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ABSTRACT 

The objective of this study is to predict the pressure 

response of a saturated liquid-vapor system when undergoing a 

venting or depressurization process in zero gravity at low vent 

rates. An experimental investigation of the venting of cylindri- 

cal containers partially filled with initially saturated liquids 

was previously conducted under zero-gravity conditions at the 

NASA Lewis Research Center 5-second zero gravity facility, and 

compared with an analytical model which incorporated the effect 

of interfacial mass transfer on the ullage pressure response 

during venting. A new model is presented here to improve the 

estimation of the interfacial mass transfer. Duhamrnel's super- 

position integral is incorporated to approximate the transient 

temperature response of the interface, treating the liquid as a 

semi-infinite solid with conduction heat transfer. Account is 

also taken of the condensation taking place within the bulk of a 

saturated vapor as isentropic expansion takes place. Computa- 

tional results are presented for the venting of R-11 from a given 

vessel and initial state for five different venting rates over a 

period of three seconds, and are compared to the prior NASA ex- 

periments. An improvement in the prediction of the final pres- 

sure takes place, but is still considerably below the measure- 

ments. This is attributed to neglecting the evaporation taking 

place at the meniscus. 



INTRODUCTION 

This is a report of a n  analytic study of the venting pro- 

cess, under microgravity, of a container with liquid-vapor 

phases. Pure substances only are considered here. It may be 

desireable to extend the analysis later to mixtures of substances 

having different boiling points should the possibility arise for 

the future storage of such mixtures in space. 

Microgravity indicates the drastic reduction of body forces 

which, in turn, implies the drastic reduction of natural convec- 

tion motion associated with temperature differences within the 

fluid(s). With liquid-vapor phases present, this also implies 

that effects associated with surface tension may become signifi- 

cant. These effects include the absence of a flat interface, the 

possible presence of thermophorysis, and the variable location of 

the vapor volume. This latter is important for the venting 

process in practice, since the process desired must be specified, 

whether venting of pure vapor, pure liquid, or a mixture of both. 

For purposes of the present study surface tension is considered 

only insofar as it affects the amount of liquid-vapor interfacial 

area and the contact angle made at the solid-liquid-vapor contact 

region. The curvature may be neglected in the description of the 

temperature distribution in the liquid near the liquid-vapor 

interface, except where very small vapor bubbles are present. 

Such would mean that vapor nucleation and boiling are taking 

place, which are also excluded from consideration at present, 

The objective of the study is to model the venting process 

so as to be able to predict the pressure-time behavior within the 



container, incorporating the relevent physical mechanisms. In 

the broadest sense the process is similar to the problem of de- 

scribing the blowdown taking place in a nuclear power plant loss- 

of-coolant accident (LOCA). Because of its importance to the 

safety of nuclear power plants many studies of this have been 

conducted, and an abundance of literature exists. However, very 

little is directly applicable to the present problem. 

The LOCA is generally an uncontrolled process in that the 

circumstance as to the location and size of the discharge 

opening is not known in advance. The fluid discharged may be 

liquid only, vapor only, or a mixture of the two, depending on 

the location and size of the opening. If the opening is suf- 

ficiently small the pressure decrease may be described reasonably 

well by assuming saturation properties within the vessel, pro- 

vided the two-phase critical flow occuring at the opening is 

properly modelled. Some difficulties still exist in achieving 

this [1,2] without introducing some degree of empiricism for 

the discharge coefficient. If the opening is relatively large 

the pressure drops so rapidly that bulk vapor nucleation occurs 

with a two-phase discharge. The upper limit of this is the pipe 

blowdown problem: A one-dimensional analysis and confirming 

experiments of this process, beginning with a subcooled liquid, 

were conducted [3] in which the time for complete discharge was 

on the order of 200-300 ms. 

The zero gravity venting problem under consideration here, 

on the other hand, is expected to be a more orderly and planned 

process. Nevertheless, the description of the physical process 

can become relatively complex when the transient behavior in the 



vicinity of the liquid-vapor interface is taken into considera- 

tion. An analysis of the adiabatic venting of the homogeneous 

two-phase contents of a vessel was conducted, assuming equili- 

brium saturation conditions [4]. A special model for choked 

two-phase flow at the discharge opening was derived and used. 

Since equilibrium conditions were assumed, the size and location 

of the vapor during the process was irrelevent. In a later work 

[ 5 ] ,  the same author attempted to include vapor generation asso- 

ciated with external heat transfer in the process, retaining the 

assumption of internal thermodynamic equilibrium. In addition, 

various venting locations were considered: Vapor venting only 

(top vapor blowdown), liquid venting only (bottom liquid blow- 

down), and bottom mixture blowdown. 

The zero gravity venting problem at hand is concerned only 

with the venting of vapor, either with a known vent rate or vent 

size. It is further considered that the venting rate is suffi- 

ciently slow that no vapor nucleating sites are formed, so that 

any phase changes taking place occur only at existing interfaces. 

This places an upper limit on the rate of pressure drop permis- 

sible [6,7,8]. 

It has been demonstrated that models assuming thermodynamic 

equilibrium can give reasonable results only with the inclusion 

of sufficient empirical coefficients, since non-equilibrium con- 

ditions in fact are present. The challenge is to minimize the 

number of empirical coefficients, using non-equilibrium analysis 

only for those aspects of the process where it has a significant 

role. 



The work reported below is an extension of the analysis 

presented in [9], employing a different model for the estimation 

of the mass transfer at the liquid-vapor interface and in includ- 

ing the phase change associated with the expansion of the satur- 

ated vapor as the venting process takes place. Discrepancies 

still exist between the computations conducted here and the ex- 

perimental results reported in [9], with the model predicting a 

greater pressure decrease than is measured. The transient temp- 

erature at the liquid-vapor interface is computed by incorporat- 

ing Duhammel's superposition integral in the analysis, treating 

the liquid as a one-dimensional semi-infinite solid with conduc- 

tion heat transfer. It is believed that evaporation taking place 

at the meniscus at the liquid-vapor-wall interline, neglected in 

all analyses to date, can play a significant role relative to 

that occuring at the bulk liquid interface [lo]. 

ANALY S I S 

A schematic of the venting system is shown in Figure 1. The 

venting of vapor only is considered here. It is assumed the 

Pv(t) is sufficiently greater than P, at all times so the venting 

rate itself can be described reasonably well in terms of choked 

flow, assuming that only single phase flow occurs and that an 

appropriate flow coefficient can be assigned. It is further 

assumed that all the heat transfer processes of significance are 

one-dimensional, whether at the interfacial area Ai in Figure 1 

or at the meniscus L, in Figure 2, A t  the present time these are 

the only domains in which heat transfer and phase changes will be 



considered to take place. The effect of microgravity relative to 

other gravities is presumed to change only the absolute and rela- 

tive magnitudes of the interfacial area Ai and meniscus length 

Lm. The processes occuring in the vapor space due to the 

pressure decrease with venting will be considered first. 

1. Vapor Region 

As the pressure decreases, the initially saturated vapor at 

state @ remaining in the container can be presumed to have 
undergone a reversible adiabatic expansion. This ignores, for 

the moment, any interaction with vapor which might be generated 

at the liquid-vapor interface. Referring to Figure 3, it can be 

noted that if local equilibrium exists during the process the 

state will be at @, a temperature decrease will have taken 
place, and liquid must have formed within the vapor to produce 

the quality required by the state. Since the liquid interface 

and any vapor generated at the interface would be at the instan- 

taneous saturation temperature corresponding to the system 

prssure, with equilibrium no temperature gradients would exist 

within the vapor space, nor need they be considered; the temp- 

erature and pressure within the vapor space are coupled. 

However, the presence of quality in the vapor space introduces 

two aspects in the problem not considered heretofore: The 

quality itself must now be included within the state description 

of the vapor, and homogeneous bulk nucleation must take place 

within the vapor space to produce the uniform quality assumed. 

H Q ~ o ~ ~ ~ ~ o u s  b u l k  n u c l e a t i o n  requi~es t h a t  the vapor itself b e  

subcooled to some degree [Ill. The container walls could provide 



nucleation sites, requiring an amount of subcooling so small as 

to be negligible, One limit then is to neglect the conditions 

necessary for nucleation, assuming that thermodynamic equilibrium 

exists in the vapor space at all times. 

If no nucleation sites were available, either in the vapor 

bulk or on the walls, for an expansion to pressure P2 the vapor 

will follow the isentropic process to the metastable state @in 

Figure 3. This is at a lower temperature than the equilibrium 

state @ because no latent heat associated with phase change was 
given up. For this case, the liquid-vapor interface would be at 

temperature T2, the Tsat corresponding to P2, while the bulk 

vapor would be at T ~ M .  A temperature gradient thus would exist 

within the vapor space, which must then be taken into considera- 

tion because of the associated heat transfer. The other limit to 

that cited above, which still takes the vapor to be at a uni- 

form state, is to consider that the vapor itself exists in a 

metastable state, with no heat transfer interaction with the 

interface, but that instantaneous perfect mixing takes place with 

the vapor produced at the liquid-vapor interface. The resulting 

mixture would itself be at a metastable state. 

To compare the effects of treating the expansion of a satur- 

ated vapor with equilibrium into the quality region with that 

assuming that no condensation occurs, considering that the vapor 

remains a pure vapor in metastable equilibrium (termed a pseudo- 

vapor here), sample computations will be presented below for the 

isentropic expansion of the contents of a tank initially contain- 

ing only vapor, Certain assumptions will be made for convenience 



here, to be eliminated when returning to the original venting 

problem, 

Assumptions: 

i. The initial contents of the tank is saturated vapor only. 

ii. The contents remaining in the tank at any point will be 

considered to have a uniform state and to have expanded 

reversibly and adiabatically. For computation purposes 

here, the tank will be vented until one-half of the 

original mass remains. 

iii. The expansion of the tank's contents will be treated as a 

non-rate process. With a uniform state assumed within the 

tank, the state of the contents is independent of the rate 

of venting. 

In Figure 3, the initial saturated vapor state is designated 

as 0, and the final specific volume will be v2 = 2vl with one- 

half of the original mass vented. State @ on the T-S diagram 
is the isentropic end state in the equilibrium quality region, 

while state @ is the isentropic end state with pseudo-vapor 
behavior, with no condensation. Note that v2 = v2pr and the 

problem is now to compute and compare the corresponding end 

states P2, T2 and P2pl T2p. In general, state 2P will be dif- 

ferent than state 
0 

, the difference depending on the degree of 
expansion and on the particular fluid properties. Computations 

below will demonstrate this. 

In both of the above processes, the state of the fluid 

vented is assumed to have the same proper ty  as the bulk property 

of the fluid in the vessel. For the isentropic expansion in the 

quality region, the generation of quality requires the formation 



of liquid drop nuclei, in the practical sense, These nuclei will 

form either as a bulk homogeneous nucleation process or a hetero- 

geneous nucleation process taking place on the walls of the con- 

tainer. For the case where bulk liquid is present in the con- 

tainer, such condensation could also occur on the liquid-vapor 

interface, Since bulk homogeneous nucleation requires a sig- 

nificantly greater degree of supersaturation in the vapor 

relative to heterogeneous nucleation on the walls, it can be 

expected that the latter would be much more likely to take place. 

The implication of this to the venting process is that with the 

droplet nucleation and condensation now taking place on the 

walls, the bulk fluid vented would have the state of a saturated 

vapor only, while the state of the contents of the vessel taken 

as a whole would have quality. The analysis to determine the end 

state for a given mass vented would be different from the two 

cases described above, and would give an end state also different 

from these. 

A brief description of the analysis for each of the three 

cases mentioned above will be given below, to be followed by the 

results of sample calculations for R-11 as the working fluid. 

Case A - Isentropic Expansion with Equilibrium Quality 
Referring to Figure 3, the following conditions apply: 

Initial Conditions: TI, PI (Psat) (1) 

v1 = Vgl 

Since m2 = 1/2ml, it follows that 



Using tables of thermodynamic properties, Tz(P2) and X2 can be 

determined from Equations (2) and ( 3 ) .  

Case B - Isentro~ic Ex~ansion as a Pseudo-Va~or 
Referring to Figure 3: 

Initial conditions: Same as Equation (1) above. 

Since it is taken that m2 = 1/2ml, 

The end state 2P is the extension of the constant volume 

line v2 into the pseudo-vapor domain such that: 

The entropy change along a constant volume line for low pressure 

vapor with no phase change is given by: 

Since state 2s is known, T2p can be determined from integra- 0 
tion of Equation (6) as: 

T2s 

P2p is then computed from v2p and T2p using the appropriate 

equation of state. 

Case C - Isentropic Expansion with Equilibrium Quality and 
Venting of Saturated Vapor Only 

Since the state of the fluid being vented in Cases A and B 

above is the same as the bulk fluid state, the final result ob- 

tained is the same regardless of whether a system or control 

volume analysis is used, For the case being considered here 



where the fluid being vented is a saturated vapor while the bulk 

fluid remaining in the tank has quality, a control volume analy- 

sis must be used. 

Initial conditions: Same as Equation (1) above. 

As in Cases A and B, it will still be taken that m2 = 1/2ml. 

The final state will be designated by the subscript "2Vt1, while 

the variable intensive properties in the container will have the 

subscript "a", and the state of the fluid vented will have the 

subscript "e". 

The control volume form of the first law of thermodynamics 

for the constant volume insulated container is given by: 

d(m,u,) = -8mexhe ( 8 )  

Expanding the left side, and noting from continuity that &me = 

-dm,, and that he = hg,, Equation (8) can be written as 

Integrating from the initial state "1" to the final state "2V1' 

with m,2 = 1/2m,lr 

Note that u, can be expressed as, 

u, = hf - P v ~  + X(hfg-Pvfg) 

and (hga-u0) as 

hga - Ua = hfg(l-X) + P v ~  + XPvfg 

The quality in equation (12) is an unknown variable at the rno- 

ment. Since the contents undergo a reversible adiabatic process, 



the second law of thermodynamics for the control volume can be 

written, similar to Equation (81,  as: 

d(m,S,) = 6me x S, (13) 

Using continuity 6me = -dma, and noting that S,  = Sga, Equation 

(13) can be written as: 

which is similar in form to Equation (9). Note that S, can be 

expressed as 

S, = Sf + XSfg (15) 

and Sg,-S, as 

S g a - S a  = Sfg(l-X) (16) 

The integrated form of Equation (9) equals the integrated 

form of Equation (14), and the quality X during the expansion 

must be determined to satisfy this. 

Solutions 

Solutions for the venting of an initially saturated vapor 

from an insulated tank were carried out for Freon-11 for Cases A, 

B, and C above, using the tabulated thermodynamic properties, the 

equation of state, and the constant volume specific heat given in 

Reference [12]. The results are given in Table 1 for two dif- 

ferent initial pressures. 

For Case C, Equation (10) could be integrated numerically 

using either the tabulated property values or the equation of 

state. Case C-1 in Table 1 was obtained by numerical integration 

sf the tabulated properties in [ 1 2 ] ,  while Case 6-2  is the result 

obtained with the equation of stake, In both cases it was neces- 



sary to determine the unknown quality at each step by trial-and- 

error in order to satisfy Equation ( 9 ) ,  

It may be noted that, although the final pressure for the 

expansion as a pseudo-vapor (Case B) is just slightly less than 

that for the expansion in the isentropic quality region (Case A ) ,  

the final temperature is lower. This is to be anticipated, since 

the internal energy decrease for the expansion with no phase 

change must take place more at the expense of the vapor internal 

energy, with the attendant decrease in temperature. 

For the Case C, where only saturated vapor is vented, the 

final pressure and associated saturation temperature are lower. 

The final quality is slightly lower than for Case A, reflecting 

the fact that any condensed vapor is retained within the con- 

tainer. 

For the modeling of the original venting problem, where the 

initial contents of the insulated tank consists of a mixture of 

saturated liquid and vapor, it appears that Case C above will 

represent most realistically the process actually taking place. 

The isentropic expansion of a saturated vapor results in conden- 

sation. Condensation nucleation sites must be present for this 

to occur, and it is highly unlikely that bulk phase homogeneous 

nucleation will take place with the presence of metal walls un- 

less the tank is very large. However, nucleation and condensa- 

tion will occur preferentially on the walls and on the existing 

liquid-vapor interface, maintaining the bulk as saturated vapor, 

from which the fluid vented is drawn, 

The alternative to the equilibrium treatment of the vapor 

space described here is a non-equilibrium approach, in which 



spacewise temperature non-uniformities must be incorporated into 

the analysis. Before suck complexities are introduced, however, 

it should be demonstrated that such an approach is necessary. 

It is the rate model for the tank venting process that is of 

interest, and before introducing the interaction with the liquid 

the time element will be incorporated in Case C above, when the 

tank contains only saturated vapor, initially, and where only the 

saturated vapor is being vented, the liquid due the 

condensation occuring as a result of the vapor expansion being 

retained within the tank. 

The continuity equation for the contents of 

volume consisting of the constant volume tank is: 

the control 

The rate form of the energy equation corresponding to Equation 

(8) is: 

Expanding the left side of Equation (18), substituting Equation 

(17) and rearranging, noting that only saturated vapor is 

leaving: 

a 

The mass flow rate being vented, me, is modeled using a 

classical choked flow analysis [13]. In the application to the 

vacuum of space, a choked flow assumption can be expected to be 

valid, and the exit mass flow rate will be a function of the 

upstream vapor properties only: 



where 

and 

Solving Equation (19) for dt and substituting for me from Equa- 

tion (20): 

Equation (23) can be integrated numerically to find the time re- 

quired to change from the initial state to any other state at a 

lower pressure. Tv and Pv are related by the vapor pressure 

curve or the Clausius-Clapyron equation, while the expressions 

involving u, and hg, are given by Equations (11) and (12). m, 

comes from: 

mu = V,/v, (24) 

and 

v, = Vf + Xvfg (25) 

During the expansion process, the quality X must be solved at 

each computational step by trial-and-error such that Equation (9) 

is satisfied at each state along the path. Temperature is used 

as the computational variable on the right hand side of Equation 

( 2 3 ) .  As will be described later, a number of different sizes 

and s e r i e s  of temperature steps were investigated, 



2 * 

As the pressure in the vapor domain decreases as a result sf 

the venting process, the temperature at the liquid interface, Ti 

in Figure 1, will decrease corresponding to the saturation temp- 

erature. If the liquid was intially at a uniform temperature 

this means that a temperature gradient will be established in the 

liquid, resulting in evaporation at the liquid-vapor interface. 

As far as the vapor domain control volume is concerned, this 

represents a vapor mass addition to the vapor space as a satur- 

ated vapor corresponding to the system pressure. 

The rate form of the continuity equation corresponding to 

Equation (17) for the vapor space as a control volume is now: 

where mi is the mass flow rate of vapor entering the control 

volume as a result of evaporation at the liquid-vapor interface. 

The rate form of the energy equation corresponding to 

Equation (18) for the vapor space corltrol volume is: 

Since the vapor entering the vapor space control volume as a re- 

sult of evaporation is a saturated vapor corresponding to the 

system pressure, it has the same state as the vapor being vented, 

designated as hga in Equation (19). Expanding the left hand side 

of Equation (27) and rearranging: 



The rate of vapor generation, mi, is determined from the 

conservation of energy equation applied to the liquid-vapor 

interface. Assuming no heat transfer to the vapor, all energy 

transferred to the interface by conduction in the liquid results 

in vaporization of liquid at the interface, given by: 

(21 = mihfg (29 

For relatively short periods, where the temperature boundary 

layer is small compared to any radii of curvature present at the 

interface, the liquid may be treated as a semi-infinite planar 

solid. The surface area term, Ai, will be that corresponding to 

the shape the interface takes in zero gravity. The one dimen- 

sional form of Fourier's conduction equation for the liquid at 

the interface is: 

Combining Equations (29) and (30) gives 

The problem of determining the interfacial mass transfer is 

reduced to determining the temperature gradient of the liquid at 

the interface, which requires that the transient temperature 

distribution in the liquid near the 1-v interface be determined. 

If the liquid near the 1-v interface can be considered to approx- 

imate a one-dimensional semi-infinite solid in it's thermal 

behavior the analytic solution for a step change in surface 

temperature, in connection with the finite form of Duhamel's 

superposition integral, can be used to determine the transient 

temperature distribution in the liquid. The time varying inter- 



face temperature is taken as the saturation temperature corres- 

ponding to the instantaneous system pressure, which must be 

determined appropriately from the system of governing equations. 

Accordingly, the differential form of the governing equation 

and the initial and boundary conditions for the one-dimensional 

semi-infinite solid, initially at uniform temperature To and with 

a step change in surface temperature to Ti are: 
.. 

The solutions for the temperature distribution and for the temp- 

erature gradient are given by [14]: 

The interface temperature, being the saturation temperature cor- 

responding to the ullage pressure, will be time varying in the 

present case since the pressure will change as the tank is 

vented. This time varying boundary condition Ti(t) is incor- 

porated into the solution using Duhammel's superposition integral 

[14] in the form: 
t 

0 
Here, 



We let 

$(x,t) is the unsteady temperature resulting from a stepwise unit 

increase in surface temperature, relative to a uniform initial 

temperature. If the increase is kept at zero until a certain 

time t-s, and at that instant raised to unity and maintained 

constant, the new temperature 4(x,t) may be expressed in terms of 

The solution for +(x,t) is given by Equation (36), transformed to 

the form of Equation (40) as: 

Solution of the system of equations for the venting problem would 

be performed in discrete time steps, and the discrete form of 

Equation (38) is given by: 
n 

9(x,t) = ei(0) $(x,t) + C AQi, +(x1t-sm) (43) 
m=l 

where 

AOim = 9i(sm) - 9i(sm-1) (44) 

Here, n is the total number of time steps into which the process 

has been divided, rn is a running time index, l<m<n, and A@im is 

the incremental change in surface temperature, related to the 

system vapor pressure. 

Since the temperature gradient at the interface is needed to 

compute the interfacial mass transfer rate in Equation (311, this 

can be obtained by differentiating Duhamelk superposition inte- 

gral Equation (38) as: 



ao(o,t) = ei(0)aO(ort) + Y ( o ,  t-S) dei (sIds 
ax ax ax ds 

The discrete form of Equation (45) is given by: 

For a semi-infinite solid with a step increase disturbance: 

Substituting Equation (47) into Equation (46), and noting that 

although for a step initial disturbance that a+/ax(o,o) = a, 

Bi(0) can be taken as small as desired, so that Equation (46) 

becomes : 
n ao ~o~~ -(o,t) = , c 

ax m-1 [na ( t-sm) 1112 

Equation (48) is the form used to compute the interfacial 

mass transfer rate below. However, another procedure was devel- 

oped initially to approxipate the temperature gradient at the 

interface and will be described here for the sake of complete- 

ness. 

The procedure is to compute the instantaneous temperatures 

at a finite number of points in the liquid near the interface, 

using Equation (43), and fit these points to a third order 

polynomial using a least squares fit. The polynomial is of the 

form: 

T = A + BX + e x %  + 13x3 ( 4 9 )  

The temperature gradient s f  the Piquid a t  t h e  I-v i n t e r f ace ,  

x = 0, is then: 



The number and spacing of the nodes at which the temperatures of 

the liquid are to be calculated, and with which the coeffiefents 

A, B, C, and D in Equation (49) will be determined, must next be 

specified. Six nodes were taken arbitrarily as being sufficient 

to obtain the four coefficients in Equation (49). Intuitively, 

nodes nearest to the 1-v interface will give the most accurate 

value of the liquid temperature gradient at the 1-v interface, 

The method used was to estimate a temperature penetration depth, 

6, taken here to be the depth at which the dimensionless temp- 

erature change computed by equation (36) is 95% of the distur- 

bance, or 

0,95 = erf 

and 

6 = 1.39 x 2(at1l/~ 

The actual penetration depth would be somewhat less than this 

value, since the actual system does not undergo a single step 

change in surface temperature, but rather a transient change in 

surface temperature. The six equally spaced nodes are taken to 

be within the 10% of this penetration depth nearest the 1-v 

interface. 

Now that the temperature of the liquid at each of the six 

nodes near the 1-v interface is known, the constants A, B, C, and 

D of Equation (49) may be determined. A least squares algorithm 

was used [ 1 5 ]  which determines the polynomial coefficients which 

minimize the error between the data points and the polynomial. 



A test program was devised to evaluate the effect of the 

fraction of penetration depth used when fitting a polynomial by 

computing the accuracy of the polynomial in predicting the 

temperature gradient at the 1-v interface. The temperature and 

temperature gradient obtained with the above procedure are com- 

pared with the analytical values for a single step change in 

surface temperature, being the most severe test possible. 

Figure 4  gives the relative errors in the surface tempera- 

ture gradient while Figure 5 gives the relative errors in the 

surface temperature itself, as a function of the fraction of the 

penetration depth within which the six equally spaced nodes are 

located. These computations were also carried out with the 

first, second, and third order curves of Equation ( 4 9 ) .  With the 

nodes contained within a region of 10% of the penetration depth 

from the surface and using a third order polynomial, the error in 

the temperature gradient at the interface is less than 0.5%. 

3. --- Combined Liquid-Vapor Region 

The basic equation used to solve for the transient states 

within the tank venting vapor only and containing liquid and 

vapor initially at a uniform temperature and pressure is given by 

Equation (28). The states of the vapor within the tank and the 

liquid arising from condensation from the vapor state are always 

at a uniform temperature, whereas the temperature distribution 

within the liquid will vary in accordance with the solution for a 

semi-infinite solid, as described in the previous section. The 

system pressure is taken as uniform but time varying. 



Solving Equation (28) for the time step dt, and substituting 
'a 

for me from Equation (20): 

e 

mi is determined from Equations (31) and (48), expressions in- 

volving u, and hg, are given by Equations (11) and (12), m, is 

given by Equations (24) and (25), and Pv can be expressed in 

terms of the Tv with the Clausius-Clapyron equation or the vapor 

pressure curve. Temperature of the vapor (and hence the liquid- 

vapor interface) is used as the computational variable on the 

right hand side of Equation (53), with time being the dependant 

variable to be integrated. The quality X I  resulting from con- 

densation in the vapor space during the expansion process, must. 

be solved at each computational step by trial-and-error such that 

Equation (9) is satisfied at each state along the path. It is 

this element of the solution process that constitutes a major 

portion of the computational time. 

111. RESULTS 

The flow sheet is given in Appendix A, while the symbol and 

program listings are given in Appendices B and C, respectively. 

For purposes of comparisons of the computational results 

using different temperature steps in the expansion process, it is 

necessary to use specific input parameters at this stage. The 

experimental parameters used in f 9 ]  with 8-11 will be used here, 

and permit comparisons between the measurements of system pres- 



sure at the end of the three second vent period and that pre- 

dicted by the analysis developed here, 

Table 2 lists the experimental parameters from [ 9 ] ,  along 

with the final pressure measured after venting for three seconds. 

The acrylic plastic cylindrical container was 6 cm inside dia- 

meter by 10 cm inside length, and had a zero contact angle with 

- 1 .  Under the microgravity conditions during free fall suffi- 

cient time was allowed for the interface to achieve its equili- 

brium hemispherical shape before venting was initiated. This 

serves to define the surface area from which evaporation can take 

place. Also listed in Table 2 are the final pressures computed 

by the analysis in 191 and by the analysis presented here. These 

differ in how the condensation from the vapor space is treated, 

and in how the mass transfer at the liquid-vapor interface is 

computed. 

It is noted in Table 2 that although minor variations exist 

in the degree of initial filling and in the initial states, the 

major differences between the test runs is that the venting ori- 

fice diameter increases progressively, which corresponds to an 

increase in the venting rate expressed in the fourth column as 

computed initial ullage volumes per second. The tabulated 

measured and analytic relative pressure drops are the pressure 

decreases taking place in three seconds divided by the initial 

system pressure. 

The parameters of system pressure, the corresponding satur- 

ation temperature, vapor space quality, and mass rates being 

vented and evaporated at the liquid-vapor interface are plotted 

in Figures 6-10, corresponding to test numbers 1-5 in Table 2, as 



a function of time up to a three second maximum period, using 

constant step changes in vapor state temperature of 0 . 5 " ~  for t h e  

integration of Equation ( 5 3 ) ,  

Results obtained with different degrees and sequences of 

step changes in temperature during the expansion process are 

presented in Tables 3-7, corresponding to test numbers 1-5 in 

Table 2. All computational results presented here were performed 

with the Harris-800 computer, which has 6 megabytes of virtual 

address space, handles lo6 instructions/second with 24 bits/word 

and a floating point processor. The objective of varying the 

computational step changes of temperature was to examine its 

influence on the results. The smallest constant step used, 

Computer Runs B with 0 . 0 5 ~ ~ ~  give the largest final pressure for 

all cases. This is not necessarily the most accurate result, 

because of the accumulation of errors associated with the long 

computational period required for this case. The largest compu- 

tational step used, computer Runs A with 0.5O~, appear to give 

satisfactory results and were those used to make the plots of 

Figures 6-10. 

IV. DISCUSSION 

It is noted in Figures 6-10 that as the initial venting rate 

increases, as a result of the larger orifice sizes, that the 

pressure decreases more rapidly, that the evaporation rate in- 

creases correspondingly because of the associated decrease in the 

liquid-vapor interface temperature, and that the evaporation and 

venting rates approach each other. In Run Number 5 (Figure 10) 



the evaporation rate reaches a maximum and then begins to de- 

crease, as a r e s u l t  o f  t h e  lower rake sf pressure decrease, which 

in turn affects the temperature gradient in the liquid at the 

liquid-vapor interface. 

From Table 2 it is noted that the final pressure computed 

with the procedure developed here gives somewhat higher pressures 

than in the analytic results of [9]. This is believed to repre- 

sent a more accurate result, because of the more accurate compu- 

tation of the transient temperature gradient at the liquid-vapor 

interface. Both computed final pressures are significantly lower 

than the experimental measured ones. This is attributed to ne- 

glecting, in the analysis, the evaporation taking place at the 

meniscus shown in Figure 2, which can be considerable. Addi- 

tional evaporation would tend to reduce the pressure decrease 

rate. 

V. FUTURE WORK 

1. The results presented here should be placed in a generalized 

form so as to be more generally useful. 

2. The analysis should be extended to include evaporation taking 

place at the solid-vapor-liquid contact line. 

3. Investigations should be initiated on the parameters which 

govern the limits on the pressure decrease rate so as to 

prevent nucleation. For example, it is noted in Figure 10 

that the saturation temperature changes by about 7 3 O ~  in 

three s e c o n d s ,  T h i s  means t h a t  i f  the container were s u f -  

ficiently large and contained a significant amount of liquid, 



the liquid would become superheated by this 73O~, and most 

certainly would nucleate, with local boiling taking place 

most likely on the walls. 

4 .  Experiments should be conducted with large size containers, 

to study effects of wall heat capacities, interface areas, 

and to corroborate the influence of meniscus evaporation. 

VI. NOMENCLATURE 

Thermal Diffusivity 

Area 

Flow Coefficient 

Ideal Gas (low pressure) Specific Heat at Constant 

Volume 

Differential 

Enthalpy 

Latent Heat of Vaporization 

Thermal Conductivity 

Constant Defined Locally 

see Equation (22) 

Mass 

Pressure 

Heat Transfer Rate 

Gas Constant 

Time as Integration Variable - Equation (38) 
Entropy 

Time 

Temperature 



u Specific Internal Energy 

v Specific Volume 

x Coordinate 

X Quality 

Y Ratio of Specific Heats 

6 Boundary Layer Thickness, Differential 

8 Relative Temperature 

4) Dimensionless Temperature 

$ Dimensionless Temperature Solution for Unit Temperature 

Disturbance 

Subscripts: 

e Exiting Control Volume 

f Liquid 

g Vapor 

i Entering Control Volume 

v Vapor 

u Control Volume 

sat Saturated Conditions 
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Fig .  

F ig .  1. Schematic of v e n t i n g  system. 



So l id  
Wall 

Fig. 2 .  De ta i l  of Meniscus 



Fig. 3. Isentropic Expansion of Initially Saturated Vapor 
with ~quilibrium Quality and as Pseudo-Vapor. 
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F i g .  6 .  Computed r e s u l t s  for Run N o .  1 i n  T a b l e  2 .  





TIF.1E - SECONDS 

F i g .  8 .  C o m p u t e d  r e s u l t s  f o r  R u n  No.  3 i n  T a b l e  2 ,  



TIME - SECONDS 

Fig. 9. Computed results for Run No. 4 in Table 2. 



. . . . ,  . . . .  . 
TIME - SECONDS 

Fig. 10. Computed results for Run No. 5 in Table 2. 
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VIII. TABLES 



Table 1. Computation of final state for venting Freon-11 ts 
one-half the initial mass. 

nitial State 

T = 7 4 . 0 0 0 ~ ~  

P = 14.447 psia 

X = 1.0000 

T = 1 6 0 . 0 0 0 ~ ~  

P = 60.451 psia 

X = 1.0000 

I 

B 

C-2 

A 

B 

C-1 

29.138 

37.989 

112.208 

109.202 

112.028 

C-2 I 112*085 

6.715 

6.705 

28.938 

28.913 

28.864 

----- 

.9792 

.9943 

----- 
.9920 

28.892 .9928 





Table 3. Computer Runs for Test Number 1 in Reference 9 .  

1 A  

1B 

1C 

1 D  

1E 

1 F  

1G 

Constant DT = 0 . 5  F  
See Figure 6  

Constant DT = 0.05  F 

9  Steps DT = 0.05 F  
then remaining DT = P F 

Geometric Series Init. 
DT = .025F Ratio = 1 . 0 5  

Same as D, but 
DTmax = 1 . 0  F  

Geometric Series Init. 
DT = .05 F  Ratio = 1 . 0 5  

Same as F, but 
DTmax = 1 . 0  F  

11.853 

11.905 

11.838 

11.890 

11.890 

11.886 

11.886 

.998  

.998  

.998  

.998  

.998  

.998  

.998  

. 7 1 9 ~ - ~  

. 7 2 2 ~ - ~  

. 7 1 8 ~ - ~  

, 7 2 1 ~ ~ ~  

. 7 2 1 ~ - ~  

. 7 2 1 ~ - *  

. 7 2 1 ~ - ~  

. 2 3 0 3 - ~  

. 2 5 6 ~ - ~  

. 2 1 4 ~ - ~  

. 2 4 1 ~ - ~  

. 2 4 1 . ~ - ~  

. 2 4 0 ~ - ~  

. 2 4 0 ~ - ~  



Table 4. Computer Runs for Test Number 2 in Reference 9. 

Temperature 

2A 

2B 

2C 

2D 

2E 

2F 

2G 

Constant DT = 0.5 F 
See Figure 7 

Constant DT = 0.05 F 

9 Steps DT = 0.05 F 
then remaining DT = 1 F 

Geometric Series Init. 
DT = .025F Ratio = 1.07 

Same as D, but 
DTmax = 1.0 F 

Geometric Series Init. 
DT = .05 F Ratio = 1.07 

Same as F, but 
DTmax = 1.0 F 

8.361 

8.454 

8.312 

8.340 

8.345 

8.337 

8.342 

.990 

.990 

.990 

.990 

.990 

.990 

.990 

. 2 6 6 ~ - ~  

. 2 6 9 ~ - ~  

. 2 6 5 ~ - ~  

. 2 6 6 ~ - ~  

. 2 6 6 ~ - ~  

. 2 6 5 ~ - ~  2 

. 2 6 6 ~ - ~  

. l l l ~ - ~  

. 1 1 6 ~ - ~  

. 1 0 7 ~ - ~  

. 1 0 6 ~ - ~  

. I O ~ E - ~  

. 1 0 6 ~ - ~  

. I O ~ E - ~  



Table 5. Computer Runs for Test Number 3 in Reference 9. 

Temperature 

b 

3A 

3B 

3C 

30 

3E 

3F 

3G 

Constant DT = 0.5 F 
See Figure 8 

Constant DT = 0.06 F 

9 Steps DT = 0.06 F 
then remaining DT = 1 F 

Geometric Series Init. 
DT = -03 F Ratio = 1.06 

Same as D, but 
DTmax = 1.0 F 

Geometric Series Init. 
DT = .06 F Ratio = 1.06 

Same as F, but 
DTmax = 1.0 F 

6.269 

6.364 

6.213 

6.203 

6.232 

6.203 

6.230 

.979 

.980 

.979 

.979 

.979 

.979 

.979 

. 3 6 5 ~ - ~  

. 3 7 0 ~ - ~  

. 3 6 2 ~ - ~  

. 3 6 1 ~ - ~  

.363Em3 

.361Es3 

. 3 6 3 ~ - ~  

. 1 8 7 ~ - ~  

. 1 9 4 ~ - ~  

. 1 8 4 ~ - ~  

. 1 7 8 ~ - ~  

. 1 8 3 ~ - ~  

. 1 7 8 ~ - ~  

.183Ee3 



Table 6. Computer Runs for Test Number 4 in Reference 9. 

Computer 
Run No. 

4A 

Temperature 
Steps 

Constant DT = 0.5 F 
See Figure 9 

Constant DT = 0.06 F 

9 Steps DT = 0.06 F 
then remaining DT = 1 F 

Geometric Series Init. 
DT = .03 F Ratio = 1.04 

Same as D, but 
DTmax = 1.0 F 

Geometric Series Init. 
DT = .06 F Ratio = 1.04 

Same as F, but 
DTmax = 1.0 F 

Final Values at 3 Sec. 

mevap 

-258~'~ 

. 2 6 6 ~ - ~  

. 2 5 4 ~ - ~  

- 2 4 9 ~ ~ ~  

- 2 5 4 ~ ~ ~  

- 2 4 8 ~ ~ ~  

. 2 5 4 ~ - ~  

P 

4.822 

4.909 

4.771 

4.757 

4.784 

4.757 

4.783 

* 

.966 

.966 

-965 

-965 

-965 

.965 

.965 

mvent 

. 4 3 9 ~ - ~  

. 4 4 7 ~ - ~  

. 4 3 5 ~ - ~  

, 4 3 4 ~ ~ ~  

. 4 3 6 ~ - ~  

- 4 3 4 ~ ~ ~  

. 4 3 6 ~ - ~  



Table 7 .  Computer Runs for Test Number 5 in Reference 9. 

Temperature 

5A 

5B 

5C 

5D 

5E 

5F 

5G 

Constant DT = 0 . 5  F 
See Figure 1 0  

Constant DT = 0 . 0 5  F  

9  Steps DT = 0 . 0 5  F  
then remaining DT = 1 F 

Geometric Series Init. 
DT = . 0 2 5 F  Ratio = 1 . 0 2 8  

Same as D, but 
DTmax = 1 . 0  F 

Geometric Series Init. 
DT = . 0 5  F Ratio = 1 . 0 2 8  

Same as F ,  but 
DTmax = 1 . 0  F 

2 . 7 7 1  

2 . 6 7 7  

2 . 6 5 6  

2 . 6 8 2  

2 . 6 5 7  

2 . 6 8 2  

. 9 2 8  

. 9 2 6  

. 9 2 5  

. 9 2 6  

. 9 2 5  

. 9 2 6  

. 4 8 6 ~ - ~  

. 4 7 0 ~ - ~  

. 4 6 7 ~ - ~  

. 4 7 1 ~ - ~  

. 4 6 7 ~ - ~  

. 4 7 1 ~ - ~  

. 3 6 4 ~ - ~  

. 3 5 1 ~ - ~  

. 3 4 6 ~ - ~  

, 3 5 2 ~ ~ ~  

. 3 4 6 ~ - ~  

.352EW3 
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Appendix A. Algorithm Flow Chart 

Calculate 
DT l ME 

Calculate @*I 

Calculate 

t 1 YES 



Appendix B .  Symbol L i s t i n g  

FORTRAN 
Symbol Descri p t i  on 

AIN 
AOUT 
AMASS 
AS 
AT 
CD 
CQND 
CV 
CP 
DOTM 
DT,DTEMP 
DTlME 
DTR 
HF 
HG 
OUT 
PSAT 
SF 
SG 
T 
TF 
T I  
T I  ME 
TIME2 
TO 
UF 
UG 
VF 
VG 
x F 
x I 

Total  mass of evaporated vapor 
Total  mass of vented vapor 
ln i  t i a l  mass of vapor domain 
interface surf  ace area 
Nozzle corss sectional area 
D l  scharge coef f ic ient  
Thermal conductivity of  l i qu id  @T 
Constant volume spceci f ic heat of  vapor @T 
Constant pressure speci f ic heat o f  vapor @T 
Mass f l o w  rate across interface 
Temperature step 
Time step 
Temperature ra t i o  
Enthalpy o f  saturated l iqu id  @T 
Enthalpy o f  saturated vapor @T 
Mass f l o w  rate of vented vapor 
Saturation pressure @T 
Entropy of saturated l iqu id  @T 
Entropy o f  saturated vapor @T 
Temperature 
Final ul lage temperature a t  next s tep 
In i t i a l  ul lage temperature 
Total  elapsed t ime  
Elapsed time for each step 
ln i  t i a l  ul lage temperature 
Internal energy of saturated l iqu id @T 
Internal energy of saturated vapor @T 
Specif ic volume of saturated l iqu id  8T 
Speci f ic  volume sf saturated vapor @T 
Final qua l i ty  of vapor st next step 
lni t i s i  qual i ty of  vapor 

Lbm 
Lbm 

~ t u / h r - f  t -OF 

Btu/Lbm OF 

Btu/Lbm OF 

Lbm/Sec 
OF 

Seconds 

Btu/Lbm 
Btu/Lbm 
Lbm/Sec 
Psis 
BtuILbm OF 

Btu/Lbm OF 

OR 

OR 

OR 

Seconds 
Seconds 
OF 

Btu/Lbm 
Btu/Lbm 
~ t ~ / ~ b m  
F t 3 / ~  bm 






























