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ABSTRACT
In the six decades since the 1dent1f1cat10n-of age hardenable nickel-base

superalloys their compositions and microstructures have changed markedly.
Current alloys are tailored for specific applications. Thus their
mjcrostructures are defined for that application. This paper will briefly
review the evolution of superalloy microstructures and comment on the

appearance and 1mp11cations of microstructural defects in h1gh'performance

superalloys. It is seen that new alloys and processes have generated new

- types of defects. Thus as the industry cbnt1nues to develop new‘;110ys and

processes it must remain vfg11ant toward the 1dent1f1cat1on and contro] of new

_ types of défects.

INTRODUCTION -

The age-ﬂafdenable nickel-base supera]loysbmay be considered to be in
their sixth decade (Ref. 1); During their evolution to the modern alloys used
in aircraft propulsion and other a&vanced turbines many ch;nges have occurred
in the alloy's chemistry, microstructure and processing. As the alloy systems

have become more sophisticated, the defects in the alloys havg also become

‘more sophisticated. This paper will briefly review the evolution of

microstructures of modern nickel-base superalloys and discuss the appearance
and jmp11caf10ns of selected m1crostructura1 defects in high performance a]]oy.
products.
~MICROSTRUCTURAL EVOLUTION
Historical pefspect1ves of the evolution of superalloys are available

elsewhere (Refs. 1 and 2). However;'1t is instructive to briefly consider the



evolution of Ni-base superalloys while considering the defects in their
microstructdres. The evolution of the microstructures of‘the N1-bése
superalloys to about 1970 has beén described by Decker and Sims (Ref. 3) and
récently extended tot1984 by Sims (Ref. 4). It is shown schematically in
Fig. 1 (after Ref. 4). The earliest alloys weré used as wrought products
having relatively fine equiaxed gra1ns; They contained smaii amounts of n
(N13T1) or_ Y (N15A1) pre;ﬁpitates and carbides. One assumes.that fhe
grain s1ze‘and Y'/n precipitation were controlled by forging préct1se and
subsequent heat treatment. vtf the M23C6 cérb1des pre;1p1¢ated in a
cellular form they were determined to be detrimental to stress rupture life
and were considered a deféct_(Ref. 4). It was necessary to contrb) the
processing tp produce a discrete M23C6 morphology at the Qrain boundaries,
As the superalloys evolved beyond N1mon1c] 80A, a Ni-base a110y having
Cr, Al, Ti, and C additions, the amount of +y' was initially increased by
increasing the amounts of Al and Ti1 and later by Cb and Ta addit1ons.
Strength was further 1hcreased by refractory metal additions of Mo and W. In
the mid-50's the alloys had béen strengthened to a level where they wefe
becom1ng extreme]yAdiff1cu1t to forge and further improvements (part1cu1ar1y
for turbine blade alloys in the United States) required that fhe alloys bé
used in the investment caﬁt form. Advances in vacuum ﬁe1t1ng perhitted the
use of greater amounts of reactive metals 1in thé alloy compos1tioﬁs. In
addition, vacuum melting allowed the production of c]eanéf materials (1.e.,
léss oxide inclustons). As'tﬁe'amouht of alloy additions in the melt

tncreased and the size of billets increased, new and undesirable phases were

identified. Some of these will be discussed in greater detail later.

]N1mon1c is a trade name of the INCO family of companies.



By the m1d-60's the.cast Ni-alloys had apparently reached their peak in
stress-rupture strength, hut.had poor intermediate temperature ductility.
This problem was addressed by alloying with Hf by the group at Martin Metals
and by d1rect1ona1 so]1d1f1cat1on (DS) by the group at Pratt & Whitney
Afrcraft. The 1atter lead to another new and distinctive class of
m1crostructures - single crystal supera]]oys wh1ch were first flown in
commercial jet aircraft in the early 80's. These directionally so]idifded
productsthave offered a new avenue for increasing use temperature but have
their own sét of m1crostructura1 defects which will be d1scussed later. |

Also 1n the m1d 60's the wrought al]oys appeared to have reached the
maximum strength 1evels compat1ble with economic forging to f1na1 product :
| shape. Allen (Ref. 5) and his co-workers demonstrated that superalloy’ b111ets
‘made from prea]loyed powdered metal cou]d be more easi]y worked to f1na1 shape
and have mechanjca]_properties compardble with the best 1ngot meta] products.
The.trend towardipowder metat supera1loy products started and~as was soon
1earned, ﬁew'theé of microstructural defects would need to'be contro]]ed;
Some of these defects will be d1scussed in greater deta11.

iThe evo1ut10n_of/N1-base.supera110ys from the’ear1y Nimonic 80A, a
wrought“alioy of essentially four elements, to todays' famtly of wrought from
1ngqt,'powder'meta], cast and d1rect1ona11y cast alloys has seen many changes
in the m1crostructures of the alloys.  As the m1crostructures 1ncreased in |
‘-complex1ty,1and in some sense, s1mp11c1ty; as in the case of s1ng]e crystals,
so the defects 1n the a]loy S microstructures have also changed 1n character
Let us now ook more closely at some m1crostrucura1 defects.

’ SELECTED MICROSTRUCTURAL:DEFECTS _
. Generad Commehts
_{In the time allowed, it 1S'poss1b1e:to discuss only avfew selected types
: of:deﬁects. The following secttons will show examples of microstructural
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defects with emphas1s_pn newer technology materials. The examples will
| include additional phases,_poros1ty,’gfa1n boundary, and'gra1n.or1éntat10n,
grains in s1ng]§icrystals, unrecrystallized grains in an 0DS alloy, and
oriented precipitates in single crystal a]]qys.‘ilt is intended that the
similarity among the‘same type of defects 1n‘q1ffergnt products.might become
apparent. . '
Additional Phases

" The additional phase which, perhaps, initiated some of the-greatesf
interest in the superalloy cdmmunﬁty 1s::o_ phase. It;s identification by
Wlodek (Ref. 6) as a phase~de1eterioQ§,to a Ni-base superalloy initiated a
large volume of researthband was in part respon$1b1e fof thé 1st Internatjbnal
Symposium on Superalloys at Seven Springs. Figure 2 is a representative
photomicrograph of o 1n a Ni-base supera]]oy.' The fact that o' may take
very :long times to:fqrm in some compositths and little in others as shown in
Fig. 3 . (Ref. 7) offered 11ft1e comfort'toithose_who wished to avoid it. The
presence of the phase in large amounts could cause drastic reduction in the.
stress rupture 1ife of an ai]oy as shown in Fig. 4 (Ref. 7).

Thé app]icétion_of PHACOMP (Reff 8) and simi]ar techniques have a110wed
prediction of o formation in individual heats of alloys whose broad chemical
specification may be o-prone to be 1dent1f1ed. .Howgver, no predictive system
exists which is 100 percent successful in anticipating the formation of o, u
and similar phases in new and substantially different alloys. For example an
alloy designated MMT143 which was initially RSP brocessed by Pratt & Whitney
Aircraft has subsequgnt]y been shown to bé prone to the precipitation of ¢
phase in cast single crystal form (Ref. 9). 1It's detrimental effect on stress

-rupture 1ife is similar to o 1in IN-100 as shown in Fig. 5.



Freckles are defects caused by segregation of elements in amounts which
can cause precipitation of phases. The defect was known to forging houses in
the 60's partjcu]af]y in 1hgots which were directionally so]1d1f1ed. Such
defecfs could carry through to the final pfoduct as shown in Fig. 6. A
freckle in an ingot might appear as shown in F1g;A7. When d1rect1ona11y
su]1d1f1éd turbine airfoils moved to prqduction, investment casting houses
"learned of the freckle as shown in Fig. 8 (Ref.A10y. While the effects of
freckles on mechanical properties is not well documented in fhe open |
literature, one would assume that fhe presence df br1t£1e phases on the
sﬁrface of a product.would be defrﬁmenta]{ particularly in fat1gué“behav1or;v

The formation of:the freckle is a bit easfier to‘fo]]ow in model systems.
Work done by Hallawell (Refs. 11 and 12) using ammonihm ﬁulfate - water
solutions and Pb-Sn alloys has shown_that freckles resuﬁt‘from gravity driven
fluid mot1on which results in macrosegregation in the ingot. An example .of a
freckle 1n_a Pb-Sn alloy 1s>Shown in Fig. 9. Aisq shown in Fig. 9 is a
micrograph of a similar ingot solidified while being tiﬁted-to thé gravity
vectof. It was rotated and precessed about thé'gravity”vector and no freckles
were observed. | |

Ceramic, foreign metal, and other materials may contamihate and be
consolidated in powder metal products. The effect of these defects on
properties was shown:to be detrimental (Ref. 13), Fig. 10. The effect of
these defecfs on the:design qf‘tufbine.components 1s reflected in Fig. 11
(Ref. 14). The detrihenta] effects of ceramic inclusions is also well known
to the foundryman. Iq a . study performed on a directionally solidified alloy
dross and mold breakage inclusions were frequently found on the fractured
surface of test bars (Refi 10).
| The N1—ba§e supera]]oys_are stréngthened by the +¥' phase, dr in a few
alloys, ¥'' or n phases. The lack bf proper.distr1but1on of these phases
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can bé considered to Bé'microstructuraT"defects ‘tThe'more"advanced,'highTy
a]]oyed compositions conta1n greater than 50° voT % Y It 1s'v1rtua11y
impossible to quench an engineering structure fast enough to suppress the '
prec1p1tat1on.after a soTution treatment. The mechanwcaT propert1es of the
structures'areAquﬁte'sens1t1ve'to the relative amounts ot’coarse_and fine '
present. The effect ott(suh;soTvusf soTut1ontng temperature on the amount of
Y in henéiés 1s'shown:1n Fig. TZ.(Ref. 15). As the soﬁutdon'temperature is
raised, more' {;‘ is d1sso]ved and becomes ava1TabTe for effect1ve o ‘
strengthening when it prec1p1tates in f1ne form This s part1cu1ar1y
1mportant to recogn1ze when one is so]ution treattng near the ' solvus
because the rate of change of the amount of und15501ved Y | with temperature
can be about 0. 5 percent/° c. | | | o

| The same probTem occurs 1n cast aTToys It is particularly apparentttn
stngTe crysta] aTToys 1n wh1ch 1t is d1ff1cult to compTeteTy dissolve the y'.
without r15k1ng meTt1ng : Fig 13 shows an exampTe of a PWA 1480 bar wh1ch was
so]ution treated in a furnace 1ntended to be slightly above the Y' soTVus,"
" but with an tnadvertent'temberature gradtent."It can be seen that
substant1a11y different amounts of primary y' were left in the structure.
The bars wtth 11tt1e residual prtmary y' were stgn1t1cant1y'Stronger'in
tensile tests - ' R |

The stze}otithe'ttnefﬁy" is aufuncttonﬂof'the temperature at which it

precip1tates andhthus:ts“sensit1ue tofthe cooT1ng rate from the soTutton
temperature. If the quench rate from the so]ut1on temperature is retarded
‘the v' may become too Targe caustng a degradation of stress rupture 1ife as

shown 1n_F1g. 14 (Ref. 6). For the same materia]s tens11e strengths were

also. reduced as much as 12 percent.



Porosity .

Voids in cast metal products are a normal result of solidification
shrinkage and the large reduction in the solubility of gasses in solids
compared to 1iqu1ds. Such voids, whén}conta\ned within investment cast
products may be called pofos1ty or_m1§roporos1ty.

An ekample of porosity in a casting is shown in Fig. 15. It can be
seeﬁ that.cracks are associated w1{h pores in this stress fupture test.'
Reference 10 concluded that d1fe6t10na11y soj1d1f1ed'cast1ngs have little
-tolerance for m1croshr1nkage} | ' |

In single crysfal supera]]oys, pores are often the site of fraﬁture _
initiation in fat1§ueitésts, Fig. 16. An apparent so1ut1on_to this porosity
might be the app11cation'of hot 1sostat1§ pressing (HiP) to close thé.pores.
This has been shown to extend fatigue life (Ref. 17). However in the process
of HIPing other problems may be introduced as shown in Fig. 17. In this.
specimen, carbon from the heating elemént in the autoclave is be]1eved fo'have
contaminated the aufociave's argon'atmosphere and diffdsed into thé carbon |
free single crystal alloy. The added carbon reduced the melting point
' a]]owjng incipient melting to-occur and the subsurface prec1p1tat1on of
addit1ona1 phases (carqueﬁ). | |

Porosity is also recognized as a potential defect in powdered metal
productﬁ, in particular-thoseAwhich receive 1ittle or no post;HIP mechanical
working which tends to close some porosity. During fhe HIPing or other
conso]idat1on"cytle, residual gasses may beventrapped in-the heta]. During
subsequent heat treatments, these gasses may expand and cause pore formation.‘
This is commonly called "thermally induced pofos1ty“ and spec1f1cat10ﬁs for
“as-HIP" pfoducts tyb1ca11y specify a maximum permissible reduct1on in density
for a specified therma] cycle. Pores may also be introduced by container
failure during the HIP cycle. An examplie of such porosity is shown in
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Fig. 18. Such porosity has detrimental effects on mechanical probert1es,
Fig. 19 (Ref. 18). |
Grains and Grain Boundaries

The introduction of d1recf1ona1 so]1d1f1catfon presented the superalloy
metallurgist and designer with a substantially different‘structyre. The new
material is anisotropic, part1pu1ar1y5w1th regard to elastic modulus. For
app]icatjon as‘turb1ne blades, the natural growth dfrection of the Ni-base,
sdpera]]oys, <100>, also the'lowest modulﬁs direction, is essentially A
coincident with the blade stacking axﬂs. This offers great benefit in terms
of improved low cycle fatique behavior for turbine blades. Howevgr, it is not
immediately apparent 1f‘the 1mprovements'are due to the modulus or the lack of
.gra1ﬁ”bouhdar1es intersecting thgllead1ng or tra111ng'edge of the airfoil.
The effect of grain boundary emergent angle on thermal fatigue.1$ shown in
Fig. 20 (Ref. 19). It can be seen that wheﬁ the emergent angle is low the
11fe is significantly greater. In th1§ experiment, the emergent grain'
-boundary angle and the crystallographic orientation effects are confounded as
shown in Fig. 21. Ex§m1nat10n of the cracks, which failed to initiate or to
propagate along the_gr§1n boundaries and were normal to the 1ead1ng edgé of
the airfoil sample suggested that the improvement in low cycle fatigue 1s‘due
to the modulus effect, Fig. 23. Thus control of the growth direction (<100>
axis) relative to the stacking axis of the turbine blade is imperative.
Reference 10 found that the emergent, qonvergent aﬁd divergent grain boundary
ang]es had only minimum effects on mechanical properties of DS alloys.

0x1de‘dispers16n strengthened (0DS) alloys resemble DS products in the
sense that they contain e1ongated grains.. It is commonly thought that a high
grain aspect ratio is requisite for the development of optimum mechanical

properties. Figure 23 shows an example of Inco1oy2 alloy MA6000 which was

2Inco]oy is a trade name of the Inco family of companiés.
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“Amproperly procgssed. A small volume of material was.found to be chgm1ca1]y
d1fferent from the bulk and fa11ed to proper]y,fecry§t§11ize.. Attempts to
determine the effect'of this défect‘on mechanical behavior were inconclusive.
It 1; suggestéd that:such a defect, pa(fjcularly neéf'the surface could be
| -detr1menfa]_to fatiéue}]ffe,h |

The single crystal superalloy 1s:meta]1urg1caily a‘]e;s complex system
thét‘of thg‘Ds;supgralloya‘ To take fﬁ]] advantage of the single cr&sta] form,
the elements B,:p, and Zrﬁare'absénﬁlfrom the tdmpds1t1qn§:(Ref. 20). Sihg]e
-_C(ystaT castings are brone to a]l-fhe same cast1ng'défepts suthias porosity
‘and nonmeta111é‘1n;1usions and'conffol:of'the"growth direction as the DS
.castings. ' | | - _ ' a

In-adq1t1qn it must be assured that.the produ¢t~is in fact only.one
crystal or at 1éa§t w1]1 behave as aléingle cfysfal;,‘Thé mechan1sm of
recrystallization of superalloys is reviewed in Ref.;21. Surface J

3 is shown'to be.retarded‘by the.bresence‘of Y'

' recfysta]11zét1on of MM 002
(Ref. 2?) or by a110w1ngvre;oiery atvrélat1ve1y h1gh temperatures (1200 °C).
It 1s common practice to_spec1fy‘that singlé'crystal supera]]oys;be.soiut1on
heat treated 1mmediétg]y after casting to reduce the chance of subséquent
recystallization. - In sp1té of such a precaution recfysta]lization m1ghf occur
as a result of casting stresses or cére]ess hand]ﬁng; An example of a
: recrystal]ized single crystal tquine b]aqe is shown in Fig; 24 (Ref. 16).
The b}ade sﬁown was run in a rotafing rig for about 2 hr at e]eVated
temperaturei It can be seen that a portion of the blade near the tiplhasu
separated from the airfoil. While I know .of no published information on. the
meéhan1ca1vbehévior‘of recrysta111zed single crystal supera]ioys, it seems
~1ikely that the grain boundaries sﬁou]d be extremely weak. That 1s because
3MM is a trade name of the.Mqrt1ﬁ Marrietta Corporation.
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single crystal alloys contaih none of the elements, ndrma]]y present in
polycrystaliine superalloys, which proQide grain boundary strengthening (1.e.
B, Ir). |

Thé stress rupture l1ife of single crystal alioys which are directionally
coarsened (rafted) perpendicu]ar to the applied stress axis are thought to be
1mproved (Ref. 23). It has been repbrted that such coarsening can occur
duriﬁg gas turbine engine operation (Ref. 24). A hore detailed examination of
some df the blades from that study has been performed at the Lewis Research
Center.4 It found that normél rafting perpendicular to the centr1fu§a1
stress axis had occurred over much of the blade. However it was further noted
that some regions neaf’the surface of the blade had rafted parailel to the
b]ade's centrifugal stress axis, Fig. 25. The cause for this behavior is
currently unknown as are the implications relative to the mechanica]
durability of the b]ade; It remains to be determined ¥f this interesting
metallographic observation is truly a defect. B

| CONCLUDING -REMARKS

The development of the m1crostructurés of current performance superalloys
has beeh reviewed with emphasis on some of the microstructura] defects thch
might be found in those alloys. It was intended to show that as superalloy
chemistries and processing beﬁame more sophisticated, the nature of the
defects also became more sophist1cated.‘ As the industry developed improved
alloys and processes, new defects were also developed, or defects previously
1dent1f1ed.1n one segment of the 1ndﬁ$try wasvfound anew in another segment.
As the superalloy industry continues its growth in technology it must remain

vigilant to the prospects of also developing new defects.

4Private communication Mr. D.R. Hull.
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Figure 9. - Control of fluid flow can eliminate freckles in lead-tin alloy.
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Figure 13. - Single crystal tensile strength is reduced by undissolved primary Y’.
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Figure 16. - Porosity in LCF fracture.
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Figure 17. - Hip atmosphere can cause carburization and melting.
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Figure 18. - Microstructure of porous LC Astroloy pressing.
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Figure 20. - Effect of DS grain orientation on thermal fatigue.
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Figure 22. - Grain boundary emergent angle has little effect on thermal
fatique of DS mar M247.
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