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ABSTRACT 

In this paper we present theoretical and numerical results for inverse 

problems involving estimation of spatially varying parameters such as 

stiffness and damping in distributed models for elastic structures such as 

Euler-Bernoulli beams. An outline of algorithms we have used and a summary of 

our computational experiences are presented. 
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1. Introduction 

In the past several years there has been an increased interest in 

the use of continuum models [13], [18], [22], [27], [28], [29], [30], 

in the study of large complex connected structures such as those being 

planned for deployment in space. These flexible platform and antenna 

structures, which are frequently composed of large lattice, panel and/or 

beam-like components, are typically constructed of graphite epoxy 

composite materials. Preliminary experimental testing suggests that one 

can expect significant material property changes (e. g .. , decreases in 

material damping by as much as 500%) due to ageing, environmental stress, 

fatigue, etc., during periods of deployment of structures composed of 

these composite materials. Therefore the identification or estimation of 

structural parameters (e.g., bending and shear rigidity, moments, damping, 

loading) will play an important role in the modeling, control and 

stabilization of these large space structures. 

In recent efforts we (along with some of our colleagues and associates) 

have contributed to the research literature [2], [3], [4], [5], [8], [10], 

[11], [19], [25] in developing methodology (theoretical as well as computa­

tional) for such problems. In this paper ~e detail and extend some 

earlier results reported in 12], [4], [5] and [10]. Our specific aims here 

are twofold: (i) to present some of the ideas behind the theoretical 

results stated in [4] and [10], and (ii) to present a more extensive 

summary of some of our numerical findings for estimation of spatially 

dependent parameters, especially damping (again, earlier findings were 

presented in [4], [5] and [10]). To be more precise, we note that in 

many of the earlier efforts cited above, the focus was on convergence 



-2-

results in a functional analytic framework (e.g., semigroups, dissipative 

operators, sesquilinear forms) and entailed certain smoothness (on the 

approximation elements) and compactness (on the admissible parameter 

sets) hypotheses. Here we present in §2 a theoretical approach (presented 

earlier in 14], [5] and treated in the context of hybrid systems describ­

ing the undamped vibration of beams with tip appendages in [10]) based 

on weak or variational arguments in the spirit of those from 

widely known "finite-elements" approaches to the approximation of partial 

differential equations (for a summary and numerous literature references, 

see [14]). This approach permits, in addition to relatively weak smooth­

ness assumptions on approximation elements, a substantial relaxation of 

compactness assumptions on the admissible parameter sets. We comment 

further on this aspect of our presentation in §5 below and also refer 

the reader to [1] for a more complete discussion of weak vs. strong 

formulations in the context of inverse or parameter estimation probl~us. 

In 93 we discuss implementation of some approximation ideas as we 

have employed them. Included is brief mention of the three principal 

optimization schemes we have used (sometimes in a hybrid method): a 

finite-difference Levenberg-Marquardt algorithm, a conjugate-gradient 

algorithm, and the popular Broyden-Fletcher-Goldfarb-Shanno algorithm. 

A summary of some of our numerical findings for a particular model (a 

damped Euler-Bernoulli beam) is given in §4 while the last section is 

devoted to a brief discussion of related and continuing efforts. 
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2. Theoretical Considerations 

In this section we give a brief outline of convergence arguments 

associated with the algorithms and approximation ideas that we have 

used in obtaining the numerical results presented in subsequent sec-

tions. The arguments are applicable to quite general models of practical 

interest (e.g., see [10]) and we choose a specific simple model 

- a cantilevered Euler-Bernoulli beam with viscoelastic damping - only 

to illustrate the theoretical ideas. 

We assume a normalized (mass = 1, length = 1) thin elastic beam with 

built-in or clamped end at x = 0, free end at x = 1, which is subject 

to Kelvin-Voigt damping. The equations for transverse vibrations 

embodied in the Euler-Bernoulli theory are given by (here D = a/ax) 

(2.1) f, 0 < x < 1, 

(2.2) u (t, 0) Du (t, 0) 0, t > 0, 

(2.3) 
2 2 I 

{qlD u(t,·) + q2D ut(t,·)}IX=l = 0, 

(2.4) [D{ql D
2
U(t,.) + q2D2Ut(t,.)}] IX=l = 0, 

with initial data 

(2.5) u(O) = Uo 

(2.6) 

We assume here, for e~se in exposition, that the initial data uo' 

are independent of the parameters The case u = o 
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uo(q) , Vo = vo(q) can be treated with ideas similar to those given 

below. In the general case the loading term f may also depend on 

parameters to be estimated; again the arguments below are easily 

extended to cover such situations and we consider only the simple 

case f = f(t,x). 

The parameters q are restricted to lie in the admissible set 

where are fixed constants. 

o < c. < q. (x) < \)} 
l. - l. 

We remark that if no damping 

is present (q2 - 0), the convergence arguments outlined below can 

be made with even less effort. 

We reformulate the system .(2.1)-(2.6) in weak or variational 

form in the state spaces V and H = L2 (0,1) where 

v DtjJ (0) o} 

Denoting the usual inner product in L2 (0,1) by <:.,.:>, we re-

place (2.1)-(2.4) by 

(2.7) 

and seek solutions u with u(t) E H2 
* 

satisfying (2,5) (2.6) and 

(2.7)· for all 

Remark: As we have noted, other models can also be readily treated 

with the approach given here. For example, in the case of a simply 

supported beam, the boundary conditions (2.2)-(2.4) are replaced by 

2 
u(t,n) = D u(t,n) = 0, n = 0,1 and the state space 

2 1 
V = H (0,1) n HO(O,l) 

2 
is used in place of H*. 
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When for example a tip mass of magnitude m is rigidly attached 

to the free end of the beam, the natural boundary condition (2.4) 

expressing zero shear is replaced by the ordinary differential 

equation 

g(t) 

where g is an external load applied to the tip mass in the transverse 

direction. In this case the appropriate choice for H is the product 

space R x L
2

(0,1) with 

v 2 
{ (n , 1j!) E H: 1j! E H (0, 1), 1j! (0) D1j!(O) 0, n 1j! (1) } 

(see [10). More will be said about our general approach in the 

context of hybrid systems (i.e. coupled systems of ordinary and 

partial differential equations) when we discuss specific examples 

and our numerical findings in section 4. 

It is not difficult to use standard arguments to show that (2.5), 

(2.6), (2.7) is well-posed. That is, under reasonable smoothness 

assumptions on f, u o' v O' ql' q2 and the positivity constraints 

of Q on ql' Q2' one can modify the arguments in [20,p. 272-281) 

to obtain existence of a unique solution u (on any finite interval 

[O,T]) satisfying u E C([O,T),V), u
t 

E C([O,T],H), U
tt 

E L
2
([0,T],V') 

2 
where V = H*(O,l), H = L2 (0,1) and V' is the dual of V with H 

as pivot space. Under additional smoothness hypotheses, one can 
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argue that this solution is actually a strong solution of (2.1)-

(2.6) enjoying stronger smoothness properties (for example, see the 

results given in [10], [11]). 

We consider a class of problems for the estimation of the 

parameters ql,q2' given observations of the system (2.1)-(2.6). 

-Given observations u .. for u(t.,x.) and a parameter set Q C Q, 
1J 1 J 

we seek q* E Q to minimize over Q the least-squares criterion 

(2.8) J(q) I 
i,j 

- 12 lu(t.,x.;q) - U .• 
1 J 1J 

where u = u(q) is the solution to (2.5)-(2.7) corresponding to q. 

Without additional assumptions on Q, these problems are in-

tractable (from both a mathematical and computational viewpoint). We 

shall assume throughout that Q is compact in the 5tff = C( [0,1] ,R2) 

topology. Even with this compactness assumption, the minimization 

problem for (2.8) is infinite dimensional in both state and parameter 

space and thus is not readily solved without approximations. 

For state space approximations 
N 2 N 

H C H* we let H be finite 

dimensional, N 1,2, ... , and let 
N N 

P :L
2

(O,1) + H be the orthogonal 

projection of L
2

(O,l) onto HN. We assume that HN satisfies: 

(2.9) For each 

These hypotheses are satisfied by a number of useful and popular 

families of approximations: quintic or cubic B-splines modified to 

satisfy the boundary conditions defining 

Hermite cubic splines (modified); etc. 

2 
H* (see [2], [26]); 
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For parameter set approximations QM, we suppose that 
M" 

Q is 

given by QM ~ iM(Q) where the set QM and the mapping iM 

2 
Q ~ C([O,l],R) satisfy: 

(2.10) QM is compact in the)f topology; 

(2.11) iM (q) ~ q in the :c topology, uniformly in q € Q. 

These conditions are relatively mild and include some practically 

useful approximation schemes such as linear and cubic interpolatory 

splines (for discussions, see [7 ], [9]). We note that we do not 

require 
M 

Q C Q, although in some situations this may be automatically 

satisfied. In other cases it may be desirable to impose the constraints 

in Q explicitly in using the sets QM in computational examples. 

For any q € Q, we may define in 
N 

H approximating systems for 

(2.5)-(2.7) as follows: we seek uN(t) € HN such that for all 

N 
IjJ € H 

(2.12) 

(2.13) 
N N 

u (0) P U o 

(2.14 ) 

We then define, for approximation indices (N,M), the approximating 

estimation problems: 
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Minimize 

(2.15 ) I N - 12 u (t. ,X.iq) - u .. 
~ J ~J 

M N 
over q E Q , where u is the solution of (2.12)-(2.14). 

Let be solutions of the (N,M) estimation problems, N = 1,2, 

..... , (Such solutions exist since QM is compact in 5f 

and 
N q 4- J (q) is continuous in the :£ topology.) Since 

iM(Q), there exist in Q such that The :C' com-

pactness of 

{q:j} of 

Q implies 

{-qM
N

} 

the existence of a convergent subsequence 
N. 

k 
q ~ 4- q E Q as N j 4- 00, ~ 4- 00 with 

The limit function 
A 

q is an obvious candidate for a solution to 

the problem for (2.8). To see that it does indeed provide a minimum 

for (2.8), we first observe that property (2.11) for iM along 

with the inequality 

{qAMNkj} guarantees that 

definition 

or 

also converges to q in 5%' .. 

for all 

N.( N.) N. 
J J q J < J J(i

M 
(q» 

~ - k 
for all q E Q. 

Next we have by 

Thus, taking the limit as N
j 

4- 00, ~ 4- 00 yields the desired in­

equality 
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A 

J(q) _~ J(q) for all q E Q, 

'f IN(qn) ~ J(q) 1. we can argue ~ as N -+ 00, n -+ 00, for any sequence 

n 
q -+ q in ~. But this follows immediately once we have 

argued that 
N n 

u (t.,X.iq) -+u(t.,X.iq) 
1..J 1. J 

for arbitrary 
n q -+ q. The 

remainder of' this sectiort will be devoted to a sketch of arguments 

for this convergence. 

We recall (2.5)-(2.7) and (2.12)-(2.14) where we must consider 

N n n 
u (q ), u(q) with N -+ 00, n -+ 00, q -+ q. Simple reindexing argu-

N N 
u . (q ) -+ U (q) as ments reveal that.it suffices to argue that 

for arbitrary sequences 
N 

{q } with 
N 

q -+ q as Here, 

of course, 
N 

u (q) and u(q) are the solutions of (2.12)-(2.14) and 

(2.5)-(2.7), respectively, corresponding to q. 

Let 
N 

q -+ q be arbitrary and let 
N 

u ,u denote 
N N 

u (q ),u(q). 

throughout below. We define 

N N N N 
z = u (q ) - P u (q) • 

Then (2.5), (2.6), (2.13), (2.14) imply that (in 

cases where uO,vO depend on q, the arguments differ slightly since 

N N 
then z (O),Zt(O) are not zero, but approach zero as N -+ 00 under 

suitable smoothness assumptions on uO,v
O
). Using (2.7) and (2.12) 

we have for $ E HN C H: 
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(2.16) 

(If f depends on unknown parameters q we would also have a term 

<:f(qN)_f(q},~~ above but the essential features of our presentation 

would again remain the same.) 

Adding appropriate terms to both sides of (2.16), we find 

(2.17) 

Choosing 
N 

~ = z 
t 

(which is in HN), we obtain 

/' N 2 N, N 2 N, /' N N, 
= ,l!.l,D Zt/' + <:l!.2t,D Zt"""'- + ,8 ,Zt"""'-

N 2 N2N N N 
where l!.. = q.D u - q.D P u and 8 = (I - P }utt • 

l. l. l. 
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(If damping is present, but we are only guaranteed Q2(X) ~ 0, 

the arguments must be modified at this step, but again the essential 

ideas are similar to our presentation here.) From this last inequality 

we have 

d {I N 12 1 [N 2 N 12 < N 2 N>} dt Zt + ~ql D Z . - 2 ~l,D Z 

Integration of this inequality leads to 

N 2 N -< III (0) ,D Z (0» 

In the case we are considering here (uo,v
o 

independent of q), we have 

and one also can easily argue that 
2 N 

D Z (0) = O. We there-

fore find 

Defining 
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and 

we have obtained 

N N Jt N v (t) ~ p (t) + 0 v (s)ds .. 

An application of the Gronwall inequality yields vN(t) ~ 0 if we 

can argue 
N 

F (t) ~ 0 for each t. But since 
N 

z (t) 
2 

E H* ' the con-

N 
v (t) ~ 0 

2 
H* which in vergence actually yields zN(t) ~ 0 in 

turn yields the desired convergence. 

To complete the arguments, one recalls the definition of oN 

and ~~. Under assumptions (2.9) and the compactness of Q in 5f 
~ 

(i.e., qN ~ q in 5f), the arguments for pN(t) ~ 0 can readily be 

reduced to smoothness requirements on u = u(q) (e.g., u,u
t 

E 

2 
L

2
(O,T;H*), U

tt 
E L

2
(O,T;L

2
». These in turn can be established as 

indicated above under additional smoothness hypotheses on the data 

(e.g., uo,vo,q,f) in our problem. 



-13-

3. Implementation and Computational Considerations. 

We next discuss implementation of schemes for the sequence of 

approximate estimation problems involving the systems (2.12) - (2.14) 

and criteria (2.15). This involves Ritz-Galerkin type procedures 

embedded in optimization routines. For these one needs state approxi­

mation subspaces HN and parameter approximation sets QM. In the 

case of the work reported on in this paper, we employed subspaces HN 

generated by either cubic or quintic B-splines appropriately modified 

to satisfy the essential or geometric boundary conditions (2.2) of 

2 
V::oH*(O,l) (or the analogs of these conditions in the event we are 

considering some other type of boundary condition, e.g. simply-

supported, or tip appendage). We have used either linear or cubic 

M 
interpolatory splines to define the sets Q. Once .approximation sets 

N M Hand Q have been chosen the equations (2.12) reduce to matrix differen-

tial equations for the "Fourier" coefficients of uN relative to the basis 

N M 
elements for Hand Q . 

To illustrate the ideas in a specific case, we consider cubic spline 

state approximations and linear spline parameter approximation sets for a 

cantilevered damped beam modeled by (2.1)-(2.6). 

We first describe construction of the basis elements for 
N 

H . For 

a positive integer N 

we denote by S3(~N) 

and partition ~N = {x}N x. = i/N, of [0,1], 
i i=O' 1. 

the set of cubic splines with knots ~N. (i.e., 

the set of functions s such that s is a cubic polynomial on each 

. C2 {~N}N+l 1.nterval (xi,xi +l ) and is on [0,1]). Let Bi i=-l be the 

3 N 
standard cubic B-spline basis set for S (~ ) - see, for example 

[24, p. 79]. The cubic B-spline 
~N 
B. has support in 1. 
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has values 1,4,1 and slopes liN, 0, -liN at the knots x. l' x., x. 1 . 1.- 1. 1.+ 

. 3 (N) . . d' 2 . respect1.vely. The set S 6 1.S not conta1.ne 1.nH* but we use the 

elements B~ to generate basis elements B~, that satisfy B~(O) 
J J J 

o. More precisely, we define 

N hN hN N 
Bl = BO 2B - 2B_l 1 

N hN 
i 2,3, ... ,N+l B. B. , 

1. 1. 

and take HN 

DB~(O) '" 
J 

Remark: When considering the clamped-free beam with tip mass, we choose 

8~ 
J 

N N 
(B.(l), B.), j 

J J 
1,2, ... ,N+l. 

To construct QM for a positive integer M, we let L(6
M

) be the 

set of piecewise linear splines [26, p. :10; 24, p. 48] corresponding 

to the partition 6
M 

= { i/M}~=O Basis elements 

by standard "hat" functions M i the b. , = O,l., ••• ,M 

support in (x. l'x. 1) 1.- 1.+ 

1. 

with values 0, 1, 0 at 

for this set are given 

where b~ has 
1. 

re-

spectively. Letting iM denote the usual interpolation operator for 

L(6
M

) - see [26, p. 10], we then define for a given Q, the approxima­

tion set QM = iM(Q). Note that in this particular case, the constraints 

c. < q. (x) < \I 
1.- 1. -

are preserved in 
M 

Q . 

We thus have that any solution uN(t) E HN of (2.12) has the 

representation 

N+l 

(3.1) 
N 

u (t,x) I 
j=l 

N N 
w. (t)B. (x) 

J J 

while the coefficients to be chosen from QM have the repre-

sentation 



(3.2) M 
q. (x) 
~ 

M 

1: 
j=O 

M 
q .. b. (x) • 

1.J J 
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For these fixed bases (for given indices (N,M», it is easy to 

argue that (2.12) reduces to a second order N+l dimensional system 

~N N N' T 
for w == Cwl , .•• ,wN+l ) . Specifically, (2.12) must hold for each 

N 
1jJ == Bk , k = 1, ••• ,N+l; this, in view of the representation (3.1), yields 

an N+l system of second order ordinary differential equations which 

can be rewritten as a 2N+2 first order system 

(3.3) 

where now 

and 

QN;,N (t) N N 
= Kw (t) 

QNw.N(O) N 
Wo 

QN 

[: ON] = 

Q2 

KN 

[ :~(q,J 

+ fN 

with 

[Q2]' . 1.,J 

:~(q2)] 

N ·N 
- wi' i wi +N+l 

r N N 
= B.B. 

1. J 
0 

N 
[K1 (q£,)]. . = 1.,J 

fN [:~ ] N Jl N [f2]j fB. , 
o J 

[w~Jj = J: N 
UOBj j = 1, ... ,N+l, 

[ w~Jj r
1 N 

j N+2, ... ,2N+2. v B - = 
)0 o j-N~l 

1,2, .•. , N+ 1, 

r 2 N 2 N q£,D B.D B. , 
o 1. J . 
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The approximate estimation problems (for given integers N,M) 

thus reduce to minimization of 

(3.4) ·q,N,M(q)= I 
i,j 

I N M - 12 u (t. ,x. iq ) - u .. 
~ J ~J 

subject to (.3.1), (3.2), (3.3) where now q is the vector of parameters 

q.. in (3.2). For each set of fixed indices N,M, this problem can 
~J 

be successfully treated with a number of different techniques. We pro-

ceed to outline some of those which we have used. First, however, we 

note that computation of ~N,M in any optimization routine requires 

solution of the semi-discrete Galerkin equations (3.3). This can be 

accomplished by using the Hindmarsh adaptation of the Gear algorithm 

(17]. For problems where q2(x) = 0 (no damping), the equations can 

be integrated efficiently using the Adams methods which are part of 

that scheme; however when damping is present the equations are stiff 

and we found it necessary to use the routines for stiff systems that 

are part of the Gear algorithm. 

The evaluation of ~N,M is the expensive part of our algorithms, 

involving the integration of moderately stiff systems of 2N+2 dimen-

sional differential equations. Some computational savings can be achieved 

due to the special structure of the matrices in (3.3): sparse, banded, 

with symmetry in the matrices Q~ and K~. A Cholesky algorithm can 

be used at each integration step to solve for the N+l subsystem involving 

Q~. Elements of QN and KN can be readily evaluated using a composite 

two-point Gaussian quadrature. -
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We have used, in the_results reported herein and in earlier efforts 

[5], three different methods (sometimes in a hybrid scheme involving two 

of them) to carry out the minimization for ~N,M in (3.4): (i) a finite-

difference Levenberg-Marquardt (FDLM) algorithm; (ii) a conjugate-gradient 

(CG) algorithm; and (iii) the scheme due to Broyden-Fletcher-Goldfarb-

Shanno (BFGS). We describe each briefly below, referring the reader to 

the references given below for further details. We first note that (i) 

requires only evaluation of ~N,M since derivative information is obtained 

by finite differences; ~ethods (ii) and (iii) require gradients which_we 

have computed using a costate equation approach (explained below) • 

(i) Finite-difference Levenberg-Marquardt: This quasi-Gauss-Newton [23) 

method is designed especially for 

R 't' ~N,M(q-) ewr~ ~ng '" of (3.4) as 

minimization of 
K 
\' - 2 
L eR,.(q) where 

2.==1 

least-squares criteria. 

- -e(q) = (el(q), .•• ,eK(q» 

is the vector of residuals or pointwise errors, the L-M scheme generates a 

sequence of iterates 

(3.5) -(k+l) = -(k) + A d(k) 
q q k 

where the directions 

(3.6) 

- (k) 
d are obtained by solving 

with the scalar J.l k chosen to insure positive definiteness of the system 

matrix in (3.6) and so that is a descent direction. Here the matrix 

is the Jacobian matrix of -e (q) evaluated at -(k) 
q • For = a 

the directions thus obtained agree with those of the Gauss-Newton method 

while for large the directions approach those of steepest descent. 



-18-

This method generates,descent directions and exhibits rapid 

convergence (superlinear).· However, to approximate the Jacobian in 

(3.6) by finite difference~ (which is the standard approach for this 

method), the differential equations (3.3) must be integrated p times, 

\\tie re p is the number of parameters in the vector q = (q .. ). Thus 
~J 

at each iteration of (3.5), the approximating differential equations 

must be solved p times to generate one descent direction. This is 

not a significant drawback if p is not too large. For spatially 

varying stiffness and damping coefficients ql' q2 in (2.1), the total 

number of parameters needed to obtain reasonable approximations can 

become large. In this event alternate methods may be superior. 

One can avoid methods based on finite-difference gradients if one 

is willing to compute the necessary gradients (e.g., by variational 

equations or costate methods) and supply them directly to the iterative 

algorithm. While there is a version of the Levenberg-Marquardt 

algorithm (inMINPACK's LMSTR1) which allows user calculated gradients, 

we have chosen to investigate use of other. popular algorithms in some of 

the calculations we have carried out. Since the use of linear variational 

equations in calculating the gradients involves solving systems that gro~ 

in dimension with the number of sought-after parameters (p in the discus-

sion above), we have chosen to use a costate formulation in computing 

gradients. In this case only two differential equations (with dimension 

independent of the number of parameters to be estimated) must be inte-

grated per iteration. The associated iterative algorithms we have used 

are the conjugate-gradient and the BFGS. 
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(ii) Conjugate-Gradient: The CG algorithm is quite well-known (see 

[16, p. 133-136; 15, p. 91-98] for more details) and we use the for-

mulation proposed by Nazareth in [21]. Once again the iterates are 

given by (3.5) but the directions are generated by the recurrence 

relationships 

where 

(1) 
-g 

(k) (k+l) (k) 
y = g - g with 

(k) 
g the gradient vector (of 

with respect to the parameters q) evaluated at -(k) 
q . 

~N,M 

While CG methods exhibit finite-step convergence when the cost 

criterion is a quadratic functional, in general problems such as those 

under investigation here convergence is often slow, particu1arly in the 

neighborhood of the extremal point. Newton methods are more suitable 

near the extremal and hence it is often advantageous to switch to a 

quasi-Newton method such as the BFGS. 

(iii) Broyden-Fletcher-Goldfarb-Shanno: In this method one again uses 

the iterative formula (3.5) with the search directions 

by 

where 
(k) 

g again denotes the gradient and 

-(k) 
d now given 
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- (k+l) - (k) (k+l) (k) 
ok - q - q , Yk - g - g , 

This quasi-Newton method employs "BFGS updates" Hk for a matrix which 

is an approximation to the inverse Hessian matrix. In practice, the 

method exhibits rapid convergence for the type of problems we have con-

sidered, particularly when compared to the CG method (ii) in the neigh-

borhood of an extremum. Second order information is used (i.e., an ap-

proximate inverse Hessian matrix) even though only gradient computations 

are required. In our implementations, the gradient is computed using a 

costate formulation and hence as in the case of the CC; method, only two 

differential equation solutions (state and costate) are required per step, 

as compared to the FDLM (or any other finite-difference based gradient 

algorithm) which requires p (= dimension of unknown parameter vector) 

differential equations be solved per step. 

The step parameter Ak is determined by a one-dimensional line 

search, with the BFGS andCG methods offering the advantage that exact 

line searches are not necessary. For a further discussion of the BFGS 

method, the reader may consult [15, p. 38-60]. 

The method of using costates to compute the ~radient in optimization 

problems with differential equation constraints is well-known to investi-

gators in control and variational theory. These ideas in a form appropriate 
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for parameter estimation problems are described in some detail by 

Chavent [12] for the case of continuous time observation problems. 

A similar formulation for discrete time criteria such as (3.4) can 

be given. We refer the reader to the Appendix where it is shown 

that the desired gradients are given by 

-r o 

with 

[
0 OJ> .5e:. = 

lj 9. ° 
J 

;J 
J 

T N 
P (t)~.w (t)dt 

1.J 

j=O,l, .•. ,M, 

where ~. is the N x N matrix with elements 
J 

r9.]'. t J ;r..,k J
1 M 2 N 2 N 

b.D B.D Bk dx ° J 1. 

and p satisfies an appropriately defined costate (to (3.3» equation 

(see (A.7) in the Appendix). 
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.' 
4. Numerical Results and Examples 

We have developed and tested software packa'ges based upon both 

quintic and cubic spline state approximations and cubic and linear spline 

.. . 

parameter approximations as noted above (some of our findings were 

reported in an earlier version of this paper [5]). Numerical testing was 

carried out on a CDC Cyber 173 at NASA Langley Research Center, a Burroughs 

6900 at the USAF Academy, and an IBM 3081 at the University of Southern 

California. The IMSL version of the Gear/Hindmarsh algorithm (DGEAR) was 

used to integrate the approximating differential equations ~3.3). One of 

several methods was used to solve the approximating optimization problems: 

the IMSL implementation ZXSSQ of the Levenberg-Marquardt algorithm, the 

BFGS scheme o'r a hybrid CG/BFGS scheme (Le., initially using the CG 

algorithm and switching to the BFGS as we neared a minimizer) . 

To test the approximation ideas, the inverse procedure, and software, 

synthetic data was generated for a number of examples in the following 

* * manner: "true" parameter functions ql' q2 were chosen and an algorithm 

employing either finite differences or a high order spline based Galerkin 

scheme was used to generate the corresponding solution values u" = 
1J 

* u(t. ,x.;q ) at certain points (t. ,x.) on a grid. These values (which 
1 J 1 J 

obviously already contain some "noise") were subsequently used as observa-

tions or input for the estimation algorithms and software being tested. 

A number of test examples with different shaped stiffness and damping 

functions were investigated in this manner. We report in this section 

some of these results. The results we summarize are typical of our 

numerical findings. Eqch of the particular examples detailed below was 

run using the ZXSSQ package, although we have also enjoyed success with 
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the other optimization methods discussed above (e.g., see [5] where some 

of the results given were obtained using the CG and BFGS schemes). 

* * In Examples 1 and 2 below, for "true" parameter functions ql' q2' 

"data" was generated using a finite difference scheme for observation 

points (t.,x.) with t. = illO, x. '" j/lO, i,j = 1,2, ... ,10. The test 
~ J ~ J 

model equation used "is given by (2.1) - i.e., 

(4.1) 

with initial data u(O,x) = ut(o,x) = ° and uniform loading f(t,x) = 10. 

The boundary conditions used were for a simply supported beam, that is, 

(4.2) u(t,O) u(t,l) 2 
D u(t ,0) 

2 D u(t,l) = o. 

In the results reported below, the index N will always refer to the 

state approximation level with either N+l quintic basis elements (note 

this is a strong formulation with all four conditions of (4.2) imposed 

on the basis elements) or N+l cubic basis elements (a weak formulation 

in which the zero moment conditions are treated as natural boundary 

conditions). Similarly the index M will denote the parameter approxima-

tion index with M+l linear splines or M+3 cubic splines in a basis set. 

In carrying out the optimization step, it was often necessary to impose 

the pointwise positivity constraint ql(x) ~ c
l 

> 0 of Q on the stiffness 

estimate generated by the various schemes. We denote by the 

converged par"ameter estimates (to be compared with q~, the true parameter 
~ 

functions) and tabulate one or more of the_following measures of perforI}lance: 
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(4.3) ~N,M I I N- "N,M _ 12 - - u (t.,x,;q 1 ~ u., 
i, j J.. J l.J 

E~,M Iq~ - "N,MI - q, 
l. l. 1. 

(4.4) 

where 1·1 in (4.4) denotes the norm in L
2

(0,1). 

* * Example 1. We consider an undamped beam (q2 = 0) with stiffness ql(X) = 

.15 + .10 tanh[5(x-.5)]. We estimate ql from start-up value q~ = .15 

using quintic spline state approximations, and cubic spline parameter 

approximations. In Figure 4.1 we present a graphical record of the 

"N M convergence ql' ~ q* while in Table 4.1 we list the corresponding values 

for ~N,M d EN,M an 1 . In all of our graphs, the true parameter functions 

are represented with dashed curves while the estimates q~,M are given by 
1. 

a solid curve. 

N=2 N=4 N=6 

~N,M .21xlO 
-3 

.43xlO 
-4 

.20xlO 
-4 

M=l 
N,M 

El .0207 .0106 .0055 

~N,M .18x IO-3 .13x IO-4 .16xlO-4 

M=2 
EN,M .0213 .0115 .0060 

1 

"N M 
~ , .18xlO 

-3 
.91xlO 

-5 
.34x10 

-5 

M=3 
EN,M .0048 .0146 .0010 

1 

TABLE 4.1 
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Example 2. We consider the same example as in Example 1 except that 

we used qi(x) = .15 + .10 tanh[20(x-.5)}. Tests were conducted to 

compare the performance of our algorithms with qUintic vs. cubic state 

approximations and cubic vs. linear parameter approximations. Typical 

values for ~N,M and are given in Table 4.2 along with some 

typical graphs in Figures 4.2 and 4.3. In tabulating the results, 

we use the labels (N,M,S,P) with state approximations given by 

S = Q (quintic) or S ~ e (cubic) 

and parameter approximations given by 

P = e (cubic) or P = L (linear). 

(N,M,S,P) ~N,M EN,M 
-1-

(8,7,Q,e) .546xlO 
-6 

.86xlO 
-2 

(8,7,Q,L) .302xlO -5 .89xlO -2 

(8,7,e,e) .24lxlO 
-6 .12xlO 

-1 

(8,7,e,L) .224xlO 
-5 .30xlO 

-2 

TABLE 4.2 
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In Examples 3, 4 and 5 we consider a clamped-free or cantilevered 

beam with a variety of configurations at the free end, x=l. More 

precisely, in its most general form, we consider the beam with a 

rigidly attached tip body. The dynamics are given by the hybrid 

system of ordinary and partial differential equations (see [10], [28], 

[29], [30]) 

(4.5) D{aDu} + f, 0 < x < I, t> 0, 

(4.6) 
2 2 

mu + mcDu - D{qlD u + q2D Ut} tt tt 
- aDu + g, x = I, t > 0, 

(4.7) 

(4.8) u(t,O) 0, Du(t,O) 0, t> 0, 

(4.9) u(O ,x) v 0 (x), 0 < x < I, 

where p=p(x) is the linear mass density of the beam, m is the mass of the 

tip body and J is its moment of inertia about its center of mass. The 

center of mass of the tip body is assumed to lie at a distance c from the 

tip of the beam directed along the tangent in the x-direction at the tip 

to the beam's neutral axis (see Figure 4.4 below)." 

The second order term D{aDu} in (4.5) and the corresponding terms 

in (4.6) and (4.7) are the forces and moments which result from an axial 

loading a=a(t,x). In the examples below, we only consider axial loads 
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Figure 4.4 
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which result from an acceleration a
O 

= aO(t) of the base of the structure 

in the positive x-direction. In this case, we have (see [10], [29], [30]) 

a (t, x) -ao(t){m + Jl p(y)dy} . 
x 

The equations (4.6) and (4.7) represent respectively transverse and 

rotational equilibrium at the tip of the beam with g"" g (t) denoting an 

externally applied load through the center of mass of the tip body in 

the transverse direction and h=h(t) an externally applied torque or 

moment. 

Note that setting p;l, m~J=c=O and taking ao=g=h=O in equations 

(4.5), (4.6) and (4.7) leads to the dynamical equations for the standard 

cantilevered beam treated in Section 2. In the examples which follow we 

set 

f(t,x) = e Xsin2nt, 

took "true" values for the unknown parameters and used a quintic-spline 

based Ritz-Galerkin method to integrate the system (4.5) - (4.9) and 

generate displacement observations at times t.= .2i, i=0,1,2, ... ,5 at 
1 

positions x.= .25j, j=2,3,4 along the span of the beam. The structure was 
J 

assumed to be initially at rest (i.e., uO=vO=O). 

The modifications to the formulation of the approximation,schemes 

and the'associated convergence theory necessitated by the presence of the 

tip appendages were briefly described and summarized in remarks in 

Sections 2 and 3 above. A complete and detailed discussion of our general 

approach in the context of inv~rse problems involving hybrid systems 

describing the vibration of beams with tip bodies can be found in [10]. 
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As might be apparent from the results of our numerical studies 

which will be presented below, clamped~free beams posed a somewhat 

stiffer challenge for our methods than did the simply~supported beams 

in the examples discussed previously. An inherent ill~posedness of 

the problem of estimating variable parameters in distributed systems 

was more evident here than when beams with simple boundary conditions 

were treated. 

An undesirable behavior (early onset of oscillations in the 

parameter estimates) may have resulted in part from the fact that in 

general in the presence of "higher order" boundary conditions it is 

more difficult to obtain accurate approximating solutions to the 

dynamical equations. 

Example 3. In this example We simultaneously estimate a constant stiff~ 

* ness coefficient, ql= .15 and a variable damping coefficient, 

.01(L5~tanh(20x~ 10» 

in a model of the form (4.5) ~ (4.9) for a cantilevered beam with no tip 

appendage (Le., with m=J=c=O). We took p(x) =3-x and aO=g=h=O. 

o Start up values for the optimization routine were chosen as ql = .10 and 

.015, 0 < x < 1. 

Since in this example we are simultaneously estimating two parameters, 

the parameter space discretization index M is in fact a vector, M = 

(M
l

, M
2

) of two indices with Mi corresponding to the discretization for 

qi" i = 1,2. 

Using five cubic splines for the state approximation (N = 4), two 

linear splines to discretize the sti-ffness coefficient (M
l 

= 1) and four 
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linear spline.elements to discretize the damping coefficient (M
2 

= 3) 

we produced the estimates plotted in Figures 4.5 and 4.6. With eig~t 

cubic splines to. discretize the damping coefficient (M
2 

= 5, all other 

approximation parameters left unchanged) we produced the estimates 

plotted in Figures 4.7 and 4.B. Using the labeling convention (N,M
l

,M
2

; 

(N,M
l

,M
2

,S,P
l

,P
2

) ~N,M 
N,M EN,M 

El 2 

(4,1,3,C,L,L) .377 x 10 
-6 .90B x 10-

3 
.210 x 10 

-2 

(4,1,5,C,L,C) -6 . -2 -2 
.323xlO .414 x 10 .256 x 10 . 

The CPU times on the IBM 30Bl for these two runs were 22.43 seconds and 

29.92 seconds respectively. 
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Exampie 4. We cOrisider a cantilevered beam with a point (c = J = 0) mass 

of magnitude m = 1 ~ 5 rigidly attached to its free end. We took a
O

:::: 1, 

-t -2t 
get} = 2e and h(t) = e . We simultaneously estimated a constant 

* stiffness coefficient, ql = .15 and a variable damping coefficient, 

.01(1.5 - tanh(3x- 1.5». 

o 0 
The start up values werE~ taken to be ql = .1 and q2 ex} = .015, 0,::. x ,::.1. 

with a five cubic spline based state approximation (N=4), a two 

linear spline based discretization of the stiffness coefficient (M
l 

= 1) 

and a four linear spline (M
2 

= 3) or a fiVe cubic spline (M
2 

== 2) discre­

tization of the dampihg coefficient we obtained the estimates plotted 

in Figures 4.9 - 4.12 with 

~N,M 
EN,M 

1 
EN,M 

2 

( 4 , 1 , 3 , e , L, L) .747x 10 
-7 .669 x 10 

-3 .364 x 10-3 

(4,1,2 ,e, L,e) .404 x 10 
-7 .572 x 10 

-3 .702 x 10- 3 . 
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Example 5. We simultaneously estimate a variable stiffness coefficient, 

.H1.5 tanh(20x - 10» 

* and a constant damping coefficient q2 = .015 for a cantilevered beam 

. -t 
with tip body. We took m=1.5, c= .1, J= .52, ao=l, g(t) "72e and 

-2t 0 0 
h (t) = e . Start up values were chosen as ql exl = .15, 0.:. x ~ 1, and q2 ::: 

.01. 

With a five cubic spline element state approximation (N=4), a two 

linear spline based discretization of the damping coefficient (M
2 

= 1) 

and either a four linear spline eM
l 

= 3) or a nine cubic spline (M
l 

= 6) 

based discretization of the stiffness coefficient we obtained the results 

shown in Figures 4.13 - 4.16 with 

(N,Ml ,M2 ,S,Pl,P2) ;N,M EN,M 
1 

EN,M 
2 

(4,3,I,C,L,L) .695 x 10 -7 .174 x 10 -1 .174xlO -3 

(4,6,l,C,C,L) .195 x 10 -7 .181 x 10 -1 .550 x 10 -3 
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5. Concluding Remarks 

We remark briefly on some of our findings as a result of the 

investigations described above as well as other related efforts. 

First, it is well-known that "inverse" problems such as we have 

considered here are often ill-posed, lacking a certain "stability" 

(i.e., l~cking a continuous dependence of the estimated parameters 

AN,M {- } q on the data u .. ). 
l.J 

This can often lead to serious difficulties 

in computational efforts and it is sometimes helpful to use some type 

of regularization procedure in attempts to alleviate instabilities as 

well as speed up convergence. In much of our work we have taken an 

alternate approach, requiring that a compactness criterion be satisfied 

by the parameter set Q. Using arguments similar to some of those given 

in section 2 above, one can argue that appropriate compactness assump-

tions on the parameter sets will guarantee a type of stability (e.g., 

see [ll). These compactness assumptions entail constraints that are 

sometimes "hard constraints" from a computational point of view, i.e., 

it is desirable to implement them in order to obtain a well-behaved 

computational procedure. As we noted above, in some of our "test" 

calculations with beam models, we have needed to impose the pointwise 

constraints of Q (which are weaker than the compactness constraints 

in this particular problem). As yet we have not tested the methods 

proposed in this paper with experimental data from beams (we are currently 

involved in projects to do this with beams of ordinary - e.g., steel- ~~d 

composite materials). However, we have had considerable experience 

using similar methods with experimental data in other problems(climatology, 
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bioturbation, insect dispersal) involving second order partial differential 

equation models. To date we have found the algorithms we propose well-

behaved, often only requiring the imposition of parameter constraints that 

are easily implemented and incorporated into the optimization schemes. 

We believe that this will also be the case in dealing with data from 

experiments with. beams and other elastic structures. 

Turning to a comment on the-theoretical considerations of §2, we 

note that the presentations in [2], [3], [6], [25) employ a semigroup approxi-

mation approach (the Trotter-Kato theorem) that for the problems we 

consider here would require H2 compactness of Q. The sesquilinear 

form arguments of [19] appear to require 
2 

H -weak compactness of Q .as 

opposed to the !C' 
00 

compactness (in actuality, L compactness is sufficient 

and thus discontinuities can be allowed in the parameters if so desired) of 

this paper, [4], [5) and [10]. Given our comments above regarding stability 

of the associated computational algorithms, this relaxation could well be 

of more than just theoretical interest. 

The methods described here did not, in general, perform as well when 

both a variable stiffness and damping coefficient were to be estimated 

simultaneously in our test example with beams. We are currently at work 

on a scheme that will deal more effectively with this more difficult 

class of problems. 

We note that both the theOre:tical and computational ideas outlined in 

this paper are applicable to a wide class of problems including beams 

modeled with the Timoshenko theories [3] and two dimensional elastic 

structures [8]. For further discussion of the advantages/disadvantages 

of weak vs. strong formulations -in parameter estimation problems, we 

refer to the reader to [~]. 
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Finally, we remark that the numerical experiments outlined above 

(and others we have performed) are computationally intensive (even 

though for the examples of section 4 we always obtained convergence in 

40 or less iterations in the optimi~ation' algorithm).. Therefore, for 

conventional computational machines (e.g., sequential computers) use of 

these methods with experimental dat~ could be expensive. However we 

believe that the approximation ideas and optimization schemes w~ are 

using offer great potential for use with emerging supercomputer technology 

(vector machines, attached array processors, parallel computers). In 

this regard, we are currently exploring the inherent parallelism and 

potential for vectorization of our algorithms and codes to develop fast, 

efficient software packages tailored to specific machine architectures. 

We are pursuing these efforts in the context of feedback control of 

distributed systems for elastic structures as well as for parameter 

estimation problems such as those considered above. Initial findings 

are quite encouraging and will be presented in a manuscript currently 

in preparation. 
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Appendix. 

We outline here the computation of the gradients via a costate 

formulation. We recall (3.4) 

subject to (3.1) and (3.2) 

N 
u (t,x) 

M 
q. 

1 

where 

(A.l) 

= L I N M - 12 u (t., x . i q ) - U •• 
1. J 1J i,j 

N+l N N l. W.(t)B.(X) 
j=l J J 

M 

L M 
q .. b. (x), q 

1.J J 
j=O 

satisfies (3.3): 

N·N 
Q w 

(q .. ) , = 
1J 

We note that is independent of the parameters 

the case considered here. We rewrite the cost criterion J as a 

in 

functional over a continuum of t values by using Dirac functions o. 

For each N we have 

(A.2) J 



where u. ttl = u .. , 
J ~J 
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t. 1 < t < t .. 
~- - ~ 

For and 

vector functions wand p, we define the associated Lagrangian 

CA.3) f
TO N+l I I 'i' BkN ex .1 W

k 
etl - u. (t) ] 20 (t-t. ) dt 

. kf l ·:;) J ~ l.,j 

fT T ) N· N ( M. ) N] 
+ 0 P Ct [Q wet). - Kq lw(t - f dt 

Note that for any vector function p we have, for w w
N 

the solution 

of (A. 1) , 

(A.4) 

so that 

(A.5) 
Cl~N,M 
---= 
Clq .. 

~J 

N,M - (~N M M 
~ . (q) =-z-(w (q ) ,p,q) , 

N M awN a1 N M 
d.!:z([w ,p,q j-", -] + -" -(w ,p,q ) 

oq. . aq .. 
~J ~J 

for i = 1,2, j = 0,1, .•. ,M, where a..$t is the differential of Y with 

respect to the vector function w. Thus the expression for the desired 

gradients can be greatly simplified if p is chosen so that 
N M 

dYIw,p,q ,v] =0 

for any variation function v (which we note must satisfy v(O) = 0 

since is independent of 
M 

q ). To. do this, we must compute the 

differential dSf. We have 

(~N M 
d-z- [w ,p,q iV] 

JT{2 I IL B~(x.)w~(t)~.(t)]o(t-t.)I B~(XJ.)Vn(t) 
o i,j k J J ~ Q, N 



-56-

T N· N M } + p (t) [Q vet) - K (q )v(t)] dt 

where yN is the R
2N

+
2 

vector function given by 

N 
(A.6) Yt (t) 

o N+2, .•. ,2N+2. 

Integrating by parts on the obvious. term in the expression for d~ 

and using veO) = 0, we find 

fT{.T N T N M ' ~ = 0 -p (t)Q - p (t)K (q ) + f yN(t)To(t-ti'}V(t'dt 

T N 
+ p (T)Q veT). 

Thus ~ = 0 for all v if we choose p a solution of 

.T N T N M N T 
p (t)Q + p (t)K (q ) - L y (t) oCt-ti' 0 

i 

peT) = 0, 

. QN or Sl.nce is a 2N+2 square symmetric matrix, 

(A.7) 

peT) O. 
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Returning to (A.S) we thus find 

(A.8) 
d~N,M ~ N M 
--- :;: --(w ,p,q ) ::: 
dq. . dq .. 

l.J l.J 

i:;:: 1,2, j:;:: O,l, •.• ,M. 

Recalling the definition of KN(q) - see (3.3) ~ and the representation 

( 3 . 2), we find 

(A.9) 
d~N,M 
-- (q) 
3q .. 

l.J 

T N 
p (t)Y.t .. w (t)dt 

l.J 

for i:;:: 1,2, j :;:: O,l, ••• ,M, where the 2N+2 square matrices .5f:: . 
l.J 

are given by 

(A.1O) Ai· . J ~j :] 
(A.H) .5t;j [: ;J j O,l, ... ,M 

with~. the N+l square matrix with elements 
J 

(A.12) J
l M 2 N 2 N 

~.]. k:;:: b.D B.D Bkdx. 
J l., 0 J l. 
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The costate equations (A.7) can be transformed for convenience. Defining 

t 

p(t) pCt} - JQN]-lf lyN(slo(s'"'Ot .. lds 
oi ~ 

we may compute the solution P of 

(A.l3) 

This is then used to obtain p by 

(A.l4 ) pet) = p(t) + [QN]-l I yN (t.) 
t.<t 

~ 

~-

which in turn is used in CA.9) to compute the desired gradients. 
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