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REALISTIC AIRCRAFT 

Reese L •. Sorenson 
NASA funes Research Center 
Moffett Field, California 

SUMMARY 

An elliptic method for generating composite grids about 
realistic aircraft is presented. A body-conforming grid is 
first generated about the entire aircraft by the solution of 
Poisson's differential equation. This grid has relatively 
coarse spacing, and it covers the entire physical domain: At 
boundary surfaces, cell size is controlled and cell skewness 
is neaJrly eliminated by inhomogeneous terms, which are found 
automatically by the program. Certain regions of the grid in 
which !high gradients are expected, and which map into rec­
tangular solids in the computational domain, are then desig­
nated for zonal refinement. Spacing in the zonal grids is 
reduced by adding points with a simple, algebraic scheme. 
Details of the grid-generation method are presented along with 
results of the present appl.ication, a wing/body configuration 
based on the F-16 fighter aircraft. 

1. INTRODUCTION 

Of the several factors pacing the development of 
three-dimensional computational fluid dynamic (CFD) modeling 
of flows about realistic aircraft shapes, generating the grid 
is probably the most limiting [1]. The problem is how to have 
the grid points dense enough to provide adequate resolution of 
flow variables in regions of high gradients, while also limit­
ing the total number of points so that the program will fit in 
the computer and run in a reasonable length of time. When the 
difficulty of selecting a grid topology appropriate to today's 
complex aircraft designs is added to the need for the grid to 
not be too skewed, a formidable challenge is seen. 



Dlviding the flow fIelJd into zones, and so,lving for the 
f~ow concurrently in each of the different zones, is an 
approach to these problems that has' been effective in several 
recent works' [2-8]. The' advantages of this: approa,ch are sev­
eral. One is that each zone can be topolog;ically: s:imple, even 
though complex aircraft shapes can be: treated. Generating 
grids for simple zones: is relatively easy, and implementing: 
the flow solver in such zones is straightforward. Another 
advantage of this approach is that d:ifferent flow-modeling, 
equations can be used in d:ifferent zones" a's' appropriate. For 
example, viscous effects can be mode'led using the 
Navier-Stokes equations at no-slip body surface's, while the 
Euler or, full-potential equations can be used in the fa,r 
field. Another advantage is that the compute'r storage capa­
bility needs to be equal only to the requirements of the larg­
est zone, rather than to meet the needs of' the entire problem 
at once. 

The present work is a techniqae for generating zonal 
grids about complex and realistlc aircraft shapes [9]. It 
consists first of constructing a,COarse, body-conforming, 
global grid filling the' entire flow field. Then fine zonal 
grids are constructed in' regions which are rectangular in the 
computational domain" and roughly, corre'spondi to regions in the 
physical domain in which high gradients in the flow-field 
var iables are' expected'r In though g(eneratfng the coarse, gr id 
about a modern fighter airplane is difffeult:" the benefit of 
this approach is that the smaller zonal grids, are' found by 
s imply subdividing the' c,oa1?se-grfd: intervals,. This is done tn 
a simple and direct algetn'a,lc' way. Furthermor'e" whea flow,­
sol ver results reqlil'ire an adJus:tmen:t to the s'iz'e, 10:catiol'il, or 
resolution of the, fine' zOFla'l gr"'iig:s, the adsJustment is usually 
accomplished without any modification to the coarse grid" and 
with simple changes to the' subdivision wh'ich produces the 
zonal gr ids,. 

2. GENERATION OF THE COARSE GLOBAL GRID: 

The coa,rse global gr id, is g,enerated: \!ls,ing, a 
three-dimensional extensiOFl of the widely distributed" 
two-dimensional, airfoil grid-generator program: called 
GRAPE( 1) [10, 11 ];. This extension to: three-d'imensions has 
already been done for:' an eIllpti.cal topology [1~]. The; 

(l)The acronym is "GRids about ~lrfolls ustng Poisson's 
§quation." 
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present work represents an extension to cylindrical topology, 
although the grid points are located by their Cartesian coor­
dinates x,y,z. The computational variables are as seen in 
Fig. 1. 

---L-r-----. 

z 

tL, 
Fig. 1 Generic Airplane Showing Computational Variables in 

Cylindrical Topology_ 

It is required that the mapping between t,n,t and 
;~ ,y, z satisfy the Poisson equations 

txx + tyy + E,;:zz = P(t,n,r;) 

nxx + n + I1zz = Q(E,;,n,t} yy 

txx + tyy + /;zz = R(E,;,n,l;} 

( 1 a) 

(lb) 

( lc) 

in which P,Q,R are defined below. Equations (la-c) are 
solved numerically in the uniform transformed space [13-15] as 

+ + + + + 
a 11 rE;E; + a22r nn + Q 33rl;I; + 2(a 12rE;n + a13r E;1; 

+ 2 + + + 
(2a) + a23r nl;} = -J (prE; + Qr + Rr I; ) n 

'where 

t = [~] • 

3 
aij =L: YmiYmj (2b,c) 

m=l 

Yij is the ijth cofactor of the matrix M 
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(2d) 

and the Jacobian J is the determinant of M. 

2.1 Controlling cell size and skewness on a typical boundary 
surface 

Zonal grids are constructed by a simple subdivision of 
grid intervals in rectangular subregions of the coarse grid. 
While this method has many benefits, its efficacy depends 
critically upon whether or not the coarse grid is well~behaved 
at the boundaries. The meaning of "well-behaved" in this 
context is illustrated in Fig. 2. This figure shows a sketch 
of a grid cell that is tangent to a typical boundary surface, 

+ 
here the 1; = 0 boundary surface. Since the vector r in 
Eq. (2) simply gives the location of a typical point, 

Fig. 2 Three Geometric Conditions Imposed at Typical Boundary 
Surface 1; = O. 

derivatives of r could be thought of as unit-normal vectors 
in the indicated directions. For the subject grid cell to be 
well behaved, it is required that (1) the unit-normal vector 
r be orthogonal to r, (2) r be orthogonal to r, and 
(~) the height of the g~id cell,nhere called S, be con! 
trolled. These three geometric constraints can be stated 
algebraically as 
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+ + 0 (3a) rE; · r = t 
+ + 

0 (3b) r · r = n t 
+ + S2 (3c) r · r = t t 

Equations (3a-c) are side conditions which are added to the 
Poisson equations that generate the grid. 

Continuing with a treatment of the cells on the typical 
t = 0 boundary surface, the form chosen for the inhomogeneous 
term P is 

-a1l; 

P(E;,n,l;) = P1(E;,n)e (4) 

o and R are similar. Note that the exponential factor is one 
(1) at the t = 0 boundary, and that it deoreases rapidly 
toward zero as t increases toward the middle of the grid. 
Thus the effect of that clustering term is at a maximum at the 
boundary, and it decays rapidly toward the middle of the 
grid. As a result, the controlling effect on cell size and 
skewness is greatest at the boundary, and the control decays 
rapidly toward the middle of the grid. 

One view of the transfor'med Poisson equation, Eq. (2a), 
is that it is nothing more than a mass of derivatives on the 
left-hand side, and a linear combination of P, 0, and R on the 
right. Therefore, if numerical values could be obtained for 
all of the derivatives, a simple 3-by-3 linear system in P, 0, 
and R would result. Many of the derivatives required in 
Eq. (2a) can be obtained numerically from the fixed shape of 
the subject boundary (t = 0), and the distribution of points 
on it. More of those derivatives are obtained from the side 
conditions, Eq. (3a-c). The only derivatives not found are 
the second partial derivatives with respect to t. Those 
derivatives are found by differencing the grid at the current 
computational time step. 

The main computational loop for this method can be sum­
marizE!d in steps as follows: 

1. Difference the grid at the current; time step to 
obtain the derivatives. 

2. Combine those derivatives with all of the other 
derivatives, Which are fixed for all computational 
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time, and back-solve the transformed Poisson equa­
tions (2a) to get numerical values for P, Q, and R. 

3. Using those values for P, Q, and R take one numeri­
cal solution step toward finding the x,y,z. 

The above procedure is iterated to convergence. Thus the 
values for P, Q, and R which cause the grid to be well 
behaved at the subject t = 0 boundary are found automati­
cally as the solution for x,y,z proceeds. 

2.2 A more general derivation of the inhomogeneous terms 

The foregoing is a derivation of the inhomogeneous terms, 
and the resulting main solution loop, for the case wherein the 
grid cells tangent to one boundary surface, the ~ = 0 sur­
face, are controlled. However, it is generally not adequate, 
and control of the cells on several boundary surfaces is fre­
quently needed. Inhomogeneous terms such as those above, but 
affecting cells tangent to different boundary surfaces, can be 
superimposed. Such terms can be simply added together because 
their controlling effects decay rapidly toward zero with dis­
tance away from their respective boundaries. Thus there are 
few, if any, regions wherein their controlling effects would 
be in conflict. 

The inhomogeneous terms P, Q, and R are chosen to be 

P(F;,n,r;) = Pl + P2 ..- Pn + + PlO (5a) 

Q( F; , n, 1;) = Ql + Q2 + Qn + +QlO (5b) 

R(F;,n,r;) = rl + r2 + ••• + rn + •.. + rlO (5c) 

The first constituent term in P, Pl' is identical in form to 
what is seen in Eq. (4) 

(6a) 

The grid cells are controlled on the opposing r; = ~max 
boundary surface by the following term having similar form to 
Eq. (6a) 

(6b) 

Likewise, cells on the n = 0 and n = nmax boundaries are 
controlled by 
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P3 = P3(f;, I;)e 
-a3 11 

(6c) 

P4 = 
-a4(11 -11) 

P4(f;,I;)e max (6d) 

and cells on the f; = 0 and f; = f;max boundaries are con-
trolled by 

P5 = P5(11,I;)e 
-a5f; 

(6e) 

and 

P6 = 
( ) -a6(f.max-f;) 

P6 11,1; e (6f) 

Those six constituent terms together control grid cells 
on all six sides of the computational cube. However, that is 
not adequate for the present application, because of the pres­
ence of the wing in a slit. Two coordinate surfaces, which 
conform to the lower and upper surfaces of the wing, are coin­
cident everywhere in the planform plane off of the wing. Grid 
cells are controlled on the lower and upper surfaces of the 
wing by 

~ -a7(tw-t) if f; ~ f;w P7(11,I;)e 

0 if f; > f;w 
(6g) 

Pa = 

~ -as(t-t ) if pa(I1,I;)e w f; > f;w 

0 if f; < f;w 
(6h) 

in which f;w denotes not a derivative, but the value of f; 

corresponding to the double-stored wing slit. In addition, 
terms must be added to control the grid cells in front of and 
behind the wing (i.e., terms must be added to attract grid 
lines to the leading and trailing edges). Those terms need 
act only within the t = tw coordinate surface. Thus they 
can be a degenerate two-dimensional form of the constituent 
terms as seen above 

{ ( ) -a9( 0le-O) if 11 ~ 111e and f; = f;w P9 l; e 
P9 (61) 

0 if 11 > 1l1e or f; I. EW t () -a lO( "-Ote) if 11 ~ llte and f; = f;w PlO I; e 
PlO = (6J) 

0 if 11 < llte or t I. tw 
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It should be noted that the terms in Eqs. (61) and (6j) are 
identical in form to the terms used in the two-dimensional 
grid generator called GRAPE. 

The constituent terms Qn and rn of inhomogeneous 
terms Q and R are similar to the Pn illustrated in 
Eqs. (6a-j). The main iterative loop is the same as what is 
delineated above, except that in each pass, steps 1 and 2 must 
be performed at each surface represented by a constituent 
term. 

The coefficients an' bn , and cn in the constituent 
terms are positive constants. Values of 0.4 are typical. The 
point was made above that the clustering effect at each bound­
ary surface dissipates rapidly with increasing distance away 
from that surface. The coefficients an' bn , and cn deter­
mine the rate at which that control dissipates. Increasing 
their value causes the control to dissipate more rapidly, and 
decreasing their value causes the control to be propagated far 
out into the field. 

At the corners of the computational domain, or at the 
intersection of any two surfaces tangent to which cells are 
being controlled, problems can arise. It would be possible to 
have cell-height specifications for the two adjoining sides, 
combined with distributions of points on those boundary sur­
faces, which are mutually incompatible. This leads to a geo­
metric impossibility, and to mathematically "overspecified" 
boundary conditions. This, in turn, causes non convergence of 
the grid-generation equations. The solution to this problem 
is to locally increase the coefficients an' bn , and cn at 
the corners to make the controlling effects decay with extreme 
rapidity. This causes the grid at the intersection to be 
locally Laplacian (i.e., locally uncontrolled). 

After work with the present application it was determined 
that certain simplifications could be introduced. The present 
application is the construction of a grid, of cylindrical 
topology (Fig. 1), about a wing-body configuration based on 
the F~16 aircraft. The cylindrical axis is coincident with 
the long axis of·the body, and one family of grid lines wraps 
around the aircraft from bottom to top. The grid covers only 
one side of the aircraft, since bilateral symmetry is assumed 
(no yaw). The wing resides in a slit, a surface of constant 
~. It was found that there was no need to control grid cells 
on the inflow and outflow boundaries where n = 0 and 
n = nmax ' A completely adequate grid resulted by simply 
allowing the grid there to be uncontrolled (i.e., locally 
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Laplaci.an). Therefore, terms P3 and P4 were discarded, 
along ~Jith the corresponding q and r terms. Likewise, there 
was no need to control cells on the outer boundary 
/; = /;max. Thus, term P2 was also set to zero. In addition, 
there was no need to use the method above to control cells on 
the syrr~etry plane. A simple reflection-type boundary condi­
tion iSi applied there, with P5 and P6 set to zero. 

3. SUBDIVISION OF THE GLOBAL GRID INTO ZONES 

In regions of the flow field where high gradients are 
expected, zonal grids are constructed by the simple subdivi­
sion of the coarse grid intervals (see Ref. 2 for details). 
The domain of the zone is defined by choosing upper and lower 
limits on each of the three indices. This designates a region 
which i.s a rectangular solid In the computational space, but 
which can conform to body shapes in the physical space. 

Herein lies a reason why the coarse grid near boundaries 
must be! well-behaved, as discussed above. If the zone for 
refinement is to be a certain number of coarse cells high, 
wide, and long, then those measures 'of distance must have some 
consistency. If not, the physical boundaries of the zone are 
meaningless. 

After defining the boundaries of the zone, the zonal grid 
is assumed to consist of the points of the coarse grid within 
the zone, with extra points added to them by simply dividing 
the coarse grid intervals. In directions tangent to the sur­
face, those intervals are divided in halves, thirds, or quar­
ters, etc. In the direction normal to the surface, where 
viscous effects are prevalent, the coarse grid intervals are 
divided even further by a spline-fitting technique. Each of 
the x" y, and z is fitted as a function of the arc length, 
and then those spline fits are evaluated at arbitrarily 
decreasing intervals. By this method the minimum spacing in 
the dir'ection normal to the wing surface in the zonal grid 
(Le., the viscous spacing) can be reduced by orders of 
magnitude. 

Another need for a well-behaved coarse grid can be seen 
in the matter of the viscous spacing. If the viscous spacing 
over the entire wing surface 1s to be, for example, 0.001 
times the height of the coarse cells tangent to the surface, 
and if that measure is to have any meaning, then those coarse 
cells must be nearly equal in height. Growth in the boundary 
layer ean be accommodated by varying the viscous spacing over 
the wing surface. For the sarna reason, the coarse cells 
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tangent itO the surface must not be skewed. If the coarse grid 
lines in the direction which is ostensibly normal to the sur­
face are not near ,normal,but are instead highly skewed,then 
the true resultant viscous spacing will actually be far less 
than expected. In the above example, the viscous spacing is 
to ;be 0.001 times the "height" of the coarse cell. If those 
coarse grid 1 ines,supposedly normal to the surface, .wer,e 
instead skewedaE. 45°., then the true resulting viscous spacing 
would be 0.001/12., or aproximately 0.0001. 

The intervals in the coarse grid can be subdivided dlf­
ferently in each of the three dlrections. For instance., the 
intervals for some zone might be retained unchanged in one 
direction, halved in a second direction, and reduced to vis­
cous spacing i'n the third direction . Thus the zonal grids are 
closely tailored to the needs of the flow solver. The sizes 
·of the zones, and the degree to which the coarse grid inter­
vals are subdivided, determine the number of points in each 
zone. The number of points per zone is adJusted so that the 
flow-solver's memory requirements for each zone are within the 
computer's memory limitations. 

4. RESULTS 

The present method is applied to a wing/body configura­
tion based upon the F-16 fighter airplane.. The fuselage, 
including the canopy, the strakes, and the "shelf" aft of the 
main wing are fully .modeled [16]. The main wing and horizon­
tal tail are also fully modeled. The ventral inlet is fa·ired 
over,and the vertical tail, the ventral fins,andthemissile 
rails outhe wingtips have been deleted. A tapering sting of 
a circular cross section is added to the rear. Figure 3 is a 
"wire frame" figure, showing grid lines on the body and wings. 

Fig. 3a Front-Quarter View. 

Fig. 3 Grid Lines on Surface of Wing-Body Configuration Based 
on F-16. 
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Fig. 3b Rear-Quarter View. 

Fig. 3 Concluded. 

Figure 4 is a view of the fuselage and main wing ahead of 
the mid-chord, showing the coarse global grid wrapping around 
the body. The grid cells on the fuselage surface are nearly 
orthogonal. The grid spacing normal to the fuselage (I.e., 
the height of the cells) is a nearly constant 20 cm, based 
upon the length of the entire aircraft being approximately 
14 m. Likewise the cells on the wing surface are nearly 
orthogonal and are a nearly constant 10 cm high. The grid in 
the int.erior is smoothly varying, as is typical of a Laplacian 
grid. The outer boundary~ not shown here, is a cylinder. 

The wing/fuselage Juncture is a corner where two con­
trolled surfaces adjoin. As sometimes occurs, the grid cell 
height and skewness specifications, combined with the surface 
distributions, are inconsistent at the corner. This produces 
a mathematically overspecified problem, and leads to conver­
gence difficulties in the grid generator. The solution here 
is to locally increase the values of an' bn , and cn so as to 
make the grid locally Laplacian at the corner. 

Figure 5 is a plan form view. The wing and horizontal 
tail are embedded in a slit, or a "double-stored" surface. 
The two grid surfaces are coincident everywhere except on the 
wing and horizontal tail. There the two surfaces separate, 
one modeling the upper surface and one modeling the lower 
surfacE~. Outboard of the wing and horizontal tail the grid 
points are fixed, as though the wing extends outboard with 
zero thickness. This was found to be necessary to achieve 
reasonable behavior of grid lines Just outboard of the tip. 
This wing extension is considered to be permeable by the flow 
solver" but that permeability is irrelevant to the grid 
generator. 
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Fig. 4 Forebody and a Portion of a Streamwise-NormalGrid 
Surface at Mid-Chord. Outer Boundary Not Shown. 

In this particular case, the "chordwise" lines on the 
wing surface are seen to be somewhat Jagged. This figure, 
with its obvious error, was included to make the point that 
this grid generator is robust. The Jagged lines are the 
result of a minor problem with the body-fitting, which has 
since been corrected. It is the philosophy of this work, and 
of the GRAPE program which preceeded it, that body fitting is 
not part of the grid generation effort, and that the fitted 
body is an input to the grid generator. The fact that the 
grid generator did converge, and did generate a smooth grid 
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Fig. 5a EnUre Planform Surface. 

Fig. 5b Close-up of Wingtip Region. 

Fig. 5 P.lanform View. 
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despite the jagged body fitting, indicates that the grid 
generator is robust, and can generate a well-behaved grid 
about bodies which are truly non-smooth. 

Inhomogeneous terms P,Q,R were used to cluster points to 
the fuselage and to the wing's upper and lower surfaces. In 
addition, two-dimensional clustering terms, as in the grid­
generation program GRAPE, which cluster points to a boundary, 
were added in the planform surface to cluster points to the 
leading and trailing edges within that surface. 

Figure 6 shows an example of the third family of grid 
surfaces, namely those approximating cylinder~ in this cylin­
drical topology. It is a portion of the fifth such surface 
outward from the body, and passes through the wing at roughly 
mid-span. It can be seen here that the grid cell height is 
controlled and surface orthogonality is imposed at the wing's 
upper and lower surfaces. 

Fig. 6 A Portion of a Cylinder-Like Grid Surface, Shown 
Intersecting Wing at Mid-Span. 

In generating a grid about such an aircraft using cylin­
drical topology, a problem arises along the cylindrical axis, 
upstream of the nose. The grid generator requires derivatives 
with respect to the computational variable ~ which proceeds 
around the axis. But since the points which would be differ­
enced to find such derivatives are coincident, those deriva­
tives are undefined. A simple but effective solution was 
suggested by Dr. Joseph L. Steger of NASA Ames Research 
Center. The boundary conditions and initial conditions are 
first specified. A transformation is then applied in which 
the pOints on the axis are moved out along radial lines by a 
small increment, turning the axis into what Steger calls a 
"soda straw," as seen in Fig. 1. In this transformation, all 
points are located temorarily in the cylindrical coordinates 
p, z, and a where p is the radius in the x-z plane. Then 
the transformation is 
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P = P + Ap(Pmax - p)/Pma )[ 

for ~P being the radius of the soda straw, and Pmax being 
the radius of the outer boundary. Note that the outer bound­
ary points are undisturbed. This only applies to x-z coor­
dinate surfaces which intersect the axis upstream of the nose 
of the aircraft; surfaces which intersect the aircraft, 
instead, are left unchanged. The points p, z, and e are 
transformed back into x, y, and z coordinates, and the 
grid-generation equations are then numerically solved, using 
derivatives which do exist at the "straw." The inverse of the 
above transformation is then applied, giving points on the 
cylindrical axis again. 

Fig. 7a Nose of Aircraft, With Axis Ahead of It, and Part of 
an Axis-Normal Grid Surface. 

Fig. 7 Axis Singularity Treatment. 

The Poisson grid-generation equations, including the 
side-condition equations which determine the inhomogeneous 
terms, are solved by a point-successive-over-relaxation 
(Point·-SOR) technique. One··hundred iterations at approxi­
mately 1 sec of CPU time per iteration on a CRAY-XMP computer 
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Fig. 7b Nose of Aircraft, With Axis Expanded to "Soda Straw." 

Fig. 7 Concluded. 

were required to generate this 37,000-point, coarse global 
mesh. Point-SOR was chosen as the grid-generation solver for 
its ease of programming, and its inherent flexibility with 
respect to boundary conditions. No attempt was made to vec­
torize or otherwise speed up the solver. Recoding for 
speedup, possibly combined with a faster solver such as AD!, 
would surely effect a large reduction in CPU time. 

This coarse global grid is then divided into zones, as 
described above. Sixteen different zones for the entire 
wing/body are used, and the degree in which the coarse grid 
intervals are subdivided varies from unchanged spacing to 
viscous spacing. A total of approximately 300,000 points are 
used in all 16 zones. Since the zonal grids are constructed 
by simple analytic means, the computer time required to gener­
ate them is insignificant. Figure 8 is another plot like 
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Fig. 8 Streamwise-Normal Grid Surface Showing Zones. 

Fig. 4, but showing several of the zones. There are zonal 
grids with viscous spacing around the fuselage, at the upper 
and lower wing root, on the upper and lower wing surfaces, and 
outboard of the tip. Zonal grids with inviscid spacing are 
seen above and below the fuselage and wing. 

Flow-field solutions using mixed Euler/Navier-Stokes flow 
modeling have been obtained about a wing alone, and are 
reported in Ref. 2. The grid generation for that effort is a 
direct precursor to the present work, and indicates this 
method's utility. 

5. CONCLUSIONS 

A method for constructing zonal grids about realistic 
aircraft shapes for use in CFD simulations is developed. The 
method is workable for a variety of different flow-modeling 
equations, including those treating viscous effects. The 
method provides body-conforming grids with the smoothness for 

·which elliptic methods are known. The size and orthogonality 
of grld cells at boundaries and at other selected surfaces are 
easily controlled. With this method, it is especially easy to 
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construct and modify the zonal grids, once a coarse global 
grid is obtained. 

As shapes to be gridded become more realistic, and thus 
require more complex grid topology (i.e., as the computational 
domain deviates even more from the ideal cube, it becomes more 
difficult to make the global grid). That difficulty will 
ultimately require that the entire flow field be divided into 
several regions, with a coarse grid in each region generated 
as above. The present method's ability to control grid behav­
ior at boundary surfaces will alleviate any difficulty in 
patching those regional grids together. Then the joined 
coarse grids can be subdivided as above. As an example, work 
is presently under way to model the F-16 with the engine 
inlet. A regional grid will extend from the inlet to the 
engine compressor face. Such an approach makes the present 
method promising for even the most complex aircraft shapes. 

6. ACKNOWLEDGMENTS 

The author would like to thank Mr. Thomas A. Edwards of 
NASA Ames Research Center for his help in providing the 
surface-fitting of the F-16 aircraft; General Dynamics for 
their generosity in providing the basic data defining that 
aircraft's shape; Major Steven Reznick, USAF, for his help in 
subdividing the coarse grid into zones; and Dr. Joseph L. 
Steger of NASA Ames for his suggestion for treating the axis 
singularity. 

REFERENCES 
1. CHAPMAN, D.R. - 'Computational Aerodynamics: Review and 

Outlook'. AIAA Journal, 1979,11, 1293. 
2. HOLST, T.L., GUNDY, K.L., FLORES, J., and CHADERJIAN, 

N.M., KAYNAK, U., and THOMAS, S.D. - 'Numerical Solution 
of Transonic Wing Flows Using an Euler/Navier-Stokes 
Zonal Approach'. AIAA Paper 85-1640, 1985. 

3. ATTA, E.H. - 'Component Adaptive Grid Interfacing'. AIAA 
Paper 81-0382, 1981. 

4. ATTA, E.H. and VADYAK, J.A. - 'Grid Interfacing Zonal 
Algorithm for Three-Dimensional Transonic Flows about 
Aircraft Configurations'. AIAA Paper 82-1017, 1982. 

5. BENEK, J.A., STEGER, J.L., and DOUGHERTY, F.C. - 'A Flex­
ible Grid Embedding Technique with Application to the 
Eule~ Equations'. AIAA Paper 83-1944, 1983. 

6. HESSENIUS, K.A. and PULLIAM, T.H. - 'A Zonal Approach to 
Solution of the Euler Equations'. AIAA Paper 82-0969, 
1982. 

18 



7. RAI, M.M. - 'A Conservative Treatment of Zonal Boundaries 
for Euler Equation Calculations'. AIAA Paper 84-0164, 
1984. 

8. HESSENIUS, K.A. and RAI, M.M. - 'Applications of a Con­
servative Zonal Scheme to Transient and Geometrically 
Complex Problems'. AIAA Paper 84-1532, 1984. 

9. SORENSON, R.L .. - 'Three-Dimensional Elliptic Grid Gener­
ation About Fighter Aircraft for Zonal Finite-Difference 
Computations'. AIAA Paper 86-0429, 1986. 

10. SORENSON, R.L. - 'A Computer Program to Generate 
Two-Dimensional Grids about Airfoils and Other Shapes by 
the Use of Poisson's Equation'. NASA TM-81198, May 1980. 

11. STEGER, J.L. and SORENSON, R.L. - 'Automatic Mesh-Point 
Clustering Near a B9undary in Grid Generation with Ellip­
tic Partial Differeritial Equations'. J. Compo Phys., 
1979, 33, 405. 

12. SORENSON, R.L. and STEGER, J.L. - 'Grid Generation in 
Three Dimensions by Poisson Equations with Control of 
Cell Size and Skewness at Boundary Surfaces', ASME - FED 
,2" 1983, p. 181. 

13. MASTIN, C.W. and THOMPSON, J.F. - 'Transformations of 
Three-Dimensional Regions Onto Rectangular Regions by 
Elliptic Systems'. Nlmerische Mathematic, 1978, 29, 
397. 

14. THAMES, F.C. - 'Generation of Three-Dimensional 
Boundary-Fitted Coordinate Systems for Wing/Wing-Tip 
Geometries Using the Elliptic Solver Method', Numerical 
Grid Generation, Ed. Thompson, J.F., Elsevier Science, 
1982, p. 695. 

15. THOMAS, P.D. - 'Numerieal Generation of Composite Three 
Dimensional Grids by Quasilinear Elliptic Systems', 
Numerical Grid Generation, Ed. Thompson, J.F., Elsevier 
Science, 1982, p. 695. 

16. EDWARDS, T.A. - 'Definition and Verification of a Complex 
Aircraft for Aerodynamic Calculations'. AIAA paper 
86-0431, 1986. 

19 



1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. 

NASA TM-88240 
4. Title and Subtitle 5. Report Date 

ELLIPTIC GENERATION OF COMPOSITE THREE- March 1986 
DIMENSIONAL GRIDS ABOUT REALISTIC AIRCRAFT 6. Performing Organization Code 

7. Author(s) 8. Performing Organization Report No. 

Reese L. Sorenson A-86165 
10. Work Unit No. 

9. Performing Organization Name and Address 

Ames Research Center 11. Contract or Grant No. 

Moffett Field, CA 94035 
13. Type of Report and Period Covered 

12. Sponsoring Agency Name and Address 
Technical Memorandum National Aeronautics and Space Administration 

14. Sponsoring Agency Code 
Washington, D.C. 20546 

505-60 
15. Supplementary Notes 

Point of Contact: Reese L. Sorenson, Ames Research Center, M/S 202A-14 
Moffett Field, CA 94035 (415) 694-6747 or FTS 464-6747 

16. Abstract 

An elliptic method for generating composite grids about realistic 
aircraft is presented. A body-conforming grid is first generated about 
the entire aircraft by the solution of Poisson's differential equation. 
This grid has relatively coarse spacing, and it covers the entire physical 
domain. At bdundary surfaces, cell size is controlled and cell skewness 
is nearly eliminated by inhomogeneous terms, which are found automatically 
by the program. Certain regions of the grid in which high gradients are 
expected, and which map into rectangular solids in the computational 
domain, are then designated for zonal refinement. Spacing in the zonal 
grids is reduced by adding points with a simple, algebraic scheme. Details 
of the grid-generation method are presented along with results of the 
present application, a wing/body configuration based on the F-16 fighter 
aircraft. 

17. Key Words (Suggested by Author(s)) 18. Distribution Statement 

Grid Generation Unlimited 
Elliptic Solver 
Three-Dimensional Grids 

Subject Category - 01 

19. Security Oassif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price" 

Unclassified Unclassified 21 A02 

"For sale by the National Technical Information Service, Springfield, Virginia 22161 



End of Document 


