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ABSTRACT 

High accuracy numerical quadrature methods for integrals of singular 

periodic functions are proposed. These methods are based on the appropriate 

Euler-Maclaurin expansions of trapezoidal rule approximations and their 

extrapolations. They are used to obtain accurate quadrature methods for the 

solution of singular and weakly singular Fredholm integral equations. Such 

periodic equations are used in the solution of planar elliptic boundary value 

problems, elasticity, potential theory, conformal mapping, boundary element 

methods, free surface flows, etc. The use of the quadrature methods is 

demonstrated with numerical examples. 
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1. INTRODUCTION 

In this work we shall present some Romberg-type quadrature methods for the 

numerical solution of singular and weakly singular Fredholm integral equations of 

the first and second kinds 

b 

GJ! (t) + JK{t ,x)! (x)dx = g{t), a:::;t:::;b, (1.1) 

where GJ=O and GJ= 1 for ~st and second kinds respectively, and the corresponding 

eigenvalue problems 

b 

Jet) + AJK{t,x)!{x)dx = 0, a:::;t:::;b, (1.2) 

that arise, for example, from some boundary value problems over two dimensional 

domains with smooth and rectifiable boundaries. These quadrature methods are 

ultimately based on appropriate Euler-Maclaurin expansions for the trapezoidal 

'rule, and treat the singularity in the kernel K{t ,x) systematically. As such, these 

methods are simple, easy to implement, and have high order of accuracy. 

We assume that K{ t ,x) is periodic in both t and x with period T=b -a, and 

get) is periodic in t with period T. We fUrthermore assume that K(t,x} is of the 

form 

Map 
K(t,x) = 2:HA;(t,x)lt-xl k(loglt-xl) I: 

A;=1 

B1(t,x) '" ( ) + t + H2 t,x , -x 

(1.3) 

where aA; are real numbers satisfying aA; > -1, and Pie are non-negative integers, 

HA;{t ,x), 1:::; k :::; M, and Hj{t ,x), j =1,2, are differentiable in t and x as many times 

as needed. In (1.3) it is assumed that HIe(t ,t) :;t. 0 whenever HA;{t ,x) $0 for some k. 

It is also assumed that Ilt(t,t):;t. 0 whenever H1(t,x) $0. and in this case the 

integrals in (1.1) and (1.2) are to be taken as Cauchy principal value integrals. 

When HIe(t ,x) == 0, 1:::; k :::; M, and B1(t ,x) $0. the integral equations (1.1) and (1.2) 

are called singular. and when HIc(t,x) $0 for some k, 1:::; k :::; M, and H1(t,x) == 0, 
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they are called weakly singular. 

It is worth mentioning that the important cases of K(t.x) that arise in appli-

.... RI(t .x) .... 
cations are K(t ,x) = H l(t.X )log I t -x I + H2(t.X). K(t.x) = t + H2(t.X). and -x 

combinations of the two. 

We shall assume that J (t ). as K( t ,x) and g (t). is periodic in t. with period T. 

and is as many times differentiable as needed. We note that when (1.1) and (1.2) 

arise from some boundary value problems in two dimensions. defined over 

bounded domains with smooth boundaries. K(t.x}. g(t). andJ(t) also. in general. 

turn out to be smooth. 

One of the methods for solving (1.1) and (1.2) numerically is the quadrature 

method (see Baker (1977. Chap. 4. Section 3». in which one replaces the integral 

b 

J K(t .x)J (x)dx by a numerical quadrature formula. whose abscissas are 
I a 

x;. j=l •...• n. with t=xi,. i=l •...• n. then replaces the J(x;) by their approximation 

7;. and finally solves the resulting system of linear equation for the I;. Obviously 

the accuracy of this method depends on the accuracy of the numerical quadra-

ture form.ula being used. which in turn depends on the analytic properties of both 

the kernel K(t.x) and the solution J(t) over [a.b]. It can be said. in general, that 

whenever K(t.x) is weakly singular or singular. the solution J (t) will be singular 

at the end points a and b. The singularity structure of J (t) may be complicated 

and difficult to determine; see MacCamy (1958) and Graham (1982) for some gen­

eral results on this problem. When K(t.x). get). andJ(t) are (periodic) as 

assumed in the present work, then a and b in (1.1) and (1.2) can be replaced by a' 

and b' respectively. where b I-a '= T. If we now assume that J (t) has singularities 

at a and b I then it should be singular at a' and b I ad hence at all t. As a result 

we conclude. heuristically. that J (t) cannot have any singularities. and this is the. 

assumption that we have made above. 



3 

Let 

Xj = a + jh, h = {b -a)/n, n a positive integer. (1.4) 

Using the Euler-MacLaurin expansion for smooth integrands, and their extension 

to integrands having end point singularities {see Navot (1961, 1962», in the next 

b 

section we derive Euler-MacLaurin expansions for the integrals J K(t ,x)! (x)dx, 

" 
with K(t ,x) as given in (1.3). We basically derive asymptotic expansions, for h-+O, 

for the differences 

6{t ,h) = I[t;!] - In[t;!], (1.5) 

where 

b 

I[t;/] = JK{t ,x)/ (x)dx (1.6) 

" 
and 

n 
In[t;/] = 2: '!.Vn{t,Xj)/(Xj), (1.7) 

j=1 

such that t is one of the points Xj' and is being held fixed, and wn (t ,Xj) = hK{t ,Xj) 

for Xj ;t t, and Wn (t ,t) depend on the type of singularity that K(t ,x) has for t = x. 

Using the asymptotic expansions for 6{t ,h), in Section 3 we derive Romberg-type 

numerical quadrature formulas, thus increasing the accuracy of In [t;/] by as 

many orders of magnitude as we wish. In Section 4 we present quadrature 

methods that are based on these Bamberg-type formulas. In Section 5 we illus-

trate the efficiency of our quadrature methods with numerical examples. In Sec-

tion 6 we review some quadrature methods that have been proposed and bear 

some relation to the ones proposed in the present work. 

Note: The treatments of singular and weakly singular integral equations are 

not separated from each other throughout this paper. The reader interested in 

the treatment of singular integral equations could follow it easily by going through 

Theorems 2.1, 2.4, 2.7a, 3.1, 3.2, and the first part of Section 4, without having to 

consider the rest of this work. 
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2. EULER-MACLAURIN EXPANSIONS 

The notation described below will be used throughout the remainder of this 

work. 

Let x; = a+jh. j =0.1 •...• n. h=(b -a)/n. where n is a positive integer. Let 

t E: (a.b) be fixed and t E: ~Xj 11~j~n-1~ for some n =no. Obviously. there exists 

an infinite sequence of integers ~n,l: ~';=o. n,l: +1 > n,l:. k =0.1 ....• such that t is one of 

the Xj whenever n =n,l:. k =0.1..... With the exception of Theorems 2.1-2.3. the 

notation h40 will be assumed to mean that n400 through the sequence of integers 

m2 

plied by 1/2. while 2:" a; will be taken to mean that both a ml and am2 are to be 
j=ml 

multiplied by 1/2. in the respective summations. 

Theorems 2.1-2.3. which are stated below without proof form the basis of our 

development throughout the remainder of this work. 

Theorem 2.1: Let the function g(x) be 2m times differentiable on [a.b]. Then 

where 

R [ .( b)] = h2mJb B2m[(x-a)/h]-B2m (2m)()dx 
2m g. a, " (2m)! g x . 

(2.1) 

(2.2) 

Here B ~ are the Bernoulli numbers. and B ~(x) is the periodic Bernoullian function 

of order J.t. In addition. since ~(x) are bounded on (-00.00). it follows that 

(2.3) 

where 
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(2.4) 

and, therefore, is independent of h. Consequently, if g (x) is infinitely 

differentiable on [a,b], then D{h) has an asymptotic expansion of the form 

D{h) '" ~ B2~. ~(2~-I){a) _ g{2~-I){b »)h2~ as h-+O . 
}'=1 (2JL). 

(2.5) 

For a proof of this result see Steffensen (1950). The expansion in (2.5) is the 

classical Euler-Maclaurin expansion for trapezoidal rule approximations of 

integrals of smooth functions. Navot (1961, 1962) has extended the Euler-

Maclaurin expansions to trapezoidal rule approximations of integrals of functions 

having algebraic and/or logarithmic end p~int singularities. By a different 

approach that utilizes generalized functions, Lyness and Ninham (1967) have 

rederived Navot's results. The results stated as Theorems 2.2 and 2.3 below, are 

special cases of those proved by Navot. 

Theorem 2.2: Let g(x) be 2m times differentiable on [a,b] and let 

G(x) = (x-a)Sg(x), s>-l. Then 

II n 

D(h) = J G{x)dx - h2:' G(x;) 
II ;=1 

m-l B 
= - 2: ~G{2J1.-1){b )h2J1. 

Jl.=1 (2JL)! 
(2.6) 

_ 2~1 ( -s.-g) g~)(a)hJl.+S+1 + P2m , 

Jl.=O JL. 

where ( 'T) is the Riemann zeta function initially defined for Re 'T > 1 by 

00 

('T) = 2: k-'T. and then continued analytically, and 
k=l 

PZm = o~2m) as h--+O . (2.7) 

If g(x) is infinitely differentiable on [a,b], thenD(h) has an asymptotic expansion 

of the form 
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D{h) ..... - f; B2JJ. G(2JJ.-l){b )h2JJ. 
p.::l (2J-L)! 

- f; ( -SI-g ) gCJJ.){a)hJJ.+S+1 as h-tO. 
p..=O J-L. 

(2.8) 

Starting from Theorem 2.2. Navot (1962) shows that the extensions of the 

Euler-Maclaurin expansion to trapezoidal rule approximations of integrals of func-

tion of the form (z-a)s[log{x-a)]Pg{x), with p being a positive integer and g{x) 

being sutIiciently smooth in [a,b], can be obtained by differentiating both sides of 

(2.6) p times with respect to s. For p =1 the following results are obtained. 

Theorem 2.3: Let g (x) be 2m times differentiable on [a,b], and let 

G{x) = (x-a)Slog{z-a)g{z), s>-1. Then 

b on 

D{h) = jG{x)dx - h~'G{xi) 
II j=1 

= _1;1 B2JJ. G(2JJ.-l){b )h2JJ. (2.9) 
JJ.=1 (2J-L)! 

- 2!1[_t{_S_J-L) + (-s-J-L)log h] gCJJ.:fa ) hJJ.+s+1 + Pzm . 

where reT) = d(T)/ dT. and 

(2.1O) 

If g{x) is infinitely differentiable on [a.b]. then D(h) has an asymptotic expansion 

of the form 

.. B 
D(h) ..... - ~ ~G(2JJ.-l){b )h2JJ. 

p..=1 (2J-L). 

- f; [-('(-S-J-L) + (-s-J-L)log h] gCJJ.)fa ) hJJ.+s+l . 
p.::O J-L. 

(2.11) 

Note that both Theorem 2.2 and Theorem 2.3 are true for any S >-1. although 

they were originally stated for -1<s:!::O. 

b 

We shall now apply Theorems 2.1-2.3 to integrals of the types j ~(~) dx and 
. II 
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b 

J I x -t I S (log I x -t I )P g (x)dx. the former being defined as a Cauchy principal value 
(J 

integral. 

Theorem 2.4: Let g(x) be 2m times differentiable on [a,b], and let G(x) = aJ.=l.t ' 
x-

Then 

b 

D(h) = J G(x)dx - htj" G(Xj) 
(J j=O . 

Zj .. t 

= hg'(t) + mf:l B2JJ.. [aC2JJ.-l)(a) _ G(2JJ.-l){b)]h2JJ. 
JJ.=1 (2J.L) , ,. (2.12) 

as h-*O. 

,Proof: We can assume without loss of generality that t -a ~ b -t. Then, since t is 

one of the Xj. so is b'=2t-a. Furthermore, t is the midpoint o( the interval [a,b']. 

Now 

b b' b 

J G(x)dx = J G(x)dx + J G(x)dx 
(J (J b' 

(2.13) 

and 

b' b' J G(x)dx = J g(x )-g (t) dx. 
(J (J x-t 

(2.14) 

the integral on the right hand side of (2.14) being an ordinary integral. in which 

the integrand becomes g'(t) when x=t. Applying Theorem 2.1 to the right hand 

side of (2.14). we have 
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D1(h) = fG(X)dx -h 2:;" g(Xj)-g(t) h g·(t) 
(l :r:j~b' Xj-t 

:r:j .. t 

=m01 B2}J. {d2}J.-l [g(X)-g(t)]1 __ d2}J.-l [g(X)-g(t)]1 _ ,}h2}J. 
}J.L;1 (2,u)! d.x 2}J.-l x-t :r:-(l dx 2}J.-l x-t :r:-b (2.15) 

as h40. 

Now 

and 

dT r_l 1_ (-lt r ! 
~~ - (X-t)T+l' r=O.l.... . 

Combining (2.16) and (2.17) in (2.15). we have 

b' 

DI(h) = fG{x)dx -h 2:;" G{Xj) -h g·(t) 
(l :r:j~b' 

:r:j .. t 

= m~l B2}J.. [G(2JJ.-l)(a)-G(2JJ.-l)(b ')]h2JJ. + orL2m) as h40. 
}J.=l (2,u). r-

b 

Applying Theorem 2.1 to f G{x)d.x. we obtain 
b' 

b 

D2(h) = f G(x)dx - h 2:;" G{Xj) 
b' :r:j=<>b' 

= 1:1 
B 2}J.. [G(2}J.-I){b ·)-G(2}J.-I)(b )jh2}J. + O(h2m ) as h 40. 

}J.=l (2,u). 

Adding (2.18) and (2.19). (2.12) now follows. 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

[] 
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Corollary: The remainder term O(h2m) in (2.12) is actually given by 

'X [G'( b)] = h2mJb B 2m [(x-a)/h]-B2m G(2m)( )dx 
.t(2m • a. a (2m)! x • (2.20) 

this integral being interpreted as a Cauchy principal value integral. 

Proof: The remainder term O(h 2m) in (2.15) is 

1 _ 2mJb' B 2m [(x-a)/h]-B2m d2m [g(X)-g(t) ]dx. 
R 2m - h a (2m)! dx2m x-t (2.21) 

Now making the change of variable x =t +~. we have 

J
b' B2m[{x-a)/h]-B2m d 2m [~d.x = 
a (2m)! d.x 2m ." X-tJ 

tJ-a B2mU/ h+{t-a)/ h]-B2m d 2m [~ 
{ )

1 2 d~. 
-(t-a) 2m . d~ m ~ 

(2.22) 

Recall that 

(2.23) 

and 

(2.24) 

Since (t -a)/ h is an integer. it follows using (2.23) and (2.24) that the integrand of 

the integral on the right hand side of (2.22) is odd. Consequently. when taken as a 

Cauchy principal value integral. this integral is zero. The result now follows by 

using this in (2.21). and adding to R~m the remainder term of the Euler-Maclaurin 

b 

expansion for the integral J G{x)dx. 
b' 

[] 

Theorem 2.5: Lel g{x) be 2m limes difierenliable on [a.b]. and lel 

G{X) = Ix-t I Sg(x). Then 



],.0 

b n 

D{h} = fG{x)d.x -h 2:;" G{Xj) 
II j=O 

:&i""t 

b 

Proof: Applying Theorem 2.2 to f G{x)d.x. we have 
t 

b 

D1{h) = f G{x)dx - h 2:;' G{Xj) 
t :&J>t 

= _ m~l B2J4 G(2J4-1){b )h2J4 (2.26) 
j4=0 (21t)! 

_ 2~1 «-sl-g) gCJ4)(t)hJ4+S +l + O[h2m ) as h-+O. 
j4=0 It· 

t-II t 

Next applying Theorem 2.2 to f ~Sg{t-~)d~ (= fG(x)dx). we have 
o II 

t 
D2(h) = f G{x)d.x - h 2:;- G{Xj) 

II :&J<t 

= ~l B2J4 G(2J4-I){a)h2J4 
14=1 (2p.)! 

_ 2~-1 (-1)14 « -SI-g) g CJ4){t )hJ4+s+l + o [h2m ) as h -+0. 
j4=0 It· 

Adding (2.26) and (2.27). (2.25) follows. 

(2.27) 

[] 

Theorem 2.6: Let G{x) = Ix-t ISloglx-t Ig{x) in the statement of Theorem 2.5. 

everything else being the same. Then 
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b n 
D{h} = !G{x}dx -h 2;" G{Xj) 

II j;:O 
%j;/'t 

= ~l B2JJ. [G(2J.H){a}-G(2JJ.-l){b}]h2JJ. (2.28) 
JJ.=1 (2JL)! 

Proof: Similar to that of Theorem 2.5. 

Corollary: For s=O, {2.28} becomes 

Proof: The proof follows by setting s =0 in (2.28) and using the facts that 

{Co} = -1/2, ({ -2JL) = 0, JL = 1.2 ....• 

{see Abramowitz and Stegun (1964, p. 807». 

[] 

(2.29) 

(2.30) 

[] 
The results in the following theorem will be the ones on which our quadrature 

methods will be based. 

Theorem 2.7: Assume that the functions g (x) and g{x) are 2m times differentiable 

on [a,b]. Assume also that the functions G{x) are periodic with period T=b -a, 

and that they are 2m times differentiable on 'it = (-co,oo}\~t+kTJ;;:_oo. Then 

a) if G{x) = ~(~l + g(x), and 

then 

Qn[G] = h f: G{Xj) , 
j=1 
:t:j"'t 

{2.31a} 
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En[G] = ty(t)+g·(t)]h + O(h2m ) as h 4 0, 

b) if G(x) = Ix-t ISg(x) + y(x), S > -1, and 

then 

n '" 
~[G] = h 2: G(Xj) + g(t)h-2(-s)g(t)hs +1

, 
j=1 
%1'''' 

En[G] = _2
mfl (-S-~[..L)g(2~){t)h2~+S+l + O[h2m) as h40, 
,u.=l (2.u). 

c) if G{x) = Ix-t ISloglx-t Ig(x) + g(x), s > -1, and 

Qn[G] = hj~1 G(Xj) + y(t)h + 2k'(-S)-(-S)log h]g(t)hS+l, 

%j'" 

then 

(2.32a) 

(2.31b) 

(2.32b) 

(2.31c) 

En[ G] = 21;1 [t{-s -2.u)-~( -s-2.u)log h] g(2~)(~) h2~+s+l + O[h2m) as h40.(2.32c) 
,u.=l (2.u). 

, c') When S =0 in c), by (2.30) and teO) = - ~ log(2rr), (see Abramowitz and Stegun 

(1964, p. 807», (2.31c) and (2.32c) reduce to 

n '" [~l ~ [G] = \~l G{Xj) + g(t)h + log 21ilg {t )h, (2.31c') 
%j'" 

and 

(2.32c') 

b 

where En[G] = !G(x)dx-Qn[G] in all cases. 
(I 

Remarks: 

1) As is seen from (2.32b), (2.32c), and (2.32c'), En[G] depends only on t, and is 

independent of a and b. This is a consequence of the periodicity of G(x), and is an 

important property that shall be exploited in the derivation of Romberg-type qua-

drature formulas in the next section. 

2) Until now we assumed that t is one of the points Xj. When t is arbitrary the 
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periodicity of G(x) can be used to shift the interval [a,b] to [a',b'] such that t 

coincides with one of the Xj in the new interval [a', b·J. This, combined with the 

observation of Remark 1. means that a) En [G] in all parts of Theorem 2.7 stays 

n n-l 
the same if the sum ~ G(Xj) in (2.31a,b,c,c') is replaced by ~ G(t +jh) or by the 

j=1 j=l 
:Z:j",t 

identical sum ~ G{t +jh). and b) Theorem 2.7 holds for all positive integers 
·",0 

a <l+ih,,;,b 

n. These facts will be repeatedly used in Section 4 without further explanation. 

3) In each of the cases of Theorem 2.7, the numerical quadrature formula Qn [G] is 

computed by using the function values only. The quadrature formula (2.31a) has 

an error which is of order h, and it would seem that one would have to know g ·(t) 

with a high accuracy in order to improve this formula. But as we shall see in the 

next section, the term [9(t)+g·{t)]h that appears in En[G] is easily removed by 

one extrapolation. 

Jl a p'- .... 
4) Let G(x) = ~ gle (x )log I x -t I k{log I x -t I) k + gl{x)1 (x -t) + g2(X), where ale and 

Ie=l 

Pic are as described following (1.3). and gJc{x), l~k~M, gl(X), and g2(X) are 2m 

times differentiable on [a,b] and G{x) is periodic with period T=b -a and is 2m 

times differentiable on R. Inspection of Theorems 2.4-2.7 reveals that if we form 

"-n[G] as the sum of the quadrature formulas for each one of the terms in G(x), 

then the error En [G] does not contain any contribution from G(x) and its deriva­

tives at the end points, and the only contribution to En [G] comes from G(x) and 

its derivatives at x =t, as in Theorem 2.7. 

3. ROMBERG-TYPE NUMERICAL QUADRATURE FURMULAS 

Using the results of Theorem 2.7, we can apply extrapolation techniques to 

b 

derive Romberg-type numerical quadrature formulas for J G{x)dx. 
II 
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The simplest case is that of Theorem 2.7a. and we deal with it first. 

Theorem 3.1: Let G(x) and Qn[G] be as in Theorem 2.7a. Let hie = T / k and 

n 

'Qn[G] = 2Q2n[G] - (fu[G] = hn ~ G(a+jhn-hn/2). (3.1) 
;=1 

ie .• ~[G] is a mid-point rule approximation. Then 

b 

En[G] = !G{x)d:r: - Qn[G] = o[!tJ!m) as hn-'>O. 
a 

(3.2) 

Proof: (3.2) follows directly from Theorem 2.7a. the h term in En[ G] being elim­

inated when ~ [G] is formed. 

[] 

As a result of Theorem 3.1 we conclude that if G(x) is infinitely differentiable 

on R=(-oo.oo)\~t+kTJ;=_ .... then En[G] tends to zero more quickly than any inverse 

power of n. as n-'>oo. We can improve this result considerably whenever G{z) is 

analytic in a strip in the complex z -plane. which. with the exception of the points 

t+kT. k=O. ±1 •...• contains the real line 1m z=y=O in its interior. 

Theorem 3.2: Let G(z) in the previous theorem be analytic in the strip 11m z I <a. 

except at the simple poles t +kT. k =0. ±1. ±2.... . Then 

I:E [G] I ~ 2TM{a') ezp[ -2rrna'/ Tl , a'<a. 
n 1-ezp[ -2rrna'/ T] 

(3.3) 

where 

M{r) = max[ max I Gs {x +ir) I. max I Gs (x-ir) I]. 
-w<z<w -m<z<w (3.4) 

and 

(3.5) 

Proof: By the periodicity of G{x). we can write 
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b t+T/2 

J G{X)d.x = J G{X)d.x 
II t-T/2 

T/2 (3.6) 

= -£2 Gs{~)d~. 
Gs{z) is analytic in the strip 11m z I <a"and is periodic with period T. Mter some 

algebra it can be shown that the n(odd)-point trapezoidal rule approximation or 

T/2 

the n{even)-point mid-point rule approximation to r Ge{Od~ is just 'Qn[G]. 
-"1-/2 

Applying now a theorem due to Davis (1955) {see also Davis and Rabinovitz (1984, 

pp. 314-316», (3.3)-{3.5) follow. (Actually Davis' result is stated for the tra-

pezoidal rule. However, inspection of his proof shows it to be valid for the off-set 

trapezoidal rule. The mid-point rule is an off-set trapezoidal rule.) 

[] 

For arbitrary t, by Remark 2 following Theorem 2.7, the approximation 'Qn [G] 

can be replaced by 

'Qn[G] = "-n f: G{t+j"-n-"-n/2) , (3.7) 
;=1 

and again Theorems 3.1 and 3.2 apply. 

'Qn[G] in Theorem 3.1 has been obtained by employing the Richardson extra­

polation process once, eliminating the term O{h) in the error En[G]. Since 

En[G] = O{h2m) with m as large as we wish, there is no need for further extrapola­

tion. For Qn[G] as given in Theorem 2.7 b,c,c', however, we apply the Richardson 

extrapolation process (or generalizations of it) repeatedly in order to eliminate 

successive terms in En [G], thus obtaining Romberg-type numerical quadrature 

formulas with higher degrees of accuracy. (A summary of those extrapolation 

methods relevant to the present work is given in the appendix.) 

b 

Let G{x) and ~[G] be as in Theorem 2.7 b,c,c', and define A = JG{x)d.x and 
II 

A{h) = ~[G] in the notation of the appendix. Select a sequence of integers 
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~ndi=o, 1=5: no <n 1< '" , and set ht = Tint, l=0,1, .... Obviously limht=O, as 
t ..... 

required; see the appendix. Now the Romberg-type quadrature formulas Aq(m), 

based onA{ht), m=:;l=:;m+q, are of the form 

(3.8) 

where dJ~), Q=:;k=:;q, are constants determined by the nature of the asymptotic 

expansion of A-A{h) = En[G] as h 4 0, as described in the appendix. Some of the 

details for two special cases are given below: 

1) If G{x) is as in theorem 2.7b (or Theorem 2.7c'), then A{h) is of the form given 

in a) of the appendix with r=2, "Yi=s+1+2i, and Pi=-2({-s-2i)g(2i){t)/{2i)! 

(or r=2. n=1+2i. and Pi=2('{-2i)g(2i) {t)1 (2i)!), i=1.2 •.... Hence for a 

sequence of the form ht = hoP t • l =0, 1, ... , the dn~l can be computed from (A.6). 

For arbitrary ht. the algorithm given in {A. H) and (A.12) in b) of the appendix 

is appropriate with cp{h)=hs+3 and r=2 (or cp{h)=h3 and r=2). 

2) If G{x) is as in Theorem 2.7c with s¢O. then A{h) is of the form given in (A.1) 

with ei{h) = [('{-s-2i)-({-s-2i)log h]h2i+s+l, and 

Pi = 2g(2i){t)1 (2i)!. i=1,2, ... . The drFl then can be obtained by solving the 

equations in (A.5). 

Before closing this section we recall that. for any positive integer 

n. A(h) = Qn[G] in Theorem 2.7 b.c,c· has the form 

A{h) = h 2: G{Xj) + C(t .h). 

where 

/
' .. 0 

a< +jh~b 

g(t)h -2({ -s)g (t )hS +1 

C{t.h) = g(t)h+2[('{-s)-(-s) log h]g{t)hS+l 

9(t)h+lOg[:rr ]g{t)h 

for Theorem 2.7b 

for Theorem 2.7c 

for Theorem 2.7c', 

(3.9) 

(3.1O) 
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4. THE QUADRATURE JAETHODS FOR INTEGRAL EQUATIONS 

In what follows we consider the integral equation (1.1). with 1 (t) and g (t) 

being periodic in t with period T. and K{t.x) being periodic both in t and x with 

period T. Of course. a similar treatmet can be given to the eigenvalue problem in 

(1.2). 

4.1 The 51ngular Case 

Let K{t.x) = H1{t.x)/{t-x)+H2{t.X). For a given integer N. let 

h == h2N = (b -a)1 (2N). and Xj = a+jh. j =1 •...• 2N. Then setting t =xi. for some i. 

b 

and approximating the integral! K{xi..x)1 {x)dx by the rule ?iN in (3.1). we write 
Il 

down the following set of equations for the 2N unknowns! j (the approximations to 

the corresponding 1 (Xj»: 

where 

2N 
CJ!i + 2h2: f:ijK(xi.xj)lj = g{x.J. i=1.2 •...• 2N. 

j=1 

. (1 if li-j I odd 
f:ij = 0 if li-j I even. 

4.2 The Weakly Singular Case 

(4.1) 

(4.2) 

We mentioned in the previous section that when G(x) is a known function any 

set of integers tnt!;-;,o. 1~nO<nl< . .. • can be chosen for computing the approxi­

b 

mation Aq(m) to the integrals !G(x)dx in Theorem 2.7b.c.c·. If. however. we want 
Il 

to use the Romberg-type formula Aq(m) for solving integral equations by quadra­

ture methods. the n, cannot be arbitrary. In fact. we should choose the n, (hence 

the h, = Tin,). such that t.he set.s of abscissas that ent.er t.he comput.ation of 

A{hm~k) = Q~+JG]. O~k~q-1. where G{x) = K{t.x)/{x), are all subsets of the set 

of abscissas that enter the computation of A{hm~q). This is achieved by picking 

the n,. m~lsm+q -1. as divisors of ~~q. With this choice of the n, let 
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Xj = j1Lm.+q = a + jT /~+q. l~j~~+q. With the help of (3.9) it can be verified that, 

for t =:z;, 

where 

{
1 if li-j I is divisible bY~+q/1tm+,I: 

e!7J.·q·,I: = 
1] 0 otherwise. 

Thus (3.6) becomes, for t =x" 

Now for j ,.t.i, G(Xj) = K(x;. ,xj)f (Xj). By Theorem 2.7b,c,c' we note that when 

(4.3) 

(4.4) 

(4.5) 

b) K(t,x) = H1(t,x)lt-xIS + H2{t,x), g{x) = H 1{t,x)f(x) andg(x) = H2{t,x)f{x) in 

(2.31b). Thus e{t,h) = C(t,h)f{t), where 

(4.6b) 

c) K{t,x) = H 1{t,x)lt-x ISloglt-x 1+ H2 (t,x), g(x) and g{x) in (2.31c) are as in b) 

above. Thus e(t,h) = C(t,h)f{t), where 

(4.6c) 

c') K{t,x) = H 1{t,x)loglt-x 1+ H2(t,x), g(x) and g{x) in (2.31c') are as in b) and 

c) above. Thus e{t,h) = C(t,h)f(t). where 

(4.6c') 

b 

Combining. the above in (4.5), approximating the integral JK{t ,x)f (x)d.x in 

(1.1) by AJm), and replacing the f (Xj) by the corresponding approximations 

]j' l=:;;.j~1tm+q, we obtain the appropriate quadrature methods for (1.1), which are 

defined by the systems of linear equations 
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(4.7) 

where 

(4.8) 

and 

q .... 

Kii = 2: dq(~)~HJX.Xi'~+k)' (4.9) 
k=O 

with qt .h) as defined in (4.6b,c.c'). 

It is not the purpose of this work to give precise error bounds or convergence 

results for A = m?-xlf {x; )-/; I. However, in general. we would expect A to be of 
J 

the order of magnitude of the error in the numerical quadrature formula used in 

b 

approximating the integral J K(t ,x)f (x)dx. Thus. for the singular case, if K(t.z) 

" 
is meromorphic in the strip 11m z 1 <u with its only poles at t +kT. k =0. ±1. ±2 •...• 

and g (z) is analytic in the same strip. we would expect f (z) to be analytic in this 

b 

strip too. Therefore. by Theorem 3.2. J G{x)dx - ~ [G] = ore -27rNa/ T) as N ~CXl. thus 
(I 

we would expect A = o[e-27rNa/T) as N ~CXl too. For the weakly singular case. by the 

b 

appendix. J G{x)dx - AJm) = o[eq +1{hm» as m~CXl. in general. Thus. we would 

" 
expect A = Or~+l+2q{log ~)p) as m~CXl. where s = max ak and p = max Pko (cf. t 1~..u l~,;.M 

(1.3». 

Finally. we could use the approximations 1i to f (Xi). i= 1 •...• N. where N = 2N. 

for singular equations and N = 7lm+q for weakly singular equations. to construct a· 

trigonometric interpolation polynomial Pm.x ) in cos(2rrkx / T). 

sin(2rrkx/ T), k =0. 1 ....• satisfying PM.Xi) = Ii. i=l •..•• N. thus obtaining an approxi­

mation to f (x) for all x in [a.b]. 
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5. NUMERICAL EXAMPLE::) 

5.1 The Singular Case 

Example 5.1.1 {See Mikhlin (1964. pp. 122-124» 

b x-t 
21T [T1 o./{t) + 2rr fcot 2 I (x)dx = u{t). (5.1) 

When o.~o and o.2+b 2 ~ 0 (a. and b may be complex) a unique solution exists and is 

given by 

I{t) = o.2:b 2 u{t) - 2rr{a~+b2) £U{X)cot [x;t) 

b2 2TT 

+ Ju(x)dx. 
2rro. {o. 2+b 2) 0 .-

(5.2) 

We first observe that the kernel function K{ t.x) = 2brr cot [x;t) is periodic with 

period 2rr in both x and t. Also for fixed t. K( t. z) is meromorphic in the whole z-

'plane with simple poles at t+2rrk. k=O.±1.±2 .... • thus being of the form described 

in Section 4.1. Next. we observe that if u (t) is periodic with period 2rr. then so is 

I (t). Also if u{z) is analytic in a strip 11m z I <a. then so is I (z). The last two 

assertions can be verified with the help of (5.2). 

In our numerical experiments we chose u(t) = (D+cos t)-l. D>l. so that both 

u{z) and I (z) are analytic in the strip 11m z I < a = 10g{D + v'D2 -1). With this 

choice of u{t). (5.2) becomes 

(t - ~~o. _ b sint 
I ) - ~b2lJ.J+COS-t[ ~ ~ + -;;:..:JJJ2=i J . 

Denote 2N. the number of abscissas in (4.1). by N. Then h = 2rr/ N and 

x; = jh. l~j~N. Denote] Ii.; ~ ];. l~j~N. and let Ali = ~;~I I (x; )-] Ii.j I· 

Then. by what has been said in the paragraph following (4.9). we would expect to 

have Ail = O( e -aliI2) as N ~ 00. This is born out by the numerical results. where. for 

each N. a can be estimated by the formula 

., 
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2 AFI 
a:::l >< >< log --= aF/F/ N -N A~ . IIl8.][ max iYmu 

(5.3) 

where Nmax is the maximwn of the Ns used in the computation. This estimate. of 

course. is based on the AFI. which in turn are based on f (x). An estimate based 

solely on the computed values f Fl.; can be obtained from the formula 

:::l ~ 1 fFl+2J.FI+2J-fFl+J.FI+J 1-
a -=.og I 7 = a1{ . 

J FI+Jfl+J- FI.FI 
(5.4) 

This follows from the following expected behavior of f FI.FI : 

(5.5) 

Here. of course. f FI.FI and ;N=2rr can be replaced by ffl.HFI) and If respectively. 

where X;(FI) = If is the same for all N used in the computations (in (5.4) they are 

N. N+J. and N+2J). 

Table 5.1.1 gives the results obtained for AJ{. aJ{.J{mu.' and aJ{. 

N= 4(4)44. NmlU = 44. with a=b=1. Note that a44.44' a 4 and a12 are not defined. 

Note also that. for D=2. aFl.J{mu. and aFl deteriorate for N large. This is due "to the 

fact that there is a loss of significance in the arguments of log in (5.3) and (5.4). 

which is caused by the high accuracy of the f Fl.;. 

N D=1.1 D=2 
AN aFl.Flmu. aN AN aFl.Flmax aN 

4 2.03XlOo 0.426 6.10xlO 2 1.3136 
8 1. 12XlQo 0.4407 4.60xlO-3 1.3157 

12 4.93x10-1 0.0445 0.67 3.37X10-4 1.3170 1.354 
16 2.01x10-1 0.4442 0.52 2.41XlO-5 1.31677 1.3195 
20 7.98xlO-2 0.4411 0.474 1. 73XlO-6 1.31683 1.3171 
24 3.33x10-2 0.4420 0.456 1.25X10-7 1.3171 1.316971 
28 1.39x10-2 0.44339 0.4485 8.94X10-9 1.3169586 1.3169588 
32 5.73x10-3 0.44303 0.4456 6.42x10-10 1.316996 1.3169580 
36 . 2.33x 10-3 0.4400 0.4444 4.62x10-11 1.3173 1.3169587 
40 9.72X10-4 0.4420 0.44391 3.31XlO-12 1.3172 1.316948 
44 4.01x10-4 0.44371 2.38XlO-13 1.3176 

Table 5.1.1: Results for Afl. aFl.fllll8.][' and afl. N=4{ 4)44. Nmax=44. 
for Example 5.1.1. Exact values of a are 0.44357 for D=1.1 and 1.3169579 for D=2. 
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5.2 The Weakly 5lngular Case 

In both of the examples below the kernel function is of the form described in 

c') of Section 4.2. namely K{t.x) = H l{t.X )log 1 t -x 1 + H2{t.X). Therefore. the 

approximations ]; to J (Xj). the solution to the integral equation. satisfy (4. 7)­

(4.9) with (4.4) and (4.6c·). Here the dJ~). O:5:k:5:q. in (4.8) and (4.9) can be deter­

mined from (A.5) with si{h) = h2i+l. i=1.2..... If we let n,=2'. thus 

h, = T /2'. l =0.1,2 ..... as we do in the examples below. then the d,J~) are indepen­

dent of m. and can be computed recursively from (A.6) with ai. = 2-2i - 1• i=1.2 •.... 

Thus we find dJ]) = 1. dI]) = -1/7. dI~) = 8/7. d~]) = 1/217. d~~) = -40/217. 

d~~) = 256/217. etc. From what has been said in paragraph following (4.9) and 

from (A. 7). we would expect to have AJm) = O(ar+l) = 0(2-(2q +3)m) as m-}oo. where 

AJm) == n:tax 1 J {Xj )-J; I. This is indeed observed numerically. 
1Im~1~1Im+q 

Example 5.2.1 (See Christiansen (1971» 

IlOg[2a sin It;x I k ex)dx = -; cos 2t. 

Provided a~1. the unique solution to this equation is J{t) = cos 2t. Otherwise. the 

solution is J{t) = cos 2t+c. c being an arbitrary constant. We observe that the 

kernel K{ t .x) = log [2a sin I t ;x I 1 is periodic with period 2rr in both t and x. and 

is of the form described in c') of Section 4.2. namely. 

K{t.x) = H l{t.X )log I t-x 1 + H2{t.X). with H 1{t ,t) = 1 and H2{t ,t) = log a. 

Table 5.2.1 gives some of the results obtained with a=ve for 

AJm), N = n m +q = 2m +q , m+q = 3(1)7. Note that, for a given row in this table, N, 

the number of abscissas in (4.7)-(4.9), is he same for every member of this row. 

Thus the first column is the result of no extrapolation, the second, of one extrapo-

lation, the third. of two extrapolations, etc. As can be seen for a given number of 

abscissas N =2T. the best results are obtained roughly for q ~ T /2. 
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m+q rI-

O 1 2 3 4 5 6 7 
3 3.8xIO-2 99xlQ-3 4.0x10-2 4.9X10-2 

4 4.7xlO-3 2.3xIO-4 :z 4xH}-5 3.7XIO-4 4.7X 1 0-4 
5 5.9xlO-4 6.9xIO-8 4.3xIO-7 1 ~lO-7 8.Bx10-7 1.1X10-6 

6 7.3xIO-lS 2.1XlO-7 3.2XIO-9 2.1xIO-lO fl axlO-a 5.0xlO-lO 6.3xIO-lO 

7 9.2XIO-8 6.6xIO-9 2.5xIO-ll 5.0x10-13 1.5X10-13 1 2ll:l0-13 1.8XIO-13 1.8X10-13 

Table 5.2.1: Results for AJm) for Example 5.2.1. 
Here N=2m +q is the number of abscissas in the quadrature method and q 
is the number of extrapolations in the corresponding numerical quadrature 
formula. The best result for fixed N (or m +q) is underlined. 

Example 5.2.2 (see Henrici (1979, pp. 492-494» 

Let r:z=z(r), rr-:;.r~{1, be the boundary curVe of a Jordan region D containing 

the point z =0, and let I (z) be the function mapping D conformally onto the unit 

disk I c.>1 <1 in such a manner that I (0)=0 and 1'(0»0. To determine I (z) it is 

sufficient to know its values on the boundary of D. Because II (z) I =1, it suffices to 

know ~(r) = arg(f (z (r»), 0~~{1. Let Hr) = ~'(r). Then, provided the capacity of r 

is different than 1, Hr) is the unique solution of 

p 
Jloglz(a)-z(r)I~(r)dr= 21Tloglz(a)l, O~a~{1, (5.6) 
o 

which is known as Symm's equation (see Symm (1966». The capacity of r is 

different than 1, in particular, if r is entirely within or entirely without the unit 

circle. 

Obviously, the kernel K{a,r) = 10glz{a)-z(r)1 is periodic in both a and r with 

period {1, and is of the form K(a,r) = H1(a,T)logl a-TI + H2{a,r) with Rl(a,a) = 1 and 

H2(a,a) = loglz'(a)l. Also, loglz(T)1 and Hr) are periodic with period{1. 

Let {1=21T and let D be the elliptic domain whose boundary curve is 

r: z{r) = c(e iT + ee-iT), O=:::T~21T, with 0<t<1, and c>O chosen so that r is entirely 

without the unit circle. (Actually the capacity of r in this case is c, so that it is 

sufficient to choose c ~ 1.) The semi-axes of D are c (1+t) and c (1-e). The solu­

tion for H r) can be expressed as 
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- ek 
({I) = 1+4 ~ (-l)k 2k cos (2k,). 

k=l l+e 

Note that both loglz{,)1 and HI) are analytic functions of I. 

Observe that HI) for this example is symmetric with respect to both the Re Z 

and the 1m Z axes. This can be utilized to reduce the dimensions of the matrix by 

4, thus reducing the storage and computing time considerably. 

Tables 5.2.2a and 5.2.2b give some of the results obtained with c =50 and 

e=O.l and e=0.5 respectively, for AJm), N = '7lm+q = 2m +q , m+q ==:;; 7. As in Table 

5.2.1, in these tables too, for a given row, N, the number of abscissas in (4.7)­

(4.9), is the same for every member of this row . 

m+q . q 
0 1 2 3 

2 1.6x10 1 

3 2.9x10 2 2.7XlO-2 
4 4.0xlO-3 B.1x10 4 4.5X10-3 

5 5.0xlO-4 2.7x10 5 6.1X10-5 

6 6.3xlO-5 7.1x10 7 1. Ox 10-7 4. Bx 10-7 

7 7. Bx 10-6 2.2x10-8 6.7xlO 10 1.5XlO-10 

Table 5.2.2a: Results for AJm) for Example 5.2.2 with e=O.l and c =50. 
Here N=2m +q is the number of abscissas in the quadrature method 
and q is the number of the extrapolations in the corresponding numerical 
quadrature formula. The best result for fixed N (or m+q) is underlined. 

m+q 
q 

0 1 2 
5 5.7X10 2 1.9xlO 1 

6 1.6xlO 3 1.5xlO-3 

7 9.4xlO 4 3.2XlO-5 3.6xlO-5 

Table 5.2.2h: Results for A,Jm) for Example 5.2.2 with e=0.5 and c =50. 
Here N=2m +q is the number of abscissas in the quadrature method 
and q is the number of extrapolations in the corresponding numerical 
quadrature formula. The best result for fixed N (or m +q) is underlined. 

For small values of e the ellipse is close to a circle. Therefore, HI) does not 

change rapidly with (1, and this explains the high accuracy obtained for the 

approximations to HI) even with a small number of abscissas when e=O.1. For 

.. ' 
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large values of e, however, the ellipse is elongated, and this leads to rapid changes 

in H,) in the vicinity of , = 11"/2 and, = 311"/2, i.e., where H,) is maximal. This 

then explains the slow convergence of the approximations for e=0.5. Furthermore, 

extrapolation becomes effective in this case starting with a relatively large N. 

To improve the performance of the quadrature method above for the cases in 

which H ,) has rapid changes we can make a change of variable of integration 

, = ,('if;) so that H,('if;» changes slowly as a function of'if;. This can be achieved by 

picking ,('if;) such that d,/d'if; becomes small where dUd, is large. This is 

equivalent to having more abscissas in places where H,) changes rapidly. Need­

less to say, the transformation, = ,('if;) should- be such that d,/ d'if; is a periodic 

function of 'if;. 

For the example under consideration we can choose 

!!:i _ n..J 1 +1]2 
- • 7] a positive constant, 

d, 7]2+cos2, 

so that 

or 

,('if;) = tan-Ilk tan 'if;j, 0-5,~11"/2. 
1+7]2 

,('if;) is now extended so that 

,('if;) = 11" - ,(11'-'if;) , 11"/2-5,~11' • 

,('if;) = 11" + '('if;-11'). ,-5,~211' . 

We used this transformation with different values of 7]. In Table 5.2.3 we give some 

of the results with c =50 and e=0.5 obtained for the errors at, = 11'/2, the point at 

which the error is maximum, and at ,=0. The number of abscissas in all cases is 

N=32. and q =0, Le., no extrapolation is employed. Nevertheless, the improve-

ment in the results is remarkable. 
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77 error for '1"=0 error for '1"=rr/2 
0.2 4.0 x 10 3 B.1 x 10 4 

0.5 1.2 x 10-4 2.3 X 10-3 

100 2.4 X 10-4 5.7 X 10-2 

Table 5.2.3: Results for the error at '1"=0 and '1"=rr/2 in the approximations 
to H'1") in Example 5.2.2, with c =50 and e=0.5, and the change of variable '1"='1"{1/I) 
as described in the text. The numerical quadrature formula used has 
N=32 abscissas and does not employ extrapolation. 
HO)=0.014671... and Hrr/2)=4.5324 .... 

6. CONCLUDING REMARKS 

In this section we shall briefly discuss some known quadrature methods that 

are related to those proposed in the present work. 

A lot of attention has been paid to Cauchy principal value integrals and singu-

lar integral equations. We do not intend to survey all the methods developed for 

these, but we shall restrict our attention to those that are periodic. When 

1 [t-~ K{t,x) = 2rrcot ~,0~t,x~2rr, (the Hilbert kernel), 

'Xij = 2hsijK{xi.xj) = -]rot [(i;yrr leij • i.i =1. .... 2N, 

(cf. (4.1». The matrix 'It= (Ri;) is called Wittich's matrix {see Gaier (1964. p. 76» 

and its properties are well known. Gutknecht (19B1) has used Wittich's matrix to 

discretize Theodorsen's integral equation for conformal mapping and has 

analyzed various nonlinear iterative techniques for solving the resulting equa-

tions. We note that Theodorsen's equation has the Hilbert kernel as its kernel. 

The Hilbert kernel arises as part of the Cauchy kernel on closed curves and 

Atkinson (1972b) has proposed and analyzed product-type integration formulas 

for the Cauchy transform 
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J ~ r closed. Z E: r. 
r t-z . 

which are different than those proposed in the present work. 

As for the weakly singular integral equations. the case that has received the 

widest attention is that of logarithmic singularity. Periodic integral equations 

with logarithmically singular kernels arise naturally. for example. in conformal 

mapping (Symm's equation) and two-dimensional potential theory. Two of the qua-

drature methods that have been considered for such equations are based on the 

so called modified quadrature method (see Kantorovich and Krylov (19S4. p. 102). 

and Baker (1977. Chap. 5. Sect. 4». In this method we begin by writing {1.1} in the 

form 

b b 

G)f{t) + !K{t.x)[f{x)-f{t)]d:x +f(t)JK(t.x)d:x =g(t). (S.l) 

Employing the numerical quadrature formula f: wjF(xj) to approximate the 
j=1 

b 

integral !F{x)d:x. and using the fact that limK{t.x)[f(x)-f(t)] = O. we replace 
a z~ 

the integral equation above by the linear equations 

r Jb 1 '" n '" '" 
Ie.> + K{a;.x)d:xJfi + ~WjK(Xi.Xj)[fj-fd = g(Xi). i=l ..... n. (S.2) 
l a J=1 

j~i 

where J( are approximations to the f (xJ. Kussmaul and Werner (19S8) have 

applied this method with equidistant abscissas Xi+l-xi = h. i=I ....• n-l. to periodic 

integral equations with logarithmically singular kernels and have shown that the 

b 

error is 0(h3) as h-+O. assuming JK(ti.X)d:x has been computed exactly. For ker-
a 

nels of the'type K(p.q) = log p(P.q). where p(P.q) = "(x(P )-x(q »2+(y(P )-y(q»2 .' 

and (x(P). y(p ». a~p~b. is the parametric representation of a simple closed 

curve in the x-y plane. Christiansen {1971} has used. the modified quadrature 

b 

method in (5.1) with !K{ti.q)dq essentially replaced by a numerical quadrature 
a 
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approximation. The numerical results indicate that this method too has an error 

of 0(h3) as h40. For both methods above we can show, using Theorem 2.7c', that 

the errors in the numerical quadrature formulas are O(h 3) as h 40, although this 

proof for Christiansen's method becomes very complicated. 

For weakly singular Fredholm integral equations of the second kind methods 

based on product integration have also been developed and analyzed by Atkinson 

(1967, 1972a). 

Finally, the approach of this work can easily be extended to coupled 

Fredholm integral equations for several unknown functions in which several types 

of singularities occur simultaneously. 
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APPENDIX 

In this appendix we summarize some of the important aspects of generaliza-

tions of the classical Richardson extrapolation process. 

Let the function A(h), where h>O is a continuous or discrete variable, have 

the asymptotic expansion 

-
A(h) '" A + 2: (3i,ei,(h) as h 4 0, (A.!) 

i,=1 

with ei.+l(h) = o (ei,(h») as h 4 0, i=1,2, .... A(h) and the ei,(h) are known, but A and 

the (3i, are not. We are interested in approximating A, which, in general, is limA(h) 
h. -+0 

when this limit exists. 

Select a sequence of h's, namely ho>hl> ... , such that lim h, = 0, and define 
'-+00 

AnU> (the approximation to A) and the Pi, to be the solution of the system of linear 

, equations 

A(h,) = An(j) + ~pi,ei,(h,), j~l~j+n. (A.2) 
i,=1 

For some classes of functions A(h) and e,;(h), i=1,2, ... , and some choices of 

h" l=O,l, ... ,the following can be shown: 

1) For fixed n, 

(A.3) 

2) For fixed j, AJj)4A as n 400, and the convergence in this case is better than in 

the previous case. 

For the present work, it is important to note that An(j) can be expressed as 

n 

An(j) = 1: dn~lA(hj+k)' (A.4) 
0\:=0 

where the coefficients ctJ:J can be obtained directly by solving the linear system of 

equations 
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n 
~dJ~=l 

.1:=0 
n 

2: e,;(hj+k)dJ~l = O. 1~i~n. 
(A 5) 

k=O 

The problem of computing the An(j) recursively has been attacked by several 

authors. Schneider (1975). Havie (1979). and Brezinski (1980) have devised an 

algorithm that has been denoted the E-algorithm. Recently. a more efficient algo­

rithm has been derived by Ford and Sidi (1984). 

Special Cases 

a) ei (h) = h?~. 0</1 <12< ...• ~im Ii = 00. 
\-+-

For the choice hI = hopl. l=0.1 •...• 0<p<1. the dn~l can be computed from the 

recursion relation 

,/ (j) _,/ (j+l) 
(j ) an u.n-l k "'n-l.6-1 drl . .6 = . 1 . , 

an -
~k~n. (A.6) 

with dn~ll = 0 = dn~J+l' n=0,1 .... , d&J=1, j=0.1, ... • and Obvi-

ously. the drFl are independent of j. This development, in slightly different nota­

tion, is due to Bulirsch and Stoer (1964). who also give a recursive algorithm for 

AnU) and a thorough convergence analysis. First, 

A-An(j) = O(a~+l) as j -HlO. (A. 7) 

Second. if there exist constants~, k=1.2, ... • for which 

N-l 
IA{h)-A- 2: ,Bih7~ I ~(3NhN, h~ho. (A.8) 

';=1 

and. for some fixed R>O, 

~ = O{k !Rk) as k 400, (A.9) 

then. for the special case Ii = lo+ir. for some 10>0 and r >0, 

{A. 10) 

where Q=pTI2 + e<1. any e>O. For a similar result pertaining to the case of arbi­

trary Ii see Bulirsch and Stoer (1964). 
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b) ei{h) = r,o{h)hir-r. r>O. 

For arbitrary hi. the An(j) can be computed by using the recursive W -algorithm of 

Sidi (1982). As a consequence of this algorithm we have 

(j1 
~ (3.'1 = 6n ,k • O<k-"'Ii ~ - =n. 

~ 6(;) l.J n ,\ 
i=O 

where 6!!.1 can be obtained from the recursion relation 

0(i1 = n,k 

Wl'th ~(jl - 0 - ~(j) n-O 1 Vn,-l - - Vn ,n+l' -. • ... 

(j+11 _ (j) 
6n -l.k - 1 6n - 1,.I: O<k< 

h 'f -hr • - _no 
)+n J 

• and 6&"J = 1/ r,o{h; ). j =0.1 .... 

{A. 11) 

{A. 12) 

. We note that this is 

also a special case of the generalized Richardson extrapolation process of Sidi 

(1979). a very efficient recursive algorithm for which has recently been given by 

Ford and Sidi (1984). 

We also note that the algorithms given for the two special cases above are 

more efficient than the algorithms for the general extrapolation algorithms for 

obtaining AJil defined by (A.2). since they take advantage of the special forms of 

the problem. 
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