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SECTION 1 - INTRODUCTION

The purpose of early orbit determination methods is to de-
rive a set of orbit elements that match available observa-
tions, when, initially, the orbit elements are not well
known or not known at all. Characteristically., early orbit
determination methods use approximate physical models and
observations collected over a limited time span, usually
less than one orbital period, in order to accelerate proc-
essing. Early orbit methods are a necessary part of orbit
operations procedures. As NASA converts its spacecraft
tracking from the ground-based system (Ground Spaceflight
Tracking and Data Network (GSTDN)) to a satellite relay sys-
tem (Tracking and Data Relay Satellite System (TDRSS)), it
is necessary to have a reliable early orbit method available
in the GSFC Flight Dynamics Facility (FDF) that functions
with TDRSS tracking. This memorandum reports on the devel-
opment and verification of such a method.

Currently existing early orbit methods make use of angular
antenna pointing observations collected at the ground sta-
tions. However, as is discussed in Section 2, the open loop
TDRSS angular antenna pointing observations are too inaccu-
tate for use in even early orbit determination; therefore,
an early orbit method that uses the precise TDRSS range and
Doppler tracking exclusively is required. Since the problem
is basically one of solving a set of nonlinear equations,
which specify that the predicted observations match the ac-
tual ones, the significant mathematical advances of the last
10 years in this area seemed to be applicable to the prob-
lem. It appeared that one of these recent advances, the
homotopy continuation method for solving nonlinear systems
of equations, was particularly well suited for early orbit
determination, where a priori estimates of the solution are
often quite inaccurate or not available. This memorandum
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centers on the formulation and testing of the homotopy con-
tinuation method for orbit determination using TDRSS.

Section 2 presents a description of the TDRSS early orbit
problem and indicates characteristics that are desirable in
an early orbit algorithm. Section 3 gives an extended dis-
cussion, with simple examples for illustration, of the par-
ticular formulation of the homotopy continuation method that
was studied. This section also includes a description of
the trajectory and observation models used in this study, as
well as a detailed description of the numerical computa-
tional algorithm that was developed. Section 4 presents two
detailed numerical examples, one with real TDRSS tracking
and the other with simulated tracking. Section 5 considers
a particular implementation of the early orbit algorithm,
one that is fairly complete and automatic, and measures its
performance over a large number of Monte Carlo trials.

The main drawback of the formulation of the homotopy contin-
uation method that is given in Section 2 is the occurrence
of disjoint solution loops. Section 6 develops a generali-
zation that remedies this problem; Section 6 also indicates
a remaining problem to be solved if the method is to be ap-
plied in least-squares orbit determination. Sections 2
through 5 consider only the six-observation case.

The conclusion, Section 7, provides a brief summary of re-
sults found in this study, and suggests main directions for
additional enhancements of the method.



SECTION 2 -~ THE TDRSS EARLY ORBIT DETERMINATION PROBLEM

This section describes the general nature of the TDRSS early
orbit determination problem and the characteristics that are
desirable in a solution method. The main difference between
early orbit determination ﬁith TDRSS and with many other
tracking systems is that the open loop angle information
available is relatively crude in TDRSS. Also, small angular
errors from geosynchronous distances map into large position
errors for low-altitude spacecraft. Consequently, standard
existing algorithms (Reference 1), which rely heavily on
angle measurements, are not directly applicable, and addi-
tional methods must be devised for early orbit determination
for the case of pure range and Doppler tracking.

The TDRSS relay range and Doppler measurements have a high
precision; analyses performed at GSFC indicate typical meas-
urement noise standard deviations of about 0.5 meters and
0.5 millimeters per second, respectively. However, the re-
ported values of the Tracking and Data Relay Satellite
(TDRS) antenna beam angles are not actual measurements (in
the S-band Single Access (SSA) mode and the S-band Multiple
Access (MA) mode), but, rather, they are the predicted
angles for open-loop antenna pointing and are based upon the
predicted trajectory of the target spacecraft. Range and
Doppler tracking can be performed only when the target
gpacecraft lies within the TDRS antenna beam. 1In the SSA
mode, the antenna full beam-width is 1.9 degrees, while for
the MA mode, it is about 3.0 degrees. For the K-band Single
Access (KSA) mode, in which closed-loop antenna pointing is
used, the antenna full beam-width is much smaller, 0.44 de-
grees. (However, the KSA mode is not used for applications
where large errors are likely because of the small acquisi-
tion angle errors, which must be adhered to. Also, most
TDRSS user spacecraft do not have K-Band capability.) For
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comparison, the full-width of the Earth, as seen from a
TDRS, is about 17.4 degrees. (See Figure 2-1).

Typical circumstances under which an early orbit determina-
tion method may be required are as follows.

Consider a spacecraft which, after some period of routine
orbit maintenance, is scheduled for an orbit maneuver or,
consider a malfunction of an expendable launch vehicle.
Hypothetically, because of a malfunction in the thrusters
themselves or in attitude control, the actual vector thrust
might turn out to be different than was planned. Since
open-loop antenna pointing is based upon the planned orbit
rather than the actual orbit, the spacecraft might stay
within the antenna beam pattern, and relay range and Doppler
measurements may be collected for some short periods of
time; the length of time would depend upon the severity of
the malfunction before contact is lost. Perhaps, through
continued attempts to find the spacecraft, isolated addi-
tional contacts might be made, and some additional tracking
may be collected. At this point, with or without the addi-
tional contacts, an early orbit determination method would
be required to determine the orbit from the limited avail-
able data and poor a priori knowledge of the orbit elements.

The orbit determination error that is caused by the uncer-
tainty of the spacecraft position within the antenna beam
can be large. This is illustrated in Tables 2-1, 2-2, and
2-3. 1In these tables, orbits that correspond to locations
near the edges of the SSA antenna beam are compared with
orbits that correspond to the beam center. These tables
show the error that can result if the errant spacecraft is
assumed to be at the beam center and an orbit is then de-
rived using this (incorrect) assumption. Tables 2-1 and 2-2
are for low-altitude, circular orbits at low and high in-
clinations, while Table 2-3 is for a low-inclination, highly
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eccentric orbit. 1In each table, four different angular off-
sets near the edge of the SSA antenna beam are considered,
the same offset being applied at t = 0 and t = 25 minutes.
The range measurements at these two times are assumed to be
the same for the beam-centered and offset orbits.

(In Tables 2-1, 2-2, and 2-3, an orbit is considered to be
determined by two sets of azimuth, elevation, and range.)
Brrors will be correspondingly larger in the MA tracking
mode because of the larger antenna beamwidth.

As indicated by the tables, the SSA one-revolution position
errors can easily be as large as 1000 or 2000 kilometers.
The uncertainty in angular position causes errors of this
size for three main reasons: (1) error in the orbit plane
orientation, (2) error in the true anomaly difference be-
tween the two derived radius vectors, and (3) error in the
magnitudes of the two derived radius vectors. The latter
two effecis are illustrated in combination by Figure 2-2.
Bffect (1) can cause very large errors when the true anomaly
difference is close to an integral multiple of 180 degrees,
while effects (2) and (3) will become especially sensitive
to angular errors for small values of the true anomaly dif-
ference.

From the results in the tables, it is clear that the TDRS
antenna beam angles cannot be used as primary data in deter-
mining the orbit. However, this data is useful in defining
an a priori estimate of the orbit, which can then be used to
initialize calculation of a final solution that is based on
precise range and Doppler data alone.

Although the range and Doppler measurements are sufficiently
precise, there is a mathematical problem in performing orbit
determination exclusively with such measurements. The prob-
lem is that six range and Doppler measurements do not
uniquely determine the orbit; that is, the problem can have
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several distinct solutions. 1In the TDRSS tracking configu-
ration, four distinct orbit solutions are typically found,
and, in this study, up to 12 solutions have been encountered
in a small number of cases. This multiplicity would persist
even in a least-squares formulation. Solution multiplicity
leads to reduced radii of convergence near the “correct®
solution when iterative methods, such as the Newton-Raphson
method, are used to solve the equations numerically. Be-
cause of solution multiplicity, the TDRSS early orbit method
must contain a technique for systematically isolating and
collecting the solutions for the given set of observations
and for testing each of them against additional constraints,
such as the antenna beam angles or additional range and
Doppler data, as well as reasonableness of the orbital ele-
ments. For example, large plane changes and large energy
changes wmay be beyond the AV capability of the vehicle,

and some solutions can be easily discarded.

In addition to handling the multiple solution problem, the
early orbit method should possess the following general and
specific characteristics:

1. The method should always yield the correct orbit
solution with valid tracking data, regardless of the error
in the a priori orbit estimate; that is, it should construct
the correct solution given any a priori estimate. (The term
“correct" solution requires some clarification. With suffi-
cient range and/or Doppler tracking, only a finite number of
orbit solutions exists, except for special geometrical con-
figurations. One solution in this finite set corresponds to
the actual orbit in the sense that as the observation and
modeling errors are continuously reduced to zero, this “cor-
rect® solution is the one that approaches the actual orbit.)

2. The method should determine the orbit without
numerical problems, given any mathematically sufficient

2-9



distribution of tracking. Special geometrical tracking con-
figurations and tracking time distributions must not be re-
quired. That is, if an observation set can define the
orbit, the method, or, at least a finite number of possible
orbits, then the method should be capable of finding the
solution.

3. 1t would be desirable for the method to utilize any
of the precise TDRSS tracking types, including range only,
Doppler only, mixed range/Doppler differenced Doppler, and
hybrid range and Doppler types. Data from any of the
TDRS's, or in combination, should be usable.

4. The availability of a good a priori orbit estimate
should speed the determination of the solution.

5. The method should have a capability to refine its
initial two-body solution using improved physical models for
the trajectory and for the measurements. This will enable
subsequent TDRSS acquisition of the spacecraft by providing
a good predicted trajectory.

6. The algorithm must redetermine the range ambiguity
numbers in the case of a very poor a priori orbit estimate.
For S-band tracking, the range ambiguity distance is approx-
imately 13,000 kilometers, which means that points along the
line of sight at intervals of 13,000 kilometers from the
initial, ambiguous distance, are candidates for the unambig-
uous value of the range. (This redetermination should be
necessary only rarely, because an orbit so far in error is
unlikely to fall within the limits of the predicted TDRS
antenna beam angles.)

7. For the Space Shuttle and other applications, the
algorithm must succeed without range tracking; only Doppler
tracking and the antenna beam angles will be available.



A three-stage early orbit determination method is considered
in this report. The first stage, using range measurements
and using the antenna beam angles as measurements, derives a
preliminary solution from any a priori orbit estimate. The
second stage, using only range and/or Doppler measurements
and the first-stage solution as an a priori estimate, deter-
mines an intermediate solution, which is based, like the
first stage, on two-body dynamics and simple measurement
modeling. The third stage uses the intermediate solution as
the a priori estimate and uses the same range and/or Doppler
measurements, but improves the physical accuracy by using
more precise trajectory and measurement modeling to derive
the final solution. 1f a good a priori orbit estimate is
available, the first stage can be bypassed. If high accu-
racy in the solution is not needed, then the third stage can
also be bypassed.

The primary computational algorithm in each of these three
stages is the algorithm for solving a system of nonlinear
algebraic equations. The homotopy continuation method was
selected to perform this function. This general method can
be applied to a large variety of problems; its application
to orbit determination is described in the next two sections.



SECTION 3 - FORMULATION OF THE BASIC HOMOTOPY METHOD

In Section 3.1, the formulation of the homotopy method, as
applied to spacecraft orbit determination, is described in
general terms. Section 3.2 contains the details of the ob-
servation models and partial derivatives that were used in
the developmental computer program. In Section 3.3, a very
simple example that requires a solution space of only one
dimension, rather than six, is presented. Section 3.4 ex-
plains the relationship between the standard Newton-Raphson
method for solving systems of equations and the homotopy
method. Finally, Section 3.5 describes the numerical algo-
rithm that was developed for following the solution curves.

3.1 GENERAL FORMULATION

Six observations O;. i =1,...6, are selected to determine
the orbit. These six observations may be of any type and in
any combination. Although no special time distribution is
required, if observations of the same type are too close
together, the determined orbit may have large errors (or may
not even exist) because of measurement errors, whereas, if
the observations are spread over too large a period of time,
the error introduced by the computationally efficient model-
ing simplifications may become too large. The superscript
“1" on the symbol for the observations will indicate that
they are the given, real observations.

Next, an estimate of the solution state vector._io. at the
reference time is selected. It is assumed that an observa-
tion and dynamics model represented by the functions Ci'
i=1,...., 6, is available to relate any reference time
state vector, X, to the modeled observations, which

correspond in type and time to the real observations O;.



Denoting by 02 the modeled observations corresponding to

estimate‘io. the estimate satisfies the following equations,

by construction:

02 - ci(Tco) =0, i =1, ..., 6 (3-1)

On the other hand, an unknown solution state"fi1 satisfies
the equations

O.—Ci(x)=0, i=1, ..., 6 (3-2)

where the functions C, are the same as in Equations (3-1),
since the observation times are assumed to be fixed in this
formulation.

The homotopy continuation method smoothly deforms the left-
hand sides of Equations (3-1) into the lefthand sides of
Equations (3-2), using the parameter N and permitting
solution states, x, for all applicable values of N. This
smooth deformation is described by the equations

(1 - \] {og - ci(?c‘)] + [\] [o% - c.l(?):l =0, i=1, ... 6

or equivalently

0 1 0 - .
[Oi + 7\,(01 - Oi)] - Ci(x) =0, 1 =1, ..., 6 (3-3)

These equations define the homotopy, that is, a continuous
mapping from one mathematical function to another. At

N = 0, Equations (3-3) have the known solution xo, while
at . = 1, the equations have the solution sought. 1In the
seven-dimensional N - X space, the set of solutions of
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Equations (3-3) form a smooth curve that passes through the

estimate.“?o. and the desired solution.’?l.

It should be remarked that the formulation described here is
quite general, and in principle any modeling, including high-
precision modeling, can be used for the observations and for
the dynamics. For most applications, however, efficiency
suggests the use of approximate models, reserving high-
precision levels until after a satisfactory interim solution
has been obtained.

To solve Equations (3-3), a numerical algorithm (see Sec-
tion 3.4) is used to follow the solution curve from the es-
timate through the solutions.

Although this report considers TDRSS tracking exclusively,
there is no essential difference if, instead, ground-based
tracking is employed. The only requirement is that the
position and velocity of the tracker, whether it is a ground
station or a relay satellite, be known at the times of the
tracking weasurements. 1In principle, the formulation given
in this section is readily extended to include additional
parameters in the solution state, for example, TDRS orbital
elements, ground station coordinates, measurement biases,
and spacecraft force model parameters. However, this gen-
eralization is left to future study.

The theoretical basis for the homotopy method expressed by
Equations (3-3) is developed in Reference 1. Reference 2
begins with a very brief statement of this theoretical basis
and continues with many examples from engineering problems.
(However, orbit determination is not included among the ex-
amples.) Reference 3 is a review article, which includes
the homotopy continuation method in addition to simplicial
methods (triangulation networks) for finding roots. A
mathematically correct and clear discussion of the homotopy
method in orbit determination would require the language and
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results of differential topology and will not be undertaken
here. Rather, the approach taken is a qualitative descrip-
tion of the solution curves of Equations (3-3), based pri-
marily on the results of many numerical experiments.

A solution curve for Equations (3-3) in the case of pure
TDRSS relay range and/or Doppler tracking is schematically
illustrated by Figure 3-1. 1In general, the solution curve
for a given orbit determination problem (that is, the speci-
fication of the numerical values of six range and/or Doppler
observations and the numerical value of the a priori esti-
mate) consists of a number of disjoint smooth, closed
curves, or loops. When the a priori estimate is appro-
priately related to the desired solution, then both states
will lie on the same loop. The set of orbit solutions for
the given problem consists of the collection of all the in-
tersection points of the loops with the \= 1 hyperplane.

If the a priori estimate is changed, keeping the six obser-
vations fixed, then the number and shape of the loops may
change, but the number and numerical values of the solution
states do not change.

For very special, isolated values of the a priori estimate,
two of the loops may just touch each other. This is illus-
trated by Figure 3-2, which schematically shows how a solu-
tion curve may split into two curves as the a priori state
is allowed to change and to pass through such a special
value. These special values are unlikely to occur in prac-
tice, and this unlikelihood corresponds to the statement
that the solution curves are smooth (and therefore do not
have such touching points) "with probability one," a result
that is proven in Reference 2.

As indicated by Figqures 3-1 and 3-2, orbit states do not
necessarily exist for every intermediate value of N\ in
range/Doppler orbit determination. When they do not
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disjoint loops will occur. This is a result of the physical
fact that a solution state does not necessarily exist for
six arbitrary numerical values for the range and Doppler
measurements, which lie between the Og's and the
ol's.

i
Finally. the solution curves are considered for the orbit
determination problem in which, effectively, the three com-
ponents of the spacecraft position vector are measured at
each of two distinct times. 1In TDRSS, crude knowledge of
the two position vectors comes from knowledge of the range
and the antenna beam angles at two measurement times. Two
position vectors are also equivalent to three simultaneous
range measurements taken at three different trackers (tri-
lateration) at each of two times, and this situation can be
thought of as a limiting case in range-only orbit determina-
tion. This limiting case, however, is distinct from the
general range-only case in that orbit solutions exist for
every value of \: that is, given any two position vectors,
there are always (two-body) solution states that f£it them.
Thus, as indicated by Figure 3-3, the solution loop of the
range-only orbit determination problem has expanded indefi-
nitely, and the branches of the solution curve cover, with-
out gaps. all values of N from - to +o.

3.2 DETAILED MATHEMATICAL FORMULATION

In this section the mathematical formulas defining the TDRSS
tracking measurement models used in this study are speci-
fied. The formulas for the partial derivatives are also
specified. Reference 5 gives details of the TDRSS range and
Doppler tracking system. Details of the TDRSS algorithms
for data reduction and observation models are given in
Reference 6.

In the developmental program, a reference time is selected
for each case, and the variable t then denotes the time
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elapsed from the reference time. Six-component, cartesian
orbit states, x, are always assumed to be referenced to

t = 0. However, the measurement models require the six com-
ponents of the orbit state,’?. at the measurement time to
compute the numerical value of the wmeasurement, C(?). The
relation of ¥ to X is obtained through the orbit propagator
{(Section 3.2.4) and, correspondingly, measurement partial
derivatives are computed using

6
5_9__ Z—a—c—-——ﬁ,i=1,....6 (3-4)
k=1 i

3.2.1 TDRSS RELAY RANGE MEASUREMENT

3.2.1.1 Geometric Range and Partial Derivative

The geometric model for the single-relay range measurement
is the following:

p = IT - Byppal + IRyppg - Bygl (3-5)
where p = geometric range measurement

£ = position vector of the target spacecraft at
time t (see Section 3.2.4)

RTDRS = pos1t10n vector of the TDRS at time t (see
Section 3.2.4)
Rwgs = position vector of the White Sands ground sta-

tion at time t (see Section 3.2.5)

Assuming that Rws and R, remain fixed throughout the

TDRS
calculations for a given observation, the local partial de-

rivatives needed in Equation (3-4) are given by

9 r. - R .
5%; ff} R'mmsLl. {21, 2. 3
- “ppRS
(3-6)
%ﬂ~ =0, i=4,5, 6
L£1



3.2.1.2 Modeling of the Light-Time-Correct Range

The light-time correct range, for any one of the four legs,
satisfies the two equations

1
ty = %2 - ¢ P12 (3-7)

where pj2 = light-time-correct range for leg from 1 to 2

ty = transmit time for tracking signal (to be deter-
mined)

ty = receive time for tracking signal (known)

£1 = known position of transmitter (known function
during the iterative process)

£2 = known position of receiver (fixed during the
iterative process)

¢ = vacuum speed of light (see Table 3-1)

Bquations (3-7) and (3-8) are solved iteratively for Pia
and t,. as follows. Using the last value of Pz
Equation (3-7) is used first to evaluate L, Then Equa-
tion (3-8) is used to evaluate a better value of Pig-
This two-step procedure is repeated until the change in t1
is less than 10_8 seconds. The iterations are initialized
with the geometric range. After all four legs have been
computed, the range measurement is computed as one-half of

the sum of the values for the four legs.

The geometric partial derivatives, Equations (3-6), are ade-
quate and are used even when a light-time-correct range is
computed.

3.2.1.3 Preprocessing of Real TDRSS Range Tracking Data

Two corrections for the actual relay range measurements in
the TDRSS tracking data must be treated. These are the
transponder delay and the range ambiguity.
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Table 3-1. Physical Constants

Quantity Numerical Value
Speed of Light, c 2.99792458 x 10® kilometers/
second
Gravitation constant of 398600.47 kilometers3/second?
Barth, GM
Earth sidereal rotation 6.30038809844%5825 radians/day
rate, og



The transponder delay correction is sometimes already in-
cluded in the values. 1f so, it is removed by retrieving
the value, Ap, available in the TDRSS data and using the

formula

Puncorrected = Pcorrectea * 8P (3-9)

The stored value of the transponder delay can then be in-
cluded or not in subsequent early orbit testing.

The TDRSS observations are of the ambiguous range. The un-
ambiguous range values are computed by using the algorithm
in Reference 6. This algorithm requires the use of a suffi-
ciently good nominal spacecraft state vector to derive the
correct unambiguous range.

3.2.2 TDRSS RELAY DOPPLER MEASUREMENTS

3.2.2.1 Geometric Range-Rate and Partial Derivatives

The geometric model for the single-relay range-rate
measurement is as follows:

(T - R, ) R
b - TDRS® , (7 _ ¥ )
- TDRS
It - Bopgsl
(3-10)
(Rpppg ~ Bws)? . V. T
IR R TDRS WS
TDRS ~ BWsS
where p = geometric range-rate
T. V = position, velocity vectors of the target

spacecraft at time t (see Section 3.2.4)

position, velocity vectors of the TDRS
at time t (see Section 3.2.4)

position, velocity vectors of the White
sands ground station at time t (see
Section 3.2.5)

RTDRS» VTDRS

Rws. Vus
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sz, RTDRS' and VTDRS remain fixed

throughout the calculation, the local partial derivatives
needed for Equations (3-4) are given by

Assuming that'ﬁhs,

ap 5 - Vrpes,i)?
aY' - — —
1 lr - Ryppgll
- N (3-11)
(Vv - Vyppg) * (£ - Reppg) ( R yoi-1, 2
IT - Bypps |3 » i - "TDRS,i’" '
ap ‘%3~ Boppg,id L i 5 6
aY'l - IF—_ﬁ l ” - [ ] L 4
TDRS

3.2.2.2 Modeling of the Light-Time-Correct Doppler Measure-
ment

In the light-time-correct Doppler modeling, it is assumed
that during preprocessing the Doppler measurement has been
converted to an equivalent averaged range-rate value and
that the pilot tone effect of the relative motion of the
TDRS itself has been removed from the measurement value,
which is discussed in the next subsection. Then, this aver-
age range rate is modeled as follows:

s P(tg) - p(ty- At)

At
where 5 = modeled value of the averaged range rate
tg = observation time tag at the end of the Doppler
count interval
At = length of the Doppler count averaging interval
p(t) = light-time-correct range, calculated according

to Section 3.2.1.2, for the signal received at
time t

Thus, for each Doppler measurement, it is necessary to
iteratively compute eight legs for the tracking signal.
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The geometric partial derivatives, given in Equa-
tions (3-11), are used with adequate accuracy with the
light-time-correct Doppler model.

3.2.2.3 Preprocessing of Real TDRSS Doppler Tracking Data

Preprocessing of the TDRSS Doppler tracking measurement is
based upon the formulas given in Reference 5 and also in
Section 5.5.3 of Reference 6. Thus, the averaged range-rate
measurement, p, is computed from the measured Doppler fre-

quency F. using

d

¢F bF AR
. —P_
P =-F *tF * At
ref ref

where Fr.¢ = effective user transmit frequency (specified
in the TDRSS tracking messages)

bFp = return TDRS frequency translation (determined
by the downlink channel as specified in Refer-
ence 6)

At = Doppler count interval

ARg = range change of the TDRS during the Doppler
count interval

¢ = vacuum speed of light

ARS is modeled, using the iterative light time calcula-
tion, as

AR, = p (L) - p (Tt - At)

where ps(t) is the short range (White Sands to TDRS and
back) tagged at the end of the Doppler count interval and
ps(t -~ A t) is the short range tagged at the start of

the Doppler count interval.



3.2.3 TDRS ANTENNA BEAM ANGLES

3.2.3.1 Geometric Antenna Beam Angles and Partial Deriva-
tives

The formulas for modeling the TDRS antenna beam azimuth, A,

and elevation,

where X1, X2,

and the unit vectors ., €

E, are as follows:

X3
tan A = (—X1) (3-12)
tan E = X2 (3-13)
; , 172
(X1 + x3%)
and X3 are defined by
X1 = (£ - Rpppg) * &
X2 = (¢ - Roppg) * €,
X3 = (r - Ryppg) * 5

and e, are defined by

1 2 3
- Brbrs
e == —
|Bppgs |
= _ _“roes * Vroms (3-14)
3 - — —
IRpprs ¥ Verpgrs |
ez = e3 X el

In these equations, r, Vv, RTDRS' and VTDRS are as defined
for Equation (3-10). These formulas are similar to those
given in Section 5.5.4 of Reference 6, although the notation

is different.



In terms of the TDRS-to-target components, X1, X2, and X3,
the local partial derivatives are given by

e. .
%%~ - cos?a 2.1, X3 5 ¥y i=1, 2,3
i (-X1)  (X1) (3-185)
—g—L =0, i=4,5, 6
Yy
and
3E ) cosZE e; 3 ) XZ(Xlel'i + X3e3'i)
¥y, 5 , 1/2 5 , 3/2
(X1™ + X37) (X1™ + X37)
i = ]-. 2' 3 (3*16)
9E i
3y =0, 1 =4, 5, 6

f ad

Because TDRS beam angle values are not actual measurements,
a light-time-correct beam angle model is not formulated,
since the additional accuracy would not be warranted.

3.2.3.2 Preprocessing of Real TDRS Antenna Beam Angles

The direction cosines XR. YR' and ZR are retrieved

from the TDRSS tracking observation records (words 6, 7, and

8). These direction cosines define the direction (return

link) from the TDRS to the target with respect to TDRS ref-

erence coordinates, and represent the antenna beam angles

after correction for the nonnominal TDRS attitude. The di-

rection cosines XR' YR’ and ZR differ from X1, X2, and

X3 in the previous section and are defined as follows:

Xg = projection of the TDRS-to-spacecraft unit vector onto
the direction in the TDRS orbit plane (eastward) that is

perpendicular to the direction from the TDRS to the
center of the Earth



Ygp = projection of the TDRS-to-spacecraft unit vector onto
the direction normal to the TDRS orbit plan (south)
Zr = projection of the TDRS-to-spacecraft unit vector onto

the direction from the TDRS to the center of Earth

XR. YR. and ZR are converted to azimuth and elevation
by means of the formulas

A and E are the quantities to be used in early orbit deter-
mination.

3.2.4 ORBIT PROPAGATION

Propagation of trajectories from initial states at the ref-
erence time to arbitrary times, for which state vectors are
required for measurement modeling, was required for both the
TDRS and the target spacecraft. These propagations provide

the vectors r, v, RTDRS‘ and VTDRS' which appear in Sec¢-
tions 3.2.1 through 3.2.3.

For the TDRS, two-body propagation was used in all cases.
(See Section 5.7.3 in Reference 6, and Reference 12 of Sec-
tion 5 in Reference 6 for descriptions of the closed-form,
two-body propagator that was used.) The value of the Earth
gravitational constant is listed in Table 3-1. The use of
the two-body approximation for the TDRS trajectory produces
propagation errors of 0.1 to 0.2 kilometers during a
100-minute propagation interval, when compared with a Cowell
propagator with a precise force model (see Table 3-2). For
the particular case described in the table, there is some
cancellation occurring between lunar-solar and Earth gravity
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Table 3-~2. Differences Between TDRS Ephemerides

Maximum Position Difference Over the
100-Minute Comparison Interval Between Two Ephemeridesl

(Km)

Position Gravity All Three
Difference Solar Radiation sSun and Moon Harmonics Perturbations
Component Force Omitted Gravity Omitted Omitted Oomitted
Radial 0.003 0.153 0.148 0.008
Cross~-Track 0.0002 0.102 0.002 0.104
Along-Track 0.0008 0.049 0.044 0.004
Total 0.003 0.190 0.154 0.105

1The ephemerides compared both beginning from the same initial state on
March 14, 1984, at Oh., One ephemeris includes all perturbations; the
other ephemeris in the comparison omits one or more of the perturbations,
as indicated in the table.
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effects;: at different times the errors may add rather than
cancel. 1In the worst case, then, the error may be as large
as 300 meters. This error can often be ignored in early
orbit determination.

The error attributable to the two-body approximation in the
determined orbit of the target spacecraft will depend, of
course, on the orbit type. For a low-altitude spacecraft
(for example, Landsat-4), the error over one revolution is
about 50 to 100 kilometers. This is examined in more detail
in Section 4.1. However, this error is sufficiently large
that it needs to be eliminated in early orbit determina-
tion. 1In this study, a Brouwer-Lyddane propagator was ge-
lected to accomplish this. This propagator is described in
Section 5.10 of Reference 7. Two-body state partial deriva-
tives were used with the Brouwer-Lyddane propagator, without
any resultant numerical difficulties in the curve-following
algorithm described in Section 3.4.

3.2.5 GROUND STATION POSITION AND VELOCITY

Irregularities in the Earth's rotation rate are ignored, and
the position and velocity of the White Sands ground station
are modeled with the following formulae:

Bas = T * R,
(3-17)
V. = L7 R
WS dt 0
where Ro is the Barth-fixed station location and T(t) is
the 3x3 rotation matrix defined by
cos a(t) -sin a(t) 0
(3-18)
T(t) =f+s8in a(t) cos a(t) 0
0 0] 1



The variable t is the number of seconds of Universal Time,
Coordinated (UTC) elapsed from the reference time, and the
angle a is computed from

Q@ =a + ot (3-19)

The constant a, is the Greenwich Hour Angle at the ref-
erence time. The numerical value of the Earth rotation
rate, g, is listed in Table 3-1.

Table 3-3 provides the Earth-fixed station location of the
antenna WH2K, which collected the tracking data for the
Landsat-4 tests in Section 4.1. The coordinates given have

been adjusted to WGS-72 (World Geodetic System, 1972).

3.3 SIMPLE EXAMPLE

A highly simplified orbit determination problem is solved
here to illustrate the meaning of Equations (3-3). 1In this.
example, the orbit state is one-dimensional, leading to an
explicit formula for the solution curve.

The tracking geometry is shown in Figure 3-4. 1t is assumed
that the TDRS lies in the orbit plane. The radius of the
circular orbit is assumed to be fixed, and the single comn-
ponent of the state vector is the cartesian coordinate x.

The solution state is denoted by xl. and the a priori esti-

mate is denoted, by xo. For definiteness, it is assumed
that x° > xl and that both of these states lie in the first
quadrant of the angle ©. The measurement is assumed to be

the square of the geometrical range p.

From Figure 3-4, the following geometric relations hold:

172

O1 = a2 + Rz + 2aR




Table 3-3. EBarth-Fixed Coordinates for the Antenna WH2K at
White Sands

Cartesian Geocentric
Component Coordinates (km)
X -1539.404223
Y ~-5160.963938
yA +3408.172440
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Figure 3-4. Tracking Configuration for the One-Dimensional
Example of the Homotopy Method



where

2
: X
sin © = + |1 - (a)
has been used.

O1 is the given measurement, while o0 is the modeled meas-

urement value for the a priori estimate xo.

Substitution of these relations into Equations (3-3) yields
the equation for the solution curve in the \-x plane:

1/2 1/2 1/2

' 0)\2 0\?
a a |

B 2
N+ * (f) =1 (3-20)



where

The solution curve described by Equation (3-20) is an el-
lipse, centered at the point (-B/A, 0), having a semihori-
zontal axis of length 1/A and a semivertical axis of length
a (see Figqure 3-5). At each value of N\ corresponding to
points on the ellipse, except for the two critical points at
X = 0, there are two orbit states. This duplicity physi-
cally corresponds to the fact that a circle of radius p

can intersect the orbit at two distinct points. At each of
the two critical points, the two orbit states coalesce to
form a single state, and the observation derivative, dC/dx,
is precisely equal to zero at these points. Orbit solution
states do not exist for values of N\ outside the range
covered by the solution curve, and the intersection points
of the solution curve with the vertical line, N = 1, iden-
tify all of the orbit solutions that exist for the given
measurement, 01. (Actually, the variable used to describe
the orbit state in this example, X, is not really a good
choice because for each value of x there are, physically,
two orbit states. 1In Figure 3-5 this corresponds to the
fact that there are two points on the curve at a given value
of x. This choice was made in order to get a closed curve,
analogous to the closed curves obtained in the full six-
dimensional problem. 1If a good state variable (for example,
0) is used instead, the solution curve is not closed, but
repeats with a period 2w. The corresponding \-© solu-

tion curve is given in Reference 8.)

3-24



A PRIORI
ESTIMATE

SOLUTION
STATE

CRITICAL CRITICAL
POINT / POINT

-

A

EXTRANEOUS
SOLUTION
STATE

Figure 3-5. Solution Curve for the One-Dimensional Exam?le
of the Homotopy Method

246/E0/10-84



3.4 RELATION TO THE NEWTON-RAPHSON METHOD

The particular formulation of the homotopy method described
in section 3.1 for orbit determination can be considered to
be a generalization of the standard Newton-Raphson method
for solving systems of equations. Given an a priori esti-

mate,'io. the Newton-Raphson method computes the correc-

tion, &x., using the equation

sx = B~ L(x%) o a(x%) (3-21)

. : . . 0
where B(xo) is the matrix of partial derivatives at x ,

acl acl
axl ax6
-B(xo) = .
306 306
axl ax6 o
e — X
and A is the column vector of residuals evaluated at xo,
1 =0
01 - Cl(x )
Ax®) =
1 —~0
06 - Cs(x )




The homotopy method defined by Equations (3-3) will be put
into a form that will enable comparison with Equa-
tions (3-21).

Since the solution curves are almost always smooth, the or-
dinary arc length, s, can be introduced as the curve param-
eter. By definition, changes in the arc length are related
to changes in N and x through the formula

2 —_
(%%) + (%§ . gg) -1 (3-22)

Next, differentiation of each side of Equation (3-3) with
respect to s vields

dC, dx.
1 0\ dn 1 __1 _ 3 -
(oi - oi)'ds - ax. das - O 1=1. .... 6
j ]
or, equivalently,
+320, & ax _
A(x™) ds * B(X) e ds - 0 (3-23)

Finally, solving Equations (3-22) and (3-23) for d\/ds and
dx/ds yields

an 1
ds - T e(®
(3-24)
ax B'1§?1 Acg9>
ds G(x)
where
= T, 20, -T > -1 —0, | 172
G(X) = [1 + AT (X)) B (X B (X) A(X) (3-25)



These are the differential equations satisfied by the solu-
tion curve. The double choice in sign corresponds to fol-
lowing the curve in either of the two possible directions.

The Newton-Raphson method consists of integrating Equa-
tions (3-24) with the simple Euler method and a step As
that extends from N = 0 to N = +1, approximately. From
Equation (3-24), this step has length

As = G(fo) o 1

(+ sign is chosen for G) and the corresponding change in x
is given by

-1 =0
Ax - . B (xA()) NE20 As (3-26)
G(x")
or
iz - 3% A%

which is precisely the change given by Egquation (3-21) for
the Newton-Raphson method.

Thus, one iteration of the Newton-Raphson method corresponds
to following the solution curve from A= O to A= 1 using

the straight line approximation that is tangent to the solu-
tion curve at N = 0. Each Newton-Raphson iteration, in

turn, cdnétructs such a line tangent to a new solution
curve. Returning to the simple example in Section 3.3, as
xo - xl, then 1/A » o, the ellipse becomes horizontally
elongated, and the segment of the solution curve between

N =0 and N = 1 becomes straighter, which leads to
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better convergence of the Newton-Raphson method. It is ex-
pected, however, that, if the initial solution curve is
strongly curved between N = 0 and \ = 1, then the
Newton-Raphson method will probably not converge (see Fig-
ure 3-6).

3.5 NUMERICAL ALGORITHM FOR FOLLOWING SOLUTION CURVES

The algorithm of this section permits the solution states
that are located on the same component of the solution curve
as the a priori state to be determined up to machine preci-
sion. The more general case in which the desired solution
state and the a priori state lie on disjoint components is
considered in Section 6.2. The algorithm for the restricted
case forms the major part of the general, more complete al-
gorithm in Section 6.2.

The algorithm was found to perform reliably in hundreds of
test cases. However, in some of the component areas, minor
improvements are suggested here, through which the effi-
ciency (that is, the relative amount of computation per
solution) might be improved in a subsequent version of the
algorithm. Although developed independently, the algorithm
given here is similar to that described in Reference 9.

The algorithm assumes scaled cartesian variables for orbit
states. The length scale is the radius of the Earth, and
the velocity scale is the circular speed in an orbit at one
Earth radius. The homotopy parameter N is not scaled, al-
though such scaling would be convenient, because it is not
now clear how the approximate size of a solution loop can be
estimated. Scaling of N must await a deeper understanding
of the global nature of the solution curves.

The algorithm follows the solution curve (defined by an
a priori estimate, the six given observations, and the
trajectory and observation models) in seven-dimensional
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A-xX space by constructing a sequence of points that lie
exactly on the curve. At any intermediate stage of the
process, a succeeding point is determined with a two-step,
predictor-corrector method. An estimate of the succeeding
point is cowmputed using a Lagrange polynomial f£it through a
selected number of back points (predictor) in each of the
seven coordinates, N\, X, ¥, 2, X, ¥, 2. This estimate is
then refined to the specified precision using the Newton-
Raphson method such that successive iterative corrections
are constrained to lie in a six-dimensional hyperplane that
is approximately perpendicular to the curve (corrector).
This constraint avoids Jacobian ill-conditioning problems
that can arise if, instead, the iterations were performed at
fixed N. The predictor-corrector technique is schemati-
cally illustrated by Figure 3-7.

As the points on the solution curve are successively com-
puted, the algorithm must check for solution states at

N = 1 and refine and store these solution states. The
algorithm must also check for possible return to the

a priori state. Optionally, the algorithm checks for and
identifies critical points (local extrema in N (s8)). This
is necessary only for the multiloop algorithm in Sec-

tion 6.2, but is described below for completeness.

The major steps in the algorithm are listed below. These
steps are detailed in Sections 3.5.1 through 3.5.9. Sec-
tion 3.5.10 indicates extreme conditions although they are

unlikely to arise in practice) under which the algorithm can
(numerically) fail.

Step 1. Bootstrap Starter (Section 3.5.1). A special sub-
algorithm is required at the start because only one
point on the solution curve, the specified
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Step 2.

Step 3.

a priori state, is known, while the direction of
the curve is completely unknown. This starter de-
termines one additional point on the curve.

Correction of Arc Length (Section 3.5.2). Step 2
is the first step of the main loop of the al-
gorithm. At the conclusion of the previous cor-
rector step, the arc length change, As'. is
slightly incorrect because of the corrector proc-
ess. Gaussian quadrature is used to compute a re-
fined numerical value, As.

Collection of Output States (Section 3.%5.3). The

Step 4.

predictor-corrector steps may have followed the
solution curve across N = 1. 1If necessary, the
N = 1 state is iteratively estimated and refined
until it is determined to within the specified
tolerance.

Collection of Critical Points (Section 3.5.4). The

Step 5.

Step 6.

predictor-corrector steps may have followed the
solution curve through a local extremum in \. In
this step., such a critical point is first estimated
and then refined to within the specified tolerance.

Termination (Section 3.5.5). The predictor-
corrector steps may have followed the solution
curve back to and past the starting point. This
condition is checked, and the calculation is ter-
ninated if it occurred.

Step Size Selection (Section 3.5.6). The computa-

tion of the next point on the solution curve begins
with Step 6. A preliminary value for the arc
length change, As', from the last back point to

the next curve point is selected on the basis of
properties of the last back point calculation.



Step 7. Prediction of New Curve Point (Section 3.5.7).
Using Lagrange interpolation, a polynomial fit to
the last N backpoints is performed. This poly-

nomial is then used to evaluate the estimate of the
new curve point at a position that is advanced in

1
arc length by the selected amount, As .

Step 8. Correction of New Curve Point (Section 3.5.8).
Using the Newton-Raphson method in a hyperplane
perpendicular to the extrapolating polynomial at
the predicted point, the predicted state is itera-

tively refined until Equations (3-3) are satisfied
to within the specified tolerance.

Step 9. Monitoring of New Curve Points (Section 3.5.9). 1If

the corrector iterations in Step 8 do not converge,
or if the direction of the curve tangent changes by
too large an amount from the last backpoint to the
new curve point, then the new curve point is dis-
carded, the step size, Asl, is reduced, and

steps 7 and B8 are repeated. 1f, on the other hand,
the new curve point is acceptable, the algorithm
advances along the curve by one unit and then re-
turns to the start of the main algorithm loop at
step 2.

3.5.1 BOOTSTRAP STARTER

The a priori state is denoted by u0 = (0, xo. Yo. zo. io

?0, éo)T. By definition, this state lies on the solution

. o . .
curve, and the observations, Oi' i=1, ..., 6, are simu-

lated on the basis of this state prior to the execution of

this starting procedure.

The bootstrap starter searches over seven orthogonal direc-

tions., attempting to find a second state on the solution
curve. 1In turn, trial predicted states are generated which
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lie in the \-, %x-, ¥-, 2-, X~, VY-, and z-directions with
respect to the a priori state, and at a selected distance
As' from the a priori state. Thus, these seven pre-
dicted states are

+4s 0 0

xo xoiAs‘ XO

Yo YO YO
P1 = ZO P2 = z0 . . P7 = zO

xo xo xo

YO YO YO

z0 zO zoiAs‘

The sign choice controls the directional sense in which the
algorithm follows the curve.

Using these seven trial predicted states in turn, the
starter attempts Newton-Raphson iterative refinement (de-
scribed in Section 3.5.8). If the refinement is successful
for any particular predicted state, then a second point on
the solution curve has been determined and the starter ter-
minates. If the Newton-Raphson iterations do not converge,
the next predicted state is attempted.

If all seven predicted states are unsuccessful, then the
attempted step, As', is reduced by a factor of two, and

the entire process (seven predicted states) is repeated.
The factor-of-two reduction can be repeated up to a speci-
fied maximum number of times. For a well-posed orbit deter-
mination problem, starter failure only occurs when there is
an error in the program coding or in the data because, as
As’ is reduced, the predicted state becomes increasingly
accurate, and the Newton-Raphson procedure must converde at

some sufficiently small value of the initial step, As'.



This bootstrap starter can also be used to begin calculation
at some arbitrary initial state that is not the a priori
state, perhaps a state on a partially computed curVe. The
procedure is analogous, except that the initial value of \
is not zero but some other value.

3.5.2 CORRECTION OF ARC LENGTH

At the start of this subalgorithm, a number of curve points,

'ﬁl. ﬁ;. e ﬁh (the subscripts increase backward along

the curve), are known, where N is the selected order. The

points correspond to arc length values s s s

]
10 2' L)
where, again, the subscripts increase backward along

Nl

the curve. The value of s! is provisional, and it is refined

1
by this subalgorithm.
The corrected value of the current arc length, Sl' is cal-
culated using

sl
1 - - 11/2 '
du _ du
s1 = sz +./. [do . do] do (3-27)
s

where u(g) = (M(0)., x(0). y(o). z(c), X(o), ¥(o)., 2(a))".

The tangent vector, du/do, is evaluated as the derivative

of the N-point Lagrange interpolating polynomial (see Sec-
tion 3.5.7), and the integral is numerically calculated with
standard N-point Gaussian quadrature (see Reference 10).

The purpose of this step is to keep the arc length variable
accurate so that the solution curve tangent vector, required
in Section 3.5.9, is accurate. Because the differences

between si and s1 have been observed to be rather small

in practice, future work may eventually prove that this step
is unnecessary.



3.5.3 COLLECTION OF OUTPUT STATES

At the start of this subalgorithm, two curve points, .

1
and'ﬁé. are known, along with the associated arc lengths,
Sy and 8, The objective is to determine the precise

points, if any. at which the solution curve crosses the

N = 1 hyperplane. It should be noted that polynomial
interpolation does not generally perform this task with suf-
ficient precision unless the curve steps, As, are ineffi-
ciently small. Furthermore, Newton-Raphson iteration at
fixed N, initiated with such an interpolated state, will
occasionally fail if the curve is close to being parallel to
the N = 1 hyperplane. Therefore, a more careful, and also
more reliable, approach has been developed and is described
here.

First, to save time, if both'ﬁi and'ﬁ% are far from the

N = 1 hyperplane, it is assumed that no solution states
were crossed during the step and, in this case, the subal-
gorithm is terminated.

If, on the other hand, either ﬁl or E; is not far from

N = 1, then the number and approximate locations of
solution states between s; and sy are first determined.

—m

This is done by computing interpolated states, uy. ﬁ;, e .. Uy
at M values of arc length uniformly distributed between s,
and - M is typically 50, and the N-point Lagrange in-
terpolating formula is used for this procedure (see Sec-
tion 3.5.7). The number and approximate locations of the
solution states are then determined from the signs of 1—%5
in the sequence of interpolated states. For each solution
state, there will be two nearby interpolated states, ﬁ} and
uk+1 that straddle the solution state. Figure 3-8 shows

cases having one and two solution states.
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During One Curve-Following Step



Next, the solution state refinement process begins; an

iterative procedure is used to refine each of the candidate

solutions, in turn. This procedure consists of the follow-

ing steps:

Step 1.

Step 2.

Step 3.

Step 4.

The two interpolated states, U' and u. are each

4 k+1°
refined, using the Newton-Raphson method (Sec-

tion 3.5.8). This yields u and uk+1. which

lie on the solution curve.

The N components of ﬁ; and‘ﬁk+1 are generally

not equal to 1. A linearly interpolated state,

—
u

I at A = 1 is computed using

s,

k¥ On

—

) (W1 - U

1 -2
k (3-28)
k+l

'ﬁi is refined using the Newton-Raphson method (Sec-

tion 3.5.8) to derive'ﬁk, which lies on the solu-
tion curve.

If the N\ component of'ﬁk is equal to 1, to

within the specified tolerance, then the refinement
process is complete for this solution, and the
process begins again with the next candidate solu-
tion, if any. On the other hand, if XA is not
sufficiently close to 1, then the refinement proc-

ess continues with step 5.

The value of U, is set to either the value of

k
'ﬁk or ﬁ;+1, whichever has a \ component that
is closer to one, and W, , is set to W,. Then,

the process returns to step 2 for another iteration.

Usually. this refinement process is completed with two or

three iterations. The refinement process may occasionally

have an abnormal termination due to nonconvergence. This
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can happen if the interpolating polynomial crosses \ = 1,
but the actual solution curve does not. If a nonconvergence
condition occurs, then the last cufve point,'ﬁi, should be
discarded; a smaller step size, As , selected: and a new

curve point computed.
3.5.4 COLLECTION OF CRITICAL POINTS

To reliably and efficiently evaluate critical points, the
curve-following algorithm should continually select steps,
As, that are about as small as, or smaller than, the local
radius of curvature of the solution curve. The subalgorithm
described in Section 3.5.9 is intended to accomplish that.

At the start of the critical point subalgorithm, three curve

points.'ﬁi,'ﬁé. and'ﬁé. and the associated arc
lengths, sl. sz. and s,. are available. The objective
is to determine if a local extremum in A(s) exists in the

solution curve between s3 and sl. and, if so, to eval-

uate the coodinates precisely.

First, the subalgorithm checks for the following conditions:
Xz > Xl and Xz > k3 (3-29)

Xz < kl and Xz < XB (3-30)

1f neither of these two conditions is satisfied, then it is

assumed that a local extremum is not contained between s3

and 8y and the subalgorithm terminates. On the other
hand, if either of these two conditions is satisfied, then
it is assumed that exactly one local extremum exists between

s, and s

3 1 and the subalgorithm continues.



An approximate location of the critical point is first de-
termined. A sequence of interpolated derivatives,

an’

2 ds |y

an’

1 ds

|
d\
ds

is computed for M values of the arc length that are uni-
formly distributed between S, and Sy - M is typically

100, and the derivative of the N-point Lagrange interpolat-
ing polynomial is used (see Section 3.5.7). The approximate
location of the extremum is determined from the sequence of
signs in the sequence of interpolated derivatives. The arc
length value at the position of the extremum in the inter-
polating polynomial is further improved by using the
Newton-Raphson method with an approximate derivative, as
follows:

dah
ds s'
S: - sl _ E,.k (3-31)
Elk Eak“l _1___ g:_)\.- - _d__)l
s ds S' ds
E.k + §s Si‘:,k
where s! is the estimated arc length position of the local

E.k
extremum after k iterations, and &és is an appropriate step
for evaluation of the derivative in the denominator. (The
subscript E in these equations denotes the extremum.) The
interpolated value of the curve point at the extremum,

is denoted by u..

evaluated after convergence of s E

]
El



Finally. the value of the curve point at the extremum is precisely

calculated to within the specified tolerance by solving the equa-
tions

0 1 0 o
Oi+7\.(01—oi) Ci(X)=0, 1=1. o .o a 6
(3-32)
3Ck
det 3;; =0

At the critical point, the observation partial derivatives
matrix is singular (see Equation (3-24) with d\/ds = 0),
hence the vanishing of its determinant..which is expressed
-ﬁﬁ
estimate, Equations (3-32) are solved, using standard
Newton-Raphson iteration, to yield the final value of the
~eritical point'ﬁé. (The partial derivatives of the deter-
minant required for the Newton-Raphson method are evaluated

approximately by numerical differencing.)

by the seventh equation above. Using as an initial

3.5.5 TERMINATION

At each step, this algorithm determines if the solution
curve has been followed back to it starting state, which is
generally a point at N = 0, although the generalization to
other starting points is straightforward.

First, the subalgorithm determines if the curve has crossed
N = 0, and, if so, the N = 0 states are precisely cal-
culated. This is accomplished with the subalgorithm of Sec-
tion 3.5.3, with the obvious modification.

Next, each of the \ = 0 states, if any exist, is compared
with the starting state, and if a match is found to within a
specified precision, the algorithm terminates and indicates
that the curve has been followed back to the start.



Other emergency terminations can be signalled if any of the
following conditions occurs:

° The maximum allowed number of curve points is ex-
ceeded.

) The maximum allowed number of solution states is
exceeded.

® The maximum allowed number of critical points is
aexceeded.

. The algorithm-selected step size is less than the

gspecified minimum value.
3.5.6 STEP-S1ZE SELECTION

Step-size sélection is based on the idea that the amount of
numerical calculation required for the correction sub al-
gorithm (Section 3.5.8) should be roughly the same for all
steps. This should make the prediction error approximately
uniform resulting in small steps for sharp bends and large
steps for nearly straight portions of the curve. To accon-
plish this, the step-size selection subalgorithm chooses the

next step, on the basis of the last step, Asglq.

4
Asnew ‘

and the number of iterations, I that were required for

old’
the corrector to converge to the specified tolerance.

Two iteration numbers, Iup and 1 are specified, along

down*
with two step-size adjustment factors, F and F

up down’
Typically

g
L]

e
[ -]

ol
]

o

o



Given the values of these parameters, the next step size is
determined from the following:

, _ . .
Asnew = Fup Asold' if Iold £ Iup (increased step)
. _ .
Asnew = Asold' if Iup < Iold < Idown (same step)
. _ .
Asnew = Fdown Asold' if Idown < Iold (decreased step)

This selection mechanism has performed reliably in prac-
tice. However, the fact that the I's are integers sometimes
leads to too coarse an adjustment capability when an attempt
is being made to optimize overall efficiency. A more
sophisticated subalgorithm, in which the step size is de-
rived directly from the curvature, torsion, and polynomial
parameter, N, might enable finer control.

The initial step size can be any reasonably small value,
which the starter (Section 3.5.1) will automatically reduce
if necessary.

The subalgorithm makes one additional modification to the
step size selected with Equations (3-33). This adjustment
prevents the next curve point from jumping too far across
N =0o0r \N =1, since curve points may need to be
evaluated at those values of N (Sections 3.5.3 and

3.5.5). 1In the following, r represents any one of these
values of N for which a curve point should be placed
nearby.

If the linearly extrapolated next curve point would be
located on the other side of the N = \ hyperplane, in
relation to the last computed curve point, and if the dis-
tance of the last computed curve point from the A\ =\
hyperplane is greater than a specified tolerance, the step
size 1s specified as follows:

S S

— 1 2 -.
Asp o = 1-01 X, - N, CIE (3-34)
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where the subscripts 1 and 2 denote back points. This se-
lection will place a curve point near N so as to speed the
calculation of the N = \ state.

3.5.7 PREDICTION OF NEW CURVE POINT

The Lagrange polynomial is used for interpolation or extra-
polation of the state uw = (\, X. Y. 2. X. V. i)T. The arc
length, s, is the independent variable. The interpolated or
extrapolated state is computed from

N
] ] ! —
u (s ) = E Li(s ) u(si) (3-3%)
i=1
with
N
’ ‘ s -~ S
| ( J)
j=1
Li(sl) = A ., 1=1, . N
N
TT 55 - 59
i=1
jAL
where ﬁRsi), i=1, ..., N, are the known curve points at
] 1
Sl' . ee SN' In prediction, snew = 8, + Asnew' where Asﬁew is

selected as described in Section 3.5.6.

The number of points used to define the polynomial, denoted
by N, is a parameter. Through experience, values for N of 3
or 4 work best. 1I1f N is too large, then predictions become
poor near sharp bends in the solution curve, leading to poor
convergence and the necessity to repeat the step.



At the completion of the starter algorithm, N is set to the
value 2. After completion of each additional predictor-
corrector step, N is incremented by one until the specified
value is reached. The algorithm for the collection of cri-
tical points requires that N be three or greater.

The vector tangent to the polynomial fit is required in the
corrector subalgorithm and the monitoring subalgorithm (Sec-

tions 3.5.8 and 3.5.9). Differentiation of Equation (3-34)
yvields the necessary formula:

o dL.
ol I S I 99 (3-36)

N N
3 1
is '= N :E: 7“ (s - Sj) , 1 =1, .... N
s
. )
37 k=1

= j=1
%#% k£l | jAi
ek

3.5.8 CORRECTION OF NEW CURVE POINT

Given the predicted state, u', at s', a precise solution

for Equations (3-3), subject to one constraint equation, is
computed with the Newton-Raphson method. The constraint re-
quires that each correction, &4 = (8N, &x, 8y. &z, &x., &V, aé)T.
must lie in the five-dimensional hyperplane that is perpen-
dicular to the tangent vector of polynomial approximation at
the predicted state. (The N-point polynomial approximation

for the tangent vector is based on the predicted point and

N-1 backpoints.)



Using this constraint, the correction, &u, is computed by
solving the following 7x7 linear system:

du —
. e %u =0
ds g
(3-37)
10 Ay 0 1 0 -
Oi - Oi &N - 5;; 6xj = —{éi + N 0i - Oi )— Ci(x)
j=1 .

where 8T = (6N, §%)T. These linear equations are

solved by standard Gaussian elimination with row and column
pivoting.

The tangent vector

an
]
ds s

is updated so as to be calculated from the current iterated
state, rather than the original predicted state, if during
the iterations the tangent vector changes by more than a
specified tolerance. Thus, the perpendicularity condition
is only approximate.

The iterative corrections are continued until any one of the
following conditions occurs:

|6U] < ey (3-38)
or
0% + a0l - 0% - c.x)
1 1 1 3
Max 0 1 A (3-39)
1<ic<6 Max(‘oil. 05 |+ |ci) 2 -
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where € and €, are specified parameters. Typically

-13
e1= 10

-14
ez= 10

If neither of these conditions is satisfied, and the speci-
fied maximum number of iterations (typically 6 to 8) is
reached, then the subaigorithm returns a nonconvergence

1
signal, which causes selection of a smaller step, Asnew'

3.5.9 MONITORING OF NEW CURVE POINTS

This subalgorithm monitors the computation of new curve
points and directs the recomputation of a curve point with a
reduced step size

1 ]

As (3-40)

As . = F
revised reduce . new

if one of the following conditions has occurred:

1. The corrector subalgorithm has not achieved con-
vergence with the original step.

2. The change in the tangent vector between the new

curve point and the last back point exceeds a
specified tolerance.

Typically, F = 0.5,

reduce
The second condition is checked with

P

du

ds (3-41)




where € is typically in the range 0.0l to 0.05. A very small
value for ¢ should not be selected because the error in the
polynomial approximation does not approach zero as the sin-
gle step size, Asﬁew’ approaches zero. Although not done

in the existing algorithm, the tangent vector du/ds would be
better calculated in a future algorithm through the use of
Equations (3-24) rather than the polynomial approximation.
This would avoid occasional difficulties encountered with

tangent vectors evaluated from the polynomial approximation.
3.5.10 CONDITIONS OF FAILURE OF THE CURVE-FOLLOWING ALGORITHM

Through considerable testing, three conditions under which
the curve-following algorithm can occasionally fail have
been isolated. The conditions are expected to occur in
practice only very rarely, since (except for condition (3)
below), they require critical adjustment of the a priori
state vector to force a failure. Condition (3) occurs when
the orbit is almost undetermined with the given observa-
tions, and even if this difficulty is overcome, the deter-
mined orbit will inevitably have extremely large errors.

The three conditions are as follows:

1. The a priori orbit state vector is very close to a
solution state vector.

2. The a priori state vector is such that the solution
curve has two loops that nearly touch, or a single
loop that is nearly pinched off.

3. The six given observations are such that there are
two solution states that are very close together.

Condition 1 causes the differences 0;— Og to be very small.

Assuming that most solution loops have, very roughly, the
same size, when measured by the range of variation of

A — A0 1 0 . 1 0 . .
0.1 = 0.1 + A (0.1 - oi). this smallness of Oi - 0i implies
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that the range of N\ will be very large. Values of \ as
large as 1012 can be reached when the a priori state vec-
tor is in error by only 10 meters. Thus, in such a case,
the N variable has not been properly scaled, and this

leads, through machine precision limitations, to slow con-
vergence of the corrector when the curve reaches large
magnitudes of \. Fortunately, the curve will be followed
first through a solution state before the difficulty occurs,
and this solution state is almost certainly the one de-
sired. Proper scaling of N could reduce this problenm in
the future.

Condition 2 can lead to an ambiguity concerning which of the
two branches the algorithm will follow upon passing the
touching point. Of course, two loops wWill never exactly
touch, so that, in principle, the step size could be se-
lected small enough to avoid the problem. But using very
small step sizes indiscriminantly is inefficient. Better
alternatives, for a very sophisticated algorithm, would be
to have the algorithm check for the possible near existence
of such touching points and then to either change the step
size tolerances locally, when necessary, or to change the

a priori state vector by an amount large enough to avoid the
problem.

Condition 3 can either cause convergence difficulties in the
subalgorithm for collecting solution states (Section 3.5.4)
or can produce an inconsistency (only one solution state
recovered for a case in which the curve doubles back). Like
Condition 2, it can be corrected with sufficiently small
steps, locally, in a more sophisticated subalgorithm that
can reliably diagnose the condition. The condition can be
diagnosed by measuring the angle between the curve tangent
and the N = 1 hyperplane.



Of the three conditions, the third is the most likely to
occur in practice, when an attempt is made to determine an
orbit with insufficient tracking. Even though the deter-
mined orbit may have large errors, the operational early
orbit algorithm should carefully handle this case, because
even relatively poor knowledge of the orbit may sometimes be
good enough to lead to additional contacts and tracking of
an errant spacecraft.



SECTION 4 - NUMERICAL EXAMPLES OF THE BASIC HOMOTOPY METHOD

Spacecraft tracking by means of a single TDRS (at longitude
41 degrees west) was exclusively considered. Section 4.1
provides an example with simulated tracking for a high-
eccentricity orbit. Section 4.2 considers Landsat-4, using
real TDRSS tracking measurements. That section includes a
detailed description of one case along with less detailed
results from several other test cases.

The physical modeling for the examples in Sections 4.1 and
4.2.1 was simple. Two-body orbit propagation and geometri-
cal measurement modeling, as described in Sections 3.2.1.1
and 3.2.2.1, were used, with no corrections applied. For
the simulated tracking measurements used in the example of
Section 4.1, Gaussian white noise with standard deviations
of 0.5 millimeters per second for Doppler and 0.5 meters for
range (values typical of current TDRSS performance) was
added to the simulated measurements. A l0-meter bias was
added to the simulated range measurements.

Section 4.2.2 describes the accuracy improvement obtainable
for the early orbit through the use of the Brouwer-Lyydane
orbit propagator and the inclusion of the light propagation
effects and the spacecraft transponder delays.

Typical central processing unit (CPU) times for the calcula-
tion of one complete solution loop ranged from 0.5 to 2 min-
utes, using the developmental program in the VAX 11/780
computer. However, in an operational implementation of the
method, the CPU times would be much less because of optimi-
zation of the algorithm and because, in most cases, computa-
tion of a complete solution loop is not necessary.



4.1 ECCENTRIC ORBIT WITH SIMULATED TDRSS TRACKING

The test orbit has a perigee close to the Earth's surface
and an apogee altitude of 12,000 kilometers, which is near
the outer limit of complete TDRSS coverage. The orbit
period is 230 minutes. Simulated Doppler observations at O,
20, 40, 60, 80, and 100 minutes were used to generate the
solution curve.

The truth model orbit elements, the a priori estimate, and
the four solutions along the solution curve are listed in
Table 4-1. The projection of the solution curve onto the
N - 2z plane is shown in Figure 4-1. As this is a two-
dimensional projection of a simple curve that lies in a
seven-dimensional space, the apparent cusps and self-
intersections are illusory.

Although solution 1 is very close to the true state, the
other three solutions also exactly fit the six given obser-
vations. Other information would be required to select the
correct solution from among the four. For example, the six
pairs of TDRSS antenna pointing angles should be sufficient
to make the correct selection.

The near symmetry in Figure 4-1 is attributable to the sym-
metry inherent in TDRSS range and Doppler orbit determina-
tion. The range and Doppler measurements are unchanged
under the transformation

(z ' et ! ' ' P ! (4-1)
llelan}—’ﬁan.xnyg

]
where z 1is the position coordinate measured along the
1
direction that is normal to the TDRS orbit plan and x and
H

y are coordinates in the TDRS orbit plane. Also, any
two-body trajectory subjected to this transformation yields
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Table 4-1. A Priori Estimate, True State, and Solution States
for the Eccentric Test Case

Keplerian A Priori True Solution Solution Solution Solution
Element Estimate State 1 2 3 4

a (km) 10,000 12,500 12,499.997 18.6986., 12,499.997 18,696.
e 0.5 0.44 0.44000 0.608 0.44000 0.608

i (degqg) 15 10 10.000 84.9 13.079 85.4

Q (deq) 140 145 144.998 206.5 320.117 26.3

® (deg) -80 -90 -89.998 185.1 94 .98 8.3

M (deq) -40 ~35 -35.000 345.3 -35.000 345.3
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another, z‘—teflected two-body trajectory; hence mirror
symmetry in the solution curves is therefore present. (Ac-
tually, Figure 4-1 is slightly asymmetric because of the
small nonzero inclination and the eccentricity of the TDRS
orbict.)

The high eccentricity in this test case does not introduce
any special considerations into the determination of the
solution by this method. 1In fact, solution curves often
have portions on which the orbit states are hyperbolic, even
if the a priori estimate and the solution states are not.
Except for details such as the shapes of the solution curves
and the number of solutions, the range and Doppler problems
all show the same general character: gmooth, c¢losed solu-
tion curves and an even number of solutions (except in the
rare case that a solution curve tangentially touches the

N = 1 hyperplane).

In this example, the solution curve was represented numeri- .
cally by a sliding quadratic polynomial fit at 125 steps.
Ninety seconds of CPU time in the development program were
required on the VAX 11/780 computer.

4.2 LANDSAT-4 WITH REAL TDRSS TRACKING

4.2.1 SIMPLE MEASUREMENT AND TRAJECTORY MODELING

The Landsat-4 orbit is near polar and circular, with a
radius of 7070 kilometers. Only a very limited amount of
TDRSS tracking was available: two or three 1l5-minute data
groups per day with one-revolution spacing between the
groups. The six measurements used in this example consisted
of a single range measurement midway between two Doppler
measurements in each of two consecutive data groups. These
observations were selected at 0.5, 6.5, 13.0, 97.0, 102.0,
and 107.5 minutes from the reference time, 14h56m on

March 14, 1984.



The initial estimate, actual solution (osculating elements),
and the four solutions found are listed in Table 4-2. Each
of the four solutions was compared, over a 100-minute com-
parison interval, with a moderately precise Landsat-4 orbit
solution calculated with the Goddard Trajectory Determina-
tion System (GTDS) Differential Correction (DC) Program.

The position accuracy of this solution, which was based on
NASA S-band ground tracking alone, is about 0.1 kilometers.
The resulting position differences are shown in the bottom
of Table 4-2. These differences are extremely large, except
for Solution 2, which corresponds to the actual Landsat-4
orbit. Nearly all of the 50-kilometer error in Solution 2
is due to the two-body approximation. As indicated earlier,
the correct solution of the four should be selected using
the known values of the TDRS antenna beam angles.

Projections of the solution curve on the N - y and

N - z planes are shown in Figures 4-2 and 4-3, respec-
tively. 1In this example, the solution curve consists of two:
disjoint loops, which have the mirror symmetry discussed in
Section 4.1. (The second loop has been suppressed in Fig-
ure 4-2 for clarity: it nearly coincides, in its N - ¥y
projection, with the first loop.) Each one of the mirror-
symmetric loops can be obtained from the other by using
transformation (4-1). After computation of one of the

loops, the existence of the other can be inferred by the
absence of the expected mirror symmetry in the two solutions.

The computations for this case used 81 predictor-corrector
steps for the loop and 46 seconds of VAX CPU time in the
developmental progranm.

Results from several other Landsat-4 cases in which the
tracking schedule and the a priori estimate were varied are
summarized in Tables 4-3 through 4-5. All of these cases
had the same reference time as the previous example and also
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Table 4-2. A Priori Estimate and Solution States for

Landsat—~4 Test Case

Keplerian A Priori

Element Estimate

a (km) 8000

e 0.01

i (deq) 45

Q (degq) o

w (deg) o

M (deq) o
Maximum 14,904
Error (km)

lrrom GTDS Differential Correction Solution.

Actual Solution Solution Solution Solution
Solution 1 1 2 3 4
7073.7 6960.5 7083.7 6969.5 7083.7
0.00097 0.819 0.,00042 0.819 0.00042
298.2 79.2 98.2 76.4 100.9
137.4 312.1 137.5 132.2 317.6
197.5% 247.8 333.2 67.4 153.8
100.1 22.6 146.5 22.6 146.5
19,726 50.6 13,480 13,974
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Table 4-3. A Priori Estimates Used for Landsat-4 Early
Oorbit Determination

Keplerian A Priori A Priori
Elément Estimate A Estimate B
a (Km) 7000 8000
e 0.01 0.01L
i (deg) 95 45
Q (degqg) 135 0
» (deg) o 0
M (deg) 115 o



Table 4-4.

Measurement Types
{1 = Range, 2 = Doppler)

Landsat—-4 Early Orbit Determination Results for
One-Revolution Tracking

1

1. 1,
1,
2, 2,
2, 2,
2, 1,
2, 1.

1,
1,
2,
2,
2,
2,

1.
1,
2,
2,
2.
2,

1,
1,
2,
2,
1,
1,

1

N N NN

A

oy ey W

A Priori
Estimate

Maximum Errors fog All
Solutions (km)

f46.1, 15187, 13969, 20112}

{20112, 46.1] {15187, 13969)

[65.9, 20299], [13972, 15670])
Solutions not reached. kmax = 0,85
{50.9, 14018}, [13976, 19863]

[14018, 50.9], [19863, 13976]

lTypes are designated in time order, from the reference time. 1In all cases
the measurement times were 1.0,

25¢e Table 4-3.

6.5, 12.5%, 97.%, 102.5, and 107.% minutes.

3The brackets group solutions on the same loop, in the order found. In cases
with two loops, the two solution loops are mirror images with respect to the

TDRS orbit plane.
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Table 4-5.

Measurement Types1
1l = Range, 2 = Do

1, 1,
1. 1,
2, 2,
2, 2,
1., 1,
1, 2,
1, 1,

1.
1,
2,
2,
1.
1,
1.

1,
1,
2,
2,
2,
2,
2,

lTypes are designated in time order, from the reference time.

25ee Table 4-3.

3

Landsat-4 Early Orbit Determination Results for
a Very Short Tracking Interval

1,
1.
2,
2,
2,
1,
2,

N NN NN -

A

» oy pur o

A Priori
ler Estimate

Maximum Errors fog All

Solutions (km)

solutions not reached. Xmax
Solutions not reached. lmax
{1072, 3273}, (14033, 14027]

{3273, 1072, 14027, 14033]
Solutions not reached. X\

max

Solutions not reached. kmax

[1126, 2194], [14010, 14033}

]

0.982

0.998

In all cases,

the measurement times were 0.5, 3.0, 5.5, 8.0, 10.5, and 13.0 minutes.

The brackets group solutions on the same loop, in the order found.
with two loops,

412

In cases

the two solution loops are mirror images with respect to the
TDRS orbit plane.



used the same simple trajectory and observation models. The
two a priori estimates that were tried are given in

Table 4-3. Estimate A is relatively close to the Landsat-4
orbit, while Estimate B is not. Table 4-4 gives the results
for cases that have three measurements selected from the
first data group and the second three measurements selected
from the second data group, which occurs about one orbital
revolution later. Table 4-5 gives the results for cases that
have the six observations entirely in the first data group.
The errors in the solutions that are listed in these tables
are the maximum total position differences that were measured
in a 100-minute comparison with the GTDS differential correc-
tion solution.

Table 4-4 confirms that the solutions obtained are indepen-
dent of the a priori estimate. Second, the errors for the
"actual" solution, which are about 40 to 50 kilometers, do
not depend significantly on whether range or Doppler measure-
ments are used. Most of the error is attributable to the
simple trajectory model; this is shown in Section 4.2.2. For
the fifth case in Table 4-4, solutions were not obtained; the
solution loop did not extend beyond N = 0.85. Presumably,
the solutions lie on a different loop.

For Table 4-5, the time span of the tracking was 13 minutes.
In this case, the solutions are very close to the critical
points (as indicated by the pairing of the maximum error
values) and, therefore, the problem is ill-conditioned. The
solutions are then very sensitive to measurement and modeling
errors, and, as the results show, good solutions cannot be
obtained. Presumably, solutions do not even exist for the
first two cases in Table 4-5. The results indicate that

13 minutes is too short a span to determine a good orbit with
TDRSS range and Doppler tracking (assuming tracking from a
single TDRS). However, in some cases, even a poor orbit may
be sufficient to enable subsequent acquisition and collection
of additional tracking.



'4.2.2 IMPROVED MEASUREMENT AND TRAJECTORY MODELING

In this section, it is demonstrated that the 50-kilometer
error in the one-revolution orbits determined for Landsat-4
(Section 4.2.1) is attributable primarily to the two-body
approximation and omission of light travel time effects and
that most of the error can be eliminated with better model-
ing.

To assess physical accuracy, three types of Landsat-4 ephem-
erides were compared. These three types are as follows:

1. The GTDS differential correction reference solu-
tion, which is the precise STDN solution described previ-
ously (0.l-kilometer accuracy).

2. Solutions computed with the developmental progranm
using the homotopy method of this study. Options varied
were two-body/Brouwer-Lyydane trajectory model and
light-time/no-1ight-time measurement modeling. (The trans-
ponder delay correction was not performed for the testing
but is easily included.)

3. GTDS differential correction solutions using the
same six measurements as in type 2. The GEM9 5x0 gravity
model, with the Cowell propagator, was used in GTDS to ap-
proximate the Brouwer-Lyddane. All GTDS runs included
light-time modeling for the measurements. The transponder
delay correction was switched on and off.

For the six-observation solutions, the reference time was
set at 14h56m on March 14, 1984, and the six range ob-
servations were selected at 0.5, 6.5, 13.0, 97.0, 102.0, and
107.5 minutes after  the reference time, the same as for the
results of Section 4.2.1. In both the GTDS six-observation

solutions and the homotopy method solutions, the TDRS state



was propagated over the data span with the two-body propa-
gator. The initial estimate for the GTDS runs was suffi-
ciently close to the solution to obtain convergence for the
GTDS six-observation solutions.

Comparisons for two-body solutions are listed in Table 4-6.
The first two rows of the table indicate that the light-time
correction by itself is not responsible for the 50-kilometer
error with range tracking only, and the differenées in the
second two rows indicate that the omission of the spacecraft
transponder delays is also not responsible. Each of these
two effects evidently contributes errors of only 1 to 2
kilometers. Finally, the last line in Table 4-6 shows that
the physical modeling in GTDS and the developmental program
are closely matched when two-body propagation is used. The
60-meter difference present in this last comparison is re-
garded as sufficiently small that it can be neglected for
the purposes of early orbit determination. It is due to
small, systematic differences, such as in the values of GM
and the speed of light.

Comparisons for the Brouwer-Lyddane propagator are shown in
Table 4-7. The ephemeris differences listed there make it
clear that the previous 50-kilometer error is attributable
mostly to error in the gravity model. Furthermore, as was
indicated by Table 4-7, the transponder delay correction and
light-time modeling each contributes 1 to 2 kilometers of
error. The differences in Line 5 in Table 4-7 are not so
small as the 60-meter differences in Table 4-6 because the
GEM9 5x0‘mode1. with the Cowell propagator, matches the
Brouwer-Lyddane propagator only approximately; hence, the
agreement is therefore not as close in this case.

It should be noted that complete solution loops generally
cannot be computed using the Brouwer-Lyddane propagator
because, as formulated, high-eccentricity orbits cannot be
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handled. Thus, the two-body solutions must be computed
first; the Brouwer-Lyddane model is then used to refine the
selected solution by computing only the portion of the solu-
tion loop from N = 0 to N = 1. Alternatively, ordinary
Newton-Raphson iterations would also work for refinement.



SECTION 5 -~ PROTOTYPE ALGORITHM FOR TDRSS EARLY ORBIT
DETERMINATION

This section considers construction of a fairly complete,
automatic early orbit algorithm, based on the homotopy
wmethod for solving the equations. The algorithm is de-
scribed in Section 5.1; test results are presented in Sec-
tion 5.2; and, finally., the limitations of the algorithm and
suggestions for improvement are presented in Section 5.3.

5.1 ALGORITHM DESCRIPTION

The algorithm requires two range measurements, four addi-
tional range or Doppler measurements, and two pairs of an-
tenna beam angles that coincide in time with the two range
measurements. The two range-azimuth-elevation triples are
used to derive a very rough state vector if a rough a priori
is not available. This rough state vector is subsequently
used to initiate an attempt to determine a more precise
orbit that utilizes the range and/or Doppler data. Result-
ant orbit solutions are screened using the angle data to
eliminate extraneous solutions. Acceptable solutions are
refined by computing a partial solution curve, using im-
proved trajectory and observation models. Thus, the
algorithm has three stages.

The algorithm consists of the following steps:
Step 1. Select the required tracking measurements.

Step 2. (Optional) Attempt to determine the orbit by using
externally supplied a priori estimate(s) of the
state vector, as follows:

2.1 Cowmpute solution loop(s) using the a priori
state vector estimate(s).

2.2 Screen solutions found on the loop.



2.3 Refine an accepted solution, if found, using
the Brouwer-Lyddane propagator and observation
light-time modeling. If an acceptable solu-
tion is found, exit the algorithm.

Step 3. Determine the orbit by using a priori state vector
derived from the two range-azimuth-altitude meas-
urement triples. Corrections AA, AE are at-
tempted, in turn, until acceptable solutions are
found. This step proceeds as follows:

3.1 Select the trial values of the antenna beam
angle errors AA, AE.

3.2 Compute a partial solution curve from N = O to

N =1 using the two triples (p, A + AA, E + AE).

The initial state at N\ = O can be any rea-
sonable orbit state.

3.3 Using the N = 1 state from step 3.2 as the
a priori estimate and using the six range or
Doppler measurements, compute a solution loop.

3.4 Screen solutions found on the loop in step 3.3.

3.5 Refine an acceptable solution, if found, using
the Brouwer-Lyddane propagator and observation
light-time modeling. When an acceptable solu-
tion is found and refined, exit the algorithm;
otherwise, go back to step 3.1 and repeat the
procedure.

In step 1, an automatic procedure for selecting the observa-
tions is intended. This procedure should contain several
rules of thumb for making the optimum selection. For ex-
ample, near-integral multiples of one-half an orbit revolu-
tion must be avoided for the spacing between the two
range-azimuth-altitude triples. 1In the testing that is re-
ported in Section 5.2, this step was omitted, and the
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observations were selected manually. Optionally, the auto-
matic selection procedure can include simple tests for data
validity., such as polynomial fitting and checking of resid-
uals.

In step 2, an attempt is made to find the solution by using
available estimates of the solution. More than one such
estimate can be tried. 1In practice, it is expected that
this step will nearly always yvield the desired solution,
(because good estimates will be available), and this step is
therefore omitted from the testing in Section 5.2.

Step 3., performed if step 2 fails or is bypassed, attempts
to get the orbit entirely from the tracking data, not using
any externally supplied a priori estimate. This step is
based on the fact that the actual angqular position of the
spacecraft must lie within a cone of known angular radius
(0.86 degree for the SSA mode), centered upon the recorded
values of the antenna beam angles. Therefore, by systemati-
cally trying various possible values of the angle errors (a
pair of angle errors at each of the two observation times),
an a priori state will eventually be found that is suffi-
ciently close to the true solution so that both lie on the
same solution loop in step 3.3. Thus, with enough trials,
the solution, if it exists, will eventually be found. It is
this search procedure that is primarily considered in Sec-
tion 5.2.

One possible grid of trial values of the beam angle errors
is schematically shown in Figure 5-6. The beam radius,
BMLIM, and initial grid spacing, BDEL, are parameters, and
the same values for these parameters are used at each of the
two observation times. The first attempt to get the solu-
tion fixes the trial error at the times of both triples to
the value labelled by '1l' in Fiqure 5-1. The search con-
tinues by trying, in sequence, the various errors at the
time of the second triple, leaving the error at the first
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triple fixed. After the entire grid has been tried unsuc-
cessfully at the second triple, the error at the first is
incremented to '2', and looping is again performed at the
second triple. This process is extended until all possible
combinations of errors have been tried. 1If still no solu-
tion has been found, BDEL is reduced by 50 percent and the
procedure is repeated, omitting previously tried grid
points. It is not expected that the BDEL reduction pro-
cedure will ever be used in practice, but it was available
for testing.

The solution screening procedure for the range/Doppler solu-
tions checks the recorded values of the two angle pairs
against those predicted by each particular orbit solution.
1f agreement to within a specified tolerance is found for
all four angles, the solution is accepted. Because of the
known TDRS orbit-plane symmetry in the set of orbit solu-
tions (Section 4.1), the symmetric solutions are automati-
cally generated by the algorithm and considered for
screening, along with each solution actually computed. Each
range/Doppler solution loop in either Step 2.1 or Step 3.3
is entirely computed before the solutions are passed, in a
group, to the screening procedure. However, screening of
each solution immediately after generation would speed up an
operational version of the algorithm.

5.2 TEST RESULTS
5.2.1 TEST PROCEDURE

Four cases were included in Monte Carlo testing of the
search part of the algorithm of Section 5.1. These are as
follows:

1. Low-Inclination, Circular Orbit

2. High-Inclination, Circular Orbit

3. Low-Inclination, Elliptical Orbit

4, Landsat-4 (High Inclination, Circular)
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In the first three cases, simulated observations were used,
while in the fourth case, actual TDRSS tracking data was
used. The orbit elements for these cases and the schedule
of selected observations are given in Tables 5-1 and 5-2.
For the simulated cases, a number of subcases were con-
sidered: four for each of the circular cases and twelve for
the elliptical case. In these subcases, the orientation of
the orbit with respect to the TDRS was varied, for example,
orbit plane edge-on or face-on to the TDRS, tracking at ex-
treme azimuth or zero azimuth, and tracking near perigee or
apogee. The results for these subcases are independently
tabulated in Section 5.2.2.

For each subcase, a group of 20 Monte Carlo trials was per-
formed; a different set of azimuth and altitude errors were
added to the correct antenna beam angle values in each
trial. These 20 sets of errors were derived from a random
number generator that simulated a rectangular probability
distribution between -1.0 degree and 1.0 degree. For the
trials in each of the three simulated cases, the 20 sets of
applied angle errors were identical. These 20 sets of angle
errors are shown in Figure 5-2. Here, the arrow points from
the error at 0 minutes to the error at 25 minutes. For the
Landsat-4 case, a similar set of 20 errors was added to the
actual antenna beamn andle values. Those are similarly shown
in Fiqure 5-3, in which the arrow points from the error at
13 minutes to the error at 97 minutes.

The parameters specified for the algorithm to be used in the
antenna beam search grid were specified as follows:

BMLIM
BDEL

1.0 degree

0.5 degree

The angular tolerance used for screening the solutions was
specified as 1.2 degrees for both azimuth and altitude.



Table 5-1.

Keplerian Low-Inclination,

Element Circular Circular
a (km) 7000 7000

e 0.001 0.001

i (deq) 10 100

Q (deq) varied varied
o (deqg) 0 0

M (deg) varied varied

High-Inclination,

Reference Date:

14hse™ on March 14, 1984.

Low-Inclination
Elliptical

12,500
0.44
10
varied
varied
varied

Orbit Elements for the Four Test Cases

Landsat-tll

7080
0.0006
98.2
137.4
189.9
281.0



Table 5-2. Tracking Schedules for the Four Test Cases

tion inutes
Relay Relay Azimuth,
Test Case Range Doppler Elevation
Low Inclination, 0 0 0
Circularl 25 25 25
9% 95
High Inclination, 0 0 0
Circularl 25 25 25
9%
Low Inclination, 0 0 0
Ellipticall 25 25 25
95 95
Landsat-4 0.5 - 13
6.9 97
13
97
102
107.%

1

Gauvedian white nolse added: o(range) = 0.005 kn,
g(Doppler) = 0.5 % 10-6 km/sec

Range bias added: 0.0l km
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The a priori elements used in the range and angles step of
the algorithm was the same for all trials and is listed in

Table 5-3. The Brouwer-Lyddane refinement step was omitted
in the testing.

5.2.2 RESULTS

The Monte Carlo results for the four cases are summarized in
Tables 5-4 through 5-7. Each row in a table describes the
outcome of the 20 trials for each subcase. For example, in
the first subcase in Table 5-4, none of the trials failed to
produce acceptable solutions (third column), each of the 20
trials yielded the correct solution among the acceptable
solutions (Column 4), 4 trials yielded one or more extra-
neous solutions (but acceptable to the screening procedure)
(Column 5), and the number of distinct solutions found among
all of the trials was 2 (Column 6). In the last column, the
number of solution loops that had to be calculated is indi-
cated. 1In the first subcase, 19 trials required only one
solution loop, while 1 trial required calculation of two
solution loops before an acceptable solution was located.

On the whole, the search procedure was successful in locat-
ing the correct solution in all but 4 of the 420 trials. 1In
these four trials, other extraneous (but accepted) solutions
were found first, terminating the algorithm. Presumably,
had the algorithm continued with the calculation of addi-
tional solution loops, the correct solution also would have
been found.

In approximately one-half of the trials, the solution loop
containing the correct solution also contained an accepted
extraneous solution. This, along with the four failures,
indicates that a tighter solution screening procedure is
required.



Table 5-3. A Priori Orbit Elements Used for the Range
and Angles Orbit Determination Step

Keplerian A Priori
Element Orbit Elements
a (km) 8000
e 0.001
i (deg) 45
Q (deg) 0
o (deqg) 0
M (deq) 180
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In two of the trials in Table 5-6, more than 50 solution
loops and about 50 minutes of VAX CPU time were required be-
fore an accepted solution was found. This much computation
is not feasible in an early orbit algorithm for operational
orbit determination, and a modification of the algorithm is
required to correct this. The problem can probably be cor-
rected by using a more irregular numbering of the grid points
in Figure 5-1, so that sequen- tial trials are not close to-
gether in angular position.

5.3 SUGGESTED IMPROVEMENTS AND COMMENTS

Consideration of the test results leads to three suggested
improvements for the early orbit algorithm. These are as
follows:

1. Tighter screening of the solutions is required. To
do this, it is necessary to use more than the two angle
pairs, and additional range and Doppler observations should
probably be used also. Tighter screening would eliminate the
four trial failures. The use of nearly all of the available
range/Doppler tracking should be considered to compute a RMS
weighted residual for screening. Also, additional screening
for orbital energy, maximum vehicle AV, maximum orbital
plane change, etc., should probably also be included.

2. The order of the applied beam angle errors used in
the search procedures should be changed. Rather than the
simple order indicated in Figqure 5-1, the order should be
varied so that significantly different a priori estimates
will be generated from one attempt to the next. It is ex-
pected that varying the order would at least partially
remedy the two trials that required more than 50 solution
loops. Currently, it does not appear feasible to design a
"smart" search procedure (for ekample. first choosing angle
errors that significantly vary the mean anomaly)., because
such an approach turns out to be very complicated (from the
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point of view of working out the equations) to implement in
such a way that all possibilities are systematically treated.

3. For improvement in efficiency. the screening pro-
cedure should be applied as each candidate solution is gen-
erated. 1In the algorithm tested, screening was deferred
until all solutions on a loop were collected. However, in
most cases, the correct solution is the first one encoun-
tered along the solution loop. Therefore, immediate screen-
ing could significantly improve the efficiency of the
algorithm by eliminating calculation of the remainder of the
solution loop.

This algorithm does not address two of the items listed in
Section 2, namely, early orbit determination for the Space
Shuttle, for which range tracking is not available, and
treatment of the ambiguous range observations.

Unfortunately, an analogous search procedure using two
Doppler-azimuth-elevation triples will not work, because
orbit solutions may not exist for any arbitrarily selected
pair of such triples. This means that the necessary pre-
liminary solution for each point in the search pattern
cannot easily be obtained, as was the case for two range-
azimuth-elevation triples. Therefore, at the current time,
Space Shuttle early orbit determination would require ex-
ternally supplied a priori estimates for computing Doppler-
only solution loops.

For the problem of the redetermination of range ambigquity
numbers, this study included attempts to derive equations of
consistency, so that the ambigquity numbers could be derived
directly from the tracking data using numerical time deriva-
tives of the Doppler data. These attempts were unsuccess-
ful, so that, at present, the only way to get the ambiguity
numbers is with the standard algorithm, which requires an
orbit state vector. In an operational program, it might
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prove useful to allow overrides to increment or decrement
these numbers in a manually controlled search. Alterna-
tively, a simple software default strategy could be provided
to do a limited ambiguity number search, to avoid a person
in the loop.

Automatic looping over various ambiguity numbers must be used
with caution in an operational program because failure of the
algorithm to get a solution may be due to factors other than

incorrect ambiguity numbers, namely, bad observations or in-

sufficient tracking.



SECTION 6 - PRELIMINARY STUDIES OF EXTENSIONS OF THE
BASIC HOMOTOPY METHOD

This section considers two generalizations of the method
expressed by Equations (3-3). Section 6.1 contains the
weighted least-squares formulation corresponding to Equa-
tions 3.3, a simple example, and a general description of
test results. Section 6.2 considers a generalization of the
basic homotopy method to include additional paths leading
from one disjoint solution loop to another. This generali-
zation is expected to permit the determination of the orbit
solutions beginning with any arbitrary a priori estimate.

6.1 LEAST-SQUARES ORBIT DETERMINATION

6.1.1 FORMULATION

The weighted least-squares method is applied., assuming that
the M measurement errors, having assigned standard devia-

tions, o., G, ..., O.,
1 R |

The possible Bayesian term is not included here, but is

are completely uncorrelated.

straightforward. With these assumptions, the solution
1 . .
states x satisfy the equations

M
2 ac. |
L 1 ___...l - - -
z (Gj) Oj - Cj(x) axi =0, 1=1, ..., 6 (6-1)

while the a priori estimate, by definition, satisfies

0, -C.(X) =0, =1, .... M
j J( ) b |



and, therefore, also gatisfies

3 2 ac
1 0 —- 93 .

1 —

X

The introduction of the homotopy parameter N in the same
way as in the six-observation formulation (Section 3.1)
leads to the following equations, which correspond to Equa-

tions (3-3):

M
- 1 2 0 1 o . acC.
- 0. N[O, - O, - C. —l = 0,
-2‘ (°j) [J ’ ( ] 3‘) 1% o (6-3)
j=1 ‘ ilx
i=1, ..., 6

A least-squares formulation has two main benefits for early .
orbit determination:

® The effects of high-frequency measurement and model
errors are averaged out in a better way than in

six-observation orbit determination.

® The possibility of an addition of a Bayesian term
allows inclusion of a priori knowledge or con-
straints for the orbit. This capability can be
useful when very little tracking is available.



6.1.2 SIMPLE EXAMPLE

Using Equation (6-1) in-the case of one observation in the
example of Section 3.3, the solution curve corresponding to
the one specified by Equation (3-20) is

1/2 11/2 172

12} U - (6-4)
+

This equation is satisfied when either one or both of the
main factors is equal to zZero. As in Section 3.3., the
first factor is zero on the ellipse given by Equa-

tion (3-20). The second factor is zero on the straight line
X = 0. Thus, the solution curve has two intersecting com-
ponents, as shown by Figure 6-1. The two components in-
tersect at two points., called bifurcation points. At these
two points only. both factors in Equation (6-4) are equal to
zero.

The existence of these bifurcation points will cause a dif-
ficulty in the curve-following algorithm of Section 3.5. At
the two such points in Fiqgure 6-1, the 2%x2 matrix that cor-
responds to the 7x7 matrix on the lefthand side of Equa-
tion (3-36) becomes singular, and the Newton-Raphson
corrector does not converge quickly near these points.

Thus, the current numerical algorithm cannot follow a solu-
tion curve through a bifurcation point. A more sophisti-
cated algorithm is required. One approach might be to patch
in an analytic solution in a small region that includes the
bifurcation point, introducing three new branches, each to
be subsequently followed.
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Reference 8 indicates that a second approach, using a local
perturbation to remove the bifurcation point may be work-
able, but this has yet to be tested in the orbit determina-
tion problem.

6.1.3 DESCRIPTION OF TEST RESULTS

The picture outlined above is consistent with the results of
testing in simulated TDRSS orbit determination. With pure
range and/or Doppler tracking, it was found that a complete
solution loop could not be followed in any case: at some
point along the curve, the matrix for the Newton-Raphson
corrector became singular, and the curve could not be fol-
lowed beyond this point. Such points always occurred at
extrema in AN. (The curve-following algorithm responds to
the sinqularity by taking smaller and smaller steps, which
soon forces termination.) 1In some cases, a bifurcation
point was encountered before any solution state was
reached. 1In other cases, one or more solution states were
reached before a bifurcation point.

Because of the complexity introduced by the existence of the
bifurcation points, further work on the least-squares method
was discontinued; such additional study would be more appro-
priate after a thorough understanding of the six-observation
case has been achieved.

6.2 METHOD FOR SYSTEMATIC CALCULATION OF DISJOINT SOLUTION
LOOPS

In this section, only pure range and/or Doppler orbit deter-
mination is considered. As indicated previously, when the
a priori estimate is far from the desired solution state,
the two states may lie on disjoint components of the solu-
tion curve. Because of this, the basic algorithm of Sec-
tion 3 may not succeed. 1In this section, a generalization
of the formulation, which overcomes the nonconnectedness
property of the loops, is described. This formulation
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produces a solution curve that consists of a network of
loops, in a 12-dimensional (kl—kz...—k6—'f)—space.

among them the two disjoint loops containing the a priori
estimate and the desired solution state. Loops of various
"levels" in this network lie in various projections to
lower dimension subspaces of the (M -N ...-\N - X)-space.
Loops of neighboring levels intersect and form a connected

network of loops that may be individually followed in turn,
using a straightforward generalization of the numerical

method of Section 3.5. This technique enables the solution
state to be reached, beginning with any a priori estimate

(though at an increased computational cost for poor esti-
mates).

The basis for the generalization, the five-dimensional sub-
space of six-dimensional orbit state space that is here
called the "“critical hypersurface," is described in Sec-
tion 6.2.1. Simple, numerical experiments verifying that
connections between disjoint solution loops can be accom-
plished by paths consisting exclusively of states lying on
the critical hypersurface are indicated in Section 6.2.2.
Results from a two-level algorithm are summarized in Sec-
tion 6.2.3. 1In a two-level algorithm, two distinct types of
solution loops are calculated: (1) ordinary loops in
(xl-'§3 space, as defined in Equations (3-3); and (2) loops
in a (Xl- kz—x) space, which consist (in the x-component)
only of states on the critical hypersurface that satisfy
Equations (3-3). For these latter loops, the image of the
loop in six-dimensional observation space lies in a plane
rather than on a straight line. Although it was not coded
and tested in this study. the full generalization to the
six-level algorithm is described in Section 6.2.4 for future
reference.



6.2.1 THE CRITICAL HYPERSURFACE AND CRITICAL POINTS

Generally, six given range and/or Doppler measurements de-
termine the six components of the orbit state. Considering
six-dimensional observation (measurement) space, which has
$ix coordinate axes representing the values of the six meas-
urements in a fixed tracking schedule, it is readily ap-
parent that points exist in the observation space that
cannot be produced by any orbit state. The five-dimensional
boundary between the regions of possible and impossible ob-
servation sets is the image of a five-dimensional hypersur-
face in x-space. Here, this hypersurface will be called the
critical hypersurface (see Figure 6-2). It will be assumed
that this surface is smooth almost everywhere, and that it
is connected for nearly all range and/or Doppler orbit deter-
mination problems. This assumption remains to be proven in
future study.

As suggested by Fiqure 6-2, a given observation set can be
realized by more than one point in orbit state space. Thus,
at the boundary between possible and impossible observation
sets, the "possible" region "folds over" onto itself, so
that “layers" are superimposed. (Of course, these "layers®"
are six dimensional; the six-dimensional generalization of
Figure 6-2 cannot be visualized.) As the boundary of the
"possible" region is reached, the number of orbit states
that can realize the observation set is reduced as multiple
states coalesce at the critical hypersurface. On the cri-
tical hypersurface, the six-observation orbit determination
problem is ill-conditioned, that is, the observation par-
tials matrix is sinqular

aCi
det 5;; 0 (6-5)

]

——
X on c¢ritical hypersurface
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Equivalently. the six vectors aci/aii i=1, .... 6 beconme
linearly dependent.

Equation (6-5) provides one constraint in x-space, leading

to a five-dimensional hypersurface. Equation (6-5) speci-
fies that the observation partials matrix should have rank §

or less on this hypersurface. Lower-dimensional subspaces
can be further defined by requiring that the observation
partials matrix should have rank 4, rank 3, etc. In the
observation space picture, this means that there is a
“folded fold." a "folded, folded fold," etc., each addi-
tional folding leading to a subspace of dimension that is
smaller by 1.

Next, critical points on solution loops are defined. Equa-
tion (3-3) specifies that the solution curve image in obser-
vation space should trace out a straight line. Points where
this line intersects the region between possible and impos-
sible observation sets have corresponding orbit states that
lie on the critical hypersurface. Proceeding along the
solution loop in le'space, as the corresponding orbit

state passes through a point on the critical hypersurface,
the observation space image of the orbit state turns back
onto another "layer," retracing previous observation sets as
N varies. Thus, at the turning points of the loop in

\-X space, that is, the points where

ar _
ds 0

the X-component of this point is on the critical hypersur-
face. These turning points are called critical points. The
equivalent condition, that the determinant of the observa-
tions partials matrix vanish at the turning points, can also



be obtained by considering the rate of change of the left-
hand sides of Equation (3-3) along a solution loop:

d_ 0 1 0 -
ds [Oi + k(oi - 0y )- Ci(x)]

Ol i'—'l. ...,6

i

or

=0, 1 =1, ..., 6 (6-6)

,.,,La

6
1 0 z :
j=1

At a point such that d\/ds = O, the matrix aci/axj must be
singular.

6.2.2 CONNECTION OF DISJOINT SOLUTION LOOPS USING CRITICAL
SURFACE PATHS
The idea that paths of orbit states on the critical surface
can connect a critical point on one solution loop with a
critical point on another disjoint solution loop arises from
the property of continuity. 1In a sequence of orbit deter-
mination problems in which (only) the a priori estimate is
changed continuously. so as to cause a loop to pinch off as
in Figure 3.2, it is reasonable to expect that the two cor-
responding critical points, forming at the pinch-off point,
smoothly move apart as the a priori estimate smoothly
changes. Abrupt jumps in the shapes of the disjoint loops
are not expected. Under this assumption, there will be a
path of critical points that leads from one critical point
on one loop to the critical point on the other. Pinched-off
loops and a connecting path are schematically illustrated by
Figure 6-3.

The connection on the critical hypersurface was numerically
tested in a number of cases that had (mildly) disjoint
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solution loops. An interactive computer program was written
so that paths of small steps on the critical hypersurface
could be constructed. Given five coordinates on the hyper-
surface (any five of x, y., 2. X, Y. Z) the program solved
for the sixth, using the Newton-Raphson iteration on Equa-
tion (6-5). The interactive user could, with this program,
try to construct a sequence of small steps leading from the
known critical point on one solution loop to a known cri-
tical point on another loop.

Using this program, it was empirically verified that such
continuous paths could indeed be constructed, though the

paths sometimes had to be deviously curved. This result,
that the critical hypersurface is connected, is the basis
for the algorithms of Sections 6.2.3 and 6.2.4.

6.2.3 TWO-LEVEL ALGORITHM

To get around the indentation in the region of possible ob-
servation sets in Figure 6-3, the homotopy path must deviate
from the straight line path that is indicated there. 1In the
two-level algorithm, the connecting path is allowed to move
freely in a plane in observation space. The observation
sets in this plane are labeled by two parameters, Xl and

xz. The additional degree of freedom is cancelled by

the constraint that the orbit state must lie on the critical
hypersurface, so that the equations still define a curve.
Thus, the two-level algorithm is based on the following two
sets of equations:

Level 1 Loops

vees 6 (6-7)

'
O
T
t
O

f nd
~
%
St
]
o
[ d
I
=



Level 2 Loops

0 1 0 2 0 o .
01 + kl Oi - Oi + Xz Oi - 0i - Ci(x) =0, 1 =1, .:., 6
ack (6-8)
det '52— A— 0
J X

Level 1 loops are exactly those defined by Equations (3-3)
except that N has been renamed kl. Level 2 loops are
defined in an eight-dimensional (XI—X2:§)~space and

the determinant condition forces the orbit states of level 2
loops to lie on the critical hypersurface. Level 1 loops

can be considered to lie in the Xz = 0 hypersurface of
the eight-dimensional (xl—szi)—space. The term 0? - Og
is the i-th component of a vector in observation space that

is chosen to be linearly independent of the vector with

1 0

components oi - 0.l , 1 =1, ..., 6. The two six-dimensional"

vectors (62 -'30) and (51 -'50) define the plane of the
homotopy path. The observations oi may be arbitrarily

chosen; one method is to choose a second a priori estimate,

%2, and then set

2 =2
X

0 = C. ), L =1, oo, 6 (6-9)

~~

The computational procedure for the two-level algorithm is
as follows:

Step 1: Compute the first level 1 loop. beginning with
s s . =0 . .

the a priori estimate ¥ and using Equations (6-7).

Save all critical points found on the loop.



Step 2: Beginning with each critical point from Step 1,
and beginning at xz = 0, calculate all corresponding.
distinct level 2 loops. Save all critical points on
these loops (defined by kz = 0). The level 2 loops

are calculated from Equations (6-8).

Step 3: 1If new critical points are found on the level 2
loops of Step 2, then calculate the co:responding, dis-
tinct level 1 loops beginning at these critical points.

Step 4: 1Iteratively repeat Steps 2 and 3 until each
critical point on a level 1 loop is matched with a cor-
responding critical point on a level 2 loop.

Of course, all solution states at N = 1 are collected dur-
ing calculation of the level 1 loops.

The computational procedure is automatically guided by con-
struction of a critical-point table. Each critical point
for each loop is added to the table as each additional

level 1 or level 2 loop is completed. Pointers in the table
indicate whether a given critical point on a level 1 loop is
matched by a corresponding critical point on a level 2 loop
or vice versa, or whether a given critical point is un-
matched. 1If the pointers indicate an unmatched critical
point, the appropriate loop calculation is initiated. The
table is checked and updated after each loop calculation un-
til all eritical points are matched. The network of level 1
and level 2 loops is then complete.

Two examples, A and B, are schematically illustrated by Fig-
ures 6-4 and 6-5. The schedule of simulated tracking
(single TDRS). the a priori estimates, and the measurement
errors for these two examples are listed in Table 6-1. Ex-
ample A has three level 1 loops and three level 2 loops.,
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Table 6~1. Truth and A Priori Estimates, Tracking Schedule, and

Measurement Errors for Examples A and B

Example A

A Priori
Element State Estimate )

Kepler Truth

a (km) 7000
e 0.001
i (degq) 100

Q (deg) 55

o (deg) 0

M (deg) -10

Examples A and B
Tracking Schedule:

Measurement Errors:

8000
0.02
65

0

o

0

Three Range-Doppler pairs at T = 0,

o(Range)
o(Doppler)
Bias (Range)

Exampile B

A Priori Truth A Priori A Priori
Estimate 2 State Estimate 1 Estimate 2

8000 7000 10,000 10,000

0.02 0.001 0.02 0.02

65 100 65 65

0 55 0 Q

4] 0 0 0

30 -100 0 30

25, 95 minutes

5 x 10-4 kilometers

5 x 10-7 kilometers per second
0.01 kilometers
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connected through eight critical points. There are four
solution states on one of the level 1 loops. Example B has
five level 1 loops and three level 2 loops, connected
through 16 critical points. Eight solution states are found
on two level 1 loops. In each of these examples, the

a priori state and the solution states lie on disjoint

level 1 loops. Example A is typical of the complexity of
the two-level networks encountered during testing:; Example B
is more complex than usual.

6.2.4 SIX-LEVEL ALGORITHM

The two-level algorithm can fail: that is, for some a priori
estimates, the desired level 1 loop was not found in the
computed network. For the method to be fully generalized,
the homotopy path must be allowed to lie in a six-dimensional
space, rather than only in some two-dimensional subspace.

The six-level algorithm is constructed to accomplish this.
Although the six-level algorithm was not tested in this
study, it is briefly formulated here to indicate a starting
point for future work.

The six-level algorithm includes the calculation of solution
loops in (kl—kz...—XG—Iflspace and in various lower-
dimensional spaces. The hierarchy of loops and critical
points is listed in Table 6-2. The loops of neighboring
levels are connected at critical points of appropriate

type. The critical points discussed for the two-level al-
gorithm are, specifically, the level 1 critical points in
Table 6-2. They are identified on level 1 loops as points
that satisfy either

det |3 =0 (6-10)
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or, equivalently,

ds = 0 (6-11)

N, =0 (6-12)

More generally, level n critical points are identified on
level n loops as the points that satisfy either

S =0 (6-13)

or, equivalently,

d\
-1 _ _2 _ . —n _
= = ... =35 =0 (6-14)

and they are identified on level n+l loops by

kn+1 = 0 (6-15)

The symbol Sn denotes the sum of all of the n-rowed prin-
cipal minors of the observations partials matrix. Thus, for
example, Sl is the trace of that matrix and 36 is

the determinant. The S5 are the coefficients in the char-
acteristic polynomial, P(n), of the observations partials

matrix (see Reference 1ll).

6.
P(m) = 0 « Z -1% s K (6-16)
k=1
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and the characteristic values “n' n=1, ..
six roots of

.. 6 are the

P(n) = 0 (6-17)

The observations partials matrix has rank 6-m (0 < m £ 6)
if and only if m of the eigenvalues are zero, and this happens
if and only if Sg = S5 = ... =S¢ .., = 0, with S,  # 0.

Finally. the equations for the loops of each level are
given. They are

Level 1:
0 1 0 -
Oi+K1(Oi—Oi)—Ci(x) = 0 i =1, . b
(6-18)
A, =0 i=2, ..., 6
1
Level n (L < n < 6):
n
0 K 0
k=1
(6-19)
SB_j =0, j =2, .... n
N =0,1=n+1,n+2, .... ¢
i

The middle equation guarantees that (most of) the orbit
states on a loop of level n are such that the observation
partials matrix has rank 7-n, in accordance with the
hierarchy listed in Table 6-2. In Equation (6-19), care
must be taken that the vectors—ak —'30, k=1, ..., 6 span a
six-dimensional space. The computational procedure for the

six-level algorithm would be a direct extension of the
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procedure for the two-level algorithm. The critical point
table, however, must be enhanced to include five types of
critical points, and, correspondingly., five types of
pointers to indicate critical point matching.

6.2.5 ASSESSMENT

Although the two-level algorithm verifies the technique and
the six-level algorithm is expected to provide an exhaus-
tive, systematic algorithm for finding all of the solutions,
regardless of the a priori estimate, the technique requires
some further, though routine, work before consideration for
operational implementation. The reason is efficiency. Each
critical surface loop currently requires about 10 times as
much CPU time as does an ordinary loop. This is because of
the need for partial derivatives of the observation partials
determinants in Equation (6-19). These are needed in the
corrector part of the curve-following algorithm. 1In this
pilot study, the determinant was simply evaluated at seven
points, and its partial derivatives were obtained from
numerical differences. This is easy but inefficient, since
it should be much faster to use closed-form two-body
second-order partial derivatives and then to explicitly com-
pute the partial derivatives of the determinant. Also, the
numerical differencing method probably slowed corrector con-
vergence (leading to small steps) through nonoptimum choice
of the differencing intervals.

The efficiency problem should be addressed through construc-
tion of a subroutine for analytic calculation of the two-
body second-order partial derivatives. It is expected that
the necessary formulation already exists in the literature;
only a careful implementation of it should be required.



SECTION 7 - CONCLUSION

7.1 SUMMARY

TDRSS early orbit determination requires finding orbit solu-
tions with range and/or Doppler data alone, since TDRS an-
tenna pointing angles, which are simply open-loop pointing
angles, are not sufficiently accurate. Given six range
and/or Doppler observations, the homotopy éontinuation
method, as formulated here, derives the solution by mathe-
matically defining a smooth, continuous curve that extends
from the a priori estimate to the solution in a specially
defined seven-dimensional space. This solution curve will
generally pass through a number of other solutions before
returning to the a priori estimate. A numerical algorithm,
described in detail in Section 3.5, was developed that al-
lows a computer program to systematically follow such a
solution curve completely around the loop, collecting the
orbit solutions along the way.

The accuracy of this method is limited solely by the ac-
curacy of the tracking data and physical models selected.
Two-body dynamics and geometric range and Doppler modeling
yielded one-revolution accuracies of about 50 kilometers for
Landsat-4. Use of a Brouwer-Lyddane propagator and observa-
tion light time modeling was able to refine these solutions
to an accuracy of about 2 kilometers. Thus, the homotopy
continuation method has the flexibility to permit the use of
physical models of increasing accuracy.

CPU time requirements for the method are fast enough to per-
mit operational use. 1In the developmental program on the
VAX 11/780 computer, a typical solution loop required 0.5 to
2 minutes for its computation. The accuracy refinement
stage, if invoked, requires about the same time. An opera-
tional version of this program would contain improvements
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for significantly faster operation. Thus, the method is
fast enough for online use in orbit operations.

A prototype automatic early orbit algorithm was devised and
its critical features were tested. This algorithm develops
preliminary orbit estimates from the TDRS antenna pdintinq
angles, followed by drbic solutions derived from the precise
range and depler trackinq. In testing, this algorithm ob-
tained the correct solution in all but 4 of 420 Monte Carlo
trials. The four failures resulted from premature tetmina~
tion of the algorithm after finding one or more extraneous
solutions that also satisfiéd the acceptance eriteria speci-
fied. This deficiency can be corrected through the use of
more stringent accepténce criteria, for example, additional
checking of tracking observations, antenna pointing angies
and grass orbital parameters.

This study has not considered in detail the question of how
nuch TDRSS range/Doppler tracking is necessary to determine
an orbit with sufficient accuracy. This question is essen-
tially independent of the method uséd to find an orbit solu-
tion for specified tracking, and can be handled by standard
error analysis techniqués; However, the results obtained
for Landsat-4 do indicate that, for a low-altitude satel-
lite, 15 minutes is too little tracking (using only one
TDRS), while one orbital period is sufficient. Unfortu-
nately. intermediate amounts of Landsat-4 TDRSS tracking
were not available, so that further examination of this
guestion must be left for future work. |

7.2 SUGGESTIONS FOR FURTHER DEVELOPMENT
7.2.1 EXTENDED HOMOTOPY CONTINUATION METHOD

The only significant problem inherent in the basic homotopy
method, as formulated in Section 2, is that, if the a priori
state is very different from the solution state, the two
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states may lie on disjoint solution loops, making it impos-
sible to reach the soiution in a straightforward way. 1In
the prototype early orbit algorithm, this problem was
avoided by deriving sufficiently good a priori estimates
from the antenna pointing angles. WNevertheless, in other
applications, it may be useful to have an algorithm that
will work from any a priori estimate. An algorithm that is
believed to have this property was devised and described in
Section 6.2. By suitable generalization, this extended al-
gorithm defines and computes a connected network of loops,
enabling the numerical algorithm to reach solution loops
that are disjoint in the basic formulation.

Further development should include testing of the full six-
level algorithm (only a limited two-level version was test-
ing in this study) to determine if it is truly global and
exhaustive as expected. Development of a global and exhaus-
tive algorithm for the range/Doppler problem can be signifi-
cant for orbit determination in general because it could
eliminate the need to collect antenna pointing measurements,
shifting the burden to the computer, and thus simplifying
the overall system. Furthermore, such an algorithm could
perform early orbit determination in systems with very broad
antenna beam patterns.

7.2.2 LEAST-SQUARES ORBIT DETERMINATION

Use of the least-squares method for early orbit determina-
tion has two principal advantages over a six-observation
method. First, a least-squares method will reduce the sen-
sitivity of the solution to high-frequency noise in the
tracking data. Second, the addition of a Bayesian term in
the formulation permits a priori knowledge of orbit param-
eters to be included in the solution, which allows valid
solutions with smaller amounts of tracking.



The negative feature of a least-squares method is that more
extraneous solutions may be introduced because of the mathe-
matical nature of the least-squares formulation.

In a homotopy formulation, least-squares orbit determination
leads to solution curves that are more complex than the
simple loops of the six-observation problem. These complex
curves contain bifurcation points at which several curve
components are joined together. The numerical algorithm
used in this work for following solution curves stalls at
these bifurcation points, and, thus, the least-squares
method could not be systematically studied at the present
Cime.

For future work, three methods for handling the bifurcation
points might be studied. One method would use an analytical
patch for describing the solution curve near such a point
and would use the current numerical algorithm on the regular
part of the curve. Another approach is to abandon the cur-
rent numerical algorithm and use a simplicial method to fol-
low the curve (Reference 4). A simplicial method constructs
a “"triangulation" network to enclose the curve and to pro-
ceed along it. Some simplicial methods may be capable of
proceeding through the bifurcation points without diffi-
culty. Furthermore, a simplicial method may be useful in
addressing the efficiency problem in the enhanced (six-
level) continuation method, since the higher-order deriva-
tives would not be required. Finally, the third approach
for study is the method of George (Reference 8) for locally
perturbing the problem so that the bifurcation temporarily
disappears. Development of the capability for an autonomous
computer program to systematically handle the bifurcation
points on a solution curve would provide a major, signifi-
cant step in the development of the homotopy method, con-
siderably enlarging its domain of applicability.
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