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ABSTRACT

A mathematical equation 1s presented which gives a quantitative

relationship between time-voltage discharge curves, when a cell's ampere-hour

capacity 1s determined at a constant discharge current. In particular the

equation quantifies the Initial exponential voltage decay; the rate of voltage

^ decay; the overall voltage shift of the curve and the total capacity of the
CO

uj cell at the given discharge current. The results of 12 nickel-hydrogen boiler

plate cells cycled to 80 percent depth-of-d1scharge (DOD) are discussed 1n

association with these equations.

INTRODUCTION

The shape of a cell's discharge determination (100 percent DOD) 1s the

result of complex Interactions of several rate limiting processes. These

processes may be physical or chemical 1n nature and changeable during the life

of the cell. The anode, cathode or electrolyte phase may be responsible

Individually or 1n combination for the shape of the cell's discharge curve.

Although specific tests have been designed to Illuddate certain Isolated

characteristic of the discharge curve, the customary practice of displaying

complete discharge curves 1s still used to show changes 1n cell behavior

during life and differences between cells.

The changes associated with discharge curves give Insight to the

electrochemlst as to the gross properties of the cell. However; when many

cells are being Investigated the data processing and trend analysis procedure

become unmanageable without the use of mathematical techniques. By the use of

an equation that describes the various characteristics of.the discharge shape



It 1s possible to assign definitive attributes to the discharge curve. This

then reduces the amount of Information to be assimilated to a manageable

amount. This Information now being 1n numerical form allows the use of other

mathematical procedures to further Illuddate the changes 1n the curves.

Two related mathematical equations are used to compare changes occurring

during cycling as well as differences between cells for 12 nickel-hydrogen

cells. The numerical values from the equations are further analyzed with

respect to cycle life.

EXPERIMENTAL DATA

Nineteen nickel-hydrogen boiler plate cells were constructed and life

cycled by Hughes Research Laboratories (Ref. 1). These cells were constructed

from nickel plaque having three different bend strengths and three different

pore sizes. Nickel electrodes were prepared from these plaques having three

different loadings of active material. Table I shows the cell number and Its

respective design characteristics. Initial performance tests Included 12

consecutive capacity measurements to characterize the cells. To facilitate

experimental cycling the cells were divided Into three rated capacity groups

of 2.7, 3.0, and 3.3 A-hr. This grouping allowed for cycling all cells using

a constant time for charge and discharge with three different currents,

dependent upon the rated capacity.

The cells were life cycled at 23 °C to 80 percent depth-of-d1scharge (DOD)

of the rated capacities using a 45 m1n cycle regime. The cycling regime

consisted of a 2.74 C rate discharge for 17.5 m1n and a 1.92 C rate charge for

27.5 m1n. Thus, as near as possible normalizing the test conditions. The life

cycling regime was Interrupted periodically for capacity measurements after

approximately every 1600 cycles. Capacity measurement data at cycles 1700,

3100, 5000, and 6100 were available as strip chart recordings of voltage-time

curves for the 1.37 C discharge rate. The data was transformed Into numerical
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voltage-time points by digitizing the strip chart using a Hewlett-Packard 9111A

'-'Graphics Tablet. The accuracy of this process was found to be ±2 mV and

. ±0.1 mln. This results 1n a maximum uncertainty of ±0.002 A-hr.

The conversion from voltage-time to voltage-DOD was performed so as to

further normalize the variation 1n cell capacity. The pre-cycl1ng capacity at

1.37 C rate discharge was used 1n this normalization process since the test

data was also at the 1.37 C rate. Equation (1) describe the conversion.

_ (time (m1n) * current (A))
DOD = 60 m1n/hr * cap @ 1.37 C (A-hr) U)

EQUATION

It was found (Ref. 2) that Eq. (2) describes the typical s-shaped

discharge profile

E -K - oiler *Ln [̂ m] * Ao * Exp(-Ai *DOD) (2)

where

X DOD/A

A Capacity of the cell at the specified discharge conditions (DOD)

Ln(C) 1s proportional to the slope of the discharge curve (volts"

Afi Maximum height of the voltage drop at the start of discharge (volts).

A, the voltage drop duration at the start of discharge (DOD~ )

K Intercept of the voltage plateau with the voltage axis taken at

DOD = Exp(-l) (volts)

These relationships are shown 1n F1g. 1.

Equation (2) can be expanded to describe the discharge profile of a two

plateau curve as shown 1n Eq. (3).

E = * - 7T77T- * Ln T ̂ 1?])] + *0 *
 Exp ("A1 * DOD)

/ DOD-A\
VA'-A I

-exp(l) Exp (-A * (DOD-A)) (3)



where: All parameters have the same significance as 1n Eq. (1). The (')

parameters are associated with the second plateau.

The digitized voltage-DOD data was fit to Eq. (3) by using a nonlinear

regression procedure on a Hewlett-Packard 9845C desk top computer. The

regression program follows the Marquardt procedure to obtain estimates for the

parameter.

If only one plateau 1s present 1n the voltage-DOD curve Eq. (2) can be

used. However, all cells exhibited two plateau discharge characteristics, to

various degrees between open circuit and 0.4 V. Therefore, Eq. (3) was used.

Figure 2(a) shows the result of boiler plate cell number 12 at the 5000 cycle

capacity check which has a very small second plateau (A'-A = 0.068 DOD).

Figure 2(b) shows the result of boiler plate cell number 14 also at the 5000

cycle capacity check which has a moderate well formed second plateau

(A'-A = 0.152 DOD). Figure 2(c) 1s a plot of the difference between the

experimental potential and the results of Eq. (3) for each DOD point digitized

for cell number 14 at the 5000 cycle capacity check. As can be seen the

equation provides a good representation of the data. The average of the

potential differences for 23 data points 1s -2.5 mV with a standard deviation

of 6.5 mV.

ANALYSIS OF DATA

The cycle life data as shown 1n Table I varies from 2330 to 12 960 cycles.

This decade of variance, however, cannot be attributed to any of the

experimental design characteristics (bend strength, pore size or loading) since

no statistically significant (1-a = 0.9) difference could be found using

analysis of variance techniques. With a cycle life variation of over 10 000

cycles and no effect due to experimental design 1t 1s unlikely that cell cycle

life 1s 6185 with a standard deviation ±3054 cycles. It 1s therefore necessary

to look elsewhere for the cause of variation.
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Data (E-DOD) was available for 12 of the 19 cells at capacity

determination cycles 1700, 3100. 5000, and 6100. Boiler plate cells

number 23, 24, and 25 were early failures (approximately 2300 cycles) and

therefore were not used. Boiler plate cells number 16, 18, 19, and 26 were

available for only one or two capacity determination cycles and were also

excluded. All 12 boiler plate cells had capacity check data for capacity

measurements at cycles 1700, 3100, and 5000; however, six cells had cycle lives

long enough to have a capacity measurement at cycle 6100. All 42 capacity

determinations were fitted to Eq. (3) and the parameters of the equation used

as a means of evaluating cycle life.
i

H.S. Llm (Ref. 1) attempted to fit the cycle life of cells to the percent

DOD (based on the theoretical capacity). Although a trend was observed the

amount of scatter was too large to draw conclusive results. The use of the

theoretical DOD would have to assume that cells would behave Identically during

their early lifetime I.e., gain or lose capacity at the same rates during

formation. Also, reported by L1m was the appearance of the second plateau that

varied 1n magnitude 1n a unrecognizable manner during life.

From the Information obtained by fitting the data to Eq. (3) 1t 1s

apparent that A1 varies during life. This Indicates that the capacity of the

cells are neither constant nor decreasing unlnformally during their cycle

lives. For cells with short cycle lives, A1 tends to continually decrease

over life. For cells of Intermediate life (4000 to 5000 cycles) the trend Is

towards no change 1n the first two capacity checks (1700 & 3100) and then a

decrease 1n capacity at the 5000 cycle/check. For cells with long life, (6000

and more cycles) the trend 1s for an Increase 1n A1 and then a decrease.

capacity determinations were performed beyond the cells cycle life.
If a cell failed at cycle 3000 capacity determination at 3100 was the last
measurement.



In addition to the 10 equation parameters obtained from the nonlinear

data fit to Eq. (3) two additional quantities were used. These additional

quantities are the DOD1 s to which the cells were actually cycled and the ratio

of A-hr at the capacity determination cycle to the cell's theoretical A-hr

capacity (utilization). Both of these values are based upon the parameter A1

from Eq. (3) and are shown 1n Eqs. (4) and (5).

An.pere.hour ratio (Ut) . «>

cycling DOD (C» DOO, . A?1 ) <5>

where capacity (1.37 C) = pre cycling capacity at 1.37 C discharge rate.

Figure 3 shows how the capacity of the cells have Increased above the

theoretical capacity at capacity determination cycle 1700 and then decreases

as cycle life progresses. This Increase 1s not phenomenal or unexpected. It

1s a well observed fact that nickel electrodes Increase capacity during Initial

cycling (Refs. 3 and 4). This change 1n capacity alters the actual OOD of a

cell during cycling and 1s shown 1n F1g. 4. As can be seen from F1g. 4 the

Increase 1n capacity has lowered the actual OOD of cycling to about 65 percent

at capacity determination cycle 1700. From the capacity determinations at

cycles 3100 and 5000, the variation 1n cell cycling DOD Increases to three

times that at cycle 1700 (0.1 to 0.311). Since cycle life 1s strongly

dependent upon DOD this variation 1n actual DOD phenomena should effect cycle

life.

In order to determine the Impact of the changing discharge curve on cycle

life the 10 parameters from Eq. (3) along with the two quantities describing

the A-hr ratio (Ut) and cycling DOD (Cy DOD) were regressed to cycle life using

a stepwlse forward linear regression procedure (Ref. 5). Equations (6) to (9)

show the results of the linear regression for each of the capacity

determination cycles.
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Capacity determination at cycle 1700:

Life = 102 902 - 16 840 * A - 36 903 * Ut - 63 969 * Cy DOO (6)

Capacity determination at cycle 3100:

Life = 123 073 - 33 931 * A - 34 298 * Ut - 76 707 * Cy DOD (7)

Capacity determination at cycle 5000:

Life = 61 155 - 31 927 * AQ - 23 699 * Ut - 37 461 * Cy OOD (8)

Capacity determination at cycle 6100:

Life = 29 558 - 54 821 * AQ - 17 666 * Cy DOD (9)

As can be seen from Eqs. (6) to (9) actual DOD of cycling 1s the major

contributor 1n all but the capacity determination at cycle 6100. Figures 5(a)

to (d) show plots of how well Eqs. (6) to (9) predict cycle life. Although

Eqs. (6) to (9) do not produce a perfect fit to cycle life, as portrayed by

the doted line, 88, 90, 90, and 99 percent of the variability 1n cycle life

can be accounted for by Eqs.(6) to (9) respectively. Table II lists the

difference between the actual and predicted cycle lives for the four capacity

determination cycles. With the exception of boiler plate cell number 20 the

difference 1s acceptable as a predictor of cycle life. Table III lists the

percentage difference between the actual and predicted cycle lives. Boiler

plate cell number 20 Is shown to be 1n error by over 50 percent for all three

capacity determination cycles. The mean of the percent residuals with boiler

plate cell number 20 excluded 1s only -2, -3, -1, and -2 percent for capacity

determinations at cycles 1700, 3100, 5000, and 6100 respectively. The reason

boiler plate cell number 20 1s so much different than the other 1s not known.

Examination of Eqs. (6) to (9) show some rather Interesting trends.

Parameter A which 1s a measure of the capacity available at the higher

potential 1s a predictor early In life of cycle life while parameter An

which 1s a measure of the potential drop from open-circuit 1s not. This trend

reverses Itself after capacity determination cycle 3100. The ampere-hour ratio
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(utilization) decreases 1n Importance as cycle life Increases drpplng to zero

at capacity determination cycle 6100. The actual cycling DOD 1s the only

contributor for predicting cycle life needed 1n all capacity determination

cycles.

CONCLUSIONS

Although the response variable, cycle life, showed no significant

dependence upon the experimental variables bend strength, pore size or loading

level, the discharge curves of capacity measurements during life, are related

to cycle life.

It was shown that:

1. Discharge curves can be represented by an equation even when there are

two plateaus.

2. Parameters from the equation describing the discharge curve are related

to cycle life.

3. Cell cycling depth-of-d1scharge and Ah ratio (utilization) are very

Important characteristics which can be obtained from the equation describing

the discharge curve.

4. The capacity obtained during cell characterization 1s not a reliable

Indicator of cell capacity during life testing.

5. The capacity of the higher potential plateau 1s Important 1n predicting

cycle life early 1n cycle testing.

6. The exponential potential drop 1s Important In predicting cycle life 1n

the latter part of cycle testing.

The single most Important type of Information needed to understand this

set of cells, and probably all nickel-hydrogen cells, are the processes that

lead to the Increase of cell capacity over an extended period of cycling.
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TABLE I. - NICKEL ELECTRODE CHARACTERIZATION PLAN

AND CYCLE LIFE

Loading,
g/cc

1.40

1.55

1.70

Bend strength, ps1

400 550 700

Pore size, v

10

a!6
b3509

«15
&7919

a14

&4790

12

12
3450

13
12960

11
5167

14

25
2330

24
2580

23
2340

10

22
3349

21
6426

20
4259

12

17
3664

19
4632

26
4993

10

18
4276

12

10
3729

9
8936

8
9572

aF1rst line denotes cell number.
bSecond line denotes cycle life.

TABLE II. - DIFFERENCE BETWEEN ACTUAL AND

PREDICTED CYCLE LIFE

Cycle Difference, Actual-Predicted

Cell
number

8
9
10
11
12
13
14
15
17
20
21
22

Capacity determination cycle

1700

-763
43

-992
746
468

1531
-30

-103
255

-2377
1300
197

3100

-169
-94
-350
20

-175
337
213

1345
318

-2414
1341
-372

5000

923
-678
783
-669
-130
820

-477
134

-417
-2172
1067
818

6100

-29
-64

-182

-57

-419

-86

Actual
cycle
life

9 572
8 936
3 729
5 167
3 450

12 960
4 790
7 919
3 664
4 259
6 426
3 349



TABLE III. - PERCENTAGE ERROR OF PREDICTED
CYCLE LIFE

Percent Error 100*. Actual-Predlcted/Actual

Cell
number

8
9
10
11
12
13
14
15
17
20
21
22

Mean*

Capacity determination cycle

1700

-8
0.5

-26.6
14.4
13.6
11.8
-0.6
-1.3
7

-55.8
20.2
5.9

-2

7100

-1.8
-1.1
-9.4
0.4

-5.1
2.6
4.4

17
8.7

-56.7
20.9

-11.1

-3

5000

9.6
-7.6
21

-12.9
-3.8
6.3

-10
1.7

-11.4
-51
16.6
24.4

-1

6100

-0.3
-0.7 >

-3.5

-0.4

-5.3

-1.3

-2

Actual
cycle
life

9 572
8 936
3 729
5 167
3 450
12 960
4 790
7 919
3 664
4 259
6 426
3 349

aCell number 20 not used 1n mean calculation.
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