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Abstract 
. 

Time domain stahility robustness analysis and design for linear multi-

variable uncertain systems with bounded uncertainties is the central theme of 

th~ research under the present grant. After reviewing the recently developed 

upper'bounds on the linear, elementa1 (structured), time varying pertu,'bation 

of .1n asymptotically stable linear time invariant regulator, it is shewn that 

it is possib"le to further improve these bounds by employing state transforma

tions. Then introducing a quantitative measure called the 'stability 

,....... robustness index ' , a state feedback control design algorithm is presented for 

r 

,...... 
I 

,.... 

,...., 
. I 

I 

a general linear regulator problem and then specialized to the case of 'modal 

systems I as well as 'matched systems ' • The extension of the algorithm to 

stochastic systems with Kalman filter as the state estimator is presented. 

Finally an algorithm for 'robust dynamic compensator l design is presented 

using Parameter Optimization (PO) procedure. Applications in aircraft control 

and flexible structure control are presented along with a comparison with 

other existing methods. 
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I. INTRODUCTION AND PERSPECTIVE 
\ 

It is \'1ell known that the inevitable presence of :nodeling errors'in the 

model used for control design invariably limits the performance attainable 

from the control system designs produced by e'ither classical (frequency domain) 

or modern (time dOlTinin) control theory. !t is tr.us evident that 'robustness' 

is an extremely desirable (for some applications, ~ven necessary) fec:ture of 

any feedback control design proposed. 'Robustness' studies of lineal' systems 

is the central theme of the present research. 

For our present purposes a 'robust' control design is that design which 

behaves in an 'acceptable' fashion (i.e., satisfactorily meets the system 

specifications) even in the presence of modeling errors. Since the system 

specifications cOLild be in terms of stability a/"1d/or performance (regulation, 

time response, etc.) we can conceive two types of robustness, ~amely, 

'Stability Robustness' and 'P2rformd~ce Ronustness·. Limiting our attention in 

this research to 'parameter errors' as the type of modeling error that may 

cause instability (or performance degradation) in the system, we formally 

defi ne 'stabil Hy robustness' and 'performance rob:Jstness' as foll ows: 

'Stability Robustness', ~lair1taining closec\ lO:Jp system stability in the 

presence of modeling errors, mainly parameter varitions. 

'Performance RObustness': Maintaining satisfactory level of performance (or 

regulation) in the presence of mOdeling errors. n~inly parameter variations. 

Clearly 'stabili~y robustness' is a prerequisite to 'performance 

robustness'. Hence in this research we concentrate on the aspect'of 'stability 

robustness' while the aspect of 'performance rObustness' is addressed in the 

research sponsored by the Wright Patterson Air Force Base under a separate 

contract and these details are discussed in ref. [1J. 



...... 

,.... 

,...... 

-

-3-

The published literature on the 'robustness ' of liner systems can be 

viewed mainly from two perspectives, namely i) frequency domain analysis and 

ii) time domain analysis. The main direction of research in frequency domain 

has been to extend and generalize the well known classical single input single 

output treatment to the case of multiple input multiple output systems, using 

the singular value decomposition [2-3J. In the case of frequency domain 

results, the perturbations ar-e mainly viewed in terms of 'gain' and 'phase ' 

changes [4-5J. The time domain treatment is more or less similar to the 

frequency domain treatment in spirit but quite different in detail. The time 

domain treatment is more amenable to treating perturbations in the form of real 

parameter variations, nonlinearities and external disturbances and also for the 

physical interpretation of many real life perturbations. This resedrch treats 

the robustness analysis and design from time domain viewpoint and in particular 

focuses on the well known Linear Quadratic Regulator problem. In addition, the 

main tool used is the Lyapunov stability analysis which allows time varying 

perturbations to be considered in the analysis. 

The problem of maintaining the stabi11ty of a nominally stable system 

subject to perturbations has been an active topic of research for quite some 

time. One factor which clearly influences this type of analysis is the 

characterization or type of 'perturbation ' • Even in the context of nominally 

stable linear systems, the 'perturbations ' can take different forms like 

linear, nonlinear, time invariant, time varying, structured and unstructured. 

"Structured perturbations ' are those for which bounds on the individual elements 

of the perturbation matrix are known (or derived) whereas 'unstructured 

perturbations ' are those for which only a norm bound on the perturbation matrix 

is known (or derived). In this reserch, we focus our attention on linear, time 
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varying, structured perturbations as affectin9 a nominally stable linear time 

invariant system. 

With this perspective in mind, the report is organized as follows: 

Section II briefly reviews the recently developed upper bounds in the linear, 

time var:ying~ str"uctured (elemental) pert.urbation of an asymptotically stable 

linear time invariant system to maintain stability. Then a state transformation 

technique is presented to further reduce the conservatism of these bounds. 

Section III is completely devoted to the design of linear full state feedback 

controllers for robust stability wher.e the algorithms are specialized to 'modal 

systems I (as in flexible structure examples) and 'matched systems I (where the 

uncertainty satisfies a special condition called 'matching condition ' ). The 

design algorithm is also extended to stochastic systems with state estimate 

feedback. Section IV addresses the important aspect of designing reduced order 

dynam~c compensators (which have practical implications) with robust stability 

as an ~dditional con~traint to the sta~dard linear quadratic regulator problem. 

The solution technique involves parameter optimization (PO) concept. The 

proposed procedures ar'e"illustrated with several examples. Finally Section V 

offers some conc'udi ng remarks and explores avenues for future research that 

needs the continued sponsorship of NASA. 
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II. ANALYSIS OF STABILITY ROBUSTNESS FOR LINEAR SYSTEMS 

In the present day applications of linear systems theory and practice, one 

of the challenges the designer is faced with is, to be able to guarantee 

'acceptable' behavior of the system even in the presence of perturbations. The 

fundamental 'acceptahle' behavior of any control design for linear systems is 

'stability' and accordingly one of the important task~ of the designer is to 

assure stability of the system subject to perturbations. 

In particular, as discussed in the introduction, we concentrate on 

'parameter uncertainty' as the type of perturbation acting on the system. This 

section, thus, addresses the analysis of 'stability robustness' of linear 

systems suhject to parameter uncertai nty. 

2.1 Review-of Stability Robustness Bounds in Time Domain 

We now briefly review the upper bounds for robust stability available in 

the literature for the two kinds of perturbation discusseu in Section I. 

Consider the following linear dynamical system 

x(t) = A(t) x (t) = [Ao + E(t)J x (t) (2.1) 

where x(t) + Rn is the state vector, Ao is the nxn nomir.aily stable matrix and 

E(t) is the 'Error' matrix. 

2.1.1 Bounds for Unstructured Perturbation (U.P.) 

Explicit bounds for robust stability under unstructured perturbations have 

been reported in refs. [6-8J. In these refs., it is shown that the system of 

(2.1) is stable if 
<1mi n (Q) 

<1max[E(t)J < ------- = u 
<1max(P) 

where P satisfies the Lyapunov equation 

(2.2a) 
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_ T_ 
PAo + Ao P + 20 = a (2.2b) 

It was shown by Patel and Toda in [8J that 0 = In maximizes the ratio u 
for gi yen Ao. Thus the eventl!al bound .j s gi yen by 

where P satisfies the Lyapunov eGuation 

P Ao + AoTp + 2In = a 

2.1.2 Bounds for Structured Perturbatiens (S.P.) 

(2.3a) 

(2.3b) 

In [8J, using the bound for un::.;tructurea perturbations, a bound for 

structured perturbation was present~d as 

< :::;.i 

and up is as defined by (2.3). 

6 ~ A Max 
:.: t I £ i j (t ) I rna x and e = eij 

i ,j 
(2.4) 

Recently, by taking advantage cf th:c ;itr:.Jctura1 information of the nominal 

as well as perturbation matrices, improveu ~ea5ures of stability robustness are 

presented in [9J-[10J as follows: 

or 

The system of (2.1) is asymptotica~ly stable if 
1 

eij < ----------- • Ueij 3 Us Ueij 3 Usij 
<1max[PmUeJs 

for all i,j = 1, ... ,n where P satisfies (2.3b) and 

fl 
Ueij = eij/e (Thus a ~ Ueij ~ 1) 

(2.5a) 

(2.5b) 

(2.5c) 

It may be noted that lJ e can be furmed even if one knows only the ratio 

eij/~ instead of knowing eij (and e) separately. One suitable choice for the 

ratio is 
I 
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Ueij = Eij/E = IAoijl/lAoijlmax 

for all i,j for which Eij :# O. 

. (2 .5d) 

Remark 1: From (2.4), it is seen that Eij are the maximum modulus 

deviations expected in the individual elements of the nominal matrix Ao. If we 

~ denote the matrix /\ as the matrix formed with Eij, then clearly II is the 

Imajorant l matrix of the actual error matrix E(t). It may be noted that Ue is 

simply the matrix formed by normalizing the elements of II (i.e. Eij) with 

respect to the maximum of Eij (i.e. E) 

,.... 

.... 

-

i.e., A = E Ue (absolute variation). (2.6) 

Thus Eij here are the absolute variations in Aoij. Alternatively one can 

express II in terms of percentage variations with respect to the entries of 

Aoij. Then one can write 

II = ~ Aom (relative (or percentage) variation) (2.7) 

where Aomij = IActijl for all those i,j in which variation is expected and Aomij 

= a for all those i,j in which there is no variation expected and 0ij are the 

maximum relat"ive-var"iations with respect to the nominal value of Aoij and 
Max 

o = i,j 0ij. Clearly, one can then get a bound on 0 for robust stability as 

1 
<Ii < ----------- where P is the same as in (2.3) and (2.5). 

2.2 Reductior in Conservatism by State Transformation_: 

The proposed stability robustness measures presented in the previous 

section were basically derived using the Lyapunov stability theorem, which is 

known to yield conservativ~ results. One 'improvement ' obtained in the 

proposed bounds is the result of exploiting the 'structural' information about 

the perturbation. Clearly, another avenue available to further reduce the 

conservatism is to exploit the flexibility available in the construction of the 
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Lyapunov function used in the analysis. In this section, a method to further 

reduce the conservatism on the elem~nt bounds (for structural perturbation) is 

proposed by using state transformation. This reduction in conservatism is 

obtained by exploiting the variancE: of the 'Lyapunov criterion conservatism ' 

with respect to the basis of the vector space in which the function is 

constructed. The proposed transformation technique seems to almost always 

increase the t'egi on of guaranteed stabi 1 ity and thus is found to be useful in 

many engineering applications. 

2.2.1 State Transformation-and Its Implications on Bounds 

It may be easily shown that the linear system (2.1) is stable (or 

asymptotically stable) if and only if the system 

x(t) = A(t) x(t) 

where 

x(t) = M-l x(t), A(t) = M-l A(t)M 

(2.8a) 

(2.8b) 

and M is a nonsingu1ar time invariant nxn matrix, is stable (or asymptotically 

stable). 

Thp. implication of this result is, of course, important in the proposed 

analysis. The concept of using state transformation to improve bounds based on 

a Lyapunov approach has been in use for a long time as given in [llJ where Si1jak 

applies this to get bounds on the interconnection parameters in a decentralized 

control scheme using vector Lyapunov functions. The proposed scheme in this 

paper is similar to this concept in principle but considerably different in 

detail when applied to a centralized system with parameter variations. In this 

context, in what follows, we transform the given perturbed system to a 

different coordinate frame, derive a stability condition in the new cordi nate 

frame. However realizing that in doing so even the perturbation gets 
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transformed, we do make an inverse transformation to eventually give a bound on 

the perturbation in original coordinates and show with the help of examples 

that it is indeed possible to give improved bounds on the original 

perturbation, with state transformation as a vehicle than without a 

t ransformat ion. 

We now investigte the use of a transformation on the bounds for both 

unstructured perturbations (U.P.) as well as for structured perturbations (S.P.). 

2.2.2 Unstructured- Perturbations 

Theorem 2.1: The system of (2.1) is guaranteed to be stable if 

IIE(t)lls 

1 
where IIp = --------

~ax (P) 

and P satisfies 
A A A 

P Ao + AoT p 

and 
Ao = M-l AoM, 

A 

IIp 
= ~max[E(t)] < -------------- _ IIp* 

I 1M-II Is! I M I Is 

+ 2In = 0 

E(t) = M-l E (t) M. 

(2.9a) 

(2.9b) 

(2.9c) 

(2.9d) 

Note that IIE(t)lIs < 11M- I ll s IIE(t)lIs IIMlls and IIp* = IIp/a where a is a 

scalar given as a function of the transformation matrix M. In this case, of 

course, a is the condition number. Also it is to be noted that the 5tab~lity 

condition in transformed coordinates is 

A 

~max[E(t)J < IIp. (2.10) 

Thus IIp is the bound on I lEI Is whereas IIp* is the bound on I lEI Is after transfor-

mati on. 

By proper selection of the transformation matrix M it is possible to obtain 
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Up* > up as shown by the following example: 

Example 1: Consider the same exa~ple ccnsidered in [8J. The nominally 

asymptotically stable matrix Ao is given by 

Ao = 
-2-1 

I; with 14 
0_.1 

the bounds are obtained as 

1-- O.9SS64 

= I 1,).0266 
'- .. 

Up \. __ u~*_ 
,. 
! 

0.382 10.394 

2.2.3 Structured Perturbations 

-0.28217-1 

0.95937-' 

up = Bound before transformation. 

Up* = Bound after transformation. 

Simi lar to the unstructured perturbation case, it is possible to use a 

transformation to get bEtte~ bo~nds on the structured perturbation case also. In 

fact, in the case of a strl!ctun:~d perturba.tion. it may be possible to get higher 

bounds even with the use of a diagonal transformation. Hence in what follows, we 

consider a diagonal tran:;forlrtltion matrix r~ for which it is possible to get bound 

in terms of the elements of M. 

Theorem 2.2: Given 

(2.11) 

the system of (2.1) is stable if 

Im_J_" 
lJeij 

Ueij (2.12a) 
max 
i ,j 

Imi 

or (2.12b) 

1 
where Us = ----------- (2.12c) 
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AT A 
and PAo + Ao P + 2In = 0 . (2.12d) 

mo 
and Uei j 

J (2.12e) = Ei j I E and Eij = 1--1 Ed mo , 

As before us* = usIa where a is again a function of the transformation matrix 

elements mi. 

~xample- 2: As before let 

o 
Ao = Let Ue - With M = 

2.2 

Us _I u~~ ___ 1 
Us = Bound before transformation. 

we get 

0.4805-1- 0-.6575-/ 
Us* : Bound after transformation. 

The use of a transformation to reduce conservatism of the bound for 

structured perturbations and its application to design of a robust controller for 

a VTOL aircraft control problem is presented in [12J. 

Remark 2: The flow chart for obtaining the bounds by transformation is as 

follows: 

I Transfor- Transformed A I 
10 ri gi na 1 Original Coordin- I mation Coordinates, x(t) / M-1 Coordi nates, 

tes, x(t) I M I x(t) 
liE II ~ < "p (U.P.), ----------IIIElls < up, E < Us ----111 E II s E; <: Us (s. P. ) < Up *, E < us'" 

- -

-
Remark 3: The evolution of bounds U to up to up* (Us to Us to us*) can be 

summarized as follows: 
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(jmi n (0) 1 I" 1 
u = ------- up = -------, /x(t)= /Up* of (2.9), 

<lmax ("1'") (jmax (P) 
(jmin(O) 10 + In 1 1 IM-1x(t)lus* of (2.12) 

Its = ----------- 1-----1 Us = ------------ I------lv (jma x (1'1Je ) s (jmax (PmUe) s 

I V = Lyap. funct I I = xi P x 
= xT p' x IV = xT P x 

! \p Ao 
" " ... 

P Ao + AoT V + 20 = 0 + AoT P + 2In = 0 P Ao + AoT P + 2In = 

I I -

From the above sequence, it is clear that the coordinate frame in which the 

Lyapunov function is constructed has a significant effect on the bound in 

relation to the effect of the matrix 0 in a given coordinate frame. 

2.2.4 Determinat-i on of (a 1most )!Best I Transformation 

As seen from the previous section, in order to get a better (higher) bound, it is 

crucial to select an appropriate transformation matrix M. Obviously the question 

arises: How can one find a transformation that gives a better bound than an original 

one or even the 'best' among all possible choices for the transformation. In this 

section, we attempt to address th)s question for the spec"ia1 case of a diagonal 

transformation to be u5ed ir. the structured perturba:ion case. 

'Best' Diagona1"Transformation-for-S~P. 

1 

/ 

1 

I 
I 
I 
1 
i 

01 
J 

Recall from (2.12), the expression for us*. Without loss of generality, let us look 

for mk > 0 (~ = 1,2, ••• ,n) such that us* is 'maximized ' . 

From (2.12), the matrix P satisfies 
" " 
P(M-1AoM) + (M- 1AoM)T P = -2I n (2.13) 

Since M is diagonal, MT = M and (2.t3) gives 
... ... 

(M-1PM-1)Ao + AoT(M-1PM-1) = -2(M-1)2 (2.14) 
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Letting 

tl'" ... . 
p* = M-1PM-1 (i.e. Pij = p*ijmimj) (2.15) 

(2.15) becomes 

P*Ao + AoTp* = -2(M-1)2 (2.16) 

The matrix equation (2.16) contains n(n+1)/2 scalar equations from which the 

elements of the matrix P"" can be expressed as functions of mi. And from (2.15), 

Pij can then be expressed as functions of mi. Thus one can express the bound of us* 

of (2.12) as a function of mi. We need to find mi that maximize us* by determining 

the first order derivatives and equating them to zero. However us* contains the 

spectral norm of (PmUe)s which i5 difficult to express in terms of mi. Hence, 

using the fact that 11(·)lls < II(·)IIF, we choose to maximize 

L 
1 

...... 2 
r. (PmUe)sij 

i , j 
[max 
i,j 

with respect to mi, i = 1,2, ••• ,n. 

The algorithm is best illustrated by a simple example. 

Example 3: 

Ao = 

For simplicity let us select M = Oiag[1, mJ. 

(2.17) 

Carrying out the steps indicated above, we observe that the minimum value of 
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1 
- = 
L 

.. .. 
= Pl1 2 + 1/2 P122 

1 1 1 = (0.333 + 1.667 ( __ )2 + ( __ )2 
012 2 2m 

occurs at m + 00 and thus Lmax = 3. 

Hence, Lmax = 3 < ~s* + ~s* = 3. 

Note that before transformation, ~s = 1.657. Thus there is an 81% improvement 

in the bound after transformation. 

Appllcat·ion to-the Drone Example- [5J: 

The system matrices for the Drone Lateral Attitude Control system considered in 

[5J are gi ven by 

,-000853 -0.0001 -0.9994 0.0414 0.0000 0.1862 
-46.8600 -2.7570 0.3896 o.onoo -124.3000 128.6000 

A 0= -0.4248 -0.0622 -0.0671 0.0000 -8.7920 -20.4600 
0.0000 1.0000 0.0523 0.0000 0.0000 0.0000 

i 0.0000 0.0000 0.0000 0.0000 -20.0000 0.0000 
L 0.0000 0.0000 0.0000 0.0000 0.0000 -20.0000 

(2.18a) 

o. 

°l 
o. o. 

B = o. o. 
o. o. 

20. o I 

o. ,oJ 

(2.18b) 

With a linear state feedback control gain 

G =[-21501000 4.6650 7.8950 233.2000 -6.7080 20554~ (2.18c) 
-231.5000 -3.7230 7.4530 -213.5000 2.5540 -6.8690 

the closed loop system matrix A = A + BG is made asymptotically stable. 
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. 
Now assuming the element A21 to be the uncertain parameter (having a nominal value 

= -46.86) we get the stability robustness bound on this parameter (using the Ue 

matrix as Ue21 = 1 and Ueij = a for all other i,j), as 

~21 = 2.43 (2.19) 

However, using the transformation 

M = Diag [0.005 1 1 1 1 1] (2.20) 

we get the bound on A21 as 

* 21 = 573.46 (2.21) 

which is clearly a significant improvement. 

I 
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III. FULL STATE AND STATE ESTIMATE FEEDBACK CONTROL DESIGN FOR ROBUST STABILITY 

The foregoing discussion in Section II is basically concerned with the analysis 

of stability robustness for linear systems. No effort was made to synthesize a 

controller to achieve stab'i1ity r'0bustnes:;. In this section, we address this design 

aspect from a systematic a1goritilmic point of view. The philosophy behind the proposed 

procedure is to make use of the pertu~bation bounds developed in the previous section 

in a design formulation and give an algorithm to synthesize controllers for robust 

stability. Towards this direction, a quantitative measure called 'stability robustness 

index' is introduced and based on this index a design algorithm is presented by 

which one can pick a controller that possesses good stability robustness property. 

The algorithm, for given size of perturbation can be used to select the range of 

control gain for which the system is stability robust or alternatively, for given 

control gain, can be used to determine the range of the size of allowable perturbations 

for stability. In this attempt. we first consider the case of full state and state 

estimate feedback controllers and thEn investigate the use of reduced order dynami c 

compensators in Section IV. In this sect-ion we also specialize the design algorithm 

to 'moda 1 systems' as well a5. 'matcllt:d systems'. 

3.1 Linear State Feedback Control Cesign Using Perturbat~on· Bound Analysis 

Consider the linear, time invariant system described by 

x = Ax + Bu 
(3.1) 

y = Cx 

where x is nxl state vector, the control u is mxl and output y (the variables we wish to 
. 

control) is kxl. The matrix triple (A,B,C) ;s assumed to be completely controllable and 

observable. Let the control law be given by 

u = Gx (3.2) 
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Now let ~A and ~B be the perturbation matrices formed by the maximum modulus 

deviations expected in the individual elements of matrices A and B rspectively. 

Then one can write 

Absolute variation (3.3) 

where €a is the maximum of all deviations i~ A and €b is the maximum of all deviations 

in B. Then the total perturbation in the linear closed loop system matrix of (3.1) 

with nominal control u = Gx is given by 

(3.4) 

Assuming the ratio €b/€a = ~ is known, we can extend the main result of section 

(2.1.2) to the linear state feedback control system of (3.1)-(3.2) and obtain the 

following design observation. 

Design Observation 1: 

The perturbed linear system is stable for all perturbations bounded hy €a and 

1 

€a < -~--------------------- - u -
crmax[PmUea + € Ueb GmJ s 

and €b < € u where 

P(A+BG) + (A+BG)T P + 2 In = 0 

Alternately, we can write 

M = oa Am} 

~B = nb Bm 

Relative variation 

(3.50) 

(3.5b) 

(3.6) 

where Amij = IAijl and Bmij = IRijl for all those i,j in which variation is expected 

and Amij = 0, Bmij = 0 for all those i,j in which there is no variation expected. 

For this situation, assuming ob/oa = 0 is known, we get the following bound on oa for 
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robust stability. 

,.... Design-Observation 2: 

The perturbed linear system is stable for all relative (or percentage) 

r"' perturbations bounded by sa and sb if 

r 

,-

1 

~a < -------------~------ = ur 
O'max[Pm(Am + BmGm}]s 

and sb < ~ ur where P satisfies the equation (3.5b). 

Stability Robustness Index-and- Control-Design Algorithm: 

.( 3.7) 

We now define, as a measure of stability robustness, an index called 'Stability 

Robustness Index ~S.R.' as follows: 

£ase at: L.H.S. of (3.5 or 3.7) is known (i.e. checking stability for given 

perturbation range). For this case 

(3.8a) 

Case bt: L.H.S. of (3.5 or 3.7} is not known (i.e. specifying the bound). For 

this case 
II 

·~S.R. = U (or Ur ). (3.8b) 

It is clear from the expressions for U (3.5), the lerror matrix ' (3.4) and 

~S.R. (3.8) that these quantities depend on the control gain G and as the gain G ;s 

varied BS.R. changes. In order to plot the relationship between BS.R. and the gain 

G, we need a scalar quantitutive measure of G. For this, we can either use 

J cn = IIG II s = O'max(G) (3.9a) 

or 
co 00 

J cn = [( (uTu)dtJl/2 = [( xTGTGxdtJ1/2 (3.9b) 
o 0 

where J cn denotes a measure of 'nominal control effort'. We use (3.9b). 

The variation of ~S.R. with the control effort J cn is very much dependent on 
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the perturbation matrice~ J~d on the behavior of the Lyapunov solution, which cannot 

be descriJed analytically in a straightforward way. Assuming stability robustness 

is the only design objective, the design algorithm basically consists of picking a 

control gain that maximizes stability robustness (RS.R.). Specifically the 

algorithm involves dete~mi~ing the index BS.R. and the control effort J cn for 

different values of the co~tral gain G and plotting these curves. These design 

~ curves can then be userl to pick a gain that achieves a high BS.R.. The algorithm 

thus provides a simple constant gain state feedback control law that is robust from 

r 

3tability pOint of view. The algorithm, for given perturbations, can be used for 

selecting the range of control effort for which' the syste~ is stability robust or 

alternatively for given control effort, can be used to detemine the range of 

allowable perturbations for stability. 

The 1inear control gain G of (3.2) can, of course, be determined in many 

differel1t ',./ays. In this sec'..:iorl, we assume the control gain G to be given by the 

stalld?r"d linear qucci;--atic regulator algorithm. Accordingly, V'E:! determine G as 

1 
G - - -- Rr -1 BT K 

" Pc 

wnere K satisfies the Riccat~ equation 

R -1 
KA + ATK - KB -~-- BTK + Q = 0 

Pc 

(3.10a) 

(3.10b) 

for a given ~ymmetl'ic positive ~emi definite matrix a and Ro = 1m- Thus Pc serves 

as the design variable. 

In other words, in the proposed procedure, we determine the gain by some nominal 

means and then investigate the robustness of the closed loop system by checking if 

the gain makes the index BS.R. positive for a given Ea (or Eb) (case a Situation) 

or by determining RS.R. = u for given control gain (for case b situation). 
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Extension to Linear Stochastic- Systems With State Estimate- Feedback: 

We now extend the above analysis to the case of linear stochastic systems • Let 

us consider a continuous, linear, time-invariant system described by . 
x(t) = Ax(t) + Bu (t) + Ow (t ) , x(O) = Xo (3.lla) 

y(t) .- Cx(t) (3.llb) 
-z(t) = Mx(t) + '1(t) (3.llc) 

where the state vector x is nxl, the control u is mxl, the external disturbance w is 

qxl, the output y (the variables we wish to control) is kxl, and the measurement 

vector z is txl. Accordingly the matrix A is of dimension nxn, B is nxm, 0 is nxq, 
-

C is kxn and M is txn. The initial condition x(O) is assumed to be a zero-mean, 

Gaussian random vector with variance Xo, i.e., 

E[x(O)] = 0, E[x(O)xT(O)] = Xo (3.lld) 

Similarly the process noise w(t) and the measurement noisE v(t) are assumed to be 

zero-mean white-noise processes with Gaussian distributions having constant 

covariances, Wand V, respectively, i.e., 

E[w(t)] = E[v(t)] = 0 

E - ,,.,(t) -I [wT(-r)vT(-r)] = 

_ v(t) _I 

(3.lle) 

,., 
o{t-·r) (3.11f) 

where Pe is a scalar greater than zero and V = PeVo and 0 is the dirac delta function 

and E is the expectation operator. 

The state x(t) of the stochastic system is estimated as a function of the 

measurements, where the state estimator has the following structure 

x(t) = Ax(t) + Bu + Gz(t) (3.12a) 

where 
-

z(t) = z(t) - Mx(t) (3.12b) 
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is called the measurement residual. For minimum variance requirement, the estimator 

of Eq. (3.12) is the standard Kalman filter. 

We also assume that the matrix pairs [A,B] and [A,O] are completely controllable, 
,......, I 

-

, I 

and the pairs [A,e] and [A,M] are completely observable. 

For this case of linear stochastic system, we consider the control law given 

by 

where 

1 ,. 
u = Gx = -- Ro-1 STKx 

Pc 

x = Ax + Bu + G(z-Mx), ~(O) = 0 

= (A + BG - GM)x + Gz 

1 A 

G = -- PMT Vo- 1 
Pe 

and P and K satisfy the algebraic matrix Riccati equations 

R -1 
T OT 

KA + A K - KB ---- B'K + Q = 0 
Pc 

A A A_ Vo-1_A 
PAT + AP - PMT ---- MP + OWOT = 0 

Pe 

The nominal closed-loop system is given by 

. - x -I 1- A BG-I 1-- l( -I 1-0 0-

I = I A_ I I I + 
1_ x_I LGM Ac I 1_ x J 1.:...0 G.:..I 

-y-I I-e 0-1 I-~-I 
_uJ 

= 1 
GJ 1.:...0 1 xl' 

-w-I 

I 
I v· 1 

(3.13a) 

(3.13b) 

(3.13c) 

(3.13d) 

(3.13e) 

(3.13f) 

(3.14a) 

(3.14b) 
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where Ac = A + BG - GM and the closed loop system matrix 

Ac = "- (3.15) 
I_GM Ac 

is asymptotically stable. 

Letting ~, ~B, ~C, ~M and ~D to be the maximum modulus derivations in the 

system matrices A, B, C, ~ ~nd D respectively, we can write the total error matrix 

of the closed loop system as 

~ = (3.16) 
Me 

and writing ~ = Ea Uea~ ~B = Eb Ueb, ~M = Em Uem ••• etc. and knowing the ratios 

Ea/Eb etc., Gne can get th~ stability robustness condition in the same manner as the 

equations given by (3.5). 

Application ~E..:. the DronE:- ~_~te ... al- AHitude- Control- Problem: 

The 1ineorized model of the lateral attitude control problem of a drone 

aircraft~ with perturbations in the plant parameters is given by . 
x == (A + ~A j x + Bu -, x(O) = xo (3.17) 

The components of the state vector x+R6 and the control vector u+R2 are given by . . 
xT = [s, ~, ~, 01/20, 02/20J 

u1 = e1evon command = 01 
u2 = rudder command = 02 

The matrices A and B are given by (2.18). 

(3.18) 

We assume that the parameters with non zero nominal values in the A matrix are 

subject to perturbations and thus we take the Uea matrix as Ueaij = IAijl/IAijlmax. 

r Accordi ng1y the matri x Uea is gi ven by 

r 

,.... 
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0.0007 0.0000 0.0078 0.0003 0.0000 0.0014 

0.3644 0.0214 0.0030 0.0000 0.9666 1.0000 

0.0033 0.0005 0.0005 0.0000 0.0684 0.1591 
Uea = (3.19) 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 0.0000 0.1555 0.0000 

0.0000 0.0000 0.0000 0.0000 0.0000 0.1555 

The linear state feedback control gain is determined using the Riccati based 

equations of (3.10). For a given control gain (i~e. given Pc), the bound u is 

calculated. Since Ea is not known, in this case the stability-robustness index 

qS.R. is simply given by BS.R. = u. The plot of u with the design variable 

Pr. is given in Fig. 1. 

From the plot, it is seen that, for this problem, higher the control effort 

(lesser the Pc), higher is the tolerable perturbation for robust stability. 

We now extend the algorithm to the stochastic controller case using 

D = B, e = I6, Q- = eTe ; I6, Ro = I2 

-1 0 0 a a 0-

a a a 100 

(3.20) 

The plot of u vs Pc with Oe as a parameter and the com~arison with the pure 

state feedback case is given in Fig. 2. 

Remark 4: From this plot, it is seen that the bound u with state estimate 

feedback is lower than the one with pure state feedback. 

Remark-5: For a given Pc' the bound u is higher as the measurement noise covariance 

is decreased, i.e. as Pe is decreased. This appears to be reasonable, because 

this means that u becomes higher with better or more accurate measurements. 
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Figure 1. Variation of Bound u with Control Weighting Pc with Full State 

Linear State Feedback for Drone Example. 



.... . 

- I 

l 
s == ~ S.R. 

Fi gu re 2. 

-25-

\ , 
\ 

, DQk design 

~ 

-1 
10 -

=0-0001 

1 10 

Variation of Bound u with Control Weighting Pc with State 

Estimate Feedback for Drone Example. 
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3.2 linear State- Feedback Control for- 'Modal- Systems- '-

In this section we apply the robust control design methodology presented in the 

previous section to 'modal systems ' • The evaluation model considered in the 

Large Space Structure (LSS) control problem constitutes a typicai 'modal 

system l model. We specifically consider the LSS model with vibration suppression 

of the flexible modes as the control objective. We seek a linear state feedback 

control that achieves a reasonable trade off between the nominal performance and 

stability robustness by accommodating the modal uncertainty structure into the 

design procedure. Towards this direction, the fact that the modal data uncertainty . 
increases with mode number is incorporated in the characterization of uncertainty in 

LSS model parcmetel's and this uncertainty structure is used to obtain upper bounds 

for robust stability which are in turn used to get a robust controller. 

LSS Models and- Nom~nal-Gontrol· gesign 

Consider the standard state space description of LSS evaluation model with N 

elastic modes: 

x = Ax + Bu 

y = Cx 

v/here 

x(D) = xo; x+Rn=2N • u+Rm 

y+Rk 

11; 

A = Block diag. [ ••• Aii ••• ], Aii 

(3.21a) 

(3.21b) 

(3.21c) 

(3.21d) 

(3.21e) 

(3.2lf) 



-

r-

-27-

The performance index for vibration suppression problem may be written as 

co N 
J = ([( ) (J}j2 ni 2 + ~i2) + p uTuJdt 

o i =1 

which can be written in the form 

co 

J = r tv T Oy + puT u )dt = 
a 

C'O 

r (x T CT OCx + puT u )dt = Jy + p J u a 

where the matri x C of (3.21) is gi yen by 

C = Block diag. [ ••• Ci ••• J 

and 

Ci = 

(3.22) 

(3.23) 

(3.24a) 

(3.24b) 

Let the nominal control law be designed by minimizing the performance index of 

(3.23) which results in [13J 

u = Gx (3.25a) 

where 
1 

(3.25b) G = 
p 

KBBT 
KA + ATK - ---- K + CTOC = 0 (3.25c) 

p 

The closed loop system matrix 

A = (A + BG) (3.26) 

is assymptotically stable. In the nonrinal design situation, an appropriate 

value for 0 (and hence G) is determined such that a reasonable trade off 

between Jy and J u is obtained. However, in LSS models, the parameters of the 

plant matrix A, namely the modal frequencies and modal damping as well as the 

parameters of the control distribution matrix B, namely the mode shape slopes 

at actuator locations are known to be uncertain. It is also known that the 

uncertainty in these parameters tends to increase with increase in mode number. 
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Thus with variations AA and AB in the matrices A and B of (3.21), the-nominal 

control G of (3.25) cannot guarantee stability of the closed loop system. Thus 

one needs to design a contro~ gain G that guarantees stability for a given 

range of perturbations ~A and AB. This is done using the design procedure given in 

the previous section. In other words, the control design algorithm for robust 

stability consists of picking a control gain (i.e. p) that achieves a positive 

8S.R. (for case a) or high value of BS.R. (for case b). 

The design algorithm involves determining the index SS.R. and the 

costs J y and J u for different values of the design parameter p and plotting 

these curves. The algorithm thus provides a simple constant gain state 

feedback control law (using the standard optimal LQ regulator format) that is 

robust from stability point o'~ view. The algorithm, for given perturbations, 

can be used for selecting the range of control weighting (control effort) for 

which the system is stability robust or alternatively for given control 

effort, can be used to deternrine the range of allowable perturbations for 

stability. 

In the next section, vie present a specific characterization of 

uncertainty for LSS models and use the above methodology to design a 

controller for the Purdue model [14J of a two dimensional LSS. 

Characterization- of ParaR:eter- Uncertainty in-l.S-.S.--Models and- Applicati::ln to 
Purdue Model 

In L.S.S. models having the structure given by (3.21) the uncertainty in 

the modal parameters such as modal frequency dampings and mode shape slopes at 

~ actuator locations tend to increase with increase in mode number. One way of 
. I 

modeling this information in the uncertainty structure is given in the 

following (specifically we employ the relative variation format of (3.6)) 

." 
I 
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6.A = "'a -0 0 
lX1 ®J. 

0 0 
2@Z @2 (3.27a) 

0 0 
3@.3 3 ~3 -' 1-

6.B = °b 0 
bIT 
0 

2b2T 
(3.27b) 0 

' 3b3T 
\ 

. I 
I...:. • _I 

where Qi i ndi cate the nomi na 1 ent ri es correspondi ng to the i th mode. We 

assume 6a = ~b which are not known. 

With the above proposo:d unc2rtainty structure, we apply the robust 

control design methocology of previous section to the Purdue model [14]. The 

model used consists of the first five elastic modes. The numerical values of tlie 

model are given in ref. [14]. To conserve space the model is not reproduced here. 

Since ~a (and cb) are not known, the present design corresponds to case b 

in which case we pick a control gain t.hat gives high BS.R. = Ur. The plot of 

ur vs. p is given in Fig. 3. The robust control gain is the gain 

corresponding to p = 0.12. 

Figs. 4 and 5 present the variation of Ur with control effort (i.e. p) 

assuming 6.A = 0 and ~B = 0 respectively. From these plots it can be 

concluded that the control effort range available for guaranteed stability 

for mode shape (6.B * 0, 6.A = 0) variation is limited in comparison to the 



-30-

range available for model frequency variation. Thus mode shape (slopes at 

actuator location) variations are more critical from control point of view 

than modal frequency variations. 

3.3 Linear State Feedback--Contro-l- Des-i go -for' I Matched--Systems 1_: 

In the design procedures presented so far in this report, a linear state 

feedback control is determined by a chosen method (for example, a Riccati based 

control gain) and then its robustness property is investigated by computing the 

tolerable perturbations of the closed loop system formed by this control gain. This 

control gain is seen to qua1"ify as a 'robust ' control gain only if it makes the 

stability robustness index ~S.R. positive for a given perturbation range E (i.e. if 

~ < E). There is no guarantee that there exists a linear state feedback control gain 

that accommodates a given perturbation range. However it is shown by Thorp and 

Barmish in [15J that there exists a linear state feedback control that guarantees 

stability of the perturbed system provided the uncertainty satisfies the so called 

'Matching Condition (MC)'. Matching conditions in essence constrain the manner in 

which the uncertainty is permitted to enter the system dynamics. We denote the 

systems whose uncertainty structure satisfies Matching Condition as 'Matched 

Systems ' • Assuming uncertainty only in the A matrix of the standard linear state 

space model given by (3.1), the uncertainty ~A is said to satisfy the matching 
-condition if there exists a matrix 0 such that 

-
~A : BO 

i.e. the uncertainty in A is in the range space of the control distribution matrix 

B. 

In this section, we combine the matching condition assumption with the 

elemental bound technique presented in the previous sections to design a linear 

state feedback controller that guarantees stability for the given range of 
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perturbations. The proposed method possesses theoretical justification only for 

simple second order systems with single input (at this state of research) but the 

method is seen to give encouraging results even for higher order systems. The 

proposed procedure is sho'lln to compare favorably with other existing methods. 

Elementa~-BeURds-and-btftear-£antro~- Design-Algor~thm: 

Consider the simplE- asymptotically stable second order system given by 

o 
x = (3.28) 

= Ac x 

with perturbations in the elements a21 and a22. Let a = Max (a21,a22). 

The stability robustness bound u-for this system yields 

1 
II = ----- .• -----

<1max(Pr,U eh 
( 3.29) 

where one choice of Uc is 

o ·--1 
- I 

(3.30) 
a22/~- j 

and P satisfies the Lyapunov equation PAc + AcTp + 2In = O. Another choice for Ue 

is 

(3.31) 
1 

From the solution of the above Lyapunov equation, one can make the following design 

observation. 

Design gb~ervatien-3: The elemental perturbation bound II of (3.29) increases with 

increase in the magnitude of the nominal values of the elements a21 and a22. 

We now utilize the above observation in the context of designing a linear 
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controller for the simple second order system 

x = (3.32a) 

= Ac x + Bu (3.32b) 

with again a21 and a22 being the uncertain parameters, known to vary within a given 

interval. We can v/rite the perturbation matrix Mc as 

o 
where Ue = 

(3.33) 

o --I fl 

I 
' € = Max(€21,€22), €21 and €22 are the maximum 

€22h ~ 

modulus deviations in a21 and a22 respectively. It is important to realize that for 

the above system's uncertainty structure, the matching condition [15] is satisfied, 

i.e. 

-
Ue :-: BO (3.34) 

Henc(!, according to ref. [15], a linear controller that guarantees stability 

exists. 

With the aid of matching condition (3.34) and design observation 3, we can now 

present a linear control design algorithm for the system of (3.32), assuming €21, €22 

~ (and thus €) are known and that the open loop perturbed system (Ac + flAc) is 

-

unstable. 

linear Contro~-gesign-Algorithm 

Step- 1: Determine ~1 = l/amax(PlmUe)s 

where P1Ac + Ac T PI + 2In = 0 and Ac = Ac. 
111 

(3.35) 

Step 2: Note that la2112 > la2212. Determine ~2 = 
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design observation 3. Check if € < l-l2' If yes proceed to step 4. If not go 

to step 3. 

Ste~ 3: Repeat determining 

l-li+1 = l/ crmax(P(;+l)mUe)s 

where Pi+1ACi+1 + AcT
i +1 P;+l + 212 = 0 

and checking if € < l-li+1 i = 3,4, ••• 

Si nce l-li+1 > l-li for each iterati on, 

€ < l-lCl 

The propagation of l-l with each i terati on 

Ste~-4: Once € < l-lCl' write 

Cl-1 
AcCl = Ac - )' l-l;U e = Ac - l-lcUe 

; =1 

where 
Cl-1 

l-lc = )' l-li • 
i=l 

(3.36) 

(3.37) 

for some i +1 = Cl, we wi 11 have 

(3.38) 

is depi cted in Fi gu re 6. 

(3.39a) 

(3.39b) 

Also from steps 2 and 3, all Ac. (i u 1,2, ••. ,Cl) as well as AcCl! €Ue are stable. Let 
1 

-
AcCl = Ac - l-lcUe = Ac - l-lc BO = Ac + BG (3.40) 

where u = Gx is the linear control law wa Jre after. Thus from (3.40), the control 

gain which guarantees stability of the perturbed closed loop system in the presence 

of variations of magnitude €21 and €22 in the elements a21 and a22 is given by 

G = -l-lcD 

Appl~cation-Examp~e 

(3.41) 

We now consider the same example used in [15] and [16] for comparison purposes. 

The system is given by x = A(q)x + Bu where 



-34-

A(q) B = Ao + E(q), 

-1 < ql < 1 - - (3.42) 

In order to take advantage of symmetrical perturbation range assumed in our 

analysis, we take our Inomina1 1 system matrix and the perturbation matrix as 

follows: 

1 
Nominal: x = Aax + Su where Aa = 

1.25 

Perturbation: AA; £U e with £11 = 1, £22 = 1.25 so that 

LJe = 1- 0 

1..:...°.8 
and £ = 1.25. 

(3.43) 

(3.44) 

Since the oprn loop Inominal l system is unstable, we first stabilize the 

Inominal l system ~ith a control law u = GIX where Gl = [1.04 -1.45] so that the 

stable nominal open 1000 system is given by 

1- 0 

Ac = 1~-O.959 
1 

-0.2 
B = £ = 1. 25 (3.45) 

Now ap1lying the design algorithm for the system (3.43), it is observed that 

after seven iterations ~a = 1.2537 > £ = 1.25. We obtain 

6 -
~c = ) ~i = 2.3995, also 0 = [0.8 1] (3.46) 

i =1 
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Hence the control gain defined by G of (3.41) is given by G = [-1.9196 -2.3995J. 

So the final gain for this e:~ample system is given by 

Gf = Gl + G = [-0.8986 -3.8495J (3.47) 

It is to be noted that the final control gain Gf above is with respect to the 

open loop system matrix Aa (and not Ao). Since the methods compared in [15J-[16J 

give the final control gain with i~espect to the matrix Ao' we obtain the control 

gain obtained by the prop05ed method with respect to Ao as 

Gc = [-0.8786 -3.5995J 

= [-0.88 -3.6J 

Thus Gc is the gain to be used for comparison with other methods. 

Comparison: We reproduce the table given in [15J and [16J. 

Method 

Gec (Chang and Peng) 
MGCC (Vinkler and Wood) 

. MC (Thorp and Barmi3h) 
Elemental Perturbation Bound 
Ana1ysis, EPBA (Yedavalli) 

IG I 
.. ~111 

1.36 
0.33 
0.67 

0.88 

IGc I 
. -.--12-

6.42 
3.52 
3.67 

3.60 

(3.48) 

6.56 
3.53 
3.73 

3.70 

Thus the proposed method fares well in comparison with the other methods. We 

believe that the proposed method is computationally simpler. 
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Figure 3. Robust Control Gain Determination for LSS Model. 
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Figure 4. Variation of Bound with Control Effort for LSS Model (t,A = 0, t.B :f:. 0) • 
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Figure 5. Variation of Bound with Control Effort for LSS Model (AA * 0, ~B = 0). 
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Figure 6. Propagation of ui with Each Iteration for Second Order Matched Systems. 
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IV. REDUCED ORDER DYNAMIC COMPENSATOR DESIGN FOR ROBUST STABILITY 

In the previous section, efforts were directed to design a linear full state 

(and state estimate) feedback controller for robust stability. However, in that 

treatm~nt, the control gain determination does not directly involve the stability 

robustness criterion as a design constraint. Instead, for a predetermined linear 

control gain (obtained by many different nominal methods), the perturbation bound is 

calculated and in the cases where the parameter perturbation ranges are given, the 

stability robustness condition is checked (for robust stability). It is also seen 

that it is possible to guarantee stability for given perturbation ranges only for 

matched systems. No ~uch guarantee exists for non-matched systems • 

In this section, we attempt to solve the control design problem for linear 

regulators in a more direct and general way by formulating it as a parameter 

optimization problem. Instead of designing the control gains by nominal means and 

then checking its stability robustness bounds, we propose to include the stability 

robustnes~ condition explicitly in the design procedure as a design constant. In 

addition, we specify the structure of the controller in the form of a linear reduced 

order dynamic compensator (or given reduced dimension) which operates on the 

available measurements. In this way the control law is more practically 

implementable in contrast with the full order linear state feedback which demands 

the availability of the full state. Of course the problem formulation is such that 

the full order linear state feedback case comes out as a special case. The proposed 

formulation is presently given for deterministic systems with the understanding that 

the treatment for stochastic systems conceptually follows the same lines (with of 

course considerably different details). 

4.1 System Descf'tpt-lon-and- Peformanee- Inaex- fop Sped Heat-; on 

Consider again the linear time invariant system 



~ 

r 

r, 

-41-

. 
x(t) = A x(t) + B u(t) x(O) = Xo 

y(t) = c x(t) (4.1) 
-

z(t) - M x(t) 

where the state vector x + Rn, the control vector u + Rm, output vector (the 

variables we wish to control) y + Rk and the measurement vector z + R2. 

Let the m control vriables in the vector u evolve from an sth order linear 

dynamical compensator of prescribed structure operating on the 2 available 

measu rements z, 

u = 911 S + 912 z 

g = 921 B + 922 z 
(4.2) 

6(0) = 0 

The 9ij are constant gain matrices of appropriate dimensions to be determined 

according to a criterion discussed later. 

The closed loop system is then given by 

- xo-' 
Xc = Ac Xc Xc .... Rn+s , xc(O) = 

o .. / 
(4.3a) 

Yc = Cc Xc j'c + Rk+m 

where 

xcT = exT sTJ , YcT = [yT uTJ (4.3b) 

-A + B812M 8611-, 
Ac = 

__ 922M 621 _I 
(4.3c) 

,- c 0 -/ Cc = 
1_ 812M 611 _, 

(4.3d) 

We assume that the design is such that nominal closed loop system matrix Ac is 

asymptotically stable. The matrices Ac and Cc can also be expressed as 
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I-A 0-1 I-B 0-1 1-0 Is-
Ac = I 0 oj + I~o IS-' 

9 I~ 0 
(4.4a) 

= A + B 9 M 

-C 0-1 -0 0-1 
Cc = 

0_1 
+ I fl M = C + I 9 M 

0 - I .. °_1 _ .3 

(4.4b) 

where 

tJ. ,-911 912 
e = (4.4c) 

1_921 92L 

In the nominal linear regulator problem. the gain 9 is determined such that the 

following quadratic performance index is minimized. 

Min 
W.T.t. 

A 
(4.5a) 

(4.5b) 

The weighting terms on sand u together penalize the full set of gains 9ij 

quadratically. The omission of a term would preclude ~he gains 921 and 922 from 

getting weighted in the performance index. Here 0, R1 and R2 are symmetric positive 

def i nHe mat ri ces of app r~p ri ate ull f le ns; ons. 
-

The performance index VI obtai red by i gnori ng the cross coupl i ng terms ; n VI) 

can be written as 

where 

a:J ~ 

VI = r xcT Q Xc dt 
o 

(4.6a) 
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... 
a = Block Diag [{CTOC + MTS22TR2822M + MT812TR1812M}, 

{821TR2821 + 811TR1911}] (4.6b) 

and 

I-R1 a 
R = 

L...o RL 
(4.6c) T = 

a -I 

Assuming the closed loop system matrix Ac to be asymptotically stable, the 
-

nomi nal performance index V1 can be expressed as 

- "" ... 
VI = r AcT a Xc dt .'" Trace {P2 Xo} 

o 

where the matrix P2 satisfies the Lyapunov equation 

P2Ac + AcTp2 + ~ = a 
- and the matrix 

(4.7a) 

(4.7b) 

(4.7c) 

As discussed in [17], the dependence of the controller on the initial condition 

Xo can be removed by assuming the initial condition Xo to be a random variable with 

zero mean ~nd uniformly distributed over a sphere of unit radius thereby expressing 

Xo as 

(4.8) 

and then modifying the nominal performance index as 

V 1 im 1 rt T •• 
I = - E (Yc ~ Yc + aTR2B)dt = Trace {P2 !D} 

t+ ... t 0 
(4.9a) 
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0-1 

I and P2 is as given by equation (4.7b). 
0_ 

(4.9b) 

Thus the nominal linear regulator problem with specified compensator structure is as 

follows: 

Find 8 such that 

Min 
{Trace P2 Xo 1 

8 

subject to the constraint 

(4.10a) 

P2Ac + AcTp2 + Q = 0 (4.10b) 

- -' where Ac and 0 are given by (4.4), (4.6). Note that in Ac and Q all matrices except 

9 are knmm. 

The above problem form~lation is the standard optimal dynamic compensator 

design formulation discussed in many references [17J-[19J. Our intent now is to 

include the stability robustness condition also into the problem formulation when 

the above system matrices are perturbed by finite parameter variations. Let ~, 

6B, 6C and 6M be the maximum modulus deviations expected in the entries of A, B, C 

and M respectively. Then, as before, the perturbed closed loop system is given by 

xcp = (Ac + 6Ac)Xcp = Ac xcp (4.l1a) 

Ycp = Ccp xcp 

where 
.... .... 

Ac =, A + B8M + ~+ 6B 8AM + 6BeM + B8M'" (4.l1b) 

Since we are interested only in the stability robustness problem in this 

research (the performance robustness problem is a separate research topic of its 

own), our aim is to determine 8 such that, in addition to nominal regulation problem 
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as posed in (4.10), it also maximizes the stability robustness bound ~ which 

arises from the following stability robustness condition. Recall that the perturbed 

closed loop system matrix Ac is stable if 

(4.12a) 

where PI satisfies 

PIAc + AcTp l + 21n+s = 0 (4.12b) 

and Ue accommodates the structure of the perturbation matrices of the l.h.s. of 

(4.12a). Of course we can write 

M = e:alJ ea , ~B = E:bUeb, ~M = E:mUem, ~C = E:cUec 

and knowing the ratios of E:a, cb and E:m, we obtain 

+ 
-- Ueb 
e:a (

E:b 

o 

(4.13) 

where U is the matrix within the square brackets. Then one can obtain the stability 

robustness condition as 

1 
E:a < -----------O'max (PlmU h 

u (4.14) 

Henceforth, we will assume that only ~A is present for simplicity purposes. 
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From (4.14), it can be seen that u is a function of the control gains a through 

PI and U. Also it may be noted that the problem of maximization of u with respect 

to 9 can be converted to that of minimixing crmax(P1mU)s with respect to a subject to 

the contraint (4.12b). 

Thus, we now pose a modified optimization problem by combining the stability 

robustness condition of (4.14) with the nominal regulation problem of (4.10) as 

follows: 

Find a such that the performance index 

is minimized subject to the constraints 

PI Ac + AcT PI + 21n+s = 0 

P2 Ac + AcT P2 + Q = 0 

and 

Re {Ai (Ac)} < o. 

Modified Performance-Index: 

(4.15a) 

(4.15b) 

(4.15c) 

(4.15d) 

Note that the above performance index V2 contains a term involving the maximum 

singular value as well as a positive matrix P1m. Optimization of an index like the 

one posed is a formidable task as it is almost computationally and analytically 

intractable. Hence we intend to modify the performance index such that it becomes 

more tractable. 

Noting that the Frobenius norm of a matrix is always an upper bound on the 

spectral norm of the matrix, i.e. 

I I ( • ) I I F ~ O'ma x ( • ) ( 4 • 16 ) 

and that 

(4.17) 



,.... 

,..... 

-47-

we propose the following upper bound to be minimized instead of crmax(~lmU)s. 

Proposition 1: 

(4.18) 

for some suit~b1e diagonal weighting matrix W. 

The diagonal weighting matri~ W is such that Wii = 0 whenever Uij (j = 1,2, ••• , 

n+s) = 0 for a given row i and Wii = wi whenever Uij (j = 1,2, ••• ,n+s) '" 0 for a 

given row i and any column j. Even though the specification of wi is crucial in 

establishing the upper bound property of Vr as in (4.18), it turns out, as seen later 

in conjullction \'iith the nominal regulation problem, that it is possible to specify 

the wii > 0 as arbitrary and transfer its implication in the design to another desi~n 

variable, namely pc, the weighting on the control variable. 

We are nCi\,,' in d position to state the problem of finding the 'optimal' dynamic 

compensator yains r for r'obust stability and nominal regulation of a linear 

reyulator. 

4.2 Comper.s!:l-tor Design by Pcrameter Uptimization Technique 

Fi nd e such that 

subject to ·che constraints 

PIAc + AcTPl + ~In+s = U 

+ AcTP 2 -P2Ac + II = U 

Re AiLAcJ < LJ 

-

(4.1Ya) 

(4.1Yb) 

(4.1Yc) 

(4.19d) 

where Ac and Q are as in (4.4 and 4.b) and W is ~iven according to the structure of 

the U matri x. 
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Solution by Parameter O~timization: 

We dpproach the solution to the above nonlinear (quadratic performance index) 

proyramming problem by writing aown necessary conditions and investigating the 

solutions which satisfy them. using the technique of Layrange multipliers, He 

transform the above constrained optimization problem to an u~constrained 

optimization problem by aefining the Hamiltonian. ThuS we write 

Min 
{ H 1 

e 

\',here His the Hami ltoni an !:Ii ven by 

and Ll ana L2 are the Lagrange Multiplier matrices. 

The tirst order necessary conditions are: 

aH 
P2Ac + AcTp 2 + 

'" --- = lJ = u 
aL2 

aH 
L1TAcT + AcL1 T + P1W + WPl --- = = u 

aPl 

aH 
L2TAcT + AcL2T + !oT u --- = = 

aP2 

aH = 2~T(P1Ll + P2L~)MT + ~e(ML2MT + MTLZTMT) = 0 
aa 

(4.20) 

(4.l!J.) 

(4.22a) 

(4.22b) 

(4.22c) 

(4.22a) 

(4.L2e) 
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In arriving at these conditions, then~trix derivative identities yiven in L~UJ are 

used. 

We can yet the ~ain 9 computed by simultaneously solving for PI, P2, Ll and L, 

using equations l4.~2). 

Special Cases: 

a) Standard nominal regulation ~roblem with tull state feedback: 

For this case W = u, 911 = 621 = H22 = 0, M = I, L1 = U and we end up with the 

standard Algebraic Riccati equation. 

b) IOptima 11 state feedbacK for robust stabi lity: 

For this case, M=I, 811 = 821 = 922 = u. The ~ain 912 then is yiven by 

c) 'Optimal l measurement feectbacK tor robust stability: 

For tnis case 911 = 621 = 822 ~ U and the ~ain 91~ is yiven by 

912 = -R-1STlP1Ll + P2L2)MTlML~MT)-1 

4.3 Example and Discussion o(the Results 

l4.~3a) 

Consider the simple secon·j order linear time invariant system Ylven by 

x = 

where a is tne uncertain ~arameter with nominal value a = 1 

y = x 

z L~ lJx 

Let us consider a first order aynamic compensator haviny the structure 

u = 9118 + 812z 

B = 8218 + 922z Blu) = U 
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Si nce Uea we select Wll = = U and W22 = 1 and spec; fy the fJertormance 

index as 

(4.26) 

with Q = 12, Kl = 1, K2 = 1 dnd P1 and P2 sdtisfyin~ the LYdpunov equations !:j1vl:!n Dj 

(4.22) with Ac being d 3x3 matrix. 

With the above weighting matrices and the performance index, the ~arameter 

optimization procedure presented Defore yields the 'optimal' compensator ~ains to De 

and the 

9 = ,--6.!)778 

1_-4.tl41Y 

nomi na 1 closed 

, U 

Ac = 1 -1.45 

loop 

'- O.55!> 

-1.2255 -, 

0.3275 _I 

system matri x 

1 U 

-1. 72 -ti.!)7 

U.327 -4.84 

(4.27) 

Ac is given by 

1 
1 
1 
1 

_I 

The resulting Dound U21 on the uncertain parameter a for robust stability is !:liven 

by 

u21 = 1.1644 (4.2Y) 

In other words, with the aynamic com~ensator !:liven Dy (4.27), the uncertain 

parameter la l can tolerate ~erturbat;ons up to! 1.1644 from its nomindl value d = 1 

and still maintain stability. The aynamic com~ensator found in t4.27) is 'optimal I in 

the sense that it maximizes (albeit, in an approximate way) the perturbation Dound 

the uncertain parameter can have, to maintain stability with the imposed restrictions 

on the control effort dnd nomlnal rl:!gulation as reflected by the weightings ~, Kl dna 

f{2. Note that the rObustness wei ghti ng matri x W incorporates the uncertai nty 
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structure (that only a~2 element is varyiny) in an explicit way. However, one linli

tation of the W matrix is that it aoes not tully reflect the uncertainty structure in 

the sense that we would use tne same W (w~2 = 1 and w11 = w33 = U) even if both a2l 

and a~2 were varying. Efforts are underway to ~rescribe a more versatile ~erformance 

index (an upper bound on omax(PmUe)s) that completely utilizes the structure of Ue• 

Fortunately, when the uncertinty structure (i.e. Ue matrix) is such that there is 

only one nonzero entry for each row, then the W matrix completely incorporates the 

uncertai nty structure. Si nce wi i is 

after the aesign is complete, whether 

arbitrarily specified, one needs to checK, 
1 

the index Trace - {P1TWP1 + P1WP1T} is an upper 
2 

bound on tne 4uantity crmax(P1mUe)s or not. If it is not, one can either change w22 

or the control weighting R1 until this happens. 

Measurement feedback: 

Using the same weiyhtings and procedure as Defore, the 'optima I' measurement 

feedbacK for the above example, i.e. 

u = 812 z (4.30) 

is !:liven by 

u = 1.3B78 z (4.31) 

w h i ch Y i e 1 ds 

U21 = 1. 278 (4.32) 

Comparison of 'Robust' State FeedbacK and 'Nominal' State FeedbacK 

With W = U (i.e. no requirement of robust stability) and the weiyhtings ~ = 12, 

I{l = p Ro = p (Ro = 1 and p as a design variable), one can yet the standard nominal 

optimal linear regulator state feedback control law given by the solution of the 

algebraic I{iccati equation. 

with w11 = U = w33 amd w22 = 1 and the same control wei~htings as above, one can 

yet the 'optima 1 robust' state feedback control law aetermi ned Dy the pro~osea 
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parameter optimization (PU) method. 

The com~arison of 'robust (PO) state feedbacK control law' vs. the 'nominal 

state feedback control law' is depicted in Fi~. 7 where the perturbation Dound ~21 

is plotted against the nominal control effort J un = {r uTUdt)1/2. 
o 

As anticipated, for a given control effort, the robust control law yields d 

higher perturbation bound u21 than the nominal control law, indicating the usefulness 

of the proposed optimization procedure. 
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I Robust' state 

feedback 

~I _;----------------r�---------------r�---------------T�---------------~I-------------~I-----------~I 
8.20 8.25 8.~0 8.35 8.40 8.45 8.50 

control effort JU 
Figure 7. Variations of the Bound ~ with Control Errort. 
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V. CONCLUSIONS f\ND RECUMMENUATlONS FOR FUTUR!: KESEARCH 

~.l Work in Retrospect 

The main theme of the described research under the ~resent ~rant has been to 

analyze and synt~esize controllers tor robust stabi lity for linear time invariant 

systems subject to linear time varying structured lelem~ntal) perturbations. First 

the analysis of robustness was considered. The n~in contribution of the research in 

this aspect is the reduction of conservatism of tne jJreviously aeveloped jJerturbation 

bounds for structured (elemental) uncertainty. This is done by employing a state 

transformation and the improvement of the jJrojJosed technique is illustrated with 

several exam~les. 

Then the aspect uf control design is addressed. In this reyard, first the case 

of linear state feedback control is considered. The linear state feedback control 1S 

determ1ned by nominal means based on the Riccati equation and the buunds aChieved Dy 

this control la\'/ are comjJuted. The effect uf state estimation in the control law 

(for stochastic systems) on the Dounds is illustrated by comjJaring it with the exact 

state feedbaCK case. Then the speci al nature of 'moda 1 systems I (as i n Lar~e Sf,lace 

~tructure Control example) is incorporated in the uncertaiilty structure dnd a linear 

state feedbaCK control utilizing this s~ecial structure is aevelojJed. Finally 1n 

that section, the conditions under Which a linear state feedbaCK control exists lfor 
\ 

yiven f,lerturbation range) is recalled (namely the IIlatching condition) and a aesiyn 

algorithm is [Jresented for determining the linear state feedbaCK control for these 

'matChed systems' lfor simjJle second order systems at this stage of researcn). 

Section IV com[Jrises the major contribution of the research under this yrant 1n 

which a design procedure for determining reduced oreer aynamic compensators for 

robust stability is p.resented using the Parameter UjJtimfzation (PO) method. The 

maximization of the jJerturbation bound is jJosed dS d minimization jJroDlem Oy 
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speci fyi ng an appropri ate performance index and the control ~ai ns of a comj)ensator uf 

given structure are optimized to minimize the ~iven ~erformance index. Tne solution 

method leads to a set of necessary conditions which are then simultaneously solved to 

obtain the desired ~ains. The liiethod is illustrated with the helj) of a sim~le 

example. 

The J,lublications listed as Kefs. L21.-2~J are tne result of this study. 

As it normally occurs, another result of this stuay is that many interesting 

research topics surfaced for further investigation. These are sUlllmarized in tile 

following. 

5.2 Avenues tor Further Kesearch Which Need the Continued Support of the 
NASA Langley ~esearch ~enter 

1) Tne foremost area of researcn WOUld be to further reduce the conservatism of the 

perturbation boundS by sCd~ing. Note that a similarity transformation is lIot d 

necessary means (but only a sufficient means) to reduce tne conservatism. Une' 

suyyestion is to use positive real transformations. 

2) One extension that needs attention is to develop linear state feedback control 

law for higher order matchE:d systems and then to consider the case of mismatchea 

systems. 

3) An area of research would be to extend the development of explicit bounds for 

4) 

structured perturbation to time-invariant J,lerturbations and ~xamine the reduction 

in conservatism that can Qe achieved. 

Another area of interest is to compare the proposed Iperturbation ~ouna Analysis l 

approach to design with other relevant methods like the Guaranteed Cost Control 

of Chang and P~ng L6J and the Imultimodel theory I of Ackermann. 

~) It is also of interest to probe the relationship between the perturbation bound 

and the corresponding aeyree of stabi lity measured Dy the real part of the 
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dominant eigenvalue, i.e. the relationship Detween ~erturbation ranye and 

eiyenvalue displacement. 

b) Another dspect for future research would be to extend the "perturbation ~ound 

Analysis· for actuator-sensor location ~roblems. 

7) An area of extreme interest would be to use the ~erturbation bounds as d 

criterion for selecting the critical parameters in a system and use this 

information in model/contoller reducticin and develop an algorithm for same ana 

compare it with other relevant schemes. 

H) Une toremost area of research would De to extend the ~roposed analysis and desi~n 

methodoloyy to the case of combined mOdeling errors such as parameter variation, 

mode truncation and possibly nonlinearities. 

~) There is need tor probing into the comparison and contrast ot" frequency domain 

results and the ~roposed time domain results. 

10) Une immediate application of tne develo~ed perturbdtion Dound analysis is in the 

area of stability analysis and control design for larye scale interconnected 

systems (decentralized control). 

11) It is instructive to extend the proposed concepts to the case of combined 

·stability rObustness· dnd ·performance robustness· where ·performance· is 

measured in terms of speed of response, percentage overshoot, dampiny 

enhancement, etc. 

12) Some interesting application areas are: (i) tne vibration control ot'lliechanical 

systems, (ii) active flutter control in aircraft, (iii) failure mode 

anaiysis in turbofan engine control, and (iv) control of robot IlIani~ulators. 
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