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" Introduction 

The phenomenon of vortex breakdown is of considerable importance for flows under 

critical conditions about delta wings. The leading edge vortices on the leeward side 

of the wing can be termed slender until breakdown is about to occur. The 

slenderness of the vortices is characterized by the ratio of the core radius Rand 

the length L of the undisturbed vortex, i.e. R/L« 1. As long as the sl.:mderness 

condition is satisfied, the equations of motion can be simplified considerably for 

the description of the flow in the vor~ex. The integration of the simplified 

equations is then possible for lorge Reynolds numbers. The breakdown itself must 

be analysed by solving the full Navier-Stokes equation. With the slender vortex 

approximation the overall computation time can be very much reduced, since the 

largest portion of the flow can be determined from the simplified equations, and 

extremely fine resolution is only required for the breakdown region, where the full 

Navier-Stokes equations must be employed. 

The work carried out under this contract is concerned with the formulation and 

solution of the slender-vortex approximation and its numerical solution for 

incompressible and compressible flow; with the initiation of experimental work and 

the validation of the solution; and finally the prescription and determination of 

permissable inflow conditions for the slender-vortex approximation. The results of 

this analyses are presented in several publications (1), (2), (3), [4J; copies 

of the preprints and manuscripts are enclosed. 

Formulation of the Problem 

The slender-vortex approximation for compressible viscous flow was first formu­

J3ted in Refs. (1) and 12). Therein it was shown that the flow is basicly 

governed by the local axial pressure gradient, which can be expressed through an 

integro-differential equation. According to this analysis the pressure gradient is 

mr:inii' delermined by the radial distributions of the circumferential velocity 

component, and the temperature. It c:;uld be shown that a hot core tends to 

stimulate breakdown and that a cold core delays it. The direct influence of the 

compressibility is that the variable density tries to counteract the influence of 

positive axial pressure gradients, thereby delaying breakdown. 
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Perrnissnhle Inflow Conditions 

The slenderness condition imposed on the flow does not permit one to prescribe 

arbitrary inflow conditions, which are required for the integration of the simplified 

equations of motion. The inflow conditions are given by a set of radial profilas. for 

the axial and circumferential velocity profiles, and the temperature. It Vias shown 

in (11 and (2) that the inclination of the traces of the stream lines v/u in the 

axial plane satisfiet a second-order nonlinear ordinary differential equation, to be 

integrated in the radial direction. The coefficients of that equation are solely 

determined by the inflow conditions. Since the inclination of the traces of the 

streamlines must obey the slenderness condition, the solution of the equation for 

v/u decides as to whether or not the prescribed inflow conditions for u, w, and T 

can he admitted. This is described in detail in Ref. [2] • 

Numerical Solution 

Finite-difference solutions of the slender vorlex approximation were developed for 

incompressible flows, and compressible flows. The differential equations were 

casted into locally linearized implicit difference equations, which can be inverted 

by recursion. Details of the solution for incompressible flow are described in 14); 

the solution for compressible flow is described in 12J, and (3]. n.B most 

important results computed with the solution so far are also reported in the 

references just mentioned: In Ref. (4), it is shown, for example, that the solution 

reacts sensibly to axial pressure gradients; comparison calculation were carried for 

the experimental data of Faler and Leibovich. Th3 comparison, discussed in 

[4} shows that for vorticities with large swirl, the breakdown point c£.nnot be 

predicted with the slender vortex approoximation, since it does not take into 

acocunt the upstream influence of the breakdown region. 

In Refs. (2) and 13) the results t'btained so far for compressible flows are 

discussed. The influence of the freestream Mach number and of the temperature 

distribution prescribed for the inflow cross section on the flow development in the 

downstream direction is clearly demonstrated. 

Conclusions 

The slender-vortex approximation was analysed for incompressible and com-
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pressible flow. First the equations of motion were reduced inan order of magnitude 

analysis. Then compatiblity conditions were formulated for the inflow conditions. 

-Thereafter finite-difference-solutions were constructed for incompressible and 

compressible flow. Finally it was shown that these solutions can be used to describe 

the flow in slender vortices. The analysis of the breakdown process must, however, 

be excluded, since its upstream influel1ce cannot be predicted with the slender 

vortex approximation. The investigation of this problem is left for future work. 
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SCHLANKE WIRBEL IN KOMPRESSIBLER STRtiMUNG 

E. Krause 

Aerodynamisches Institut der RWTH Aachen 

Willlnerstr. zw. 5 und 7, 5100 Aachen 

Der EinfluG der Kompressibilitat auf schlanke Wirbel in stationnrt'7", reibungsbe­

haftcter Stromung wird dargestellt. Eine entsprechende AbleitL ng fUr rei bungs­

frt:ie Stromung ist in (1) und fUr instationare Stromungen in [2 J gegeben • 

. Fur die Untersuchung wird angenommen, daG die Achse des Wirt.cls parallel zur 

ankommenden Stromung 1st und daG die Stromung im Wirbel r(Jtationssymme- . 

trisch ist. Bezeichnet R den Kernradius in dem Querschnitt senkrecht zur 

Anstromrichtung, in dem der Wirbel erzeugt wird, und L die unbekannte Uinge 

des Wirbels, gemessen in Stromungsrichtung, 

aufplatzt, so erfordert die Schlankheitsbedingung 

v R· ; 
-: 01-1« 1 
u L 

Gber die de:" Wirbel nicht 

(1) . 

Dabei ist v die rndiale und u die axiale Geschwindigkeitskomponente. Die mit 

Gleichung (1) vereinfachten Erhaltungsgleichungen fUr Masse, Impuls und 

Energie entsprechen der Grenzschichtapproximation: 

Masse: L 1 9 u 1 + ..!. l 1 9 v r) = 0 
ax r or 

(2) 

Impuls, x-, r- und G -Richtung: 

au au an ~ 0 1 au 9U -+9v - =-~ +- - rll-) 
ax ar ax r ar ar 

131 

9w2 _ ap 
r ~"ar 1" 

(5) ... _ 

Energie 
aT aT ap ap 1 a aT a r 2 au 2 cp l9u -+9v -l:u-+v-+--IrX-)+ll[Ir-I-ll +1-)) 
ax ar ax ar r ar ar ar r2 ar 

(6) 
Das System wird mit der Zustandsgleichung 9 = P/(RT) geschlossen, Vlobci R 
die Gaskonstante ist. Zur Uisung des Gleichungssystems (2)-(6) mUsscn Ein­

strombedingungen 

v:y_. n$r: u:f.lrl w:' .. lrl. T:f .. lrl 17\ 
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Symmetriebedingungen auf der Wirbelachse -----_._" .- ..... --- -- -.. -- - - - - .. - -.. 

r = 0 ; x < x . au - v - w - aT - 0 0- . ar - - - ar - . 18) 

und Randbedingungen fUr r- CO 

19) 

vorgegeben werden. Die Funktionen f
1

(r) - f 3(r) und gl(x) und g2(x) mussen als 

bekannt vorausgesetzt werden. 

Wegen der Schlankheitsbedingung (1) kannen f 1 (r) - f 3(r) jedoch nicht willkurlich 

vorgegeben werden. Dies geht aus folgender Betrachtung hervnr: Aus der 

Kontinuitats-, Energie- und Zustandsgleichung laOt sich ~ ~ durch folgende 

Beziehung ausdrucken: 
- -.. --. - ... ------- --. --_._.- ... _-- --_. -

_au_ = __ u_..£l?. _ ~ _a_T + 1_1<_-1_) -5 v __ 1 __ o-19 vr )+ _H_ 
ax Kp ox T ar r a 9r ar 9CpT 

(101 

Die GraGe H steht zur Abkurzung fUr die Dissipationsfunktion und den Warme­

leitungsterm in der Energiegleichung. Nach Einsetzen von G!eichung (10) in die 

x-Impu!sgleichung erhalt man nach Integration: 

- .::L = exp (- II [![( 1-~ 1 ~ ~ ) exp (II dr' 
u 0 a L 9U ax 

r 
_/ [_1_ (ll1/9 U - H/cp T 1 exp (II dr') 

o 9u 

(111 

Die GraOe III steht zur Abkurzung der Schubspannung in der x-Impu,,'gleichung 

und I bedeutet 

r w 2 dr' 
1=/ (1+---.r1-

o aL r' 
(12) 

Bei bekannten Einstrambedingungen f 1 (r) - f 3(r) kann v/u n3ch Gleichung (10) 

bestimmt werden, wenn der artliche Druckgradient a pI 0 x unbekannt ist. Er 

HiGt sich durch Differentation n~ch x und anschliel3ender. Integration aus 

Gleichung (5) gewinnen: 

..£l?. '..£l?. ax (x,r)= ax (x.r-co) 

/co( nw) [2 0 ( ) w aT w3 ) ( v) , 
+ ~ - - r'w - - - + --- - dr 

r r' r' ar' Tor' cpT r' U 

-i w
2 .££. dr·-iI2n 2- ~H) ~dr' 

r a 2 r' ax r cpT r'u 
(13) 

Die Grol3e 112 steht zur Abkurzung fUr die Schubspannung in der Q -Impuls­

gleichung. 
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Nach Gleichung (13) ergibt sich stets ein nichtverschwindender Druckgradient 

~ ~ (x,r), da in reibungsbehaftetcr Stromung v/u stets von Null verschieden ist. 

Ein heiner Kern kann dabei. den Druckgradienten vergroOern, wahrend die 

Umfangskomponente den Druckgradienten verkleinert. Dieser andert· seinen 

Einflur3 mit der axialen Machzahl. Das geht aus der x-Impulsgleichung .hervor, 

die sich in folgende Form bringen laOt: 
-----._-_.-._-_ .... __ .. _-- .. - .. ---_. __ .... _-

_a (_v) __ r1- ~u2 I ~1 ap '1 w 2 ) v , 1 a { au I (x-11 -- .--.,- --~-- rTJ- .-~H 
ar u a pu ax 0" ur QU~ r or ar po"u 

( 14) 

GJeichung (14) zeigt, daO bei Uberschalldurchstromung des Wirbels, d.h. uta > 1 

der crste Term sein Vorzeichen andert. 

Sollen nur die Funktionen f 1 (r) - f 3(r) auf ihre Kompatibilit5t mit der Schlank­

heitsbedingung, Gleichung (1), im Einstrom~uerschnitt GberprGft werden, kann 

dies durch Elimination der Druckgradienten aus den Impulsgleichungen gesche­

hen: Durch entsprechende Differentation nach x bzw. r und Subtraktion der 

resultierenden Ausdrucke voneinander, erhalt rnan nach Zusammenfassen 

a 22 ( ~) • G, (x, r ) -~ { ~ I • G2 (x, r)( ~). G3( x ,r I = a 
ar u ar u u 

(151 

Die Funktionen G 1 (x,r) - G3{x,r) lassen sich unmittelbar aus den Einstrombedin­

gungen ermitteln. Integration von' Gleichung (IS). ergibt dann die radiale 

Verteilung v/u, so daO nbgescrl:itzt werden kann, ob die Schlankheitsbedingung, 

Gleichung (l), erfUllt ist. 
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NUMERICAL PREDICTION OF FLOW IN SLENDER VORTICES 

* •• 
Luis Reyna and Stefan Menne 

Aerodynamisches institut, RWTH Aachen, West Germany 

Abstract 

We study the slender vortex approximation with attention put on high Reynolds 

number behaviour. It is shown that the breakdown of the approximation coincides 

, with the criticality' condition as introduced by Benjamin [12J • We study free 

vortices with and without an adverse pressure gradient for viscous and inviscid 

flows. Finally we compare to experimental results from Faler and Leibovich [B] .. 

* 

*. 

This research was conducted while the first co-author was at the Aero­

dynamisches Institut as an Alexander von Humboldt-scholar. 

Correspondence and proofs for correction should be transmitted to Stefan 

Menne, Aerodynamisches Institul, Wlillnerstr. zw. Nr. 5/7, 5100 Aachen, West 
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NUMERICAL PREDICTION OF FLOW IN SLENDER VORTICES 

. --Luis Reyna and Stefan Menne 

Aerodynamisches Institut, RWTH Aachen, West Germany 

1. Introduction 

Vortex breakdown was initially observed by Peckham and Atkinson [11 for leading 

edge vorth::es formed on delta wings at large angle of attack and with large tip 

angles. The phenomenon has a drastic influence on the aerodynamical behaviour of 

the flow. In flows around wings its presence strongly decreases the Ii ft [2,3] and· 

in combustion chambers it can be used to design flame holders [4] • Despite of the 

large amount of research on this subject, the problem of vortex bre3kdown can not 

be yet considered as being fully understood. The presertt state of the art can be 

found in the review articles by Ludwieg [5], Hall [6] and Leibovich [7] . 

In experimental investigations Faler and Leibovich [8] found six different cases 

of breakdown for a swirl flow in a divergent tube. Two of thf: n are nearly 

axisymmetric and called bL.bble type, the remaining have either a spiral or heli­

coidal shape. The spiral form is marked by a kink followed by a cork-screw shaped 

twisting of the vortex filament. In this case non-axisymmetric effects are im-

".~ portant and have to be included in the analysis of the flow [ 9] • 

* 

** 

This research was conducted while the first co-author was at the Aero-

dynamisqhes /nstitut as an Alexander von Humbolclt-scholar. 

Correspondence and prol)fs for correction should be transmit ted to Stefan 

Menne, Aerodynamisches Institut, WUllnerstr. zw. Nr. 5/7, 5100 Aachen, West 

Germany • 
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Vortex breakdown theories assume axial symmetry except Lud,,· ... ey's [10] whic.h 

regards it as a hydrodynamical instability of nearly axisymmetric flow. The 

important but unanswered question is the dependence of the breakdown type on the 

approaching flow. In order to explain the phenomenon Squire [11 J ' Benjamin 

[12,13J and Bossel [1 l l,15 J introduced the concept of critical state. The flow is 

called supercritical when perturbations can onlt propagate downstream and subcritical 

when there is an upstream influence. Squire [l1J suggested upstream perturba­

tions would accumulate and produce breakdown at the critical state where the flow 

proceeds from super to subcritical and the phase velocity of the perturbations is 

zero. Benjamin [ 12] showp.d the existence of two equivalent solutions to a 

conjugate flow, one being supercritical and the other subcritical. He then regards 

breakdown as a sudden transition from super to subcritical states, similar to the 

hydraulic jump. It is not possible to predict vortex· breakdown with this theory, but 

it allows a classification of flows. The significance of the theory can be seen in an 

experimental observation of Faler and Leibovi"ch [ 8] : "All flows that exhibit 

vortex breakdown of the "axisymmetric" form (which we classify as types 0 and 1 

disturbance form!:) or "spiral" form (our type 2) are supercritical upstre<lm, In the 

sense of Benjamin." 

The details of breakdown can be studied by numerical integration of the full 

Ni'lvier-Stokes equations. Lavan, Nielsen and Fejer [16] , Kopecky and Torrance 

[ 17], Grabowski and Berger [ 18] computed axisymmetric, laminar, incom­

pressible and stationary swirling flows. -Grabowski and Berger [ 18] found a 

backward flow for subcritical initial profiles in contrast to the classification of 

Benjamin [ 12J . Since the double r·ing stucture was not present inside the bubble, 

Faler and Leibovich concluded due to their experiments [19] that the numerical 
.-, 

~ solution shculd take into account time dependent periodic asymmmetric motions 

[19] . The time dependent calculation .done by Shi [20] showed correctly this 

structure. The computed flow was stationary upstream o~ the breakdown point but 

instationary and nearly time periodic downstream of it. This and similar 

computations ~re restricted to low Reynolds numbers, much lower than the ones 

present in technical applications. 

Plow pictures show nearly cylindric.'11 stre<lm surfaces upstream and this observa­

tion can be used in order to derive ar. approximation of the Navier-Stokes equations 

usually called the slender vortex approximation. The assumption behind this 

approximation i:: analogous to the one frorn boundary layer theory. The slender 

.. _-----, 



vortelC approximation has been used by Gartshore [21,22] , Hall [23-25] , Bossel 

[ 26], Mager [ 27], Nakamura and Uchida [28] and Shi [20]. The 

approximation based on small gradients and small radial velocities fails at the 

breakdown point but is vaiid upstream I\f it and generaily for stable vortices. 

The purpose of this paper is to study the high Reynolds number behaviour of the 

slender vortex approximation. In chapter 2 we prove that the breakdown of the 

approximation occurs at the critical state as remarked by Ludwieg [5]. In 
chapter} we present numerical solutions for different Reynolds numbers. In the 

limit of no viscosity the external pressure gradient determines the breakdown. First 

preliminary results are shown in [29] . Finally we compare to experimental data 

and discuss the advantages and limitations of the approximation. 

2. Slender vortex approximation 

Consider now the Navier-Stokes equations written in cylindrical coordinates 

(x, r, G) with correspondir.~ velocities (u,v,w) in a nondimensional form. The axial 

and 'radial velocity compo:-aents are normalized with the axial velocity and the 

pressure with its value at the initial static..n for r~ co. The lengths are normalized 

with the vortex core radius which marks the region of viscous flow. The 

circumferential velocity is normalized with its value at the initial station at the 

edge of the vortex core. 

Including the slenderness condition 

and assuming steady axial symmetric flow leads to a system of equations 

A.L.4x t 'IT.(..(.r -t t>x =:: R: f (r,ul")r 
"D wl. 
rr =r-

M. WI( "; 'IT-i:-(rW)r '0. ~ [~(rw)r]r 
\ 

(r..u.)x + (r'\T)r =- 0 

(1.0..) 

(2.1) 

(2c) 

(2d..) 
called the slender vortex approximation. Here the Reynolds number is based on the 

vortex core dimension and the undisturbed axial velocity and p is the pressure. 

-_ .. \' 
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Notice that the type of this syst'!m is n·o.-./ parabolic for viscous flow and hyperbolic 

for invic;cid flow cO:Jplad to two ordinary differential equations.' The first such 

•• equation is the momentum equation in the radial direction and the sc':ond 

t 
p 

(rtr)rr - ~ (r'I.T}r t f,u~r3 (rlw%)r - ; (~M.r)r] (ru-) c 

== ~~ [-~ (~ (r,ur)r)r + ~~ (f(rw)r)r ] 

can bc easily derived from (2). 

Due to the slenderness condition the approximation based on small gradients and on 

a small radial velocity fails in the neigho~urhood of the breakdown point. ,l\ccording 

to the theories of Sq:Jire [11] and Benjumin [12] the flow is supercritical 

upstream of this position and perturbations can only propagate downstre:lm. As a 

consequence the influence of the t-.reakdown bubble is not contained :n the slender 

vortex approximation. 

Symmetry conditons are imposed along the r = 0 axi:;: 

A..t.t-= 0 I '\T:=O J W= 0 (Lfa.) 

At the outer radiu~ thr. type of the system allows three boundary conditions for 

viscous flow and one for the pressure for inviscid flow; the physical boundary 

conditions for free vortices are 

(-p't' i,u.:z.)(r, X) --> C J 
(lfb) 

r~co 

where C is a constant taken from the initial conditions and p. (x) is the axternal 

prcssur'!. These boundary conditions are also valid for the inviscid s),stem when the 

radial velocity has a negative sign at infini~y, otherwise only the pressure 

can be given 

(Ire) 

The slender ·vortex approximation in vorticity, circulation, stream-function 

formulation becomes 

,u f)C + 1T fr -;c. (~T'r)r 

.Q = (~"fr)r 

• '---~.-----. "'-~-~--."""""--:--.-.' 

-"~""" 

(5"1» 

(5c) 
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with the vortic:ity I2. = -ur ' local circulation rr = rw, slrenm-functiiJn 'If nr-d 

v~locity compor ~nt.s 

.., 
I..J.. ::: C - r ·\t'r 

'lr; 1: "fx 
In the vorticity, circulation, stream-function formulation the swirl influence is 

given explicitly in the vorticity tran~p')rt. eq,·~·ion by the term I, 3 r / in ::ontra~t 
r 

to the form~lation in primitive variables where this coupling fol!ows impll~itly)v';, 

the pressure. For an isoltlted vortex it is advantageous to consider the pe .. tu~b?t.ion 

of the stream-function from paralh:1 flow. In this case the parameter 8 in eq.(ba) 

is equal to onej elo;e £ i: equal to Z!!rt), 

The boundary conditions. (4) corresponding to the vorticity-stream-function for­

mulation are at the axis of symmetry 

J 
(- ) +0.., 

At the outer radius t!.e boundary conditior.s (l;b) t.anslo~e into 

) 

r~oo r_co 

where C =,(P
i 

+ ~u~) is a constant ~a!{en from the initial conditions .,nd p .... (x) is 

the external pressure. The parameter p-> specifies the rate of the circumferential 

velocity lit the edge of the vortex core to the axi;:d velocity at infinity in the initial 

station. "l'hese boundary condit;ol"s are .;:so valid for the inviscid sy"tem w"en the 

radial velocity has a negative sign at infinity, otherwise only the pressure 

-) can be given 

1'-~ l'co (x) 
t-+co 

Finally for viscous flows in a pipe the no-slip conditior. 

,IJ.. =. 0,.', "tf~ 0 J W i= 0 
holds at the outer radius. 

For free vortices the corresponding bou:·.dary conditions for (3) are 

'\T d...J.J..oo 
tr=O at:. r==o and. 'lTr+--r+~== 0 a.t r~co 

where v..,.. ex) = -{ 2(C-Pc.o (x»'is a given function. 

,. .... .. ~-. 

(t cl.) 

(7-e.) 
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Initial conditions ha\~ to be provided for the axial nnd circumferential velocity 

M.. (r, Xo) = Mo (Y') 

W Cr, '1<'0) ::= \\10 er) 

The pressure, the radial velocity, the vorticity, the circulation and the stream-

. function can be obtained from them. 

Solutions of the slender vortey approximation can cease to exist due to two 

different mechanisms: first, when the axial velocity vanishes somewhere in the 

flow and second, when the radial velocity become~ unbounded. The first case is 

similar to the boundary layer separation while the second is related to the 

criticality condition introduced by Benjamin [12]. The se("'ond situation arises 

since there is no viscosity present along the axial direction and therefore 

unbounded gradients along it can appear. Since the viscosity present in (2) only 

controls tt)e radial gradients of the axial and circumferential velocity components 

axial gradients and also the radial velocity can grow infinitely. Moreover, in this 

case the solution tends to that of the homogeneous problem (3). 

Indeed numerical solutions of the slender vortex approxir:'ation sh,w that the 

viscous forces are really small compared to pressure and inertia forces near 

breakdown of the slender vortex equations. 

As in boundary layer theory t'1e behaviour of the approximated .md the full Navier­

Stokes s)'slem are identical shortly before breakdown when the proper boundary 

conditions are imposed. We return to the point when comparing predictions of the 

slender vortex approximation and expcrimental results. 

We now comtJare this breakdown' condition to the criticality condition ~s introduced 

by Benjamin [12] (see a!so Hall [6 J ). 
Benjamin co'nsiders steady, inviscid and axisymm~tric flow. Intl'oducing the 

streamfunctio~ 'f' with u = ~ 'rr and v = - ~~, the tot31 head h = P + ~u2 +v2 +\,,.2) 

and the circulation r = rw the equation of motion for these flows can be 

summarized in a single eQuo::tion fur the stream-function. 
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We now consider a perturbation of 0 qu;;sicylindrical flow 

"/(>:,1')= 1'c>:,r) + c f(x,r) eYx 
(10) 

where £.« 1 and ~ ~« 3 ~. This perturbation introduced in (9) and neglecting 

higher order terms in e yields an equation for F. The critical state F corresponds 
. c 

to 'f = ° and in this case 

fct"r- ~fer + [-~(~).tr)r+ riM.%. (r1 w1)r]Fc ==0 ('11) 

If the solution with initial data F = ° and F = 1 at r=O vanishes away from the c cr 
axis the flow is subcriticalj when this solution vanishes at both the axis and outer 

radius R it is said to be critical and otherwise supercritical • 

In comparison to eq.(ll) the equation for the radial velocity (8) 

(r'lT")rr - i (rv-)r + [-.:;. (~.ur)r+ r3~:' (r2. w2.)r] (r1Y) = 0 ('12) 

shows an identical form with the boundary conditons 

tT d. .u. cO 0 a:C r 1&0' 'R.. V'~ 0 a.-C Y'-= 0 a.\'\ 0" tTr + r 1- c:l x = 
where the outer radius R has a finite value with R» 1. 

The general solution of eq.(l2) reads 

(r1T) = C H (r) 
where the boundary condition (rv)(r=O) = ° is already used. 

With the constant C the solution function H(r) can be adapted to the boundary 

condition· at r=R. Excluding the trivial solution v; 0, i.e. v(r=R)'*O, the demand 

r-7'R.: H~ 0 

leads to a critical case, since necessarily the constant C has to go to infinity and 

consequent! y 

0< r < "'R.: (rv) ~ 00 

This charact~.ristical behaviour of ~he radial velocity is present in the slender 

vortex approxi~ation in the vicinity of the breakdovm region. A comparison of this 

critical case with the previously described critical flow state according to the 

theory of Benjamin [121 leads to a complete agreement: eq.(ll) and (12) are 

equivalent to e:Jch other just as the boundary and the criticality conditions since 

the condition F = 1 excludes only the trivial solution. cr 
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Now :.ve can see that the breakdown condition for the slender vortex approximation 

corresponds to the condition from Benjamin [12] and breakdown can be seen as a 

transition from supercritical to subcritical flows as remarked by Ludwieg [5] . 
Hall [6] reached also the sarne conclusion. He explained the equivalence using 

the existence of two solutions for the slender vortex a small distance apart from 

each other which do not coincide as the distance tends to zero. He then shows that 

"the condition for the appearence of arbitrarily large axial gradients turn out to be 

identical to the condition for the critical" [6] . 

3. Solution and results 

We used both the primitive variables and the vorticity-stream function formulation 

for the numerical solution of the slender vortex Clpprcximation. In a first approach 

we used primitive variables with centered discretization. The radial velocity is 

evaluated only at the midpoints of axial intervals (see fig. 1). The discretization 

only use two "time" levels making it convenient for variable axial spacing. The· 

function value distribution is shown in fig. 1. 

Here foo denotes the numerical solution at the (i,i> node corre:;ponding to 
IJ 

(x,r) = (i6x,jDr), where 6x and 6r are the axial and radial spacing. The equations 

are solved marching along the axial direction as the type of the system indicates it. 

At each new axial station a s)'stem of nonlinear equations must be solved. This is 

done using Ne~ton's approach and a linear band sol ver for the Jacobian invei'sion. 

In order to decrease the band width, the symmetry condition for the axial velocity 

is applied as 

/ 
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instead of three point extrapolation formula. (This boundary condition also holds in 

the inviscid case). The discretization is second order accurate in botl1 radial end 

axial direction and unconditionally stable with respect to the size of Ax. 

Nevertheless during the calculation the size of t::.. x is decreased when the Courant­
v. ~ 

Friedrichs-lewy number CFl = max . ...!.. A2 exceeds a predetermined constant 
I u. u r . 

CFl. • t::.. x is also decreased when the Newton's procedure fails to reduce the 
max 

residual below the tolerance limit TOl after NEW iterations. max 

Normally we use CFl =2, NEW =3 and TOl=10-4, being the solution not max max 
sensitive to these values. 

The second numerical approach was applied to the vorticity stream-function 

formulation (6). We use again centered discretization with function values 

determined at node points except the radial velocity which is evaluated £It inter­

mediate axial points 0+ !,i> (Crank-Nicolson formulation). The resulting discreti­

zation is unconditionally stable and second order accurate. At each new axial 

station a tridiagonal system must be solved for the stream,;.function, vorticity and 

circulation. For a free vortex the equations are not coupled through the boundary 

conditions and.therefore can be solved iteratively as follows. We initialize 

(0) 

M..iot.{.j = )J..<',j 
(0) 

U--\+"I~,j::: tJi-"l1tl 
(1{,) 

and using these values compute r (1) and then.Q.(l). 

Next the stream-function "p (1) is computed and a new iteration can be started~ The 

procedure is repeated until 

where iterative procedure has a low storage 

requirement, .?nly two axial stations has to be kept. It has the drawback to be only 

convergent for,supercritical profiles. This is not the case for the Newton's-i,eration 

approach that allows subcritical initial profiles. On the other hand initially 

subcritical profi les are of little physical inte rest since these f lows can be regarded 

as already broken down according to the theories of Squire [ 11] and Benjamin 

[12] • 

I 
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The converger~ce problem translates 'into increasing number of' iterations as the 

flow reaches criticality conditions. In these situations the axial step is decreased in 

order to keep the amount of work low; this also gives a better axial location for the 

breakdown point. Each line the axial step is decreased, the' iteration is restarted 

with the last converged values. 

Since few grid points are required outside the vortex core we use a transformation 

in the radial direction 

r: (OJrMCl)()~ (5': (O'()mo,. ... ) 

r _ taft (.~ (5) (18) 

rt?tQ.,)( - -cak (~6",,1I.)() 
The uniform spacing in the r; -direction gives almost a uniform distribution in the 

radial direction when ~ «1 and an accumulation of grid points near the axis max 
when G' ~ 1. The pressure is obtained integrating the radial momentum max 
equation 

where 

The initial value is the pressure at r:5 • 9 is an even function of C5 • In order to max 
decrease the truncation error the pressure is integrated analytically outside the 

vorticity core where the circulation is constant. 

The initial values are taken as 

M.. ::: -1 + oc f (r) with o 

Wo: f.>~(r) wi~'" ~cr)::-{~C2,-r2.) Jr~11 
,r I r":? If 

, (20) 

These polynon:ial distributions are alroady used by Mager (27) , Grabowski and 

Berger [18] 'and Shi [20] and " ••• \.vere chosen to approximate the experimen­

tally-measured velocity in vortex cores such as those of trailing vortices ••• " [10] . 

The parameter 0<. controls the shape of the axial profile, uni form flow for OC = 0, 

jetlike for 0<. >' 0 and wakelike for c:« O. The circulation corresponds to solid body 

rotation for r« 1 and to potential flow outside the core of vorticity. The 

polynomials fulfill symmetry conditions and providr; a smooth transition form the 

, ... !!O.s:"MB 

...... 
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solidly rotating core into the outer flowfield. The parameter r.:, speci ties the rate 

of the circumferential velocity at the.edge of the vortex core to the axial velocity 

at infinty in the initial station. 

We now return to the boundary conditions for free vortices. We assume constant 

pressure gradient 

~"Poo 
clx 

==7: 
Then the slender vortex equations can be scaled using 

.., 
X=X,'t 

" 
and therefore the pressure gradient for the transformed sy.>tem is equal to one. The 

flow is relevant for values x < ~ since the outer continuitly desacceleration of the 

outer flow makes the outer axial velocity vanish at ';(' = i. 
When no pressure gradient is present in the outer flow the scaling 

';::f. X 
X== ~ J 

(23) 

makes the equations and the initial conditions Reynolds number independent. 

Notice that the axial coordinate is stretched but the radial coordinate is left 

unchanged in contraJt to boundary layer type of scaling (e.g. Hall [25J). The 

result is an increasin~ breakdown length for increasing Reynolds number in contrast 

to experimental observations [30J for which the location reaches a limit. Due to 

this behaviour at high Reynolds number we do not expect this to be the physical 

mechanism behind breakdown which we believe to be pressure induced. 

For tube flows the numerical procedure for the stream-function formulation w?s 

slightly changed due to coupling of the vorticity and stream-function through 

boundary conditions. The stream-function was computed from the fourth order 

differential equation obtained when (6c) is introduced in (6a) and using a five point 

centered di:;crctization. For the primitive variable formulation these new boundary 

conditions int~oduced no new complications. 

\ 

In order to resolve the boundary layer on the tube wall, the following stretching 

function was used 

with R(x) being ti,e tube radius ::md G'm = 0.0. 

,/ 
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Faler and Leibovich [0] measured several velocity distributions which were used 

as initial condition for the flow calculations. 

We study our breakdown criterion described in chapter 2 by applying it to free 

flows driven by a pressure gradient which reach critical state already in the initial 

section. We used simplified profiles that allow us to do analytical work: 

. {-1+~) ,«.-: 
o 1 ) 

. {2.~r 
) Wo = ~ 

r 

) r~ r'ff 
r ~~Yi' 

These profiles are an approximation to the profiles used in the numerical examples. 

The axial velocity distribution is discontinous and the circumferential velocity can 

be described by solid body rotation inside the core and potential flow outside of it. 

Introducing these distributions in (12) we obtain 

and (2b) 

where 

Since the axial velocity is discontinous jump conditions have to be prescribed 

[31J : 
'tJ"~ 

[:u:-J= 0 
* where [r] denotes the jump in the values of ~ across r. 

The solution of eq.(l6) reads 

v- == C" ;.1 Cl) 
cl 

tr::: cz'r + r 
for r ~ ill 
(.or r > ~ yz 

(2~) 

(1.8) 

where J
1 

is t~~ Bessel function of the first kind of first order. The cor';tant c2 is 

determined by the pre~sure gradient at infinity. Since the condition v = 0 at r = 0 is 

already used, the constants c
1 

and c
3 

are determined by the jump conditi,)ns (27). 

It follows 

(lQ.o.) 
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Criticality is already reached when 

that is 

OCG. = J 0,0 
with. 

[ J..A%.(r...r J'*' - -) =0 r .v.. r 

(31) 

(j is the first non trivial zero of the zeroth Bessel function J ). This critical 
0,0 0 

curve is drawn in figure 2 as a dotted line. The curve marked by triangles shows the 

numerical profiles which are initially critical. Due to the undershoot in the axial 

velocit)· for c« 0 of the discontinuous analytical distribution when compared to the 

numerically used profiles, the limiting curve lies too high producing a destabilizing 

effect (oc> 0 produces the inverse effect). The overshoot of the analytically used 

profiles for the circulation shifts the cu~ve C>C G(~) upw:::rds. The numerical results 

can be summarized as follows: Or the right side of the limiting curve in fig. :2 no 

solution of the slender vortex approximation can be found (subcritical region). At 

the left there exists a region where vortic~s have a limited breakdown length. In 

the following region at the left no vortex breakdown appears at all. The vortices 

are stable and dissipate themselves away • 

3.1. Isolated vortex for inviscid and viscous flow 

Figs. 3-6 shoW results for the free vortex with e;: = 0, {:> = .8 and ~ = O. This 

vortex breaks down at ~e = 0.015. In fig. 3 we show the relative str'tncgth of the 

forces present in the axial momentum balance. Here F p is the pressure force, FI 

the inertia and F V the viscous force. Initially pressure and inertia forces are almost 

equal while viscous forces are much smaller. Near breakdown both pressure and 

inertia forces show a dramatic inc· ease in their strength. This increase is not 
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present in the viscous forces. Near brp.akdown the flow is essentially inviscid, 

viscosity plays a secondary role. This is in agreement with the corresponding 

theories. of Squire [111 and Benjamin [12J and· the critical condition which calls 

for a non trivial solution to the homogeneous version of equation 0). 

Fig. 4 shows the radial dependence of the three components of the velocit y vector 

at different axial stations. The circumferential velocity decreases in magnitude and 

the axial velocity develops a wakelike profile as the flow reaches breakdown 

conditions. The radial velocity shows a dramatic increase just before breakdown, 

similar to that of the pressure and inertia forces. Fig. S presents the radial distribu­

tion of the pressure. The behaviour of the pressure is quite similar to that of the 

axial and circumferential velocity component. Fig. 6 shows the axial distribution of 

the pressure and of the radial velocity at di fferent .ldial distances from the sym­

metry axis. Notice an almost linear change in the pressure until shortly before 

breakdown. In fig. 7 and 8 the velocity components and the pressure are shown at 

different axial stations for inviscid flow. Fig. 9 demonstrates the in:ial dependence 

of the pressure for inviscid flow. The good agreement of the breakdown process 

compared to the viscous case indicates that breakdown is an inviscid phenomenon. 

Fig. 10 shows the dependence of the breakdown length on the initial profiles for 

free vortices without adverse pressure gradient. Here only supercritical profiles are. 

considered. We also show the corresponding results obtained by Shi [20] by 

solving the time dependent Navier-S~okes equations. The shnder vortex approxima­

tion is in good agreement with his numerical results. 

For a given f.>, there exists a lower bound for ~ leading to initially supercritical 

profiles. It is possible nevertheless to numerically solve system (2) starting with 

subcritical profiles when using primitive variables in conjunction with a direct 

solver. We found that all such flows exhibit breakdown ilt some axial distance from 

the initial profile. 

The increase of the jet type profile provides a stabilizing effect on the flow. For OC 

large enough ~nd passed a critical v;111Je the vortex does not break down at all and 

viscosity only flattens the profile·s (~his is usually referred as aging of the vortex) 

(see. fig. 11). The effects of ~ on the flow are still important near its critical 

value. For ~ passed this value the axial velocity at the axis decreases initially but 

after reaching 0 minimum value increases again with no breakdown of the flew. 

There is no unbounded growth in either the pressure gradient or the radial velocity 

any longer • 
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Pig. 12 shows results for vortices with constant external pressure gradient * = 7: and fig. 120 an increase in the breakdown length for increasing 

Rly'n~lds number with its value attaining a limit for Re .... CXI. This is the expected 

behaviour for vortices that exhibit breakdown without external pressure gradient. 

Vortices that are stable in absence of pressure gradient (here c( = 1.1) can break 

down for Re''t' large enough {in this case Re" it 0.1) but are stable' otherwise. as 

once more expected. 

Pig. 12b shows the dependence of the breakdown length for small pressure gradient. 

Por 'l: small we can see xSO/Re reading the expected values obtained from the 

vortex without pressure gradient shown in fig. 10. Por increasing Reynolds numbers 

the ratio xSO/Re tends to zero since xsotends to the limit ,shown in the left 

picture. Pig. 13a and Db show similar results obtained from different swirls. We 

can see again the disappearence of breakdown for stable vortices for small enough 

pressure gradients. 

In order to stress the influence of the pressure gradient on the flow we sketch in 

fig. 14 the results from figs. 10. 12 and 13 combined for Re·'t' = 10. The flow is 

shown to be extremely sensitive to small pressure fluctuations at large Reynolds 

numbers. A change in 1% in the pressure. normalized with the dynamic head. over . 
one vortex core length translates into a 100% change in the breakdown length for a 

Reynolds number of 1000. 

The behaviour of the flow' shown in figs. 12 and 13 can also be found in 

experimental investigations. Werl~ [29] found that the breakdown length of a 

leading edge vortex formed on a delta wing does not change for high Reynolds 
4 numbers (Re

L
> 10 ) for an angle of attack of 20 degrees. If w~ assume that the 

adverse pressure gradient of the vortex lies approximately in the range of 0.5 to 2% 

of the dynamic head over the vortex core radius, then the value of Rr·7: lies 

between 50 and 200. 

Par these va',ues the breakdown length has approximately reached its ultimate 

value acccpteq for Re·T-t CO (Pig. 12a and 12b). The extreme sensitivity against 

adverse pressure gradients shown in fig. 14 can be observed also in fig. 15 (from 

[30J ). Although the obstacle is positioned far downstream of the brc'lkdown 

point, there is a signi ficant change in the breakdown length. 
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3.2. Comrmrison to experimental results 

Faler and Leibo\'ich [0] performed several experiments on vortices in divergent 

tubes. The swirl component was generated by swirl \' ",nes and afterwards the flow 

was led through the tube. Profiles for the axial and circumferential velocities were 

measured 1/} diameter upstream of the divergent part of the tube. The opening 

angle for the tube was 1.4}0 and various mass fluxes and swirl vane angles of 

attack investigated. They found six di fferent breakdown types for the flow, the 

corresponding breakdown lengths and their dependence on the Reynolds number and 

swirl parameter are shown in fig. 16. The Reynolds number is based here on the 

averaged axial velocity rmd the diameter of the tube. 

Since the slender vortex approximation only deals with axisymmetri~ flows, only 

bubble-type brenkdown is considered in this comparison (types "0" and "1"ar.cording 

to tne terminology used in [ 8J). Stable bubble structures are only present for 

certain ranges of circulation GJ and Reynolds number Re. 

One more inconvenience causes from the lack of detniled information on the 

boundary layer structure for high Reynolds number!'. Fig. 16 shows the numerical 

and computational results combined. The initial distributions are constant along 

each solution curve a'nd coincide' with' the experimental value,s only at nodes marked 

(*). For lc) = 1.07 we can see a good agreement, the trend of decreasing breakdown 

length for increasing Reynolds numbe~s is present and the n~merical values are' 

similar. For Re around 2500 and below no breakdown occur in the numerical 

experi ments. 

For W = 1.54 the . _merical prediction of the ,breadown length decreases for 

increasing Reynolds number Inrger than 3000. This behaviour reverses itself for 

1000 .!: Re f 3000. For Re ~ 1000 ther~ is no breakdown present in the numerical 

experiments. The prediction of the breakdown length is now far off from its 

experimental counterpart. The phys:cnl reason behind this phenomenon is the 

sensitive behaviour of the flow on prc:;:;urc variations. The pressure prediction 

obtained from the slender vortex approximation does not take into 'account the 

influence of the bubble presence on th;: pressure field acting on the vortex core. We 

propose that a good prediction of the breakdown location can be obtained from an 

inviscid calculation for the vortex core with an e.xternal pressuie gradient obtained 

from the numerical solution of the full Navier-Stokes equations without the 
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slenderness ap;>.oximation. This is an explanation for the fact that the numerical 

prediction strongly deviates from the experimental results. Moreover, the assump­

tion of sel fsimilar inflow profi les is not fulfi lied in this case (Re'= 6000). To 

compare with experimental data we had to assume selfsimilarity to transfer to 

other Reynolds numbers because only a few inflow profiles are given in [8]. 

The lack of upsteam influence in the approximation leads to predictions for the 

breakdown length which are longer than the observed values. Nevertheless, for all 

. calculations of Wand Re the inflow profiles are supercritical and upproach critical 

state near breakdown. 

Faler and Leibovich make the following remark: 

"All flows that exhibit vortex breakdown of the "axisymmetric" form (which we 

classify 8S types 0 and 1 disturbance forms) or "spiral" form (our type 2) arc 

supercritical upstream, in the ~ense of Benjamin" [8] '. 

4. Conclusions 

The slender vortex approximation was studied in particular for high Reynolds 

numbers. For free vortices without external pressure influences the breakdown 

length is proportional to the Reynolds number. For free vortices v:ith adverse 

pressure gr.adients, the breakdown length is inversely proportional to the .. alue of 

its gradient. Flows with small pressure gradients take a long distance t~ breakdown. 

For low Reynolds number the prediction of the simplified system agree quite well 

with the. ones obtained from solutions of the full Navier-Stokes equations. It was 

fOlJnd that the flow becomes quite sensitive on pressure fluctuations for high 

Reynolds numbers and that the failing of the slender vortex equations corresponds 

to the critical condition from Benjamin [12J for inviscid flows. The last comment 

holds since viscous forces arc negligible near breakdown compared to inertia and 

pressure forces. The viscous forces do playa role for low pressure gradients by 

controlling the aging process. The predictions from the approximating system were 

compared to experimental results and for low swirl a good agreement · .... as obtained. 

For higher swirl upstream effects on the pressure produced by the breakdown 

bubble deteriorates their agreement. This can not be incorperated into the slender 

vortex approximation. 
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Fig. 2: 
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Fig. 3: 

Fig. 4: 

Fig. 5: 

Fig. 6: 
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Coordinotc systern and rJrid derinition 

Stability diDgram for \'l,rtex breakdown 
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Transition from super- to subcritical flow according to Benjamin [12J 

Breakdown at inflow section for slender vortex approximation, initiol 

condition (20) 

Region of temporary stable vortices 

Breakdown at inflow section for slender vortex approximation, initial 

condition (25) 

Axial variation of the inertia, pressure, and viscous forces per unit 

volume as computed with the viscous slender-vortex approximation 

Radial profiles. of the axial, radial, and circumferential velocit}, 

components computed with viscous slender-vort,ex approximation 

Radial profiles of the static pressure as computed with viscous slender­

vortex approximation 

Axial variDtion of the axial velocity component and of the static pressure 

as computed with the viscous slender-vortex approximation 

Fig. 7a: Axial velocity profiles computed 'with slender vortex approximation for 

i'r)viscid flow 

Fig. 7b: Radial velocity profiles computed with slender vortex approximation for 

inviscid flow 

Fig.7c: Circumferential velocity profiles cOl,nputed with slender vortex approxi-
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Fig. 9: 
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Pressure profiles cornrlJtcd with slender vortex approximation for 

inviscid flow 

, 
Axial pressure variation computed with slender vortex approximation for 

inviscid f'''w 

Fig. 10: Shape parameter" as a function of the breakdown length. Computed for 

several swirl rates 

Fig. 11: Axial variation of the axial velocity component computed with viscous 

slender vortex approximation 

Fig, 12a: Breakdown length as a function of the Reynolds number for constant 

externally imposed pressure gradient 1:" _ Computed with viscous slender­

vortex approxiamtion 

Fig, 12b: Br~akdown length as a fu~ction of .imposed external pressure gradient -r: 
for constant Reynolds number. Computed with viscous slender vortex 

approximation 

-
Fig. 13a: Same as Fig- 12a. The ~wirl parameter ~ = 0.8 

Fig, Db: Same as Fig. 12a. The .~;wirl parameter ~ = 0.8944 

Fig. 14: Influence of an externally imposed axial pressure gradient 7: on the 

breakdown length as computed with the viscous slender-vortex approxi­

mation 
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Fig. 15: Influence of an extcrnnlly impor.l!d axial pressure gradient on the 

breakdown length. (From [~O]) 

Fig. 16: Comparison of experimzntal data (from [8 J ) and numerical results wit"h 

slender vortex approximation. The type of disturbance (0-6) and its mean 

axial location vs. Reynolds number. 
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