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NOMENCLATURE

real vector space of dimension

belongs tG

Eigenvalues of cthe matrix Lo

singular value of the watrix L-J
A(L1L-1T) 3172

symmetric part of a matrix L-J

modulus of the entry ()

modulus matrix = matrix with modulus entires

for al}

a X o [dentity ustrix

spectral norm of tne matrix (<) = apax(*)

Frobenius norin of the matrix (+) = (x( )¢j;)1/¢

any other normt of the matrix (¢)
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Abstract
Time domain stability robustness analysis and design for linear hulti-

variable uncertain systems with bounded uncertainties is the central theme of
the research under the present grant. After reviewing the recentiy developed
upper-bounds on the linear, elemental (structured), time varying perturbation
of an asymptotically stable linear time invariant regulator, it is shown that
it is possible to further improve these bounds by employing state transforma-
tions. Then introducing a quantitative measure called the 'stability
rotustness index', a state feedback control design algorithm is presented for
a general linear regulator problem and then specialized to the case of 'modal
systems' as well as ‘matched systems'. The extension of the algorithm to
stdchastic systems with Kalman filter as the state estimator is presented.
Finally an algorithm for 'robust dynamic compensator' design is presented
using Parameter Optimization (PO) procedure. Applications in aircraft control
ard tlexible structure control are presented along with a comparison with

other existing metneds.
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I. INTRODUCTIGN AND PERSP?CTIVE

It is well known that the inevitable presenee of modeling errors’ in the
model used for control design invariably limits the performance attainable
from the control system designs produced by 2ither classical (frequerncy domain)
or modern (time domain) control thenry. It is thus evident that 'robustness’
is an extremely desirable {(for some applications, even necessary) feature of
any feedback control design proposed. 'Rotustness’ studies of linear systems
is the central theme of the present research.

For our present purposes a 'robust' control design is that design which
behaves in an 'acceptable' fashion (i.e., satisfactorily meets the system
specifications) even in the presence of modeling errors. Since the system
specifications could be in terms of stability and/or performance (regulation,
time response, etc.) we can conceive two types of robustness, namely,
‘Stability Robustness' and 'Parformance Robustness'. Limiting our attention in
this research to 'parameter errors' as the type of modeling error that may
cause instability (or performance degradaticn) in the system, we formally
define 'stability robustress' and ‘performance rcbustness' as follows:

'Stability Robustness'. Maintaining closed Toup system stability in the

presence of modeling errors, mainly parameter varitions.

'Performance Robustness': Maintaining satisfactory level of performance (or

requlation) in the presence of modeling errcrs, mainly parameter variations.
Clearly ‘stabilitvy robustness' is a prarequisite to 'performance
robustness'. Hence in this research we concentrate on the aspect of 'stability
robustness' while the aspect of 'performance robustness' is addressed in the
research sponsored by the Wright Patterson Air Force Base under a separa&e

contract and these details are discussed in ref. [1].
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The published literature on the 'robustness' of liner systems can be
viewed mainly from two perspectives, namely f) frequency domain ana]yéis and
ii) time domain analysis. The main direction of research in frequency domain
has been to extend and generalize the well known classical single input single
'output treatment to the case of multiple input multiple output systems, using
the singular value decomposition [2-3]. 1In the case of frequency domain
results, the perturbations are mainly viewed in terms of 'gain' and 'phase’
changes [4-5]. The time domain treatment is more or less similar to the
frequency domain treatment in spirit but quite different in detail. The time
domain treatment is more amenable to treating perturbations in the form of real
parameter variations, nonlinearities and external disturbances and also for the
physical interpretation of many real Tife perturbations. This research treats
the robustness analysis and design from time domain viewpoint and in particular
focuses on the well known Linear Quadratic Regulator problem. In addition, the
main tool used is the Lyapunov stability analysis which allows time varying
perturbations to be considered in_the analysis.

The problem of maintaining the stability of a nominally stable system
subject to perturbations has been an active topic of research for quite some
time. One factor which clearly influences this type of analysis is the
characterization or type of 'perturbation'. Even in the context of nominally
stable linear systems, the ‘perturbations' can take different forms like
linear, nonlinear, time invariant, time varying, structured and unstructured.
"Structured perturbations' are those for which bounds on the individual elements
of the perturbation matrix are known (or derived) whereas ‘unstructured
perturbations' are those for which only a norm bound on the perturbation matrix

is known (or derived). In this reserch, we focus our attention on linear, time
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varying, structured perturbations as affecting a nominally stable linear time
invariant system. ‘

With this perspective in mind, the report is organized as follows:
Section II briefly reviews the recently developed upper bounds in the linear,
time varying, structured (elemental} perturbation of an asymptotically stable
linear time invariant system to maintain stability. Then a state transformation
technique is presented to turther reduce the conservatism of these bounds.
Section III is completely devoted to the design of linear full state feedback
controllers for robust stability where the algorithms are specialized to 'modal
systems' (as in flexible structure examp]eé) and 'matched systems' (where the
uncertainty satisfies a special condition called 'matching condition'). The
design algorithm is also extended to stochastic systems with state estimate
feedback. Secticn IV addresses the important aspect of designing reduced order
dynamic compensators (which have practical implications) with robust stability
as an additional constraint to the standard linear quadratic regulator problem.
The soluticn technique invclves parameter optimization (PO) concept. The
proposed procedures are ‘illustrated with several examples. Finally Section V
offers some concluding remarks and explores avenues for future research that

needs the continued sponsorship of NASA,
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IT. ANALYSIS OF STABILITY ROBUSTNESS FOR LINEAR SYSTEMS

In the present day applications of linear systems theory and pra&tice, one
of the challenges the designer is faced with is, to be able to guarantee
'acceptable' behavior of the system even in the presence or perturbations. The
fundamental 'acceptabie' behavior of any control design for linear systems is
'stability' and accordingly one of the important tasks of the designer is to
assure stability of the system subject to perturbations.

In particular, as discussed in the introduction, we concentrate on
'parameter uncertainty' as the type of perturbation acting on the system. This
section, thus, addresses the analysis of ‘stability robustness' of linear
systems subject to parameter uncertainty.

2.1 Review- of Stability Robustness Beounds in Time Domain

We now briefly review the upper bounds for robust stability available in
the literature for the two kinds of perturbation discussed in Section I.
Consider the following linear dynamical system
x(t) = A(t) x (t) = [Ag + E(t)] x (t) | (2.1)
where x(t) » RM is the state vector, Ay is the nxn nominaily stable matrix and
E(t) is the 'Error' matrix.

2.1.1 Bounds for Unstructured Perturbation (U.P.)

Explicit bounds for robust stability under unstructured perturbations have
been reported in refs. [6-8]. 1In these refs., it is shown that the system of
(2.1) is stable if

O'm'in(o) —
O'max[E(t)] { =eeee == ERR| (2.28)
omax(P)

where P satisfies the Lyapunov equation
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PAg + Ag P+2Q0 =0 ' (2.2b)
It was shown by Patel and Toda in [8] that Q = I, maximizes the ratio u
fer given Ay, Thus the eventual bound is given by
1 .
omax(E(t)) < ==mmc-o = Up (2.3a)
omaxiP)
where P satisfies the Lyapunov equation
P Ay + AglP + 21, =0 ’ (2.3h)

2.1.2 Bounds for Structured Perturbatiens (S.P.)

In [8], using the bound for unstructured perturbations, a bound for
structured perturbation was presentad as

Mo A A Max
e < - where Ejj(t) < ey = . 1£55(t) Imax and € = i3 € j (2.4)
- b4

and ¥y is as defined by (2.3).

Recently, by taking advantace of thz structural information of the nominal
as well as perturbation matrices, improved measures of stability robustness are
presented in [9]-[10] as follows:

The system of (2.1) is asvmptoticaily stable if

€] < ====zm-=oz- « Uejj = ¥s Ueij = Msij (2.5a)

or e < us - (2.5b)

for all i,j = 1,...,n whare P satisfies (2.3b) and

A
Uejj = ejj/e (Thus 0 < Ugjj < 1) (2.5¢)
[t may be noted that Ug can be formed even if one knows only the ratio
eij/c instead of knowing ejj (and €) separately. One suitable choice for the

ratio is
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Ueij = cij/e = lAoijl/IAoijlmax . (2.5d)
for all 1,3 for which ;5 # 0.

Remark 1: From (2.4), it is seen that eij are the maximum modulus
deviations expected in the individual elements of the nominal matrix Ag. If we
denote the matrix A as the matrix formed with ejj, then clearly A is the
'majorant' matrix of the actual error matrix E(t). It may be noted that Ug is
simply the matrix formed by normalizing the elements of A (i.e. ejj) with
respect to the maximum of eij (i.e. ¢)

i.e., A= e Up (absolute variation). (2.6)

Thus ej; here are the absolute variations in Apjj. Alternatively one can
express A in terms of percentage variations with respect to the entries 6f

Apij. Then one can write

A = & Agp (relative (or percentage) variation) (2.7)
where Agmij = [Aqijl for all those i,j in which variation is expected and Agnmij
= 0 for all those 1,j in which there is no variation expected and 8jj are the
maximum relative variations with respect to the nominal value of Agij and

Max
§=14,j 6ij. Clearly, one can then get a bound on § for robust stability as

§ < memmccocaaa where P is the same as in (2.3) and (2.5).
omax (PmAom)

2.2 Reductior in Conservatism by State Transformation:

The proposaed stability robustness measures presented in the previous
section were basically derived using the Lyapunov stability theorem, which is
known to yield conservative results. One 'improvement' obtained in the
proposed bounds is the result of exploiting the 'structural' information about
the perturbation. Clearly, another avenue avaijlable to further reduce the

conservatism is to exploit the flexibility available in the construction of the
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lLyapunov function used in the analysis. In this section, a method to further
reduce the conservatism on the element bounds (for structural perturbétion) is
proposed by using state transformation. This reduction in conservatism is
obtained by expioiting the variance of the 'Lyapunov criterion conservatism'
with respect to the basis of the vector space in which the function is
constructed. The proposed transformation technique seems to almost always
increase the region of guaranteed stability and thus is found to be useful in
many engineering applications.

2.2.1 State Transformation-and Its implications on Bounds

It may be easily shown that the linear system (2.1) is stable (or

asymptotically stable) if and only if the system

x(t) = A(t) x(t) (2.8a)
where

M-1 x(t), R(t) = M1 A(t)M (2.8b)

"

x(t)
and M is a nonsingular time invariant nxn matrix, is stable (or asymptotically
stable).

The implication of this result is, of course, important in the proposed
analysis. The concept of using state transformation to improve bounds based on
a Lyapunov approach has been in use for a long time as given in [11] where Siljak
applies this to get bounds on the interconnection parameters in a decentralized
control scheme using vector Lyapunov functions. The proposed scheme in this
paper is similar to this concept in principle but considerably different in
detail when applied to a centralized system with parameter variations. In this
context, in what follows, we transform the given perturbed system to a
different coordinate frame, derive a stability condition in the new cordinate

frame. However realizing that in doing so even the perturbation gets
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transformed, we do make an inverse transformation to eventually give a bound on
the perturbation in original coordinates and show with the help of exémp]es
that it is indeed possible to give improved bounds on the original
perturbation, with state transformation as a vehicle than without a
transformation.

We now investigte the use of a transformation on the bounds for both
unstructured perturbations (U.P.) as well as for structured perturbations (S.P.).

2.2.2 Unstructured Perturbations

Theorem 2.1: The system of (2.1) is guaranteed to be stable if

u
p
E(t) | Is = omax[E(t)] € =mecmomnmamaee = >  (2.92)
[IM-111s! M| |s
N 1
where Hp = —--eee-e (2.9b)
omax (P)
and P satisfies
PAg +Agl P+ 2[,=0 (2.9¢)
and -~ ~
Ag = M-l AM, E(t) = M1 E(t) M. (2.9d)

A

Note that ||E(t)|ls < [IM-1]1s [|E(t)}[s |IM[|s and ¥p* = Mp/a where a is a
scalar given as a function of the transformation matrix M., In this case, of
course, a is the condition number. Also it is to be noted that the stability

condition in transformed coordinates is
omax[E(t)] < ”p. ' (2.10)

Thus ¥p s the bound on ||E]|gs whereas ¥p* is the bound on |[E||g after transfor-
mation.

By proper selection of the transformation matrix M it is possible to obtain
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Hp* > My as shown by the following example:

Example 1: Consider the same exampie considered in [8]. The nominally

aSymptotica11y stable matrix Ay is given by

| -3 =27 |~ 0.99¢64
|; with ¥ = |
0 | s

Ao =
1

0.G266
the bounds are obtained as

L R N L L L L ey

L T T R e e L L

2.2.3 Structured Perturbations

-0.28217"|
0.95937

Up = Bound before transformation.

Hp* = Bound after transformation.

Similar to the unstructured perturbation case, it is possible to use a

transformation to get better Lounds on the structured perturbation case also. In

fact, in the case of a structured perturbation, it may be possible to get higher

bounds even with the use of a diagonal transformation. Hence in what follows, we

consider a diagonal transformation matrix M for which it is possible to get bound

in terms of the elements of M.

Theorem 2.2: Given

M = Diag [my, mp, m3, ..., Mp] (2.11)
the system of (2.1) is stable if
;s
€§j < =mmmmmmmranmas Ueij = Us™ Ueij (2.12a)
max |m
i, ‘-- Ueij
| mj
or g < Mg* (2.12b)
A 1
where g = mcccmcmeeee (2.12¢)

A A

omax (PmUe)s
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A A A ~

-~ A A A mj
and Ueij = eij/e and gij = |-=]| eyj (2.12e)
my

-

As before Hg* = ¥g/a where a is again a function of the transformation matrix
elements mj. .

Example-2: As before let

|7-3 -2 1 0 1 0
Ao = ' . Let Ue = N Nith M=
_1 0 _ 10 0 2.2_
‘ ug ug™ Hg = Bound before transformation.

I Hg* = Bound after transformation.

0.4805- |- 0.6575-

The use of a transformation to reduce conservatism of the bound for
structured perturbations and its application to design of a robust controller fer
a VTOL aircraft control problem is presented in [12]. '

Remark 2: The flow chart for obtaining the bounds by transformation is as

follows:

| Transfor- |Transformed - I
Original Coordin- | mation Coordinates, x(t) ‘ M-l |Original Coordinates,
tes, x(t) | M - A A A Ix(t)
HE|[g < Hp (UPL), [=mmmammnns IEl]ls < Mp, € < Mg [===-
g < us (S.P.) |IE’|S < up*, e < us*

Remark 3: The evolution of bounds u to ¥p to Hp* (g to Ms to ¥g*) can be

summarized as follows:
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—  min(Q) ; 1 ~( \ ux of (2.9)
U = meeee-- 5 T memmeas s X(t)= 0 9),
omax (7) P omax(P) | P
omin(Q) Q » In 1 Melx(t)[4s* of (2.12)
us S ecacescamcmas 0000 | eaaas - US = —--—--—-. —————————— }
omax (PUe)s omax(PmUe)s A_ oA
- V=x!Px
V = Lyap.funct = xT P x V=xTPx
PhAg+A P+20=0 P Ay + Al P+2l,=0 PAg + Al P+ 2Ip=0

From the above sequence, it is clear that the coordinate frame in which the
Lyapunov function is constructed has a significant effect on the bound in
relation to the effect of the matrix Q in a given coordinate frame.

2.2.4 Determination of (almost) 'Best' Transformation

As seen from the previous section, in order to get a better (higher) bound, it is
crucial to select an appropriate transformation matrix M. Obviously the question
arises: How can one find a transformation that gives a better bound than an original
one or even the 'best' among all possible choices for the transformation. In this
section, we attempt to address this question for the special case of a diagonal
transformation to be used irn tne structured perturbation case.

'Best' Diagonal-Transformation-for-S.P.

Recall from (2.12), the expression for Hg*. Without 1055 of generality, let us look
form > 0 (k = 1,2,...,n) such that M¢* is 'maximized'.
From (2.12), the matrix ; satisfies
E(M-IAOM) + (M=l T p = -21p (2.13)
Since M is diagonal, MT = M and (2.13) gives
(M-lﬁm-l)Ao + AOT(M-lﬁm-l) = -2(M-1)2 (2.14)
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Letting

P* = M-1pM-1 (i.e. pis = p*jjmimy) (2.15)
(2.15) becomes

P*A, + AOTP* = -2(M-1)2 (2.16)

The matrix equation (2.16) contains n{n+1)/2 scalar equations from which the
elements of the matrix P* can be expressed as functions of mj. And from (2.15),
Pjj can then be expressed as functions of mj. Thus one can express the bound of H¥g*
of (2.12) as a function of mj. We need to find mj that maximize ¥g* by determining
the first order derivatives and equating them to zero. However Hg* contains the

spectral norm of (PpUe)s which is difficult to express in terms of mj. Hence,

using the fact that ||(+)]|[s < |[(+)]|F, we choose to maximize

L B L L e T R T P Y et L (2.17)
A2 mj
7 (Pmle)sij Tmax (== Ueij)12
1,J i, 0™
with respect tomj, i =1,2,...,n.

The algorithm is best illustrated by a simple example.

Example 3:

For simplicity let us select M = Diag[l, m].

Carrying out the steps indicated above, we observe that the minimum value of
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~a 2 max  Mj
= (Pe)sij [i,j (== Veij)1?
i, my

i1

p112 + 1/2 p1p?

1 11
(0.333 + 1.667 (-=)2 + = (--)2

me 2 Zm
occurs at m » « and thus [_max = 3,

Hence, Lpax = 3 < Hg* » Hg* = 3,
Note that before transformation, Ms = 1.657. Thus there is an 81% improvement

in the bound after transformation.

Application to-the Drone Example- [5]:

The system matrices for the Drone Lateral Attitude Control system considered in

(5] are given by

[ -0.0853 -0.0001 -0.9994 0.0414 0.0000 0.1862
-46.8600 -2.7570 0.3896 0.0000 -124.3000 128.6000 -
A = -0.4248 -0.0622 -0.0671 0.0000 -8.7920 -20.4600 (2.18a)
0.0000 1.0000 0.0523 0.0000 0.0000 0.0000
0.0600 0.0000 0.0000 0.0000 -20.0000 0.0000
_ 0.0000 0.0000 0.0000 0.0000 0.0000 -20.0000 |
0. 0.
0. 0.
B = 0. 0. (2.18b)
0. 0.
20. 0.
0. 0.
- -
With a linear state feedback control gain
-215.1000 4.6650 7.8950 233.2000 -6.7080 2.5540
G = (2.18c)
-231.5000 -3.7230 7.4530 -213.5000 2.5540 -6.8690

the closed loop system matrix A = A + BG is made asymptotically stable.
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Now assuming the element Ap; to be the uncertain parameter (havihg a nominal value
= -46.86) we get the stability robustness bound on this parameter (using the Ug

matrix as Ug21 = 1 and Ugjj = O for all other i,j), as
po1 = 2.43 (2.19)

However, using the transformation
M =Diag [0.006 1 1 1 1 1] (2.20)
we get the bound on Azp as

*

21 = 573.46 (2.21)

which is clearly a significant improvement.
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ITII. FULL STATE AND STATE ESTIMATE FEEDBACK CONTROL DESIGN FOR ROBUST STABILITY

The foregoing discussion in Section II is basically concerned wiéh the analysis

of stability robustness for linear systems. No effort was made to synthesize a
controller to achieve stability robustness. In this section, we address this design
aspect ffom a systematic algoritimic point of view. The philosophy behind the proposed
procaedure is to make use of the perturbation bounds developed in the previous section
in a design formulation and give an algorithm to synthesize controllers for robust
stability. Towards this direction, a quantitative measure called 'stability robustness
index' is introduced and based on this index a design algorithm is presented by
which one can pick a controller that possesses good stability robustness property.
The algorithm, for given size of perturbation can be used to select the range of
control gain for which the system is stability robust or alternatively, for given
control gain, can be used to determine the range of the size of allowable perturbations
for stability. In this attempt, we first consider the case of full state and state
estimate feedback controllers and then investigate the use of reduced order dynamic
compensators in Section IV. In this section we also specialize the design algorithm
to 'modal systems' as well as 'matched systems'.

3.1 Linear State Feedback Control Casign Using Perturbation Bound Analysis

Consider the linear, time invariant system described by

X

Ax + Bu
(3.1)
y = Cx
where x is nxl state vector, the control u is mxl and output y (the variables we wish to
control) is kxl. The matrix triple (A,B,C) is assumed to be completely controllable and

observable. Let the control law be given by

u = Gx (3.2)
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Now let AA and AB be the perturbation matrices formed -by the maximum modulus
deviations expected in the individual elements of matrices A and B rspectively.

Then one can write

AA

Sa Uea . .
Absolute variation (3.3)
ep Uep

AB
where g3 is the maximum of all deviations in A and ey is the maximum of all deviations
in B. Then the total perturbation in the linear closed loop system matrix of (3.1)
with nominal control u = Gx is given by

A= A + ABGp = g3 Uey + ep Uep Gp (3.4)

Assuming the ratio ep/e; = € is known, we can extend the main result of section
(2.1.2) to the linear state feedback control system of (3.1)-(3.2) and obtain the
following design observation.

Design Observation 1:

The perturbed linear system is stable for all perturbations bounded by e3 and

ey if

€g  mrowescesscoccccccccna- = u (3-53)

Omax[PmUEa + ; Uep Gm]s

and ey < € u where
P(A+BG) + (A+BG)T P + 2 I, =0 (3.5b)

Alternately, we can write

AA'_'(SaAm
Relative variation (3.6)
AB=5me
where Amjj = |Aij| and Bmjj = |Rij| for all those i,j in which variation is expected

and Amjj = 0, Bmij = 0 for all those i,j in which there is no variation expected.

For this situation, assuming 8,/63 = & is known, we get the following bound on sa for
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robust stability.

Design-Observation- 2:

The perturbed linear system is stable for all relative (or percentage)

perturbations bounded by sa and sb if

§q < mmmacemeecocmumeaoan z Up (3.7)
2 omax[Pm(Am + BmGm)ls

and &b < & Wp where P satisfies the equation (3.5b).

Stability Robustness Index- and- Control- Design Algorithm:

We now define, as a measure of stability robustness, an index called 'Stability
Robustness Index 35 R.' as follows:
€ase a}: L.H.S. of (3.5 or 3.7) is known (i.e. checking stability for given
perturbation range). For this case
55 R, = w-ea (or Pp-sa). (3.82)
Case b): L.H.S. of (3.5 or 3.7) is not known (i.e. specifying the bound). For
this case
A
'SS.R._= u (or ¥p). (3.8b)
It is clear from the expressions for " (3.5), the ‘error matrix' (3.4) and
8s.R. (3.8) that these quantities depend on the control gain G and as the gain G is
varied 35 g, changes. In order to plot the relationship between 85 ,r. and the gain

G, we need a scalar guantitative measure of G. For this, we can either use

[16]ls = omax(8) (3.9a)

Jen

or
LF (uTu)dt]l/2 = [f xTaTaxge]l/2 (3.9b)
0 0

Jen

where Jcn denotes a measure of 'nominal control effort'. We use (3.9b).

The variation of Rg g, with the control effort Jcy is very much dependent on



-19-
tha perturbation matricec and on the behavior of the Lyapunov solution, which cannot
be described analytically in a straightforward way. Assuming stability robustness
is the only design objective, the design algorithm basically consists of picking a
control gain that maximizes stability robustness (fg.p_ ). Specifically the
algorithm involves determinirg the index Bg r, and the control effort J¢n for
ifferent values of the controi gain G and plotting these curves. These design
curves can then be used to pick a gain that achieves a high 85 p,. The algorithm
thus provides a simple constant gain state feedback control law that is robust from
stability point of view. The algorithm, for given perturbations, can be used for
selecting the range of control effort for which the system is stability robust or
alternatively for given control effort, can be used to detemine the range of
allowable perturbations for'stability.

The linear control gain G of {3.2) can, of course, be determined in many
different ways. In this section, we assume the control gain G to be given by the
standard linear cuedratic regulator algorithm. Accordingly, ve determine G as

G = - E- R,~1 BT X (3.10a)
Pc
where K satisfies the Riccati equation
Ro~l
KA + ATK - KB ---- 8TK + T =0 (3.10b)
oc
for a given Symmetfic positive semi definite matrix 0 and Rg = In. Thus p. serves
as the design variable.

[n other words, in the proposed procedure, we determine the gain by some nominal
means and then investigaté the robustness of the closed loop system by checking if
the gain makes the index 85 g, positive for a given g5 (or ep) (case a situation)

or by determining A5 p. = u for given control gain (for case b situation).
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Extension to Linear Stochastic Systems- With State Estimate Feedback:

We now extend the above analysis to the case of linear stochastic systems. Let

us consider a continuous, linear, time-invariant system described by

x(t) = Ax(t) + Bu(t) + Dw(t), x(0) = x, | (3.11a)
y(t) = Cx(t) (3.11b)
2(t) = Mx(t) + v(t) (3.11c)

where the state vector x is nxl, the control u is mxl, the exferna] disturbance w is
qxl, the output y (the variables we wish to control) is kxl, and the measurement
vector z is gxl. Accordingly the matrix A is of dimension nxn, B is nxm, D is nxq,
C is kxn and M is gxn. The initial condition x(0) is assumed to be a zero-mean,
Gaussian random vector with variance Xq, i.e.,

E[x(0)] = 0, Ex(0)xT(0)1 = X, | (3.11d)
Similarly the process noise w(t) and the measurement noise v(t) are assumed to be
zero-mean white-noise processes with Gaussian distributions having constant

covariances, W and V, respectively, i.e.,

Elw(t)] = E[v(t)) =0 (3.11e)
E 1™ w(t) 7] wi(x)vT()] |— W 0o 7.
= | s{t-1) {3.11f)
_vit) _| |_ 0  peVo _|

where pe is a scalar greater than zero and V = pgVg and § is the dirac delta function
and E is the expectation operator.
The state x(t) of the stochastic system is estimated as a function of the

measurements, where the state estimator has the following structure

.
A A

x(t) A;(t) + Bu + Gz(t) | (3.12a)

where

2(t) = 2(t) - Mx(t) (3.12b)
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is called the measurement residval. For minimum variance requirement, the estimator

of Eq. (3.12) is the standard Kalman filter.

We also assume that the matrix pairs [5,8] and [A,D] are completely controllable,
and the pairs [A,C] and [A,ﬁ] are completely observable.

For this case of linear stochastic system, we consider the control law given

by
A 1 A
u = Gx = == Rg=1 8TKx (3.13a)
Pc
where
= Ax + Bu + G(z-Mxz), x(0) =0 (3.13b)
= (A + BG - GM)x + Gz (3.13c)
A 1 - .
G = -- PMT Vg1 (3.13d)
Pe :

and P and K satisfy the algebraic matrix Riccati equations

Ro-l -
KA + ATK - KB ==-= Bk + Q =0 (3.13e)
Mol
- aA AL Vc-l o
PAT + AP - PMT -<—- MP + DWDT = 0 (3.13f)
Pe

The nominal closed-loop system is given by

‘ (3.14a)

M
- (3.14b)
x |-
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A

where A. = A + BG - GM and the closed loop system matrix

A BG

(3.15)

,Ac=l"- A
- GM Ac_
is asymptotically stabie.

Letting aA, AB, AC, Aﬁ and AD to be the maximum modulus derivations in the
system matrices A, B, C, M and D respectively, we can write the total error matrix
of the closed Toop system as |

AA ABGm

A= (3.16)

| Gmaf e
and writing AR = e3 Uey. 4B = ey Uep, Aﬁ = ¢n Uem ... etc. and knowing the ratios
ea/eh etc., cne can get tha stability robustness condition in the same manner as the
equations given by (3.5). |

Application to-the Drone- Lateral-Altitude- Control Problem:

The linearized model of the lateral attitude control problem of a drone
aircraft, with perturbations in the plant parameters is given by

x = (A + AA)x + Bu -, x{(0) = xq _ (3.17)

The components of the state vector x>R6 and the control vector usRZ are given by

xT = [8, &, v, 61/20, 62/20]
ul = [u; upl, uy = elevon command = §1 (3.18)
ug = rudder command = &2

The matrices A and B are given by (2.18).
We assume that the parameters with non zero nominal values in the A matrix are
subject to perturbations and thus we take the Uey matrix as Ueaij = |Ajjl/|Aijlmax-

Accordingly the matrix Uey is given by



~23-~

-~ ¢
0.0007 0.0900 0.0078 0.0003 0.0000 0.0014
0.3644 0.0214 0.0030 0.0000 0.9666 1.0000
0.0033 0.0005 0.0005 0.0000 0.0684 0.1591}
Uea = (3.19)
0.0000 0.9000 0.0000 0.0000 0.0000 - 0.0000

0.0000 0.0000 0.0000 0.0000 0.1555 0.6000

L0.0000 0.0000 0.0000 0.0000 0.0000 0.1555
The linear state feedback control gain is determined using the Riccati based
equations of (3.10). For a given control gain (i.e. given pc)s the bound u is
calculated. Since g3 is not known, in this case the stability-robustness index
8g.p. is simply given by 8g.p, = u. The plot of u with the design variable
pc is given in Fig. 1.
From the plot, it is seen that, for this problem, higher the control effort
(1esser the pc), higher is the tolerable perturbation for robust stability.

We now extend the algorithm to the stochastic controlier case using

D=8,C=1Ig, T=CTC =15, Ry = Ip
- 100000 (3.20)
W=1p Vog=1I2,M=
000100

The plot of u vs pc with pe as a parameter and the comparison with the pure
state feedback case is given in Fig. 2.
Remark 4: From this plot, it is seen that the bound u with state estimate
feedback is lower than the one with pure state feedback.
Remark-5: For a given p., the bound u is higher as the measurement noise covariance
is decreased, i.e. as pp is decreased. This appears to be reasonable, because

this means that u becomes higher with better or more accurate measurements.
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Figure 1. Variation of Bound u with Control Weighting pc with Full State

Linear State Feedback for Drone Example.
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Figure 2. Variation of Bound u with Control Weighting pc with State

Estimate Feedback for Drone Example.
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3.2 Linear State Feedback Control for- 'Modal- Systems'

In this section we apply the robust control design methodology p}esented in the
previous section to ‘modal systems'. The evaluation model considered in the
Large Space Structure (LSS) control problem constitutes a typical 'modal
system' model. We specifically consider the LSS model with vibration suppression
of the flexibie modes as the control cbjective. We seek a linear state feedback
control that achieves a reasonable trade off between the nominal performance and
stability robustness by accommodating the modal uncertainty structure into the
design procedure. Towards this difection, the fact that the modal data uncertainty
increases with mode number is incorporated in the characterization of uncertainty in
LSS model parameters and this uncertainty structure is used to obtain upper bounds
for robust stability which are in turn used to get a robust controiler.

LSS Models and Nominal- Control- Besign

Consider the standard state space description of LSS evaluation model with N

elastic modes:

% = Ax + Bu x(0) = xq3 x>RN=2N | yspm (3.21a)
y = Cx yoRK (3.21b)
where
i
xT = [x1T, xoT, oo xNT1; x5 = | . (3.21c)
)
0 1
A = Block diag. [...Afi...], Aii = 2 (3.21d)
~wj ~2zwi_
— -
BT = [B1T, 8,7, ... ByT]; By = . (3.21e)
LS

c=([C1 C2 ... CpN] (3.21f)
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The performance index for vibraticn suppression problem may be written as

Jd = [ [(

° i

N ~1=Z

. “’12 niz + ;]12) + p UTU]dt (3-22)

which can be written in the form

J = fmo(yT Qy + o ulu)dt = [~ (xT ¢T ocx + o ulu)dt = Jy + p dy (3.23)
0

where the matrix C of (3.21) is given by

C = Block diag. [... Cj ...] (3.24a)
and _ _
U.)'| 0
G = (3.24b)
0 1]

Let the nominal control law be designed by minimizing the performance index of

(3.23) which results in [13]

u = Gx (3.25a)
where |
G = - : BTK (3.25b)
o}
KA + ATK -’5593 K+ cTgc =0 (3.25¢)
o}

The closed loop system matrix

A = (A + BG) (3.26)
is assymptotically stable. In the nominal design situation, an appropriate
value for o (and hence G) is determined such that & reasonable trade off
between Jy and Jy is obtained. However, in LSS models, the parameters of the
plant matrix A, namely the modal frequencies and modal damping as well as the
parameters of the control distribution matrix B, namely the mode shape slopes
at actuator locations are known to be uncertain. It is also known that the

uncertainty in these parameters tends to increase with increase in mode number.
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Thus with variations AA and AB in the matrices A and B of (3.21), the:nominal
control G of (3.25) cannot guarantee stability of the closed loop system. Thus
one needs to design a contro! gain G that guarantees stability for a given
range of perturbations AA and AB. This is done using the design procedure given in
the previous section. [In other words, the control design algorithm for robust
stability consists of picking a control gain (i.e. p) that achieves a positive
8s.R. (for case a) or high value of 85 p. (for case b).

The design algorithm invoives determining the index 85 r, and the
costs Jy and Jy for different values of tihe design parameter p and plotting
these curves. The algorithm thus provides a simple constant gain state
feedback control law (using the standard optimal LQ regulator format) that is
robust from stability point bf view. The algorithm, for given perturbations,
can be used for selecting the range of control weighting (control effort) for
which the system i3 stability robust or alternatively for given control
effort, can be used to determine the range of allowable perturbations for
stability.

In the next section, we present a specific characterization of
uncertainty for LSS models and use the above methodology to design a
controller for the Purdue model [14] of a two dimensional LSS.

Characterization- of Parameter- Uncertainty in-L.S.S.-Models and- Application to

Purdue Model

In L.S.S. models having the structure given by (3.21) the uncertainty in
the modal parameters such as modal frequency dampings and mode shape slopes at
actuator locations tend to increase with increase in mode number. One way of
modeling this information in the uncertainty structure is given in the

following (specifically we employ the relative variation format of (3.6))
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AA

&
$9C>

0 0
23 & : (3.27a)

Ik 3I@3

8ty 0

AB

Q (3.27b)

where @i indicate the nominal entries corresponding to the ith mode. We
assume &3 = A&y which are not Known.
with the above proposad uncertainty structure, we apply the robust
control design methocdology of previous section te the Purdue model [14]. The
model used consists of the first five elastic modes. The numerical values of the
modal are given in ref. [14]. To conserve space the model is not reproduced here.
Since & (and &) are not known, the present design corresponds to case b
in which case we pick a control gain that gives high 85 r, = up. The plot of
p VS. p is given in Fig, 3. The robust control gain is the gain
corresponding to p = 0.12.
Figs. 4 and 5 present the variation of up with control effort (i.e. p)
assuming AA = 0 and AB = 0 respectively. From these plots it can be
concluded that the control effort range available for guaranteed stability

for mode shape (AB # 0, aA = 0) variation is limited in comparison to the
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range available for model frequency variation. Thus mode shape (slopes at
actuator location) variations are more critical from control point of view
than modal frequency variations.

3.3 Linear State Feedback-Control-Design-for 'Matched-Systems':

In the design procedures presented so far in this report, a linear state
feedback control is determined by a chosen method (for example, a Riccati based
control gain) and then its robustness property is investigated by computing the
tolerable perturbations of the closed loop system formed by this control gain. This
control gain is seen to qualify as a 'robust' control gain only if it makes the
stability robustness index Rg p, positive Tor a given perturbation range ¢ (i.e. if
p<e). There is no guarantee that there exists a linear state feedback control gain
that accommodates a given perturbation range. However it is shown by Thorp and
Barmish in [15] that there exists a linear state feedback control that guarantees
stability of the perturbed system provided the uncertainty satisfies the so called
'Matching Condition (MC)'. Matching conditions in essence constrain the manner in
which the uncertainty is permitted to enter the system dynamics. We denote the
systems whose uncertainty structure satisfies Matching Condition as 'Matched
Systems'. Assuming uncertainty only in the A matrix of the standard linear state
space model given by (3.1), tﬁé uncertainty aA is said to satisfy the matching
condition if there exists a matrix D such that

A = BD
i.e. the uncertainty in A is in the range space of the control distribution matrix
B.

In this section, we combine the matching condition assumption with the

elemental bound technique presented in the previous sections to design a linear

state feedback controller that guarantees stability for the given range of
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perturbations. The proposed method possesses theoretical justification only for
simple second order systems with single input (at this state of resea;ch) but the
method is seen to give encouraging results even for higher order systems. The
proposed procedure is shown to compare favorably with other existing methods.

Elemental- Bounds--and- kinear-€ontrol- Design-Algerithm:

Consider the simple asymptotically stable second order system given by

. 0 1
X = X , a2, a2 >0 (3.28)
_-azy -agp. | '
= Ac x

with perturbations in the elements a2i and az2. Let a = Max (ag1,a22).

The stability robustness bound u.for this system yields

u S eceanecomsmoaww (3.29)
omax(Pmle)s
where one choice of U. is
|~ o 0 “w
Ue = |

| . L (3.30)
_az1/a aza/a -|

and P satisfies the Lyapunov equation PAc + AcTP + 2I, = 0. Another choice for Ue

is

. | (3.31)

From the solution of the above Lyapunov equation, one can make the following design
observation.

Design Observatien-3: The elemental perturbation bound u of (3.29) increases with

increase in the magnitude of the nominal values of the elements apj and az2.

We now utilize the above observation in the context of designing a linear
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controller for the simple second order system

. 0 1 T I_O—
X = X + u (3.32a)
|- -az1 -2z |-1-|

with again ap; and a2 being the uncertain parameters, known to vary within a given
interval. We can write the perturbation matrix M as

AAC = EUe (3.33)

0 o

1=

where Up = » € = Max(ep1,€22), €21 and e are the maximum

_e21/e  e22/e _
modulus deviations in az] and ap2 respectively. It is important to realize that for
the above system's uncertainty structure, the matching condition [15] is satisfied,
i.e. /
Ug = 8D (3.34)

Hence, according to ref. [15], a linear controller that guarantees stability
exists.

With the aid of matching condition (3.34) and design observation 3, we can now
present a iinear control design algorithm for the system of (3.32), assuming e21, €22
(and thus ) are known and that the open loop perturbed system (Ac + AAc) is

unstable.

Linear Control-Design- Algorithm

Step-t: Determine Y1 = 1/omax(PimVe)s (3.35)

where P1Ac1 + AclT P + 2I, = 0 and AC1 = Ac.
Step 2: Let Acz = Acl'ulue- Note that |a21]|2 > |ap2|2. Determine ¥p =

1/ omax(P2mUe)s where P2Ac2 + AcaT P2 + 2Ip = O. Note that M2 > ¥y by virtue of
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design observation 3. Check if ¢ < up. If yes proceed to step 4. If not go
to step 3.
Step 3: Repeat determining
i+l = 1/ omax(P(i+1)mUe)s (3.36)
where Pj41A + AT Pi+1 + 2I2 =0
i+l Citl ¢ in i+l 2

A = A - uil 3.37
Citq c; - mile ( )

and checking if ¢ < pj41 1 = 3,4,...
Since uj+1 > uj for each iteration, for some i+l = o, we will have
e < Wy (3.38)
The propagation of u with each iteration is depicted in Figure 6.

Step-4: Once g < py, write

a-1
AC(I = AC - .Yl uiUe = Ac - UCUe (3.393)
where
a-1
we = 7w (3.39b)
i=1

Also from steps 2 and 3, all Ac, (i=1,2,...,a) as well as A;, * el are stable. Let
: i

Aca = Ac = ucle = Ac - ucBD = Ac + BG (3.40)
where u = Gx is the linear control law we are after. Thus from (3.40), the control
gain which guarantees stability of the perturbed closed loop system in the presence
of variations of magnitude ep1 and e22 in the elements ap; and app is given by

G = -ucDd (3.41)

Application- Exampie

We now consider the same example used in [15] and [16] for comparison purposes.

The system is given by x = A(q)x + Bu where



(3.42)

In order to take advantage of symmetrical perturbation range assumed in our

analysis, we take our 'nominal' system matrix and the perturbation matrix as

follows:
. '_'0 1
Nominal: x = Aax + Bu where A; = | (3.43)
— | -2 1.25_
Perturbatien: A = elg with 1] = 1, €22 = 1.25 so that
~ 5 0=
Ue = and ¢ = 1.25. (3.44)
0.8 1|

Since the open loop 'nominal' system is unstable, we first stabilize the
'nominal’ system wilh a control law u = Gix where G] = [1.04 -1.45] so that the

stable nominal open looo system is given by

70|
B = ’ {, e = 1.25 (3.45)

I~ o 1

--0.959 0.2 |’ 1

Now apllying the design algorithm for the system (3.43), it is observed that

after seven iterations u, = 1.2537 > ¢ = 1.25. We obtain

ui = 2.3995, also D
1

He =

|
Il ~1Oh

. [0.8 1] (3.46)
1 |
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Hence the control gain defined by G of (3.41) is given by G = [-1.9196 -2.3995].

So the final gain for this example system is given by .
Gf = G + G = [-0.8986 -3.8495] (3.47)

It is to be noted that the final control gain Gf above is with respect to the
open loop system matrix Ay (and not Ag). Since the methods compared in [15]-[16]
give the final control Gain with respect to the matrix Ay, we obtain the control
gain obtained by the proposed method with respect to A, as

Ge = [-0.8786  -3.5995]

(3.48)

nyon

[-0.88 -3.6]
Thus G¢ is the gain to be used for comparison with other methods.

Comparison: We reproduce the table given in [15] and [16].

Method R 1811 = e(+)2453/2
GCC {Chang and Peng) 1.36 6.42 6.56
MGCC (Vinkler and Wood) 0.33 3.52 3.53
-MC (Thorp and Barmizh) 0.67 3.67 3.73
Elemental Perturbation Bound
Analysis, EPBA (Yedavalli) 0.88 3.60 3.70

Thus the proposed method fares well in comparison with the other methods. We

believe that the proposed method is computationally simpler.
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Figure 5. Variation of Bound with Control Effort for LSS Model (aA % 0, aB = 0).
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22

Figure 6. Propagation of ®{ with Each Iteration for Second Order Matched Systems.



-40-
IV. REDUCED ORDER DYNAMIC COMPENSATOR DESIGN FOR ROBUST STABILITY

In the previous section, efforts were directed to design a 1inea; full state
(and state estimate) feedback controller for robust stability. However, in that
treatment, the control gain determination does not directly involve the stability
robustness criterion as a design constraint. Instead, for a predetermined iinear
control gain (obtained by many different nominal methods), the perturbation bound is
calculated and in the cases where the parameter perturbation ranges are given, the
stability robustness condition is checked (for robust stability). It is also seen
that it is possible to guarantee stability for given perturbation ranges only for
matched systems. No such guarantee exists for non-matched systems.

In this section, we attempt to solve the control desigﬁ problem for linear
regulators in a more direct and general way by formulating it as a parameter
optimization problem. Instead of designing the control gains by nominal means and
then checking its stability robustness bounds, we propose to include fhe stability
robustness condition explicitly in the design procedure as a design constant. In
addition, we specify the structure of the controller in the form of a linear reduced
order dynamic compensator (or given reduced dimension) which operates on the
available measurements. In this way the control law is more practically
implementable in contrast with the full order linear state feedback which demands
the availability of the full state. Of course the problem formulation is such that
the full order linear state feedback case comes out as a special case. The proposed
formulation is presently given for deterministic systems with the understanding that
the treatment for stochastic systems conceptually follows the same lines (with of
course consideraB]y different details).

4.1 System Description-and- Peformance- Index- for Specification

Consider again the linear time invariant system
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x(t) = A x(t) + 2 u(t) %(0) = xg
y(t) = C x(t) (4.1)
2(t) = M x(t)

where the state vector x s RN, the control vector u » RM, output vector (the
variables we wish to control) y » RK and the measurement vector z » RZ,

Let the m control vriables in the vector u evolve from an sth order linear
dynamical compensator of prescribed structure operating on the 2 available

measurements z,

U= 911 3+91212 R + RS

(4.2)

3 =921 8+ 922 z g(0) =0
The 5i; are constant gain matrices of appropriate dimensions to be determined
according to a criterion discussed later.

The closed loop system is then given by

. xo l
Xe = Ac Xec Xc - RN+S s Xc(O) = (4.33)
0
Ye = C¢ xe y¢ » Rk*m
where

xel = [xT 3T], ycT = [yl 7] (4.3b)
“A + BeypM  Beyp

Ac = - l (4.3c)
.. 922M 921 _I
~ ¢ 0 -

Cc = - (4.3d)
~012M 611 _|

We assume that the design is such that nominal closed loop system matrix Ac is

asymptotically stable. The matrices Ac and C. can also be expressed as
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A 07| 8 07 [0 Ig
-0 0 -0 Ig M0
=A+BaM
—C 07} 0 0] ~ - a & :
Cc = + laM=C+1oM (4.4b)
0 o0 Sl 0]
where
a1 012
8 = | (4.4¢)
|_s21 622

In the nominal linear regulator problem, the gain 8 is determined such that the

following quadratic performance index is minimized.

Min 1 « S
WT.t. V] = 5 [ (yToy + uTR:u + 87Rgg)dt (4.5a)
8 0
o - . - - —Q 0 -
= 2 [ (ycTQyc + aTRa8)dt where Q = (4.5b)
2 o 0 R

The weighting terms on é and u together penalize the full set of gains 6ij
quadratically. The omission of é term would preclude the gains 621 and 622 from
getting weighted in the performance index. Here Q, R} and Ry are symmetric positive
definite matrices of appropriace dimensions.

The performance index Vl obtaired by ignoring the cross coupling terms in Vi,

can be written as

Vi = [ xcT Q xc dt (4.6a)
0

where
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0 = Block Diag [{CTC + MTapoTRo8poM + MTeyoTR} 612M3,
{871R2621 + 8117R1017}] (4.6b)
A 1 -~ '._'A PN A' A A
= Q + 5 [MToTRaM + TMToTRuMT]
and

10| - "kl 07} ~ [|7tToc 07|

T = , R = , Q=] (4.6¢)
0 - 0 Ro o o

Assuming the closed Toop system matrix Ac to be asymptotically stable, the

nominal perfcrmance index ql can be expressed as
01 = fo ket ] Xc dt = Trace {P2 Xp} (4.7a)

where the matrix P2 satisfies the Lyapunov equation
PoAc + AcTPp + Q = 0 (4.7b)

and the matrix

Xo = } (4.7¢)
I

As discussed in [17], the dependence of the controller on the initial condition
Xo can be removed by assuming the initial condition xo to be a random variable with
zero mean and uniformly distributed over a sphere of unit radius thereby expressing
Xg as

E =0
(x0) (4.8)

ECxoxoT] = %o
and then modifying the nominal performance index as

lim 1 t . .
7 = o E [ (yc' T yc + 8TR28)dt = Trace {P2 Xp} (4.9a)
+> 00 (0]
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where

’ and P2 is as given by equation (4.7b). (4.9b)

Thus the nominal linear regulator problem with specified compensator Sstructure is as
follows:

Find 8 such that

Min -

. {Trace Py Ko} (4.10a)
subject to the constraint

PoAc + AcTP2 + Q = 0 (4.10b)
where A and 6 are given by (4.4), (4.6). Note that in A¢ and 6 511 matrices except
9 are known.

The above problem formulation is the standard optimal dynamic compensator
design formulation discussed in many references [17]-[19]. Our intent now is to
include the stability robustness condition also into the problem formulation when
the above system matrices are perturbed by finite parameter variations. Let #A,
AB, AC and aM be the maximum modulus deviations expected in the entries of A, B, C
and M respectively. Then, as before, the perturbed closed loop system is given by

(AC + AAc)ch = RC ch (4.113)

ch =
Yep = Cep Xcp
where
RC =,; + éeﬁ + A& + AéeAM + Aéeé + éeaﬁ (4.11b)

Since we are interested only in the stability robustness problem in this
research (the performance robustness problem is a separate research topic of its

own), our aim is to determine & such that, in addition to nominal regulation problem
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as posed in (4.10), it also maximizes the stability robustness bound u which
arises from the following stability robustness condition. Recall that the perturbed

closed Toop system matrix RC is stable if

" A ~ A A ~ A A 1
[aAe = {M + aBopaM + mBopM + BOpaM}lij max < ====s=====z- (4.12a)
omax(PimUe)s
where P1 satisfies
P1Ac + AcTPL + 2Iq4g = O (4.12b)

and Ua accommodates the structure of the perturbation matrices of the l.h.s. of
(4.12a). Of course we can write
A = galleg, AB = ebUeb, AM = SmUem, AC = €cUec

and knowing the ratios of e3, ey and ep, we obtain

l— b 0 0
Uea O --Uep O
AAC = Sa + €a em €m
0 0 0 0 - Uem 0
a
€h _
-~ Uep O 0 I (B 0 0 0 }
a
+ fm + Bm Em |
0 0 M 0 \0 IS 'e‘- Uem 0
a
= €a U (4.13)

where U is the matrix within the square brackets. Then one can obtain the stability

robustness condition as

sa K cnccmacanaa =1 (4'14)

Henceforth, we will assume that only aAA is present for simplicity purposes.
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From (4.14), it can be seen that u is a function of the control gains 6 through
P1 and U. Also it may be noted that the problem of maximization of u with respect
to 8 can be converted to that of minimixing opax(PimU)s with respect to 6 subject to
the contraint (4.12b).

Thus, we now pose a modified optimization problem by combining the stability
robustness condition of (4.14) with the nominal requlation problem of (4.10) as
follows:

Find 8 such that the performance index

A
V2 = [opax(PimU)s + Trace P2 %ol (4.15a)

is minimized subject to the constraints

Pl Ac + AT P1 + 2Ip4g = 0 (4.15b)

Pa Ac + AcT P2 +Q =0 (4.15¢)
and

Re {2j(Ac)} < 0. (4.15d)

Modi fied Performance-Index:

Note that the above performance index V2 contains a term involving the maximum
singular value as well as a positive matrix Pyp. Optimization of an index like the
one posed is a formidable task as it is almost computationally and analytically
intractable. Hence we intend to modify the performance index such that it becomes
more tractable.

Noting that the Frobenius norm of a matrix is always an upper bound on the
spectral norm of the matrix, i.e.

G IF 2 omax(+) (4.16)
and that

omax(*) 2 omax(*)s (4.17)
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we propose the following upper bound to be minimized instead of opax(PimU)s.

1

Proposition 1:

"
PO

Vp Trace [P1TWP1 + P1WP1T] > opax(P1mV)s (4.18)

for some suitable diagonal weighting matrix W.

The diagonal weighting matrix W is such that Wjj = O whenever Ujj (j = 1,2,...,
nts) = 0 for a given row i and Wjj = wj whenever Ui (j =1,2,...,n+s) # 0 for a
given row i and any column j. Even though the specification of wj is crucial in
establishing the upper bound property of V. as in (4.18), it turns out, as seen later
in conjunction with the nominal regulation problem, that it is possible to specify
the wij > 0 as arbitrary and transfer its implication in the design to another desiyn
variable, namely pc, the weighting on the control variable.

We are new in a position to state the problem of finding the 'optimal' dynamic
compensator yains e for robust stability and nominal regulation of a linear
regulator.

4.2 Compensator Design by Parameter Uptimization Technique

Find g such that
Min 1 . . —
V3 = {3 TracelP1TWP] + P1wP1T] + Trace P2 Xo} (4.19a)
8

subject tn the constraints

PlAc + AcTP] + 2Ip+s = U (4.19b)
PoAc + AcTP2 + Q= U (4.19¢)
Re ajlAcd < U (4.19q)

where Ac and 6 are as in (4.4 and 4.6) and W is yiven according to the structure of

the U matrix.
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Solution by Parameter Uptimization:

We approach the solution to the above nonlinear (quadratic performance index)
proyramming problem by writing down necessary conditions and investigating the
solutions which satisfy them. Using the technique of Lagrange multipliers, we
transform the above constrained optimization problem to an unconstrained
optimization problem by defining the Hamiltonian. Thus we write

Min
. {H (4.20)

where H is the Hamiltonian yiven by
! T) + p.X oy +
H = Trace - (P1TWPy + PwPyT) + PuXg + L1(P1Ac + AclPp + 21)
+ Lo(PoAc + AcTP2 + Q)3 (4.21)

and L} and Ly are the Layrange Hultiplier matrices.

The tirst order necessary conditions are:

3H
--- = P1Ac + AcTPL + 2l = U (4.22a)
a1

aH ~

—-= = PpAc + AcTP2 + Q= U (4.220)
L2

H
35_ = LlTACT + ACLlT + PIW + WP =V (4.22¢)
aP1

H -

= LTACT + AcLpT + Tl = U (4.224d)
aP2

aH PN -~ a - - A -~

== = 2BT(PiL} + PoLy)MT + Ro(MLoMT + MTLLTMT) = U (4.22e)

38
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In arriving at these conditions, the matrix derivative identities yiven in L20J are
used,

We can yet the yain g computed by simultaneously solving for Py, Py, L] and Ly
using equations (4.22).

Special Cases:

a) Standard nominal regulation problem with tull state teeaback:
For this case W = U, 811 = 821 = 822 = 0, M =1, L] = U and we end up with the
standard Algebraic Riccati equaticn.
b) ‘'Optimal' state feedback for robust stability:
For this case, M=I, @911 = @21 = @g2 = U. The gain g)p Then is yiven by
o12 = -R-1BT(PLy + PoLu)Lp! (4.23a)
c) 'Optimal' measurement teedback tor robust stability:
For this case g)] = 621 = 6p2 = Y and the yain g1, is yiven by
012 = -R-1BT(PLy + Poip)MT(MLyMT)=L (4.23p)

4.3 Example and Discussion of tne Results

Consider the simple second order linear time invariant system given Dy

0 17 |07 T
x+ | Ju, x(u)=| (4.24)
|_a  -0.5 | | 1] | 1|

where a is the uncertain parameter with nominal value a = 1
y =X
z = L2 1]x

Let us consider a tfirst order dynamic compensator haviny the structure

u = 8118 *+ 122 g e R
. (4.25)
B = 8218 * 6222 alu) = U
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0 0 .
Since Ug; = l l, we select Wi] = W33 = U and Wpp = 1 and specify the pertormance
|1 U]
index as
1 -
V3 = Trace L{ : (P1TWPy + P1wpyT)y + PyXo (4.26)

with Q = I2, R; = 1, Ry =1 and P; and Py, satisfyiny the Lyapunov equations yiven Dy
(4.22) with Ac being a 3x3 matrix.
With the above weighting matrices and the performance index, the parameter
optimization procedure presented before yields the 'optimal' compensator yains to De
T-6.5778  -1.2255
g = (4.27)
|_-4.8419 0.3275 _| :

and the nominal closed loop system matrix Ac is given Dy

u 1 (I
Ac = | =-1.45 -1.72 -6.57 { (4.28)
’__ 0.655 0.327 -4.34 _J
The resulting bound ypj on the uncertain parameter a for robust stability is yiven
by
w21 = 1.1644 (4.29)

In other words, with the aynamic conpensator yiven by (4.27), the uncertain
parameter 'a' can tolerate perturbations up to * L.1644 from its nominal value a=1
and still maintain stability. The dynamic compensator found in (4.27) is ‘'optimal' in
the sense that it maximizes (albeit, in an approximate way) the perturbation bound
the uncertain parameter can have, to maintain stability with the imposed restrictions
on the control effort and nomnal regulation as reflected by the weigntings Y, Kj and

R2. Note that the robustness weignting matrix W incorporates the uncertainty
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structure (that only ayy element is varyiny) in an explicit way. However, one limi-
tation of the W matrix is that it does not fully reflect the uncertainty structure in
the sense that we would use the same W (wyp = 1 and wy] = w33 = U) even if both ap)
and ayp were varying. Efforts are underway to prescribe a more versatile performance
index (an upper bound on gpax(PmpUe)s) that completely utilizes the structure of Ug.
Fortunately, when the uncertinty structure (i.e. Ug matrix) is such that there is
only one nonzero entry for each row, then the W matrix completely incorporates the
uncertainty structure. Since wji is arbitrarily specified, one needs to check,

after the aesign is complete, whether the index Trace é P1TwPy + P1WP1Ty is an upper
bound on the yuantity omax(PimUel)s or not. If it is not, one can either change wpy
or the control weighting Ry until this happens.

Measurement feedback:

Using the same weiyghtings and procedure as pbefore, the ‘optimal' measurement
feedback for the above example, i.e.
u= 912 2z (4.30)

is yiven by

u = 1.3878 z (4.31)
which yields
w21 = 1.278 (4.32)

Comparison of 'Robust' State Feedback and 'Nominal' State Feedback

With W = U (i.e. no requirement of robust stability) and the weiyhtings Y = Iy,
Rl = pRo = p (Rg =1 and 5 as a design variable), one can yet the standard nominal
optimal linear regulator state feedback control law given by the solution of the
algebraic Riccati equation. |

With w1] = U = w33 amd wp2 = L and the same control weightings as above, one can

get the 'optimal robust' state feedback control law determined by the proposed
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parameter optimization (PU) method. .
The comparison of 'robust (PO) state feedback control law' vs. the ‘nominal
 state feedback control law' is depicted in Fiy. 7 where the perturbation bound y21
is plotted against the nominal control effort Jyp = (Z uTuar)1/2,

As anticipated, for a given control effort, the robust control law yields a

higher perturbation bouna uy] than the nominal control law, indicating the usefulness

of the proposed optimization procedure.
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V. CONCLUSIUNS AND RECUMMENUATIONS FUR FUTURE RESEARCH

5.1 MWork in Retrospect

The main theme of the described research under the present yrant has been to
analyze and synthesize controllers for robust stability for linear time invariant
systems subject to linear time varying structured (elemental) perturpbations. First
the analysis of robustness was considered. The main contribution of the research in
this aspect is the reduction of conservatism of tne previously developed perturbation
bounds for structured (elemental) uncertainty. This is done by employing a state
transformation and the improvement of the proposed technigue is 1llustrated with
several examples.

Then the aspect uof control desiyn is addressed. In this reyard, first the case
of linear state teedback control is considered. The linear sfate feedback control 1s
determined by nominal means based on the Riccati equation and the bounds achieved by
this control law are computed. The effect of state estimation in the control law
(for stochastic systems) on the pounds is illustrated by comparing it with the exact
state tfeedback case. Then the special nature of 'modal systems' (as in Larye Space
Structure Control example) is incorporated in tne uncertainty structure dand a linear
state feedback control utilizing this special structure is developed. Finally 1n
that section, the conditions under which a linear state feedbacﬁ control exists (for
yiven perturbation range) is recalled (namely the matching condition) and a desiyn
a]gofithm is presented for determining the linear state feedback control for these
'matcned systems' (for simple second order systems at this stage of research).

Section 1V comprises the major contribution of the research under this yrant 1n
which a desiyn procedure for determining reduced order dynamic compensators for
robust stability is presented using the Parameter Uptimization (P0O) method. The

maximization of the perturbation bound is posed as 4 minimization problem by
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specifying an appropriate performance index and the control gains of a compensator uf
yiven structure are optimized to minimize the yiven performance 1ndex: The solution
method leads to a set of necessary conditions which are then simultaneously solved to
obtain the desired yains. The niethod is illustrated with the help of a simple
example.

The publications listed as Refs. {21-25] are the result of this study.

As it normally occurs, another result of this study is that many interesting
research topics surfaced for further investigation. These are summarized in the
following.

5.2 Avenues tor Further Research Which Need the Continued Support of the
NASA tanyley Research Center

1) Tne foremost area of researcn would be to further reduce the conservatism of the
perturbation bounds by scaiing. Note that a similarity transformation is not a
necessary means (but only a sufficient ineans) to reduce the conservatism. Une
suyyestion is to use positive real transformations.

2) One extension that needs attentioﬁ is to develop linear state feedback control
law for higher order matchzd systems and then to consider the case of mismatched
systems.

3) An area of research would be to extend the development of explicit bounds for
structured perturbation to time-invariant perturbations and examine the reduction
in conservatism that can he achieved.

4) Another area of interest is to compare the proposed ‘Perturbation Bouna Analysis'
approach to design with other relevant methods like the Guaranteed Cost tontrol
of Chanyg and Peng L6J) and the 'multimodel theory' of Ackermann.

5) It is also of interest to probe the relationship Detween the perturbation bound

and the correspondiny deyree of stability measured by the real part of the
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7)

8)

10)

11)

12)
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dominant eigenvalue, i.e. the relationship bDetween perturbation ranye and
eigenvalue displacement. .

Another aspect for future research would be to extend the "Perturbation Bound
Analysis' for actuator-sensor location problems.

An area of extreme interest would be to use the perturbation bounds as a
criterion for selecting the critical parameters in a system and use this
information in model/contoller reduction and develop an algorithm for same ana
compare it with other relevant schemes.

Une ftoremost area of research would be to extend the proposed analysis and desiyn
methodoloyy to the case of combined modeling errors such as parameter variation,
mode truncation and possibly nonlinearities.

There is need for probing into the comparison and contrast of frequency domain
results and the proposed time domain results.

Une immediate application uf the developed perturbation bound analysis 1s in the
drea of stability analysis and confro] design for large scale interconnected
systems (decentralized control).

It is instructive to extend the proposed concepts to the case of combined
‘stability robustness' and 'performance robustness' where ‘'performance’ is
measured in terms of speed of response, percentage overshoot, damping
enhancement, etc.

Some interesting application areas are: (i) the vibration control of mechanical
systems, (ii) active flutter control in aircfaft, (iii) failure mode

anaiysis in turbofan engine control, and (iv) control of robot manipulators.
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