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CHAPTER I

Introduction

A detailed knowledge of the structure at an atomistic level is very

important for understanding of various processes which take place at

surfaces and interfaces. The exact geometry of different atomic configura-

tions is needed for a correct interpretation of various experimental obser-

vations. In spite of the sophisticated experimental techniques available

for examining surface structure and surface chemistry, many structure-

related characteristics (e.g., surface reconstruction, catalysis) remain

unresolved. Specific surface processes like catalysis, diffusion, roughen-

ing, wetting, adhesion, nucleation, crystal growth, crack propagation,

corrosion, etc., are so complex that detailed understanding of surface

structure is essential for understanding the key elements involved in the

specific process. Unfortunately, conventional theoretical techniques have

great difficulty in coping with the many "nested" phenomena involved in

these processes at a detailed level.

Computer simulation techniques, on the other hand, employing advanced

numerical methods and well-known statistical approaches, are now beginning

to contribute significantly to the microscopic understanding of surfaces

and ad-layer technology as well as to a better understanding of the atomic

mechanisms involved in various materials surface-related processes [1,2].

The main issue in computer simulation is, of course, the ability to

generate a mathematical description or a "model" that will accurately

reflect what is happening in the real world. Prior to the advent of

computer technology, applied mathematics provided a few situations which



could be described by analytically solvable equations. Unfortunately,

important aspects of surface-related processes and materials behavior

usually are complex phenomena which tend to be resistant to analytical

treatment and even to definitive studies by laboratory experimental means.

During the past decades, complex processes have been studied, with increas-

ing frequency, using "computer simulation experiments." The results have

been particularly useful and illuminating [1-3]. These simulation studies

have motivated not only improved laboratory experiment designs but also

have made possible improved data interpretation techniques.

The most important objective of this project was to acquire an atomic

level information for different surface-related phenomena. This was

accomplished using basically three different simulation techniques [4].

All the investigations which were carried out employed in one way or

another a computer simulation technique based on atomistic level considera-

tions. In general, three types of simulation methods are being used for

modeling systems with discrete particles that interact via well defined

potential functions.

(i) Molecular dynamics: this is a general method for solving the

classical equations of motion of a model system. It provides

time evolution of a system of many particles. One can obtain

pertinent phase space trajectories, therefore, any physical

property can, in principle, be calculated if the system

Hamiltonian is known. Given the initial position and velocity

vectors for each particle, the dynamical history of the

assembly is generated in the computer. The simultaneous equa-

tions of motion are solved by any of several techniques which



involve extrapolating the atomic trajectories over successive

short time intervals. After each extrapolation the forces on

all the particles are recalculated at their new positions, and

the resulting accelerations used in the next extrapolation,

(ii) Monte-Carlo: in general, the term Monte-Carlo refers to the

Markov chain ensemble averaging technique introduced by

Metropolis et al. It is purely a stochastic method to model

equilibrium properties of a system. Accordingly, Monte-Carlo

methods cannot simulate atomic motions in real time, but gener-

ate a large number of configurations (i.e., snapshots of N-

particle positions representative of an ensemble at T).

Equation of state data are obtained by appropriate averages

over these generated configurations.

(iii) Molecular statics: this method, in principle, can only provide

properties of a system at T = 0°K. Its widespread use stems

from its small demand of computer time and its ability to

handle large systems. Molecular statics can be regarded as a

minimization procedure. In general, the objective is to find

the energetically most favorable configuration. It may be

thought of as molecular dynamics with a damping force which

progressively draws energy out of the system until it arrives

at a configuration of stable static equilibrium (i.e., a mini-

mum of the potential energy function). Frequently, molecular

statics results are employed as starting configurations (i.e.,

as an input) in the Monte-Carlo and molecular dynamics calcula-

tions. -



All three of these techniques are based on a well-defined potential

function describing interactions among particles in the system.

In general, for a system of N particles, the total potential energy

may be expanded as [5]:

N N , N N N
4rl I ̂I I u(r.j»r.j> +TT I I I u(r.,r .,r. )

± j 1 J J- i j k 1J K

N N N
p-I I •" I u(r.,? .... r*n) + ... (1)

i j n J

where, u(ri>r.), u(ri}r ,rfc), .... uCr^r., ..., TQ) are

two, three, and n-body potentials, respectively. The position of the i

particle is denoted by r..

Clearly, the most important term in this expansion is the first term

involving two-body interactions. Therefore, in the majority of the

atomistic calculations made to date, only pairwise additive potentials have

been used. This provides great simplification in the analytical formalism

as well as in numerical computations.

In this project, depending on the type of the system under considera-

tion, the total potential energy $ was calculated either considering

"only" a two-body term, or for more quantitative results it was calculated

as a sum of two- and three-body interactions neglecting four- and higher-

body terms in eq. (1). Because this expression (eq. (1)) had to be used in

lengthy machine computations, u(r.,r.) and u(r.,r.,r,) were
l J i J K

chosen with the simplest possible functional forms. In this study,



therefore, the two-body part was represented by a.Mie-type potential which

is given by:

•< V

with r.. = |r. - r.|, TQ denotes the equilibrium separation and e is

the energy at r . . = TQ. The exponents m and n account for the repul-

sive and attractive terms, respectively. The three-body part, on the other

hand, was expressed as:

u(rlfrjfrk) = I

where, the summation includes all triple multipole interactions resulting

from the expansion of the third-order interaction energy for three atoms.

Each term in the summation is expressed as the product of a geometrical

factor G(r.,r.,r, ) which depends on the relative positions of thei J K

three atomic nuclei and an interaction constant which depends only on the

atomic species involved in the interaction. The functional forms of

- » • - » • - > •
G(r.,r.,r,) for several multiple interactions have been obtained by

i J K-

Doren and Zucker [6]. Here, we consider only the triple-dipole interaction,

which has been shown to be the dominant contribution [7], This term was

first obtained for closed shell atoms as:

/ • * • • » • - * • v _ „/•*••*••*• \ ' // \u(r r ,r. ) = Z. • G.(r ,r ,r.) (4)
•L I IV X X JL I IV

.with



1 + 3 Cos 0 Cos 9. Cos 0,
.r ,rk) =

where 0 0 0^ and r ., r., , r represent the angle and the sides of

the triangle formed by the three particles i, j and k.

In general, model systems interacting only via two-body potentials

have been used for parametrical analyses, or to obtain semi-qualitative

results for resolving simple mechanisms at atomistic levels. While these

two-body model potentials are able to reproduce characteristics of some

systems (i.e., solid rare gases, fee crystals, etc.), they are unable to

simulate other systems with somewhat more complex structures (e.g.,

diamond, graphite structures). Therefore, for systems with more involved

structures three-body interactions are included by combining eqs. (1)

through (5). Accordingly, the total potential energy was expressed as:

g, _ A V Y £ r r' 0 \tn i 0 ^n-\

, Z(l + 3 Cos 0, Cos 00 Cos 6_
17-1 I I - : - ' - ~ - *• (6)
• i j k (r... • r.k • rjk)

This equation has been used earlier for other analyses, when the

effect of three-body interactions on the structural characteristics of

small clusters [8] and on various crystalline solids [5] were investi-

gated. In these analyses the importance of the many-body effect has been

clearly demonstrated. The function $ containing three-body interactions

is able to provide stability regions for many different types of



crystalline materials [5]. In this project, to investigate the multi-body

effect further, in Chapter II we analyze the effect of three-body forces on

the vibrational frequencies of triatomic clusters. In another study, which

is presented in Chapter III, the multilayer relaxation phenomena for low

index planes of an fee crystal was analyzed also as a function of the

three-body interactions.

For the simulation of real systems, the energy parameters of eq. (6)

are needed. Evaluation of these parameters is, in general, a cumbersome

procedure which is outlined in Chapter IV along with the numerical values

of the parameters for some selected compounds. In Chapter V various

surface properties for Si and SiC systems are calculated.

The rest of the studies in this report are related to materials

applications that involve analyses of responses of materials to external

forces. In Chapter VI, results obtained from static simulation calcula-

tions for slip formation are presented, while in Chapter VII more elaborate

molecular dynamics calculations on the propagation of cracks in two-

dimensional systems are outlined.



CHAPTER II

The Effect of Three-body Forces on the Vibrational

Frequencies of Triatomic Clusters

In general, experimental information about the energetics and

structural characteristics of very small "isolated" clusters are obtained

from various spectroscopic measurements [9-11]. Formal relationships

between the observed spectral lines and the interatomic forces operational

among the particles in the cluster are well established. From a knowledge

of the interatomic potentials, for example, vibrational frequencies associ-

ated with a given cluster can be calculated [12-15]. For this purpose, we

employed a normal mode procedure. After an energetically stable configura-

tion for the cluster is found, the total potential energy is expanded about

this minimum from which the force constants are determined [14,15]. A

diagonalization of the force constant matrix produces the desired eigen

frequencies. This procedure is for the T = 0°K case and is based on the

harmonic approximation.

For a system of three particles, eq. (6) may be put in a dimensionless

form as:

33 , 10 i c. 1 + 3 Cos 6. Cos 00 Cos 9.12 - 26 + z* l- 2-—i (7)

where the reduced quantities are defined by



$ zl**= i; z* = -9
 and

Here, we also set m = 12 and n = 6 which reduces the two-body part of

the potential to a Lennard-Jones function. This assumption simplifies the

comparison of the present results with the earlier investigations [8,16-19]

where the energetics and structural stabilities of clusters have been

analyzed. The reduced potential energy, <£*, when varied as a function of

Z*, produces either a linear or an equilateral triangular shape to be the

energetically more stable form [8j. This is demonstrated in Fig. 1 for

three different Z*-values. In Fig. 1, the curves represent minimized

total energies versus the angle 9 which was varied from 50° to 180° so as

to include both configurations, equilateral triangle and linear. For

Z* = 0.2, no minimum is discernible for the linear case (9 = 180°). For

Z* = 0.6 and 1.0, there are noticeable minima at 0 = 180° which are more

shallow than the equilateral triangular configuration (9 = 60°). Other

calculations [18-22] support this trend indicating that the energetically

favorable structures would be either linear or "nearly" equilateral

triangular.

Fundamental frequencies for the equilateral triangular and the linear

configurations were estimated from corresponding characteristic equations

based on the normal mode procedure. Each configuration exhibits a spectrum

with frequencies u. , io2 and u-. Figures 2a and 2b display calculated

"reduced" frequencies u>* as functions of the three-body intensity param-

eter Z*, for the triangular and linear cases, respectively. Reduced

frequencies were calculated as w* = to /u)~ where u)n .denotes the



corresponding diatomic normal mode frequency. For homonuclear cases, based

on eq. (2), it is given by

(2mn£/M)1/2/r0 (8)

where M represents the atomic mass. For the linear configuration, the

three main peaks corresponding to bending, symmetric and asymmetric vibra-

tions were well separated. The bending mode exhibits the lowest frequency

which is expected due to the shallow minimum at 6 = 180° shown in Fig. 1.

The peak corresponding to the asymmetric vibration, on the other hand, was

found to be in the high frequency region. For the equilateral triangular

case the asymmetric and bending modes become degenerate, as anticipated,

and are located in a lower frequency region than the peak for the

symmetrical vibration. These trends, for either configuration, remain

unaltered for the range of Z* (from 0.0 to 1.0) considered in this

investigation. Calculated peak positions for the equilateral triangular

configuration are consistent with results reported by Etters et al. [18]

for the rare gas clusters. Their results represent a special case in our

approach with Z* = 0.

The effect of Z* exerted on the peak positions for the linear and

triangular configurations was found to be in opposite directions. For

increasing three-body intensities, the two main vibrational peaks for the

equilateral triangular shape shift to the lower frequency region, while the

three peaks of the linear configuration shift to the higher frequency

domain. The largest shift was found to be exhibited by the symmetric

vibrational mode for the equilateral triangular case. Probably, the most

10



interesting region of Z* values lies between 0.66 and 0.70 where the two

configurations may coexist in appreciable concentrations. For Z* = 0.68

the equilateral triangular and linear shapes (with m = 12 and n = 6)

become energetically degenerate. Accordingly, for systems with homonuclear

triatomic clusters, one would anticipate a mixture of these species at

roughly equal concentrations. Comparison of the calculated results with

experiments for this special situation is difficult, not only because of

the parametrical nature of the present study, but also because of various

complications involved in the interpretatin of the spectroscopic measure-

ments. Recently, Richtmeier et al. [21] calculated vibrational frequencies

for group IB trimers. For triangular configurations (not necessarily equi-

lateral) they found that the symmetric stretch mode exhibited the highest

frequency, while the bending and asymmetric vibrational frequencies were

lower and relatively close to each other. Basically, these results are

consistent with the present calculations based on the chosen parameters.

Some effects due to different m and n values on the relative position

of vibrational peaks are expected but they were not analyzed in this

investigation.

Conclusion

The calculated normal mode frequencies of homonuclear triatomic

clusters were found to be affected considerably by the intensity of the

three-body forces operational among the particles. For increasing intens-

ity of the three-body forces, the two vibrational peaks for the equilateral

triangular configuration shift to lower frequencies while the three peaks

for the linear shape shift to the higher frequency domain. For homonuclear

11



triatomic clusters with Z* = 0,68, the two species, i.e., the equilateral

triangular and linear configurations, may coexist.

12



Figure Captions

Fig. 1 Variation of the reduced potential energy, $*, as a function of 6

for three different Z*-values.

Fig. 2 Reduced frequencies versus Z*-values; (a) for the equilateral

triangular configuration; (b) for the linear configuration.
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CHAPTER III

Multilayer Relaxation Calculations

for Low Index Planes of an FCC Crystal

In many studies related to surfaces the relaxation and the reconstruc-

tion of the exposed region are very important. Numerous experimental and

theoretical works have been generated to explore and understand the atomic

nature of the surface reconstruction phenomenon. Recent experimental find-

ings indicate that in many metal surfaces a multilayer relaxation takes

place. Surface region interlayer spacings differ from the bulk value

considerably. In general, the most pronounced relaxation occurs in the

spacing between the first and second atomic layers, d.-, which is found to

be less than the corresponding bulk value [23-31]. These experimental

results have been predicted first by Finnis and Heine [32] using a single

layer relaxation approach. More recently Landman, Hill and Mostoller [33]

calculated the reconstruction in metal surfaces using a multilayer relaxa-

tion procedure and obtained results consistent with experiments. In both

of these approaches, calculations were performed employing surface elec-

tronic charge densities based on quantum mechanical considerations. Other

theoretical calculations using only semi-empirical pair potentials, how-

ever, predict d]2 to be larger than the bulk value which is in contradic-

tion with experimental results. This shortcoming of the semi-empirical

pair interaction models which are being used in many computer simulation

calculations (because of their functional simplicity) inhibits their usage

in various surface region modeling studies.

17



In this investigation, in order to improve the applicability of the

semi-empirical potential models in calculations related to the surface

structures, a potential energy function comprising two-body and three-body

interactions was taken into consideration. As model systems (100), (110)

and (111) index planes of an fee crystal were employed. Three-body forces

were found to be extremely important in the multilayer relaxation of these

surfaces. The results of calculations showed a trend which was in good

agreement with experimental findings.

Throughout this investigation the surface energy a per atom was

calculated from:

M
I (e - e ) (9)
Jl

where e. and e-. denote the total potential energy for an atom located

in the £'th surface layer (from the top) and of an atom located in the bulk

of the system, respectively. M is the total number of the surface layers

considered in the calculation.

The cut-off radius, R , was taken to be approximately 5r«, in all

cases. In the calculations of e~ (the energy per atom in the bulk) the

stability condition for the crystal was taken into account by assuming:

U0)

with V denoting the total volume. For different Z, the values of e~

were calculated considering eq. (6) based on the condition imposed by

18



eq. (10). This approach has been employed in reference [5] in calculating

stabilities of ideal crystals.

Results and Discussions:

In numerical calculations, the units for the energy and distances were

reduced by e and rn (of eq. (2)), respectively. For the multilayer

relaxation procedure the surface and bulk energies (i.e., e. and eQ) were

calculated for different Z values ranging from 0.0 to 0.4. Three dif-

ferent surface planes (100), (110) and (111) for an fee crystal were in-

cluded in the calculations. Relaxations were performed for the top-most

five surface layers by minimizing the surface energy a of eq. (9) with

respect to the positions of the atomic layers. In this minimization pro-

cedure, for every Z value, the bulk energy eQ was calculated consider-

ing eqs. (6) and (10), simultaneously. The minimization involves a layer-

by-layer relaxation which was carried out by varying the positions of the'

layers only in the perpendicular direction (z-direction). However, atomic

arrangements within each layer (i.e., x-y planes) were left unaltered.

In Fig. 1, the energies calculated for three different surface

structures and for the bulk were plotted versus the Z value. For all

three cases, the surface energies were found to be monotonically decreasing

functions of Z. The (111) surface has the lowest while the (110) exhibits

the highest surface energy, as anticipated. On the other hand, the bulk

energy e,. (the lowest curve) displays an opposite trend (i.e., e«

increases with Z). This curve reflects structural characteristics of an

fee crystal and depends only on the atomic configurations of the system

.15].
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Calculated results for the multilayer relaxation of (110), (100) and

(111) index planes are shown in Figs. 2a, 2b and 2c, respectively, where

percentage variations in the interlayer spacings <*.», d2- and d», were

plotted versus Z values. The most dramatic relaxation took place for the

(110) surface. For Z < 0.1, all three interlayer spacings of the (110)

surface were found to be larger than the bulk value. On the other hand,

for Z > 0.1, d-2 and d,, become progressively smaller than the bulk

interlayer spacing, while the d-o continues to expand (see Fig. 2a). The

d,y exhibits the largest variation among all. A relatively smaller relax-

ation took place for the (100) surface. Up to Z s: 0.2 all three interlayer

spacings remain larger than the corresponding bulk value. For Z > 0.2,

the d,~ exhibits some contraction, while the variations in the dp, an^

d~, with respect to the bulk value remain negligibly small (see Fig. 2b).

For the (111) surface, we found the smallest relaxation; however, the vari-

ation in the d,,, still displays a similar trend as in (110) and (100)

cases. Up to Z ~ 0.3, again all three interlayer spacings were found to be

somewhat larger than the bulk value. In this case, percentage variations

in d2o and d.,, for z > 0.3 are negligible. Only the d,~ exhibits a

small contraction for Z values larger than 0.3 (see Fig. 2c).

The quantity Q which is defined as |o/e| is a useful property and

can be regarded as the "relative" surface energy [36]. Figure 3 shows the

values of Q plotted versus Z for (110), (100) and (111) surface planes.

The overall trend is similar to the variation of 0 in Fig. 1. The (111)

plane remains as the energetically most favorable surface, consistently;

and (110) is the least stable one bearing the highest surface energy.

Values of Q calculated for Z = 0 (which is a special case in our

20



approach) are in good agreement with results reported by Benson and Claxton

[36].

Results obtained in this multilayer relaxation calculation (for the

low index planes of fee crystals) are in good qualitative agreement with

recent experimental findings [23-31]. For the Z = 0.3 case, the calcu-

lated percentage variations in d.2, d,, and d~, for the (110) plane

were found to be -9.98, +5.52 and -1.81, respectively; and, for the (100)

plane, -1.63, -0.00 and +0.02, respectively. For comparison, Davis and

Noonan [23] using a LEED technique obtained Ad.- = -10.0 ± 2.5% and

Ad23 = 0.0 ± 2.5% for the (110) surface; and AdJ2 = -1.1 ± 0.4% and

Ad,,- = +1.7 ± 0.6% for the (100) plane of copper. In another study based

on a High Energy Ion Scattering experiment, I. Stensgaard et al. [27]

obtained AdJ2 = -5.3 ± 1.6% and Ad£3 = +3.3 ± 1.6% for the Cu (110)

surface. Furthermore, studies of the Cu (110) surface, which have been

carried out by Adams et al. [30] based on LEED measurements, produced

Ad,2 = -8.5% and Ad2~
 = 2.3%. In general, we found a very small surface

relaxation for the (111) plane. This conclusion is well supported by

various experimental reports on the (111) surfaces [29,27]. Another

comparison with experiments is possible for the surface energy of copper.

The experimental value of 6 (surface energy per atom/absolute cohesive

energy per atom) is 0.172 [37]. Our multilayer relaxation calculations for

Z = 0.3 produced 9 = 0.185 which can be considered in fair agreement

with the above results for the (111) surface plane.

These comparisons indicate that, for the present potential energy

function, the best Z-value for Cu should be around 0.3. Calculated

.results also agree with the more recent experimental work by Andersen et

21



al. [29] for the multilayer relaxation of AA (110) surface. Furthermore,

our calculations support the multilayer relaxation results obtained by

Landman et al. using an electronic charge density method based on more

accurate quantum mechanical considerations. There, they also reached the

same conclusion: that the central two-body potentials alone are not suffi-

cient to describe the surface region properly [33,34].

However, care must be exercised in comparing these calculated multi-

layer relaxation results with experimental findings. The calculations of

the d..'s and of 9 require only the knowledge of m , n and Z param-

eters. If the absolute values of e», e~ and d.. are desired, e and

r~ are also needed. All these potential energy parameters must be deter-

mined from the physical properties of the materials under consideration.

The relationship between these potential energy parameters and the

crystal structure has been shown elsewhere [5]. The stability region of a

crystal structure depends on the values of m and n as well as Z. In

the present investigation we analyzed the dependence of the multilayer

relaxation on the value of Z, the three-body intensity parameter. How-

ever, we believe that an analysis of the effect of m and n values (of

the two-body potential) would be an interesting study.

Conclusions

The most significant outcome of the present investigation is the

understanding of the important effect exerted by the many-body forces on

the multilayer relaxations of surfaces. Consideration of the three-body

interactions corrects the shortcomings of pair potential models, and furn-

ishes relaxed surface configurations with varying interlayer spacings which

agree (at least qualitatively) with various experimental measurements.

22



For the low index surface planes of an fee crystal, the importance of

the multilayer relaxation increases as (111) •»• (100) •» (110); i.e., with

decreasing atomic density of the plane. The first interlayer spacing d.»

is found to be increasing for smaller three-body interaction intensities

(Z), but decreasing for systems with higher Z. The second layer spacing

d23 tends to increase monotonically with increasing Z on the (110)

surface, but decreases slightly on the other two surfaces. The percentage

variation in the do, is generally negligible, except for the (110) case

where it is noticeable and decreases with Z.

The potential energy employed in this study has a relatively simple

functional form; therefore, it may be used in lengthy computer simulation

calculations related to surfaces.

23



Figure Captions

Fig. 1 Change in energy per atom versus Z for different surfaces and at

bulk. Both quantities, energy and Z, are in reduced units.

Fig. 2 Percentage change in interlayer spacings for different surfaces as

a function of Z. Thick solid line, thin solid line, and dashed

line represent percentage changes in d,,,, d_~, and d~,

respectively.

Fig. 3 Ratio of the energy per atom at the surface to the absolute bulk

value, 0, for different surface planes as a function of Z.
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CHAPTER IV

Evaluation of Parameters

In order to calculate the total potential energy for a system of N

particles in a given configuration, the parameters (e, rn, m, n and Z) of

eqs. (2)-(5) must be known. By definition, these parameters are materials

constants and depend on the atomic species involved in the interaction.

For a crystalline system the total potential energy expressed by eq. (6)

may be simplified employing Lattice sum representations:

N e r r
r°^m A rr(V A l j. NZ T f,,\Ti Ln(-3—J A - m(-r-) A I + —Q T, (11)2! m-n L M ' m vd ' nj ,9 k

where d is the nearest neighbor distance in the crystal. The lattice sum

A's and T, are given by

I (f )* (12)
i ri

and

, (i + 3 cos e. • Cos e. • cos a)
V v ^~ 3

31 j k

These lattice sums are simply geometrical factors and only depend on

the crystal structure [5,7]. Table 1 tabulates calculated values of A.

for different A, along with the T, values for various crystal

28



geometries. In the evaluation of parameters we also used the stability

criterion which is given by:

(14,

where V denotes the total volume of the system. This relation is exact

only at T = 0°K. However, it has been always assumed that at relatively

lower temperatures the minimum of the $ with respect to V coincides

with the minimum of the free energy. Furthermore, the second derivative of

the energy is related to the bulk modulus by:

(15)
5V

For simplicity as well as for proper comparison of the results with

other Lennard-Jonesion calculations, in this project, generally, we con-

sidered that the exponents in the two-body potential function are m = 12

and n = 6. Now, with this assumption, the remaining three unknown param-

eters can be calculated from eqs. (11) through (15), using experimental

cohesive energy and the bulk modulus. However, in some cases, these non-

linear simultaneous equations cannot be solved. Therefore, for those

cases, we used either surface energy values or experimental small cluster

data for the fitting procedure.
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Table 1

Lattice Sums of the Mie Potential and the Axilrod-Teller
Potential for Various Structures (One Component System)

A4
A5
A6
A7
Ag

Ag

A10
All
A12
A13
A14
A15
A16
A17
A18
A19

0̂
\

ft

HCP

23.616

16.883

14.449

13.360

12.803

12.493

12.312

12.201

12.132

12.088

12.059

12.040

12.027

12.019

12.013

12.009

12.006

19.175

7200

FCC

25.5946

16.8807

14.4481

13.3590

12.8til9

12.4926

12.3113

12.2009

12.1319

12.0877

12.0590

12.0400

12.0274

12.0198

12.0130

12.0094

12.0063

19.1697

6912

BCC

21.1685

14.6913

12.2495

11.0539

10.3551

9.8945

9.5644

9.3132

9.1141

8.9518

8.8167

8.7030

8.6063

8.5236

8.4525

8.3914

8.3386

14.7719

8192

SC

15.485

10.333

8.3994

7.4669

6.9458

6.6289

6.4261

6.2923

6.2021

6.1406

6.0982

6.0688

6.0483

6.0339

6.0239

6.0168

6.0119

6.6138

8000

DIA

9.5795

6.2862

5.1153

4.5944

4.3310

4.1904

4.1110

4.0655

4.0389

4.0233

4.0140

4.0086

4.0051

4.0031

4.0019

4.0011

4.0007

1.6647

5832

GRAB

5.4351

3.8825

3.3895

3.1910

3.0993

3.0534

3.0294

3.0164

3.0092

3.0052

3.0030

3.0017

3.0010

3.0005

3.0003

3.0002

3.0001

0.1010

5040

T
Indicates the number of atoms which were considered to compute
the lattice sums.

For covalent materials such as Si, C and SiC we calculated the

parameters using eqs. (11) and (14), plus the small cluster data. The

calculated results are given in Table 2. In the rest of this report, those

parameters will be employed in various simulation calculations.
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Table 2

Constant Set in the Two- and Three-body Parts
for Si, C and SiC

m(Si,Si) = 12 n(Si,Si) = 6 csi =.3.228(eV) ' = 2.29505()

m(Si,C) = 12 n(Si,C) =6 te. r = 4.462(eV) r^i>C = 1.74(1)
Ol , Li U

UI \ \ ^ ,V>y — Lf. L l \ \ s t \ j J —

ZSi,Si,Si - 3991.7(eV

ZSi C C = 300'0(eV '

u

°Q
- A9)

°9
• A9)

C — — u . i.^.? j \c v / i. - —
,U U

zsi,si,c = 800-0(eV •

Zc c = 191.73(eV

°9
AO

°9
• AO

To investigate the applicability of these calculated parameters,

several tests were carried out.

Under normal conditions, silicon has a diamond cubic structure. Under

high pressures, however, it undergoes to a phase transformation. The high

pressure form of silicon has a tetragonal (3-tin structure. This struc-

tural transformation is accompanied by a large volume decrease (~22.7%).

First, a simulation calculation was performed to analyze this phase trans-

formation phenomena. For silicon we considered four different crystalline

structures (including diamond cubic, p-tin, fee and bee) and using the same

set of parameters we calculated the total energy as a function of the total

volume. This is shown in Fig. 1 which clearly indicates the energetically

most favorable structure is the diamond cubic. Under higher pressures

(i.e., for smaller volumes), the p-tin structure becomes energetically
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more stable. According to this calculation, other structures may become

stable at much higher pressures. The calculated change in volume for the

transformation is in good agreement with the experimental data.

Next, the melting process of silicon was simulated using again the

same set of parameters. A constant pressure Monte-Carlo calculation was

employed to simulate a silicon system which contained 64 atoms with

periodic boundary conditions in all three directions. For every incre-

mental temperature step .(from 300°-5000°k), the system was equilibrated

which was monitored by the variation of the total energy. In Fig. 2, the

total energy, relative volume and the bulk modulus values are plotted as a

function of the temperature. All three of these functions exhibit changes

of slope around T = 2000°K. Furthermore, calculated radial distribution

functions as well as trajectory plots of the particles indicate that the

melting takes place at ~2000°K. This is somewhat higher than the experi-

mental melting point of silicon, however, the ability for the potential

energy function to provide a proper volume decrease during the melting

process was considered as an important accomplishment.

Further checks for the adequacy of the parameter set involved also the

investigation with pure carbon. The potential energy function for C with

parameters tabulated in Table 1 can provide two closely spaced energy

levels for diamond and graphite. Calculated energies are somewhat larger

than the experimental values; however, the calculation predicts that the

lower lying state belongs to graphite. Also, for the case of SiC the

potential energy provides two almost degenerate energy states corresponding

to a and p forms of SiC, consistent with experimental data.
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Figure Captions

Fig. 1 Total energy curves for the four structures of Si as a function

of the atomic volume. Dashed line is the common tangent of the

energy curves for the diamond cubic and (3-tin structure (c/a =

0.546).

Fig. 2 (a) The total energy, (b) the volume and (c) the bulk modulus of

the system as a function of temperature at the equilibrium state.
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CHAPTER V

Simulation for Surface Properties

Detailed atomistic level information about clean solid surfces is very

important in the analysis of various surface processes. Calculation of

surface properties from interatomic potentials is an involved procedure due

to the fact that the role played by many-body forces at the surface region

is not negligible. For an accurate simulation calculation these many-body

effects must be accounted for properly [35]. In particular, for substances

like Si or SiC which were considered in this investigation, the many-

body interactions are shown to be very significant.

Surfaces were generated in the computer as abrupt discontinuities of

the crystalline bulk. To obtain relaxed (or reconstructed) surfaces, this

initial configuration was permitted to relax under the Monte-Carlo code.

In general, we applied periodic boundary conditions in two-directions

which provided an effectively infinite exposed surface in the desired

direction. Relaxation procedures were carried out for the top three to

five atomic layers (depending on the surface geometry). The rest of the

atoms in the system were fixed in their original lattice sites. However,

the fixed atoms contributed fully to the total energy calculation.

Si(100) Surface:

Calculations for Si(lOO) surface were performed at two different

temperatures 'employing a Monte-Carlo procedure. At T = 298°K the equi-

librated structure of Si(lOO) exhibited a c(2 x 2) reconstruction. As

.it is shown in Fig. 1, the atoms at the top layer tend to form pairs. This
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feature is quite similar to reconstructed models of Si(lOO) suggested by

various investigators [38-41], It is now accepted that the general

tendency in the structural reconstruction of the Si(100) surface is the

formation of dimers as originally suggested by Schlier and Farmworth [42].

More than one type of reconstruction patterns may coexist on Si(lOO)

surface (e.g., not only (2 x 1), but possibly c(4 x 2), p(2 x 2) and

c(2 x 2) superstructures as well). Our result c(2 x 2) represents one

bf these reconstruction models.

Atoms located in the second and third layers remained more or less

stationary. Interplanar spacings between the first and the second layers

displayed a contraction, while other interlayer spacings were affected only

marginally. Our calculated results for the interplanar relaxation are

quite consistent with results reported by Yin and Cohen [43] who employed

an ab initio self-consistent pseudopotential method.

The surface energy calculated from an equilibrated Si(lOO) surface

2
was found to be 1386 ergs/cm which is in good agreement with experimen-

tal data [37]. At low temperatures (T ~ 1°K) on the other hand, it was

found that the surfce structure after relaxation preserved its (1x1)

symmetry (i.e., no dimer formation was observed). However, the first

interlayer spacing for the equilibrated Si(lOO) surface exhibited a

contraction as in the previous case explained above.

In the second part of this chapter, statics calculations were per-

formed for the stress tensor components as well as the energetics and the

structure for the (111) surfaces of Si and SiC.

The major contribution to the stresses in a system of interacting

particles is the strain derivative of the potential energy. Since the PEF
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used is a sum of terms depending on only a few atoms at a time, the stress

is also. It is thus possible to define a potential and stress for each

atom in units of energy/atom. In the next section, these atomic quantities

are plotted using the corresponding atomic positions to present a qualita-

tive description of the highly non-homogeneous behavior of the surface or

defect.

A variety of excess energies and formation energies are reported in

the following section. They have been calculated using the general expres-

sion:

ET is the total energy for the simulation of N_ atoms with bulk energy

per atom <J>. C is a normalization factor, such as area or length. The

final term in eq. (16) subtracts all other appropriate total excess

energies. Thus, for example, the ledge excess, X, would be:

= I~ (ET ~ NT* ~

where y is the flat surface excess energy determined by a previous simu-

lation, A-, is the total exposed surface area in the simulation with a

ledge crossing it of total length LT. Of course, these excess energies

are not free energies, but internal energies. All of the results of the

next section are thus subject to modified interpretations depending on the

possible entropic effects for the "real" system.
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Silicon (111) Surface Properties:

1) Perfect Surface

When the diamond cubic lattice is terminated on a (111) plane, the

unrelaxed geometry is as shown in Fig. 2(a) and 2(b). The pairs of layers

(C-a), (A-b), or (B-c) are best considered as one "puckered" layer of

"upper" and "lower" atoms, designated by open and filled circles respec-

tively. The intra- and inter-layer spacings for the bulk are 6 = .7839

and A = 2.3516 A. The region enclosed by dashed lines in Fig. 2(b) is

the primitive two-dimensional surface unit cell.

If we take these perfect crystal positions as the initial positions,

then our relaxation calculations show a 27% contractin of the outermost

layer to 6, = 0.574, and a slight expansion of the other distances A,,

6_, A?; by 1.6, 1.4, and 0.05 percent respectively. The layers remain flat

and otherwise unreconstructed. Our calculation relaxed four puckered

2
layers of 50 atoms each (A,̂  = 319.25 A ) to a final total energy of

2
-1230.50 eV, yielding y = 1169 ergs/cm . Figure 2(c) shows the potential

energy distribution in the first four surface layers; Although the surface

energy is positive as it must be, notice that the potential energy of the

"lower" atoms in the first layer is actually more negative (more strongly

bonded) than atoms in the bulk due to the surface reconstruction.

Figure 2(d) shows the stress, T.., for the first four surface layers.

T., is the normal stress along the (Oil) direction (in the plane of the

surface), and was found to be identical to the normal stress along the

(211) direction. The surface is evidently in compression relative to the

bulk. If the total stress in the first two layers is assumed to be dis-

tributed over the region indicated in the figure, we can convert eV/atom to
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energy/volume, with the result that T,. = 61437 atm. We can draw two

immediate conclusions: (i) if the crystal is expanded for any reason

(thermal strain, substrate misfit, etc.). the surface excess energy will

decrease, and (ii) defects which generate local tensile fields will be

attracted to the surface.

2) Perfect Ledges:

There are two unequivalent high-density ledges which terminate

terrace layers on the (111) surface: the (211) and (2lT). If we con-

sider Fig. l(b) as a terrace, then these ledges are to the left and right

respectively. The dashed lines indicate the "broken bonds" along the

ledge. We have simulated both of these ledges separately. The periodic

boundary conditions were established such that the ledges were widely

spaced at 26.6 A (8 surface unit cells). After relaxation, the ledge

excess energies were found to be X _ = 0.30 eV/A and X — = 0.16 -
(211) (211)

eV/A.

One might initially expect that the (211) ledge would have a lower

ledge excess energy due to the fewer number of "broken bonds." However,

the (211) ledge undergoes a major reconstruction, in which alternative

pairs of ledge atoms form dimers as shown in Fig. 3(a), with a spacing of

2.33 A. It is this reconstruction which causes the (2ll) ledge to be

energetically favored over the (211). This result agrees qualitatively

with other theoretical calculations [44] and with cleavage experiments

[45].
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The energy and stress distributions around the lower energy (2ll)

ledge are shown in Fig. 3(c)-(e). The plots are of the quantities in

eV/atom for all the atoms on one (111) layer; starting from the right of

Fig. 3(b) at a ledge, moving left across the terrace, moving under the next

ledge, etc. There is a one-to-one correspondence between the positions of
\

the atoms in the indicated layer in Fig. 3(b) and the positions of the

peaks in the plots below it.

The potential energy distribution, Fig. 3(c), shows only a small

transition region as the layer passes under the ledges. The values for the

energy per atom halfway between the ledges agrees to within 0.3% with the

values from Fig. 2(c) for the perfect surface. From this, we might con-

clude that the ledges are not interacting at this spacing. However,

consider Fig. 3(d), the normal stress directed parallel to the ledge,

T . The dotted line indicates the value for the larger peak from Fig.

2(d). The ledges are thus interacting even at this large spacing, since

the stress does not achieve the perfect surface value. The ledges act to

decrease the compressive character of the upper surface in the ledge-

parallel direction; however, the overall effect is not as simply character-

ized. The most distinctive effect due to the ledge is the development of

the shear stress field, T , surrounding it, as seen in Fig. 3(e).xy

Several features should be emphasized. First, the reconstruction of

the ledge opens up large holes along it which may become favorable sites

for impurity adsorption. Second, the stresses, and in particular the shear

stress, indicate how the ledge may affect other defects in the system.
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3) Kink Site:

Investigation of the behavior of kink sites on the (2ll) ledge

has just begun. The kink site excess energy is 1.67 eV and it has only a

minor effect on the stress distributions around the ledge. It is important

to note that the "motion" of the kink site requires the addition of four

atoms, due to the dimer reconstruction of the ledge. The activation energy

for Si adatom attachment at the kink site will be strongly influenced by

this fact.

4) Adatoms and Surface Vacancies:

The two most likely adsorption sites for single Si adatoms on the

otherwise flat (111) surface are the three-fold coordinated sites [46].

The "cradle" site has a "lower" atom directly underneath it while the

"hole" site does not (see Fig. 4). The surface vacancy is created by

removing one "upper" .atom. The defect formation energy E as calculated

by eq. (16), can be considered as the energy change in the system using a

kink site (i.e., the bulk potential energy per atom) as a source or sink of

atoms, and is a measure of the stability of the surface to the formation of

these point defects.

The formation energies were determined for an effective surface defect

concentration of 2% (1 defect every 25 surface cells). The cradle, hole,

and vacancy energies are, respectively, 0.84, -0.31, and -1.19 eV. The

perfect surface thus lowers its energy by 1.50 eV in creating a hole/

vacancy pair, and no adjacent ledge is required as a source or sink of,

atoms. A further calculation showed a reduction to E. = -1.82 eV if the

hole and vacancy associate on adjacent surface sites (surface Frenkel
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pair). Our potential thus predicts that the (111) surface will spontane-

ously roughen, or reconstruct, to some equilibrium geometry of adatoms and

vacancies. This behavior provides a basis for the interpretation of the

(7x7) reconstruction pattern observed on the Si (111) surface by LEED

and STM experiments [46-48]. Further analysis of this effect is in

progress.

The surprising stability of the surface vacancy depends on two

effects. First, the vacancy generates tensile fields in the surrounding

lattice and is thus favored in the highly compressive region at the

surface. Even for the small concentration of defects used above, there was

an 85% reduction in the surface compression (relative to the flat surface)

for the vacancy, as compared to only a 6% increase in the surface compres-

sion for a hold adatom. The second effect is a strong reconstruction

around the vacancy as shown in Fig. 3. The lower atoms surrounding the

vacant site pull together in a configuration similar to the dimer recon-

struction on the (2lT) ledge. If we prohibit this reconstruction, the

vacancy formation energy becomes +2.68 eV, which is consistent with other

calculations for the unreconstructed surface vacancy energy [49].

B) Silicon Carbide (111) Surface Properties

Many of the calculations described above have also been performed for

the equivalent geometries on the (111) faces of SiC in the zincblend

structure. We will briefly summarize the results obtained.

The zincblend binary structure has two unequivalent (111) faces, which

in this case can be referred to as C-rich and Si-rich. The latter under-

2
goes only a 5% contraction of the first layer, leading to y = 2544 ergs/cm
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and T = 20170 atm. The C-rich face, however, develops an outer layer

2 -
contraction of 35% leading to y = 344 ergs/cm and i = -100619 atm.

The crystal growth properties of these two surfaces should thus be quite

different. This places enormous importance upon the initial nucleation

even for the SiC since a given heterogeneous substrate may favor one

orientation over the other.

Since the C-rich face is so much more stable, we have concentrated on

it. The (211) and (211). ledges on this face have excess energies of

0.50 and 0.96 eV/A respectively. Analysis of the geometry of the

(211) ledge shows that the dimer reconstruction is very minor compared

to the silicon case, thus the (211) ledge is more stable as expected from

the simple broken-bond argument. The stress distributions around the

(211) ledge are similar to the silicon (2lT) ledge as in Fig. 3(c-e),

except that the sign of the shear stress is reversed at all points.

The formation energy for carbon and silicon adatoms in the hole sites

on the C-rich face are -6.11 and +2.66 eV respectively, based upon the

individual bulk energies per atom in the SiC crystal of <j> = -9.995 eV
ol

and 4> = -7.6627 eV. The individual formation energies are somewhat

arbitrary, but they do indicate that the carbon is much more strongly

adsorbed onto the surface that the Si. The "smaller" carbon adatom is

drawn down almost to the same level as the other C atoms on the surface,

while the Si adatom remains approximately 1.3A above the surface.

Very useful qualitative insights concerning surface energetics and

surface processes can be gained from computer simulation studies using

two-body plus three-body PEF's. The behavior of the stress distributions

'around these same structural elements has been described. This is an
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especially useful tool for describing and predicting the overall growth

process in terms of the cooperative interactions of these basic structural

elements.

Several other features should be highlighted: 1) The Si (111)

surface is in compression. 2) The SiC (111) C-rich face is in compression

while the Si-rich face is in tension. 3) The Si (111) surface should

reconstruct to some equilibrium configuration of surface Frenkel pairs.

4) The (211) ledge on the SiC (111) C-rich surface is the most stable.

5) The (2lT) ledge on the Si (111) surface is the most stable due to

dimer reconstruction. 6) Both ledges develop well-defined shear stress

fields underneath them.
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Figure Captions

Fig. 1 Relaxed configuration of the Si (100) surface calculated at

T = 298°K.

Fig. 2 (a) Side, and (b) top view of (111) surface of silicon.

(c) Potential, and (d) surface stress distributions for layers as

labeled in (a).

Fig. 3 Properties of (2ll) ledge on Si (111) surface, (a) Dimer

reconstruction, (b) Layer of atoms whose (c) potential, and (d-e)

stresses are shown directly below. All quantities are in units of

(eV/atom).

Fig. A Relaxed equilibrium geometry of surface vacancy. Also shown are

the cradle (.̂s) and hole (4 ) adatom adsorption sites.
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Top view of the unrelaxed Si(lOO) surface

Top Tiew of the relaxed Si(lOO) surface

FIGURE 1
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CHAPTER VI

Atomistic Modeling for Slip Formation

The mechanical behavior of materials can be specified by macroscopic

theories on the basis of a few material constants that provide an accurate

description for the responses of materials to forces. However, these

theories, for example, do not provide a microscopic level of understanding

of the basic mechanisms involved in plastic deformation. In general, the

theories of strength of materials, elasticity and plasticity lose much of

their power when the structure of a material becomes an important consider-

ation and the material can no longer be considered a homogeneous medium

[50].

The relationship between mechanical behavior and microscopic structure

of materials is very important. When mechanical behavior is understood in

terms of microscopic processes, it is often possible to improve the mechan-

ical properties of a material. A microscopic description of materials, as

opposed to macroscopic theories, cannot be adequately defined by using a

few material constants. Instead, the system must be described in terms of

interatomic forces and the coordinates of the particles which constitute

the material.

Several studies based on the computer simulation of the mechanical

behavior of materials exist. These studies have provided a better under-

standing of various mechanisms (diffusion, crack propagation, dislocation

motion and plastic flow) [51,52] at the atomistic level.

Material failure is generally caused by fracture which follows yield-

ing or plastic deformation. Slip is the simplest and the most common
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example of plastic flow encountered prior to the ductile fracture of

materials. In this investigation the effect of a uniaxial load exerted on

a two-dimensional microscopic slab was analyzed.

The system contained 400 or more particles. Each, particle was treated

discretely. All particle neighbors up to 3.5r_ were included in the

energy force calculations. This procedure ensures that all neighbors up to

the fifth-nearest neighbor will be included in the calculations. In the

calculation procedure, periodic boundary conditions were not employed.

This allowed us to examine the surface region reconstruction and the

formation of edge dislocations during the elongation process.

Initially the system was generated in a rectangular shape in its

equilibrium configuration. Then the system was elongated in a step-wise

fashion by imposing a uniaxial load in small increments. After each incre-

mental elongation, the system was allowed to equilibrate fully during a

relaxation period. All the mobile particles were fully equilibrated after

every incremental elongation by using a force minimization technique. The

force acting on each particle was calculated; the particle was then moved

in the force direction until the resultant force acting on it became

virtually zero. This procedure was repeated sequentially for each moving

particle up to the complete equilibration.

The discrete model used in this investigation produced results that

are consistent with those from macroscopic theory. The results herein

indicate that slips, which are known to be the simplest type of plastic

deformation in crystalline bodies, occur predominantly on rows with a

higher density of atoms (along the close-packed rows). In addition, the

calculations for perfect two-dimensional triangular crystals with uniaxial
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loads imposed in the [Oil], [112] and [514] directions showed that

the rule of maximum resolved shear was observed [50]. These simulation

results as expected are a confirmation of the macroscopic theories and

illustrate the involvement of dislocations in the slip formation process.

In all cases studied, the system with point defects experienced slip

formation at smaller strains than the corresponding perfect crystals.

Vacancies located near the surface moved to the surface before the slip

occurred. However, vacancies in the interior regions moved to the surface

during the slip process.

The details of this static simulation calculation were published

recently (see reference [53]).

To analyze the process of slip formation in "real time," in addition

to the static approach described above, we also made use of a molecular

dynamics technique. A similar model was taken into consideration and the

tensile load on the system was generated in small incremental elongations.

However, in this case, the system was equilibrated with a dynamic code at a

finite temperature. The results obtained in this investigation were found

to be basically similar to those obtained by the static method (except for

a small temperature effect). This dynamic simulation provided some addit-

ional information about the involvement of dislocations in the slip forma-

tion process and its time dependent characteristics.
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CHAPTER VTI

Molecular Dynamics Calculations for Crack Propagation

In this investigation we analyzed the process of crack propagation in

two-dimensional lattices using a molecular dynamics technique. Simulation

calculations were carried out considering systems containing approximately

2400 discrete particles interacting via two-body potentials. In addition

to energetics, forces and instantaneous position vectors, we also calcu-

lated stress components for every particle in the system. General char-

acteristics of the model considered in this study are basically similar to

the one used in the previous chapter for the slip formation calculations.

Simulations for two-dimensional systems are relatively easier to

analyze than results for three-dimensional systems. First of all, 2D

systems contain a smaller number of particles and, therefore, require less

computer time. Results can be represented by simple 2D plots and problems

arising due to the multi-particle character of the system are easily

identifiable. Thus, the analysis of the 2D system provides considerable

information not only about the microscopic nature of the crack growth

phenomenon, but also provides some knowledge about "how to interpret the

simulation results." The question of the credibility of these 2D results,

of course, remains unanswered. At this stage, it is not known how to

extrapolate results obtained from a 2D simulation to a 3D domain. However,

the results obtained in this study together with several other reports

[54,55] in the literature indicate that 2D systems, in most cases, do

exhibit characteristics similar to 3D systems.
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Atomistic level analysis of the crack propagation process using

computer simulation techniques has been the subject of several earlier

investigations. In the literature we could find only a few reports

relevant to the study carried out in this investigation. In the report by

Ashurst and Hoover [54], the fracture phenomenon was investigated based on

a truncated Hook's law force. They have found that, even with this very

simplistic force law, their static simulation furnished results for energy,

entropy, stress concentration and crack structure all to be consistent with

expectations from macroscopic elastic theory.

The other relevant and more recent study was reported by Dienes and

Paskin [55]. In this modeling study they also considered a 2D triangular

lattice with particles interacting via the Lennard-Jones function. A crack

has been introduced in the interior of a pre-stressed sample. The crack

was initiated by "cutting" the bonds between a given number of atoms at the

central portion of the sample. The interatomic potential was artifically

set to zero between these atoms. According to their report, the condition

would correspond to the insertion of a. very thin knife to create the

crack. Furthermore, in the energy and force calculations, they only

considered nearest neighbor interactions (by taking R =1.6 r̂ ). In

their model, the crack was aligned parallel to close-packed rows and

displayed a linear path in its propagation. Finally, they found that their

results are quantitatively good at the early stages of the propagation

process.

The main objective of this study is to investigate the crack propaga-

tion phenomenon at an atomistic level to understand and resolve various

mechanism involved in a crack tip process. In the first part of this
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simulation study (to test the system under consideration) we calculated the

stress-strain characteristics of a perfect two-dimensional lattice at a

finite temperature. This calculation was carried out primarily for

comparison with the results obtained in the second part of the study where

calculations were performed for systems with pre-existing cracks.

(i) Perfect Lattice:

As a perfect 2D lattice, the basal plane of an hep lattice was

taken into consideration. A system of 2400 particles in a rectangular

shape (80 x 30) was first generated in static equlibrium. A tensile load

was applied in the [112] direction, which is the close-packed direction.

This direction was also chosen as the x-direction in our cartesian

coordinate system. The load was imposed in small incremental strains (in

this case elongations) of 0.01. This was performed uniformly throughout

the system by factorizing all the x-components of the position vectors

describing the system. In the x-direction, periodic boundary conditions

(PBC) were applied to provide continuity for the system (in the tensile

direction), and also to furnish two free surfaces in the y-direction. In

a general sense, the imposed PBC provides the desired tensile strain on the

system.

The system was relaxed after every incremental strain by a molecular

dynamics code. A cut-off radius, R , of 2.86 TQ was considered for

the energy and force calculations. This R is between the fourth andcut

fifth neighboring shells surrounding the central atom and provides approxi-

mately 30 neighbors. The reduced time step was taken as 0.01 and the

_reduced temperature was T* = 0.02 (to compare with real systems; e.g., for

copper these represent 2.5E-15 seconds and 100°K, respectively).
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For every strain value, the stress components of particles were

estimated as derivatives of the potential energy per particle. The

interaction energy for a particle i was calculated as:

M

j
<J>± = Z'uCr) (18)

where M is the total number of neighbors of atom i and r.. denotes

the distance between particles i and j. To represent the pair inter-

actions we employed the Lennard-Jones function:

..) = e[(-)- 2(_)] (19)
J ij ij

with e and r_ denoting the energy and the internuclear distance,

respectively, at equilibrium.

For each particle the stress components were calculated considering

Lagrange strain parameters. For example, the stress component, for a

particle i, in the x-direction is given by:

6e rO 12 rO
"W St u L V w / *• T* y j \ Y > f

** 30 j rij rij rij

where aQ denotes the area per particle and x. is the x-component of

the position vector for the particle i.

The calculated stress-strain curve for the perfect lattice case is

shown in Fig. 1, up to e = 0.09.
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(ii) 2D Lattice with an Existing Crack

A lattice with an initial surface crack was generated by removing

9 particles from the surface region of a perfect lattice (see Fig. 2).
/

This system, now with an existing surface crack, was elongated and relaxed

by the molecular dynamics code in a similar way explained above for the

perfect case. First, the effect of the temperature on the stress-strain

curve was analyzed up to e = 0.03. Figure 3 shows two curves, dotted and

solid, representing the stress-strain curves for T* = 0.1 and T* = 0.02,

respectively. The shift in the dotted curve (high temperature curve) is

mainly due to the thermal expansion. For lower strain values, these curves

represent fully equilibrated systems. However, for strains higher than

0.02, systems may require additional relaxation times to equilibrate

completely. The difficulty involved in attaining the equilibrium is mainly

due to large fluctuations displayed by the stress values calculated as

derivatives of the energy. At this stage, we believe that the general

trend exhibited by these two curves is sufficiently accurate for the

present investigation. Any further incremental elongations (in addition to

e = 0.03) cause the crack to propagate. Determination of the critical

strain, i.e. , the strain at which the crack first starts to propagate, is

difficult to assess. For this purpose we performed three separate runs

with three different pre-strained systems, namely with e = 0.03, e = 0.035

and e = 0.04, all at T* = 0.02. The 2D lattice with the surface crack

was strained in one single step from its original length up to 3.0, 3.5 and

4.0% elongations. In the case of e = 0.03, the crack did not exhibit any

growth and the overall configuration of the systems remained unchanged up

to 3500 time steps. However, for both e = 0.035 and 0.04 cases, the
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propagation of the crack took place. In these prestrained cases, we

simulated the system under nonequilibrium isothermal conditions. For the

e = 0.035 case, the crack growth first initiated after 1000 iteration

steps. Figure 4 displays the stages of this relaxation process up to 3200

iterations, at which the system reached almost to an equilibrium state.

The darker circles in the figures represent particles with higher

stresses. For the e = 0.04 case, on the other hand, the crack propagated

much earlier (obviusly because of the high strain imposed initially). The

crack started growing first at the 500th iteration step and the system

attained an equilibrium state at approximately 2400 iteration. The stages

of this propagation process are shown in Fig. 5. Again, the darker circles

display particles with higher stresses. In both cases, the particles at

the crack tip exhibited high stresses consistently. Furthermore, the crack

propagated along the close-packed rows of the lattice and, at the same

time, tried to remain perpendicular to the applied load by choosing a zig

zag path. These behaviors are very much consistent with experiments and

theories based on macroscopic considerations and, therefore, indicate the

adequacy of the present atomistic level simulation procedure. The relaxa-

tion of the system can be' followed in Fig. 6 where the average stress is

plotted versus the iteration steps. The oscillatory behavior of this curve

is a temperature effect mainly due to vibrational motions displayed by

individual particles in the system. From the snapshops shown in Fig. 5, we

also calculated the velocity of the crack propagation. The curve in Fig. 7

represents the variation in the crack propagation velocity as a function of

the calculated average stress. The upper range of this curve is near the

velocity of sound propagation. This is expected according to a report by

Ashurst and Hoover [54].
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Figure Captions

Fig. 1 Stress-strain curve for the perfect lattice.

Fig. 2 Two dimensional lattice with an existing surface crack.

Fig. 3 Temperature effect on the stress-strain curve.

Fig. A Snapshots for the crack propagation with e = 0.035.

Fig. 5 Snapshots for the crack propagation with e = 0.040.

Fig. 6 Variation of the averaged stress as a function of time steps.

Fig. 7 Crack propagation velocity plotted versus the averaged stress,
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128.2 149.9 171.6 193.3 215

65

c
O

. (J.

o

0

O
O

co



ORIGINAL PAGE IS:.
OF POOR QUALITY

63. H

41.4H

19.7H

62. H

40.4H

18.7H

f f rVr t ' iVyT ' • ' " ' • • i'Vrrrryr^frA*jrry

^^^^^S^tf^^

19.7 41.4 63.1 84.8 106.5 128.2 149.9 171.6 193.3 215

O
o
0

^

o
0

62.1-

40.4-

18.7-

co

w
OSg

o
o

-3 18.7 40.4 62.1 83.8 105.5 1-27.2-148.9 170.6 192.3 214

62. H

18.7 40.4 62.1 83.8 105.5 127.2 148.9 170.6 192.3 214



ORIGINAL PA&E IS
OF. POOR QUALITY

52. H

40. 4 H

18.7H

"I 1 1 1 1 c**~i 1 1 1 1
18.7 40.4 62.1 83.8 105.5 127.2 148.9 170.B 192.3 2M

Y

61.H
*?T>TWrFzrL£j&jyttxtt'Jj,l&-lAl<?

17.7 39.4 81.1 82.8 104.5 126.2 147.9 169.6 191.3 213

i 1 1 r~~"—i 1 1 1
17.7 39.4 61.1 82.8 104.5 126.2 147.9 169.6 191.3. 213

y

67



•ib-3
•Q <
*C =>
CL O

-. .-a

42.44
cc

20.7

-1

TgnQnTf CiXiXiaX^XOXiXiXtXPQOC^55
L-S.r'.-WWS.A .^i .*•.-* fr*y*.,'.,'M'., • » . I • I I t T'T " V
TlTil TT I I M-VOWy1,- J-1"!.*,!!.1 ,\*JT.

oocxrJXa13,
•vwT'T'Y'ryi-'r'rri t'^'rr? rri T rT

^*y^-*LAt̂ «^^ t̂*»*y*Y*YS*TN^^ '̂T '̂̂ ''̂ ^^*^v
~T I TJ7T TTT T T_I TrTT 1^

X xc
S3

1AAj>y>'JvvVnry»^s^VSr.f^*y*fcii"i3rii^7rjAJ,I,1-\I.:L,IATAyKfA-A-AYSp'̂ TV

Ax6xO&>pXtXiXCXOypsWffiwrM^^rixizXTX-XXjJJ ' ' A1?.1 \IuI'T'.T T7/»IuTuTiI»ViI

iXCOCOXCXX^wwCff'??^^
...,., .r: nyjC^XOO^SpOO^^
TXV-.1-1'-1 ' " .I.-,-'.I.I.I.I.I.TIIII.IIT : T^,*.* I.1rrrr DXpcaxxxxxx? :̂ixfxxpcw^^" iX£Cu^^Tr>H^Xi.w£.'^^*.COWvt

SS5a^55xfeS6?
ixt XX. Xt nxixsxt•cc^x*

XiXC

xz
coxtIXCXxccccz

ccc?

OXOX? S
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S??????????WW?P^̂

-1

63.4-

41.6-

19.8-

v

^^^^^^^^^^^&

T^f~r~&&ZgKU-A.TTi.i.;.* -̂̂ ^ ,̂Aj

SJC

.̂ i jujUyV-JTV'-^1-1' s-.VrTT^?JJU^XJ^XL^-^ljyry ^^^c^^^J^^^fff^^fi^'i^^ff^^^L
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