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R Intrcduction

The phenomenon of vortex breakdown is of considerable importance for flb‘ws unaer
critical conditions about delta wings. The leading edge vortices on the leeward side
of the wing can be termed slender until breakdown is about to occur. The
slenderness of the vortices is characterized by the ratio of the core radius R and
the length L of the undisturbed vortex, i.e. R/L<<1l. As long as the si2nderness
condition is satisfied, the equations of motion can be simplified considerably for
‘the description of the flow in the vortex. The integration of the simplified
equations is then possible for large Reynolds numbers. The breakdown itself must
be analysed by solving the full Navier-Stokes equation. With the slender vortex
approximation the overall computation time can be very much reduced, since the :
largest portion of the flow can be determined from the simplified equations, and
extremely fine resolution is only required for the breakdown region, where the full

Navier-Stokes equations must be employed.

The werk carried out under this contract is concerned with the formulation and
solution of the slender-vortex approximation and its numerical solution for
incompressible and compressible flow; with the initiation of experimental work and
the validation of the solution; and finally the prescription and determination of
permissable inflow conditions for the slender-vortex approximation. The results of

this analyses are presented in several publications (1}, {2), [3), [4]) ; copies

of the preprints and manuscripts are enclosed. -

o ey ot

Formulation of the Problem ‘ L

The slender-vortex approximation for compressible viscous flow was first formu-

[P RPN

- lated in Refs. 1] and [2]. Therein it was shown that the flow is basicly

e, .

governed by the local axial pressure gradient, which can be expressed through an
v - " integro-differential equation. According to this analysis the pressure gradient is
mriniy determined by the radial distributions of the circumferential velocity

€ e - e

component, and the temperature. It csuld be shown that a hot core tends to
stimulate breakdown and that a cold core delays it. The direct influence of the
compressibility is that the variable density tries to counteract the influence of

positive axial pressure gradients, thereby delaying breakdown.
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Permissable Inflow Conditions

The slenderness condition imposed on the flow does not permit one to prescribe
arbitrary inflow conditions, which are required for the integraticn of the simplified
equations of motion. The inflow conditions are given by a set of radial profiles for
the axial and circumferential velocity profiles, and the temperature. It was shown
in [1] and [2] that the inclination of the traces of the stream lines v/u in the
axial plane satisfiec a second-order nonlinear ordinary differential equation, to be
integrated in the radial direction. The coefficients of that equation are solely
determined by the infiow .conditions. Since the inclination of the traces of the
streamlines must obey the slenderness condition, the sojution of the equation for
v/u decides as to whether or not the prescribed inflow conditions for u, w, and T

can be admitted. This is described in detail in Ref. [2]) .

Numerical Solution

Finite-difference solutions of the slender vortex approximation were developed for

incompressible flows, and compressible flows. The differential equations were

casted into locally linearized implicit difference equations, which can be inverted

by recursion. Details of the solution for incompressible flow are described in (47 3

the solution for compressible flow is described in [2}, and [3}. The most

important results computed with the solution so far are also reported in the
references just mentioned: In Ref, [4]), it is shown, for example, that the solution
reacts sensibly to axial pressure gradients; comparison calculation were carried for
the experimental data of Faler and Leibovich, Thz comparison, discussed in
[4) shows that for vorticities with large swirl, the breakdown point cennot be
predicted with the slender vortex approoximation, since it does not take into

acocunt the upstream influence of the breakdown region.

In Refs. ._[2] and [3) the results obtained so far for compressible flows are
discussed. The influence of the freestream Mach number and of the temperature
distribution prescribed for the inflow cross section on the flow development in the

downstream direction is clearly demonstrated.

Conclusions

The slender-vortex approximation was analysed for incompressible and com-
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pressible flow. First the equations of motion were reduced in an order of magnitude

analysis. Then compatiblity conditions were formulated for the inflow conditions.

“Thereafter finite-difference-solutions were constructed for incompressible and

compressible flow. Finally it was shown that these solutions can be used to describe

‘the flow in slender vortices., The analysis of the breakdown process must, however,

be excluded, since its upstream influence cannot be predicted with the siender

vortex approximation. The investigation of this prbblem is left for future work.

(11

(2)

3]

(4]
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SCHLANKE WIRBEL IN KOMPRESSIBLER STROMUNG

E. Krause

Aerodynamisches Institut der RWTH Aachen
Wiillnerstr. zw. 5 und 7, 5100 Aachen

Der EinfluB der Kompressibilitdt auf schlanke Wirbel in stationirer, reibungsbe-
hafteter Strémung wird dargestellt, Eine entsprechende Ableitung fiir reibungs-
freie Stromung ist in [1) und fir instationdre Stromungen in {2} gegeben.

Fiir die Untersuchung wird angenommen, daB die Achse des Wirtels parallel zur

ankommenden Stromung 1st und da8 die Strémung im Wirbel rotationssymme- -
trisch ist. Bezeichnet R den Kernradius in dem Querschnitt senkrecht zur
Anstromrichtung, in dem der Wirbel erzeugt wird, und L die unbekannte Lange
des Wirbels, gemessen in Strémungsrichtung, Uber die der Wirbel nicht
aufplatzt, so erfordert die Schlankheitsbedingung

v R, : _
-J--O(—L-)<<1 {1)

Dabei ist v die radiale und u die axiale Geschwindigkeitskomponente. Die mit

Gleichung (1) vereinfachten Erhaltungsgleichungen fiir Masse, Impuls und

Energie entsprechen der Grenzschichtapproximation: . .

0 1 ° '
[ — =0 (2) '
Masse Py {ou) 3¢ {pvr) |

Impuls, x-, r- und G -Richtung:

Ou oy 8u__8 1 3 (,8u _

Pu ox oV or dx r Oor (e ar ) _ (31
- 2
ew?2 _ 3p
T {4)

or. ear 1 o 3 3 r

—. —_—n = == (=] 5) ...
pu ox oV r r Or nr or ,-2) (
Energie

oT aT dp ap i 9 oT 9, I 2 ,8u,2

Chlpu— s ogv=——)zu S~ ev—L 0o — — (rA—}« —_——)) e (=
p'? ox ° or ”ax or r or f ar) r]“rar(rz)) (ar)]

(6)
Das System wird mit der Zustandsgleichung ¢ = P/(RT) geschlossen, wobei R

die Gaskonstante ist. Zur L&sung des Gleichungssystems (2)-(6) mussen Ein-

strémbedingungen

ve=va . N<r + u=t.le) w=falry . T=falr) {7 {

T T



Symmetnebedmgungen auf der erbelachse

.o r=0;XOSX:-a—u-=v=w=aT=0. . (8)

und Randbedmgungen fur r—=o

r—o, xgSx:us g1(x) w-—O T—-gz(x)‘ {9)

vorgegeben werden. Die Funktionen fl(r) - f3(r) und gl(x) und gz(x) miissen als
bekannt vorausgesetzt werden.

' Wegen der Schlankheitsbedingung (1) kénnen fl(r) - fj(r) jedoch nicht willkiirlich’

vorgegeben werden. Dies geht aus folgender Betrachtung hervar: Aus der

Kontinuitits-, Energie- und Zustandsgleichung 1308t sich %—: durch folgende

Beziehung ausdricken:

- 2._ :
{x-1) w v-1—-i-( vr)e 8
a er or pcpl

(10}

u_._ M 3 _v3T,
d xp dx T 0O
Die Grif8e H steht zur Abkiirzung fiir die Dissipationsfunktion und den Wérme-

leitungsterm in der Energiegleichung. Nach Einsetzen von Gleichung (10) in die
x-Impulsgleichung erhilt man nach Integration:

r
;
%:exp(-l)(c{lﬁ-—-z)o—uz .5}’—]exp(1)dr

‘ l - l dl‘

Die GroBe Ill steht zur Abkiirzung der Schubspannung in der x-Impu.:gleichung
und | bedeutet

w2, dr!

1=/ (1 (12)
-O/ 0—0-2

Bei bekannten Einstrémbedingungen fl(r)- f3(r) kann v/u nach Gleichung (10)
bestimmt werden, wenn der ortliche Druckgradient 3P/ dx unbekannt ist. Er
148t sich durch Differentation nzch x und anschlieBender. Integration aus

Gleichung (5) gewinnen:

T Y

—E-(xr)-—%(xr-m)
SRy (22 Sw BT w3 v
/1 g Ziew - 3 2 CPT,J(u)dr

!
w©
Yisr %P—dr-/(ZIIZ-———H)—dr (13)
r a2 9x cpT r'u

Die GriGe Ilz steht zur Abkiirzung fiir die Schubspannung in der 0O-Impuls-
gleichung. '
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- Nach Gleichung (13) ergibt sich stets ein nichtverschwindender Druckgradient

-——g—-e {x,r), da in reibungsbehafteter Strémung v/u stets von Null verschieden ist.
Ein heiBer Kern kann dabei. den Druckgradienten vergréBern, wihrend die
Umfangskomponente den Druckgradienten verkleinert. Dieser #ndert  seinen
EinfluB mit der axialen Machzahl. Das geht aus der x-Impulsgleichung hervor,

die sich in falgende Form bringen 158t:

2 xyan.dy L 20 g 02
ar u " aZ’ pu? Bax
Gleichung (lls) zeigt, daB bei Uberschalldurchstrémung des erbels, dh.ufa>1

der erste Term sein Vorzeichen iindert.

Sollen nur die Fﬁnktidl:\en'fl(r) - f3(r) auf ihre Kompatibilitst mit der Schiank-
heitsbedingung, Gleichung (1), im Einstrémqguerschnitt Uberpriift werden, kann
dies durch Elimination der Druckgradienten aus den Impulsgleichungen gesche-
hen: Durch entsprechende Differentation nach x bzw. r und Subtraktion der

resultierenden Ausdriicke voneinander, erhilt rnan nach Zusammenfassen

—a—:{-(—).c(xr)-?—( L) 6ylx,r) 1)+ Bylxr) 2 0 (15]
ard u ar 3 :

Die Funktionen Gl(x,r) - Gs(x,r) lassen sich unmittelbar aus den Einstrémbedin-
gungen ermitteln. Integration von Gleichung (15) ergibt dann die radiale
Verteitung v/u, so da8 abgesc}‘atzt werden kann, ob die Schlankheltsbedmgung,

Gleichung (1), erfallt ist.
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1. Kradse, E., Cer EinfluB der Kompressibilitit auf schianke Wirbel, Aerodyn.
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* NUMERICAL PREDICTION OF FLOW IN SLENDER VORTICES

. -* ) L E
Luis Reyna and Stefan Menne

Aerodynamisches Institut, RWTH Aachen, West Germany

Abstract

We study the slender vortex approximation with attention put on high Reynolds
number behaviour. It is shown that the breakdown of the approximation coincides
" with the criticality condition as introduced by Benjamin [12] . We study free
vortices with and without an adverse pressure gradient for viscous and inviscid

flows. Finally we compare to experimental results from Faler and Leibovich [8] .

* This re's\earch was conducted while the first co-author was at the Aero-

it dynamisches Institut as an Alexander von Humboldt-scholar.

«+«  Correspondence and proofs for correction should be transmitted to Stefan

Menne, Aerodynamisches Institut, Willnerstr, zw. Nr. 5/7, 5100 Aachen, West

Germany.
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NUMERICAL PREDICTION OF FLOW IN SLENDER VORTICES

» L X )
Luis Reyna and Stefan Menne

Aerodynamisches Institut, RWTH Aachen, West Germany -

1. Introduction

Vortex breakdown was initially observed by Peckham and Atkinson [:l] for leading
edge vortices formed on delta wings at large angle of attack and with large tip

angles. The phenomenon has a drastic influence on the aerodynamical behaviour of

the flow. In flows around wings its presence strongly decreases the lift [2,3] and-

in combustion chambers it can be used to design flame holders [lx] . Despite of the
large amount of research on this subject, the problem of vortex breakdown can not
be yet considered as being fully understood. The present state of the art can be
found in the review articles by Ludwieg [5] , Hall [6] and Leibovich [7] .

In experimental investigations Faler and Leibovich [8] found six different cases

of breakdown for a swirl flow in a divergent tube. Two of the n are nearly

axisymmetric and called bubble type, the remaining have either a spiral or heli-
coidal shape. The spiral form is marked by a kink followed by a cork-screw shaped
twisting of the vortex filament. In this case non-axisymmetric effects are im-

portant and have to be included in the analysis of the flow [ 9] .

* This research was- conducted while the first co-author was at the Aecro-

dynamisc‘hes Institut as an Alexander von Humboldt-scholar.

«%  Correspondence and pronfs for correction should be transmitted to Stefan
Menne, Aerodynamisches Institut, Willnerstr. zw. Nr.- 5/7, 5100 Aachen, West

Germany.
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Vortex breskdown theories assume axial symmetry except Ludw.ey's [JO] which

regards it as a hydrodynamical instabil.ity of nearly axisymmetric flow. The

important but unanswered question is the dependence of the breakdown type on the
approaching flow. In order to explain the phenomenon Squire [ll] y Benjamin -

[12,1}.] and Bossel [111.15] introduced the concept of critical state. The flow is

AL

- called supercritical when perturbations can only propagate downstream and subcritical
when there is an upstream influence. Squire [11] suggested upstream perturba-
tions would accumulate and produce breakdown at the critical state where the flow

proceeds from super to subcritical and the phase velocity of the perturbations is

R 3
e n s A e s o

zero. Benjamin [12] showed the existence of two equivalent solutions to a
conjugate flow, one beiny supercritical and the other subcritical. He then regards

breakdown as a sudden transition from super to subcritical states, similar to the

PO

T4

hydraulic jump. It is not possible to predict vortex breakdown with this theory, but

A

ol e aal e

it allows a classification of flows. The significance of the theory can be seen in an
experimental observation of Faler and Leibovich [B] : "All flows that exhibit

vortex breakdown of the "axisymmetric" form (which we classify as types 0 and 1

disturbance forms) or "spiral" form (our type 2) are supercritical upstream, in the

SR T SN Ok S VS DL

sense of Benjamin."

The details of breakdown can be studied by numerical integ:ration of the full

w
o

4

&~

by

f
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Navier-Stokes equations. Lavan, Nielsen and Fejer [ 16] , Kopecky and Torrance

;- [17], Grabowski and Berger [18] computed aXisymmetric, laminar, incom-
2 pressible and stationary swirling flows. -Grabowski and Berger [18] found a
l', backward flow for subcritical initial profiles in contrast to the classification of
;{ Benjamin [ 12] . Since the double ring stucture was not present inside the bubble,
:H Faler and Leibovich concluded due to their experiments [19] that the numerical
?; ! solution sheuld take into account time dependent periodic asymmmetric motions
é; [19] . The time dependent calculation done by Shi [20] showed correctly this

.

structure. The computed flow was stationary upstream o?f the breakdown point but

instationary and nearly time periodic downstream of it. This and similar

vt e

X

computations are restricted to low Reynolds numbers, much lower than the ones

present in technica! applications.

(AP SR
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Flow pictures show nearly cylindrical stream surfaces upstream and this observa-

tion can be used in order to derive an approximation of the Navier-Stokes equations

PR
*
1

Tl

usually called the slender vortex approximation. The assumption behind this

approximation is analogous to the one from boundary layer theory. The slender

e
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vortex approximation has been used by Gartshore [21,22] , Hall [2}-25]_ , Bossel

[26], Mager [27], Nakamura and Uchida [28] and sni [20]. The
approximation based on small gradients and small radial velocities fails at the

breakdown point but is vaiid upstream of it and generaify for stable vortices. -

The purpose of this paper is to study the high Reynolds number behaviour of the
slender vortex approximation. In chapter 2 we prove that the breékdown of the
approximation occurs at the critical state as remarked by Ludwieg [5] . In
chapter 3 we present numerical solutions for different Reynolds numbers. In the-
limit of no viscosity the external pressure gradient determines the breakdown, First
preliminary results are shown in [29] . Finally we compare to experimental data

and discuss the advantages and limitations of the approximation.

2. Slender vortex approximation

Consider now the Navier-Stokes equations written in cylindrical coordinates
(%, r, ®) with correspondirg velocities (u,v,w) in a nondimensional form. The axial
and ‘radial velocity components are normalized with the axial velocity and the
pressure with its value at the initial staticn for r- e . The lengths are normalized
with the vortex core radius which marks the region of viscous flow. The

circumferential velocity is normalized with its value at the initial station at the

edge of the vortex core.

Including the slenderness condition ,
| 2,0 | (1

and assuming steady axial symmetric flow leads to a system of equations

4
ALdtyt Uhly + Py =5 ) (Paty)p

(za)

P = (25)
wa~fv%(rw)r=%[%(rw)r]r (2¢)
(Fac)y + (o), = O (2d)

called the slender vortex approximation. Here the Reynolds number is based on the

~ vortex core dimension and the undisturbed axial velocity and p is the pressure.
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Notice that the type of this system is now parabolic for viscous flow and hyperbolic
for inviscid flow couplzd to two ordinary differential equations.” The first such

equation is the momentum equation in the radial direction and the second
1 r
_4 E__ 20,2) - 14
(r'tr)”. ,.(rv)r'f PEPE (riw )r m (er)r](r\r) =

(3)
2
= AR (R, + 2 (R (rw),), ]

can be easily derived from (2).

Due to the slenderness condition the approximation based on smallA gradients and on
a small radial velocity fails in the neighbourhood of the breakdown point. According
to the theories of Squire [11] and Benjamin [12] the flow is.supercriAtical
upstream of this position and perturbations can only propagate downstream. As a
consequence the influence of the treakdown bubble is not contained in the slender

vortex approximation.

Symmetry conditons are imposed along the r = 0 axis:
ap=0, v=0 , W=0 (ta)

At the outer radius the type of the system allows three boundary conditions for
viscous flow and one for the pressure for inviscid flow; the physical boundary
conditions for free vortices are ’

(Ptzadmypy—C¢ , W—O0 P — P (x) b)

r—s oo re— o Yoy O

where C is a constant taken from the initial conditions and P. (x) is the axternal
pressurn. These boundary conditions are also valid for the inviscid system when the
radial velocity has a negative sign at infinily, otherwise only the pressure

can be given

P— P 00 , ()

r—'rco_

The slender -vortex approximation in vorticity, circulaticn, stream-function

formulation becomes

o |
m oy + Po(FE) -3 T =2 (Re),) (5a)

(55)
0 = (F")Ur)r - | (5¢)




-

with the vorticity () =-u, tocal circulation I’ = rw, stream-function "f’am‘.

velocity compor :nts

| :’%"f'x_' ‘ - | (65

In the vorticity, circulation, stream-function formulation the swirl influence is
given explicitly in the vorticity transport eqi~*ion by Lhé term 1/r3 rx? in contrast
to the formulation in primitive variables where this coupling foliows implizitly av-.z
the pressure. For an isolated vortex it is advantageous to consider the pesturbation
of the stream-function from parallel flow. In this case the paramcter_g in eq.(6b3)

is equal to one; else £ i equal to zern.

The boundary conditions {4) corresponding to the vorticity-stream-function for-

mulation are at the axis of symmetry

Q=0 , T=0, v=0 (Fa)
At the outer radius t!.e boundary conditions {¢b) translate into
N—0 , T—sp, i—sr1-Y2(C-Pux)) &)
r-o o Y~ o0 re— co

where C ='(Pi + }-'uiz) is a constant taken from the initial conditions and P, (x) is

2
the external pressure. The parameter {3 specifies the rate of the circumferential

velocity ut the edge of the vortex core to the axial velocity at infinity in the initial
station. These boundary conditions are aiso valid for the inviscid system when thz
radial velocity has a negative sign at infinity, otherwise only the pressure
can be given : .

’ \
P> Po (%) - _ - (Fe)

r—>om : :

Finally for viscous flows in a pipe the no-slip condition

M=0, T=0, W=O0 g (1)

holds at the outer radius.

For free vortices the corresponding boundary conditions for (3) are

U=0 atr=0 and. _17r+g-+5i—t-3:o at r—> o (2e)

where v, (x) ='f 2C-F (x)) is a given function.
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3

i‘ . Initial conditions hav2 to be provided for the axial and circumferential velocity

s Ay, Xo) = Mo (VD

X (*£)
0, _ Wi(r %y = Wo (M)

5 The pressure, the radial velocity, the vorticity, the circulation and the stream-
‘ "function can be obtained from them. ' ‘
? i

Ey. Solutions of the slender vorter approximation can cease to exist due to two
) different mechanisms: first, when the axial velocity vanishes somewhere in the
L

| flow and second, when the radial velocity becomes unbounded. The first case is
: similar to the boundary layer separation while the second is related to the
: criticality condition introduced by Benjamin [12] . The second situation arises
i

> since there is no viscosity present aleng the axial directicn and therefore
3_ unbounded gradients along it can appear. Since the viscosity present in (2) only
.

2 controls the radial gradients of the axial and circumferential velocity components
4 axial gradients and also the radial velocity can grow infinitely. Moreover, in this
- case the solution tends to that of the homogenecus problem (3).

(rv)r,. - 3(ro), ¢ [u:r'-" (’(‘Z\Qz),."z% (%,u.r)r] (rv)=0 ()

3

SEF ER R R

Indeed numerical solutions of the slender vortex approximation show that the

viscous forces are really small compared to pressure and inertia forces near

¥ b

NG

[}

breakdown of the slender vortex equations.

N

As in boundary layer theory the behaviour of the approximated and the {ull Navier-
tokes system are identical shortly before breakdown when the proper boundary
conditions are imposed. We return to the point when comparing predictions of the

slender vortex approximation and experimental results.

) We now compare this breakdown condition to the criticality condition as introduced

by Benjamin [12] (see also Hall [6] ).

ER T E e e N i 2 i o

Benjamin considers stcady, inviscid and sxisymmetric flow. Introducing the

B . . B! 1 , o2 .2 2
;:; streamfunction \)(/ with u = . \K_ and v = - rﬂ’ the total head h=p + §<U +voew )
o and the circulation 1% = rw the equaticn of motion for these flows can be
%% - summarized in a single equation four the stream-function.

o 2

it 9x* " drr U 5y T ady dy

'53? -
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We nbw consider a perturbation of 8 quasicylindrical flow

g Yoy = Yox e Foory €7 - ko
3

where £<K1 and << This perturbation introduécd in {9) and neglecting
5. g

higher order terms in 8 y:elds an equation for F. The critical state F corresponds

Tl e - TTE L

to ¥ =0andin this case

IR, A SDULIY

roa 1
-4 - (= —_ (P22 E = 14
', - 1%, + [ Far) v e, IR 5 © a)

; | | |

If the solution with initial data F'c = 0 and Fcr = 1 at r=0 vanishes away from the
axis the flow is subcritical; when this solution vanishes at both the ‘axis and outer
. radius R it is said to be critical and otherwise supercritical.
In comparison to eq.(11) the equation for the radial velocity (8)
-4 [-L(tu . - o) =
: (r )y = £ (ro), + Me)et =y (r2wd) ] (rv) =0 (2)
E, shows an xdentxcal form with the boundary condltons '
3 U du
E - U=R0 at Y=e0 and Ups— —t dxw =0 at r=R (43)
[ where the outer radius R has a finite value with R>> 1.

The general solution of eq.(12) reads . _ _ _

(rv) = C Her | IR L)

A where the boundary condition (rv)(r_o) = 0 is already used.
M
'i With the constant C the solution function H() can be adapted to the boundary

condition at r=R. Excluding the trivial solution v=0, i.e. v r R)TO the demand
1 —5} r—m=R: H— O ‘

leads to a critical case, since necessarily the constant C has to go to infinity and
a consequently

’ 0<r<R: (ru)—> o

This charactéristical behaviour of the radial velocity is present in the slender
vortex approxi‘mation in the vicinity of the breakdown region. A comparison of Lhisi
critical case with the previously described critical flow state according to the
theory of Benjamin [12] leads to a complete agreement: eq.(11) and (12) are
cquivalent to cach other just as the boundary and the criticality condmons since

the condition F = 1 excludes only the trivial solution.
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Now we can see that the breakdown condition for the slender vortex approximation
corresponds to the condition from Benjamin [12] and breakdown can be seen as a
transition from supercritical to subcritical flows as remarked by Ludwieg [S] .
Hall [6] reached also the same conclusion. He explained the equivalence using
the existence of two solutions for the slender vortex a small distance apart from
each other which do not coincide as the distance tends to zero. He then shows that
“the condition for the appearence of arbitrarily large axial gradients turn out to be
identical to the condition for the critical" [6] .

3. Solution and results

We used both the primitive variables and the vorticity-stream function formulation
for the numerical solution of the slender vortex appreximation. In a first approach
we used primitive variables with centered discretization. The radial velocity is

evaluated only at the midpoints of axial intervals (see fig. 1). The discretization

only use two "time" levels making it convenient for variable axial spacing. The:

-function value distribution is shown in fig. 1.

Here fij denotes the numerical solution at the (i,j) node corresponding to

(x,r) = (iAx,jAr), where Ax and Ar are the axial and radial spacing. The equations

- are solved marching along the axial direction as the type of the system indicates it.

At each new axial station a system of nonlinear equations must be solved. This is

done using Newton's approach and a linear band solver for the Jacobian inversion.

In order to decrease the band width, the symmetry condition for the axial velocity

is applied as

Misd,4 =Aied,0 ar [/,{7" o-ihro Paro-TFe )
- : ¢ 1,0 o, 14,0 (,O] 2 )
ALy S g Re| T S + O (ar?) ¢5)

,.



instead of three point extrapolation formula. (This boundary condition also holds in
the inviscid case). The discretization is second order accurate in both radial and

axial direction and unconditionally stable with r'es‘bect to the size of Ax.

Nevertheless during the calculation the snze of Ax is decreased when the Courant-
Friedrichs-Lewy number CFL = max, J'— A_:‘E exceeds a predetermined eonstanl
CFLma Ax is also decreased when the Newton's procedure fails to reduce the
residual below the tolerance limit TOL after NEwmax iterations.

Normally we use CFL__ =2, NEW _ =3 and TOL=10"", being the solution not

sensitive to these values.

The second numerical aperoach was applied to the vorticity stream-function
formulation (6) . We use again centered discretization with function values
determined at node points except the radial velocity which is evaluated at inter-
mediate axial points (i+ -%,j) (Crank-Nicolson formulation)., The resulting discreti-
zation is unconditionally stable and second order accurate. At each new axial
station a tridiagonal system must be solved for the stream-function, vorticity and
circulation. For a free vortex the equations are not coupled through the boundary
conditions and therefore can be solved iteratively as follows. We initialize

(o)
M-{M.:) = /—Lu) N
o) - (16
"J-\'i-‘/z,,:) = 0-\'—*/1,3 :

and using these values compute T'(l) and then_Q(l).

Next the stream-function‘\y(l) is computed and a new iteration can be started. The
procedure is repeated until

max (s — st} s €, e« (49

ﬂ""\cs

where £ is usually set to 10' ~ 10'5. The iterative procedure has a low storage
requiremeht, only two axial stations has to be kept. It has the drawback to be only
convergent fo}'\supercritical profiles. This is not the case for the Newton's-iieration
approach that allows subcritical initial profiles. On the other hand initially
subcritical profiles are of little physical interest since these flows can be-regarded

as already broken down according to the theories of Squire [ 11] and Benjamin

[22].

RS




The convergerce problem translates into increasing number of iterations as the
flow reaches criticality conditions. In these situations the axial step is decreased in
order to keep the amount of work low; this also gives a better axial location for the
breakdown point. Each line the axial step is decreaéed, the iteration is réstarted

with the last converged values.

Since few grid points are required outside the vortex core we use a transformation
in the radial direction _ o
r: (O)rmax>—5 G: (O/Gm«w)
r_ tan (£6)
Ninay - tan (%Gmux) ‘
The uniform spacing in the @ -direction gives almost a uniform distribution in the
radial direction when Gmax«l and an accumulation of grid points near the axis

when Gmaxz 1. The pressure is obtained integrating the radial momentum

(18)

equation
U S N L
?‘U ?“-JM [ 4 (3J—4+ ?J“'Z') + 24 (33*'33”)] (49)
where _ T‘ 2
e ~ 2 ) » 2
s __% T \ T
9; -—-»’_r:izﬁ and =z P tan (-; GMAX) cos (-5 5)

The initial value is the pressure at Gmax’ g is an even function of @ . In order to
decrease the truncation error the pressure is integrated analytically outside the

vorticity core where the circulation is constant.

The initial values are taken as

| . 4-6r248r3-r* | red

sy= A+ fry with fm=lo yT24 (20)
Wo = [59¢p with %m:—{:(z—m) yTEA
. F oA

These polynomial distributions are alrzady used by Mager [‘27] , Grabowski and

" Berger: [18] ‘and Shi [20] and "...were chosen to approximate the experimen-.

tally-measured velocity in vortex cores such as those of trailing vortices..." [18] .

. The parameter & controls the shape of the axial profile, uniform flow for & = 0,
jetlike for X > 0 and wakelike for €< 0. The circulation corresponds to solid body
rotation for r<<1 and to potential flow outside the core of vorticity. The

polynomials fulfill symmetry conditions and providz a smooth transition form the

F)
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solidly rotating core into the outer flowfield. The parameter (5 specifies the rate
of the circumferential velocity at the.edge of the vortex core to the axial velocity

at infinty in the initial station.

We now return to the boundary conditions for free vortices. We assume constant -

pressure gradient

alic (21)
dx T
Then the slender vortex equations can be scaled using
k=x'T , =7 , Re=Re:T 22)

and therefore the pressure gradient for the transformed system is equal to one. The
flow is relevant for values X < % since the outer continuitly desacceleration of the

outer flow makes the outer axial velocity vanish at %= -%-

When no pressure gradient is present in the outer flow the scaling

makes the equations and the initial conditions Reynolds number independent.

Notice that the axial coordinate is stretched but the radial coordinate is left
unchanged in contrast to boundary layer type of scaling (e.g. Hall [253 ). The

- result is an increasine breakdown length for increasing Reynolds number in contrast

to experimental observations [30] for which the location reaches a limit. Due to
this behaviour at high Reynolds number we do not expect this to be the physical

mechanism behind breakdown which we believe to be pressure induced.

_Fo_r tube flows the numerical procedure for the stream-function formulation was

slightly changed due to coupling of the vorticity and stream-function through

boundary conditions. The stream-function was computed from the fourth order

- differential equation obtained when (6c) is introduced in (6a) and using a five point

centered discretization. For the primitive variable formulation these new boundary

conditions introduced no new complications.

.

In order to resolve the boundary layer on the tube wall, the following stretching

function was used

2
r=Ro Tom arcton {G tan (Z6m)) . (L‘i-)

with R(x) being thie tube radius and Gm = 0.8.
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Faler and Leibovich [8} measured several velocity distributions which were used

as initial condition for the flow calculations.

We study our breskdown criterion described in chapler 2 by applying it to free
{lows driven by a pressure gradient which reach critical state already in the initial

section. We used simplified profiles that allow us to do analytical work:

: A+ ol , Treivz : 2pr , redyy
A = ) Woe=1 .
o 1 ) o r ) YooY

These profiles are an approximation to the profiles used in the numerical examples.

(25)

The axial velocity distribution is discontinous and the circumferential velocity can

be described by solid body rotation inside the core and potential flow outside of it.

Introducing these distributions in (12) we obtain

2PV, vEV ¢ (%) V=0 for rezl2

_and . o : o 4 ] '(26)
(%(rv)r)r =0 | for r>z\2
where ‘f-[S
g=grl

Since the axial velocity is discontinous jump conditions have to be prescribed
[31]:
¥ 4
[MJ O and [-—-( )] 0 ot N=2V2" (2%)

where [f] denotes the jump in the values of £ acrossr.

The solution of eq.(16) reads

U = Ca Ja(®) for regf2 ? (28)
[
V-':Cz,r“"'?\}‘ for Y >21(7

where Jl is tr;'e Bessel function of the first kind of first order. The corstant c2 is
determincd by the pressure gradient at infinity. Since the conditionv=0atr=0is

already used, the constants c and cy are determined by the jump conditians (27).

It follows

Co L (B - () (Cart 2 from []7=0 @30

1+
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Criticality is already reached when

(30)

that is

Xg = goo (s 4 with fo0 % 2.408  <34>

§] is the first non trivial zero of the zeroth Bessel function Jo). This critical

? .
curve is drawn in figure 2 as a dotted line. The curve marked by triangles shows the

" numerical profiles which are initially critical. Due to the undershoot in the axial

velocity for €< 0 of the discontinuous analytical distribution when compared to the
humerically used profiles, the limiting curve lies too high producing a destabilizing
effect (&> 0 produces the inverse effect). The overshoot af the analytically used
profiles for the circulation shifts the curve O(G((B) upwzrds. The numerical results
can be summarized as follows: Or the right side of the limiting curve in fig. 2 no
solution of the slender vortexépproximatlon can be found (subcritical region). At
the left there exists a region where vortices have a limited breakdown length. In
the following region at the left no vortex breakdown appears at all. The vortices

are stable and dissipate themselve§ away.

3.1. Isolated vortex for inviscid and viscous flow

Figs. 3-6 show results for the free vortex with & =0, (3=.8 and —9- = 0. This
vortex breaks down at R = 0.013. In fig. 3 we show the relative strength of the .
forces present in the axial momentum balance. Here Fp is the pressure force, F‘l
the inertia and F'v the viscous force. Initially pressure and inertia forces are almost
equal while viscous forces are much smaller. Near breakdown both pressure and

inertia forces show a dramatic increase in their strength. This increase is not
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present in the viscous forces. Near breakdown the flow is essentially inviscid,
viscosity plays a secondary role. This is in agreement wi_th the corresponding
theories of Squire [11] and Benjamin [12] and the critical condition which calls

for 8 non trivial solution to the homogeneous version of equation (3).

Fig. & shows the radial dependence of the three componen._ts of the velocity vector

at different axial stations. The circumferential velocity decreases in magnitude and ‘

- the axial velocity develops a wakelike profile as the flow reaches breakdown

conditions. The radial veloéity shows a dramatic increase just before breakdown,
similar to that of the pressure and inertia forces. Fig. 5 presents the radial distribu-
tion of the pressure, The behaviour of the pressure is quite similar to that of the
axial and circumferential velocity component. Fig. 6 shows the axial distribution of
the pressure and of the radial velocity at different . adial distances from the sym-
metry axis. Notice an almost linear changé in the pressure until shortly before
breakdown. In fig. 7 and 8 the velocity components and the pressure are shown at

different axial stations for inviscid flow. Fig. 9 demonstrates the axial dependence

of the pressure for inviscid flow. The good agreement of the breakdown process .

compared-to the viscous case indicates that breakdown is an inviscid phenomenon.

Fig. 10 shows the dependence of the breakdown length on the initial profiles for
free vortices without adverse pressure gradient. Here only supercritical profiles are
considered. We also show the corresponding results obtained by Shi [20] by
solving the time dependent Navier-Stokes equations. The sl=nder v.ortex approxim:;-

tion is in good agreement with his numerical results.

For a given {S, there exists a lower bound for O leading to initially supercritical
profiles. It is possible nevertheless to numerically solve system (2) starting with
subcritical profiles when using primitive variables in conjunction with a direct
solver. We found that all such flows exhibit breakdown at some axial distance from

the initial profile.

The increase of the jet type profile provides a stabilizing effect on the flow. For &

large enough .t\and passed a critical value the vortex does not break down at all and

viscosity only flattens the profiles (this is usually referred as aging of the vortex)

(see fig. 11). The effects of & on the flow are still important near its critical

value. For O passed this value the axial velocity at the axis decreases initially but

- after reaching a minimum value increases again with no breakdown of the flow.

There is no unbounded growth in cither the pressure gradient or the radial velocity

any longer.
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Fig. 12 shows results for vortices with constant external pressure gradient
-gg =T and fig. 128 an increase in the breakdown length for increasing
Rer)':noglds number with its value attaining a limit for Re-»e. This is the expected
behaviour for vortices that exhibit breakdown without external pressure gradient.
Vortices that are stable in absence of pressure gradient (here & = 1.1) can break
down for Re*T large enough (in this case Re*T 2 0.1) but are stable otherwise, as

once more expected.

Fig. 12b shows the dependence of the breakdown length for small pressure gradient.
For T small we can see xBD/Re reading the expected values obtained from the
vortex without pressure gradient shown in fig. 10. For increasing Reynolds numbers
the ratio xBD/Re tends to zero since XsD tends to the limit shown in the left
picture. Fig. 13a and 13b show similar results obtained from different swirls. We
can see again the disappearence of breakdown for stable vortices for small enough

pressure gradients.

In order to stress the influence of the pressure gradient on the flow we sketch in
fig. 14 the results from figs. 10, 12 and 13 combined for Re T = 10. The flow is
shown to be extremely sensitive to small pressure fluctuations at large Reynolds
numbers. A change in 1% in the pressure, normalized with the dynamic head, over
one vortex core length tr;nslates into a 100% change in the breakdown length for a

Reynolds number of 1000.

The behaviour of the flow shown in figs. 12 and 13 can also be found in
experimental investigations. Werlé [29] found that the breakdown length of a
leading edge vortex formed on a delta wing does not change for high Reynolds
numbers (ReL> lOa) for an angle of attack of 20 degrees., If w2 assume that the
adverse pressure gradient of the vortex lies approximately in the range of 0.5 to 2%
of the dynamic head over the vortex core radius, then the value of Re+T lies
between 50 and 200.

For these val_.ues the breakdown length hés approximately reached its ultimate
value accepted for ReT—»co (Fig. 12a and le).. The extreme sensitivity against
adverse pressure gradients shown in fig. 14 can be observed also in fig. 15 (from
[30] ). Although the obstacle is positioned far downstream of the breakdown

point, there is a significant change in the breakdown length,
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3.2. Comparison to experimental results

Faler and Leibovich [8] performed several experiAménls on vortices in divergent
tubes. The swirl component was generéted by swirl vines and afte}wards the flow
was led through the tube. Profiles for the axial and circumferential velocities were
measured 1/3 diameter upstream ‘of the divergent part of the tube. The opening
anglé for the tube was 1.43° and various mass fluxes and swirl vane angles of>
attack investigated. They found six different breakdown types for the fiow, the
corresponding breakdown lengths and their dependence on the Reynolds number and
swirl parameter are shown in fig. 16. The Reynolds number is based here on the

averaged axial velocity and the diameter of the tube.

Since the slender vortex approximation only deals with axisymmetric flows, only
bubble;type breakdown is considered in this comparison (types "0" and "1" arcording
to tne terminology used in [8] ). Stable bubbie structures are only present for

certain ranges of circulation @ and Reynolds number Re.

One more inconvenience causes from the lack of detailed information on the
boundary layer structure for high Reynolds numbers. Fig. 16 shows the numerical
and computational results combined. The initial distributions are constant along
each solution curve and coincide with'the experimental value‘s'only at nodes marked

(*). For (0 = 1.07 we can see a good agreement, the trend of decreasing breakdown

length for increasing Reynolds numbers is present and the numerical values are -

similar. For Re around 2500 and below no breakdown occur in the numerical

experiments.

For () =1.54 the . _merical prediction of the breadown length decreases for
increasing Reynolds number larger than 3000. This behaviour reverses-itself for
1000 £ Re £ 3000. For Re<1000 there is no breakdown present in the numerical
experi-ments. The prediction of the breakdown length is now far off from its
experimental counterpart. The physical reason behind this phenomenon is the
sensitive beha‘yiour of the flow on pressure variations. The pressure prediction
obtained from the slender vortex approximation does not take into ‘account the
influence of the butble presence on tha pressure field acting on the vortex core. We
propdse that a good prediction of the breakdown location can be obtained from an
inviscid calculation for the vortex core with an external pressure gradient obtained

from the numerical solution of the full Navier-Stokes equations without the
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slenderness approximation. This i§ an explanation for the fact that the numerical
prediction strongly deviates from the experimental results. Moreover, the assump-
tion of selfsimilar inflow profiles is not fulﬁlled in this case (Re¥6000). To
compare with experimental data we had to assume selfsimilarity to transfer to

other Reynolds numbers because only a few inflow profiles are given in [8] .

t
The lack of upsteam influence in the approximation leads to predictions for the

_breakdown length which are longer than the observed values. Nevertheless, for all

- calculations of {{) and Re the inflow profiles are supercritical and spproach critical

state near breakdown.

Faler and Leibovich make the following remark:
“"All flows that exhibit vortex breakdown of the "axisymmetric" form (whxch we
classify as types 0 and 1 dl..turbance forms) or "spiral" form (our type 2) are

supercritical upstream, in the sense of Benjamln" [8]

4. Conclusions

The slender vortex approximation was studied in particular for high Reynolds
numbers. For free vortices without external pressure influences the breakdown
length is proportional to the Reynolds number. For free vortices with adverse

pressure gradients, the breakdown length is inversely proportional to the value of

its gradient. Flows with small pressure gradients take a long distance t~ breakdown.

For low Reynolds number the prediction of the simplified system agree quite well
with the ones obtained from solutions of the full Navier-Stokes equations. It was
found that the flow becomes quite sensitive on pressure fluctuations for high
Reynolds numbers and that the failing of the slender vortex equations corresponds
to the critical condition from Benjamin [12] for inviscid flows. The last comment
holds since viscous forces are negligible near breakdown compared to inertia and
pressure l'orce‘s. The viscous forces do play a role for low pressure gradients by
controlling the aging process. The predictions from the approximating system were
compared to experimental results and for low swirl a good agreement was obtained.
For higher swirl upstream effects on the pressure produced by the breakdown
bubble deteriorates their agreement. This can not be incorperated into the slender‘

vortex approximation.
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Fig. 1:

Fig. 2:
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Fig. 3:

Fig. &

Fig. 5:

Fig. 6:

Fig. 7a:

Fig. 7b:

Fig. 7c:

Coordinate system and grid definition

Stability diagram for vurtex breakdown

Transition from super- to s'ubcri_lical flow according to Benjamin [12]

Breakdown at inflow section for slender vortex approximation, initial

condition (20)

Region of temporaryvstable vortices

Breakdowﬁ at inflow section for slender vortex approximation, initial
condition (25) '

Axial variation of the inertia, pressure, and viscous forces per unit

volume as computed with the viscous slender-vortex approximation

Radial profiles of the axial, radial, and circumferential velocity

components computed with viscous slender-vortex approximation

Radial profiles of the static pressure as computed with viscous slender-

vortex approximation

Axial variation of the axial velocity component and of the static pressure

as computed with the viscous slender-vortex approximation

Axial velocity profiles computed with slender vortex approximation for

inviscid flow"

Al

Radial velocity profiles computed with slender vortex approximation for

inviscid flow

Circumferential velocity profiles computed with slender vortex approxi-
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Fig. 8:

Fig. 9:

Fig. 10:

Fig. 11:

~ Fig. 12a:

Fig. 12b:

Fig. 13a:

Fig. 13b:

Fig. 14:

Pressure profiles computed with slender vortex approximation for

- inviscid flow

Axial pressure variation computed with slender vortex approximation for

inviscid f'nw

Shape parameter C{ as a function of the breakdown length, Computed for

several swirl rates

Axial variation of the axial velocity component computéd with viscous

slender vortex approximation

Breakdown length as a function of the Reynolds number for constant
externally imposed pressure gradient T . Computed with viscous slender-

vortex approxiamtion

Breakdown length as a function of .imposed external pressure gradient T .

for constant Reynolds number. Computed with viscous slender vortex

" appreoximation

Same as Fig. 12a. The swirl parameter k=08

Same as Fig. 12a, The swirl parameter [3 = 0.8944

.
A}

Influence of an externally in"xposed axial pressure gradient T on the
breakdown length as computed with the viscous slender-vortex approxi-

mation
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Fig. 15:

Fig. 16:

Influence of an externally imposed axial pressure gradient on the

breakdown length. (From [30] ~)

Comparison of experimantal data (from [8] ) and numerical results with
siender vortex approximation. The type of disturbance (0-6) and its mean

axial location vs. Reynolds number.
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