). Formally, ap(r) ~v R means that E[h(exp(r»] ~ E[h(R)] for 

all increasing convex functions h; infonnally, this assumption means that exp(r) has a larger variance 
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than R. Because the variance of an exponential is quite large, this assumption is not overly restrictive. 

We also assume that the family of R's convolutions is monotone in likelihood ratio. Denoting the j-

fold convolution of R by RV), this assumption means that whenever j > i, then RV) "?[R R(i). A ran-

dom variable X (with density functionj) is said to be larger than random variable Y (with density func-

tion g), in likelihood ratio, denoted X "?[R Y, if 

.1S& <M 
g(x) - g(y) 

whenever x < y. 

A discussion of the "?[R relation is found in [4]~ discrete random variables may be related by "?LR if 

their mass functions satisfy a similar requirement. Common distributions which have monotone likeli-

hood ratio convolution families, are the gamma and Poisson distributions. 

Partitioning a random program consists of assigning each module to one of the available proces-

sors. For every i and j, (i "I: j), module i will communicate with module j with some probability p. If r 

communicates with j, but i and j reside in different processors, a random delay cost C is incurred; 

E[C] = c. This delay cost is assumed to be indepL!ndent of and identically distributed as every other 

communication delay cost. No communication cost is suffered for communication between co-resident 

modules. 

The execution time for a processor is assumed to be the sum of its resident modules' execution 

times. The cost function adopted in [3] adds the mean maximum processor execution time with the 

mean total communication cost The assignment which places k modules in one processor, and N - k 

modules in another has a mean execution cost of 

k N 
TR(k) = E[maxlL Rj , L Ril] 

i=1 i=k+l 

where each R j is an instance of the random variable R. To compute the expected communication cost 

for this assignment, we note that keN - k) communication links are possible, and that a link exists with 

probability p, independent of any other. The mean cost associated with an extant link is c, so that the 
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mean total communication delay is given by 

k(N-k) 

Tc(k) = E[ I. pC;] 
i=1 

= pck(N - k) 

where. each Ci is an instance of the random variable C. The total cost of this assignment is taken to be 

A(k) = TR(k) + Te(k). Note that this cost function does not attempt to capture any synchronization 

between modules. A fuller explanation of this computational model is given in [3]. 

Following these definitions, it is assumed in [31 that TR(k) is given by 

k N 

TR(k) = max{E[I. R;], E[I. R;]} 
i=1 i=k+l 

which is equivalent to 

TR(k) = kr 

when k ~ N12. This is a reasonable assumption when N is large and k is close to N; it can otherwise 

be a poor approximation. Furthermore, approximation AI's error is accentuated by the number of ran-

dom variables involved. For example, the expected maximum of n independent identically distributed 

exponential random variables with mean r is given by 

E[max{exPI(r), ... , expnCr)}] = [ Prob{max{exPl(r), ... , expnCr)} > x} dx 

00 
n 

= [ (1 - B Prob{exPi(r) ~ x}) dx 

n ~J (_l)k-l = rI. - 0. 
k=1 k 

The last step in this derivation follows from application of the binomial theorem, and integration of 

each of the sum's components. For n = 2, this value is 1.5r, for n = 8 it is 2.72r, for n = 12 it is 3.1 r. 
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In each case, assumption Al approximates this mean with r. In fact, Jensen's Inequality [3] states that 

for any independent random variables Xl, ... Xn, .md convex function g, 

E[g(X1, ••. , XJl ~ g(E[Xd. . .. E[Xnl) .. 

Because the max function is convex, assumption A 1 gives a lower bound on the true expectation. . . 

Since there is a notable discrepancy between Al and the expected maximum of a group of 

independent and identical exponentials. it is instructive to investigate the differences between this 

example and the error analysis for Al provided in [3]. First, our example considered exponentials. the 

error analysis considered normals. Secondly, the CITor analysis in [3] is asymptotic, applying when the 

number of modules becomes large. However. neither of these considerations is important when com-

pared to the fact that the error analysis in [3] does not apply when modules are evenly distributed. as 

assumed in our example. In [3], inequality (27) cited from [2] bounds the probability that a normal 

rando~ variable R2 is greater than a normal random variable Rl> in terms of the mean and variance of 

Rl - R2• The inequality cited from [2] applies only if E[Rd is strictly greater than E[R2]. a fact over-

looked in [3]. Note that if E[Rd = E[R2], and var(R1) = var(R~. then the probability that R2 exceeds 

Rl is 1/2. regardless of the values for the means and variances. But this corresponds to the even distri-

bution of modules across the processors, one of the solution points of. the distribution problem under 

assumption AI. Our analysis avoids assumption At by considering analytical properti~s of the assign­

ment cost function A(k). 

We will focus on the convex and concave nature of certain functions. Afunttion g is convex if 

for every X and Y in its domain, 

8(')..)( + (1 - A.)Y) ::;; A.g(X) + (1 - A.)g(Y) for all A. E [0,1]. 

g is concave if this inequality is reversed. In our analysis, g's domain is usually the non-negative 

integers I. In this case, g is convex if 

g(i+l) - g(i) ~ g(i) - g(i-l) for all i E I 
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and g is concave if this inequality is reversed; We next employ these definitions to the. distribution 

problem with two processors. 

III. Optimal Partitioning for Two Processors 

Consider the partitioning of a random program for a two processor system. We will show that 

the assignment cost function A(k) has no local minimum for integer k E [NI2, NJ. This directly implies 

that the partition minimizing A(k) either distributes the modules equally between the two processors, or 

places all modules on one processor. This result is derived by establishing convexity and concavity 

properties of TR(k) and T c(k). To simplify our notation, we let R(k) denote the k-fold convolution of 

the random variable R. Then TR(k) is given by 

TR(k) = E[max {R(k), R(N-k)}]. 

Unless otherwise stated, all random variables we discuss are assumed to be independent 

The key results for this problem are that TR(k) - TR(k-I) is a concave function of k, and that 

TR(k) is a convex function of k. The proof of this claim is detailed, and is found in Appendix A. 

THEOREM 1: 

• TR(k) is convex in k; 

• For NI2 < k::;; N, TR(k) - TR(k-I) is increasing and concave in k. 

o 

The convexity of TR(k) is illustrated by figure I, where N = 20 and R is an exponential with 

mean 1. Figure 1 also illustrates the lower bound given by Jensen's Inequality. Figure 2 illustrates the 
I 

concavity of TRek) - TR(k-I) under these same assumptions. 

To help show that A(k) has no local minimum over [NI2, N], we define 



-B-

3(k) = TR(k) - TR(k-I) 

and 

e(k) = T cCk) - Tc(k-I) = -peek - 1) 

over the interval [NI2+I,N]. Note that Theorem 1 states that 3(k) is increasing and concave. For k >N12 

we may write 

and 

k 

TR(k) = TR(NI2) + L 3(j) 
j = N12+1 

k 

T cCk) = T cCN12) + LeV). 
j=NI2+1 

The idea now is to use the functions 3(k) and e(k) to show, (1) if A(k) decreases between k = NI2 and 

k = NI2+I, then it decreases over its entire domaiJ?, and (2) if A(k) increases between: k = NI2 and 

k = NI2+I, then there exists at most one point k where A(k) "turns" in direction by changing from 

increasing (decreasing) to decreasing (increasing). If (1) applies, then there is clearly no local 

minimum for the objective function. If (2) applies, then the objective function initially increases, then 

potentially decreases, but cannot tum from decreasing to increasing. This too clearly implies that no 

local minimum exists. 

We may consider 3 and e to be continuous functions formed by taking the linear interpolation 

between their discretely defmed values. If the objective function decr~ases between k-l and k. then 

TR(k) + Tc(k) < TR(k-I) + Tc(k-·l) 

~ TR(k) - TR(k-I) < -[TcCk) - Tc(k-l)] 

~ 3(k) < IE(k)!. 

An immediate implication of this observation is that we can find points at which A(k) turns in direction 

by finding points where the functional curves of 3(k) and le(k) I intersect. Theorem 1 states that 8(k) is 

concave in Ie; furthermore, e(k) is linear in k. We suppose first that 3 exceeds e at the leftmost domain 
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point k = N/2+1. le(N/2+1)1 < 6(N/2+1) occurs if A(k) incrcases bctween k = N/2 and k = N/2+1. Both 

le(k)1 and 6(k) -are increasing in k; since one is linear and the other concave, it is not possible for their 

functional curves to intersect more than once, as illustrated by Figure 3. If the functional curves for 

6(k) and e(k) do not intersect, then A(k) increases over its entire domain. If they do intersect, A(k) ini-

tially increases, and then decreases. No local minimum is achieved in either case. 

We next suppose that 6(N/2+ 1) ::; le(N/2+ 1)1. A general linear function which exceeds 6(k) at 

k = N/2 + 1 could. intersect 6(k) twice; however, we show that 6(k) ::; le(k)1 for all k > N/2, so that A(k) 

is strictly decreasing over its domain. This is established by showing that the slope of le(k) I is greater 

than the slope .of the segment of 6(k) between k = N/2+ 1 and k = N/2+2. Since o(k) is concave, the 

slopes of its segments are decreasing in k; it will follow that le(k)1 never intersects o(k). Now the slope 

of le(k) I for k > N/2 is seen to be 2e(N/2+1). We therefore wish to establish that 

2e(N/2+1) ~ o(N/2+2) - o(N/2+1). 

Sinee e(N/2+ 1) ~ o(N/2+ 1) by assumption, it will suffice to show that 

2o(N/2+1) ~ o(N/2+2) - o(N/2+1). 

Simple algebra shows that this latter inequality is equivalent to 

(5) 
. . 

Because of its length, the proof of inequality (5) is given in Appendix B. The veracity of ineqUality (5) 

implies that o(k) ::; le(k) I for all k ~ N/2+1, so that A(k) is decreasing over its entire domain. We have 

thus established Theorem 2. 
I 

THEOREM 2 : A(k) has no local minimum over [N/2, N] and is therefore minimized at either 

k = N/2, or k = N. 

o 

Figure 4 illustrates the behavior of A(k) when N = 20, R is exponential with mean 1, and pc = 0.1. 
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TheDrem 2 ShDWS that to. determine the eptimal partitiening, wecempare the cests ef two. parti-

tiens. If N is even, the Dptimal partitiDning will place all medules Dn a smgle processer if 

Nr :> E[ max [R(IV!2), R(N!2)}} + pc [~ r (6) 

This expressiDn is easily mDdified if N is edd. Under as'sumptien AI, a derivatien in [3] shews that 

the Dptimal partitiDn places all medules en ene processer if and enly if 

N/2 ~ r/(pc). (6.Al) 

This statement is Significant in that it says we need enly knDW the number Df mDdules, mean mDdule. 

execution cest, and mean inter-medule cemmunication cest to. determine the eptimal two. process Dr par-

titiDn. HDwever, this claim is net true in practice. For example, censider the simple case where N = 2, 

and r = c = 1. Fer any positive p < I, we have NJ2 = 1 < .1 = r/(pc), so. that accerding to. (6.AI) the 
p 

eptimal partitien distributes the two. medules. However, if the mDdules have exponential executien 

times, . the expected maximum executien time is 3/2. Inequality (6) is then satisfied fer any p > 112, 

when the Dptimal partitien places beth medules in t.he same processer. Thus we see that the determina-

tien Df the optimal partitien depends in part en the variance Df R, net simply the mean; appreximation 

At leads to analysis which is insensitive to. variation in module executien times. 

IV. P Processor Results 

Approximatien Al is used by [3] to derive results concerning partitions for P processors. In this 

section we peint eut hew At leads to. theorems given in [3] which do. not held unless R is censtant. 

Theorem 2 in [3] characterizes the optimal partitioning under the constraint that the heaviest 

leaded processor has exactly m medules. This theorem provides us with a pDwerful teel fer detcrmin-

ing the eptimal partitioning of any P processor problem in O(N - N/P) time; we need enly consider all 

possible loads en the heaviest loaded processer. However, we will show that Theorem 2 cannot he 
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trusted when the module execution times are random. We both give a counter-example to this 

theorem, and illustrate a range of parameter values for which this theorem fails to hold. 

One useful derivation given in [3] is to show that the mean communication cost of the assign-

ment which, for j = 1,2, ... ,P, places kj modules on processor j is 

(7) 

. We will appeal to this equation when we discuss communication costs. We now paraphrase Theorem 

2, and then give a counter-example to its statement. 

Theorem 2: Under the constraint that a definite number of modules, say m, are to be as­
signed to a processor, and no other processor is to be assigned more than m modules; the op­
timal assignment is defined as follows. Let I be the largest integer such that mI ~ N . . Exactly 
I processors will have m modules, and the remaining N - mI modules are assigned to one 
other processor. 
o 

Consider the assignment of four independent el(ponential random variables R with mean 1 to four 

processors. According to the statement above, the cost of assigning two modules to two processors 

(called the 2-2 assignment) is less than the cost of assigning two modules to one processor, and one 

each to two <?ther processors (called the 2-1-1 assignment). The expected maximum execu~on costs for 

this example can be derived analytically. We first consider the execution cost of the 2-2 assignment: 

M22 = E[max{R(2), R(2)}] = J [1 - Prob{R(2) ~ t}2] dt 

= 2.75 

where the last step results from expanding the squared term and integrating each piece separately. The 

execution cost M211 of the 2-1-1 assignment is found in a similar fashion, and is 2 ~. According to 
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(7) above, the communication cost for the 2-2 assignment is 4pc, and the communication cost for the 

2-1-1 assignment is 5pc. To counter Theorem 2 we need to find a cost pc such that 

M22 + 4pc > M211 + 5pc. 

Substituting the numerical values for M22 and M211 , we see that this is equivalent to detennining pc 

such that 

M22 - M211 = 0.31 > 5pc - 4pc = pc. 

This counter-example highlights the cause of failure in Theorem 2. Its proof in [3] depends on 

the assumption that the mean maximum execution time does not change if a load balance is perfonned 

between lightly loaded processors (a result which follows directly from approximation AI). We found 

an example where the mean maximum execution time does change, and were then able to construct a 

counter-example. Furthennore, for any value of r, it is possible to find values of pc for which 

Theorem 2 fails to hold. In fact, it is not difficult to prove the following lemma: 

LEMMA 3 : Suppose kl > k2 ~ k3;:: ... ~ kp . Then 

E[max{R(k1),R(k2), ... .R(kp)}] ~ E[max{R(k1-1).R(k2+1).R(k3), •.• ,R(kp)}]. 

o 

Lemma 3 shows that moving a module to better balance the assignment cannot increase the 

expected maximum execution time; furthennore, if R is unbounded (like an exponential) this inequality 

will be strict. It is shown in [3] that by balancing as described in Lemma 3, the communication cost 

increases by PC(kl - k2 + 1). Lemma 2 says that the execution cost decreases by balancing. It is pos-

sible then to choose a value of pc so that the incn:ase in communication cost is less than the decrease 

in execution cost. 

The central P processor result in [3] (given as Theorem 3) states that under the constraint that all 

utilized processors have the same number of modules, the optimal partition is extremal. However, the 
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proof of this result rests both on Theorem 2 and approximation At. We have empirically tested this 

result using a wide range of values for N, P, and various different distributions for R. An of our tests 

substantiated Theorem 3's conclusion. Clearly, a more rigorous proof of this result is called for. 

v. Summary 

Indurkhya et al. in [3] consider the interesting problem of distributing program modules whose 

execution and communication behavior are characterized probabilistic ally. They conclude that the 

optimal assignment is extremal: either all modules are placed on one processor, or the modules are dis-

tributed as evenly as possible. Their analysis rests on an approximation which can be quite inaccurate. 

We have strengthened their work by showing that for a general class of module execution time distri-

butions, it is possible· to derive this conclusion in the .case of two processors without employing this 

approximation. However, we also show that two significant conclusions drawn in [3] are false because 

of . the approximation. One conclusion characterizes the optimal two processor partition, the other 

characterizes the optimal P processor partition wIder a particular constraint, and implies that the 

optimal partition for a general problem can be determined in O(N - NIP) time. Furthermore, this con-

elusion is central to the proof of their P processor optimal partition extremity result. While empirical 

I 

studies suggest that the optimal P processor partition is also extremal, further work. is needed to 

rigorously establish this result. 
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Appendix A 

In this appendix we prove Theorem 1. To shJW that TR(k) is convex, and that TR(k+I) - TR(k) is 

concave, we will show that the function 

.. 

= TR(k+I) - 2TR(k) + IR(k-l) 

is non-negative, and decreasing. Observe that !::.(k) is twice the difference between the linear interpol a-

tion at k between endpoints TR(k-I), TR(k+I), and the value TR(k). As such, !::.(k) measures the convex-

ity of the function by its deviation from a linear function. Let s, t, u, and v be non-negative real 

numbers, and define 

D(s,t,u,v) = max{s+u+v, t} - 2max{s+u, t+v} + max{s, t+u+v} 
I 

so that 

!::.(k) = E[D(R(k-l), R(N-k-l), R1, Rz)] 

where Rl and R2 are independent instances of R, and the expectation is taken with respect to the joint 

distribution of all random variables referenced .. We demonstrate the desired properties of !::.(k) by first 

conditioning on the values of RI and R2• Let u and v be fixed; straightforward algebra shows that the 

value of D(s,t,u,v) then depends only on the relationship of s-t to u and v. To emphasize this fact, we 

change our notation for D to D(s-t,u,v), and note that !::.(k) = E[D(R(k-l) - R(N-k-l) , Rio Rz)]. For 

fixed u and v, D(s-t,u,v) is a piece-wise linear function described by the following four cases. 

Ca~e s - t ~ -(u + v): D(s,t,u,v) = U - v; 

Case -(u + v) ~ s - t ~ v - u: D(s,t,u,v) = s - t + 2u; 

Case v - U ::; s - t ::; U + v; D(s,t,u, v) = t - S + 2v; 

Case U + v ~ s - t: D(s,t,u,v) = v - u. 

Figure 5 illustrates the behavior of D(s-t,u,v) for both the case where u> v, and the case where U::; v. 

Figure 6 then illustrates the behavior of D(s-t,u,v) + D(s-t,v,u). We observe that this sum is always 
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non-negative, is symmetric about 0, and is decreasing for s-t > O. Let p(u,v) be the probability density 

(or mass, if R is discrete) function for the joint distribution of RI and R2• Since the event that RI = U 

and R2 = v has the same probability density as the event that RI = v and R2 = U, it follows that 

p(U,v) = p(v,u) for all U and v. Thus 

E[D(s-t, R .. Rz)] = II 2p(u,v)- [D(S-t,u,V) + D(S-t,v,U)] dv du , 

an expression easily modified if R is discrete. As a function of s-t, E[D(s-t, RI , Rz)] is also non-

negative, symmetric about 0, and decreasing for s-t > 0, since it is a positively weighted sum of func-

tions which have these properties. 

!1(k) is the expected value of the function E[D(s-t, RI , R2)] with respect to the random variable 

R(k-1) - R(N-k-1). Clearly then, !1(k) is always non-negative, so that TR(k) is convex. To show that 

TR(k) - TR(k-,l) is non-negative, we cite Lemma 3. To show that TR(k) - TR(k-l) is concave, we 

argue that !1(k) is decreasing in k. Lettingiix), denote the density function for R(k-I) - R(N-k-I), we 

observe by symmetry that 

!1(k) = f E[D(x, RI , R2Ylfk(x) dx 

00 

= J E[D(x, R .. R2)] riX) + ike-X)] dx 

= E[D(lR(k-l) - R(N-k-1)1, RI , R2)]. 

We will now show that IR(k-1) - R(N-k-I)I is stochastically larger than IR(k-2) - R(N-k)l, that is, 

Prob{IR(k-l) - R(N-k-1)1 > t} ~ Prob{IR(k-2) - R(N-k)1 > t} for all t ~ O. 

Let Z = R(k-2) - R(N-k-I), and let fz(x) be its density function. Then the inequality above is 

equivalent to 

Prob{IZ + RI > t} ~ Prob{IZ - RI > t} for all t ~ O. (8) 

Recall that we have assumed that R's family of convolutions is monotone in likelihood ratio; in 
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particular, that R(k-2) ~1R R(N-k-t). This relation implies that whenever x> 0, then fz(-x) <.5,fz(x). 

Using this fact, it is straightforward to show that 

Prob{IZ + rl > t} ~ Prob{IZ - rl > t} for all t, r ~ 0, 

which impliesineqiJality (8). Thus IZ + RI is stochastically larger than IZ - RI. In [4] is is shown that a 

random variable X is stochastically larger than random variable Y if and only if E[g(X)] ~ E[g(Y)] for 

all increasing functions g (equivalently, that E[g(X)] <.5, E[g(Y)] for all decreasing functions g). This 

immediately implies that 

l1(k) = E[D(IZ + RI, RIo R;!)] 

<.5, E[D(IZ - RI, Rio R:0] 

= l1(k-I). 

Since l1(k) decreases in k, it follows that TR(k) - TR(k-I) is concave in k. 

Appendix B 

This appendix shows that under our assumptions about the random variable R, it is true that 

TR(NI2+I) ~ ! TR(NI2) + ! TR(NI2+2). 

We will first establish this result for the smallest N for which this result applies, N = 4, In this case, 

we must show that 

E[max{R(3), R(l)}] ~ ! E[max{R(2), R(2)}] + ~4r, 

or, 

~ 
E[max{R(3), R(t)}] - ~'E[max{R(2), R(2)}] ~ r. (9) 

If R is a random variable with a larger variance but the same mean as R, then we can exp~ct that 

. E[max{R(k), R(j)}] ;~ E[max{R(k), RCJ)}l 

for any integer k and j. This inequality is formally derived in the event that R is stochastically more 
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variable than R, or R ~v R. (the theory of stochastic variability is treated in [4]). Recall that we have 

assumed that exp(r) ~v R, where exp(r) is the exponential random variable with mean r. Now, inequal-

ity (9) holds when R is exponential, and it holds when R is constant The left hand side of (9) is larger 

given constant R" (1.5r) than it is with exponential R (1.0625r). We see then that (9) is tru.e for any R 

dominated by the exponential: the term E[max {R(2), R(2)}] is more sensitive to increasing: variance in 

R than is E[max{R(3), R}]; thisfact explains why the left side of (9) is smaller for exponential R than 

it is for constant R. , 

We now: argue that 

TR(NI2+1) ~ ! TR(NI2) + ! TR(NI2+2) 

for general (even) N ~ 4. This argument is aided by Figure 5 which depicts the inequality. We see 

that the difference 

TR(NI2+1) - [! TR(NI2) + ! TntN12+2)] (10) 

is an (inverse) measure of convexity, measured as the deviation of TR(NI2+1) from the linear interpol a-

tion between TR(N/2) and TR(NI2+2). But as we increase N, that convexity will decrease. This is easily 

seen by referring again to FigUre 5 which depicts the general properities of the function 

E[D(s-t, RIo R2)] described in appendix A. As N increases, the variance of R(NI2) - R(NI2) increases, 

placing more probability weight on the tails of the distribution. The effect of this on 

E[D(R(NI2), -R(NI2), RI , R~] is to decrease its value. Thus the convexity decreases in No' so that the 

"value of expression (10) will increase. Since this expression is positive when N = 4, and increases in 

N, inequality (10) holds in general. 
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