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SECTION 1 - INTRODUCTION 

The purpose of early orbit determination methods is to de- 
rive a set of Orbit elements that match available observa- 
tions, when, initially, the orbit elements are not well 
known or not known at all. ChaKaCteKistiCally, early orbit 
determination methods use approximate physical models and 
observations collected over a limited time span, usually 
Less than one orbital period, in order to accelerate proc- 
essing. Early orbit methods are a necessary part of orbit 
operations procedures. As NASA converts its spacecraft 
tracking from the ground-based system (Ground Spaceflight 
Tracking and Data Network (GSTDN)) to a satellite relay sys- 
tem (Tracking and Data Relay Satellite System (TDRSS)), it 
is necessary to have a reliable early orbit method available 
in the GSFC Flight Dynamics Facility (FDF) that functions 
with TDRSS tracking. This memorandum reports on the devel- 
opment and verification of such a method. 

Currently existing early orbit methods make use of angular 
antenna pointing observations collected at the ground sta- 
tions. However, as is discussed in Section 2, the open loop 
TDRSS angular antenna pointing observations are too inaccu- 
rate €or use in even early orbit determination; therefore, 
an early orbit method that uses the precise TDRSS range and 
Doppler tracking exclusively is required. Since the problem 
is basically one of solving a set of nonlinear equations, 
which specify that the predicted observations match the ac- 
tual ones, the significant mathematical advances of the last 
10 years in this area seemed to be applicable to the prob- 
lem. It appeared that one of these recent advances, the 
homotopy continuation method for solving nonlinear systems 
of equations, was particularly well suited for early orbit 
determination, where a priori estimates of the solution are 
often quite inaccurate or not available. This memorandum 
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centers on the formulation and testing of the homotopy con- 
tinuation method for orbit determination using TDRSS. 

Section 2 presents a description of the TDRSS early orbit 
problem and indicates characteristics that are desirable in 
an early orbit algorithm. Section 3 gives an extended dis- 
cussion, with simple examples for illustration. of the par- 
ticular formulation of the homotopy continuation method that 
was studied. This section also includes a description of 
the trajectory and observation models used in this study. as 
well as a detailed description of the numerical computa- 
tional algorithm that was developed. Section 4 presents two 
detailed numerical examples, one with real TDRSS tracking 
and the other with simulated tracking. Section 5 considers 
a particular implementation of the early orbit algorithm. 
one that is fairly complete and automatic. and measures its 
performance over a large number of Monte Carlo trials. 

The main drawback of the formulation of the homotopy contin- 
uation method that is given in Section 2 is the occurrence 
of disjoint solution loops. Section 6 develops a generali- 
zation that remedies this problem; Section 6 also indicates 
a remaining problem to be solved if the method is to be ap- 
plied in least-squares orbit determination. Sections 2 
through 5 consider only the six-observation case. 

The conclusion. Section 7. provides a brief summary of re- 
sults found in this study. and suggests main directions for 
additional enhancements of the method. 
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SECTION 2 - THE TDRSS EARLY ORBIT DETERMINATION PROBLEM 

T h i s  s e c t i o n  d e s c r i b e s  the g e n e r a l  n a t u r e  of t h e  TDRSS e a r l y  
Orb i t  d e t e r m i n a t i o n  problem and the  c h a r a c t e r i s t i c s  t h a t  a r e  
d e s i r a b l e  i n  a s o l u t i o n  method. The main d i f f e r e n c e  between 
e a r l y  o r b i t  d e t e r m i n a t i o n  w i t h  TbRSS and w i t h  many o t h e r  
t r a c k i n g  systems is t h a t  t h e  open loop a n g l e  in fo rma t ion  
a v a i l a b l e  is r e l a t i v e l y  c rude  i n  TDRSS. Also, small angu la r  
e r r o r s  from geosynchronous d i s t a n c e s  map i n t o  l a r g e  p o s i t i o n  
e r r o r s  f a r  l o w - a l t i t u d e  s p a c e c r a f t .  Consequently,  s t a n d a r d  
e x i s t i n g  a l g o r i t h m s  (Reference 1). which r e l y  h e a v i l y  on 
ang le  measurements. a r e  not  d i r e c t l y  a p p l i c a b l e .  and add i -  
t i o n a l  methods must be devised  f o r  e a r l y  o r b i t  d e t e r m i n a t i o n  
f o r  the  c a s e  of pure range and Doppler t r a c k i n g .  

The TDRSS r e l a y  range and Doppler measurements have a h i g h  

p r e c i s i o n ;  a n a l y s e s  performed a t  GSFC i n d i c a t e  t y p i c a l  meas- 
urement no i se  s t a n d a r d  d e v i a t i o n s  of about  0.5 meters  and 
0.5 millimeters per second. r e s p e c t i v e l y .  However. t h e  re- 
por ted  v a l u e s  of the Tracking and Data Relay Sa te l l i t e  
(TDRS) antenna  beam a n g l e s  a r e  not  a c t u a l  measurements ( i n  
t h e  S-band S i n g l e  Access (SSA) mode and the  S-band M u l t i p l e  
Access (MA) mode), bu t .  r a t h e r ,  t hey  a r e  the p r e d i c t e d  
a n g l e s  f a r  open-loop antenna p o i n t i n g  and a r e  based upon the  

p r e d i c t e d  t r a j e c t o r y  of the t a r g e t  s p a c e c r a f t .  Range and 
Doppler t r a c k i n g  can be performed only  when t h e  t a r g e t  
s p a c e c r a f t  l i e s  w i t h i n  the TDRS antenna beam. I n  t h e  SSA 

mode. t h e  an tenna  f u l l  beam-width is 1.9 degrees ,  w h i l e  f o r  
t h e  MA mode, i t  is about  3 . 0  degrees .  For the  K-band S i n g l e  
Access (KSA) mode. i n  which c losed- loop  antenna p o i n t i n g  is 
used,  t h e  an tenna  f u l l  beam-width is much s m a l l e r ,  0 . 4 4  de- 

g rees .  (However, the  KSA mode i s  not  used f o r  a p p l i c a t i o n s  
where l a r g e  e r r o r s  a r e  l i k e l y  because of 
t i o n  a n g l e  e r r o r s .  which must be adhered 
TDRSS u s e r  s p a c e c r a f t  do not  have K-Band 

t h e  small a c q u i s i -  
t o .  Also,  most  
c a p a b i l i t y . )  For 
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comparison, t h e  f u l l - w i d t h  of the  Ea r th ,  as  s e e n  from a 
TDRS, is about  17.4 degrees. (See F i g u r e  2-1). 

Typica l  c i rcumstances  under which a n  e a r l y  o r b i t  determina-  
t i o n  method may be r equ i r ed  a r e  as fo l lows .  

Consider a s p a c e c r a f t  which, a f t e r  some per iod  of r o u t i n e  
o r b i t  maintenance, is scheduled f o r  a n  o r b i t  maneuver or, 
cons ide r  a mal func t ion  of a n  expendable launch vehicle. 
Hypo the t i ca l ly ,  because of a mal func t ion  i n  t h e  t h r u s t e r s  
themselves o r  i n  a t t i t u d e  c o n t r o l ,  t h e  a c t u a l  v e c t o r  t h r u s t  
might t u r n  o u t  t o  be d i f f e r e n t  t h a n  w a s  planned. S ince  
open-loop an tenna  p o i n t i n g  is based upon t h e  planned o r b i t  
r a t h e r  t han  t h e  a c t u a l  o r b i t ,  t h e  spacecraft might s t ay  
w i t h i n  t h e  an tenna  beam p a t t e r n ,  and relay range and Doppler 
measurements may be c o l l e c t e d  f o r  some s h o r t  p e r i o d s  of 
t i m e ;  t h e  l e n g t h  of t i m e  would depend upon t h e  s e v e r i t y  of 
t h e  mal func t ion  before  c o n t a c t  is l o s t .  Perhaps,  through 
cont inued a t t e m p t s  t o  f i n d  the  s p a c e c r a f t ,  i s o l a t e d  addi -  

t i o n a l  c o n t a c t s  might be made, and some a d d i t i o n a l  t r a c k i n g  
may be col lected.  A t  t h i s  p o i n t ,  w i t h  o r  wi thout  t h e  addi-  

t i o n a l  c o n t a c t s ,  a n  ear ly  o r b i t  de t e rmina t ion  method would 
be r equ i r ed  t o  de te rmine  the  o r b i t  from t h e  l i m i t e d  a v a i l -  
able data and poor a p r i o r i  knowledge of t h e  o r b i t  e lements .  

The o r b i t  d e t e r m i n a t i o n  e r r o r  t h a t  is caused by t h e  uncer-  
t a i n t y  of t h e  spacecraf t  p o s i t i o n  w i t h i n  t h e  antenna beam 
can  be large. T h i s  is  i l l u s t r a t e d  i n  Tab les  2-1, 2-2, and 
2-3. In these tables, o r b i t s  t h a t  correspond t o  l o c a t i o n s  
near the  edges of t h e  SSA antenna  beam a re  compared w i t h  
o r b i t s  that  correspond t o  t h e  beam c e n t e r .  These tables  
show t h e  e r r o r  t h a t  can  r e s u l t  i f  the e r r a n t  s p a c e c r a f t  is 
assumed t o  be a t  t h e  beam c e n t e r  and a n  o r b i t  is then  de- 

r ived  u s i n g  t h i s  ( i n c o r r e c t )  assumption. T a b l e s  2-1 and 2-2 

are  €or low-a l t i t ude ,  c i r c u l a r  o r b i t s  a t  low and high in-  
c l i n a t i o n s ,  w h i l e  T a b l e  2-3 is f o r  a low- inc l ina t ion ,  h igh ly  
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TORS 

Figure  2-1. Diagram Showbg t h e  Relat ive Angular S i z e s  
of the  E a r t h  and t h e  TDRS SSA Antenna Beam 
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e c c e n t r i c  o r b i t .  I n  each table. f o u r  d i f f e r e n t  angular  o f f -  
sets near  t he  edge of t h e  5SA antenna  beam a re  cons idered .  
t h e  same o f f s e t  being a p p l i e d  a t  t = 0 and t = 2 5  minutes .  
The range measurements a t  these two times are assumed t o  be 

t h e  same for  t h e  beam-centered and o f f s e t  o r b i t s .  

( I n  Tables  2-1, 2-2, and 2-3, a n  o r b i t  is cons idered  t o  be 

determined by two sets of azimuth, e l e v a t i o n ,  and range.)  
Errors w i l l  be correspondingly  larger i n  the MA t r a c k i n g  
mode because of the  larger an tenna  beamwidth. 

As i n d i c a t e d  by t h e  tables. t he  SSA one-revolu t ion  p o s i t i o n  
e r r o r s  c a n  easi ly  be as large as  1000 or 2000 k i lome te r s .  
The u n c e r t a i n t y  i n  angu la r  p o s i t i o n  causes  e r r o r s  of t h i s  

s i z e  €or  t h r e e  main reasons:  (1) e r r o r  i n  t h e  o r b i t  p l a n e  
o r i e n t a t i o n ,  (2) e r r o r  i n  t h e  t r u e  anomaly d i f f e r e n c e  be- 

tween t h e  two de r ived  r a d i u s  v e c t o r s ,  and ( 3 )  e r r o r  i n  t he  
magnitudes of t he  two de r ived  r a d i u s  v e c t o r s .  The l a t t e r  
two effects a re  i l l u s t r a t e d  i n  combinat ion by F i g u r e  2-2. 
Effect  (1) can  cause  ve ry  large e r r o r s  when t h e  t c u e  anomaly 
d i f f e r e n c e  is c l o s e  t o  a n  i n t e g r a l  m u l t i p l e  of 180 degrees, 
w h i l e  effects (2) and ( 3 )  w i l l  become espec ia l ly  s e n s i t i v e  
t o  angu la r  e r r o r s  f o r  s m a l l  v a l u e s  of t h e  t r u e  anomaly d i f -  

f e r ence .  

From the  r e s u l t s  i n  t h e  tables ,  i t  is clear t h a t  t h e  TDRS 

antenna beam a n g l e s  cannot  be used as  primary data  i n  deter- 
mining t h e  o r b i t .  However, t h i s  data is u s e f u l  i n  d e f i n i n g  
a n  a p r i o r i  estimate of t he  o r b i t ,  which can  t h e n  be used t o  
i n i t i a l i z e  c a l c u l a t i o n  of a f i n a l  s o l u t i o n  t h a t  is based on 
precise range and Doppler d a t a  a lone .  

Although the range and Doppler measurements a r e  s u f f i c i e n t l y  
p r e c i s e ,  there is a mathematical problem i n  performing o r b i t  
de t e rmina t ion  e x c l u s i v e l y  w i t h  such  measurements. The prob- 
l e m  is t h a t  s i x  range and Doppler measurements do not  
u n i ~ u e l y  de te rmine  t h e  o r b i t ;  t h a t  is, t h e  problem can have 
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several d i s t i n c t  s o l u t i o n s .  I n  t he  TDRSS t r a c k i n g  conf igu-  
r a t i o n .  f o u r  d i s t i n c t  o r b i t  s o l u t i o n s  a re  t y p i c a l l y  found, 
and. i n  t h i s  s tudy .  up t o  1 2  s o l u t i o n s  have been encountered 
i n  a small number of cases. T h i s  m u l t i p l i c i t y  would pe r s i s t  
even i n  a l e a s t - s q u a r e s  fo rmula t ion .  S o l u t i o n  m u l t i p l i c i t y  
leads t o  reduced r a d i i  of convergence near  t h e  t8co r rec tB8  
s o l u t i o n  when i t e r a t ive  methods. such  a s  the Newton-Raphson 
method, a re  used t o  s o l v e  t h e  e q u a t i o n s  numer ica l ly .  Be-  

cause  of s o l u t i o n  m u l t i p l i c i t y ,  t h e  TDRSS e a r l y  o r b i t  method 
must c o n t a i n  a technique  f o r  systematically i s o l a t i n g  and 
c o l l e c t i n g  t h e  s o l u t i o n s  f o r  t h e  g iven  se t  of o b s e r v a t i o n s  
and f o r  t e s t i n g  each of them a g a i n s t  a d d i t i o n a l  c o n s t r a i n t s .  
such  as t h e  an tenna  beam angles  o r  a d d i t i o n a l  range  and 
Doppler data. as w e l l  a s  reasonableness  of t h e  o r b i t a l  ele- 
ments. For example. large p l a n e  changes and l a r g e  energy 
changes may be beyond the bV c a p a b i l i t y  of t h e  vehicle.  
and some s o l u t i o n s  can be e a s i l y  d i sca rded .  

I n  a d d i t i o n  t o  handl ing  t h e  m u l t i p l e  s o l u t i o n  problem. t h e  

e a r l y  o r b i t  method should posses s  t h e  fo l lowing  gene ra l  and 
s p e c i f i c  c h a r a c t e r i s t i c s :  

1. The method should  always y i e l d  t h e  c o r r e c t  o r b i t  
s o l u t i o n  w i t h  val id  t r a c k i n g  da ta ,  r e g a r d l e s s  of t h e  e r r o r  
i n  t h e  a p r i o r i  o r b i t  e s t i m a t e ;  t h a t  i s ,  it should c o n s t r u c t  
t h e  c o r r e c t  s o l u t i o n  g iven  any a p r i o r i  e s t i m a t e .  (The term 
" c o r r e c t B B  s o l u t i o n  r e q u i r e s  some c l a r i f i c a t i o n .  With suf f i- 
e i e n t  range and/or  Doppler t r a c k i n g .  on ly  a f i n i t e  number of 
o r b i t  s o l u t i o n s  e x i s t s .  except  f o r  spec ia l  geomet r i ca l  con- 
f i g u r a t i o n s .  One s o l u t i o n  i n  t h i s  f i n i t e  set cor responds  t o  
t h e  a c t u a l  o r b i t  i n  t h e  sense  t h a t  as t h e  o b s e r v a t i o n  and 
modeling e r r o r s  are  con t inuous ly  reduced t o  z e r o ,  t h i s  Itcor- 
rect" s o l u t i o n  is the one t h a t  approaches t h e  a c t u a l  o r b i t . )  

2. The method should  de te rmine  t h e  o r b i t  wi thout  
numerical  problems, g iven  any mathemat ica l ly  s u f f i c i e n t  
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d i s t r i b u t i o n  of t r ack ing .  Special  geomet r i ca l  t r a c k i n g  con- 
f i g u r a t i o n s  and t r a c k i n g  time d i s t r i b u t i o n s  must no t  be re- 
qu i r ed .  That is. i f  a n  o b s e r v a t i o n  set  can  d e f i n e  t h e  

o r b i t .  t h e  method, or. a t  l e a s t  a f i n i t e  number of p o s s i b l e  
o r b i t s ,  t hen  t h e  method should be capable of f i n d i n g  t h e  
s o l u t i o n .  

3 .  I t  would be desirable  f o r  the  method t o  u t i l i z e  any 
of t h e  precise TDRSS t r a c k i n g  types.  i n c l u d i n g  range only.  
Doppler on ly ,  mixed range/Doppler d i f f e r e n c e d  Doppler,  and 
hybrid range and Doppler types.  Data from any of t h e  

T D R S ' s .  or i n  combination. should  be usab le .  

4 .  The a v a i l a b i l i t y  of a good a p r i o r i  o r b i t  e s t i m a t e  
should speed t h e  de te rmina t ion  of t h e  s o l u t i o n .  

5. The method should have a c a p a b i l i t y  t o  r e f i n e  i t s  
i n i t i a l  two-body s o l u t i o n  us ing  improved p h y s i c a l  models f o r  
t h e  t r a j e c t o r y  and f o r  t h e  measurements. T h i s  w i l l  enable  
subsequent  TDRSS a c q u i s i t i o n  of t h e  s p a c e c r a f t  by provid ing  
a good p r e d i c t e d  t r a j e c t o r y .  

6. The a l g o r i t h m  must rede termine  t h e  range ambigui ty  
numbers i n  t h e  case of a very poor a p r i o r i  o r b i t  estimate. 
For S-band t r a c k i n g .  t h e  range ambigui ty  d i s t a n c e  is approx- 
imately 13,000 k i lome te r s ,  which means t h a t  p o i n t s  a long  the  

l i n e  of s i g h t  a t  i n t e r v a l s  of 13.000 k i lome te r s  from t h e  

i n i t i a l ,  ambiguous d i s t a n c e .  are  c a n d i d a t e s  f o r  t h e  unambig- 
uous va lue  of t he  range. ( T h i s  r ede te rmina t ion  should be  

necessary on ly  r a r e l y ,  because a n  o r b i t  so f a r  i n  e r r o r  is 
u n l i k e l y  t o  f a l l  w i t h i n  the l i m i t s  of the  predic ted  TDRS 

antenna beam a n g l e s .  1 

7. For t h e  Space S h u t t l e  and o t h e r  a p p l i c a t i o n s .  t h e  

a lgo r i thm must succeed wi thout  range t r a c k i n g :  o n l y  Doppler 
t r a c k i n g  and t h e  antenna eam a n g l e s  w i l l  be avai lable .  
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A three-stage early orbit determination method is considered 
in this report. The first stage. using range measurements 
and using the antenna beam angles as measurements, derives a 
preliminary solution from any a priori orbit estimate. The 
second stage. using only range and/or Doppler measurements 
and the first-stage solution as an a priori estimate, deter- 
mines an intermediate solution. which is based. like the 
first stage. on two-body dynamics and simple measurement 
modeling. The third stage uses the intermediate solution as 
the a priori estimate and uses the same range and/or Doppler 
measurements. but improves the physical accuracy by using 
more precise trajectory and measurement modeling to deribe 
the final solution. If a good a priori orbit estimate is 
available, the first stage can be bypassed. If high accu- 
racy in the solution is not needed, then the third stage can 
also be bypassed. 

The primary computational algorithm in each of these three 
stages is the algorithm for solving a system of nonlinear 
algebraic equations. The homotopy continuation method was 

selected to perform this function. This general method can 
be applied to a large variety of problems; its application 
to orbit determination is described in the next two sections. 
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SECTION 3 - FORMULATION OF THE BASIC HOMOTOPY METHOD 

In Section 3.1, the formulation of the homotopy method, as 
applied to spacecraft orbit determination, is described in 
general terms. Section 3 . 2  cont.ains the details of the ob- 
servation models and partial derivatives that were used in 
the developmental computer program. In Section 3 . 3 ,  a very 
simple example that requires a solution space of only one 
dimension. rather than six, is presented. Section 3 . 4  ex- 
plains the relationship between the standard Newton-Raphson 
method for solving systems of equations and the homotopy 
method. Finally, Section 3.5 describes t.he numerical algo- 
rithm that was developed for following the solution curves. 

3.1 

Six 
the 
any 

GENERAL FORMULATION 

1 observations Oi, i = 1, ... 6 .  are selected to determine 
orbit. These six observations may be of any type and in 
combination. Although no special time distribution is 

required, i f  observations of the same type are too close 
together. the determined orbit may have large errors ( o r  may 
not even exist) because of measurement errors. whereas. if 
the observations are spread over too large a period of time, 
the error introduced by the computationally efficient model- 
ing simplifications may become too large. The superscript 
aalta on the symbol for the observations will indicate that 
they are the given, real observations. 

-0 Next. an estimate of the solution state vector, x , at the 
reference time is selected. It is assumed that an observa- 
tion and dynamics model represented by the functions Ci, 
i = 1,. .... 6 ,  is available to relate any reference time 
state vector, x, to the modeled observations. which 

correspond in type and time to the real observations 0 1 i' 
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Denoting by 0; t h e  modeled o b s e r v a t i o n s  cor responding  t o  

estimate x . t h e  estimate sa t i s f i e s  t h e  fo l lowing  equa t ions ,  
by c o n s t r u c t i o n :  

-0 

0 -0 
Oi - Ci(x ) = 0 .  i = 1, ..., 6 ( 3 - 1 )  

On t h e  o t h e r  hand, a n  unknown s o l u t i o n  s t a t e  2' s a t i s f i e s  
t h e  e q u a t i o n s  

( 3 - 2 )  
4 1  i = 1, ..., 6 1 oi - C i ( X  ) = 0 ,  

where the  f u n c t i o n s  Ci a re  t h e  same as i n  Equat ions  (3-l), 
s i n c e  the  o b s e r v a t i o n  times a r e  assumed t o  be f i x e d  i n  t h i s  

f o r  mula t ion. 

The homotopy c o n t i n u a t i o n  method smoothly deforms the  l e f t -  

hand sides of Equat ions  (3-1) i n t o  the l e f t h a n d  sides of 
Equat ions ( 3 - 2 ) ,  us ing  t h e  parameter A and p e r m i t t i n g  
s o l u t i o n  states.  x. f o r  a l l  a p p l i c a b l e  v a l u e s  of A. T h i s  

smobth deformat ion  is described by the e q u a t i o n s  

or e q u i v a l e n t l y  

A ky + A(.: - O:)] - Ci(x) = 0 ,  i = 1. ..., 6 ( 3 - 3 )  

These e q u a t i o n s  d e f i n e  t h e  homotopy, t h a t  is, a cont inuous  
mapping from one mathematical f u n c t i o n  t o  ano the r .  A t  
A = 0 .  Equat ions  ( 3 - 3 )  have t h e  known s o l u t i o n  xo, w h i l e  
a t  A = 1. t h e  e q u a t i o n s  have the  s o l u t i o n  sought .  I n  t h e  
seven-dimensional A - x space. t h e  set of s o l u t i o n s  of 
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Equations (3-3) form a smooth curve that passes through the 
estimate. 2'. and the desired solution. 2'. 
It should be remarked that the formulation described here is 
quite general, and in principle any modeling. including high- 
precision modeling, can be used for the observations and f o r  
the dynamics. For most applications, however, efficiency 
suggests the use of approximate models. reserving high- 
precision levels until after a satisfactory interim solution 
has been obtained. 

To solve Equations (3-3), a numerical algorithm (see Sec- 
tion 3.4) is used to follow the solution curve from the es- 
timate through the solutions. 

Although this report considers TDRSS tracking exclusively, 
there is no essential difference if, instead, ground-based 
tracking is employed. The only requirement is that the 
position and velocity of the tracker. whether it is a ground 
station or a relay satellite. be known at the times of the 
tracking measurements. In principle, the formulation given 
in this section is readily extended to include additional 
parameters in the solution state. for example, TDRS orbital 
elements, ground station coordinates, measurement biases. 
and spacecraft force model parameters. However, this gen- 
eralization is left to future study. 

The theoretical basis for the homotopy method expressed by 
Equations (3-3) is developed in Reference 1. Reference 2 
begins with a very brief statement of this theoretical basis 
and continues with many examples from engineering problems. 
(However, orbit determination is not included among the ex- 
amples.) Reference 3 is a review article, which includes 
the homotopy continuation method in addition to simplicial 
methods (triangulation networks) for finding roots. A 

mathematically correct and clear discussion of the homotopy 
method in orbit determination would require the language and 
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r e s u l t s  of d i f f e r e n t i a l  topology and w i l l  no t  be under taken  
here. Rather. t h e  approach t a k e n  is a q u a l i t a t i v e  descr ip-  
t i o n  of the s o l u t i o n  cu rves  of Equat ions  ( 3 - 3 ) .  based p r i -  
marily on t h e  r e s u l t s  of many numerical  experiments .  

A s o l u t i o n  cu rve  f o r  Equat ions  (3 -3)  i n  the case of pure  
TDRSS r e l a y  range  and/or  Doppler t r a c k i n g  is  s c h e m a t i c a l l y  
i l l u s t r a t e d  by F i g u r e  3-1.  I n  g e n e r a l ,  t h e  s o l u t i o n  cu rve  
f o r  a g iven  o r b i t  d e t e r m i n a t i o n  problem ( t h a t  is ,  t h e  s p e c i -  
f i c a t i o n  of t he  numerical  v a l u e s  of s i x  range and/or  Doppler 
obse rva t ions  and the numerical  v a l u e  of the  a p r i o r i  es t i -  
mate) c o n s i s t s  of a number of d i s j o i n t  smooth, c l o s e d  
curves ,  o r  loops. When t h e  a p r i o r i  estimate is appro- 
p r i a t e l y  related t o  t h e  d e s i r e d  s o l u t i o n ,  t hen  bo th  s t a t e s  
w i l l  l i e  on t h e  same loop. The set of o r b i t  s o l u t i o n s  f o r  
t h e  g iven  problem c o n s i s t s  of t he  c o l l e c t i o n  of a l l  the in-  
t e r s e c t i o n  p o i n t s  of t h e  loops w i t h  t h e  k= 1 hyperplane.  
If t h e  a p r i o r i  estimate is changed, keeping the s i x  obser -  
v a t i o n s  f i x e d .  t h e n  the number and shape of t h e  loops may 
change. bu t  t h e  number and numerical  v a l u e s  of t h e  s o l u t i o n  
states do not  change. 

For very spec ia l ,  i s o l a t e d  v a l u e s  of t h e  a p r i o r i  estimate, 
two of t h e  loops may j u s t  touch  each  o t h e r .  T h i s  is i l l u s -  
t r a t e d  by F i g u r e  3-2,  which s c h e m a t i c a l l y  shows how a s o l u -  
t i o n  curve  may s p l i t  i n t o  two cu rves  a s  the a p r i o r i  s t a t e  
is allowed t o  change and t o  pass through such a spec ia l  
value.  These spec ia l  va lues  a r e  u n l i k e l y  t o  occur  i n  prac- 
tice. and t h i s  un l ike l ihood  cor responds  t o  t h e  s t a t e m e n t  
t h a t  the  s o l u t i o n  cu rves  are smooth (and t h e r e f o r e  do no t  
have such  touching  p o i n t s )  " w i t h  p r o b a b i l i t y  one." a r e s u l t  
that  is proven i n  Reference 2 .  

As i n d i c a t e d  by F i g u r e s  3 - 1  and 3-2, o r b i t  s ta tes  do not  
n e c e s s a r i l y  e x i s t  f o r  every i n t e r m e d i a t e  va lue  of k i n  
range/Doppler o r b i t  de t e rmina t ion .  When they do not  
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F i g u r e  3-1. Schematic Diagram of Solution Curve i n  
k-5? Space for TDRSS Range and/or Doppler 
Tracking 

i i 
I I 

A PRIORI ESTIMATE I 

L = O  X = l  

X (HOMOTOPY PARAMETER) ,-# 
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X = O  A =  1 

A = O  X = 1  

X = O  A = l  

F igu re  3-2.  Schematic Diagram Showing t h e  Resu l t ing  Se- 
quence of S o l u t i o n  Curves f o r  a S p e c i a l  
Sequence of A Pr io r i  E s t i m a t e s  

3 -6 



d i s j o i n t  loops w i l l  occur .  T h i s  is a r e s u l t  of t h e  p h y s i c a l  
fac t  that  a s o l u t i o n  s t a t e  does no t  n e c e s s a r i l y  e x i s t  f o r  
s i x  a r b i t r a r y  numerical  v a l u e s  f o r  the  range and Doppler 
measurements, which l i e  between the  0;'s and t h e  

F i n a l l y .  t h e  s o l u t i o n  cu rves  a r e  cons idered  f o r  t he  o r b i t  
de t e rmina t ion  problem i n  which, e f fec t ive ly ,  t he  three com- 
ponents of the spacecraft p o s i t i o n  v e c t o r  a r e  measured a t  
each of t w o  d i s t i n c t  times. I n  TDRSS, c rude  knowledge of 
the  two p o s i t i o n  vectors comes from knowledge of t h e  range 
and t h e  an tenna  beam a n g l e s  a t  two measurement times. Two 
p o s i t i o n  v e c t o r s  are a l s o  e q u i v a l e n t  t o  t h r e e  s imul taneous  
range measureaents  taken  a t  three d i f f e r e n t  trackers ( t r i -  
l a t e r a t i o n )  a t  each of two times, and t h i s  s i t u a t i o n  c a n  be 

thought of as a l i m i t i n g  case i n  range-only o r b i t  determina- 
t i o n .  T h i s  l i m i t i n g  case, however, is  d i s t i n c t  from t h e  

g e n e r a l  range-only case i n  t h a t  o r b i t  s o l u t i o n s  e x i s t  f o r  
every va lue  of h; t h a t  is, g i v e n  any two p o s i t i o n  v e c t o r s ,  
t h e r e  a re  always (two-body) s o l u t i o n  s ta tes  t h a t  f i t  them. 
Thus, as i n d i c a t e d  by F i g u r e  3 - 3 ,  the  s o l u t i o n  loop  of t h e  

range-only o r b i t  d e t e r m i n a t i o n  problem has expanded i n d e f i -  
n i t e l y ,  and t h e  branches of t he  s o l u t i o n  curve  cover ,  w i t h -  
o u t  gaps, a l l  v a l u e s  of h from ---OD t o  +-, 

Oi'S. 1 

3 . 2  DETAILED MATHEMATICAL FORMULATION 

I n  t h i s  s e c t i o n  t h e  mathematical formulas  d e f i n i n g  t h e  TDRSS 

t r a c k i n g  measurement models used i n  t h i s  s t u d y  a re  speci- 
f i ed .  The formulas  €o r  t h e  p a r t i a l  derivatives a re  a l s o  
specif ied.  Reference  5 gives de ta i l s  of t he  TDRSS range and 
Doppler  t r a c k i n g  system. Deta i l s  of the TDRSS a lgo r i thms  
f o r  data r e d u c t i o n  and o b s e r v a t i o n  models a re  g i v e n  i n  
Reference 6 .  

f n  the  developmental  program. a r e f e r e n c e  t i m e  is selected 
€or each case. and t h e  variable t then  deno tes  the  t i m e  
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h= 0 h = r  

F igu re  3-3. Schematic Diagram Showing t h e  S o l u t i o n  Curve 
f o r  O r b i t  Determinat ion Based on t h e  Meas- 
urement of Two P o s i t i o n  V e c t o r s  on t h e  O r b i t  
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elapsed from the reference time. Six-component, Cartesian 
orbit states. x, are always assumed to be referenced to 
t = 0 .  However, the measurement models require the six com- 
ponents of the Orbit state, 7, at the measurement time to 
compute the numerical value of the measurement, C ( 3 .  The 
relation of 'F to Z i s  obtained through the orbit propagator 
(Section 3 . 2 . 4 )  and, correspondingly, measurement partial 
derivatives are computed using 

3.2.1 TDRSS RELAY RANGE MEASUREMENT 

3.2.1.1 Geometric Ranse and Partial Derivative 

The geometric model for the single-relay range measurement 
is the following: 

where p = geometric range measurement 
J. r = position vector of the target spacecraft at 

time t (see Section 3.2.4) 

Section 3 . 2 . 4 )  

tion at time t (see. Section 3 . 2 . 5 )  

A 

RTDRS = position vector of the TDRS at time t (see 

RWS = position vector of the White Sands ground sta- 

Assuming that ss andZTDRs remain fixed throughout the 
calculations for a given observation, the local partial de- 
rivatives needed in Equation ( 3 - 4 )  are given by 

ap = 0 .  i = 4.  5, 6 aY i 
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3.2.1.2 Modelinq of the Liqht-Time-Correct Ranqe 

The light-time correct range, for any one of the four legs, 
satisfies the two equations 

(3-7) 1 - 
= t2 - c p12 

where p12 = light-time-correct range for leg from 1 to 2 
t1 = transmit time for tracking signal (to be deter- 

t2 = receive time for tracking signal (known) 
rl = known position of transmitter (known function 

r2 = known position of receiver (fixed during the 

mined) 

-- 
during the iterative process) 

iterative process) 

A 

c = vacuum speed of light (see Table 3-1) 

Equations (3-7) and (3-8) are solved iteratively for p12 
and tl, as follows. 
Equation (3-7) is used first to evaluate tl. Then Equa- 
tion (3-8) is used to evaluate a better value of p12.  

This two-step procedure is repeated until the change in tl 
is less than seconds. The iterations are initialized 
with the geometric range. After all four legs have been 
computed, the range measurement is computed as one-half of 
the sum of the values €or the four legs. 

Using the last value of p12, 

The geometric partial derivatives, Equations (3-6), are ade- 
quate and are used even when a light-time-correct range is 
computed. 

3.2.1.3 Preprocessinu of Real TDRSS Ranae Trackinu Data 

Two corrections for the actual relay range measurements in 
the TDRSS tracking data must be treated. These are the 
transponder delay and the range ambiguity. 
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Table 3-1.  P h y s i c a l  Constants  

Quantity NQnnerical Value 

Speed of Light,  c 2.99792458 x 105 k i l o m e t e r s /  
second 

Gravitation constant of 398600.47 k i lometers3 / second2  
Earth, GM 
Earth s i d e r e a l  rotat ion 6.300388098445825 radians /day 
rate, OE 
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The transponder delay correction is sometimes already in- 
cluded in the values. If so, it is removed by retrieving 
the value. B p ,  available in the TDRSS data and using the 
formula 

+ BP - 
puncor re@ ted - Pcorrected (3-9) 

The stared value of the transponder delay can then be in- 
cluded or not in subsequent early orbit testing. 

The TDRSS observations are of the ambiguous range. The un- 
ambiguous range values are computed by using the algorithm 
in Reference 6. This algorithm requires the use of a suffi- 
ciently good nominal spacecraft state vector to derive the 
correct unambiguous range. 

3.2.2 TDRSS RELAY DOPPLER mASUREMENTS 

3.2.2.1 Geometric Ranqe-Rate and Partial Derivatives 

The geometric model for the single-relay range-rate 
measurement is as follows: 

where 

(3-10) 

6 = geometric range-rate 
2 -  

L. v = position, velocity vectors of the target 
spacecraft at time t (see Section 3.2.4) 

at time t (see Section 3.2.4) 
RWS. VWS = position, velocity vectors of the White 

Sands ground station at time t (see 
Section 3.2.5) 

a 2 

RTDRS, VTDRS = position, velocity vectors of the TDRS 

a a 
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& 3 a 
remain fixed vws’ ‘TDRS’ and %DRS Assuming that %s, 

throughout the calculation, the local partial derivatives 
needed €or Equations ( 3 - 4 )  are given by 

3 . 2 . 2 . 2  Modelincr of the Lisht-Time-Correct Doppler Measure- 
ment 

In the light-time-correct Doppler modeling, it is assumed 
that during preprocessing the Doppler measurement has been 
converted to an equivalent averaged range-rate value and 
that the pilot tone effect of the relative motion of the 
TDRS itself has been removed from the measurement value, 
which is discussed in the next subsection. Then. this aver- 
age range rate is modeled as follows: 

where 5 = modeled value of the averaged range rate 
tR = observation time tag at the end of the Doppler 

At = length of the Doppler count averaging interval 
p(t) = light-time-correct range, calculated according 

to Section 3.2.1.2, for the signal received at 
time t 

count inter va 1 

Thus, for each Doppler measurement, it is necessary to 
iteratively compute eight legs for the tracking signal. 
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The geometric partial derivatives, given in Equa- 
tions ( 3 - 1 1 ) ,  are used with adequate accuracy with the 
light-time-correct Doppler model. 

3 . 2 . 2 . 3  Preprocessing of Real TDRSS DODPler Tracking Data 

Preprocessing of the TDRSS Doppler tracking measurement is 
based upon the formulas given in Reference 5 and also in 
Section 5 . 5 . 3  of Reference 6 .  Thus, the averaged range-rate 
measurement, b ,  is computed from the measured Doppler fre- 
quency F using d 

i = -  CFd 2.- bF ARS 
At + 

Fref Fref 

where Fref = effective user transmit frequency (specified 
in the TDRSS tracking messages) 

by the downlink channel as specified in Refer- 
ence 6 )  

bFp = return TDRS frequency translation (determined 

At = Doppler count interval 
ARs = range change of the TDRS during the Doppler 

count in t e r va 1 
c = vacuum speed of light 

ARs is modeled, using the iterative light time calcula- 
tion, as 

where p,(t) is the short range (White Sands to TDRS and 
back) tagged at the end of the Doppler count interval and 
ps(t - A t) is the short range tagged at the start of 
the Doppler count interval. 
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3.2.3 TDRS A~TENNA BEAM ANGLES 

3.2.3.1 Geometric Antenna Beam Ancrles and P a r t i a l  Deriva- 
t i v e s  

The formulas  f a r  modeling the  TDRS antenna  beam azimuth, A, 

and e l e v a t i o n ,  E, ate  as  fo l lows :  

x3 
(-XI) 

t a n  A = 

x2 
1/2 t a n  E = 

(X12 + x 3 3  

where X1, X2, and X3 a r e  d e f i n e d  by 

A -  -a 

1 Xl = (I - a,,,,) e 

3 -  A 

X3 = ( r  - RTDRs) e3 

and the u n i t  v e c t o r s  gl, e2, and c3 are  de f ined  by 

--5 4 d 
e2 = e3 x el 

(3-12)  

(3-13) 

(3-14) 

A - 4  

a r e  as  d e f i n e d  and 'TDRS I n  these e q u a t i o n s ,  K, v, RTDRS, 

f o r  Equat ion  (3-10). These formulas  a re  similar t o  t h o s e  
g iven  i n  S e c t i o n  5.5 .4  of Reference  6 ,  a l though  the n o t a t i o n  
is d i f f e r e n t .  
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I n  terms of t h e  TDRS-to-target components, X1.  X 2 ,  and X 3 ,  

t he  l o c a l  p a r t i a l  der ivat ives  a r e  g iven  by 

and 

X 2 ( X l e l  + X 3 e 3  i )  . . - 2 e 3 , i  - aE  
a Y  i 2 ( X 1 2  + x3 ) 

3 /2  2 1 / 2  = C O S  E 
( X 1 2  + x3 ) 

i = 1. 2. 3 (3-16) 

= 0 .  i = 4.  5. 6 a E  
a Y i  
- 

Because TDRS beam a n g l e  va lues  a r e  not  a c t u a l  measurements. 
a l ight-t ime-correct beam a n g l e  model i s  not  formula ted .  
s i n c e  t h e  a d d i t i o n a l  accuracy  would no t  be warranted.  

3.2.3.2 P rep rocess ing  of R e a l  TDRS Antenna Beam Ancrles 

The d i r e c t i o n  c o s i n e s  XR. YR. and ZR a re  retrieved 
from t h e  TDRSS t r a c k i n g  o b s e r v a t i o n  r eco rds  (words 6 .  7 ,  and 
8 ) .  These d i r e c t i o n  c o s i n e s  d e f i n e  t h e  d i r e c t i o n  ( r e t u r n  
l i n k )  from t h e  TDRS t o  t h e  ta rge t  w i t h  respect t o  TDRS ref- 
e rence  c o o r d i n a t e s .  and r e p r e s e n t  t h e  an tenna  beam a n g l e s  
af ter  c o r r e c t i o n  f o r  the nonnominal TDRS a t t i t u d e .  The d i -  

r e c t i o n  c o s i n e s  %. YR, and ZR d i f f e r  from X 1 .  X 2 ,  and 
X3  i n  t h e  p rev ious  s e c t i o n  and a re  d e f i n e d  as  fo l lows :  

XR = p r o j e c t i o n  of t h e  TDRS-to-spacecraft u n i t  v e c t o r  o n t o  
t h e  d i r e c t i o n  i n  t h e  TDRS o r b i t  p l ane  (eas tward)  t h a t  is 
pe rpend icu la r  t o  t h e  d i r e c t i o n  from t h e  TDRS t o  t h e  
c e n t e r  of t h e  E a r t h  
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YR = projection of the TDRS-to-spacecraft unit vector onto 

ZR = projection of the TDRS-to-spacecraft unit vector onto 
the direction normal to the TDRS orbit plan (south) 

the direction from the TDRS to the center of Earth 

and 2, are converted to azimuth and elevation %' 'R' 
by means of the formulas 

A and E are the quantities to be used in early orbit deter- 
mina t ion. 

3.2.4 ORBIT PROPAGATION 

Propagation of trajectories from initial states at the ref- 
erence time to arbitrary times. f o r  which state vectors are 
required for measurement modeling. was required for both the 
TDRS and the target spacecraft. These propagations provide 
the vectors r, V, RTDRS, and TITDas, which appear in Sec- 
tions 3 . 2 . 1  through 3 . 2 . 3 .  

- a -  A 

For the TDRS. two-body propagation was used in all cases. 
(See Section 5 . 7 . 3  in Reference 6 ,  and Reference 12 of Sec- 
tion 5 in Reference 6 for descriptions of the closed-form, 
two-body propagator that was used.) The value of the Earth 
gravitational constant is listed in Table 3-1. The use of 
the two-body approximation for the TDRS trajectory produces 
propagation errors of 0.1 to 0.2 kilometers during a 
100-minute propagation interval. when compared with a Cowell 
propagator with a precise force model (see Table 3 - 2 ) .  For 
the particular case described in the table, there is some 
cancellation occurring between lunar-solar and Earth gravity 
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Table 3-2. Differences Between TDRS Ephemerides 

Position 
Difference 
ComDonent 

Radial 
Cross-Track 
Along-Track 

Total 

Maximum Position Difference Over the 
100-Minute compar ison Interval Between TWO Ephemerides' 

(Km) 

Or avi ty All Three 
Solar Radiation Sun and Moon Harmonics Perturbations 
Force Omitted Gravity Omitted Omitted Omitted 

0.003 

0.0002 

0.0008 

0.153 

0.102 

0.049 

0.148 0.008 
0.002 0.104 

0.044 0.004 

0.003 0.190 0.154 0.105 

'The ephemerides compared both beginning from the same initial state on 
March 14. 1984. at Oh. One ephemeris includes all perturbations: the 
other ephemeris in the comparison omits one or more of the perturbations, 
as indicated in the table. 
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effects: at different times the errors may add rather than 
cancel. In the worst case. then. the error may be as large 
as 300 meters. This error can often be ignored in early 
or bi t deter mi na t ion. 

The error attributable to the two-body approximation in the 
dett?Kmined orbit of the target spacecraft will depend, of 
course. on the orbit type. For a low-altitude spacecraft 
(for example, Landsat-4), the error over one revolution is 
about 50 to 100 kilometers, This is examined in more detail 
in Section 4.1. However, this error is sufficiently large 
that it needs to be eliminated in early orbit determina- 
tion. In this study. a Brouwer-Lyddane propagator was se- 
lected to accomplish this. This propagator is described in 
Section 5.10 of Reference 7. Two-body state partial deriva- 
tives were used with the Brouwer-Lyddane propagator, without 
any resultant numerical difficulties in the curve-following 
algorithm described in Section 3.4. 

3.2.5 GROUND STATION POSITION AND VELOCITY 

Irregularities in the Earth's rotation rate are ignored. and 
the position and velocity of the White Sands ground station 
are modeled with the following formulae: 

where R, is the Earth-fixed station location and T(t) is 
the 3x3 rotation matrix defined by 

1 

cos a(t) -sin u(t) 

cos u(t) 

0 0 

(3-17) 

(3-18) 
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The variable t is t h e  number of seconds of Universal  Time, 

Coordinated (UTC) elapsed from t h e  r e f e r e n c e  t i m e ,  and t h e  

ang le  u is computed from 

u = a  + 
0 

(3 -19)  

The c o n s t a n t  u0 is  t h e  Greenwich Hour Angle a t  the  r e f -  
e rence  t i m e .  The numerical  v a l u e  of t h e  E a r t h  r o t a t i o n  
r a t e ,  w is l i s t e d  i n  Table 3-1. 

T a b l e  3-3  prov ides  t h e  E a r t h - f i x e d  s t a t i o n  l o c a t i o n  of t h e  

antenna WE12K. which c o l l e c t e d  t h e  t r a c k i n g  data f o r  t h e  
Landsat-4 tests i n  S e c t i o n  4.1. The c o o r d i n a t e s  g iven  have 
been a d j u s t e d  t o  WGS-72 (World Geodet ic  System, 1 9 7 2 ) .  

E' 

3 . 3  SIMPLE EXAMPLE 

A h igh ly  s i m p l i f i e d  o r b i t  d e t e r m i n a t i o n  problem is so lved  
here t o  i l l u s t r a t e  t h e  meaning of Equat ions ( 3 - 3 ) .  I n  t h i s  

example, t h e  o r b i t  s t a t e  is one-dimensional, l e a d i n g  t o  a n  
e x p l i c i t  formula f o r  t h e  s o l u t i o n  curve .  

The t r a c k i n g  geometry is shown i n  F i g u r e  3-4 .  I t  is assumed 
t h a t  the  TDRS l i e s  i n  t h e  o r b i t  p lane .  The r a d i u s  of t h e  
c i r c u l a r  o r b i t  is assumed t o  be f i x e d .  and the s i n g l e  com- 
ponent of t h e  s t a t e  vec to r  is t h e  C a r t e s i a n  c o o r d i n a t e  x. 
The s o l u t i o n  s t a t e  is denoted by x , and t h e  a p r i o r i  e s t i -  
mate is denoted. by x . For d e f i n i t e n e s s ,  i t  is assumed 
t h a t  xo > x1 and tha t  bo th  of these states l i e  i n  t he  f i r s t  
quadrant  of t he  ang le  43. The measurement is assumed t o  be 

t h e  squa re  of t h e  geometr ica l  range p .  

1 

0 

From F i g u r e  3-4, t h e  fo l lowing  geometr ic  r e l a t i o n s  hold: 
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Table 3-3. Earth-Fixed Coordinates for the Antenna WH2K at 
White Sands 

Cartesian Geocentric 
Component Coordinates (km) 

X -1539.404223 

Y -5160.963938 

z +3408.172440 
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\ SPACECRAFT SPACECRAFT 

TDRS 

Figure  3 - 4 .  Tracking Conf igura t ion  f o r  t h e  One-Dimensional 
Example of t h e  Homotopy Method 
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0' = a' + R2 + 2aR 
1/2 

1 -(q] 

where 

has been used. 

1 0 
urement value for the a priori estimate x . 

is the given measurement, while 0' is the modeled meas- 
0 

Substitution of these relations into Equations (3-3) yields 
the equation for the solution curve in the h-x plane: 

(3-20) 
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where 

1/2 

A =  

J 

The s o l u t i o n  c u r v e  described by Equat ion  (3-20) is an  e l -  
l i p s e .  c e n t e r e d  a t  the p o i n t  ( -B /A,  0 ) .  having a semihori-  
z o n t a l  a x i s  of l e n g t h  1 / A  and a s e m i v e r t i c a l  a x i s  of l e n g t h  
a (see F i g u r e  3 - 5 ) .  A t  each  v a l u e  of h cOKKeSpOnding t o  
p o i e t s  on the  e l l ipse .  except  f o r  t he  two c r i t i c a l  p o i n t s  a t  
x = 0 ,  there a re  two o r b i t  s ta tes .  T h i s  d u p l i c i t y  physi-  
c a l l y  COKKeSpOndS t o  the f a c t  t h a t  a c i r c l e  of r a d i u s  p 

can i n t e r s e c t  t h e  o r b i t  a t  two d i s t i n c t  p o i n t s .  A t  each of 
t h e  two c r i t i c a l  p o i n t s ,  t h e  two o r b i t  s t a t e s  coalesce t o  
form a s i n g l e  s t a t e ,  and t h e  o b s e r v a t i o n  d e r i v a t i v e ,  dC/dx. 
is p r e c i s e l y  e q u a l  t o  z e r o  a t  these p o i n t s .  O r b i t  s o l u t i o n  
states do not  e x i s t  f o r  va lues  of A o u t s i d e  the  range 
covered by t h e  s o l u t i o n  curve.  and t h e  i n t e r s e c t i o n  p o i n t s  
of t h e  s o l u t i o n  curve  w i t h  t h e  ve r t i ca l  l i n e .  A = 1, iden-  
t i f y  a l l  of the  o r b i t  s o l u t i o n s  t h a t  e x i s t  f o r  the  g iven  
measurement. O1. (Ac tua l ly ,  t he  v a r i a b l e  used t o  d e s c r i b e  
t h e  o r b i t  s t a t e  i n  t h i s  example, x, is no t  r e a l l y  a good 
cho ice  because f o r  each va lue  of x there a r e ,  phys ica l ly ,  
two o r b i t  s ta tes .  I n  F i g u r e  3-5 t h i s  cor responds  t o  t h e  
fac t  t ha t  there  a r e  two p o i n t s  on  t h e  cu rve  a t  a g iven  v a l u e  
of x. This c h o i c e  w a s  made i n  o rde r  t o  ge t  a c l o s e d  curve ,  
analogous t o  t h e  c losed  curves  ob ta ined  i n  t he  f u l l  s i x -  
dimensional  problem. I f  a good s t a t e  var iable  (for example, 
0) is used i n s t e a d ,  t h e  s o l u t i o n  curve is not  c l o s e d ,  b u t  
repeats w i t h  a pe r iod    IT. The COKKeSpOnding h-8 so lu -  
t i o n  curve  is g i v e n  i n  Reference 8 . )  
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Figure 3-5, Solution Curve for the One-Dimensional Example 
of the Homotopy Method 
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3 . 4  RELATION TO THE NEWTON-RAPHSON METHOD 

The particular formulation of the homotopy method described 
in Section 3.1 for  orbit determination can be considered to 
be a generalization of the standard Newton-Raphson method 
for solving systems of equations. Given an a priori esti- 
mate, 2'. the Newton-Raphson method computes the correc- 
tion. Sx, using the equation 

Sx = -B -1 (x 0 ) A(xo) 

0 0 
where B(x ) is the matrix of partial derivatives at x , 

0 -  -B(x ) = 

- ac6 - ax, 
acg 
I -.O X 

0 
and A is the column vector of residuals evaluated at x . 

(3-21) 
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The homotopy method defined by Equations ( 3 - 3 )  will be put 
into a form that  will enable comparison with Equa- 
tions (3-21)- 

Since the solution curves are almost always smooth. the or- 
dinary arc length, s ,  can be introduced as the curve param- 
eter. By definition. changes in the arc length are related 
to changes in h and x through the formula 

(3-22) 

Next, differentiation of each side of Equation (3-3) with 
respect to s yields 

aC. dx 
L i E 0 ,  i = 1. ..., 6 ax. ds 

3 

or, equivalently. 

(3-23) 

Finally, solving Equations (3-22) and (3-23) for dh/ds and 
dx/ds yields 

1 - + -  dh - -  
ds G (TI 

(3-24) 

where 

(3-25) 1 T O  1 + A ) B-T(Z) B - ' ( a  A(?') 
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These are the differential equations satisfied by the solu- 
tion curve. The double choice in sign corresponds to fol- 
lowing the curve in either of the two possible directions. 

The Newton-Raphson method consists of integrating Equa- 
tions (3-24) with the simple Euler method and a step As 
that extends from A = 0 to h = +1, approximately. From 
Equation (3-24), this step has length 

( +  sign is chosen for G) and the corresponding change in x 
is given by 

(3-26) 

or 

-1 -0 Ax = -B (x ) A($) 

which is precisely the change given by Equation (3-21) f o r  
the Newton-Raphson method. 

Thus, one iteration of the Newton-Raphson method corresponds 
to following the solution curve from A= 0 to A= 1 using 
the straight line approximation that is tangent to the solu- 
tion curve at A = 0. Each Newton-Raphson iteration. in 
turn, constructs such a line tangent to a new solution 
curve. Returning to the simple example in Section 3.3. as 
xo -* xl, then 1/A -* 00,  the ellipse becomes horizontally 
elongated, and the segment of the solution curve between 
A = 0 and A = 1 becomes straighter, which leads to 
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better convergence of the  Newton-Raphson method. I t  is ex- 
pected, however, t h a t ,  i f  t h e  i n i t i a l  s o l u t i o n  cu rve  is 
s t r o n g l y  curved between A = 0 and h = 1, t h e n  t h e  
Newton-Raphson method w i l l  p robably  no t  converge (see Fig-  
u r e  3 - 6 ) .  

3 . 5  NUMERICAL ALGORITHM FOR FOLLOWING SOLUTION CURVES 

The a lgo r i thm of t h i s  s e c t i o n  permits  t he  s o l u t i o n  s ta tes  
t h a t  a r e  l o c a t e d  on t h e  same component of t h e  s o l u t i o n  cu rve  
a s  t h e  a p r i o r i  s ta te  t o  be determined up t o  machine preci-  
s i o n .  The more g e n e r a l  case i n  which t h e  desired s o l u t i o n  
s t a t e  and t h e  a p r i o r i  s ta te  l i e  on d i s j o i n t  components is 
cons idered  i n  S e c t i o n  6 . 2 .  The a l g o r i t h m  f o r  t he  r e s t r i c t e d  
case forms t h e  major p a r t  of the  g e n e r a l ,  more complete a l -  
gori thm i n  S e c t i o n  6 .2 .  

The a lgo r i thm w a s  found t o  perform r e l i a b l y  i n  hundreds of 
test cases. However. i n  some of t h e  component areas,  minor 
improvements are  sugges ted  h e r e ,  through which the  e f f i -  

c iency ( t h a t  is, t h e  r e l a t i v e  amount of computat ion per 
s o l u t i o n )  might be improved i n  a subsequent  v e r s i o n  of t h e  

a lgor i thm.  Although developed independent ly ,  t h e  a l g o r i t h m  
given  he re  is s i m i l a r  t o  t h a t  described i n  Reference 9 .  

The a lgo r i thm assumes s c a l e d  C a r t e s i a n  var iables  for o r b i t  
states. The l e n g t h  scale is t h e  r a d i u s  of t h e  Ea r th .  and 
t h e  v e l o c i t y  scale is the  c i r c u l a r  speed i n  a n  o r b i t  a t  one 
E a r t h  r a d i u s .  The homotopy parameter h is not  s c a l e d .  a l -  
though such  s c a l i n g  would be convenient ,  because it is n o t  
now clear how t h e  approximate s i z e  of a s o l u t i o n  loop can  be 

estimated. S c a l i n g  of h must await  a deeper unders tanding  
of t h e  global n a t u r e  of the s o l u t i o n  cu rves ,  

The a lgo r i thm f o l l o w s  t h e  s o l u t i o n  curve  ( d e f i n e d  by an  
a p r i o r i  estimate, t h e  s i x  g iven  obse rva t ions .  and t h e  

t r a j e c t o r y  and o b s e r v a t i o n  models) i n  seven-dimensional 
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A-x space by c o n s t r u c t i n g  a sequence of p o i n t s  that  l i e  
e x a c t l y  on the  cucve. A t  any i n t e r m e d i a t e  s t a g e  of t h e  

process ,  a succeeding  p o i n t  is determined w i t h  a two-step,  
prediCtOt-COKteCtOr method. An e s t i m a t e  of t h e  succeeding  
po in t  is computed us ing  a Lagrange polynomial f i t  through a 
selected number of back p o i n t s  ( p r e d i c t o r )  i n  each of t h e  
seven c o o r d i n a t e s .  h, x. y, 2, E, f ,  k. T h i s  e s t i m a t e  is 
then  r e f i n e d  t o  t h e  specified p r e c i s i o n  u s i n g  t h e  Newton- 
Baphson method s u c h  t h a t  s u c c e s s i v e  i t e r a t i v e  c o r r e c t i o n s  
are c o n s t r a i n e d  t o  l i e  i n  a s ix-d imens iona l  hyperplane t h a t  
is approximate ly  pe rpend icu la r  t o  t h e  cu rve  ( c o r r e c t o r ) .  
T h i s  c o n s t r a i n t  avo ids  Jacob ian  i l l - c o n d i t i o n i n g  problems 
t h a t  can  ar ise  i f ,  i n s t e a d ,  t h e  i t e r a t i o n s  were performed a t  
f i x e d  h. The p r e d i c t o r - c o r r e c t o r  technique  is schemati-  
c a l l y  i l l u s t r a t e d  by F i g u r e  3 - 7 .  

A s  t h e  p o i n t s  on the  s o l u t i o n  c u r v e  a r e  s u c c e s s i v e l y  com- 
puted.  the  a l g o r i t h m  must check f o r  s o l u t i o n  s t a t e s  a t  
A = 1 and r e f i n e  and s t o r e  these s o l u t i o n  s t a t e s .  The 

a lgo r i thm must  a l s o  check for p o s s i b l e  r e t u r n  t o  t h e  
a p r i o r i  s ta te .  Op t iona l ly .  t h e  a l g o r i t h m  checks f o r  and 
i d e n t i f i e s  c r i t i c a l  p o i n t s  ( l o c a l  extrema i n  h ( s ) ) .  T h i s  

is necessary  o n l y  f o r  t h e  m u l t i l o o p  a l g o r i t h m  i n  Sec- 
t i o n  6 .2 ,  but  is desc r ibed  below f o r  completeness .  

The major s t e p s  i n  the  a l g o r i t h m  a r e  l i s t ed  below. These 
s t e p s  are detailed i n  S e c t i o n s  3.5.1 th rough 3.5.9. Sec- 
t i o n  3.5.10 i n d i c a t e s  extreme c o n d i t i o n s  a l though  they a t e  
u n l i k e l y  t o  a r i se  i n  practice) under which the  a l g o r i t h m  can 
( numer i ea l  l y )  f a  i 1. 

Step 1. B o o t s t r a p  S t a r t e r  ( S e c t i o n  3 .5 .1) .  A s p e c i a l  sub- 
a l g o r i t h m  is r e q u i r e d  a t  t h e  s t a r t  because on ly  one 
p o i n t  on t h e  s o l u t i o n  curve ,  t h e  s p e c i f i e d  
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So lu t ion  Curve 
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a priori state, is known, while the direction of 
the curve is completely unknown. This starter de- 
termines one additional point on the cucve. 

Step 2. Correction of Arc Lenqth (Section 3 . 5 . 2 ) .  Step 2 
is the first step of the-main loop of the al- 
gorithm. At the conclusion of the previous cor- 
rector step, the arc length change. As , is 
slightly incorrect because of the corrector proc- 
ess. Gaussian quadrature is used to compute a re- 
fined numerical value, As. 

I 

Step 3 .  Collection of Output States (Section 3 . 5 . 3 ) .  The 
predictor-corrector steps may have followed the 
solution curve across h = 1. If necessary, the 
h = 1 state is iteratively estimated and refined 
until it is determined to within the specified 
tolerance. 

Step 4 .  Collection of Critical Points (Section 3 . 5 . 4 ) .  The 
predictor-corrector steps may have followed the 
solution curve through a local extremum in h. In 
this step, such a critical point is first estimated 
and then refined to within the specified tolerance. 

Step 5 .  Termination (Section 3 . 5 . 5 ) .  The predictor- 
corrector steps may have followed the solution 
curve back to and past the starting point. This 
condition is checked, and the calculation is ter- 
minated if it occurred. 

Step 6 .  Step Size Selection (Section 3 . 5 . 6 ) .  The computa- 
tion of the next point on the solution curve begins 
with Step 6 .  A preliminary value for the arc 
length change, As , from the last back point to 
the next curve point is selected on the basis of 
properties of the last back point calculation. 
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Step 7 .  

Step 8 .  

Step 9. 

Prediction of New Curve Point (Section 3.5.7). 
Using Lagrange interpolation, a polynomial fit to 
the last N backpoints is performed. This poly- 
nomial is then used to evaluate the estimate of the 
new curve point at a position that is advanced in 
arc length by the selected amount, As . 
Correction of New Curve Point (Section 3.5.8). 
Using the Newton-Raphson method in a hyperplane 
perpendicular to the extrapolating polynomial at 
the predicted point. the predicted state is itera- 
tively refined until Equations (3-3) are satisfied 
to within the specified tolerance. 

Monitorins of New Curve Points (Section 3.5.9). If 
the corrector iterations in Step 8 do not converge, 
or if the direction of the curve tangent changes by 
too large an amount from the last backpoint to the 
new curve point, then the new curve point is dis- 
carded, the step size, As , is reduced, and 
steps 7 and 8 are repeated. If, on the other hand, 
the new curve point is acceptable, the algorithm 
advances along the curve by one unit and then re- 
turns to the start of the main algorithm loop at 
step 2. 

* 

I 

3.5.1 BOOTSTRAP STARTER 

0 0 0 0 . 0  The a priori state is denoted by u = (0, x , y , z , x , 
y , 2 ) . By definition, this state lies on the solution 
curve, and the observations, Oi, i = 1, .... 6 ,  are simu- 
lated on the basis of this state prior to the execution of 
this starting procedure. 

* O  0 T 
0 

The bootstrap starter searches over seven orthogonal direc- 

tions, attempting to find a second state on the  solution 
curve. In turn, trial predicted states are generated which 
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lie in the h-. x-, y-, 2-, x-. y-, and z-directions with 
respect to the a priori state. and at a selected distance 
As from the a priori state. Thus, these seven pre- 
dicted states are 

I 

PI = ~~ X 0 

z 

- 
p2 - l . . . P 7 -  

0 

X 0 

YO 

YO 

0 

0 
2 

X 

0 z LAS 

The sign choice controls the directional sense in which the 
algorithm follows the curve. 

Using these seven trial predicted states in turn, the 
starter attempts Newton-Raphson iterative refinement (de- 
scribed in Section 3.5.8). If the refinement is successful 
for any particular predicted state, then a second point on 
the solution curve has been determined and the starter ter- 
minates. If the Newton-Raphson iterations do not converge. 
the next predicted state is attempted. 

If all seven predicted states are unsuccessful. then the 
attempted step, As , is reduced by a factor of two, and 
the entire process (seven predicted states) is repeated. 
The factor-of-two reduction can be repeated up to a speci- 
fied maximum number of times, For a well-posed orbit deter- 
mination problem, starter failure only occurs when there is 
an error in the program coding or in the data because. as 
As is reduced, the predicted state becomes increasingly 
accurate, and the Newton-Raphson procedure must converge at 
some sufficiently small value of the initial step, As). 

I 

I 
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T h i s  boots t rap  s t a r t e r  can  a l s o  be used t o  begin  c a l c u l a t i o n  
a t  some a r b i t r a r y  i n i t i a l  s t a t e  tha t  is not  t h e  a p r i o r i  
s tate.  perhaps a s t a t e  on a p a r t i a l l y  computed curve .  The 

procedure is analogous,  except  t h a t  t h e  i n i t i a l  v a l u e  of h 
is not  ze ro  b u t  some o t h e r  va lue .  

3 . 5 . 2  CORRECTION OF ARC LENGTH 

A t  t h e  s t a r t  of t h i s  suba lgor i thm,  a number of cu rve  p o i n t s ,  
u u  
t h e  cu rve ) ,  a r e  known, where N is  t h e  s e l e c t e d  o r d e r .  The 
p o i n t s  cor respond t o  a r c  l e n g t h  va lues  S I  s2,  ..., s 
where, aga in ,  t h e  s u b s c r i p t s  i n c r e a s e  backward a l o n g  
t h e  curve.  The v a l u e  of si is p r o v i s i o n a l ,  and it is  r e f i n e d  
by t h i s  suba lgor i thm.  

- A  3 

1, 2. .... u ( t h e  s u b s c r i p t s  i n c r e a s e  backward a long  N 

N' 1' 

The c o r r e c t e d  v a l u e  of t h e  c u r r e n t  a rc  l e n g t h ,  
c u l a t e d  us ing  

sl, is ca l -  

( 3 - 2 7 )  

where u ( a )  = ( X ( u ) .  x ( u ) ,  y(u).  z ( u ) ,  & ( a ) ,  + ( a ) ,  i(u)IT. 

The t angen t  vector ,  du/du, is dva lua ted  as t h e  d e r i v a t i v e  
of t h e  N-point Lagrange i n t e r p o l a t i n g  polynomial (see Sec- 
t i o n  3 . 5 . 7 ) .  and t h e  i n t e g r a l  is numer ica l ly  c a l c u l a t e d  w i t h  
s t anda rd  N-point Gaussian q u a d r a t u r e  (see Reference 10). 

The purpose of t h i s  s t e p  is t o  keep  t h e  a r c  l e n g t h  v a r i a b l e  
a c c u r a t e  so t h a t  t h e  s o l u t i o n  cu rve  t a n g e n t  v e c t o r ,  r e q u i r e d  
i n  S e c t i o n  3.5 .9 ,  is a c c u r a t e .  Because t h e  d i f f e r e n c e s  
between s t  and s1 have been observed t o  be rather smal l  
i n  p r a c t i c e ,  f u t u r e  work may e v e n t u a l l y  prove t h a t  t h i s  s t e p  
is unnecessary.  

1 
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3 . 5 . 3  

A t  t h  

COLLECTION OF OUTPUT 

s t a r t  of t h i s  suba lg  

STATES 

r i thm,  two cu a 

1 i n t s ,  u 
a n d Z 2 ,  a r e  known, a long  w i t h  t he  a s s o c i a t e d  a rc  l e n g t h s ,  
s1 and s2 .  The o b j e c t i v e  is  t o  de te rmine  t h e  p r e c i s e  
p o i n t s ,  i f  any,  a t  which t h e  s o l u t i o n  curve  c r o s s e s  t h e  

A = 1 hyperplane.  I t  should b e  noted t h a t  polynomial 
i n t e r p o l a t i o n  does  no t  g e n e r a l l y  perform t h i s  t a sk  w i t h  su f -  
f i c i e n t  p r e c i s i o n  u n l e s s  t h e  cu rve  s t e p s ,  As, a r e  i n e f f i -  
c i e n t l y  small .  Furthermore,  Newton-Raphson i t e r a t i o n  a t  
f i x e d  A. i n i t i a t e d  w i t h  such  a n  i n t e r p o l a t e d  s t a t e ,  w i l l  
o c c a s i o n a l l y  f a i l  i f  t h e  curve i s  c l o s e  t o  being p a r a l l e l  t o  
t h e  A = 1 hyperplane.  The re fo re ,  a more c a r e f u l ,  and also 
more re l iable ,  approach has been developed and is  d e s c r i b e d  
here .  

F i r s t ,  t o  s a v e  t i m e ,  i f  bothi?l and T? are  f a r  f rom t h e  2 
h = 1 hyperplane,  i t  is  assumed t h a t  no s o l u t i o n  s t a t e s  
were c ros sed  d u r i n g  t h e  s t e p  and,  i n  t h i s  case, the suba l -  
gori thm is t e rmina ted .  

I f ,  on t h e  o t h e r  hand, e i ther  Cl o r  u2 is no t  f a r  from 
A = 1, t hen  t h e  number and approximate l o c a t i o n s  of 
s o l u t i o n  s t a t e s  between 52 and s1 a r e  f i r s t  determined. 
T h i s  is done by computing i n t e r p o l a t e d  s t a t e s ,  u i ,  u;, ..., uE; 

a t  M v a l u e s  of a r c  l e n g t h  uni formly  d i s t r i b u t e d  between s2 
and sl. M is  t y p i c a l l y  50, and t h e  N-point Lagrange in-  
t e r p o l a t i n g  formula is used f o r  t h i s  procedure (see Sec- 
t i o n  3 . 5 . 7 ) .  The number and approximate l o c a t i o n s  of t h e  

s o l u t i o n  s ta tes  a r e  t h e n  determined from t h e  s i g n s  of 1-hl 
i n  t h e  sequence of i n t e r p o l a t e d  s t a t e s .  For each s o l u t i o n  
s t a t e .  there  w i l l  be two nearby i n t e r p o l a t e d  s t a t e s ,  u1; and 
~ i ; + ~  t h a t  s t r add le  t h e  s o l u t i o n  s t a t e .  
cases having one and two s o l u t i o n  s t a t e s .  

A 

- 2 . 2  

j 

A 

z Figure  3 - 8  shows 
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)f TWO STATES SOLUTION 

F i g u r e  3 - 8 .  S i n g l e  and 
During One 

Double S o l u t i o n  States 
Curve -Fo 1 lowing S t e p  

Crossed 
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Next, the solution state refinement process begins; an 
iterative procedure is used to refine each of the candidate 
solutions. in turn. This procedure consists of the follow- 
ing steps: 

A Step 1. The two interpolated states, "1; andsl;+l, are each 
refined, using the Newton-Raphson method (Sec- 
t i o n  3 . 5 . 8 ) .  

lie on the solution curve. 
This yieldsZk and% k+l' which 

Step 2. The h components of zk and Gk+l are generally 
not equal to 1. A linearly interpolated state, 
u at h = 1 is computed using a 

A' 

(3-28) 

A 
I Step 3 .  "1; is refined using the Newton-Raphson method (Sec- 

tion 3 . 5 . 8 )  to derive$ which lies on the solu- 
tion curve. 

A' 

Step 4 .  If the h component ofi? is equal to 1, to A 
within the specified tolerance, then the refinement 
process is complete for this solution, and the 
process begins again with the next candidate solu- 
tion, if any. On the other hand, if hA is not 
sufficiently close to 1, then the refinement proc- 
ess continues ,with step 5. 

The value of Gk is set to either the value of 

is closer to one, and zk+l is set t o 3 ' .  Then, 
the process returns to step 2 f o r  another iteration. 

- Step 5 .  
-I whichever has a h component that 4 u Of Uk+y k 

Usually, this refinement process is completed with two or 
three iterations. The refinement process may occasionally 
have an abnormal termination due to nonconvergence. This 
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can happen if the interpolating polynomial crosses A = 1, 
but the actual solution curve does not. If a nonconvergence 
condition occurs, then the last curve point, u should be 
discarded: a smaller step size, As , selected: and a new 
curve point computed. 

3 . 5 . 4  COLLECTION OF CRITICAL POINTS 

2 

I 1' 

To reliably and efficiently evaluate critical points, the 
curve-following algorithm should continually select steps, 
As, that are about as small as, or smaller than, the local 
radius of curvature of the solution curve. The subalgorithm 
described in Section 3 . 5 . 9  is intended to accomplish that. 

At the start of the critical point subalgorithm, three curve 
points, u u and* and the associated arc 
lengths, s s and s are available. The objective 
is to determine if a local extremum in A ( s )  exists in the 
solution curve between s and s and, if so,  to eval- 3 1' 
uate the coodinates precisely. 

2 -  

1' 2' 3 '  

1' 2' 3 '  

First, the subalgorithm checks for the following conditions: 

h2 > Al and h2 > A3 ( 3 - 2 9 )  

A2 < hl and A2 < X3 (3-30) 

If neither of these two conditions is satisfied, then it is 
assumed that a Local extremum is not contained between s 

and sL, and the subalgorithm terminates. 
hand, if either of these two conditions is satisfied, then 
it is assumed that exactly one local extremum exists between 
s3 and sl, and the subalgorithm continues. 

3 
On the other 
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An approximate location of the critical point is first de- 
termined. A sequence of interpolated derivatives. 

is computed for M values of the arc length that are uni- 
formly distributed between s3 and sl. 
100. and the derivative of the N-point Lagrange interpolat- 
ing polynomial is used (see Section 3.5.7). The approximate 
location of the extremum is determined from the sequence of 
signs in the sequence of interpolated derivatives. The arc 
length value at the position of the extremum in the inter- 
polating polynomial is further improved by using the 
Newton-Raphson method with an approximate derivative, as 
follows : 

M is typically 

I - 
E , k - 1  S 

ds I 1 'E,k 
- dh 

ds 
E , k  + 6s S 

(3-31) 

where s t  is the estimated arc length position of the local 

extremum after k iterations. and 6s is an appropriate step 
for evaluation of the derivative in the denominator. (The 
subscript E in these equations denotes the extremum.) The 
interpolated value of the curve point at the extremum, 
evaluated after convergence of S I  

E . k  

is denoted by Gi. E' 
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Finally. the value of the curve point at the extremum is precisely 
calculated to within the specified tolerance by solving the equa- 
tions 

det [q] = 0 

(3-32) 

At the critical point. the observation partial derivatives 
matrix is singular (see Equation (3-24) with dh/ds = 0). 

hence the vanishing of its determinant, which is expressed 
by the seventh equation above. 

estimate. Equations (3-32) are solved. using standard 
Newton-Raphson iteration. to yield the final value of the 
critical pointuE. 
minant required for the Newton-Raphson method are evaluated 
approximately by numerical differencing.) 

Using%: as an initial 

(The partial derivatives of the deter- 

3 . 5 . 5  TERMINATION 

At each step. this algorithm determines if the solution 
curve has been followed back to it starting state, which is 
generally a point at h = 0. although the generalization to 
other starting points is straightforward. 

First, the subalgorithm determines if the curve has crossed 
h = 0. and, if so, the h = 0 states are precisely cal- 
culated. This is accomplished with the subalgorithm of Sec- 
tion 3.5.3, with the obvious modification. 

Next, each of the h = 0 states, if any exist. is compared 
with the starting state. and if a match is found to within a 
specified precision. the algorithm terminates and indicates 
that the curve has been followed back to the start. 
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Other emergency t e r m i n a t i o n s  can  be s i g n a l l e d  i f  any of t h e  

f o l l o w i n g  c o n d i t i o n s  occurs :  

e The maximum allowed number of cu rve  p o i n t s  is ex- 
ceeded. 

e The maximum allowed number of s o l u t i o n  states is 
exceeded. 

e The maximum allowed number of c r i t i c a l  p o i n t s  is 
exceeded. 

e The a l g o r i t h m - s e l e c t e d  s t e p  s i z e  is less than  t h e  

spec i f ied  minimum value. 

3 . 5 . 6  STEP-SIZE SELECTION 

Step-size s e l e c t i o n  is based on t h e  idea  t h a t  the  amount of 
numerical c a l c u l a t i o n  r e q u i r e d  for: t he  c o r r e c t i o n  sub  a l -  
gori thm ( S e c t i o n  3 . 5 . 8 )  should be roughly t h e  same f o r  a l l  
s t e p s .  T h i s  should  make t h e  p r e d i c t i o n  e r r o r  approximate ly  
uniform r e s u l t i n g  i n  small s teps  f o r  s h a r p  bends and l a r g e  
steps f o r  n e a r l y  s t r a i g h t  p o r t i o n s  of the curve .  To accom- 
p l i s h  t h i s ,  t h e  s t e p - s i z e  s e l e c t i o n  suba lgo r i thm chooses t h e  

next  s t e p ,  Asnew , on t h e  b a s i s  of t h e  l a s t  s t e p ,  bsold,  

and t h e  number of i t e r a t i o n s ,  Iold, t h a t  were r e q u i r e d  f o r  
t h e  c o r r e c t o r  t o  converge t o  t h e  s p e c i f i e d  t o l e r a n c e .  

t 

Two i t e r a t i o n  numbers, I and Idown, a r e  spec i f ied ,  a long  
w i t h  two s t e p - s i z e  a d j u s t m e n t , f a c t o r s ,  
Typ i c a  1 1 y 

U P  
FUP and Fdown' 

3 s Iup - < 5  

< 8  ' 'down - 
F = 1 . 4  

U P  

Fdown = 0 . 6  
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Given the values of these parameters. the next step size is 
determined from the following: 

< I  (increased step) up if 'old - UP 
= F  "Aew 

ASl;ew UP (same step) 
(decreased step) 

< 'down < Told 
< 'old if 'down - 

= Asold. if I 
- 

'Shew - Fdown 

This selection mechanism has performed reliably in prac- 
tice. However. the fact that the 1's are integers sometimes 
leads to too coarse an adjustment capability when an attempt 
is being made to optimize overall efficiency. A more 
sophisticated subalgorithm. in which the step size is de- 
rived directly from the curvature. torsion. and polynomial 
parameter. N. might enable finer control. 

The initial step size can be any reasonably small value. 
which the starter (Section 3.5.1) will automatically reduce 
if necessary. 

The subalgorithm makes one additional modification to the 
step size selected with Equations (3-33). This adjustment 
prevents the next curve point from jumping too far across 
h = 0 or h = 1, since curve points may need to be 
evaluated at those values of h (Sections 3.5.3 and 
3.5.5). In the following. % represents any one of these 
values of h for which a curve point should be placed 
nearby. 

If the linearly extrapolated next curve point would be 
located on the other side of the h = % hyperplane. in 
relation to the last computed curve point. and if the dis- 
tance of the last computed curve point from the h = h 
hyperplane is greater than a specified tolerance. the step 
size is specified as follows: 

- 

2 s - s  1 
= 1.01 (X - h,) 

"Aew hl - l2 
(3-34) 
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the subscripts 1 and 2 denote back points. This se- 
place a curve point near x so as to speed the - 
of the h = h state. 

3.5.7 PREDICTION OF NEW CURVE POINT 

The Lagrange polynomial is used for interpolation or extra- 
polation of the state%, (h. x,  y. 2 ,  k, y .  6 )  . The arc 
length. S .  is the independent variable. The interpolated or 
extrapolated state is computed from 

T 

N 
(3-35) 

with 

I 

, i = 1, .... N jfi 
N 

Li(S ) 5 

j=1 
jfi 

wherez(si). i = 1, .... N. are the known curve points at 
SI. .... sN' 
selected as described in Section 3.5.6. 

t l 

In prediction, snew = s1 + bSnew' where A s h e w  is 

The number of points used to define the polynomial, denoted 
by PI. is a parameter. Through experience, values for N of 3 
or 4 work best. If N is too large, then predictions become 
poor near sharp bends in the solution curve. leading to poor 
convergence and the necessity to repeat the step. 
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At the completion of the starter algorithm, N is set to the 
value 2. After completion of each additional predictor- 
corrector step, N is incremented by one until the specified 
value is reached. The algorithm for the collection of cri- 
tical points requires that N be three or greater. 

The vector tangent to the polynomial fit is required in the 
corrector subalgorithm and the monitoring subalgorithm (Sec- 
tions 3.5.8 and 3.5.9). Differentiation of Equation (3-34) 
yields the necessary formula: 

with 

1 
N 

jfi 

N 

c 
k=l 
kfi 

(3-36) 

3.5.8 CORRECTION OF NEW CURVE POINT 

Given the predicted state, u', at 6'. a precise solution 
for Equations ( 3 - 3 ) ,  subject to one constraint equation, is 
computed with the Newton-Raphson method. The constraint re- 
quires that each correction, &$ = (&L, 6x, Sy. Sz,  6 % .  &+, &g)T, 
must lie in the five-dimensional hyperplane that is perpen- 
dicular to the tangent vector of polynomial approximation at 
the predicted state. (The N-point polynomial approximation 
for the tangent vector is based on the predicted point and 
N - 1  backpoints.) 
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Using this constraint, the correction, d c ,  is computed by 
solving the following 7x7 linear system: 

Max 
1 < i < 6  

(3-37) 
. aci 

(0; - 0;) Sh - c - bx j = -p + h (0; - 0; ) -  Ci(Zj 
j 

ax 
j=1 i = 1, .... 6 

0 1 0 oi 4- h(Oi - Oi) - Ci(X) - < E  

Max (pq. ) o q ,  pil) 2 

T where di?E (dh, 6) . These linear equations are 
solved by standard Gaussian elimination with row and column 
pivoting. 

The tangent vector 

is updated so as to be calculated from the current iterated 
state, rather than the original predicted state, if during 
the iterations the tangent vector changes by more than a 
specified tolerance. Thus, the perpendicularity condition 
is only approximate. 

The iterative corrections are continued until any one of the 
following conditions occurs: 

i d i q  < (3-38) 

or 
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where cl and a re  spec i f ied  parameters. T y p i c a l l y  

- 13 
E - 10 1- 

-14 
E - 10 2- 

I f  n e i t h e r  of these c o n d i t i o n s  is s a t i s f i e d ,  and t h e  speci- 
f i e d  maximum number of i t e r a t i o n s  ( t y p i c a l l y  6 t o  8 )  is 
reached, then  the subalgor i thm r e t u r n s  a nonconvergence 

s i q n a l ,  which causes  s e l e c t i o n  of a smaller s t e p ,  Asnew.  
I 

3.5 .9  MONITORING OF NEW CURVE POINTS 

T h i s  suba lgo r i thm monitors  the computat ion of new curve 
p o i n t s  and d i r ec t s  the  recomputat ion of a curve  p o i n t  w i t h  a 
reduced s t e p  s i z e  

I I - 
r e v i s e d  - Freduce . "new (3-40) 

if one of the f o l l o w i n g  c o n d i t i o n s  has O C C U K K e d :  

1. The c o r r e c t o r  suba lgor i thm has no t  achieved con- 
vergence w i t h  t h e  o r i g i n a l  s t e p .  

2. The change i n  t h e  t a n g e n t  vector between t h e  new 
cu rve  p o i n t  and t h e  l a s t  back p o i n t  exceeds a 
specif ied t o l e r a n c e .  

Typ ica l ly  * Freduce = 0 . 5 .  

The second c o n d i t i o n  is checked w i t h  

(3-41) 
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where F is t y p i c a l l y  i n  the range 0.01 t o  0 . 0 5 .  A very  s m a l l  
va lue  f o r  6 shou ld  not  be selected because the  e r r o r  i n  t h e  

polynomial approximat ion  does n o t  approach ze ro  a s  t he  s i n -  
gle  s t e p  s i z e ,  Ashew, approaches zero .  
i n  the e x i s t i n g  a lgor i thm.  t h e  t angen t  v e c t o r  du /ds  would be 

Although no t  done 

b e t t e r  c a l c u l a t e d  i n  a f u t u r e  a l g o r i t h m  through t h e  u s e  of 
Equat ions (3-24) r a t h e r  than  the  polynomial approximation.  
T h i s  would avo id  occas iona l  d i f f i c u l t i e s  encountered w i t h  
t angen t  v e c t o r s  e v a l u a t e d  from the  polynomial approximation.  

3.5.10 CONDITIONS OF FAILURE OF THE CURVE-FOLLOWING ALGORITHH 

Through c o n s i d e r a b l e  t e s t i n g ,  three c o n d i t i o n s  under which 
t h e  curve- fo l lowing  a l g o r i t h m  can  o c c a s i o n a l l y  f a i l  have 
been i s o l a t e d .  The c o n d i t i o n s  a r e  expected t o  occur  i n  
practice on ly  v e r y  r a r e l y ,  s i n c e  ( excep t  f o r  c o n d i t i o n  ( 3 )  

below), they r e q u i r e  c r i t i c a l  ad jus tment  of the a p r i o r i  
s t a t e  vec to r  t o  f o r c e  a f a i l u r e .  Condi t ion  ( 3 )  occurs  when 
the o r b i t  is a lmos t  undetermined w i t h  t h e  g iven  observa- 
t i o n s ,  and even i f  t h i s  d i f f i c u l t y  is overcome, t h e  d e t e r -  
mined o r b i t  w i l l  i n e v i t a b l y  have ext remely  l a r g e  e r r o r s .  

The three c o n d i t i o n s  a r e  a s  f o l l o w s :  

1. The a p r i o r i  o r b i t  s t a t e  v e c t o r  is very c l o s e  t o  a 
s o l u t i o n  s t a t e  v e c t o r .  

2. The a p r i o r i  s t a t e  v e c t o r  is s u c h  t h a t  t h e  s o l u t i o n  
curve  has  two loops t h a t  n e a r l y  touch,  o r  a s i n g l e  
loop  t h a t  is n e a r l y  pinched o f f .  

3 .  The s i x  g iven  o b s e r v a t i o n s  a r e  such  t h a t  t h e r e  a r e  
two s o l u t i o n  s t a t e s  t h a t  a r e  ve ry  c l o s e  t o g e t h e r .  

1 0  Condi t ion  1 c a u s e s  t h e  d i f f e r e n c e s  Oi- Oi t o  be ve ry  sma l l .  
Assuming t h a t  most s o l u t i o n  loops have, ve ry  roughly.  the  
same s i z e .  when measured by t h e  range of v a r i a t i o n  of 
0; E 05 + A (Oi - O y ) ,  t h i s  sma l lnes s  of Oi - Oi impl ies  1 1 0 
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t h a t  t he  range of h w i l l  be very large. Values of h as  
large as 1OI2 c a n  be reached when t h e  a p r i o r i  s t a t e  vec- 
t o r  is i n  e r ro r  by o n l y  10 meters. Thus, i n  such  a case, 
the  h variable has not  been properly scaled, and t h i s  

leads, through machine p r e c i s i o n  l i m i t a t i o n s ,  t o  s low con- 
vergence of t h e  c o r r e c t o r  when t h e  cu rve  reaches large 
magnitudes of h. F o r t u n a t e l y ,  the curve  w i l l  be fo l lowed 
f i r s t  through a s o l u t i o n  s t a t e  be fo re  t h e  d i f f i c u l t y  occur s ,  
and t h i s  s o l u t i o n  s ta te  is a lmost  c e r t a i n l y  t h e  one de- 

s i red.  Proper  s c a l i n g  of h cou ld  reduce t h i s  problem i n  
t h e  f u t u r e .  

Condi t ion  2 c a n  lead t o  an  ambigui ty  concern ing  which of t h e  

two branches t h e  a l g o r i t h m  w i l l  f o l l o w  upon p a s s i n g  t h e  

touching p o i n t .  Of course ,  two loops  w i l l  never e x a c t l y  
touch, so t h a t ,  i n  p r i n c i p l e ,  the  s t e p  s i z e  could  be se- 
lected small enough t o  avoid the  problem. But u s i n g  very 
smal l  s t e p  s i z e s  i n d i s c r i m i n a n t l y  is  i n e f f i c i e n t .  Better 
a l t e r n a t i v e s ,  f o r  a very s o p h i s t i c a t e d  a lgo r i thm,  would be 

t o  have the a l g o r i t h m  check f o r  the  p o s s i b l e  near  e x i s t e n c e  
of such  touching  p o i n t s  and t h e n  t o  e i t h e r  change t h e  s t e p  
s i z e  t o l e r a n c e s  l o c a l l y ,  when necessa ry ,  o r  t o  change the  
a p r i o r i  s t a t e  v e c t o r  by a n  amount large enough to avoid t h e  

problem. 

Condi t ion  3 c a n  e i ther  cause  convergence d i f f i c u l t i e s  i n  t h e  

subalgor i thm f o r  c o l l e c t i n g  s o l u t i o n  s t a t e s  ( S e c t i o n  3 . 5 . 4 )  

o r  can  produce a n  incons i s t ency  (on ly  one s o l u t i o n  s ta te  
recovered f o r  a case i n  which t h e  curve  doubles  back).  L i k e  

Condi t ion  2, it can  be c o r r e c t e d  w i t h  s u f f i c i e n t l y  sma l l  
steps, l o c a l l y ,  i n  a more s o p h i s t i c a t e d  subalgor i thm t h a t  
can r e l i ab ly  d iagnose  the c o n d i t i o n .  The c o n d i t i o n  can be 

diagnosed by measuring t h e  a n g l e  between t h e  cu rve  t angen t  
and the h = 1 hyperplane.  

3-50 



Of t h e  t h r e e  c o n d i t i o n s ,  t h e  t h i r d  is t h e  most l i k e l y  t o  
occur i n  p r a c t i c e ,  when an  a t t e m p t  is made t o  de te rmine  a n  
o r b i t  w i t h  i n s u f f i c i e n t  t r a c k i n g .  Even though the  deter- 
mined o r b i t  may have l a r g e  errors, the  o p e r a t i o n a l  e a r l y  
o r b i t  a l g o r i t h m  should c a r e f u l l y  handle  t h i s  c a s e ,  because 
even r e l a t i v e l y  poor knowledge of t h e  o r b i t  may sometimes be 
good enough t o  l e a d  t o  a d d i t i o n a l  c o n t a c t s  and t r a c k i n g  of 
an  e r r a n t  s p a c e c r a f t .  
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SECTION 4 - NUMERICAL EXAMPLES OF THE BASIC HOMOTOPY METHOD 

Spacecraft tracking by means of a single TDRS (at longitude 
41 degrees west) was exclusively considered. Section 4.1 
provides an example with simulated tracking for a high- 
eccentricity orbit. Section 4.2 considers Landsat-4. using 
real TDRSS tracking measurements. That section includes a 
detailed description of one case along with less detailed 
results f rom several other test cases. 

The physical modeling for the examples in Sections 4.1 and 
4.2.1 was simple. Two-body orbit propagation and geometri- 
cal measurement modeling, as described in Sections 3.2.1.1 
and 3.2.2.1. were used. with no corrections applied. For 
the simulated tracking measurements used in the example of 
Section 4.1, Gaussian white noise with standard deviations 
of 0.5 millimeters per second for Doppler and 0.5 meters for 
range (values typical of current TDRSS performance) was 
added to the simulated measurements. A 10-meter bias was 
added to the simulated range measurements. 

Section 4.2.2 describes the accuracy improvement obtainable 
for the early orbit through the use of the Brouwer-Lyydane 
orbit propagator and the inclusion of the light propagation 
effects and the spacecraft transponder delays. 

Typical central processing unit (CPU) times for the calcula- 
tion of one complete solution loop ranged from 0.5 to 2 min- 
utes. using the developmental program in the VAX l1/780 
computer. However. in an operational implementation of the 
method. the CPU times would be much less because of optimi- 
zation of the algorithm and because. fn most cases, computa- 
tion of a complete solution loop is not necessary. 
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4.1 FCCENTRIC ORBIT WITH SIMULATED TDRSS TRACKING 

The test o r b i t  has a perigee c l o s e  t o  t he  E a r t h ' s  s u r f a c e  
and a n  apogee a l t i t u d e  of 12.000 k i lome te r s ,  which is near  
the  outer: l i m i t  of complete TDRGS coverage. The o r b i t  
per iod  is 2 3 0  minutes.  Simulated Doppler o b s e r v a t i o n s  a t  0 ,  

20, 40, 60 .  8 0 ,  and 100 minutes were used t o  g e n e r a t e  t h e  

s o l u t i o n  C U L V e .  

The truCh model o r b i t  e lements ,  the a p r i o r i  e s t i m a t e ,  and 
the four s o l u t i o n s  a long  t h e  s o l u t i o n  cu rve  are  l i s t ed  i n  
Table  4-1. The p r o j e c t i o n  of t h e  s o l u t i o n  curve  on to  t h e  

1 - z plane  is shown i n  F igu re  4-1. As t h i s  is a two- 
dimensional  p r o j e c t i o n  of a s i m p l e  curve  t h a t  l i es  i n  a 
seven-dimensional space, the appa ren t  cusps  and self-  
i n t e r s e c t i o n s  a re  i l l u s o r y .  

Although s o l u t i o n  1 is ve ry  c l o s e  t o  the t r u e  s t a t e ,  t h e  
o t h e r  three s o l u t i o n s  a l s o  e x a c t l y  f i t  the  s i x  g i v e n  obser -  
v a t i o n s ,  O t h e r  in format ion  would be r e q u i r e d  t o  select  t h e  
COLLBC1t s o l u t i o n  from among t h e  f o u r .  For example, t h e  s i x  
pa i r s  of TDRSS antenna p o i n t i n g  a n g l e s  should be s u f f i c i e n t  
t o  make t h e  c o r t e c t  s e l e c t i o n .  

The near symmetry i n  F i g u r e  4-1 is a t t r i b u t a b l e  t o  t he  sym- 
metr;y i n h e r e n t  i n  TDRSS range and Doppler o r b i t  determina-  
t i o n .  The range  and Doppler measurements a re  unchanged 
under t h e  t r a n s f o r m a t i o n  

I 

where z is the  p o s i t i o n  c o o r d i n a t e  measured a long  t h e  

d i r e c t i o n  t h a t  is normal t o  t h e  TDRS o r b i t  p l a n  and x and 
y a re  c o o r d i n a t e s  i n  the TDRS o r b i t  p l ane .  Also,  any 
two-body t r a j e c t o r y  s u b j e c t e d  t o  t h i s  t r a n s f o r m a t i o n  y i e l d s  

8 

I 
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T a b l e  4-1. A P r i o r i  E s t i m a t e ,  T r u e  State,  and S o l u t i o n  States  
f o r  t h e  E c c e n t r i c  T e s t  C a s e  

A Priori 
Estimate 

10 000 

0 . 5  

15 

140  

-80 

-40 

True 
state 

12,500 
0.44 

10 

145 

-90  

-35 

solution 
1 

12,499.997 

0.44000 

10.000 

144.998 

-89.998 

-35.000 

solution Solution 
2 3 

18.696. 12.499.997 

0.608 0.44000 

84.9 13.079 

206.5  320.117 

1 8 5 . 1  94.98 

345.3 -35.000 

Solution 
4 

18,696. 

0.608 

85.4 

26.3 

8 .3  

345.3 

4-3 



90.0 

6.8 

0.0 

-6.0 

- 10.0 
-0.8 -0.4 -0.2 0.0 0.2 0.4 0.8 0.0 1.0 1.2 

A ~HWOTOPY PARAMIETeR) 

Figure  4-1. Projection of t h e  So lu t ion  Curve Onto t h e  
X - z Plane f o r  t h e  Eccentr ic  T e s t  C a s e  
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e 
another. z -reflected two-body trajectory; hence nnirror 
symmetry in the solution curves is therefore present. (Ac- 
tually. Figure 4-1 is slightly asymmetric because of the 
small nonzero inclination and the eccentricity of the TDRS 
orbit.) 

The high eccentricity in this test case does not introduce 
any special considerations into the determination of the 
solution by this method. In fact. solution curves often 
have portions on which the Orbit states are hyperbolic. even 
if the a priori estimate and the solution states are not. 
Except f o r  details such as the shapes of the solution curves 
and the number of solutions. the range and Doppler problems 
all show the same general character: smooth. closed solu- 
tion curves and an even number of solutions (except in the 
rare case that a solution curve tangentially touches the 
'h. = 1 hyperplane). 

In this example. the solution curve was represented numeri- 
cally by a sliding quadratic polynomial fit at 125 steps. 
Ninety seconds of CPU time in the development program were 
required on the VAX 11/780 computer. 

4.2 LANDSAT-4 WITH REAL TDRSS TRACKING 

4.2.1 SIMPLE MEASUREMENT AND TRAJECTORY MODELING 

The Landsat-4 orbit is near polar and circular, with a 
radius of 7070 kilometers. Only a very limited amount of 
TDRSS tracking was available: two or three 15-minute data 
groups per day with one-revolution spacing between the 
groups. The six measurements used in this example consisted 
of a single range measurement midway between two Doppler 
measurements in each of two consecutive data groups. These 
observations were selected at 0.5. 6.5. 13.0. 97.0, 102.0. 

and 107.5 minutes from the reference time. 14 56 on 
March 14. 1984. 

h m  
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The initial estimate. actual solution (osculating elements). 
and the four solutions found are listed in Table 4-2. Each 
of the four solutions was compared, over a 100-minute com- 
parison interval, with a moderately precise Landsat-4 orbit 
solution calculated with the Goddard Trajectory Determina- 
tion System (GTDS) Differential Correction (DC) Program. 
The position accuracy of this solution, which was based on 
NASA S-band ground tracking alone. is about 0.1 kilometers. 
The resulting position differences are shown in the bottom 
of Table 4-2. These differences are extremely large, except 
for Solution 2, which corresponds to the actual Landsat-4 
orbit. Nearly all of the 50-kilometer error in Solution 2 
is due to the two-body approximation. As indicated earlier, 
the correct solution of the four should be selected using 
the known values of the TDRS antenna beam angles. 

Projections of the solution curve on the h - y and 
A - z planes are shown in Figures 4-2 and 4-3, respec- 
tively. In this example, the solution curve consists of two 
disjoint loops,  which have the mirror symmetry discussed in 
Section 4.1. (The second loop has been suppressed in Fig- 
ure 4-2 for clarity; it nearly coincides, in its h - y 
projection, with the first loop.) Each one of the mirror- 
symmetric loops can be obtained from the other by using 
transfocmation (4-1). After computation of one of the 
loops, the existence of the other can be inferred by the 
absence of the expected mirror symmetry in the two solutions. 

The computations for this case used 81 predictor-corrector 
steps for the loop and 46 seconds of VAX CPU time in the 
developmental program. 

Results from several other Landsat-4 cases in which the 
tracking schedule and the a priori estimate were varied are 
summarized in Tables 4-3 through 4-5. All of these cases 
had the same reference time as the previous example and also 
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T a b l e  

Keeler ian 
E lene nt  

a (km) 
e 
i 
Q (des )  
w ( d e s )  
M (deg) 

Maximum 
Error (km) 

4-2. A P r i o r i  Estimate and Solution States  for 
Landsat-4 T e s t  Case 

A Prior i  
E8 ti  mat e 

8000 

0.01 

45 

0 

0 

0 

Actual 
Solution 1 

7073.7 

0.00097 

98.2 

137.4 

197.5 

100.1 

so lu t ion  
1 

6960.5 

0.819 

79 .2  

312 .1  

247.8 

22.6 

Solut ion 
2 

7083.7 

0.00042 

98.2 

137.5 

333.2 

146.5 

14,904 19.726 50.6 

Ss lu t ion  
3 

6969.5 

0.819 
76.4 

132.2 

67.4 

22.6 

so lu t ion  
4 

7083.7 

0.00042 

100.9 

317.6 

153.8 

146.5 

13.480 13.974 

LPror GTDS Di f f erent ia l  Correction Solution. 
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(d KM) 

20 

- 2.0 

- 4.0 

-6.0 
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I I I 

-0.2 0.0 0.2 0.4 0.6 0.8 1 .o 1.2 1.4 

A (HOMOTOW PARAMETER) 

Figure 4-2.  Projectlon of the Solution Curve Onto the  
X - y Plane for  the Landsat-4 T e s t  Case 
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8.0 

4.0 

Z 

Ild KM) 0.0 

- 4.0 

-8.0 

-0.0 0 0 2  0.4 0.6 0.8 1.0 1.2 1 .I 

A IHOMOtOPY PARAMRER) 

F i g u r e  4 -3 ,  P r o j e c t i o n  for t h e  Solution Curve Onto the  
X - z P l a n e  for the L a n d s a t - 4  T e s t  C a s e  
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Table 4-3. A P r i o r i  Estimates Used far Landsat-4 Eatly 
Orbit Determination 

A Priori 
Estimate A 

7000 

0.01 
95 

135 
0 

115 

A Priori 
Estimate B 

8000 

0.01 
45 

0 
0 

0 
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Table 4-4. Landsat-4 Early Orbit Determination Results for  
One-Revolution Tracking 

A P r i o r i Z  
11 = Ranae. 2 P Doppler) E s t i m a t e  S o l u t i o n s  (km) 

Maximum Errors f O 5  A l l  1 Ueasureoaent Types 

1. 1. 1. 1. 1. 1 A C46.1. 15187, 13969, 201121 
1. 1, 1. 1. 1. 1 B I20112.  46.11 115187. 139691 
2. 2. 2. 2. 2. 2 

2. 2. 2, 2. 2. 2 

2. 1. 2. 2. 1, 2 
2, 1. 2. 2. 1. 2 

A C55.9. 202991, 113972. 
B Solu t ions  not reached. 
A [ 50.9, 140181, [ 13976, 
B [14018, 50.91. [19863, 

156701 
Amax = 0 . 8 5  

198631 
139761 

lTypes are des igna ted  i n  time order .  from t h e  r e fe rence  t i m e .  I n  a l l  ca ses  
the measurement times were 1.0, 6.5. 12.5. 97.5, 102.5. and 107.5 minutes. 

2See Table 4-3. 

3The brackets group s o l u t i o n s  on t h e  same loop. i n  t he  o rde r  found. I n  cases 
w i t h  two loops. the t w o  s o l u t i o n  loops are mir ror  images w i t h  r e s p e c t  t o  the 
TDRS o r b i t  plane.  
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Table 4-5. Landsat-4 Early Orbit Determination Results for 
a Very Short Tracking Interval 

Measurement Types 1 
11 = Ranae. 2 = Doppler) 

1. 1. 1. 1. 1, 1 
1, 1. 1. 1. 1. 1 
2. 2. 2. 2. 2. 2 
2. 2. 2. 2. 2, 2 
1. 1. 1. 2. 2. 2 
1, 2. 1. 2. 1. 2 

1. 1. 1. 2. 2, 2. 

A P r i o r i Z  
Es t i m a  t e 

A 

B 
A 

B 
A 

A 

A 

Maximum Errors fog A l l  

S o l u t i o n s  not  reached. I,,, = 0.982 
Solu t ions  not  reached. I,,, = 0.998 
11072. 32731. [14033, 140271 
[3273. 1072. 14027, 140333 

S o l u t i o n s  (km) 

S o l u t i o n s  not  reached. Amax 0 

S o l u t i o n s  not  reached. Imax 0 
11126. 21941. [lSOlO, 140331 

‘Types are des igna ted  i n  time o r d e r ,  from the r e f e r e n c e  time. 

2See Table 4-3. 

3The brackets group s o l u t i o n s  on t h e  same loop. i n  t h e  order  found. 

I n  a l l  cases .  
t h e  measurement times were 0.5. 3.0, 5.5, 8.0. 10.5. and 13.0 minutes.  

In  cases 
w i t h  two loops,  the two s o l u t i o n  loops a r e  mir ror  images w i t h  respect t o  t h e  
TDRS o r b i t  plane.  
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used the  same s imple  t r a j e c t o r y  and o b s e r v a t i o n  models. The 

two a p r i o r i  estimates t h a t  were t r i e d  a re  g iven  i n  
T a b l e  4-3. Estimate A is r e l a t i v e l y  c l o s e  t o  t h e  Landsa t -4  

o r b i t ,  w h i l e  E s t i m a t e  B is no t .  T a b l e  4-4 gives the r e s u l t s  
f o r  cases t h a t  have three measurements selected from t h e  

f i r s t  data group and the  second three measurements selected 
from t h e  second data group, which occurs  about  one o r b i t a l  
r e v o l u t i o n  l a t e r .  Table  4-5 gives the r e s u l t s  f o r  ca ses  t h a t  
have t h e  s i x  o b s e r v a t i o n s  e n t i r e l y  i n  t h e  f i r s t  d a t a  group. 
The e r r o r s  i n  the s o l u t i o n s  t h a t  a r e  l i s t e d  i n  these tab les  
are  t h e  maximum t o t a l  p o s i t i o n  d i f f e r e n c e s  t h a t  were measured 
i n  a 100-minute comparison w i t h  t h e  GTDS d i f f e r e n t i a l  co r rec -  
t i o n  s o l u t i o n .  

Tab le  4-4 conf i rms  t h a t  t h e  s o l u t i o n s  ob ta ined  a r e  indepen- 
d e n t  of t h e  a p r i o r i  e s t i m a t e .  Second, the e r r o r s  f o r  t he  
I8actuala8 s o l u t i o n ,  which a re  about  4 0  t o  50 k i lome te r s .  do 
not  depend s i g n i f i c a n t l y  on whether range o r  Doppler measure- 
ments are  used. Most of t h e  e r r o r  is a t t r i b u t a b l e  t o  t h e  

s i m p l e  t r a j e c t o r y  model: t h i s  is  shown i n  S e c t i o n  4 .2 .2 .  For 
t h e  f i f t h  c a s e  i n  T a b l e  4-4,  s o l u t i o n s  were no t  ob ta ined ;  t h e  

s o l u t i o n  loop d i d  not  ex tend  beyond h = 0 . 8 5 .  Presumably, 
t h e  s o l u t i o n s  l i e  on a d i f f e r e n t  loop. 

For T a b l e  4-5, the t i m e  s p a n  of t he  t r a c k i n g  was 13 minutes .  
I n  t h i s  case, the  s o l u t i o n s  a r e  ve ry  c l o s e  t o  t h e  c r i t i c a l  
p o i n t s  (as i n d i c a t e d  by t h e  p a i r i n g  of t h e  maximum e r r o r  
va lues )  and, t h e r e f o r e ,  t h e  problem i s  i l l - c o n d i t i o n e d .  The 

s o l u t i o n s  a re  t h e n  ve ry  s e n s i t i v e  t o  measurement and model ing  
e r r o r s ,  and, a s  the  r e s u l t s  show, good s o l u t i o n s  cannot be 

obta ined .  Presumably, s o l u t i o n s  do no t  even e x i s t  f o r  t h e  

f i r s t  t w o  cases i n  T a b l e  4-5. The r e s u l t s  i n d i c a t e  t h a t  
13 minutes is t o o  s h o r t  a span t o  de te rmine  a good o r b i t  w i t h  
TDRSS range and Doppler t r a c k i n g  (assuming t r a c k i n g  from a 
s i n g l e  TDRS). However, i n  some c a s e s ,  even a poor o r b i t  may 
be s u f f i c i e n t  t o  enab le  subsequent  a c q u i s i t i o n  and c o l l e c t i o n  
of a d d i t i o n a l  t r a c k i n g .  
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4.2.2 IMPROVED MEASUREMENT AND TRAJECTORY MODELING 

In this section, it is demonstrated that the 50-kilometer 
error in the one-revolution orbits determined for Landsat-4 
(Section 4.2.1) is attributable primarily to the two-body 
approximation and omission of light travel time effects and 
that most of the error can be eliminated with better model- 
ing. 

To assess physical accuracy, three types of Landsat-4 ephem- 
erides were compared. These three types are as follows: 

1. The GTDS differential correction reference solu- 
tion, which is the precise STDN solution described previ- 
ously (0.1-kilometer accuracy). 

2. Solutions computed with the developmental program 
using the homotopy method of this study. Options varied 
were two-body/Brouwer-Lyydane trajectory model and 
light-time/no-light-time measurement modeling. (The trans- 
ponder delay correction was not performed for the testing 
but is easily included. ) 

3 .  GTDS differential correction solutions using the 
same six measurements as in type 2. The GEM9 5x0 gravity 
model, with the Cowell propagator, was used in GTDS to ap- 
proximate the Brouwer-Lyddane. All GTDS runs included 
light-time modeling for the measurements. The transponder 
delay correction was switched on and off. 

For the six-observation solutions, the reference time was 
set at 14h56m on March 14, 1984, and the six range ob- 
servations were selected at 0 . 5 ,  6.5, 13.0, 97.0, 102.0, and 
107.5 minutes afterathe reference time, the same as for the 
results of Section 4.2.1. In both the GTDS six-observation 
solutions and the homotopy method solutions, the TDRS state 
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was propagated over t h e  data s p a n  w i t h  t he  two-body propa- 
g a t o r .  The i n i t i a l  estimate f o r  the GTDS runs  w a s  s u f f i -  
c i e n t l y  c l o s e  t o  the s o l u t i o n  t o  o b t a i n  convergence for t h e  
GTDS s i x - o b s e r v a t i o n  s o l u t i o n s .  

Comparisons f o r  two-body s o l u t i o n s  are  l i s t e d  i n  Table  4-6. 

The f i r s t  two rows of t h e  table i n d i c a t e  t h a t  t h e  l ight- t ime 
c o r r e c t i o n  by itself is not  r e s p o n s i b l e  f o r  t h e  50-kilometer 
e r r o r  w i t h  range  t r a c k i n g  only ,  and the  d i f f e r e n c e s  i n  the 
second two LOWS i n d i c a t e  t ha t  t h e  omission of t h e  s p a c e c r a f t  
t ransponder  delays is also not  r e s p o n s i b l e .  Each of these 
two effects e v i d e n t l y  c o n t r i b u t e 6  e r r o r s  of on ly  1 t o  2 
ki lometers .  F i n a l l y ,  t h e  l as t  l i n e  i n  Table  4-6 shows t h a t  
t h e  physical  modeling i n  GTDS and t h e  developmental  program 
a r e  c l o s e l y  matched when two-body propagat ion  is used.  The 
60-meter d i f f e r e n c e  p r e s e n t  i n  t h i s  l a s t  comparison is re- 
garded as s u f f i c i e n t l y  small t h a t  it c a n  be neg lec t ed  for 
t h e  purposes  of ea r ly  o r b i t  de t e rmina t ion .  I t  is due t o  
small. systematic d i f f e r e n c e s ,  such  as i n  t h e  v a l u e s  of GM 
and t h e  speed of l i g h t .  

Comparisons f o r  t h e  Brouwer-Lyddane propagator  a re  shown i n  
Table  4-7. The ephemeris d i f f e r e n c e s  l i s ted  there make it 
c l e a r  t h a t  the  previous  50-kilometer e r r o r  is a t t r i b u t a b l e  
mostly t o  e r r O K  i n  t h e  grav i ty  model. Furthermore,  as  w a s  
i n d i c a t e d  by Table  4-7, the  t ransponder  delay c o r r e c t i o n  and 
l igh t - t ime modeling each c o n t r i b u t e s  1 t o  2 k i l o m e t e r s  of 
e r r o r .  The d i f f e r e n c e s  i n  Line  5 i n  Table  4-7 are  not  so 

small as t he  60-meter d i f f e r e n c e s  i n  T a b l e  4-6 because t h e  
GEM9 5x0 model, w i t h  the Cowell p ropagator .  matches t h e  

Brouwer-Lyddane propagator  on ly  approximately:  hence,  t h e  
agreement is t h e r e f o r e  no t  as close i n  t h i s  case. 

I t  should be noted  t ha t  complete s o l u t i o n  loops  g e n e r a l l y  
cannot be computed u s i n g  t h e  Brouwer-Lyddane propagator  
because, as formula ted ,  h i g h - e c c e n t r i c i t y  o r b i t s  cannot  be 

4-15 



31 0 

!3 

Y 
U m 

4 * 
A? 
0 
Q 
U 

7 
W 
W 
0 
u 
U 

A :I d 

4 
*I 
4 
4 
m 
C 
0 

.I4 

& 
3 
A 
0 cn 

R 
c 
0 
d 
e, 
3 
A 

W 
W C C C C  
0 0 0 0 0  

C C C C C  
0 0 0 0 0  

w w w  w 
w w w c w  
0 0 0 0 0  

W 
c c c c w  
0 0 0 0 0  

n n  
r n r n  

L I Y  Y 

4-16 



m a @  r: - I 4  
alc ;da 

G a l  2: 
dL.4 

0 r9u b I V  

Y 
0 

rl I 
a 

w w  2 2 I I w C w C C e  
0 0 0 0 0 0  

Y u 
m 
U 
H 

I 
W 
W 
0 
U 
0 

m 
0 
Ln 

d 
m 

N r l  

m - .  
N 
\o 
CD 

rl 

t - 0  
m r l  
N m  
O N  
. .  

m 
0 
d 

0 

m 
I- 
W 

0 

rl 
rl 
m 

0 

m 
QI 
m 
0 

P P  
m r  
r l m  
0 0  
. .  

e: 
0 
.d 
e, 
1 
d 
0 m 

0 
V 
0 

E 
X 

2 

g 
0 
e, 
0 

m 

k a 
0 
U 
0 

X 

n m 
I 
? 

m 
E-, 
0 
n 

CI 

m 
(P 

? w 
Y 

E 
0 

w 
v 

4 n n  m m 
rl 
L. 

U 
0 
U 
m 
P 
I a 
0 
U a 

2 

T 

m a a 
R 

U al 
3 

U 
(P 

Q) 
e, 

2 
.d 
X 
0 

a a la 
0 
e, 

U 

4-17 



handled. Thus. t h e  two-body s o l u t i o n s  must be computed 
f i r s t :  t h e  Brouwer-Lyddane model is then  used t o  r e f i n e  the  
selected s o l u t i o n  by computing o n l y  t h e  por t ion  of the s o l u -  
t i o n  lo6p from h = 0 to h = 1. A l t e r n a t i v e l y ,  ordinary  
Newton-Raphson i t e r a t i o n s  would a lso  work f o r  r e f  inernent. 
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SECTION 5 - PROTOTYPE ALGORITHM FOR TDRSS EARLY ORBIT 
DETERMINATION 

This section considers construction of a fairly complete, 
automatic early orbit algorithm, based on the homotopy 
method for solving the equations. The algorithm is de- 
scribed in Section 5.1: test results are presented in Sec- 
tion 5.2: and, finally, the Limitations of the algorithm and 
suggestions for improvement are presented in Section 5.3. 

5.1 ALGORITHM DESCRIPTION 

The algorithm requires two range measurements, four addi- 
tional range OK Doppler measurements, and two pairs of an- 
tenna beam angles that coincide in time with the two range 
measurements. The two range-azimuth-elevation triples are 
used to derive a very rough state vector if a rough a priori 
is not available. This rough state vector is subsequently 
used to initiate an attempt to determine a more precise 
orbit that utilizes the range and/or Doppler data. Result- 
ant orbit solutions are screened using the angle data to 
eliminate extraneous solutions. Acceptable solutions are 
refined by computing a partial solution curve, using im- 
proved trajectory and observation models. Thus, the 
algorithm has three stages. 

The algorithm consists of the following steps: 

I Step 1. Select the required tracking measurements. 

Step 2. (Optional) Attempt to determine the orbit by using 
externally supplied a priori estimate(s) of the 
state vector, as follows: 

2.1 Compute solution loop(s) using the a priori 
state vector estimate(s). 

2.2 Screen solutions found on the loop. 
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2 . 3  Ref ine  a n  accepted s o l u t i o n ,  i f  found, u s i n g  
the  Brouwer-Lyddane propagator  and o b s e r v a t i o n  
l i g h t - t i m e  modeling. If a n  acceptable s o l u -  
t i o n  is found, e x i t  t h e  a lgo r i thm.  

Step 3 .  Determine t h e  o r b i t  by us ing  a p r i o r i  s t a t e  v e c t o r  
d e r i v e d  from t h e  two range-az imuth-a l t i tude  meas- 
urement t r i p l e s .  C o r r e c t i o n s  AA, AE are  a t -  
tempted, i n  t u r n ,  u n t i l  acceptable s o l u t i o n s  a re  
found. Th i s  s t e p  proceeds as  fo l lows :  

3.1 Select t h e  t r i a l  v a l u e s  of t h e  antenna beam 
a n g l e  e r r o r s  AA. AE. 

3 . 2  Compute a p a r t i a l  s o l u t i o n  curve from h = 0 t o  
A = 1 u s i n g  t h e  two t r i p l e s  ( p ,  A + &A, E + AE). 
The i n i t i a l  s t a t e  a t  h = 0 can  be any rea-  
sonab le  o r b i t  s t a t e .  

3 . 3  Using t h e  h = 1 s t a t e  from s t e p  3 . 2  as  t h e  

a p r i o r i  estimate and u s i n g  the s i x  range o r  
Doppler  measurements, compute a s o l u t i o n  loop. 

3-.4 Screen  s o l u t i o n s  found on  t h e  loop i n  s t e p  3 . 3 .  

3 . 5  Ref ine  a n  acceptable s o l u t i o n ,  i f  found, u s i n g  
t h e  Brouwer-Lyddane propagator  and o b s e r v a t i o n  
l i g h t - t i m e  modeling. When a n  acceptable so lu -  
t i o n  is found and r e f i n e d ,  e x i t  the  a lgor i thm;  
o the rwise .  go back t o  s t e p  3.1 and repeat t h e  

procedure.  

I n  s t e p  1, a n  au tomat ic  procedure f o r  s e l e c t i n g  the  observa- 
t i o n s  is in tended .  T h i s  procedure should  c o n t a i n  several  
r u l e s  of thumb f o r  making the optimum s e l e c t i o n .  For ex- 
ample,  n e a r - i n t e g r a l  m u l t i p l e s  of one-half a n  o r b i t  revolu-  
t i o n  must be avoided f o r  t h e  spac ing  between t h e  two 
range-az imuth-a l t i tude  t r i p l e s .  I n  the t e s t i n g  t h a t  is re- 
por ted  i n  S e c t i o n  5 . 2 ,  t h i s  s t e p  w a s  omi t ted .  and t h e  
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obse rva t ions  were selected manually. O p t i o n a l l y ,  t h e  au to-  
matic s e l e c t i o n  procedure can i n c l u d e  s imple  tests f o r  d a t a  
v a l i d i t y .  such  as polynomial f i t t i n g  and checking of resid- 
u a l s .  

Ln s t e p  2. a n  a t t e m p t  is made t o  f i n d  t h e  s o l u t i o n  by u s i n g  
avai lable  estimates of t h e  s o l u t i o n .  More than  one such  
estimate can be t r i e d .  I n  p r a c t i c e .  it is expected t h a t  
t h i s  s t e p  w i l l  n e a r l y  always y i e l d  the desired s o l u t i o n ,  
(because good estimates w i l l  be avai lable) .  and t h i s  s t e p  is 
t h e r e f o r e  omitted €rom t h e  t e s t i n g  i n  S e c t i o n  5 .2 .  

Step 3 .  performed if s t e p  2 f a i l s  o r  is bypassed. a t t e m p t s  
t o  get t h e  o r b i t  e n t i r e l y  from t h e  t r a c k i n g  d a t a ,  not u s i n g  
any e x t e r n a l l y  s u p p l i e d  a p r i o r i  estimate. T h i s  s t e p  is 
based on t h e  fac t  t h a t  t h e  a c t u a l  angu la r  p o s i t i o n  of the  

spacecraft must l i e  w i t h i n  a cone of known angu la r  r a d i u s  
( 0 . 8 6  degree f o r  t h e  SSA mode). c e n t e r e d  upon t h e  recorded 
va lues  of t h e  an tenna  beam angles . .  Therefore .  by systemati- 
c a l l y  t r y i n g  v a r i o u s  p o s s i b l e  v a l u e s  of t h e  a n g l e  e r r o r s  (a  
p a i r  of a n g l e  e r r o r s  a t  each of t h e  two o b s e r v a t i o n  times). 
a n  a p r i o r i  s t a t e  w i l l  e v e n t u a l l y  be found t h a t  i s  s u f f i -  
c i e n t l y  c l o s e  t o  t h e  t r u e  s o l u t i o n  so t h a t  bo th  l i e  on the  

same s o l u t i o n  loop  i n  s t e p  3 . 3 .  Thus, w i t h  enough t r i a l s .  
the  s o l u t i o n ,  i f  it e x i s t s .  w i l l  e v e n t u a l l y  be found. I t  is 
t h i s  s e a r c h  yrocedure t h a t  is pr imar i ly  cons idered  i n  Sec- 
t i o n  5.2. 

One p o s s i b l e  g r i d  of t r i a l  v a l u e s  of the beam a n g l e  errors  
is schematically shown i n  F i g u r e  5 - 6 .  The beam r a d i u s ,  
BMLSM, and i n i t i a l  g r i d  spac ing ,  BDEL. a re  parameters .  and 
t h e  same v a l u e s  f o r  these parameters a r e  used a t  each of the 
two o b s e r v a t i o n  times. The f i r s t  a t t e m p t  t o  get  t h e  so lu -  
t i o n  f i x e s  t h e  t r i a l  e r r o r  a t  t h e  times of both t r i p l e s  t o  
t h e  v a l u e  labe l led  by '1' i n  F i g u r e  5-1. The search con- 
t i n u e s  by t r y i n g .  i n  sequence. t h e  v a r i o u s  e r r o r s  a t  t h e  

time of t h e  second t r i p l e .  l e a v i n g  the e r r o r  a t  t h e  f i r s t  
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Figure  5-1. G r i d  P a t t e r n  fo r  Searching for  O r b i t  S o l u t i o n s  
i n  t h e  TDRS Antenna Beam P a t t e r n  
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triple fixed. After the entire grid has been tried unsuc- 
cessfully at the second triple. the error at the first 5,s 

incremented to @ Z ' ,  and looping is again performed at the 
second triple. This process is extended until all possible 
combinations of errors have been tried. If still no solu- 
tion has been found. BDEL is reduced by 5 0  percent and the 
procedure is repeated. omitting previously tried grid 
points. It is not expected that the BDEL reduction pro- 
cedure will ever be used in practice, but it was available 
for testing . 
The solution screening procedure f o r  the range/Doppler solu- 
tions checks the recorded values of the two angle p a i r s  
against those predicted by each particular orbit solution. 
If agreement to within a specified tolerance is found f o r  
all four angles. the solution is accepted. Because of the 
known TDRS orbit-plane symmetry in the set of orbit solu- 
tions (Section 4.1). the symmetric solutions are automati- 
cally generated by the algorithm and considered for 
screening, along with each solution actually computed. Each 
range/Doppler solution l o o p  in either Step 2.1 o r  Step 3 . 3  

is entirely computed before the solutions are passed, in a 
group. to the screening procedure. However, screening of 
each solution immediately after generation would speed up an 
operational version of the algorithm. 

5.2 TEST RESULTS 

5.2.1 TEST PROCERURE 

Four cases were included in Monte Carlo testing of the 
search p a r t  of the algorithm of Section 5.1. These are as 
follows : 

1. Low-fnclination. Circular Orbit 
2. High-Inclination, Circular Orbit 
3 .  Low-Inclination, Elliptical Orbit 
4 .  Landsat-4 (High Inclination, Circular) 
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I n  t h e  f i r s t  three cases, s imula t ed  o b s e r v a t i o n s  were used. 
w h i l e  i n  the f o u r t h  case. a c t u a l  TDRSS t r a c k i n g  da ta  w a s  
used. The o r b i t  e lements  f o r  these c a s e s  and t h e  schedu le  
of selected o b s e r v a t i o n s  a r e  g i v e n  i n  Tables  5-1 and 5-2. 
For the s imula t ed  c a s e s ,  a number of subcases  were con- 
s i d e r e d :  f o u r  f o r  each of t he  c i r c u l a r  cases and twelve €or 
t h e  e l l i p t i c a l  case. I n  these subcases ,  t h e  o r i e n t a t i o n  of 
t h e  o r b i t  w i t h  respect t o  t h e  TDRS was v a r i e d .  f o r  example, 
o r b i t  p l ane  edge-on or face-on t o  t h e  TDRS, t r a c k i n g  a t  ex- 
treme azimuth o r  ze ro  azimuth. and t r a c k i n g  near p e r i g e e  or  
apogee. The r e s u l t s  f o r  these subcases  are  independent ly  
t a b u l a t e d  i n  S e c t i o n  5.2.2. 

For each subcase .  a group of 2 0  Monte Car lo  t r i a l s  was per -  
formed; a d i f f e r e n t  s e t  of azimuth and a l t i t u d e  e r r o r s  were 
added t o  t h e  correct an tenna  beam a n g l e  va lues  i n  each 
t r i a l .  These 20 sets  of e r r o r s  were d e r i v e d  from a random 
number g e n e r a t o r  t h a t  s imula t ed  a r e c t a n g u l a r  p r o b a b i l i t y  
d i s t r i b u t i o n  between -1.0 degree and 1.0 degree. For t h e  

t r i a l s  i n  each of t h e  t h r e e  s imula t ed  cases. the  20 sets of 
a p p l i e d  ang le  e r r o r s  were i d e n t i c a l .  These 20 sets of a n g l e  
e r r o r s  are shown i n  F i g u r e  5-2. Here. t h e  arrow p o i n t s  from 
the e r r o r  a t  0 minutes t o  the  e r r o r  a t  25 minutes .  For t h e  

Landsat-4 case. a s i m i l a r  set  of 20 e r r o r s  was added t o  t h e  
a c t u a l  antenna beam a n g l e  v a l u e s .  Those a r e  s i m i l a r l y  shown 
i n  F i g u r e  5 - 3 .  i n  which the ar row p o i n t s  from the  e r r o r  a t  
13 minutes t o  t h e  e r r o r  a t  97 minutes.  

The parameters  s p e c i f i e d  f o r  t h e  a lgo r i thm t o  be used i n  t h e  

antenna beam s e a r c h  g r i d  were spec i f i ed  a s  fo l lows :  

BMLIM = 1.0 degree  
BDEL = 0.5 degree 

The angu la r  t o l e r a n c e  used f o r  s c r e e n i n g  the  s o l u t i o n s  was 
specif ied as  1.2 degrees  f o r  b o t h  azimuth and a l t i t u d e .  
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Table 5-1. O r b i t  Elements for t h e  Four T e s t  Cases 

Low-Inclination, High-Inclination. 
Circular Circular 

7000 7000 

0.001 0.001 
10 100 
varied varied 
0 0 

varied varied 

1 Low-Inclination 
Elliptical Landsat-4 

12,500 7080 

0.44 0.0006 
10 98.2 
varied 137.4 
varied 189.9 
varied 281.0 

1 
Reference Date: 14h56m on March 14, 1984. 
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T a b l e  5-2. T r a c k i n g  Schedules for t h e  Four T e s t  C a s e s  

a m e s  of Selected Observations (Minutes1 

Relay Relay A2 ilpu t h , 
Test Case Range DODDleE E1,evation 

Low Inclination. 0 
circular1 25 

95 

High Inclination. 0 
Circular1 25 

95 

Low Inclination, 0 
Ellipticall 25 

95 

0 
25 
95 

0 
25 

0 
25 
95 

Land 8 at - 4 0.5  - 
6.5  

13  
97 

102 
107.5 

0 
25 

0 
25 

0 
25 

13 
97 

L Quuedinn white noiee ndded: u(range) = 0.005 km. 
a(Dopp1er) = 0.5 x 10-6 km/sec 
Range bias added: 0.01 km 
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Figure  5-2. Azimuth and E leva t ion  E r r o r  Included i n  t h e  
20 Monte Car lo  T r i a l s  f o r  t h e  Three Simu- 
l a t e d  Test Cases 
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Figure  5-3. Azimuth and E leva t ion  Errors Included i n  t h e  
20 Monte Car lo  T r i a l s  f o r  the Landsat-4 
T e s t  Case 

1 .0 
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The a p r i o r i  e lements  used i n  t h e  range and a n g l e s  s t e p  of 
t h e  a lgo r i thm was t h e  same f o r  a l l  t r i a l s  and is l i s ted  i n  
Table  5-3. The Brouwer-Lyddane ref inement  s t e p  w a s  omi t ted  
i n  t h e  tes t ing .  

5.2.2 RESULTS 

The Monte Car lo  r e s u l t s  f o r  t h e  f o u r  cases a re  summarized i n  
Tables 5-4 through 5-7. Each row i n  a table describes t h e  

outcome of t h e  20 t r i a l s  f o r  each subcase .  For example, i n  
the . f i r s t  subcase  i n  Table  5-4, none of t h e  t r i a l s  f a i l e d  t o  
produce acceptable s o l u t i o n s  ( t h i r d  column), each of the 20 

t r i a l s  yielded t h e  c o r r e c t  s o l u t i o n  among t h e  a c c e p t a b l e  
s o l u t i o n s  (Column 4). 4 t r i a l s  yielded one o r  more e x t r a -  
neous s o l u t i o n s  ( b u t  a c c e p t a b l e  t o  t h e  s c r e e n i n g  procedure)  
(Column 5 ) .  and t h e  number of d i s t i n c t  s o l u t i o n s  found among 
a l l  of t h e  t r i a l s  was 2 (Column 6 ) .  I n  t h e  l a s t  column, t h e  

number of s o l u t i o n  loops tha t  had t o  be c a l c u l a t e d  is i n d i -  
cated. I n  t h e  f i r s t  subcase.  19 t r i a l s  r equ i r ed  on ly  one 
s o l u t i o n  loop, w h i l e  1 t r i a l  r e q u i r e d  c a l c u l a t i o n  of two 
s o l u t i o n  loops befo re  a n  acceptable s o l u t i o n  was l o c a t e d .  

On the whole, the search procedure was s u c c e s s f u l  i n  l o c a t -  
i ng  t h e  c o r r e c t  s o l u t i o n  i n  a l l  bu t  4 of t h e  420 t r i a l s .  I n  
these f o u r  t r i a l s ,  o t h e r  ex t r aneous  ( b u t  accep ted )  s o l u t i o n s  
were found f i r s t ,  t e r m i n a t i n g  t h e  a lgo r i thm.  Presumably. 
had the a l g o r i t h m  cont inued w i t h  t h e  c a l c u l a t i o n  of addi -  

t i o n a l  s o l u t i o n  loops.  t h e  c o r r e c t  s o l u t i o n  a l s o  would have 
been found. 

I n  approximately one-half of t h e  t r i a l s .  t h e  s o l u t i o n  loop  
con ta in ing  t h e  c o r r e c t  s o l u t i o n  a l s o  con ta ined  a n  accepted 
ext raneous  s o l u t i o n .  T h i s ,  a long  w i t h  t h e  f o u r  f a i l u r e s ,  
i n d i c a t e s  t h a t  a t i g h t e r  s o l u t i o n  s c r e e n i n g  procedure is 
requi red .  
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Table 5-3. A Priori Orbit Elements Used f o r  the Range 
and Angles Orbit Determination Step 

Kepler ian 
Element 

A Priori 
Orbit Elements 

8000 

0 IO01 

4 5  

0 

0 

180 
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In two of the trials in Table 5 - 6 ,  more than 50  solution 
loops and about 50 minutes of WAX CPU time were required be- 
fore an accepted solution was found. This much computation 
is not feasible in an early orbit algorithm for operational 
orbit determination. and a modification of the algorithm is 
required to correct this. The problem can probably be cor- 
rected by using a more irregular numbering of the grid points 
in Figure 5-1. so that sequen- tial trials are not close to- 
gether in angular position. 

5 . 3  SUGGESTED IMPROVEMENTS AND COMMENTS 

Consideration of the test results leads to three suggested 
improvements for the early orbit algorithm. These are as 
f 01 lows : 

1. Tighter screening of the solutions is required. To 
do this. it is necessary to use more than the two angle 
pairs. and additional range and Doppler observations should 
probably be used also. Tighter screening would eliminate the 
four trial failures. The use of nearly all of the available 
range/Doppler tracking should be considered to compute a RMS 
weighted residual for screening. Also, additional screening 
for orbital energy, maximum vehicle AV, maximum orbital 
plane change. etc.. should probably also be included. 

2. The order of the applied beam angle errors used in 
the search procedures should be changed. Rather than the 
simple order indicated in Figure 5-1, the order should be 
varied so that significantly different a priori estimates 
will be generated from one attempt to the next. It is ex- 
pected that varying the Order would at least partially 
remedy the two trials that required more than 5 0  solution 
loops. Currently, it does not appear feasible to design a 
'asmartat search procedure (for example, first choosing angle 
errors that significantly vary the mean anomaly), because 
such an approach turns out to be very complicated (from the 
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point of view of working out the equations) to implement in 
such a way that all possibilities are systematically treated. 

3 .  For improvement in efficiency, the screening pro- 
cedure should be applied as each candidate solution is gen- 
erated. In the algorithm tested, screening was deferred 
until all solutions on a loop were collected. However, in 
most cases, the correct solution is the first one encoun- 
tered along the solution loop.  Therefore, immediate screen- 
ing could significantly improve the efficiency of the 
algorithm by eliminating calculation of the remainder of the 
solution loop. 

This algorithm does not address two of the items listed in 
Section 2, namely, early orbit determination for the Space 
Shuttle, for which range tracking is not available, and 
treatment of the ambiguous range observations. 

Unfortunately, an analogous search procedure using two 
Doppler-azimuth-elevation triples will not work, because 
orbit solutions may not exist for any arbitrarily selected 
pair of such triples. This means that the necessary pre- 
liminary solution for each point in the search pattern 
cannot easily be obtained, as was the case for two range- 
azimuth-elevation triples. Therefore, at the current time, 
Space Shuttle early orbit determination would require ex- 
ternally supplied a priori estimates for computing Doppler- 
only solution loops .  

For the problem of the redetermination of range ambiguity 
numbers, this study included attempts to derive equations of 
consistency, so that the ambiguity numbers could be derived 
directly from the tracking data using numerical time deriva- 
tives of the Doppler data. These attempts were unsuccess- 
ful, so that, at present, the only way to get the ambiguity 
numbers is with the standard algorithm, which requires an 
orbit state vector. In an operational program, it might 
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prove useful to allow overrides to increment or decrement 
these numbers in a manually controlled search. Alterna- 
tively, a simple software default strategy could be provided 
to do a limited ambiguity number search, to avoid a person 
in the loop. 

Automatic looping over various ambiguity numbers must be used 
with caution in an operational program because failure of the 
algorithm to get a solution may be due to factors other than 
incorrect ambiguity numbers, namely. bad observations o r  in- 
sufficient tracking. 
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- SECTION 6 - PRELlMXNARY STUDIES OF EXTENSIONS OF THE: 
- BASXC HOMOTOPY METHOD 

This section considers two generalizations of the method 
expiessed by Equations ( 3 - 3 ) .  Section 6.1 contains the 
weighted least-squares formulation corresponding to Equa- 
tions 3 . 3 ,  a simple example, and a general description of 
test results. Section 6.2 considers a generalization of the 
basic homotopy method to include additional paths leading 
from one disjoint solution loop to another. This generali- 
zation is expected to permit the determination of the orbit 
solutions beginning with any arbitrary a priori estimate. 

6.1 LEAST-SQUARES ORBIT DETERMINATION 

6.1.1 FORMULATION 

The weighted least-squares method is applied, assuming that 
the M measurement errors, having assigned standard devia- 
tions, 0 is 

The possible Bayesian term is not included here, but is 
straightforward. With these assumptions, the solution 
states x satisfy the equations 

..., is are completely uncorrelated. M' 1" 2" 

1 

L 

while the a priori estimate. by definition, satisfies 
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and, therefore, also satisfies 

The introduction of the homotopy parameter h in the same 
way as in the six-observation formulation (Section 3.1) 
leads to the following equations, which correspond to Equa- 

tions ( 3 - 3 ) :  

i = 1, ..., 6 

A least-squares formulation has two main benefits for early 
orbit determination: 

0 The effects of high-frequency measurement and model 
errors are averaged out in a better way than in 
six-observation orbit determination. 

0 The possibility of an addition of a Bayesian term 
allows inclusion of a priori knowledge or con- 
straints for the orbit. This capability can be 
useful when very little tracking is available. 
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6.1.2 SIMPLE EXAMPLE 

Using Equation (6-1) in-the case of one observation in the 
example of Section 3.3. the solution curve corresponding to 
the one specified by Equation (3-20) is 

This equation is satisfied when either one or both of the 
main factors is equal to zero. As in Section 3.3., the 
first factor is zero on the ellipse given by Equa- 
tion (3-20). The second factor is zero on the straight line 
x = 0. Thus. the solution curve has two intersecting com- 
ponents. as shown by Figure 6-1. The two components in- 
tersect at two points, called bifurcation points. At these 
two points only, both factors in Equation (6-4) are equal to 
zero. 

The existence of these bifurcation points will cause a dif- 
ficulty in the curve-following algorithm of Section 3 . 5 .  At 
the two such points in Figure 6-1. the 2x2 matrix that cor- 
responds to the 7x7 matrix on the lefthand side of Equa- 
tion (3-36) becomes singular, and the Newton-Raphson 
corrector does not converge quickly near these points. 
Thus. the current numerical algorithm cannot follow a solu- 
tion curve through a bifurcation point. A more sophisti- 
cated algorithm is required. One approach might be to patch 
in an analytic solution in a small region that includes the 
bifurcation point, introducing three new branches, each to 
be subsequently followed. 
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Figure  6-1. S o l u t i o n  Curve for t h e  One-Dimensional Ex- 
ample of the  Homotopy Method Using t h e  
Least-Squares Formulat ion 
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Reference 8 i n d i c a t e s  t h a t  a second approach, u s i n g  a l o c a l  
p e r t u r b a t i o n  t o  remove the b i f u r c a t i o n  p o i n t  may be work- 
able, but  t h i s  has y e t  t o  be tested i n  the o r b i t  determina-  
t i o n  problem, 

6.1.3 DESCRIPTION OF TEST RESULTS 

The p i c t u r e  o u t l i n e d  above is c o n s i s t e n t  w i t h  t he  r e su l t s  of 
t e s t i n g  i n  s imula t ed  TDRSS o r b i t  de t e rmina t ion .  With pure  
range and/or  Doppler t r a c k i n g ,  it was found t h a t  a complete 
s o l u t i o n  loop cou ld  no t  be fo l lowed i n  any case ;  a t  some 
po in t  a long  t h e  curve.  t h e  m a t r i x  f o r  t h e  Newton-Raphson 
c o r r e c t o r  became s i n g u l a r ,  and the  cu rve  could n o t  be f o l -  
lowed beyond t h i s  p o i n t .  Such p o i n t s  always occurred  a t  
extrema i n  A, (The curve- fo l lowing  a l g o r i t h m  responds t o  
the s i n g u l a r i t y  by t a k i n g  s m a l l e r  and s m a l l e r  steps, which 
soon f o r c e s  t e r m i n a t i o n . )  In some c a s e s ,  a b i f u r c a t i o n  
poin t  was encountered be fo re  any s o l u t i o n  s t a t e  was 
reached. In o t h e r  cases, one or  more s o l u t i o n  states were 
reached be fo re  a b i f u r c a t i o n  p a i n t .  

Because of the  complexi ty  in t roduced  by the e x i s t e n c e  of t h e  

b i f u r c a t i o n  p o i n t s ,  f u r t h e r  work on t h e  l e a s t - s q u a r e s  method 
was d i s c o n t i n u e d ;  such  a d d i t i o n a l  s t u d y  would be more appro- 
p r i a t e  a f t e r  a thorough unders tanding  of t h e  s i x - o b s e r v a t i o n  
case  has been achieved. 

6.2 ZUIETHOD FOR SYSTEMATIC CALCULATION OF D I S J O I N T  SOLUTION 
LOOPS 

I n  t h i s  s e c t i o n .  on ly  pure range and/or  Doppler o r b i t  deter- 
minat ion is cons idered .  As i n d i c a t e d  p r e v i o u s l y ,  when t h e  
a p r i o r i  estimate is f a r  from t h e  desired s o l u t i o n  s t a t e ,  
the  two states may l i e  on d i s j o i n t  components of t h e  solu- 
t i o n  curve.  Because of t h f s ,  t h e  basic a l g o r i t h m  of See- 
t i o n  3 may no t  succeed.  I n  t h i s  s e c t i o n .  a g e n e r a l i z a t i o n  
of the f o r m u l a t i o n ,  which overcomes t h e  nonconnectedness 
p rope r ty  of t h e  loops ,  is described. T h i s  f o r m u l a t i o n  
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produces a solution curve that consists of a network of 
loops, in a 12-dimensional (h -h 2...-X6- x)-space, 
among them the two disjoint loops containing the a priori 
estimate and the desired solution state. Loops of various 
illevelsii in this network lie in various projections to 
lower dimension subspaces of the (h -h ...- h - x)-space. 
Loops of neighboring levels intersect and form a connected 
network of loops that may be individually followed in turn, 
using a straightforward generalization of the numerical 
method of Section 3 . 5 .  This technique enables the solution 
state to be reached, beginning with any a priori estimate 
(though at an increased computational cost for poor esti- 
mates). 

a 

1 2  6 

The basis f o r  the generalization, the five-dimensional sub- 
space of six-dimensional orbit state space that is here 
called the "critical hypersurface,ii is described in Sec- 
tion 6.2.1. Simple, numerical experiments verifying that 
connections between disjoint solution loops can be accom- 
plished by paths consisting exclusively of states lying on 
the critical hypersurface are indicated in Section 6 . 2 . 2 .  

Results from a two-level algorithm are summarized in Sec- 
tion 6.2.3. In a two-level algorithm, two distinct types of 
solution loops are calculated: (1) ordinary loops in 
(Il- x) space, as defined in Equations (3-3); and (2) loops 
in a (h - hZ-x) space, which consist (in the x-component) 
only of states on the critical hypersurface that satisfy 
Equations (3-3). For these latter loops, the image of the 
loop in six-dimensional observation space lies in a plane 
rather than on a straight line. Although it was not coded 
and tested in this study, the full generalization to the 
six-level algorithm is described in Section 6.2.4 for future 
reference. 

A 

1 
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6.2.1 THE CRITICAL HYPERSURFACE AND CRITICAL POINTS 

aci 
ax det - 

j 

Generally. six given range and/or Doppler measurements de- 
termine the six components of the orbit state. Considering 
six-dimensional observation (measurement) space. which has 
six coordinate axes representing the values of the six meas- 
urements in a fixed tracking schedule. it is readily ap- 
parent that points exist in the observation space that 
cannot be produced by any orbit state. The five-dimensional 
boundary between the regions of possible and impossible ob- 
servation sets is the image of a f ive-dimensional hypersur- 
face in x-space. Here, this hypeKSUrfaCe will be called the 
critical hypersurface (see Figure 6 - 2 ) .  It will be assumed 
that this surface is smooth almost everywhere. and that it 
is connected for nearly all range and/or Doppler orbit deter- 
mination problems. This assumption remains to be proven in 
future study. 

= o  (6-5) 
2 on critical hypersurface 

As suggested by Figure 6-2, a given observation set can be 
realized by more than one point in orbit state space. Thus, 
at the boundary between possible and impossible observation 
sets, the region "folds overi8 onto itself, so 
that "layersh8 are superimposed. (Of course. these "layerss8 
are six dimensional: the six-dimensional generalization of 
Figure 6-2 cannot be visualized.) As the boundary of the 
ttpossiblets region is reached, the number of orbit states 
that can realize the ObSeKVatiOn set is reduced as multiple 
states cqalesce at the critical hypersurface. On the cri- 
tical hypersurface. the six-observation orbit determination 
problem is ill-conditioned, that is. the observation par- 
tials aiatrix is singular 

6-7  



N 
I 

ID 

a, 
k 
3 
b-l 
-rl 
F 

N 

a, 

w 
k 

k 
a, a 
3.1 x 

8 
z 

6-8 



Equivalently, the six vectors aC./&?" i = 1, . . . 6 become 
linearly dependent. 

I 

Equation ( 6 - 5 )  provides one constraint in x-space, leading 
t o  a five-dimensional hypersurface. Equation ( 6 - 5 )  speci- 
fies that the observation partials matrix should have rank 5 

or  le%% on t h i o  hypersurface. Lower-dimensional subspaces 
can be further defined by requiring that the observation 
partials matrix should have rank 4 .  rank 3 .  etc. In the 
observation space picture, this means that there is a 
"folded fold." a Itfolded, folded fold," etc., each addi- 
tional folding leading to a subspace of dimension that is 
smaller by 1. 

Next. critical points on solution loops are defined. Equa- 
tion ( 3 - 3 )  specifies that the solution curve image in obser- 
vation space should trace out a straight line. Points where 
this line intersects the region between possible and impos- 
sible observation sets have corresponding orbit states that 
lie on the critical hypersurface. Proceeding along the 
solution loop in h-? space, as the corresponding orbit 
state passes through a point on the critical hypersurface, 
the observation space image of the orbit state turns back 
onto another t'layer." retracing previous observation sets as 

h varies. Thus, at the turning points of the loop in 
h-2 space, that is, the points where 

= o  - dh 
ds 

the z-component of this point is on the critical hypersur- 
face. These turning points are called critical points. The 
equivalent condition, that the determinant of the observa- 
tions partials matrix vanish at the turning points, can also 
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be obtained by considering the rate of change of the left- 
hand sides of Equation (3-3) along a solution loop: 

ds [O; + .(.t - 0;)- Ci"3= 0 ,  i = 1, .- . ,  6 

or 

At a point such that dh/ds = 0, the matrix aCi/ax. must be 
singular . 3 

6.2.2 CONNECTION OF DISJOINT SOLUTION LOOPS USING CRITICAL 
SURFACE PATHS 

The idea that paths of orbit states on the critical surface 
can connect a critical point on one solution loop with a 
critical point on another disjoint solution loop arises from 
the property of continuity. In a sequence of orbit deter- 
mination problems in which (only) the a priori estimate is 
changed continuously, so as to cause a loop to pinch o f f  as 
in Figure 3.2, it is reasonable to expect that the two cor- 
responding critical points, forming at the pinch-off point, 
smoothly move apart as the a priori estimate smoothly 
changes. Abrupt jumps in the shapes of the disjoint loops 
are not expected. Under this assumption, there will be a 
path of critical points that leads from one critical point 
on one loop to the critical point on the other. Pinched-off 
loops and a connecting path are schematically illustrated by 
Figure 6-3. 

The connection on the critical hypersurface was numerically 
tested in a number of cases that had (mildly) disjoint 
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ORBIT STATE SPACE 

f 

I 

F i g u r e  6-3. Schematic Diagram Showing Pinched-Off Solution 
Loops and a Connecting Pa th  on t h e  Cr i t ica l  
Hypersurf ace 
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solution loops. An interactive computer program was written 
so that paths of small steps on the critical hypersurface 
could be constructed. Given five coordinates on the hyper- 
surface (any five of x, y, z .  ?, +, 2) the program solved 
for the sixth, using the Newton-Raphson iteration on Equa- 
tion ( 6 - 5 ) .  The interactive user could, with this program, 
try to construct a sequence of small steps leading from the 
known critical point on one solution loop to a known cri- 
tical point on another loop. 

Using this program, it was empirically verified that such 
continuous paths could indeed be constructed, though the 
paths sometimes had to be deviously curved. This result, 
that the critical hypersurface is connected, is the basis 
for the algorithms of Sections 6.2.3 and 6.2.4. 

6.2.3 TWO-LEVEL ALGORITHM 

To get around the indentation in the region of possible ob- 
servation sets in Figure 6-3, the homotopy path must deviate 
from the straight line path that is indicated there. In the 
two-level algorithm, the connecting path is allowed to move 
freely in a plane in observation space. The observation 
sets in this plane are labeled by two parameters. h and 

h2. The additional degree of freedom is cancelled by 
the constraint that the orbit state must lie on the critical 
hypersurface, so that the equations still define a curve. 
Thus, the two-level algorithm is based on the following two 
sets of equations: 

1 

- Level 1 LOOPS 

h2 = 0 
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Level 2 Loops 

0 
Oi + Al(.: - o;) i. = 0, i = 1, . . . a  6 

( 6 - 8 )  

Level 1 loops are exactly those defined by Equations ( 3 - 3 )  

except that h has been renamed h,. Level 2 loops are 
L 

defined in an eight-dimensional (h -h -<)-space and 
the determinant condition forces the orbit states of level 2 
loops to lie on the critical hypersurface. Level 1 loops 
can be consideced to lie in the h = 0 hypersurface of 

2 0 the eight-dimensional (Al-X2-%)-space. The term Oi - Oi 
is the i-th component of a vector in observation space that 

1 2  

2 

is chosen to be linearly independent of the vector with 
1 0 components Oi - Oi , i = 1. .... 6 .  The two six-dimensional 

vectors (z2 - -8') and (5' - 3') define the plane of the 
homotopy path. 
chosen: one method is to choose a second a priori estimate, 
x , and then set 

The observations 0; may be arbitrarily 

-2 

2 -2 Oi = Ci(x 1 ,  i = 1, .... 6 (6-9) 

The computational procedure for the two-level algorithm is 
as follows: 

Step 1: Compute the first level 1 loop. beginning with 
the a priori estimatez' and using Equations ( 6 - 7 ) .  

Save all critical points found on the loop. 
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Step 2: Beginning w i t h  each c r i t i c a l  p o i n t  from S t e p  
and beginning a t  X2 = 0. c a l c u l a t e  a l l  corresponding.  
d i s t i n c t  level 2 loops .  Save a l l  c r i t i c a l  p o i n t s  on 
these loops  (de f ined  by X2 = 0 ) .  

a re  c a l c u l a t e d  from Equat ions  ( 6 - 8 ) .  

The level 2 loops 

1. 

Step  3 :  If new c r i t i c a l  p o i n t s  are  found on t h e  level 2 
loops of S t e p  2. t hen  c a l c u l a t e  t h e  cor responding ,  d i s -  

t i n c t  level 1 loops beginning a t  these c r i t i c a l  p o i n t s .  

S t e p  4: I t e r a t i v e l y  repeat S teps  2 and 3 u n t i l  each 
c r i t i c a l  p o i n t  on a level 1 loop is matched w i t h  a co r -  
responding c r i t i c a l  p o i n t  on a level  2 loop. 

Of course ,  a l l  s o l u t i o n  s t a t e s  a t  h = 1 are  c o l l e c t e d  dur-  
ing  c a l c u l a t i o n  of t he  level 1 loops. 

The computa t iona l  procedure is a u t o m a t i c a l l y  guided by con- 
s t r u c t i o n  of a c r i t i c a l - p o i n t  table .  Each c r i t i c a l  p o i n t  
f o r  each loop is added t o  t h e  tab le  as each a d d i t i o n a l  
l e v e l  1 O K  level 2 loop is completed. P o i n t e r s  i n  t h e  table  

i n d i c a t e  whether a g iven  c r i t i c a l  p o i n t  on a level 1 loop  is 
matched by a cor responding  c r i t i c a l  p o i n t  on a l eve l  2 l oop  
o r  vice versa .  O K  whether a g iven  c r i t i c a l  p o i n t  is un- 
matched. If t h e  p o i n t e r s  i n d i c a t e  a n  unmatched c r i t i c a l  
po in t ,  t h e  a p p r o p r i a t e  loop c a l c u l a t i o n  is i n i t i a t e d .  The 

table is checked and updated a f t e r  each loop  c a l c u l a t i o n  un- 
t il  a l l  c r i t i c a l  p o i n t s  a r e  matched. The network of level 1 
and level  2 l o o p s  is t h e n  complete.  

Two examples. A and B, are  s c h e m a t i c a l l y  i l l u s t r a t e d  by Fig- 

u r e s  6-4 and 6-5. The schedule  of s imula t ed  t r a c k i n g  
( s i n g l e  TDRS),  t h e  a p r i o r i  e s t i m a t e s ,  and the  measurement 
e r rors  f o r  these two examples a r e  l i s ted  i n  Tab le  6-1. Ex- 
ample A has three level 1 loops and three level  2 loops.  
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0 cRmw POINT 
SOLUTION STATE - LEVEL 1 LOOP 

LEUEL 2 LOOP --- 

Figure 6-4. Schematic Diagram of the Solution Curve Network 
fo r  Example A (Two-Level Algorithm) 
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0 CRITICAL POINT 

X SOLUTION STATE - LEVEL 1 LOOP 

---- LEVEL 2 LOOP 

F i g u r e  6-5. Schematic Diagram of t h e  S o l u t i o n  Curve 
N e t w o r k  f o r  Example B (Two-Level A l -  
gor i thm) 
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Table 6-1. Truth and A Priori Estimates, Tracking Schedule, and 
Measurement Errors for Examples A and B 

Truth 
State 

7000 

0.001 
100 
55 

0 

- 10 

Example A 

A Priori A Priori 
Estimate 1 Estimate 2 

8000 0000 

0 .02  0.02 

6 5  65 

0 0 

0 0 

0 30 

Truth 
State 

7000 

0.001 
100 
55  

0 

- 100 

Example B 
A Priori A Priori 

Estimate 1 Estimate 2 

LO, 000 10,000 
0 .02  0 .02  

65 65 

0 0 

0 0 

0 30 

Examples A and B 

Tracking Schedule: Three Range-Doppler pairs at T = 0. 25. 95 minutes 

Measurement Errors: a(Range) = 5 x 10-4 kilometers 
U(D0ppleK) 
Bias (Range) = 0.01 kilometers 

= 5 x 10-7 kilometers per second 
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connected through eight critical points. There are four 
solution states on one of the level 1 loops. Example B has 
five level 1 loops and three level 2 loops, connected 
through 16 critical points. Eight solution states are found 
on two level 1 loops. In each of these examples, the 
a priori state and the solution states lie on disjoint 
level 1 loops. Example A is typical of the complexity of 
the two-level networks encountered during testing; Example B 
is more complex than usual. 

6.2.4 SIX-LEVEL ALGORITHM 

The two-level algorithm can fail; that is, for some a priori 
estimates, the desired level 1 loop was not found in the 
computed network. For the method to be fully generalized, 
the homotopy path must be allowed to lie in a six-dimensional 
space, rather than only in some two-dimensional subspace. 
The six-level algorithm is constructed to accomplish this. 
Although the six-level algorithm was not tested in this 
study, it is briefly formulated here to indicate a starting 
point for future work. 

The six-level algorithm includes the calculation of solution 
loops in (h -‘A ...- h -)$-space and in various lower- 
dimensional spaces. The hierarchy of loops and critical 
points is listed in Table 6-2. The loops of neighboring 
levels are connected at critical points of appropriate 
type. The critical points discussed for the two-level al- 
gorithm are, specifically, the level l critical points in 
Table 6-2. They are identified on level 1 loops as points 
that satisfy either 

1 2  6 

det [:] = 0 (6-10) 
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o r ,  e q u i v a l e n t l y .  

- -  - 0  dhl 
ds  (6-11)  

and they  a re  i d e n t i f i e d  on level  2 loops by 

?b2 = 0 (6-12) 

More g e n e r a l l y ,  l e v e l  n c r i t i c a l  p o i n t s  a r e  i d e n t i f i e d  on 
l e v e l  n loops as  t h e  p o i n t s  t h a t  s a t i s f y  either 

s, = 0 (6 -13)  

or, e q u i v a l e n t l y ,  

= o  dhl--- - dh2 - -  d'kn 
ds  d s  d s  - ... - (6-14)  

and they a r e  i d e n t i f i e d  on leve l  n + l  l oops  by 

= o  (6-15) 'n+ 1 

The symbol Sn deno tes  the sum of a l l  of t h e  n-rowed p r i n -  
c i p a l  minors of t h e  o b s e r v a t i o n s  p a r t i a l s  ma t r ix .  Thus, f o r  
example, SI is t h e  t race  of t h a t  ma t r ix  and S6 is 
t h e  de te rminan t .  
a c t e r i s t i c  polynomial,  P(q). of t h e  o b s e r v a t i o n s  p a r t i a l s  
ma t r ix  (see Reference  11). 

The S;Ls a re  t h e  c o e f f i c i e n t s  i n  the char- 

6 

(6-16)  

k = l  
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and the characteristic values q n = 1, ..., 6 are the 
six roots of 

n* 

P(rl)  = 0 (6-17) 

The observations partials matrix has rank 6-m (0 5 m 5 6) 

if and only if m of the eigenvalues are zero, and this happens 
if and only if s6 = S5 = ... - - S6-m+1 = 0, with S6-m f 0. 

Finally, the equations for the loops  of each level are 
given. They are  

Level 1: 

--z 
i = 1, ..., 6 

Oi 0 + A,(.: - 0;) - Ci(x) = 0 

(6-18) 
h i = o  i = 2, ..., 6 

Level n (I < n 6 ) :  

n 
00 1 + - 0;) - Ci(x) = 0, i = 1. ..., 6 

k=l \ / 

= 0, j = 2, ..., n 
8-  j S 

(6-19) 

A = 0, i = n + 1, n + 2, ..., 6 
i 

The middle equation guarantees that (most of) the orbit 
states on a loop of level n are such that the observation 
partials matrix has rank 7-n, in accordance with the 
hierarchy listed in Table 6-2. In Equation (6-19). care 
must be taken that the vectors 0 - 0 , k = 1. .... 6 span a -zk -0 

six-dimensional space. The computational procedure fop: the 
six-level algorithm would be a direct extension of the 
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procedure for the two-level algorithm. The critical point 
table, however, must be enhanced to include five types of 
critical points, and, correspondingly. five types of 
pointers to indicate critical point matching. 

6 . 2 . 5  ASSESSMENT 

Although the two-level algorithm verifies the technique and 
the six-level algorithm is expected to provide an exhaus- 
tive, systematic algorithm for finding all of the solutions, 
regardless of the a priori estimate, the technique requires 
some further. though routine, work before consideration for 
operational implementation. The reason is efficiency. Each 
critical surface loop currently requires about 10 times as 
much CPU time as does an ordinary loop. This is because of 
the need for partial derivatives of the observation partials 
determinants in Equation (6-19). These are needed in the 
corrector part of the curve-following algorithm. In this 
pilot study. the determinant was simply evaluated at seven 
points, and its partial derivatives were obtained from 
numerical differences. This is easy but inefficient. since 
it should be much faster to use closed-form two-body 
second-order partial derivatives and then to explicitly com- 
pute the partial derivatives of the determinant. Also. the 
numerical differencing method probably slowed corrector con- 
vergence (leading to small steps) through nonoptituum choice 
of the differencing intervals. 

The efficiency problem should be addressed through construc- 
tion of a subroutine for analytic calculation of the two- 
body second-order partial derivatives. It is expected that 
the necessary formulation already exists in the literature; 
only a careful implementation of it should be required. 

6-22 



SECTION 7 - CONCLUSION 

7.1 SUMMARY 

TDRSS early orbit determination requires finding orbit solu- 
tions with range and/or Doppler data alone, since TDRS an- 
tenna pointing angles, which are simply open-loop pointing 
angles, are not sufficiently accurate. Given six range 
and/or Doppler ObSeKVatiOnS, the homotopy continuation 
method. as formulated here. derives the solution by mathe- 
matically defining a smooth, continuous curve that extends 
€ram the a priori estimate to the solution in a specially 
defined seven-dimensional space. This solution curve will 
generally pass through a number of other solutions before 
returning to the a priori estimate. A numerical algorithm, 
described in detail in Section 3.5. was developed that al- 
lows a computer program to systematically follow such a 
solution curve completely around the loop, collecting the 
orbit solutions along the way. 

The accuracy of this method is limited solely by the ac- 
curacy of the tracking data and physical models selected. 
Two-body dynamics and geometric range and Doppler modeling 
yielded one-revolution accuracies of about 5 0  kilometers f o r  
Landsat-4. Use of a Brouwer-Lyddane propagator and observa- 
tion light time modeling was able to re€ine these solutions 
to an accuracy of about 2 kilometers. Thus, the homotopy 
continuation method has the flexibility to permit the use of 
physical models of increasing accuracy. 

CPU time requirements for the method are fast enough to per- 
mit operational use. In the developmental program on the 
VAX 11/780 computer, a typical solution loop required 0 . 5  to 
2 minutes for its computation. The accuracy refinement 
stage, if invoked, requires about the same time. An opera- 
tional version of this program would contain improvements 
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for significantly faster operation. Thus, the method is 
fast enough for online use in orbit operations. 

A prototype automatic early orbit algorithm was devised and 
its critical features were tested. This algorithm develops 
preliminary orbit estimates from the TDRS antenna pointing 
angles. followed by orbit solutions derived from the precise 
range and Doppler tracking. In testing, this algorithm ob- 
tained the correct solution in all but 4 of 420 Monte Carlo 
trials. The four failures resulted from premature termina- 
tion of the algorithm after finding one or more extraneous 
solutions that also satisfied the acceptance criteria speci- 
fied. This deficiency can be corrected through the use of 
more stringent acceptance criteria, for example. additional 
checking of tracking observations, antenna pointing angles 

’ and grass orbital parameters. 

This study has not considered in detail the question of how 
much TDRSS range/DOppleK tracking is necessary to determine 
an orbit with sufficient accuracy. This question is essen- 
tially independent of the method used to find an orbit solu- 
tion for specified tracking. and can be handled by standard 
error analysis techniques. However, the results obtained 
f o r  Landsat-4 do indicate that, for a low-altitude satel- 
Lite. 15 minutes is too little tracking (using only one 
TDRS), while one orbital period is sufficient. Unfortu- 
nately. intermediate amounts of Landsat-4 TDRSS tracking 
were not available, so that further examination of this 
question must be left for future work. 

7 . 2  SUGGESTIONS FOR FURTHER DEVELOPMENT 

7.2.1 EXTENDE~ HOMOTOPY CONTINUATION METHOD 

he only significant problem inherent in the basic homotopy 
od. as formulated in Section 2, is that, if the a priori 

state is v e r ~  different from the solution state, the two 
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states may lie on disjoint solution loops, making it impos- 
sible to reach the solution in a straightforward way. In 
the prototype early orbit algorithm, this problem was 
avoided by deriving sufficiently good a priori estimates 
from the antenna pointing angles. Nevertheless, in other 
applications. it may be useful to have an algorithm that 
will work from any a priori estimate. An algorithm that is 
believed to have this property was devised and described in 
Section 6.2. By suitable generalization, this extended al- 
gorithm defines and computes a connected network of loops, 
enabling the numerical algorithm to reach solution loops 
that are disjoint in the basic formulation. 

Further development should include testing of the full six- 
level algorithm (only a limited two-level version was test- 
ing in this study) to determine if it is truly global and 
exhaustive as expected. Development of a global and exhaus- 
tive algorithm f o r  the range/Doppler problem can be signifi- 
cant f o r  orbit determination in general because it could 
eliminate the need to collect antenna pointing measurements. 
shifting the burden to the computer. and thus simplifying 
the overall system. Furthermore. such an algorithm could 
perform early orbit determination in systems with very broad 
antenna beam patterns. 

7.2.2 LEAST-SQUARES ORBIT DETERMINATION 

Use of the least-squares method for early orbit determina- 
tion has two principal advantages over a six-observation 
method. First. a least-squares method will reduce the sen- 
sitivity of the solution to high-frequency noise in the 
tracking data. Second, the addition of a Bayesian term in 
the formulation permits a priori knowledge of orbit param- 
eters to be included in the solution, which allows valid 
solutions with smaller amounts of tracking. 
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The negative feature of a least-squares method is that more 
extraneous solutions may be introduced because of the mathe- 
matical nature of the least-squares formulation. 

In a homotopy formulation, least-squares orbit determination 
leads to solution curves that are more complex than the 
simple loops of the six-observation problem. These complex 
curves contain bifurcation points at which several curve 
components are joined together. The numerical algorithm 
used in this work €or following solution curves stalls at 
these bifurcation points, and, thus, the least-squares 
method could not be systematically studied at the present 
time. 

For future work, three methods for handling the bifurcation 
points might be studied. One method would use an analytical 
patch for describing the solution curve near such a point 
and would use the current numerical algorithm on the regular 
pact of the curve. Another approach is to abandon the cur- 
rent numerical algorithm and use a simplicial method to fol- 
low the curve (Reference 4). A simplicial method constructs 
a 88triangulation" network to enclose the curve and to pro- 
ceed along it. Some simplicial methods may be capable of 
proceeding through the bifurcation points without diffi- 
culty. Furthermore, a simplicial method may be useful in 
addressing the efficiency problem in the enhanced (six- 
level) continuation method, since the higher-order deriva- 
tives would not be required. Finally, the third approach 
for study is the method of George (Reference 8 )  for locally 
perturbing the problem so that the bifurcation temporarily 
disappears. Development of the capability for an autonomous 
computer program to systematically handle the bifurcation 
points on a solution curve would provide a major, signifi- 
cant step in the development of the homotopy method, con- 
siderably enlarging its domain of applicability. 
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