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Abstract Recent work by Indurkya et. al. discusses the optimal partitioning of random distributed pro-
grams. They conclude that the optimal partitioning of a homogeneous random program over a homo-
geneous distributed system either assigns all modules to a single processor, or distributes the modules
as evenly as possible among all processors. Their analysis rests heavily on the approximation which
equates the expected maximum of a set of independent random variables with the set’s maximum
expectation. In this paper we strengthen Indurkya’s results by providing an approximation-free proof
of this result for two processors under general conditions on the module execution time distribution.
We also show that use of this approximation causes two of Indurkya’s central results to be false.
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1. Introduction

Indurkhya et al. introduce a random model of distributed programs in [3]. This model supposcs
that a distributed program consists of N modules, eash having a random non-negative execution time.
The modules’ execution times are assumed tol be indcpeﬁdcnt and identically distributed. The
program’s modules are parﬁtioned among P processors; a module will cdmmﬁnicate with any other
.given module with probability p. Given that two modules in different processors comﬁﬁnicam, -the
delay cost of that communication is random, independent and identically distributed as the cost of any
other interprocessor comfnunicaﬁon. Then in [3]. the problem of_ optimally distributing the modules of
such a program is analyzed under several simplifying assuhptions.'A number of thesc assumptions
concemn the measufement of the cost of a partition: the cost function adopted is the sum of the
exﬁected execution time of the busicst processor with the expected total communicatibn cost. This cost
function was adopted for tractability reasons; this function does not take into account anyi time that a.
module must wait for a comm_unibation to reach'it. More significantly, their analysis assumes that for
independent random variables X,Xp, - - - ,X,, |

Efmax(Xy, - - - X,}] = max{E[X;], - - - .E[X,]}.

This assumption (which we will call A1) is false; for example, the expected maximum of two indepen-

dent identically distributed exponential random variables with mean p is %u. There is some crror

analysis for this assumption in [3]; however, we will show that this analysis docs not apply at a solu-
tion point given by approximation Al. A fuller analysis of the expected maximum statistic is found in

the study of order statistics [1].

The main result in [3] is that when the random progrém is partitioned for a system of homogenc-
ous processors, the optimal partition has one of two extreme forms. Either the modules are distributed
. as evenly as possible among the processors, or all modules are assigned to the same processor. As this

conclusion rests on a mathematically incorrect assumption, a natural question is whether this result is
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rigorously true. In this paper we show that for a broad class of module execution time probability dis-
tributions, the result ié always true for two processors. We also point out that the error analysis given
in [3] does not apply at a soiution point derived in [3], and illustrate by example that the mechanism
given in [3] for determining the optimal two processor partition is flawed as a result of thé erroneous
assumption. We provide a counter-example to a P processor theorem in [3], and again show how this

error follows directly from assumption Al.

This paper is organized in the following fashion. Section II introduces the problem’s computa-
“tional model, illustrates the probléms with using assumption A1, and shows that the error analysis in
[3.] for this assumption failé at a critical point, Section III treats the optimal partitioning for two proces-
sors, and giveé the same result as given in [3]: the optimal- partition either assigns all modules to one
processor, or distributes them as evenly as possible. Section IV considers the P processor results given
in [3]. We giQe a counter-example to Theorem 2 in [3], and show why this theorem fails. The failure
of this theorem invalidatcs the proof of the main P processor result in [3]. Section V summarizes our

results.

II. Computational Model

Consider a distributed computer system consisting of P identical processors which communicate -
over soxﬁe common bus. The program to be distributed consists of N modules; for simplicity we |
assume that N is even. Each modﬁle has a random execution time, distributed as a non-negative ran-
doﬁ variable R with finite mean r. A module’s executioﬁ timg is assumed to be independent of any
other. In addition, we assume-that R is in a certain scnse bounded by the exponential random variable
exp(r) with meaﬁ r. Wé assume that (;x:o(r) is stochastically more variable thah R, denoted exp(r) 2, R
(see [4] for a discussion of this relation). Formally, exp(r) =, R means that E[h(exp(r))] 2 E[h(R)] for

all increasing convex functions 4; informally, this assumption means that exp(r) has a larger variance
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than R. Because the variance of an exponcntial is quite large, this assumption is not overly restrictive.
We also assume that the family of R’s convolutions is monotone in likclihood ratio. Denoting the j-
fold convolution of R by R(j), this assumption means that whéneyer Jj>1i, then R() 215 R@). A ran-

‘dom variable X (with density function f) is said to be larger than random variable ¥ (with density func-

tion g), in likelihood ratio, denoted X 2,5 Y, if

ﬁ% < % whenever x < y.

A discussion of the 2;5 relation is found in [4]; discrete random variables may be related by 25 if
their mass functions satisfy a similar requirement. Common distributions which have monotone likcli-

hood ratio convolution families, are the gamma and Poisson distributions.

Partitioning a random program .consists of assigning each module to one of the available proccs-
sors. For every i and j, (i # ), module i will communicate with module j with some probability p. If i
comimunicates with J» but i and j reside in different processors, a random delay cost C is incurred,
E[C] = c. This delay cost is assumed to be independent of and identically distributed as every other

communication delay cost. No communication cost is suffered for communication between co-resident

modules.

The execution time for a processor is assumed to be the sum of its resident modules’ execution
times. The cost function adopted in [3] adds thc mean maximum processor exccution time with the
mean total communication cost. The assignment which places & modules in onc processor, and N — &
modules in another has a mean execution cost of

k N -
Tp(k) = E[max {3, R, ¥, R}l
=] i=k+1
where each R; is an instance of the random variable R. To compute the expected communication cost
for this assignment, we note that k(N — k) communication links are possible, and that a link cxists with

probability p, independent of any other. The mean cost associated with an extant link is ¢, so that the



mean total communication delay is given by

KN-K)

Tc(k) = E[ %, pCi]
=1

= pck(N — k)
where each C; is an instance of the random variable C. The total cost of this assignment is taken to be
A(k) = Tp(k) + To(k). Note that. this cost function docs not attcmpt to capture any synchronization

between modules. A fuller explanation of this computational model is given in [3].

Following these definitions, it is assumed in [3] that Tp(k) is giveh by

k N
Tpk) = max{E[}, R, E[ 2, R}

=] i=k+1

which is equivalent to

Tr(k) = kr
when k£ = N/2. This is a reasonable assumption when N is large and k is close to N; it can otherwise
be a poor approximation. Furthermore, approximation Al’s error is accentuated by the number of ran-
dom variables involved. For example, the expected maximum of n independent identically distributed

exponential random variables with mean r is given by

E[max{eipl(r), ey €Xp(N}] = 1 Prob{max{cxp(n),..., exp,(r} > x} dx

ey §

g 1- {11 Prob{exp(r) < x}) dx '

[1 -(1- e""/’)"] dx

]
Stenmy, 8

n k-1
=r3 [/r:] &
k=1 k
The last step in this derivation follows from application of the binomial thcorcm, and integration of

cach of the sum’s components.. For n = 2, this valuc is 1.5r, for n = 8 it is 2.72r, for n = 12 it is 3.1r.
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In each case, assumption A1 approximates this mean with r. In fact, Jensen’s Inequality [3] states that

for any independent random variables Xy, - - - X, and convex function g,

ElgXy, -, X1 2 g(EIX;), - -+ EIX)).

Because the max function is convex, assumption A1 gives a lower bound on the true expectation. - -

Since there is a notable discrepancy between Al and the expected maximum of a group of
independent and identical exponentials, it is instructive to investigate the differcnces between this
example and the error analysis for Al provided in [3]. First, our example considered exponentials, the
e;rror analysis considered normals. Secondly, the error analysis in [3] is asymptotic, applying when the
- number of modules becomes large. However, neither of -these considerations is important when com-
pared to the fact that the error analysis in [3] does not apply when modules are evenly distributed, as
assumed in our example. In [3], inequality (27) cited from [2] bounds the probability that a normal
rahdoxp variable R, is greater than a normal random variable R, in terms of the mean and variancé of
Ry — R,. The inequality cited from [2] applies only if E[R,] is strictly greater than E[R,], a fact’ovcr-.
looked in [3]. Note that if E[R,] = E[Rz], and var(R) = var(Rz), then the probability that R, exceeds
.Rl is 1/2, regardless of the values for the means and variances. But this éoneSpondé to the even distri-
bution of modules across the processors, one of the solution points of .tﬁe distribution problem under
assumption Ai. Our anaiysis avoids assumption Al by considering analytical propertics of the assign-
mént cost furiétion A(k). |
. 'We will focus on the convex and concave nature of certain functions. A function g is convex if
for every X and Y in its domain,
g(xx + (1= WY) <AgX) + (1 = Ng(¥) for all A e [0.1].
g is concave if this incquality is reversed. In our analysis, g’s domain is usually the non-ncgative

integers I. In this case, g is convex if

g+1) — g(i) = g() — gG-1)  for all ie I
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and g is concave if this inequality is reversed: We next employ these definitions to the distribution

problem with two processors.

II1. Optimal Partitioning for Two Processors

Considér the partitioning of a random program for a two processor system. We will show that
A the assignment cost function A(k) has no local minimum for integer k € [N/2, N]. This directly implies
that the partition minimizing A(k) either distributes the modules equally between the two processors, or
placeé all modules on one processor. This result is derived by establishing convexity and concavity
properties of Tr(k) and T(k). To simplify our notation, we let R(k) denote the k-fold convolution of
the random vén’able R. Then Tg(k) is given by

Tgr(k) = E[max{R(k), RIN-k)}].

Unless otherwise stated, all random variables we discuss are assumed to be independent.

" The key results for this problem are that Tg(k) — Tr(k-1) is a concave function of &, and ihat

Tpk) is a convex function of . The proof of this claim is detailed, and is found in Appendix A.

THEOREM 1 :

e Tx(k) is convex in k;

e For N/2 < k £ N, Tr(k) — Tr(k-1) is incrcasing and concave in k.

The convexity of Tg(k) is illustrated by figure 1, wherc N =20 and R is an exponential with
mean 1, Figure 1 also illustrates the lower bound given by Jensen’s Inequality. Figure 2 illustrates the

concavity of Tr(k) — Tr(k—1) under these same assumptions.

To help show that A(k) has no local minimum over [N72, N], we define
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8(k) = Ty(k) — Tp(k—1)
and

| e(k) = To(k) — Tetk=1) = —pe(k — 1) |
over the interval [N/2+1,N]. Note that Theorem 1 states that &(k) is increasing and concave. For k >N/2
we may write

‘ .
Trt) =Tp(NI2)+ 3 &)
J=Ni2+1

and
k
Tc(k) =Tc(NI2Y+ Y, €().
‘ j=Ni2+1

The idea now is to use the functions &(k) and (k) to show, (1) if A(k) decrcases between & = N/2 and
k = Ni2+1, then it decreases over its cntire domain, and (2) if A(k) increases between k= N/2 and
k = NI2+1, then there exists at most onc point £ where A(k) "turns" in direction by changing from
increésing (decreasing) to decreasing (increasing). If (1) applics, then there is clearly no local
minimum for the objective function. If (2) applies, then the objective function initially increases, then
potentially decreases, but cannot turn from decreasing to increasing. This too clearly implies that no

local minimum exists.

We may consider 6 and € to be continuous functions formcd by taking the lincar intcrpolation

between their _discretely defined values. If the objective function decreases between &-1 and &, then
TRk) + Te(k) < Trk=1) + Te(k=1)
<> Teh) = Tak1) <= [Tet®) - Te-)]
<> O(k) < Ie(k)l.
An immediate implication of this observation is that we can find points at which A(k) turns in dircction

by finding points where the functional curves of 8(k) and le(k)! intersect. Theorem 1 states that 6(k) is

concave in k; furthermore, €(k) is linear in k. We suppose first that 3 cxcceds € at the leftmost domain
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point k= N/2+1. le(N/2+1)l < &(N/2+1) occurs if A(k) increases between k = N/2 and k& = N/2+1. Both
le(k)l and B(k)farc increasing in ; since one is lineaf and the other concave, it is not possible for their
fu‘nctional curves to intersect more than once, as illustrated by Figure 3. If the functional curves for
O(k) and g(k) do not intersect, then A(k) increases over its entire domain. If they do intersect, A(k) ini-

tially increases, and then decreases. No local minimum is achieved in either case.

We next suppose that S(N/2+1) < le(N/2+1)l. A general linear function which exceeds S(k)_ at
| k= NI2 + 1 could intersect (k) iwice;A however, we show that (k) < le(k)| for all k > N/2, so that A(k)
is strictly decr‘casing over its.domain. This is established by showing that the slope of. le(k;I is greater
than the slopé of the segment of 8(k) between k= N/2+1 and &k = N/2+2. Since 8(k) is concave, the
o siopes of its segments arc degreasing in k; it will follow that.le(k)l never intersects S(k). Now the slope
bf le(k)! for k > N/2 is secn to be 2e(N/2+1). We therefore wish to establish that

2e(N/2+1) = S(NI2+2) — 8(N/2+1).
. Since &N/2+1) 2 8(N/2+1) by assumption, it will suffice to show that

28(N/I2+1) = &(N/2+2) — O(N/2+1).
Simble algebra shows that this latter inequality is equivalent to
TR(NI2+1) 2 %TR(NIZ) + %TR(N/2+2). ' )
Because of its"length, the proof of inequality (5) is given in Appendix B. The veracity of inéquality ‘(5)
implies that S(k) < le(k)! for all k = N/2+1, so that A(k) is decreasing over its entire domain. We have
thus establislhed Theorem 2.
THEOREM 2 : A(k) has no 'loc:al nminimum over tN/2, N] .and is thercfore minimizeli at either

k=NI2,ork=N.

a

Figure 4 illustrates the behavior of A(k) when N = 20, R is exponential with mean 1, and pc = 0.1.
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Theorem 2 shows that to determine the optimal partitioning, we compare the costs of two parti-

tions, If N is even, the optimal partitioning will place all modules on a single processor if

2 .
Nr < E[max{R(N/2), RINI2)}] + pe [% ] . | ©)
This expression is easily modified if N is odd. Under assumption A1, a derivation in [3] shows that
the optimal partition places all modulcs on one processor if and only if
NI2 = ri(pc). -~ (6.AD
This statement is significant in that it séys we necd only know the number of modules, mean module.
execution cost, and mean inter-module communication éost to determine the 6ptima1 two processor par-

tition. However, this claim is not true in practice. For cxample, consider the simple case where N = 2,
and r = c = 1. For any positive p < 1, we have N2 =1< 1_ ri(pc), so that according to (6.A1) the
_ e p

optimal partition distributes the two modules. However, if the modules have.exponential executiqn»
times, the expected maximum execution.timc is 3/2. Inequality (6) is theﬁ satisfied for any p > 1/2,
when the optimal partition places both modules in the same processor. Thus we see that the determina-
tion of the optimal partition depends in part on the variance of R, not simply the mean; approximation

Al leads to analysis which is insensitive to variation in module execution times.

IV. P Processor Results

. Approximation Al is used by [3] to derive results conceming parﬁtions for P processors. In this

section we point out how Al leads to thcorems given in [3] which do not hold unless R is constant. -

Theorem 2 in [3] characterizes the optimal partitioning under the constraint that the heaviest
loaded processor has exactly m modules. This thcorem provides us with a powerful tool for detcrmin-
ing the optimal partitioning of any P processor problem in O(N — N/P) time;vwe nced only consider all

possible loads on the heaviest loaded processor. However, we will show that Theorem 2 cannot be
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trusted when the module execution times are random. We both give a counter-example to this

theorem, and illustrate a range of parameter values for which this theorem fails to hold.

One useful derivation given in [3] is to show that the rriean communication cost of the assign-

ment which, for j = 1,2, - - - ,P, places k; modules on processor j is

' 1 2 )
Tcuv,kl,---,kp>=5pc[N~—'1%~k%— —k%]- ™
. We will appeal to this equation when we discuss communication costs. We now paraphrase Theorem

2, and then give a counter-cxample 1o its statcment.

Theorem 2: Under the constraint that a definite number of modules, say m, are to be as-
signed to a processor, and no other processor is to be assigned more than m modules, the op-
timal assignment is defined as follows. Let I be the largest integer such that m/ < N. Exactly -
I processors will have m modules, and the remaining N — m/ modules are assigned to one
other processor. :

O

Consider the assignment of four independent exponential random variables R with mean 1 to four |
processors. According to the statement above, the cost of assigning two modules to two processors
(called the 2-2 assignment) is less than the cost of assigning two modules to one processor, and one |
- each to l_Wo (_)thér pmcessofs (called the 2-1-1 assignment). The expected maximum execution costs for

this example can be derived analytically. We first consider the execution cost of the 2-2 assignment:
My, = E[max{R(2), R2)}]1 = t[ [1 — Prob{R(2) < t}2] dat
! =![1—(1—e"—te")2]dt

=275

where the last step results from expanding the squared term and integrating each piece separately. The

' : . . - . . A4 .
exccution cost M,y of the 2-1-1 assignment is found in a similar fashion, and is 2 s According to
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(7) above, the communication cbst for the 2-2 assignment is 4pc, and the communicatjon cost for the
2-1-1 assignment is Spc. To counter Theorem 2 we necd 1o find a cost pc such that

. M22 + 4pC > Mzu + SpC .
Substituting the numerical values for M,, and M, ;, we see that this is equivalent to detenninirig pc

such that

Myy — My, = 0.31 > 5pc — 4pe = pe.

This counter-example highlights the cause of failure in Theorem 2. Its proof in [3] depends on
the assumption that the mean maximum execution time does nét change if a load balance is performed
between lightly loaded processors (a result which follows directly from approximation Al). We found |
an example where the mean maxifﬁum execution time does change, and were then able to cbn_slrucl a
counter-example. Furthermore, for any valuc of 7, it is possible to find values of pc for which

Théorefn 2 fails to hold. In fact, it is not difficult 1o prove the following lemma:

LEMMA 3 : Suppose k; > ky 2 k32 - - - 2 kp. Then

E[max{R(k),R(kp), - - - ,R(kp)}] = E[max{R(k;—1),R(ky+1),R(k3), - - - ,R(kp)}].

Lemma 3 shows that moving a module to better balance the assignment cannot increase the
expecfed maximum execution time; furthermore, if R is unbounded (like an exponential) this inequality
- will be strict. It is shown in [3] that by balancing as described in Lemma 3, the commﬁnication cost
increases by pc(k; — ky + 1). Lcmma 2 says that thc exccution cost dccreases by balancing. Ibt 15 pos-

sible then to choose a value of pc so that the increasc in communication cost is less than the decrcasc

in execution cost.

The central P processor result in [3] (given as Thebrem 3) states that under the constraint that all

utilized processors have the same number of modules, the optimal partition is extremal. However, the
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proof of this result rests both on Theorem 2 -_and approximation Al.” We have empirically tested this
result using a wide range of valucs for N, P, and various diffcrent distributions for R. All of our tests

substantiated Theorem 3’s conclusion. Clearly, a more rigorous proof of this result is called for.

V. Summary

Indvurkhya et al. in [3] consider the interesting problem of distributing program modules whose
execution and communication behavior arc characterized probabilistically. They conclude that the
optimal assignment is extremal: either all modules are placed on one processor, or the modules are dis-
tributed as eyenly as possible. Their analysié. rests on an approximation which can be quite inaccurate.
We have strcngthened their work by showing that for a general class of module execution time distri-
butions, it is p_ossiblef to derive this conclusion in the case of two processors without employing ﬂﬁs
approximatiori. However, we also show that two significant conclusions drawn in [3] are false because
of the approximation. One conclusion characterizes the opﬁmal two processor partition, the 6ther
characterizes the optimal P processor partition under a panicular constraint, and implies that the
optimal partition for a general problem can be determined in O(N — N/P) time. Furthermore, this con-
clusibn is central to the proof of their P processor optimal partition ex_tremity result. While empirical
studies suggest that the optimal P. processor partition is also extremal, further work is needed to

rigorously establish this result. -
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Appendix A

In this appendix we prove Theorem 1. To show that Tp(k) is convex, and that Tr(k+1) — Tr(k) is

concave, we will show that the function

AW = (Tile1) - Te)] = [T - Tie-1)
= Tg(k+1) — 2Tg(k) + Tr(k-1)
is non-negétive, and decreasing. Observe that A(k) is twice the difference between the iincar interpola-
tion at k between endpoints TR(k—l), Tg(k+1), and the value Ty(k). As such, A(k) measures the convex-
ity of the function by its deviation from a linear function. Let s, £, u, and v be. non-ﬁégativc rcal
numbers, and define |

D(s,t,u,v) = max{s+utv, t} — 2max{s+u, t+v} + max{s, ttu+v}
R A i

so that
Ak) = E[DR(k-1), R(IN-k-1), Ry, Ry)] '
where Ry and R, are independent instances of R, and the expectation is taken with respect to the joint
distributiqn of all random variables referenced.. We demonstrate the desired_propcnics of A(k) by first
conditioning on the valucs of Ry and R,. Let u and v be fixed; straightfor@ard algcbra showé that the
value of D(s,t,u,v) then depends 'only'on the relationship of s——t‘to u’ and v. To émphasizc this fact, we
| change our notation for D to 'D(s—i,u,v), and note that A(k) = E[b(_R(k—l) - R(N¥k~1) ,' Ry, RY]. For
fixed u and &, D(s—tu,v) is a picce-wis;: linear function described by .thc following four cases. |
, Ca‘se S—t £ —(u+v):D@Luy) = u—-v;
Case (u+v)<s—t < v—uD(stuy) = s—t+2u
Casev—u £ s—t < u+v:D(@s,Luy) = t—s5+2v;

Caseu+v £ s—t:D(s,tuy) = v—u.

Figure 5 illustrates the behavior of D(s—t,u,v) for both the case where u > v, and the case where u < v.

Figure 6 then illustrates the behavior of D(s—t,it,v) + D(s—t,v,u). Wec obscrve that this sum is always



-15-

non-negative, is symmectric about 0, and is decreasing for s—¢ > 0. Let p(u,v) be the probability density
(or mass, if R is discretc) function for the joint distribution of Ry and R,. Since the event that Ry = u
and R,=v has the same probability density as the cvent that Ry =v and R, = u, it follows that
p(u,v) = p(v,u) for all u and v. Thus

0000

E[D(s—t, R{, R))] = H 2p(u,v) [D(s—-t,u,v) + D(s—t,v,u)] dvdu,
~ an expression easily rﬁodiﬁed if R is discrete. As a function of s~t, E[D(s-t, R, R;)] is also non-
ncgativg:, symmetxic. about 0, anci decreasing for s—t > 0, since it is a positively weighted sum of func-
tions which }h:a’ve these propertics. B o |
A(k) is the expected 'value of the function E[D(s—t, Ry, R;)] with respect to the random variable
R(k-1) — R(N—‘k—ll).. Clearly then, A(k) is always non-negative, so. that Tr(k) is convex. To'show that
Tr(k) — Tr(k—1) is non-negative, we citc Lemma 3. To show that Tg(k) — Tr(k-1) is concavé, we
. argue that A(k) is decreasing in k. Letting Ji(®), denote the density function for R(k—1) — R(N—k-1), we
. observe By symmetry that

A(K) = [ EIDG, Ry, R)Ifilx) dx

—o00

= [ Eow Ry R + i) ax

= E[D(R(k-1) — R(N-k-1)I, Ry, Ry)].

We will now Show that IR(k—1) — R(N—k-1)! is stochastically larger than 1R(k—2) — R(N-k)), that is,

Prob{IR(k—1) — R(N-k—1)I > t} 2 Prob{IR(k-2) — R(N-k)l >t} for all t20.
Let Z= R(k—2) — R(N—k-1), and let f,(x) be its density function. Then the inequality above is

cquivalent to : ‘

Prob{IZ+ Rl >1} 2 Prob{lZ— Rl >t} foral t20. ®)

Recall that we have assumed that R’s family of convolutions is monotone in likelihood ratio; in
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particular, that R(k-2) 2,5 R(N—k;l). This relation implies that whenever x > 0, thbn f7(=x) £ fé(x).
. Using this fact, it is straightforward to show that
Prob{IZ+ri>1t} 2Prob{lZ—rl>t} forallt,r 20,
which implies inequality (8). Thus IZ + Rl is stochastically larger than IZ — RI. In [4] is is shown that a |
random variable X is stochastically larger than random variable Y if and only if E[g(X)] = E[g(Y)] for |
all increasing functions g (equivalently, that E[g(X)] £ E[g(Y)] for all decreasing functions g). This

immediately implies that

Ak)

I

E[D(Z + R, Ry, Ry)]
< E[D(Z - Rl, Ry, R»)]

= A(k-1).

Since A(k) decreases in £, it follows that Tg(k) — Tr(k—1) is concave in k.

Appendix B
) This appendix shows that under our assumptions about the random variable R, it is truc that
T(NI2+1) 2 %TR(N/Z) + %—TR(N/2+2).

We w1ll first establish this result for the smallest N for which this result applies, N = 4. In this casc,

we must show that

Elmax (R(3), ROD}] = 2 Elmax(R(), R + -4,

or,

2 ‘ . A
Efmax{R(3), R(D)}] - -E[max{R(2), R} 2r. )]
If R is a random variable with a larger variance but the same mean as R, then we can expect that

 Elmax(R), £())] 2 Elmax (R, R()}]

for any integer £ and j. This inequality is formally derived in the cvent that R is stochastically morc



-17-

variable than R, or R =, R. (the thcory of stochastic variability is treated in [4]). Recall that we have
assunicd that exp(r) 2, R, where exp(r) is the cxponcﬁli_al random variable with mean r. Now, inequal-
ity (9) holds when R is exponential, and it holds when R is constant. The left hand side of (9) is larger
given constant R (1.5r) than it is with cxponential R (1.0625r). We sce then that (9) is true for any R
dominated by the exponential: the term E[max{R(2), R(2)}] is more sensitive to increasing, variance in
R than is Etmax{R(3), R} thi_s._fact explains why the left side of (9) is smaller for exponential R than
it is for éonst;\mt R. | ' |

We now: arghc that

TR(NI2+1) > %TR(N/Z) + %TR(N/2+2)
for gencral (cven) N = 4. This argument is aided by Figure 5 which depicts the inequality. AWe see

that the difference

Te(N/2+1) - %TR(NIZ) + %TR(N/2+2) (10)
is an (inverse) measure of convexity, measured as the _deviation of Tp(N/2+1) from the linear interpola-
tion betwecen TR(N/Z) and Tr(N/2+42). But as we incfease N, that convexity will decrease. This is easily
seen by' referring ‘again to Figure 5 which depicts the  general properities of the function
E[D(s-t, Rl, R5)] described in apﬁendix A. As N increases, the vén‘ange of R(N/2) — R(N/2) increases,
placing more brobability weight on the tails of the distxibuﬁon. The effect of this on
E[D(R(N/Z)i — R(N/I2), Ry, Ry} is to decrease its value. Thus the convexity decreases in N, éo that the
-value of expression (IO) will incréasc. éince this cxpression is positive when N = 4, and increases in
N, inequal';ty (10) holds in general.
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Fig. 2:  Concavity of TR(k) - TR(k-l)
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Fig. 5: D(s-t,u,v)
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