Rl =

NHSH 75§45

NASA Technical Memorandum 86675

NASA-TM-86675 19860022640

Multiple Grid Problems on
Concurrent Processing Computers

D. Scott Eberhardt and Donald Baganoff

FOR REFERENCE

February 1986 _ wa—

NOT TO BE TAKEN FROM THIS ROOM

MAR 1 7 1085
LARGLE Y wesn s CaNTER

LIBRARY, NASA

HAMPTON, VIRGINIA

NASA

SR T

-

e

.NASA Technical Memorandum 86675

Multiple Grid Problems on
Concurrent Processing Computers

D. Scott Eberhardt, Ames Research Center, Moffett Field, California -
Donald Baganoff, Stanford University, Stanford, California

February 1986

NASAN

National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035

Wb-3a2 "

TABLE OF CONTENTS

Page

SUMMARY....... 0000 cesscsessesaansenn Ceestsesesrsssesntsssesrtasesas ceecaseanenoans 1
1.0 INTRODUCTION......... ceeessenteansaae Cesesaecssessensarecsassennsssesasansanns 2
2.0 BACKGROUND....Q.Q......l'..‘OOIICI....l.....l..0..."l.’....l.....t.l' 3
2.1 Computational Fluid Dynamics......ceeeeeees S hesiseecennseenotettosassaans 3

2.2 Computer Design..... teereeennnns Seeesecsanassaacnsenans teeeessanatasanaanes 5

2.3 Focus and Approach.......eeeeeeeeinonsassssscsssssssssssssssvonssccannnns 11

3.0 APPROXIMATE FACTORIZATION AND MIMD ARCHITECTURE........iiivvevenconnonsacnans 12
3.1 Equation Set..... Ceesrrsennnen tretseersaseennes cresesene cettecstenacnoas 13

3.2 Algorithm Used.......ocivieieenentnacnsccenscsnnnsnnnns Ceeesisencaanstans 15

3.3 Memory Allocations and MIMD Implementatlon. esececsenssann ...18

3.4 Implementation on the VAX Test Facility.......ccvveceuennnn coenens ceeene 21

3.5 Difficulties of Implementation on the VAX Facility...... Cesecscciranannn 24

3.6 Results......... Ceteeteressecerentrsannas N ceseesenssas cevnes 25

3.7 ConcluSionS.....oeieeeseeeessasescennssncessasonnsansassos Ceeesecsencnnas 27

4.0 OVERSET GRIDS--INCOMPRESSIBLE FLOW......0000.. ceeerecnnes Cesecesssrescaananns 28
4.1 Solution of Chimera Grid...ceeeeeececscscosssssocssrsosnscssnsssssanesss9d

4.2 Implementation of Two Grids on Two Processors......... ceseseceseanscanns 32

43 Results.l. ® ® 6 0. 0 0 5 6 00 00 0 08 0 ¢t o0 8o ® 0 0 0 0 080 0000 00 ® o @ 60 0 0 0 8 0 ® o 8 0600 0 0 0 3”

4.4 Asynchronous Iteration........c.eieiuieeeneetnceeseancsoeceacassnsanaannns 36

4.5 Implementation and Results of Asynchronous Iteration.................... 38

4.6 Conclusions...... cesenee cecesens Cereetteiitetietitittienenes B 1 |

5.0 OVERSET GRIDS--COMPRESSIBLE FLOW.......... Gt eeeseteestecestcsstannasseaarsnan ko
5.1 Blunt-Body Grid--Centaur.........ece0.e ceeeeesians Ceeticiaseaans ceeeenes 4o

5.2 Transonic Flow Solver--ARC2D......ccvevees Geeesecresscesarteseosaneanne k1

5.3 Overset Grid Boundary Schemes and ResultsS......ccveeviiiincnnccracennnes 43

5.4 Comparison with Other Data....... Ceeeseseeseeseatstererstesaeseteansanes 51

5.5 MIMD NOt@S..iveiveerenensnseaooscansssencsosonssasesonssonnns Ceeteensoaan 51

5.6 ConclusionS.......ceevveeeceanacns Ceteeeceteetteattetreacttceacsranarnnns 52

6 o CONCLUDING REMARKS.I... . ® & 0 0 08 0 00 0 8 608 08080000 . e LN e " e 800 00 a L] 53
REFERENCES.....c000eee tesasscesssasessrscesaanns ceeseessasanas ceeesssanaes ceasenes 55
TABLES. ot ettt vseesasaensasosenearenenseocseseesensesasonsssssans essereacasanans 58

FIGURES. .t ittiitiiiiiiiietenteeneraceaensesancancsscsnssonscnnse ceesersrenan ceenes 62

MULTIPLE GRID PROBLEMS ON CONCURRENT-PROCESSING COMPUTERS
D. Scott Eberhardt and Donald Baganoff*

Ames Research Center

SUMMARY

Three computer codes have been studied which make use of concurrent-processing
computer architectures in computational fluid dynamics (CFD). The purpose of the
study is to gain experience using a multiple-instruction/multiple-data (MIMD) com-
puter for CFD applications,

MIMD architectures are being suggested as the most likely candidate for the
next generation of supercomputers. In order to make efficient use of the multiple-
processor architectures, the user will have to learn the skills of parallel program-
ming. The three parallel codes written for this study, and tested on a two-
processor MIMD facility at NASA Ames Research Center, are suggested for efficient
parallel computations.

The first code studied is a well-known program which makes use of the Beam and
Warming, implicit, approximate-factored algorithm. This study demonstrates the
parallelism found in a well-known scheme, which achieved speedups exceeding 1.9 on
the two-processor MIMD test facility.

The second code studied made use of an embedded grid scheme which is used to
solve problems having complex geometries, The particular application for this
section considered an airfoil/flap geometry in an incompressible flow. The scheme
eliminates some of the inherent difficulties found in adapting approximate factor-
ization techniques onto MIMD machines and allows the use of chaotie relaxation and
asynchronous iteration techniques.

The third code studied is an application of overset grids to a supersonic
blunt-body problem. The code addresses the difficulties encountered when embedded
grids are used on a compressible, and therefore nonlinear, problem. The complex
 numerical boundary system associated with overset grids is discussed and several
boundary schemes are suggested. A boundary scheme based on the method of character-
istics achieved the best results.

A brief review of computer architectures is also presented and the particular
machine used in this study is described.

*Department of Aeronautics and Astronauties, Stanford University, Stanford, CA
94305.

1.0 INTRODUCTION

Computer technology has progressed dramatically in the last few decades. Much
of this progress has been achieved through increased parallelism within the computer
system, The parallelism results from allowing functional units and modules to
operate simultaneously. The organization of the functional units, modules, and
interconnections of a computer system is described as the computer's architecture.
All current machines, ranging from the Intel 8086 microprocessor to the CRAY-1 and
CYBER 205, have some amount of parallelism designed into their architecture.

Recent designs for large-scale scientific computers use parallel architectures
with multiple processing elements which allow independent and simultaneous execution
of program tasks. These machines fall into the general class of multiple-
‘instruction/multiple-data (MIMD) architectures, which means that each processing
element contains its own instruction stream and data stream.

New developments in computer architectures are expected to require new computer
algorithms to fully exploit the new features. The goal of this study is to gain
experience in adapting known computational fluid dynamies (CFD) algorithms to paral-
lel, or concurrent, machines and to develop or suggest new concurrent codes based on
this experience. The study will focus on three algorithms in CFD which were tested
on a two-processor MIMD facility at NASA Ames Research Center.

The first code studied was AIR3D, an implicit, approximate-factored algorithm
that has practically achieved benchmark status. This research provided practical
experience in taking a well-known scheme, following a particular train of thought,
and implementing it on an MIMD machine.

Following the discussion of AIR3D will be a presentation of a state-of-the-art
code, the "Chimera Grid Scheme" of Steger, Dougherty, and Benek, using a grid scheme
. being developed to solve problems having complex geometries (ref. 1). The code
makes use of overset grids for an airfoil/flap geometry and incompressible flow.
The scheme has certain features which make it ideally suited for parallel-
processing, including the elimination of some of the inherent difficulties found in
adapting approximate-factorization techniques onto MIMD machines. The implementa-
tion of this scheme on the NASA Ames MIMD test facility will be discussed, and a
concept called chaotic relaxation will be presented.

The third code studied is an application of overset grids to a problem in
compressible flow, which, in this case, is a supersonic blunt-body problem. The
code was developed to study the nonlinear effects of compressible flows on overset
grids, which were not thoroughly addressed in a previous application of transonic
airfoil flow (ref. 2). The discussion will center around the development of a
method of handling the grid-interface boundary conditions associated with overset
grids. The code was created by the author to run on the NASA Ames test facility,
which will be described later.

Since this research bridges two fields of study, the discussion of the codes
Will involve concepts drawn from both CFD and computer science. An introduction
follows, which will provide background information in CFD and computer architec-
ture. The review of CFD will cover only the information that applies to this
study. A brief review of computer architectures will be presented, with a major
emphasis on MIMD architectures and parallelism. The particular computer used in
this study will also be described. One objective of this study is to show the many
advantages that result from pooling knowledge from these two fields.

The vast number of MIMD architectures and CFD algorithms make it impossible to
investigate all of the possible implementations of the various algorithms on MIMD
computers. In this limited survey, many basic properties can be identified which
yield significant improvements in concurrent solution procedures for fluid mechan-
ics. Once these properties are identified, users can take advantage of MIMD
architectures.

We wish to thank all the people who were involved, in one way or another, in
the research and preparation of this material. We would like to thank Carol F.
Dougherty for the use of her Chimera code and some of her figures, and Thomas H.
Pulliam for the use of his AIR3D and ARCZ2D codes. We would also like to thank
Joseph L. Steger for his help on Centaur, and for introducing us to the embedded
grid technique.

2.0 BACKGROUND

The following discussion introduces some basic concepts that we hope will show
how CFD and computer science may be merged in an advantageous way. The section
reviewing CFD develops the motivation for investigating the particular codes used in
this study and discusses current research efforts in this area. The review of com-
puter science describes basic architectures, specifically outlining MIMD architec-
tures; presents some important terminology that will be used throughout this study;
and provides a sampling of some MIMD research efforts.

2.1 Computational Fluid Dynamics

2.11 Some current limitations- In the last two decades, the capability in CFD
has progressed from the solution of simple problems requiring modest computational
power to the solution of full, two-dimensional Navier-Stokes algorithms. However,
even with today's computing power, solutions of three-dimensional problems are
severely limited. Current aerodynamic codes generally make use of finite-difference
techniques, finite-element techniques, or panel methods. Finite-differencing is the
simplest to implement for nonlinear applications, but it is difficult to adapt to
complex geometries. Finite-element techniques may be more adaptable to complex
geometries, but are generally more cumbersome and inefficient to implement. Panel
methods are restricted to linear theory. All of the codes used in this study employ

finite-difference methods, so only the difficulties associated with finite-
differencing will be discussed. The three codes used in this research use methods
which were introduced to overcome these difficulties.

One difficulty in solving large, practical CFD problems arises when one
attempts to create a simple computational grid. Finite-differencing generally uses
a single rectangular mesh, which, if represented in the computational domain, is
monotonic, i.e., grid lines don't cross or coalesce into new grid lines. This
requirement is difficult to meet if one is dealing with complex geometries such as
airfoils with flaps or wings with engine pylons. In fact, some geometries which may
be considered simple, such as a channel with a step, can present major difficulties
when one attempts to create a simple rectangular mesh in computational space, as is
shown in figure 2.1. Until the grid problem is solved, it is doubtful that the flow

field of an entire aircraft can be calculated.

A second restriction to solving large CFD problems is the difficulty of resolv-
ing regions of high gradient, such as shocks or shear layers. Resolving high gra-
dients demands that the grid be dense in those regions, which requires some advance
knowledge of the solution. For example, to resolve a shock wave on a transonic
airfoil, the shock position must be known at grid-generation time if grid points are
to be clustered properly. Some solution-adaptive grid algorithms are available
which cluster grid points in numbers proportional to the gradients, but require
frequent calculation of grid and metric terms. A simple grid technique is needed
which is versatile and efficient in terms of covering high-gradient regions with a
dense grid, while leaving known, low-gradient regions coarse.

A third restriction on solving large CFD programs is the computer memory
requirement. The Euler equations require storage of 13 quantities per grid point,
for a scheme in two time levels and three dimensions, which is common for most
algorithms. Since a typical grid may require more than a million grid points, most
supercomputers cannot store the variables in their core memory. The variables are
then put into secondary storage, which may result in large time penalties. The
storage requirement, along with the basic computation time of a large problem, is
the primary reason why three-dimensional solutions are not routinely practical.
Unfortunately, the obvious solution of adding more computer core memory is too
expensive to be considered.

Other major problems also exist when one applies finite-difference tech-
niques. Stability and accuracy are a major concern. Improper modeling of the
governing equations, or use of too large an iteration step in a solution process,
can render a code useless. Other areas, such as turbulence modeling and real gas
effects, are of importance, but they lead to research areas which were not consid-

ered in this study.

2.1.2 Current CFD research topics- The difficulties mentioned above are the
focus of many current studies. It should be reemphasized that the problems and
difficulties that were discussed, and the research topics that will be reviewed, are
all related to finite-difference techniques. Other techniques avoid some of these
problems but have their own pitfalls.

N

Several approaches have been suggested to solve the problem of generating a
grid for a complex geometry. The first is "grid patching" which allows the flow
field to be broken into several regions, each of which can be solved by a rectangu-
lar, monotonic, computational grid. This technique is demonstrated in figure 2.2.
Physical space is divided into regions which are each fitted with their own grid.

In two dimensions, grid boundaries are curves, and the grids do not overlap. The
grid boundaries, unfortunately, introduce discontinuities in the grid in the general
application. Examples of this type of scheme can be found in Rai (ref. 3), and
Hessenius and Pulliam (ref. U).

Another approach is to use overset grids. In this technique, each minor body
element is contained within its own simple, minor grid, which is then overlayed onto
a major grid. This approach has been used by Steger, Dougherty, and Benek (refs. 1
and 2) and Vadyak and Atta (ref. 5) (fig. 2.3). Both grid patching and overset
grids require special handling of grid interfaces. The grid interface of overset
grids will be extensively discussed later, since it is highly relevant to the MIMD
implementations of this research.

The technique of adaptive gridding is being researched as an approach to solv-
ing the grid generation problems about complex flow fields. By adapting the grid to
the solution as the solution develops, one can eliminate unnecessary grid points
introduced by conservative guesswork. The method consists of generating a new grid
every few iterations as the solution progresses, using the gradients of the solution
to guide the grid generation process. The result is the generation of efficient
grids at each point in the solution procedure. For an example of adaptive gridding,
see Dwyer (ref. 6).

Several schemes have been introduced that attempt to eircumvent the large mem-
ory requirements. One popular scheme is the method of "pencils" (ref. 7). This
technique breaks up the large computational grid into pencils, or smaller blocks,
which are each solved and then replaced in core memory by the next block. A care-
fully implemented scheme may reduce the number of pencil loads to two loads per two
iterations. However, this appears to be a cumbersome technique that, hopefully,
will not be required on future machines that have larger core memories.

Many competing finite-difference schemes have been used with varying degrees of
success in terms of stability, accuracy, and speed. This study uses a well-tested,
impliecit scheme, which was chosen for its superior stability characteristies.

2.2 Computer Design
2.2.1 Computer architectures- A simple introduction to computer architectures

Wwill now be presented with examples of each type of machine, a discussion of MIMD
characteristics, and a discussion of some past MIMD research projects.

The first computers were von Neumann machines. These computers remain the most
common type in use today, from mainframes to microprocessor-driven personal com-
puters. A von Neumann machine has s central processing unit (CPU) and a separate

memory system. Instructions are fetched from the memory system and interpreted by
the CPU. Only one instruction is executed at a time, and only one operation is
performed each time. Both data and instructions are stored in the same memory
system. This is a simple, well-known architecture. However, the von Neumann archi-
tecture has inherent physical limitations, such as signal propagation delays between
the processing element and memory. If the ultimate limit of propagation speed is
achieved (the speed of light), then a signal will take 3 nsec to travel 1 m. For
comparison, the CRAY-1s has a clock period of 12.5 nsec, which is representative for
the fastest machines. The signal propagation limit is the primary reason why the
von Neumann architecture is not suitable for future, large-scale scientific

computing.

During a period from 1950 to 1975, computer performance improved by a factor of
105. Approximately 10 of this improvement has resulted from improvements in elec-
tronic components. The remainder of the improvement resulted from architectural
improvements which were principally due to increased parallelism (ref. 3). Paral-
lelism has been introduced by overlapping unrelated functions. For example, data
required for the next instruction may be read by the processor while the arithmetic
units are performing their computations. A tremendous performance improvement was
achieved by separating the input/output (I/0) functions from the main processor and
providing a separate computer, or I/0 channel, to perform data transfers to slow
printers and other peripheral devices in parallel. Some machines overlap steps in
the instruction-decoding procedure by pipelining several instructions into a decod-
ing unit. Another improvement results from pipelining the computations as is done
in vector-pipelined machines.

Vector-pipelined machines are a faster, more powerful class of machines which
are considered, by Flynn (ref. 9), to be a subset of the single-instruction/
multiple-data (SIMD) classification. One of the best known vector-pipeline machines
is the CRAY-1. This machine has processing elements that can be described as assem-
bly-line units, which can execute steps in parallel. An instruction, for example a
two-register "add" instruction, will take several clock cycles to complete on a
von Neumann machine. A machine such as the CRAY-1 can add two vectors by shifting
the two operands into the "pipe" at a rate of one from each vector per clock
cycle. Imagine an automobile assembly line which is gearing up to produce a hundred
cars. A von Neumann machine would take one car at a time and send it down the
assembly line, which is extremely inefficient. The vector-pipeline machine shifts a
car onto the line as soon as the previous car has completed the first step and is
moving to the next step. Thus, the first car will take an equal amount of time to
reach the end of the assembly line, but from then on, a car will be shifted out at
each time cycle. The cars, in this example, represent the elements of a vector and
the assembly line represents the pipeline.

The vector-pipeline machine has a single processor. (The CRAY-1 has multiple
arithmetic logical units (ALU).) Processing elements such as these can be linked
into a multiple-processor system, thereby increasing the parallelism and creating
more computer horsepower from a given processor technology. Alternatively, many
simple processing elements, that can be produced inexpensively as a result of

4

integrated circuit technology, can be linked to exceed CRAY speeds for large-scale
computation. These processors can be distributed physically within the memory
system, thus reducing the signal-propagation penalty of memory accesses. Multiple-
processor architectures have tremendous potential for increasing parallelism, and
Wwill be the primary innovation in supercomputer designs for the next decade. The
following types of machines contain multiple processing elements, each capable of
performing operations simultaneously. :

The first class of multiprocessor machines are the processor array computers,
another subset of SIMD architectures. The processor array machine is a parallel
machine which performs identical operations simultaneously on an array of processing
elements. A single command unit interprets the instruction and commands the pro-
cessing elements to perform the task in lockstep. Thus, it will take the same time
to add two vectors together as it would take to add two scalars together. The
ILLIAC IV, housed at NASA Ames Research Center from 1972 to 1981, was a processor
array computer.

The next form of multiple-processor architecture is the MIMD stream architec-
ture. These machines are being developed commercially for both business mainframes
and scientific supercomputers. An MIMD machine is a multiple processor machine that
runs tasks concurrently. The number of processors in an MIMD machine can range from
two, as is the case with the test facility of this study, to thousands. The proces-
sors are neither running lockstep, nor are they generally executing the same opera-
tion. It is entirely possible to have each processor executing a different users'
program. In the implementation of this research, the processors will be told to
cooperate and perform tasks common to a single problem.

MIMD and SIMD architectures each have advantages and disadvantages. For array
calculations, where the parallel computation can be accomplished by performing
identical computations on each element of the array, the SIMD machine is the most
efficient. This is due to the lockstep nature of the machine. An MIMD machine, on
the other hand, would require a forced synchronization since each processor runs
independently, not in lockstep. This results in small synchronization penalties.
The study of the AIR3D code (section 3) gives some indication of the overhead
required for synchronizing a two-processor system running a conventional CFD code,
which is also a suitable system for SIMD computation. For nonarray calculations, or
array calculations with conditional branches, SIMD architectures are inefficient.
MIMD architectures allow for each processor to follow its own, unique branch or a
separate task. MIMD machines therefore are more flexible than SIMD machines.

MIMD machines also offer a clear advantage over SIMD machines in their modes of
operation. SIMD machines allow only one user at a time, since each processing
element is controlled by a single control unit., MIMD machines offer three opera-
tional modes: single user, time-shared with one processor per user, and time-shared
Wwith a multiprocessor, multitask, queue procedure. These modes will be described in
the following section.

A measure of the performance of multiprocessor systems is necessary to evaluate
the computation speed. For SIMD machines, two performance parameters have been

established for comparison. A maximum-performance parameter gives the maximum
computational rate, usually given in megaflops (Mflops--million floating point
operations per second), and assumes an infinite vector length and full use of the
computer's parallelism. A second parameter is the half-performance length, which is
the vector length that is required to achieve half of the maximum performance

(ref. 7). These measurements are based on vector, or array, calculations, so they
cannot completely describe the performance of an MIMD machine, which does not neces-
sarily require vectors to achieve parallelism. MIMD machines are generally param-
eterized by their maximum computation rate of selected benchmark programs. This
introduces a dependence on the particular benchmark codes which may not use the
unique architectural features of the machine.

The performance data obtained for - the NASA Ames MIMD test facility does not
separate the parallelism due to the algorithm from the parallelism due to the
machine. The measurement used is a speedup factor which is the ratio of the execu-
tion times for the code running on a single processor to the same code running on
both processors in the test system. A simple estimate of the machine performance
for the two-processor test facility would be a speedup factor of two. However,
machine hardware is not ideal, so the hardware performance cannot reach a speedup of
two. An even more important consideration is the code being tested. Most codes
have parts that are inherently serial, and cannot be speeded up through parallel-
ism. In this study, the goal of the computational fluid dynamicist is to produce
algorithms and codes which can efficiently use concurrency.

2.2.2 MIMD architectures- MIMD machines can vary widely in their architec-
ture. Some machines share their entire memory among the processors, whereas some
share only small blocks, leaving a larger local memory to be used by one processor
only. The use of different memory systems can have major effects on programming.
The memory systems for two MIMD research facilities--the NASA Ames MIMD test facil-
ity and the CRAY X-MP--will be compared. Note that both of these machines have only
two processors in their current configuration, so they represent only a small class
of MIMD architectures. Following this discussion, some operating system differences
will be outlined. Some concurrent programming terminology, which will be used
throughout the paper, will also be presented.

The CRAY X-MP shares all of its memory and combines two CRAY-1s into a single
system. It has two processors that connect to a single memory system so that all
data in the memory are shared between the two processors. A machine such as the
CRAY X-MP, therefore, will be able to handle large amounts of shared data. The NASA
Ames MIMD test facility consists of two VAX 11/780s connected via a 1/4 Mbyte MAT780
dual-ported memory. Thus, this system has a limited amount of shared memory and is
not able to run programs that require large amounts of shared data. Each VAX 11/780
has its own large local memory in which it can store large amounts of unshared
data. The architectures of these two facilities are sketched in figure 2.4.

There are some practical problems that occur when using shared memory. One of
the most significant is the memory contention problem. A single bank of memory can
be accessed only once during each memory cycle. Therefore, other processors must
wait until the memory is freed by the processor currently accessing it. The small

]

number of processors in the two research systems at NASA Ames will not cause notice-
able problems. However, the overall effects of memory contention on hardware per-
formance can be large on large-scale, multiprocessor systems. Another practical
problem, that of memory protection, is usually associated with the operating sys-
tem. The operating system is responsible for protecting blocks of data from proces-
sors that are not supposed to access them. On a system such as the VAX MIMD facil-
ity at NASA Ames, the solution is to store data to be protected from other proces-
sors into the proper local memory so that the other processors cannot access it.

The different methods of protecting memory result in major differences in how the
computer can be used.

A program contains three types of data groups. The first type is local data,
which are data that are local to a single block, or subroutine, of the program. In
FORTRAN, local data represents the data local to a subroutine. The second type of
data group is the task-global. This is equivalent to a common block in FORTRAN,
which allows all subroutines that use that common block to access it. The last data
type is the shared-global. This data group resembles a FORTRAN common block except
that different tasks, or programs, can share the data. Currently, the CRAY X-MP
does not have a task-global data group. Therefore, any data that are placed in a
common block are automatically shared among tasks, and cannot be pirotected from the
other tasks. If two tasks are running concurrently and each requires a task-global
data block, the block must be duplicated so that each task will not "grab" the
other's data. This in itself is not too restrictive, unless the code is transferred
to a machine with extensive amounts of task-global memory and little shared-global
memory such as the VAX MIMD facility. Extensive modifications are then required.

MIMD machines offer three modes of operation (environments). The first, used
in the study of AIR3D, was a single-user mode. This mode allows a single user
access to all processors. The second mode of operation (i.e., multiuser) allocates
each processor to a separate user. In a manner analogous to timesharing on a single
processor, where each user is allocated a time block, the users are each allocated a
processor. Computers using this mode have been built, but are not considered to be
true MIMD machines, since the processors do not share data.

The third mode of operation is a multiprocessor, multitasking environment where
tasks are queued and submitted to the first available processor. This is the most
efficient mode of operation, since no processor will be idle regardless of the size
or number of the tasks queued. This mode is becoming the most widely used on MIMD
machines. A practical approach to solving large-scale CFD problems in this environ-
ment is to segment the problem into several smaller tasks. Each segment can be

~submitted to the circulating processor queue to be executed by the next available
processor. The overset grid programs of sections 4 and 5 have been routinely exe-
cuted in a variation of this mode of operation (the NASA Ames MIMD test facility has
two job queues, one for each processor). The overset grid programs are ideally
suited to this mode of operation and the concept of chaotic relaxation becomes
important in this environment.

Terminology which is often used to deseribe the concurrent flow of a program
will now be introduced. Flow of a concurrent code is managed by operations that

occur at the junctions and branches of a typical flow chart (fig. 2.5). When a
single task is divided into multiple concurrent tasks this is called a "Fork." When
two or more tasks combine into a single task this is called a "Join." Another
operation, "Sync," is used when multiple tasks must synchronize at some point before
they continue. A Join or Sync point requires some method to record which tasks have
reached the Join or Synec point. This is accomplished by having the tasks record an
"Event." When all of the required Events have been recorded for a Join or Sync, the
program continues. Figure 2.6 summarizes the operations. Although the operating
system of an MIMD computer will know how to handle these operations, they must be
explicitly placed in the program and, unfortunately, no universal high-level FORTRAN
commands exist at this time. Therefore, programming can be difficult, and codes
will not be transportable from one machine to another until high-level FORTRAN
commands are incorporated directly into the programming language. Other languages
such as concurrent PASCAL and ADA have concurrent constructs within the language.
However, these languages are not popular with engineers, so they will not be consid-
ered. Since no FORTRAN commands exist, the above names (i.e., Fork, Join, Sync,
Event) will be used throughout.

2.2.3 Sample MIMD research- It is the responsibility of the programmer to
extract parallelism from an algorithm. New schemes will be required which exploit
the characteristies of multiprocessor machines, just as new methods were developed
for vector processors and other architectures. For example, the half-performance
length for the four-pipe CYBER-205, which is about 400, suggests the use of long
vectors compared to the CRAY-1, which has a half-performance length of about 10 to
20. Each new multiple-processor design will have some unique features which will
favor a particular choice of algorithm. The choice will be left to the engineer
until sufficient artificial-intelligence capabilities are available.

Parallel algorithms have been a popular research area in computer science for
some time. Many of these are matrix-inversion algorithms. In particular, numerous
tridiagonal schemes have been developed. Lambiotte and Voigt (ref. 10) have devel-
oped parallel algorithms for the CDC STAR-100 computer; Stone (ref. 11) has designed
parallel tridiagonal solvers for machines such as the STAR-100 and the ILLIAC IV;
and Barlow and Evans (ref. 12) have gained experience with explicit methods using
the MIMD computer at Loughborough University. These algorithms have been very
successful on MIMD testbeds and all seem promising. Despite the fact that tridiag-
onal solvers are commonly used in CFD, the complicated MIMD tridiagonal scheme was
not the preferred choice for this research. In CFD, the matrix routines are typi-
cally executed thousands of times per iteration, making it easier to solve several

matrix routines concurrently.

Another type of algorithm that has been studied are the chaotic algorithms.
Chazan and Miranker (ref. 13) developed the framework for an algorithm called
chaotic relaxation and Baudet (ref. 14) has gained experience on the Carnegie-Mellon
C. mmp machine. These chaotic algorithms are a unique product of multiple-processor
computers. Since the processors do not operate in lockstep, the chaotic algorithms
have been developed to remove the synchronizations that are required in most serial
programs. Synchronizations are implicit in the coding procedure familiar to most

10

=)

=

x

users. In a chaotic algorithm, one must forget the notion of sweeping across the
data in a "do loop" fashion. Instead, regions are solved as they are allocated CPU
time, not in any specific order or time. This will have important implications for
concurrent multi-user machines operating in the queuing mode described above. The
subject of chaotic relaxation is rather difficult to follow at first, so it will not
be discussed at this point; but will be reintroduced in greater detail as needed.

2.3 Focus and Approach

For this research, three computer codes have been studied. Two are adaptations
of working schemes, and one was developed specifically for this research. Each code
represents the cutting edge of CFD research for various applications. The code
AIR3D is a three-dimensional, implicit, approximate-factored algorithm that has been
widely used. Its large size and the fact that many CFD researchers are familiar
with it make it an ideal candidate to test on a MIMD machine. This test will deter-
mine whether approximate-factored algorithms can be implemented on MIMD facilities
to some advantage. It will also help develop some insight into more efficient use
of MIMD machines in CFD.

The next code is essentially the Dougherty, Steger, and Benek chimera grid
scheme applied to an incompressible, two-dimensional airfoil/flap configuration.
This code was chosen to test the concept of using multiple processors to solve
multiple-grid problems. The practicality of using chaotic relaxation on overset
grid schemes was also studied.

The final code, Centaur, was developed to investigate difficulties of using
overset grids on a compressible problem. In these situations, the Euler equations
are used for the solution of a supersonie blunt body. The overset grid is used to
resolve the bow shock near the front of the cylindrical-wedge blunt body studied.
The central purpose of this code was to serve as a test vehicle for studying bound-
ary schemes for the overset grid boundaries, in particular when the shock wave
crosses the boundary.

All three codes were developed and tested on the NASA Ames MIMD test facil-
ity. This facility consists of two VAX 11/780 machines with an MA780 dual-ported,
shared memory. The MA780 contains 256 Kbyte (or 1/4 Mbyte) of memory. Each
VAX 11/780 is a self-contained unit and each serves a role in the NASA Ames VAX
network. Since the facility was not exclusively an MIMD facility, most work was
done on a single machine run in a time-shared mode. Unfortunately, this means that
not only did the two tasks have to compete for CPU time, they also had to compete,
at times, with more than 40 interactive users on the system. Also, because of the
limited computation speed of the VAX, the codes were generally kept small. When
important timing data were required, the facility was shut down to all other users
so that an accurate measurement could be made.

NASA Ames acquired a CRAY X-MP in September 1983. However, the version of the
operating system available for this research did not contain the elements required
for concurrent processing of a single code. AIR3D is currently being adapted to the

"

CRAY X-MP, by NASA Ames personnel, and tested at a Cray Research facility in
Mendota, MN.

Before each code and its results are detailed, the central purpose of this
study should be restated. The purpose of this study is to discover whether paral-
lelism found in CFD can take advantage of the benefits of a sample MIMD machine.
The first test will be the implementation of a popular CFD algorithm to determine
whether it is well suited for MIMD architecture. An overset grid scheme will then
be studied to investigate its concurrent properties in an incompressible and a
compressible application.

3.0 APPROXIMATE FACTORIZATION AND MIMD ARCHITECTURE

The first section in this study covers the implementation of an approximate
factored algorithm onto a representative MIMD computer. The purpose of this study
is to determine whether approximate factorization has properties suitable for paral-
lel processing on MIMD machines. Possible applications include using the newly
acquired CRAY X-MP at NASA Ames to solve some popular CFD algorithms. Also, gaining
a complete understanding of the mapping of the algorithm to the architecture will
help to attain a long-term goal, which is to determine how the choice of MIMD archi-
tecture influences the efficiency of solving approximate factored algorithms. The
particular code that will be used for this study is the Pulliam and Steger AIR3D
code (ref. 15), commonly known as ARC3D (Ames Research Center 3D).

The code AIR3D is a three-dimensional, implicit, approximate-factored algorithm
which solves either the Euler equations or the Navier-Stokes equations with a thin-
layer approximation. Options include either a laminar or turbulent boundary layer,
for the viscous case, and a default grid about an axisymmetric, hemispherical-nosed
projectile.

A detailed discussion of AIR3D will first be presented covering the equation
set solved and the particular form of the approximate factorization algorithm
used. General properties of approximate factorization will be included in this
discussion. The required steps to implement the code on a generic MIMD machine will
then be presented, along with a discussion of how the memory system will influence
the procedure used to adapt the code to a particular machine. This will be followed
by the specific application on the NASA Ames research machine, which attempts to
simulate a possible CRAY X-MP implementation. (At the time of this writing, the
CRAY X-MP was not available for testing concurrent processing.) Results for this
study will be in the form of the speedup performance parameter described earlier, in
which the execution time for the concurrent implementation is compared to the execu-
tion time of a serial implementation. These execution times will give an indication
of processor synchronization overhead and data communication overhead. However, the
dominant factor in the speedup measurement will be the concurrency within the algo-
rithm, so the emphasis will be placed on the algorithm in this research.

12

L

(BN

The mode of operation used for the study is the single-user, dedicated system
mode. A multiuser, time-sharing system would not be practical for this study
because of the required synchronizations, which will be shown later. An assumption,
that all data can be made available to both processors in a sharable memory, is made
which allows the system to mimic the CRAY X-MP memory architecture. A conceptual
machine design which has properties specially suited for a dedicated, approximate-
factored algorithm will be presented.

The study of AIR3D is part of a larger research effort in the Computational
Research and Technology Branch at NASA Ames Research Center. As part of this
effort, two additional codes have been adapted to the NASA Ames MIMD test facility
by NASA researchers. The two parallel studies, which also use well-known CFD algo-
rithms, are "TWING," a three-dimensional potential algorithm, and Rogallo's "LES"
(Large Eddy Simulation) code using spectral methods (refs. 16 and 17).

3.1 Equation Set

The code AIR3D is an implicit finite-difference program for time-accurate,
three-dimensional, flow calculations. It is capable of handling viscous effects and
incorporates an algebraic turbulence model as a selected option. The code is also
capable of handling arbitrary geometries through the use of a general coordinate
transformation. A more complete description of the code can be found in a paper by
Pulliam and Steger (ref. 15), which will be summarized here.

The three-dimensional, nonsteady, Navier-Stokes equations can be transformed
and written for an arbitrary, curvilinear space, while retaining the strong
conservation-law form, without increased complexity of the governing set. The
following form shows the resulting equations when transformed from x, y, z, and t
space to &, n, ¢, and t space.

2 2 3 3
ar 4% 3¢ (E+E) + 5y (F+F) + 57 (G+G) =0 (3.1)

where

13

N [oU i
ou pUu + E.P
q = J'1 ov| , E = J"1 oUv + gyp
oW pUw + §.p
_eJ LU(e + p) - Etp"‘
(3.2)
[oV] i oW 7
y oVu + n,pP y pWu + &P
F=J pVv + nyp , G=J pWV + ;yp
pVw + n,P pWW + L P
V(e + p) - ntp] |W(e + p) - ztp]
and
U:};t+§xu+5yv+gzw
V= N+ nu + nyv + W (3.3)
W= ct + LU+ cyv + czw
-1 _ _ _ _
J B xiyﬂzC * x?.'yﬁzﬂ * xﬂyCZE xiyﬁzﬂ xf‘lyEzC nyﬂzE (3.9

The quantities U, V, and W are the contravariant velocities written without metric
normalization. This general transformation includes the possibility of a moving
grid. The viscous terms, E,, F,, and G,, will not be presented here but can be
found in many papers on the subject (refs. 15,18,19). In this formulation, the
Cartesian velocity components u, v, w are nondimensionalized with respect to the
free-stream speed of sound, a_, and the density, p, is normalized with respect to
p,- The total energy per unit volume, e, where e = p[e + (1/2)V"], € is the
internal energy, and V is the velocity magnitude, is normalized with respect to
P,3,- Pressure is given in terms of these variables by

p=(y- 1)[e—%p(u2+v2+w2)] (3.5)
The metric terms themselves are defined in detail in reference 15.

This program makes use of a thin layer approximation throughout, resulting in
fewer grid points and fewer computations. The thin-layer approximation uses coordi-
nates similar to boundary-layer coordinates and ignores viscous terms associated
with small velocity gradients. Therefore, if the ¢ and n coordinates are chosen
to lie parallel to the body surface, only the ¢ viscous terms will be included.
This is similar to a boundary-layer model in which streamwise viscous terms are
ignored. Thus, this approximation requires grid refinement in only the ¢, or
perpendicular, direction. The new set of equations simplifies to

14

[AY

3 3 9 3 -1

where .
0

o
u(EX + £+ Ex)u; + (u/3)(cxuC + cyvc + r,zwc)cx

W(Eg + 55 + B0V, + (W3 (T, + Ty, + T, (3.7)

n
N <N <

2 2 '
u(Ex + Ey + Ez)wz + (u/3)(r.xuc + cyvC + ‘z”;)‘z

2 2 2 2 2 2 -1 2
(z, + L, * cz)(O.Su(u +V +W)C + kPr (y - 1)(a)C)

L + (u/3)(cxu *Tyv o+ CZW)(cxuC + 7

yvc + czwc) o

and Re 1is the Reynolds number, based on the nose radius, Pr is the Prandtl num-
ber, and « and u are the coefficient of thermal conductivity and the dynamic
viscosity, respectively. An algebraic turbulence model is also incorporated in
AIR3D which makes use of the method of Baldwin and Lomax (ref. .20).

A supersonic projectile geometry is used as a test problem., The projectile
geometry chosen has a hemispherical nose and a cylindrical afterbody, and is in a
Mach 1.2 flow at a 19° angle of attack. This configuration allows for the use of
simple boundary conditions, such as supersonic inflow at upstream boundaries and
supersonic outflow conditions for supersonic outflow boundaries. The physical space
can be cut in half by taking advantage of the symmetry of the projectile, which also
results in simple boundary conditions along the plane of symmetry. Solid-body
conditions are used on the body, i.e., no normal velocity for inviscid flow and
no-slip for viscous flow.

3.2 Algorithm Used

The approximate-factorization algorithm to be used has its origins in the
Alternating Direction, Implicit (ADI) algorithm. The ADI algorithm was introduced
for various applications by Peaceman and Rachford (ref. 21), Douglas (ref. 22), and
Douglas and Rachford (ref. 23) for scalar elliptic equations. The method was
extended to hyperbolic equations by Douglas and Gunn (ref. 24) and Beam and Warming
(ref. 19). For a hyperbolic set of equations such as the Euler equations, which we
represent by the general form

—q+—E=+ 2 F + 3 G=0 (3.8)

15

where q is a vector, E = E(q), F = F(q), and G = G(g), the corresponding finite-
difference equations can be expressed in operator notation and written as follows:

n n
Lyyz 0 = Fpyl _ (3.9
In this form, the left-hand side is the implicit part and the right-hand side is the
exglicig+qart gf the algorithm; and the equation is exgressed in delta form where

Aq” = q - q . The operators in equation (3.9) are general operators which result
from the finite-differencing and the local time-linearization of the terms contain-

ing the E, F, and G differentials, which will be discussed later. The approximate
factorization is introduced as a less computationally costly means of inverting the

operator on the left-hand side. The operator is first factored into three separate

operators that are spatially independent, as follows:

2,.%,% Aq" = - aq" + o(at?) (3.10)
and the approximation is introduced by ignoring the second-order terms in equa-
tion (3.10). This allows the introduction of a three-step solution process in which
each step inverts an independent spatial operator. Intermediate variables are
encountered in this way, but they do not add to the storage requirements since they
may overwrite the previous level. The three-step solution is given by

% - n_ -1 n

av = 9&9% 4q = g& g%yzq
gt :.‘l’;1q* ' (3.11)
qn+1 - qn +g-z-1q**

The particular finite-difference scheme used in AIR3D is the implicit, approxi-
mate-factorization algorithm of Beam and Warming (ref. 19). The scheme was chosen
to be implicit to avoid the restrictive stability bounds of explicit methods when
applied to small grid spacings. The delta form of the algorithm, in which incremen-
tal changes in quantities are calculated, is used to allow approximate factorization
without explicitly subtracting factorization errors and, in addition, is a conve-
nient choice for steady-state solutions.

Central differencing is used for all three directions. The finite-difference
equations are spatially split so that three separate one-dimensional problems are
solved at each time step. The central differencing yields block tridiagonal
matrices which are inverted in each spatial coordinate. This decoupling of the
operators for each spatial coordinate, which results from the approximate factoriza-
tion, provides the principal motivation for considering parallel processing as a
means to carry out the calculations. The method used to invert the operators will
be detailed at the end of this section.

16

Ly

The approximate factorization of the finite-difference algorithm results in the
following set of finite-difference equations:

(I + hs i" - eiJ-1v 8,1 + hs B - eiJ-1

£ e
« (1 + s E" - hRe ™!

v 4 J)
nn
-1 n

J VCACJ)AQ

1

~1

GCM - €y
n n n - n -1 2 2 2 n

= -At(GEE + 8 F +68G - R85) - e d [(VEAE) + (vnAn) + (VCAC)]fg 2

in which Aqn = qn+1 - qn and h = At for first-order Euler time differencing,

or h = At/2 for second-order trapezoidal time differencing. The finite-difference
operators &, Vv, and A are defined as

S8 = 5oz (Fye1 - £529)
, ‘
fo v (f.'J - fJ-‘I) (3.13)
Af:l—(f - f,)
X Ax T §+1 J

Implicit and explicit smoothing terms have been added to help damp out the high-

frequency oscillations. In the implicit operator, the numerical damping terms use
second-order differencing to maintain the block tridiagonal nature of the implicit
part of the code, while in the explicit right-hand side they use fourth-order dif-

ferencing. The smoothing coefficients are e; and ¢, for the implicit and explicit

smoothing, respectively. The matrices A", B", and &" are local linearizations

of EP*! F0*1 and GM*1, respectively, and are obtained using a Taylor series
expansion on Aq. The coefficient matrix #" is obtained by a Taylor series expan-
sion of the viscous vector Sn+1. These matrices will not be presented here, but
can be found in the paper by Pulliam and Steger (ref. 15).

In terms of operator notation, each operator becomes a block tridiagonal matrix
with the following structure.

1

_ ~n _ -
2% = (I + h&EA eiJ VEAEJ)
n -1
= 8 - . - .
£, (I +h nﬁ e J7 v 8.d) (3.14)
~n -1, =n -1
Q; = (I + h&CC - hRe SCM - eiJ VCACJ)

The block tridiagonal operators %,y %,y and E% are spatially decoupled, and so can
be inverted independently. This spatial decoupling is the property that allows

17

concurrent processing. In the past, this property has been used to support vectori-
zation, on vector processors, by solving each operator as an array. Here, this
property has been exploited to adapt the code to MIMD architectures. The spatial
decoupling helps in the following way. Since each operator contains derivatives in
only one spatial direction, all lines of data in that coordinate can be solved
independently; for example, each line of j, where J is the x index, can be .
solved independently on every point in the k,% plane, where k and & are the
indices of y and 2z, respectively. Thus, an MIMD machine could, in principle, use
as many processors as there are points in each plane, assuming there is no other
restriction. The explicit operator, F yzr €aAN be handled in any convenient manner,
since it is completely explicit, and alX required data are available at each time
step. Without the spatial decoupling, the implicit algorithm would have no inherent
parallelism, so adapting the code to MIMD machines would be a difficult programming
task. The recognition of this inherent parallelism was the primary factor in pursu-
ing the study of approximate-factorization algorithms.

It should be noted that this decoupling is a feature of the approximate factor-
ization, and is not associated with the central differencing used in AIR3D. Thus,
any approximate-factorization algorithm exhibiting this kind of spatial decoupling
should allow the use of the same sort of parallelism.

3.3 Memory Allocations and MIMD Implementation

The presence of parallelism in the approximate factorization algorithm suggests
a simple approach for adapting AIR3D onto a MIMD facility. However, the memory
structure of the MIMD facility will make an enormous difference in the actual imple-
mentation. As mentioned in the introduction, MIMD machines have different types of
memory systems. At one extreme, all of the memory in the multiprocessor machine is
shared among the processors. At the other extreme, the machine has a very small
shareable memory, whereas each processor may have its own large local memory. As
the adaptation of AIR3D is discussed, particular attention will be made to these
architectural differences and how they affect the particular implementation.

The simplest implementation of an approximate-factored algorithm is on a facil-
ity with a large common memory. All of the data can be stored in the shared memory
and, therefore, can be accessed by all of the processors. The CRAY X-MP is a
machine with a moderately large 2-megaword (MWord) shared memory so the large,
common-memory implementation presented here is the approach that is considered in
this study. For this discussion it will be assumed that the amount of shared memory
is infinite, and memory-access conflicts among processors do not occur., -This is a
reasonable assumption for the CRAY X-MP because it has only two processors, and
memory-access conflicts are expected to be minimal. In fact, one of the objectives
of this study is to obtain a measure of this conflict for a practical problem in
CFD. This ideal approach will now be presented.

3.3.1 Ideal implementation- An ideal MIMD implementation of the spatially
decoupled procedure begins as follows. The first step is to compute the right-hand

18

side of equation (3.12). Because it is explicit and all data at the current time
step are available (in the shareable memory), the data can be divided into several
groups. A convenient split is to divide the data evenly along a particular direc-
tion (x) by the number of processors available. If j is the index representing
the x direction and Jg,, 1is the total number of x grid points, then for a two-
processor system, one processor can be assigned the points 1 to Jmax/2 and the
other Jp,4/2 + 1 to Jp... Note that no overlapping is necessary, since all data
are present and accessible by both processors in shared memory. The split is repre-
sented ideally by a Fork as shown in figure 3.1. All processors must be synchro-
nized at the completion of this step before continuing to the implicit integra-
tion. This synchronization, a Join in figure 3.1 (following the explicit right-hand
side calculation) is the first of four such synchronizations.

After all tasks have joined, verifying completion of their respective segments
of the right-hand side, the inversion of £, may begin. A single line of j can
be inverted at any point in the k,% plane, independent of all other lines of j.
Thus, the workload can be distributed among the several processors and directed to
any desired division of the k,2 plane. Again, this split is represented by a Fork
in figure 3.1. At the completion of the x sweep, a second synchronization, or
Join, must occur before proceeding to the y sweep.

For the y sweep, the database can be split anywhere in the j,%2 plane to
separate the decoupled k lines for concurrent processing. Upon completion of this
sweep, the processors must be joined a third time before continuing the 2z sweep.
The 2z sweep can be split anywhere in the j,k plane, and computation proceeds as
before. A fourth and final Join is required at the end of the 2z sweep to complete
a single iteration loop. Note that if the y and z sweeps were processed before
the x sweep, then two Joins can be eliminated by allowing each processor to solve
the 3& 2 y and &, before the data must be repartitioned. This iteration loop
may have to ge repeated 200-600 times before a converged solution is obtained with
typical CFD applications.

An example of a simple two-dimensional problem requiring a two-step solution
procedure with three synchronizations is shown in figure 3.2. The figure outlines
the process for the implicit operator on a four-processor system.

3.3.2 Architectural restrictions- Practical architectural restrictions will
now be introduced. First, the shareable memory will never be infinite. Therefore,
the problem may be limited to the available common memory. If we assume that the
available shared memory is sufficient, then we arrive at the next restriction. This
restriction is memory bus bandwidth. Take the example previously discussed
(fig. 3.2). Let us suppose the MIMD facility has enough processors to assign one
processor per point in each plane so that an operator could be inverted by a single
sweep of each processor. Then a situation would exist where more than one processor
would try to access the shared memory at any given time. However, only one proces-
sor can access a memory block at a time, so there would be memory conflicts, and the
other pracessors would have to wait. As the number of processors grow, the number
of confliets grow and the waiting time increases. An industry rule of thumb is that
the memory bus becomes saturated with as few as four processors. A simple solution

19

to this memory-bus bandwidth problem is to introduce separate memory banks with
private access. However, the networking of such a system to allow a certain amount
of data transfer is a difficult problem, and represents a major field of research in
computer science. The CRAY X-MP, with only two processors, does not suffer
noticeably from memory-bus saturation.

At the other end of the hardware spectrum are machines that have limited shared
memory. The NASA Ames MIMD test facility falls into this category. However, the
goal of this particular study was to develop procedures for implementing the algo-
rithm on the CRAY X-MP. Therefore, instead of using the procedure described in the
discussion that follows, the VAX test facility was used to simulate. the CRAY X-MP's
architecture. This was accomplished by modifying the problem, which will be

detailed later.

The procedure that would normally be used in these machines uses the concept of
"pencils" in breaking up the data into blocks that fit into the common memory. A
pencil is a specific block of data which includes all data along a grid line. This
procedure is commonly used for solving large-scale problems on small-memory sys-
tems. On a single-processor system with limited memory, the method is to read a
pencil from an outside source (such as a disk drive) into memory, and perform the
required operation (such as the inversion of the £ operator). When the operation
is complete, the result is exchanged for a new pencil, and the task is repeated
until the entire operator for one spatial plane is inverted. This process must be
repeated for each spatial plane of data. For example, the data blocks shown in
figure 3.2 can be viewed as pencils and the entire process is analogous to the MIMD
procedure previously described. Each read-and-write of a pencil requires that the
data be restructured, since the actual procedure is to take a three-dimensional
array and divide it into several new, three-dimensional arrays. Reading and writing
pencils into memory takes considerable time, so an effort is generally made to fit
the entire problem into the available memory. To minimize the time, only two such
reads-and-writes of pencils in two iterations are done. This technique, which is
detailed in Lomax and Pulliam (ref. 7), basically requires that the order. of opera-
tion for the operators £,, £, and ¥, be rotated with each iteration, allowing
pencils to be oriented proper¥y for a longer period.

An MIMD implementation of this procedure occurs as follows. First, it must be
assumed that one processor has access to all of the data. This processor is respon-
sible for managing the pencils for all of the other processors. Its function will
be to load the pencils into a memory that can be accessed by the other processors.
The implementation, on a machine with a single, shared-memory unit for all proces-
sors, would be to take the largest pencil which can fit into the memory block and
process it. Each processor would then take a portion of the pencil and operate on
it. On the other hand, if each processor has a semiprivate memory bank shared with
a processor which coordinates pencil loads, then each memory bank could be loaded
with a different pencil, so that each processor operates on separate data. This
hardware implementation is a specific network implementation of the memory bank
scheme described above. Again, as described in reference 7, only two loading cycles
of pencils are required during each two iterations.

20

A

On observing the memory-bandwidth problem of the ideal MIMD implementation and
the technique of pencils for the limited memory application, one can deduce a simple
hardware construction for the algorithm (fig. 3.2). This construction is based on
the "dance hall" model, which draws an analogy between processors and dancers. Each
processor is given a block of memory and dances around with it until it eventually
passes its partner to another processor in exchange for a new partner. For the two-
dimensional problem of figure 3.2, the computational domain is divided by the four
processors and the two sweeps into 16 blocks, as in figure 3.3. However, if one
determines which processor accesses which block, one sees immediately that the
diagonal blocks are accessed only by a single processor. In fact, the blocks in the
computational domain can be associated with matrix elements A K? in which j and
k identify the processors which access a block in the two sweeps. Figure 3.3 shows
a four-processor implementation using this notation. Thus, for a dedicated approxi-
mate factorization multiprocessor system, the memory configuration may be chosen so
that a block is accessed by a single processor if J = k or by two processors if
j # k. Since each block is accessed by one processor at a time, the implementation
could make use of hardware switches which may be reset by the software on each
sweep.

The primary motivation for this approach is to eliminate the problem of memory-
bus bandwidth. The memory implementation discussed here would circumvent this
problem, provided the required switching can be suitably implemented in hardware.
Also, in principle, there would be no restriection on how many elements, Ajk' are

used. Although software may be required to align the database for each A Kk
access, which would introduce some additional complexity, this memory implementation
would be an interesting possibility for CFD usage.

The problems associated with different MIMD architectures manifest themselves
in either memory bus saturation or data-reformatting overhead. The primary objec-
tive of the individual codes is number-crunching, so any penalties resulting from
these problems are undesirable. Since the MIMD research facility at NASA Ames is
only a two-processor system, the penalties were minimal.

3.4 Implementation on the VAX Test Facility

The implementation of AIR3D on the MIMD test facility at NASA Ames will now be
described. The specific memory architecture assumed for this study mimics that of
the CRAY X-MP. In other words, it is assumed that the processors have access to all
data through a sufficiently large common memory. A task flow chart is presented in
figure 3.4. This chart is quite different from the ideal case of figure 3.1,
because of practical considerations which will be described later. .

The initial segment of the code (fig. 3.4) includes the input routines, ini-
tialization routines, and the grid-generation routines. This part of the code is
serial. These serial operations require an almost insignificant amount of CPU time,
so no effort was made to make them parallel. The input routines set the angle of
attack, Mach number, and other important flow variables. Software switches are also

21

set which specify the grid option and initialization option used and determine
whether viscous effects are to be included and if they are laminar or turbulent.

The initialization routines allow the choice of an impulsively started solution or a
startup from a previous solution which is obtained from a file. The grid-generation
routine allows the selection of either a grid stored in a file or the default grid
on a hemispherical nose with a cylindrical afterbody, which it calculates. At this
point, the MIMD code must create the concurrent tasks.

The practical considerations which account for the differences in figures 3.1
and 3.4 are due to the VAX operating-system overhead required to initiate tasks in a
time-shared system. In order to reduce the overhead, the code was implemented in
such a way that the concurrent tasks are initiated only once. Each Fork in
figure 3.1 would have required initialization of a new task in the operating system,
‘which is costly. The method chosen was to use an initial Fork and then use Syncs
instead of Joins , so that the concurrent tasks are always resident in the operating
system. The difference between figures 3.1 and 3.4 is that the Forks and Joins are
all replaced by Syncs, and the dashed lines in figure 3.4 represent the tasks in
hibernation. Since this modification resulted from the accounting overhead of a
time-shared system, it should be considered important when transferring a code to an
MIMD machine that uses time-shared accounting.

After the initial segment is run, the program enters the main iteration loop.
The main iteration loop contains the code segment, which updates the solution by one
iteration step. This segment begins by calculating the boundary conditions explic-
itly. Currently, the boundary conditions are calculated serially since extensive
effort would be required to decompose it into concurrent tasks. When the program
has completed the boundary condition ecalculation, it records an EVENT which signals
the right-hand side tasks to begin ("wake up from hibernation"). The right-hand-
side operator is then calculated, followed by the explicit smoothing. This part of
the code is executed concurrently. When the concurrent tasks are completed EVENTs
are recorded for both, which is a signal for the main task to continue. (Recall
that this would be a Join in the ideal implementation.) The concurrent tasks will
be returned to the beginning of the loop and will hibernate until the required EVENT
from the main task is recorded at the next iteration.

At this point the residual operator is available (at steady state, the right-
hand side becomes zero), so convergence is tested by calculating the L, norm,
defined by :

172

J K L
R, = {7t 2 2 2 Byl (3.15)

in which Rj; , o 1is the right-hand side of equation (3.12) at j,k,2. Optional
output routines give diagnostic information, such as a pressure distribution, when
requested. In all applications, this section of code is serial. The final step in
the main iteration loop is the implicit integration, which requires three sweeps
through the data base. The MIMD codes execute each sweep concurrently with Synes

22

between each sweep. Again, ideally, Forks and Joins would be used, but Syncs are
implemented as in the explicit, concurrent tasks. This main iteration loop consti-
tutes the majority of the CPU time since it is repeated 200-600 times for typical
solutions and it is computationally intensive.

The final portion of the code contains the output routines and is entirely
serial. This portion places the output data into output files for future data
processing.

The basic flow of the program has been presented, but the problem of data
protection must also be addressed. Data protection is the responsibility of the
operating system and differs from machine to machine. Data protection can prevent
the second processor from overwriting information generated by the first proces-
sor. The first type of data blocks are the local data blocks. These local data
blocks are the most protected form of data since they are local to the unique sub-
routine which accesses them. In general, local data information is lost when the
particular subroutine is exited. Protection of these blocks does not change from
the serial implementation to the MIMD implementation. The next type of data block
is the shared data block. An example of shared data in AIR3D is the main-solution
data block, the vector q, which is addressed and required by all concurrent
tasks. This data block must be stored in a shareable memory, or partitioned into
pencils as discussed earlier. Other data blocks that must be stored in a shareable
data group include the scratch space for the previous time-step solution, the right-
hand-side operator, and intermediate variables of equation (3.11), the grid data,
and all of the "bookkeeping" variables.

The task global data is the final data type that must be considered. Many
temporary scratch arrays are used during execution. For example, the grid metric
terms are calculated in scratch space when required. If both processors use the
scratch space simultaneously, they will generate erroneous results. The VAX facil-
ity has an abundance of task global memory, so this is no problem. All that is
required to prevent the other processor from accessing the scratch space is to not
place the scratch space in shared memory. The CRAY X-MP, on the other hand, must
have duplicate sets of scratch space to accommodate the lack of task global mem-
ory. The simplest procedure is to add a new dimension to all of the scratch arrays
which represents the processors which will access it.

The NASA Ames MIMD test facility and the CRAY X-MP can be compared. The CRAY
X-MP has the advantage that the two processors are coupled by the same operating
system. Therefore, the main task can create all concurrent tasks and allocate them
to separate processors. The VAX facility is much more loosely coupled. Each pro-
cessor is guided by its own operating system and will not allow a task to be created
by another processor. The result is the necessity to run a slave task on the second
processor, whose sole function is to create the concurrent tasks for the second
processor and to manage local processor data. Another difference is that the CRAY
X-MP allows tasks to be contained within a single source code, whereas the VAX MIMD
facility requires that each concurrent task be compiled and linked as a separate
program. The CRAY X-MP requires only one program to run concurrently. The MIMD
test facility, however, requires six programs--one for the main task and two for

23

concurrent tasks (one for the right-hand side operator, one for the left-hand side
operator)--for each processor, which is one unfortunate limitation of the VAX MIMD

test facility.

Another difference between the two NASA MIMD facilities is the memory system.
As mentioned previously, the CRAY X-MP shares all of its memory, whereas the MA780
dual-ported memory in the MIMD test facility has only 1/4 Mbyte. There is no diffi-
culty in putting the required shared data onto the CRAY X-MP, but all of the
required shared data cannot be stored in the MAT80 of the VAX facility. The resolu-
tion of this difficulty will be discussed later. Also, recall that the CRAY X-MP
has no task global memory protection. The CRAY X-MP operating system assumes all
nonlocal data are shareable data, and declares them as such. The VAX facility
assumes all data are task-global unless explicitly stated as a shared memory
block. This is a situation in which two opposing philosophies have greatly affected
the structure of the data blocks.

3.5 Difficulties of Implementation on the VAX Facility

Several tradeoffs and compromises were made in the concurrent implementation of
AIR3D for the VAX faecility. First, because the code is computationally intensive,
solutions could not be carried out to convergence on the two VAXs. The total dedi-
cation of the MIMD test facility at NASA Ames would have been required for an unac-
ceptable period of time in order to reach a properly converged solution. Since this
amount of run time was not considered, the test cases were run for only 10 to
20 iterations to get sample timings.

~ Another rather severe restriction encountered was the limited size of the MAT80
dual-ported memory. Because the code is three-dimensional and each grid point is
associated with 14 variables, which will quickly use up the shared memory, two steps
had to be taken to tailor the problem to the limited memory. First, the grid met-
rics were removed from shared memory and a copy was placed in each processor's local
memory. This eliminated 3 of the 14 variables required. It must be noted that in
an unsteady problem, where the grid metrics change dynamically, this procedure would
not be allowed. In the present problem, the passing of the grid metrics from one
processor to the other occurs only during the initialization routines.

The second step taken was to reduce the grid density. The normal default case
for the hemispherical-nosed, cylindrical-afterbody geometry was an array of 30x18x30
points. The VAX tests in this study used a 20x10x20 array, which results in 75%
fewer grid points. At this level of coarseness, the code became unstable after a
large number of iterations, and no attempt was made to seek a converged solution.
This was not a serious limitation because the objective was to obtain a run-time
comparison between a serial and an MIMD configuration; for this comparison cover-
gence is not a necessary condition.

Another approach could be taken which uses pencils. This approach places the
pencil containing only the data that is required by the second processor in the
shared memory, which means that only half of the data has to be in shared memory at

24

one time. However, this also means that the data have to be reformatted and shifted
at least twice for each set of two iterations, which adds an unfair burden to the
timings. The approach of using pencils was not tested since the immediate objective
of this research was to develop the procedure for the CRAY X-MP. The mode used for
the VAX facility test suited this objective, so it mimies the approach used for the
CRAY facility. However, one clear advantage that was discovered while using pencils
is that the slave processor requires only a generic solver for all three sweeps of
the implicit integration. This can result in a compact code and, on certain vector
machines, could speed up computation time of the slave processor considerably.

In the original formulation of the program, metric derivatives were calculated
as needed to avoid the extra memory space required to store them. The code was
written to calculate all of the metric derivatives along a particular grid line when
the subroutine was called. This presented no problem with the implicit part of the
code, since all lines of data were decoupled. However, for the explicit part of the
code, when the metric derivatives crossing the division between the two data halves
Wwere calculated, extra work was necessary to include some overlapping data in the
calculation. The amount of overlap required was two points, for the fourth-order
finite-differencing used in this code, since each half of the explicit calculation
must "see" into the other half of the data for a distance of two points.

3.6 Results

The performance data of the NASA Ames MIMD test facility were obtained while
running the system as a single-user system. This allowed the use of all the memory
with only the operating system competing for CPU time. Execution times of the code
were obtained by the computer system clock, and were used to determine the speedup
performance. The two options tested were the Euler equations and the Navier-Stokes
equations with the turbulent, thin-layer approximation.

Three timing measurements are presented for the two flow-solvers, which include
progressively more hardware/operating system penalties. The measurements were made
to demonstrate the variations in timing data that are found for different computer
environments., The three measurements are for CPU task timings, total CPU timings,
and real-time (stopwatch) timings. Speedup as used here is defined by

t .
Speedup = —serial (3.16)

concurrent

The first set of timings, the CPU task timings, were made by recording the CPU
time for each element, or task, of the program. The tasks are defined in a manner
consistent with the previous discussion of the code. They include the setup, which
is serial, both the serial and concurrent parts of the explicit calculation and the
implicit integration; the boundary conditions and residual calculation; and the
output routines. The serial portions of the explicit calculation and the implicit
integration are primarily overhead required for parallel processing. This timing

25

procedure makes it easy to separate the serial and concurrent timings for extrapo-
lating speedup for a larger number of iterations. Tables 1 and 2 compare the serial
timings to the concurrent timings for the Euler and Navier-Stokes solvers, respec-
tively. The data presented are representative of all the iterations since the task
timings for each iteration were found to be very close, although not identiecal.

From these timings it is clear that, within the main iteration loop, a signifiant
improvement in computation time is achieved. The tasks which calculate the right-
hand-side operator and invert the left-hand-side operator show speedups of nearly
2.0, with very little overhead. This result demonstrates the negligible effect of
memory conflicts and synchronization times for the two-processor facility. The main
iteration loop showed a speedup of 1.905 for the Euler solution and 1.914 for the
Navier-Stokes solution. These results demonstrate that the overall speedup attained
for this implementation is quite good for a single iteration ecycle, and represents a
respectable asymptotic limit for typical numbers of iterations required in CFD
applications which include initialization and output routines. Curves of speedup
versus number of iterations are shown in figures 3.5 and 3.6. These curves were
computed using the following formula:

Soeedup - (Esetup * MCac * trus * Trus) * Youtput)serial (3.17)
peeup-(t +n(t.. + ¢t + t) + ¢t))
setup Bc * Cmus * Pims

output’concurrent

The two processors yielded different timings for the same concurrent task which
were found to vary by as much as 5%. However, each processor was consistent with
its own timings. As a result, it was decided to use the task timings for the
extrapolated MIMD performance curves from the same processor that executed the
serial code. Also, tasks were not penalized for certain overhead steps. For
example, no task was charged for the CPU time required to "wake" a process or cause
it to "hibernate." 1In view of this, steps were taken to ensure that most parallel
processing overhead was properly charged. '

The next two sets of timings represent the total time spent in executing the
code (including all overhead) but excludes penalties for work done by the operating
system in job management, etc. (see tables 3 and 4). Each time is the sum of the
CPU times for the main process and each of the subprocesses. These results would be
representative of non-time-shared machine, where no job-management interruptions are
allowed, and all processors operate at the same speed. Again, for this implementa-
tion, where each processor has a slightly different speed, the speedup was measured
by using the data for the same processor that was used for the serial code. These
results are slightly lower than the previous results, as seen in figures 3.5
and 3.6, since all program-related overhead was properly charged.

The last set of timings are "stopwatch-style" timings (see tables 5 and 6).
The measured time represents the total elapsed time from initial startup of the job
to its conclusion, which gives the actual speedup in turnaround time one can expect
for this system. This number includes all job-accounting overhead from the operat-
ing system and the difference in speed of the two processors. These timings are
very machine-dependent and, given the MIMD testbed used, they can be assumed to

26

represent the low end of speedup (figs. 3.5 and 3.6). The difference between this
timing and the timings of the first method represents the improvement that can be
made within a given computer environment.

All three timings show that the Navier-Stokes solution, with the turbulent,
thin-layer approximation, yielded a greater speedup than the Euler solution. This
is a consequence of the larger number of calculations needed for the Navier-Stokes
solution that appear in the parallel portions of the code. An even greater speedup
of both solvers could be achieved if the boundary conditions and residual calcula-
tions were made parallel. These two portions of code are located in the main itera-
tion loop and are therefore a significant cause of inefficiency. The initial setup
and final output routines represent such a small fraction of the total CPU time, for
the realistic case of a large number of iterations, that it is not useful to extract
any parallelism they may contain. The timings reported here represent speedups that
can be obtained using standard programming techniques.

3.7 Conclusions

A significant amount of parallel code has been identified in a standard bench-
mark CFD code. The code uses an approximate factored algorithm which, in a very
straightforward manner, can be run on a concurrent-processing computer. This
implicit algorithm was shown to achieve a speedup of greater than 1.9 on a two-
processor system for representative solutions without undue effort. The general
approximate factored algorithm is a good choice to run on the new generation of MIMD
computers,

On processor systems with more than two processors, the code can be implemented
using the method presented here. However, the memory-bus bandwidth problem will
have to be overcome before this procedure can be implemented efficiently. Unless
this problem is resolved, it is unlikely that approximate factorization will be able
to take advantage of large-scale parallelism in the hardware without using new
solution techniques. However, this memory-bus saturation problem is based on expe-
rience with other studies, and therefore should not be used to predict how many
processors will cause bus saturation with the approximate-factorization-algorithm
solution derived here.

Working with the computer environment used for this section brought to light
some significant features. The two processors which were used required different
execution times. Although this would not be significant on a machine such as the
CRAY X-MP, it led to significant differences on the NASA Ames MIMD test facility.
The conclusion was that concurrent algorithms should strive to be asynchronous,
which would eliminate overhead from the different processor speeds. The concurrent
implementation of the approximate factored algorithm presented in this section
cannot be run asynchronously, so a more complex scheme of balancing processors would
be necessary. -

Some stumbling blocks at the beginning of the study showed the importance of
memory management. Local and shared memories must be separate and protected. This

27

requirement led to a significant amount of interaction between the programmer and
the operating system/computer architecture, which ideally should be eliminated with
an operational computer. The need for the programmer to access the operating system
for memory management must be eliminated. One approach would be to design addi-
tional language constructs available to the programmer that would help control
memory protection. A sophisticated operating system and compiler that could handle
these high-level language constructs would be required.

This study used a well-known CFD scheme which was not originally designed for
MIMD machines. The largest penalty on the speedup parameter was due to the algo-
rithm itself because of the serial modules embedded in the main iteration loop. The
codes in the following sections avoid the use of serial code modules. They also
have features which may eliminate memory conflicts, and they may allow asynchronous
data transfers, thus avoiding the synchronization overhead.

4.0 OVERSET GRIDS--INCOMPRESSIBLE FLOW

The second problem studied on the NASA Ames MIMD test facility was the Steger,
Dougherty, and Benek, Chimera Grid Scheme in an incompressible application
(ref. 1). This application was chosen as an ideal candidate for MIMD study for
several reasons. The primary motivation is its reduced shared-memory requirement,
which results from the use of overset grids. Also, it allows the study of chaotic
relaxation, a method which removes synchronization overhead. The overset-grid
scheme is introduced as a method for solving problems with complex geometries. The
name Chimera is derived from the mythological beast that has the head of a lion, the
body of a goat, and the tail of a snake, and is used in analogy to complex geome-
tries in CFD. The basic technique used is to generate a separate grid, which is
simple and monotoniec, for each part of a more complex geometry. The application
used in reference 1 is an airfoil with a trailing-edge flap. Several applications
of overset grids have been tested. Besides the Steger, Dougherty, and Benek stream-
function solution which will be detailed later, an airfoil/flap configuration solv-
ing the Euler equations has been tested by Benek, Steger, and Dougherty (ref. 2),
and a wing/nacelle potential solution has been implemented by Atta and Vadyak

(ref. 5).

The problem of solving flow fields about complex geometries has proved to be
difficult. Controlling grid point distribution and clustering on a single, global
grid that is rectangular and monotonic in computational space is not always possi-
ble. The embedded grid technique offers a possible solution.

The basic idea behind overset, or embedded, grids is that the complex geometry
is divided into several elementary pieces. For example, the airfoil and flap con-
figuration in figure 4.1 can be divided into two simple grid problems, with the flap
grid embedded in the airfoil grid as in figure 4.2. Each grid can then have the
desired densities, clustering, and skewness. In addition, simple grid-generation

28

[}]

routines can be employed to create the respective grids. The only added difficulty
is in the handling of information that crosses the grid boundaries.

A flow-field solver must be chosen that retains the simplicity of single grid
problems. Also, the modified overset-grid solver must allow the use of implicit
schemes for stability considerations. For the Chimera grid, Steger et al. propose a
method which greatly simplifies any grid-overlapping difficulties, and results in
minor coding changes (ref. 1). The scheme can be used on most implicit methods, and
will be detailed later. Atta and Vadyak have devised a similar method for their
problems. They freeze the grid boundaries for a period of 40 to 50 iterations, and
then interpolate for new, updated boundaries, a cycle which repeats four to five
times for the global solution.

A convenient property of the overset grid scheme is that the communication
between the grids can be isolated from the main flow-solver. This property allows
the grid communication procedure to be removed from the main flow-solver and thus be
contained as a boundary-condition statement. The numerical procedure for handling
the grid boundaries can then be studied as a numerical boundary scheme. An addi-
tional benefit of overset grids is that the required data for communication is less
than 5% of the total data. This minimal shared-data requirement allows large over-
set-grid problems to be solved on MIMD machines with minimal shared memory.

The apparent parallel structure of the multiple grids and the minimal shared-
memory requirements allows this approach to fit nicely onto an MIMD machine, such as
the VAX MIMD facility. This section focuses on the details and results of imple-
menting the Steger, Dougherty, and Benek stream function code on the NASA Ames MIMD
test facility.

4.1 Solution of Chimera Grid

Although the specifics of the Chimera grid technique are described in refer-
ences 1 and 2, they will be summarized here. The problem that is solved in this
study is the airfoil/flap configuration of figure 4.1. The airfoil uses a 150x47
"O" grid, and the flap uses a 7Ox11 "O" grid that is laid on top of the airfoil grid
(fig. 4.2). The overset flap grid is a simple grid that can be solved as any single
grid problem, except that its outer boundary variables are supplied by interpolation
from the major airfoil grid. The airfoil grid, however, must have a hole cut out of
it to exclude points that lie within the flap surface (fig. 4.3). This hole also
covers the flow region around the flap to minimize the effect of locally high gra-
dients around the flap.

The modification to account for the hole is to choose a contour within the flap
grid, and flag all airfoil grid points that lie within that boundary. This flagging
is accomplished in an array called IBLANK., If the point is inside the hole, IBLANK
is set to zero; otherwise it is unity. Figure 4.4 shows the blanked-out points as
"x"s. Once these points have been flagged, all fringe points are flagged; the
fringe points represent the points that will be interpolated from the minor grid.

In figure 4.4, the points marked "O" are the fringe points. This procedure is

29

entirely automated, and the IBLANK array now becomes the only required modification,
other than the interpolated boundary points, that is required in a general flow-
solver. The scheme used in this section of the study will be presented, and exam-

ples of the application of the IBLANK array will be given.

The equation set that is applied to this problem is the stream function
equation

Py =0 (4.1)

Therefore this problem is incompressible, and contains no discontinuities which
could introduce added complexity, as will be pointed out later. Since the problem
is elliptic, central differencing is used. The finite-difference scheme is thus

n n :
sxij’k + sywa,k =0 (4.2)
where
- 2
2
Syy¥ic = (haq = 29 + ¥y)/ (8Y) (4.3b)

The solution algorithm used is a standard ADI scheme. If the finite-difference form
is recast in delta form with the relaxation parameter, in which the relaxation
parameter is used for time-like differencing, the equation becomes

n+l 0y w(s,, + 6 " 4.4)

v vy

(I - ws (I - wéyy)(w

This approximate-factored equation can be solved in a two-step solution procedure
similar to AIR3D's three-step solution procedure. This procedure is

(1 - msxx)sw* = m(sxx + ny)lb 5)

n+l lpn) = syt

(1 - wsyy)(w

This scheme can be solved withbut modification to run on the minor grid, with appro-
priate handling of the boundary conditions. On the major grid, the array IBLANK
must be used to keep this general form.

The array IBLANK is used in the following manner. At each inversion stage of
equation (4.5), the basic algorithm yields a tridiagonal system which, for an inte-
rior grid of only seven points, would be

30

b ¢ il -6w1q ﬂw-
a b ¢ Gwz r2
a b ¢ 6w3 r3

a b e Soy | = |y (4.6)
a b c 'Gws r5
a b ¢ 6w6 r6
] a b- -6 1[»7 J br',’ J

where &8y = (wn+1 - wn). Now suppose that the fourth and fifth points are blanked

out by IBLANK. The result would be to replace the elements a, c, ry, and rg by
zero and change the element b to one. The new system becomes

Fb c T -61»1- ﬂf
a b ¢ swz r2
a b ¢ 6w3 r3 _
1 5'1)14 = 0 (u.7)
1 6¢5 0
a b ¢ 6¢6 r6
i a b [svg] [rq]

The IBLANK array conveniently takes care of the bookkeeping for this procedure by
replacing or not replacing the elements, depending upon the value of IBLANK, since
IBLANK is either one or zero, depending upon the point. This procedure is identical
in concept to resetting w, the relaxation parameter in equation (4.5), to zero for
the flagged points. The simplicity of this procedure and its adaptability to cur-
rent algorithms is what makes it so useful.

The system in equation (4.7) is used to calculate the values of &% at all
grid points. However, 6y 1is set to zero at the blanked-out points within the hole
(flagged) boundary. These points must be updated in some manner to maintain a
consistent solution across the hole.. This is done by interpolating values from the
overset grid.

The interpolation of data from one grid to the other is an integral part of the
overset grid scheme. All overlapping-grid boundary data are obtained in this
manner. The minor grid gets its outer, kg, ., boundary data from the major grid by

31

interpolation. The major grid gets its hole, or flagged, points from the minor grid
by interpolation. In the following section, several improved methods of handling
these overset-grid boundary points will be discussed. With these methods, the
interpolation used is a second-order interpolation or

2 2 ‘
- 8x- sy~
“’9, = wm + 8% b ot 8y q,y m* 3 wxx ot Sx8y wxy ot 2 wyy m (4.8)

where WV, represents the point that needs to be updated and the terms ()m are
calculated from the other grid at the nearest point, m. Note that this formula is
given in x,y coordinates and must be transformed into the computational coordi-

nates g,n.

The appropriate conditions for the boundaries not associated with the overset
grids are the conventional boundary conditions. Far-field conditions on the major
grid are velocity, or Neumann, conditions. Tangential veloeity and a Kutta condi-
tion are required to specify ¢ on the solid body surfaces of the airfoil in the
major grid and the flap in the minor grid. The final boundaries, in computational
space, are easily implemented by using an "O" grid, which makes the scheme peri-
odic. These conditions are coded in the standard method as though no overset grid

scheme existed.

4.2 Implementation of Two Grids on Two Processors

The basic method for implementing the stream function airfoil/flap problem has
been presented. This scheme was tested by Steger et al. and implemented in such a
way that overset grid boundary data were updated by interpolation explieitly
(ref. 1). The procedure used in that program was to complete an iteration on the
major grid, then complete an iteration on the minor grid, and finally interpolate
for flagged points. With this explicit coupling of the grids, the two grids are
solved independently of each other during each iteration. This loose coupling is
the primary motivation for using an MIMD machine. The MIMD version of the code is
essentially the same implementation as the serial version except that the iterations
performed on the major and minor grids are done concurrently.

The basic features of the concurrent code will be reviewed in the context of
MIMD architectures. The code was tested on the NASA Ames MIMD test facility
described earlier. The particular characteristics of this test facility were used
to dictate the approach taken to implement the concurrent code.

The code begins with an initialization which includes the grid package. The
grid is generated externally and is introduced as a data file. The grid package
flags out the hole region, finds nearest neighbors for interpolation, and sets up
IBLANK. This portion of the code is serial, but represents a small part of the
overall time required for execution. Once the initialization has been completed,
two tasks are spawned. Each task represents one grid-solution procedure. The tasks

32

are identical and use a grid number (ID parameter) to determine which grid will be
used. There is a Sync point at the beginning of each iteration loop within the
tasks which allows the solvers to synchronize before they receive the interpolated
data. The main program is essentially idle for the rest of the computation.
Figure 4.5 is a diagram showing the Fork of the spawning and the Sync points.

The iteration loop is straightforward, and is not too different from the serial
version. The Sync point forces the two grids to start each iteration together. The
interpolated points are then updated explicitly from the previous time step so that
the solution is identical to the serial version. Here, however, this procedure is
being executed simultaneously in the two concurrent tasks. The ADI solver is then
employed in each task, and an iteration is completed. The final step is to interpo-
late for the flagged points in the other grid before a new iteration begins. Note
that this is the actual computation of overset boundary data, which is stored in an
intermediate buffer. The updating procedure at the beginning of each iteration loop
is only for overwriting the flagged points with the contents of the intermediate
buffer. The separation of the two interpolation tasks, the computation and updat-
ing, is essential to allow for the required synchronization between these two
tasks. This completes an iteration loop, so a synchronization occurs as a new
iteration begins.

In this particular application, the two grids are greatly mismatched in the
total number of grid points. Since the number of operations is roughly proportional
to the number of grid points, it is apparent that there will be approximately a
10:1 ratio of computations required in the major grid task compared to the minor
grid task. Thus it would be expected that the CPU time required for the minor grid
is one-tenth that required for the major grid. This imbalance is an obvious flaw
since one processor, in an MIMD machine, would be idle 90% of the time. In fact,
this idle time was observed. No attempt was made to balance the two processors in
this code since the purpose of this problem was to develop and explore a concept
rather than to develop a production scheme. For a production scheme, an attempt
would have to be made to balance the work, which could most easily be achieved by
balancing the number of grid points in the two grids.

Despite the idle time of one processor, there are two basic advantages of the
overset grid scheme over codes such as the concurrent version of AIR3D discussed
previously. One advantage is that, at most, one synchronization per iteration is
necessary. This eliminates synchronization overhead, thus speeding up the computa-
tion. If the overset grids were balanced with the major grid, this would be a very
efficient use of the machine in terms of operating-system costs.

The second, and most significant, advantage of this scheme is its memory
requirement. The tasks can be easily divided so that the majority of the data is
not shared. Ideally, the tasks corresponding to each grid would be contained
locally with each processor. The only data that must be shared is the small amount
of boundary data required for the overset grid and hole boundaries, which is less
than 5% of the total data. Thus, a machine with a very small shared memory can be
used for this program. In fact, the shared-memory requirements are so small that a
network of computers with a high-speed, data-transfer link could be used. Memory-

33

contention problems would be nearly eliminated since the amount of shared-memory
access is small compared to the overall execution time per iteration. Unfortu-
nately, no machine capable of testing this idea is available since existing machines
either have many small processors that are too small to handle a complete grid, or
they have only a few processors and consequently do not have noticeable memory-
contention problems.

The use of local data, task-global data, and shared data can be explored
further. As mentioned previously, some machines have no memory protection for task-
global data. The concurrent scheme presented here is based almost entirely upon
task-global memory. The NASA Ames MIMD facility has an abundance of task-global
memory and very little shared memory. Thus the development of the code followed the
theory that limited shared memory would be the more restrictive case, and any code
designed to run on such a machine would automatically fit onto machines with larger
shared memories. However, the CRAY X-MP has all of its memory shared, but it has no
task-global data. A simple solution to this problem would be to protect all common
blocks by duplicating them, which is accomplished by adding an extra subscript to
the task-global data. The modified code, however, would then not be transportable
to small shared-memory machines. If a task-global data block were used on the CRAY
X-MP and similar machines, then this code and others like it would be transportable
to all MIMD machines. Cray Research has recently announced plans to implement task-
global memory, as a result of pressure from users (which exemplifies the need for
communication between computer users and computer designers).

4.3 Results

Results of this concurrent scheme are numerically equal to the results obtained
by Steger et al. (ref. 1). The incompressible case shows no streamline alterations
as they cross grid boundaries (see fig. 4.6). The pressure coefficient is shown in
figure 4.7, and the effect of the flap on the airfoil is definitely noticeable.
Without the flap, the airfoil C_ plot would be symmetric on the top and bottom
surfaces. However, the two surfaces are distinctly different, which verifies that
the influence of the flap is taken into account.

Timing results for the computation were not important for this study. The main
purpose of this study was to verify that acceptable solutions can be obtained using
overset grid schemes on MIMD computers. Although the particular problem chosen was
not ideal for MIMD machines, it demonstrates that overset grid schemes are well

suited for MIMD machines.

Two conclusions can be drawn from this section of the study. First, the tasks
must be properly balanced for an overset grid scheme to be efficient on an MIMD
machine. Secondly, because of operating-system considerations, synchronizations
should be removed from the scheme, giving an asynchronous scheme.

Asynchronous methods need to be developed to suit the time-shared, multitasking
queue procedure. The multiprocessor, multitasking queue procedure was introduced as
the most likely choice for the mode of operation of a MIMD system. If the

34

concurrent version of AIR3D were run in such an environment, the data blocks (pen-
cils) would be executed in an arbitrary fashion dictated by the operating system's
queuing algorithm. With a two-processor system and two data blocks, the second
block could remain in the queue until the processing of the first block is com-
pleted. The program would then have to wait until the second block is completed
before it could submit the next block into the queue for the next sweep. An asyn-
chronous scheme would not be restricted by such a queuing scheme. The individual
blocks could be processed and immediately resubmitted to the queue asynchronously,
without regard to the state of the other concurrent blocks. Thus, an asynchronous
scheme would not depend upon the queuing algorithm to achieve optimal performance.
In the section that follows, it is assumed that a completely random queuing proce-
dure is used.

A less important motivation for developing asynchronous schemes is to remove
synchronization overhead. Two primary factors contribute to the synchronization
penalty--the CPU execution time for the synchronization and the waiting time of a
processor. The study of AIR3D demonstrated that the first of these penalties, the
execution time, is negligible, but the waiting period could reach 5% of the total
time. An asynchronous scheme would avoid this waiting period and thus achieve a
possible 5% improvement in speed. However, this additional speed may not be enough
to Jjustify additional work to create an asynchronous scheme since far superior speed
may come from new developments.

The problem of balancing processor work could also be accomplished by balancing
the number of grid points for each overset grid task. Another approach is to use a
nonuniform time step. In problems in which a steady-state solution is the desired
result, a uniform time step or relaxation step is not required. A solution can
converge to the steady-state solution faster if an optimum time step or relaxation
step is chosen for each grid point. This can be applied point by point or region by
region. Therefore, it is not unreasonable to fractionally time-step -one region or
relax a region for several iterations while another region is updated only once.
So, in principle, the overset grid can be relaxed in this application for 10 itera-
tions while the major grid is relaxed for a single iteration. This would balance
the utilization of the two processors. It should be noted that for the sample
problem of this section, a 10:1 ratio of relaxation steps would not be very
efficient.

A simple approach following the above procedure would be to synchronize the two
grids at the beginning of each iteration on the major grid with the beginning of
every tenth iteration on the minor grid. The following discussion will show that
this synchronization is not required. Although on this particular problem, this
approach may not be efficient, there are problems for which an asynchronous calcula-
tion would be of advantage. An example is a problem in which the time step in a
time-accurate calculation is mismatched because of stability problems. 1In this
example, the time step for each grid can be adjusted with the processing speed to
balance with other grids.

35

4.4 Asynchronous Iteration

The chaotic relaxation scheme will be presented to justify this attempt at an
asynchronous solution to an overset grid problem. The chaotic relaxation scheme is
a new approach to solving MIMD problems, and this paper discusses the first known
application of such a scheme to CFD or problems with multiple grid regions. An
application of chaotic relaxation to this problem will also be presented.

Asynchronous iteration is unique to MIMD implementations of computer codes. In
MIMD architectures, asynchronous procedures can occur which add to the randomness or
chaoticness of a scheme. In a chaotic scheme, each task will proceed randomly
without any information on the states of the other tasks. There has been some past
interest in such random schemes, but very few applications. The research has pri-
marily focused on developing theorems which will prove whether a scheme will or will
not converge, and with which limitations. Pioneering work in this area was done by
Chazan and Miranker in 1969 (ref. 13). More recently Baudet (refs. 14,25) (1978)
has generalized some of Chazan and Miranker's results.

Baudet's theorem will now be discussed, and some general definitions of asyn-
chronous schemes will be presented. The theorem will be presented for a linear
system of equations in which we assume that a fixed-point solution to the problem
exists. The model problem we will investigate is the fixed-point problem for an
operator F with a vector x which satisfies the equation

X = F(x) (4.9)

The following definition for asynchronous iteration is a copy of the definition
given by Baudet (ref. 14).

If F 1is a vector operator as in equation (4.9) and x° is an
initial vector then an asynchronous iteration corresponding to oper-
ator F 1is defined recursively as

n-1 .
o xJ if 3¢ Jn
- §n D
fJ(§11,...,xmm) if Je Jn

where x© is a sequence of vectors, J = {J;|j = 1,2,...} is a sequence
of nonemgty subsets of {1,2,...,m} and S = {s?,...,sn} is a sequence of
elements from the set of natural numbers. The following restrictions

on jand S must also hold for j = 1,2,...:

i) sg <sn-1; J=1,2,...;

n

ii) s, tends to infinity as n tends to infinity;

(SN

iii) J occurs infinitely often in the sets Jns J=12,....

36

This generalized definition was expanded from Chazan and Miranker's definition,
where condition ii) is replaced by the more restrictive condition:

ii') a fixed integer, s, exists such that n - s, < s for

n=1,2,....

[STe

This more restricted condition was used by Chazan and Miranker to define
chaotic relaxation. One can imply that a scheme that is a chaotic relaxation scheme
is an asynchronous, iterative scheme, The scheme studied in this research clearly
falls into the general category of asynchronous iterations. Since each iteration
increases the iteration difference, n - sn, the condition ii') does not necessarily
hold.

It may be easier to understand this definition by considering a system of
processors solving a set of explicitly coupled equations. Suppose, for example,
there are m processors and 2m equations, or elements, to solve; only half of the
system can be updated at a time. The other half, chosen by a random queuing proce-
dure, is held back at the previous iteration level. The elements chosen by the
queuing algorithm to be updated are the elements in the sets Jn' where n denotes
the cycle number. For the next cycle, the processors are again given new elements
to work on, and in some cases the previously updated solution is again updated and
the nonupdated solutions are again ignored. Thus, in the solution of each element,
data from the first iteration level and the second iteration level are mixed. This
mixing is assumed to occur completely at random, and the difference in iteration
levels between elements will be a random function of the iteration level. The
iteration level of each element is defined in the set S, where s" represents the
iteration level of the J element and n 1is the number of cyclethhe processors
have executed. The three conditions imposed to classify the scheme as an asynchro-
nous iteration are that no implicit dependence of points in the solution procedure
exist; that the iteration level, sn, for the least-updated element tends toward
infinity as the number of processigg cycles tends toward infinity; and that every
element must be chosen by the queuing algorithm infinitely many times in an infinite
computation.

Baudet's theorem for asynchronous iterations requires the existence of a con-
tracting operator. A contracting operator is a specific case of a Lipchitzian
operator, which is defined as follows: For every x and y the operator F is a
Lipshitzian operator if there exists a nonnegative n x n matrix A such that

|F(x) - F(y)| < A|x - y]| (4.10)

and the inequality holds for each component. The matrix A is called a Lipchitzian
matrix. A contracting operator adds the constraint that the corresponding
Lipchitzian matrix A must satisfy p(A) < 1, where p(A) is the spectral radius of
the matrix A. For the case of a linear operator, such as the particular finite-
difference operator used in this study, where F(x) = Ax + b, this definition can
also be stated: F 1is a contracting operator if and only if o(|A]) < 1.

37

Baudet's theorem for asynchronous iterations is stated as follows:

If F 1is a contracting operator (on a closed subset D of &"
with F(D) € D), then any asynchronous iteration (defined by the sets
j and S) corresponding to F with initial conditions x~ converges to
the unique fixed point of F.

This theorem can be useful for determining the success of solving schemes
asynchronously. However, developing a model problem which uses overset grids to
test this theorem has proven difficult. The interpolation matrix, which couples the
grids, adds complexity to the contracting operator; so the spectral radius of |[A],
o(]a|), must be computed numerically. In this application the asynchronous method
was tested by experimentation so convergence implies that p(|A]) < 1.

A practical argument why an asynchronous procedure might work follows. If the
overset grid boundaries are updated asynchronously, the procedure is to read the
boundary data that is available in the intermediate buffer as it is required. Since
the other grid will be at any point in its execution, there is no knowledge of which
iteration level the intermediate buffer represents. In fact, portions of the over-
set boundary can be at a different iteration level when the information is required
from the other grid. But as the solution progresses, the difference in the boundary
data at progressive iteration levels should drop to zero, since the problem has a
steady-state solution and it is expressed in delta form; so the overall effect of
receiving mixed data will not make any difference to the final steady-state solu-
tion. The transient solution, however, may have discontinuous data at the bound-
aries, which can cause undesirable waves to develop. It is conceivable that such a
scheme would be unstable and would never converge. Also, the asynchronous effect is
totally random in nature and can vary from run to run. However, provided that the
scheme uses a contracting finite-difference operator, the scheme will have suffi-
cient damping to damp out any unstable waves that develop.

The concept of asynchronous iterations has been applied to the incompressible
airfoil/flap problem and is presented in the following section. The scheme falls
into the more general category of asynchronous iterations and not the category of
chaotic relaxation schemes since, as will be shown later, the condition ii) does not
hold. Unfortunately, as mentioned previously (see note), the details of the finite-
difference technique are too complex to allow the calculation of p(|A|). There-
fore, numerical experimentation was used to test the convergence.

4.5 Implementation and Results of Asynchronous Iteration

The application of chaotic relaxation to the overset grid problem is achieved
by removing the synchronization at the beginning of the iteration loop. The result-
ing code has a single Fork when the tasks are spawned, and an Event which signals a
converged solution. Results obtained from this procedure are indistinguishable from
the synchronous results. Figures 4.8 and 4.9 show the results from the asynchronous
solution. When figures 4.8 and 4.9 were overlayed on figures 4.6 and 4.7,

38

respectively, the asynchronous and synchronous solutions were found to be identi-
cal. The timings are of interest. Since each processor was operating at 100%
utility, the minor grid completed approximately 10 times the number of iterations
that the major grid completed. The convergence is based upon the major grid, which
took the same number of iterations as its synchronous counterpart. Thus the solu-
tion converged in 483 iterations of the major grid, and, in this time, 4789 itera-
tions were completed on the minor grid for one particular run. This mismatch in the
iteration number occurs because of the mismatch in grid sizes and demonstrates that
grid balancing can be useful.

A simple way to interpret the results with such a mismatched iteration level is
to look at it as fractional time-stepping. The minor grid receives a single set of
outer boundary values for a period of about 10 iterations. The solution, therefore,
is given an opportunity to relax to a solution based on that set of boundary data.
This boundary scheme is stable, since the ADI algorithm is stable with Dirichlet
boundary data on the outer boundary. Since the major grid does not appear to bene-
fit from the refined minor-grid solution, the extra iterations are unhelpful and
unnecessary. However, this procedure has shown that overlapping grids do not need
to match iteration times exactly, but can be offset or skewed. The example pre-
sented here is an extreme case in which the iteration skewness is about 10:1. The
synchronous case is a case in which the iteration skewness is fixed at exactly
1:1. A steady-state solution with a time-dependent transient solution will be
presented in the next section with a skewness close to but not exactly, 1:1.

4,6 Conclusions

An overset grid scheme has been implemented on an MIMD facility, producing
results which successfully recreate results obtained on a serial machine. The most
noteworthy conclusion from this portion of the study is that overset grid schemes
which are implemented on multiprocessor computers have small shared-memory require-
ments. This is significant since it implies that memory-system networks can be
designed with little worry of memory-contention problems. An understanding of the
memory contention problem, which will be important when implementing this code onto
a CRAY X-MP, has also been achieved. It is apparent from a comparison of the con-
current version of AIR3D and the overset grid problem that the architecture of the
memory system can be an important factor when choosing an algorithm,

The incompressible calculations have also demonstrated the feasibility of
asynchronous and chaotic methods for linear problems. Currently, this scheme is the
only known application of an asynchronous iteration technique used to solve a prac-
tical CFD problem.

This section has dealt only with incompressible flow, which does not have the
nonlinearities common' to many CFD applications. The success of the overset grid
scheme and its asynchronous implementation can partly be attributed to this lack of
nonlinearities. Therefore, it is necessary to study overset grids on a compressi-
ble-flow problem to investigate its usefulness on general CFD problems. The study

39

of the nonlinear effects on the overset grid boundaries is the focus of the follow-
ing section.

5.0 OVERSET GRIDS--COMPRESSIBLE FLOW

The third and final section of this study represents another application of the
Chimera grid scheme. The name Centaur was chosen for the scheme after the mytholog-
ical beast which is half man, half horse, following the lead of the name Chimera.
This application of the Chimera grid scheme addresses complex flow fields in com-
pressible flows and in particular studies shock waves that cross the overset grid
boundary. A blunt body, with a cylindrical-nosed wedge and a 6.5° afterbody, in a
free-stream Mach number of 2.0, was chosen to serve as a convenient test vehicle to

study overset grid problems.

Many aerodynamic flow fields of interest contain shock waves or shear layers
which must be properly resolved. For a scheme to be useful in aerodynamic calcula-
tions, it must resolve and locate these shock waves properly. Therefore, the
Chimera grid scheme, when applied to transonic flows must accurately define shock
waves without adversely affecting the solution in other ways. Shocks may cross
overset grid boundaries in many practical aerodynamic applications. This section
focuses on the problems that arise when a shock wave crosses an overset-grid

boundary.

Benek, Steger, and Dougherty applied the Chimera grid scheme to the solution of
the Euler equations about an airfoil/flap configuration in the transonic flight
regime (ref. 2). Their single trial resulted in an ill-defined shock wave at the
grid boundaries (fig. 5.1) and exhibited poor convergence. The goal of this portion
of the study was to understand and correct the adverse effects caused by shock waves
interacting with the overset grid boundary. The blunt-body geometry was chosen as a
practical test problem which allowed the boundary regions to be studied
conveniently. A scheme which can successfully solve nonlinear problems, calculate
the flow field about complex configurations, use multiprocessor computers, and
compete favorably with popular serial techniques will be of interest to the CFD

community.

5.1 Blunt-Body Grid--Centaur

The motivation for choosing the blunt-body grid is that it contains a shock
wave and its grid requirements are conveniently small. The supersonic case studied
needs only a 25 x 21 r-6 major grid to resolve the shock wave (fig. 5.2). The
major grid calculation can also make use of simple numerical-boundary procedures
because of its supersonic nature. These boundary procedures use Dirichlet boundary
data on the inflow boundary; symmetry conditions, which can be included directly in
the finite-difference scheme, on the centerline; extrapolation on the outflow bound-
ary, resulting in a wedge-afterbody geometry; and solid-body conditions on the body

ko

surface. Simplifying the boundary conditions allows the investigator to concentrate
on the overset grid boundaries.

The overset grid has been designed so that it represents a practical test for
the Chimera grid scheme. A hole is not required in the major grid because a second-
ary body is not present, but one was added so that the problem would simulate a more
general application. Simplicity was desired, so the symmetry plane was used as one
boundary of the overset grid (fig. 5.3). Another boundary is aligned with the body
so that solid-body conditions can be applied. The remaining boundaries are situated
so that one boundary is perpendicular to the flow direction and the other is a
constant 6 ray of U47.5°. When the minor grid is overset on the major grid
(fig. 5.3), the mesh-line skewness at the leading boundary is apparent.

The advantage of this particular overset grid is in its relationship to the
flow direction and shock direction. The front plane is perpendicular to the incom-
ing, free-stream flow, and by simply adjusting its horizontal position the size of
the minor grid can be scaled (figs. 5.3 and 5.4). The shock wave is parallel to the
front edge of the minor grid, and the interaction of the shock with the grid bound-
ary can be studied. The shock wave crosses the upper plane in the normal direction
and represents the problem of most interest to this study. The interaction between
these two boundaries and the shock wave can be isolated and studied separately.

The size of the hole in the major grid can also be easily adjusted, with a
fixed number of overlapping points, regardless of the minor (overset) grid size.
This will allow the study of hole-shock interactions when the shock and hole bound-
aries are close. Figures 5.3 and 5.4 show the two grids and the blanked-out
points. In one part of the investigation, no hole was used, so the interactions
between the two grids could be studied by allowing the major grid to be isolated
from the overset grid.

5.2 Transonic Flow Solver--ARCZ2D

The blunt-body problem studied is for a steady, two-dimensional, compressible
flow. The Euler equations for this case become

aq , 3F , 3G _
at a3t T an - 0 (5.1)

where the vectors q, F, and G are defined by

cH [oU 7] - oV]
pu pul + £ p puV + n_p
q=3YN |, F=J7 1 g=yg] X (5.2)
oV ovU + ;yp pvV + nyp
K }Ke + p)_ y(e + p)J

41

and where

p=(y- 1)[8 - % o(u® + vz)] | (5.3)
U=¢gu-+ EyV (5.§a)
V= U+ nyv (5.4b)
and
-1
J = AR WA (5.5)

Note that this is the same equation set used for the inviscid part of AIR3D, except
that the third dimension has been eliminated and the possibility of a moving grid
has been removed. Again, these equations are expressed in terms of a general,
curvilinear, coordinate transformation. The algorithm used to solve all points,
except the boundary points of each grid, is the Beam and Warming approximate-
factorization algorithm (ref. 19). Their implicit algorithm, written for two dimen-

sions, is

(I + he A™)(I + hsan)Aqn = -At(Gan + GnGn) = R" (5.6)

g

where R® is the residual operator, which tends to zero as the solution approaches
steady state, and Q" = g™ - q". The matrices AP and B? are local lineariza-

tions of F™! and ™', that is
n+1 n n, n+l n 2
F =F + A (q - q) + o(at®) (5.7a)
n+1 n n, n+l n 2 :
G =G + B(q - q) + o(At") (5.7b)
where A" = (aF/aq)? and B" = (aG/aq)".

As described previously, the major grid will have one or more holes in the
general application. This hole is marked by the IBLANK array, as in the previous
section, and results in a simple modification of the overset-grid solver. The Beam
and Warming algorithm is modified as follows,

(1 - IBLANKhsEAn)(I - IBLANKhGan)Aqn = —IBLANKAt(GEFn + snG“) (5.8)

U2

where h = At/2 for this study. The matrices which result from equation (5.8) have
a similar structure to the example of equation (4.7), except that the elements of
the tridiagonal system of equation (5.8) are 4 x 4 blocks. With this procedure, all
grid points in both grids are updated, except the boundary points and points lying
within the hole region of the major grid. The outer boundary of the overset grid
and the major grid hole points are updated by means of an interpolation procedure,
which is the mechanism that couples the two grids' solutions. The interpolation
procedure applied to the outer boundary of the overset grid was found to be critical
and was the primary focus of this study. The major grid outer boundary, which was
not critical for this study, used the boundary conditions described above.

5.3 Overset Grid Boundary Schemes and Results

The different strategies for updating the outer boundary of the overset grid
Wwill not be presented. The solution procedure follows that of the previous sec-
tion. At the completion of an iteration cycle, each grid task performs the calcula-
tion to update the other grid's boundary. These boundary data are stored in a
temporary data block in shared memory. As the next iteration begins, the temporary
data is used as input to a numerical boundary scheme which updates the overset grid
boundary and the hole boundary. All of the schemes studied start with the same
interpolated data in shared memory, but the data are treated differently in the
numerical boundary scheme.

5.3.1 Direct interpolation- The method used by Benek et al. was repeated first
(ref. 2). The interpolation uses simple second-order, nine-point interpolation.
The interpolation in transformed coordinates is

1 g ag 1 aq ag |
¥ - —
Q* = q +5 Ex[(gy)s ag * (ny)g 3ﬂ]|m + 3 nx[(sy)n g * (“y)n an] .

X°E 3§ xganm X'n 3§ X'n an
+ £ E Qfg # (g n_+ & n) 239— nn 339 (5.9)
X’y 352 y X x"y 3Ean m X'y an2 . :
m

where q* are the interpolated values and the quantities ()m are obtained from
the other grid. The numerical boundary scheme employed by Benek et al. was to use
these interpolated values as Dirichlet data to update both the overset grid boundary
and the hole boundary (ref. 2).

Two overset grid configurations were tested with the direct-interpolation
boundary scheme. The first used a small overset grid so that the front of the grid

43

was positioned approximately one-half radius in front of the steady-state shock
position (fig. 5.3). The major grid hole was designed so that four unflagged points
overlapped the minor grid, which positioned the hole boundary in the shock region.
Results for this test show a poor solution at the edge of the overset grid, where
the shock crosses, and in the overlap region of the major grid. The convergence
history, given in figure 5.5, shows that the solution did not converge after

1000 iterations, or t = 400. After 500 iterations, when the shock reached its
steady-state position, a 4O0-iteration cycle of the residual operator began. The
shock bounced between several grid points and never settled. The oscillations
around the shock, which are common in central-differenced schemes, result in very
large peaks and islands in the Mach and pressure-contour plots of figures 5.6
through 5.9. For comparison, the convergence history and contour plots for a solu-
tion obtained on a single grid is shown in figures 5.10 through 5.12. The conver-
gence behavior is nearly linear, and the oscillations near the shock are gone. This
first test verifies that the adverse effects found by Benek et al. (ref. 2) can be
repeated by using a direct-interpolation boundary scheme.

The second grid tested had an overset grid with the upstream boundary a full
radius away from the steady-state shock. The overlap between the overset grid
boundary and hole was increased to eight points, as is shown in figure 5.13, thus
moving the hole boundary away from the steady shock position. This test was also
run for 1000 iterations and the convergence history in figure 5.14 shows that it is
convergent. Although the convergence rate is only about half that of the single
grid rate, the results appear ‘to be better than Benek's test suggested. The solu-
tion also demonstrates an improvement in the shock region (figs. 5.15
through 5.18). The shock is still smeared as it crosses the overset grid boundary,
but the peaks and islands have diminished. The major grid also has a better quali-

tative solution.

A third grid was tested to study the problem of a shock moving tangentially
across an overset grid boundary. This problem arises when the shock wave propagates
beyond the upstream boundary of the overset grid as it moves to:its steady-state
position. A small overset grid which was contained entirely within the subsonic
flow was used. The shock crosses the hole boundary of the major grid successfully,
but causes nonphysical pressures as it crosses the overset grid boundary. These
tests point out the importance of shock location with respect to the grids.

5.3.2 Frozen boundaries- A natural followup test is to determine whether the
solutions on the two grids are compatible. It is possible that the unsteady bound-
ary data will never become steady without adding damping to the interpolation. 1In
other words, the oscillations in the convergence history of the previous section may
result from a forcing function derived from the interpolation from the other grid.
The grid of figure 5.3 was used. The solution was run for 500 iterations, or
t = 200, allowing enough time for the shock to reach its steady-state position, and
then the boundary values were frozen. The solutions continued for another 500 iter-
ations, and the residual -operator was monitored. During these 500 iterations, the
ma jor-grid residual operator dropped to machine accuracy within the first 200 itera-
tions. The minor-grid residual operator dropped about two and a half orders. The

Yy

residual plots are shown in figure 5,19, Note, however, that the minor grid has a
sawtooth shape in its residual plot, which is not uncommon for single-grid prob-
lems. Solutions for this run are indistinguishable from the continuous interpola-
tion (see figs. 5.20 through 5.23). The convergence suggests that the two grid
solutions are not incompatible but are inconsistent in their time relaxations.

5.3.3 Boundary data averaging- Additional overset boundary schemes were
attempted which showed no noticeable improvement over direct interpolation. One
scheme averaged the interpolated data with data obtained by a prediction based on
the grid requiring the boundary data. The predicted value was obtained using the
second-order approximation

n+1 n n+1 n 1) (5.10)

(q -q) = (q -q
Imax J Imax~! Imax™

max
The hole boundary incorporated a similar prediction using its nearest, unflagged
neighbor. This approximation is built into the implicit, block tridiagonal solver,
which helps the overall convergence rate. The benefit results from a predictor/
corrector-like approach in which the predictor is implicit and therefore is not
restricted to explicit stability bounds.

The purpose of the boundary-averaging scheme was to add damping to the time-
dependent system and to remove the 40-iteration cycle experienced in the previous
methods. The result was to decrease the cycle time but not affect the convergence
(fig. 5.24). The solution was degraded with peak overshoots that exceeded those of
direct interpolation (figs. 5.25 through 5.28). The tests were run on the grid
system of figure 5.3, which was the most restrictive case,

The direct interpolation scheme presented in the previous section uses the
predicted boundary technique for its stability characteristics, but the predicted
values are overwritten by the interpolated data.

5.3.4 No-hole schemes- A series of steps were taken to isolate boundaries and
study them independently. The two grids were decoupled so that the transmission of
data from one grid to the other went in only one direction. This was accomplished
by removing the hole region of the major grid. All boundary data for the major grid
was then supplied from numerical boundary schemes that were independent of the
overset, or minor, grid solution. Thus, the transmission of data followed a path
from the major grid to the minor grid, but not in the other direction. Several
numerical boundary schemes were attempted with the hope that if a favorable scheme
was found for the overset grid boundary in this decoupled mode, it should transfer
directly to a favorable scheme when the hole is reintroduced.

The numerical boundary schemes tested on the overset grid boundary included
direct interpolation; averaging; a delta interpolation, in which Aqn becomes the
interpolated variable; and a fixed upstream boundary with delta interpolation on the
outflow boundary. All of these schemes were unstable. This result is somewhat
surprising because, in principle, the boundary data are supplied from an accurate

45

solution (from the major grid). One would expect that the interpolated boundary
data would be consistent with the overset grid solution, and the scheme would be
stable. However, Dirichlet data applied on the outflow leads to overspecifica-
tion. The overspecification can be understood by considering the method of charac-
teristics on the outflow boundary. This method will be described in the following
section, When the grids are decoupled, the solution is unstable, implying inconsis-
tent boundary data, but when coupled the solution is stable., This situation demon-
strates the complexity of passing boundary data among multiple grids.

5.3.5 Characteristic boundaries- Physics dictates how information travels in a
fluid and these considerations should be incorporated into a numerical scheme. The
method of characteristics uses information propagation to determine the solution for

hyperbolic equations.

A coupled system of equations, such as the one-dimensional Euler equations, can
be written, in vector form, as

Q +E =0 ' (5.11)
If we introduce the matrix A, where A = (3E/3Q), or
0 1 0
a=| (v - 3?2 ~(y - 3 y -1 (5.12)
(v - Dud - (yewo) (ve/p) - [3(y - Du®/2] yu

with ¢, the local speed of sound, and then write the equation in nonconservative
form, for illustration, we have

Q, + AQx =0 (5.13)

t

The matrix A has a complete set of eigenvalues and eigenvectors and therefore can
be diagonalized

A= T 'at (5.14)
where
u 0 0
A=}0 u+e 0 (5.15)

U6

and

1 (p/v2¢)
T = u (p/72¢)(u + ¢)

u®/over2 (p//ic){(u2/2) +uc + [02/(7 - D1}

(p/v2¢)
(p/v2¢)(u - e) (5.16a)

(p//Ec){(u2/2) - uc + [02/(y - 11}

1= (y - 1)(u®r2¢%) (y = 1)(u/c) “(y - 1(1/8)

7 = (1//2pe)[(y - 1)(u2/2) -uel (1//2pe)[c - (y - 1)u] (1//2pe)(y - 1)

(1/v3pe)[(y = 1)(u2/2) + uel -(1/v2pe)[e + (y - Dul (1//2pe)(y - 1)

(5.16b)

If the matrix T 1is frozen, then equation 5.13 can be transformed using this diag-
onalization to

1

T Q + T'1

-1
ATT QX = W, + wa =0 (5.17)

SO

(w,)

Je *)‘i(wi)x =0 (5.18)

This new set of decoupled equations can now be discussed in terms of their charac-
teristics or eigenvalues.

Suppose the flow is supersonic; then the three eigenvalues, u, u + ¢, and
u - ¢ are all positive. Since the equations are hyperbolic, a one-dimensional
problem will have Dirichlet data imposed upstream for all three equations. The
outflow boundary will have no data imposed, and so a numerical boundary scheme must
be used. This numerical boundary scheme should mimic the physical flow of informa-
tion. Therefore, it should use data which are propagated from the interior and are
used to specify three variables at the outflow boundary. Figure 5.29 illustrates
this flow of information. If the flow is subsonic, then the eigenvalues u and
u + c are positive, but the eigenvalue u - ¢ 1is negative. Figure 5.30 shows the
flow of information in this case. Two conditions are thus given on an inflow bound-
ary, and one on an outflow boundary for subsonic flow. The remaining conditions

47

must be obtained from a numerical boundary scheme as before. If more conditions are
specified than the physics of the problem suggests, the problem is overspecified and:
inconsistencies can arise which will cause the scheme to be unstable. A detailed

discussion of characteristic boundaries can be found in many references, such as Yee

(ref. 26) or Pulliam (ref. 27).

The method of characteristics implies the use of certain boundary conditions
for the overset grid boundaries. In the cases tested, the upstream boundary of the
overset grid is in the purely supersonic region of the flow. From the characteris-
tic point of view, all data are specified by the physics. Therefore, interpolated
data from the major grid on the upstream boundary are consistent with the: character-
istics.. The outflow boundary must be treated differently. For an outflow boundary,
Dirichlet data from the interpolation lead to overspecification. A consistent
numerical boundary scheme must be used in the outflow region. For example, for
subsonic outflow only one characteristic variable may come from the interpolation.

Implementation of characteristic boundaries is simple if certain approximations
are allowed. The characteristic implementation discussed here follows the approach
of Moretti (ref. 28), and is nonconservative, which can cause errors in the
results. However, interpolation is also nonconservative, so the boundary scheme is
already nonconservative. In the scheme used here, the Euler equations are written
in nonconservative form. The equations are decoupled into normal and tangential
coordinates in such a way as to yield six equations for the Riemann variables, two
of which are redundant. These equations are derived in a manner similar to the
diagonalization procedure presented earlier and are of the form

Rit'+ AiRin =0 (5.19)

The spatial direction n corresponds to one of the generalized coordinate direc-
tions. The Riemann variables and the A's are given by

t
2c 2¢ 2¢c 2¢ . .
R = Y - 1 - U, y - 1 -+ U, V, Y - 1 - V, Y - 1 + V, U} (5.20a)

and

A={U-¢c,U+c,U V-c, V+e, v}° (5.20b)

The redundant equations are dropped. The use of the Riemann variables in the bound-
ary scheme depends upon the characteristic directions. If the lambda value, A;, is
positive on an outflow boundary, then the corresponding Riemann:variable is calcu-
lated from interior data by the predictor method described earlier (eq. (5.10)).

If A; 1is negative, then the corresponding Riemann variable is calculated from
exterior data (i.e., interpolated data for the overset grid, or free stream for the
ma jor grid). This portion of the study will focus only on the characteristic bound-
aries applied to the overset-grid outflow boundary.

u8

In the implementation for this portion of the study, two complete sets of
boundary data are first calculated. The first set results from interpolation. The
second set results from the implicit predictor scheme of equation (5.10). The
outflow boundary is then tested to find the local Mach number. -If the point is
supersonic, implying supersonic outflow, then the boundary data are overwritten with
the values found from the interior in the predictor scheme. This is a result of
having all positive X;'s. If the point is subsoniec, then the two sets of boundary
data are converted into Riemann variables to obtain the correct data. The value
of Ry, where in this implementation R1 = U+ [2¢/(y - 1)], is calculated from the
predicted data of the minor grid. Two other variables are calculated from the
predicted data; they are tangential velocity, or V, and the entropy. The final
variable is calculated using the interpolated data. This corresponds to’ Ro,
where R, = U - [2¢/(y - 1)]. These new variables are now combined to form q,
where q = q(R1,R2,V,s) and s 1is the entropy, which overwrites the boundary data
for the outflow boundary. A similar approach can be used on the upstream boundary,
but as mentioned previously, this results in overwriting the boundary entirely with
the interpolated data.

In the first attempt, the local Mach number was calculated from the major grid,
since it was decided that the major grid solution was more reliable than the pre-
dicted solution from the minor grid. This method was unstable, which implies that
the Mach number used was not consistent with the minor grid solution. It was found
that, in the neighborhood of the sonic line, the two slightly different solutions
predicted supersonic outflow and subsonic outflow, so at one point the two grids
suggested the use of different conditions at the same boundary. This difference at
one point eventually led to growing errors and eventually rendered the scheme
unstable. It was concluded that the signs of the eigenvalues, for the minor-grid
outflow, must be calculated using data from the interior of the minor grid and not
from the major grid.

When the Mach number calculation was modified so that the signs of the eigen-
values agreed with the minor grid solution, the scheme was stable. Convergence was
linear (fig. 5.31). The solution was also qualitatively better than the direct
interpolation procedure on both grids. The major grid, in fact, is identical to a
single grid solution, and the minor grid shows none of the poor shock characteris-
tics that were found in the previous solutions (figs. 5.32 and 5.33).

In summary, when the two-grid system was decoupled in such a way that informa-
tion traveled from the major grid to the minor grid, only one boundary scheme for
the overset grid was stable., A scheme using characteristic boundaries, with the
eigenvalues predicted from the overset grid itself, resulted in linear convergence
and a qualitatively "good" solution. Schemes such as direct interpolation, averag-
ing, delta interpolation, and characteristics with the eigenvalues calculated from
the major grid were all unstable.

5.3.6 Characteristics on coupled grids- With the success of the characteristic
approach of the preceding section, it appears that equal success would be achieved
with the coupled-grid system. The first attempt used direct interpolation to update
the hole boundary. Three grids were tested with this approach. The first grid was

hg

identical to the second grid tested for the direct interpolation of section 5.3.1
(fig. 5.13), where the upstream overset-grid boundary and hole boundary region are
removed some distance from the shock region. The convergence history, shown in
figure 5.34, shows that the solution is convergent with a convergence rate that is
not much different from the single-grid rate. This promising result demonstrates
the effectiveness of this improved boundary scheme. The L, norm of the error
after 1000 iterations is approximately one order of magnitude less than the direct
interpolation for the major grid. Figure 5.35 compares these two convergence his-
tories. Despite the better overall convergence rate, however, it is apparent that
the convergence rate is not linear. It appears that the peaks and valleys in
figure 5.34 are due to shifts of points from subsonic to supersonic, and vice versa,
on the minor-grid outflow boundary. A comparison of the minor-grid convergence
histories is shown in figure 5.36.

The solution on the grid of figure 5.13 has the nice features demonstrated with
the uncoupled grids of section 5.3.5. The minor grid has a smooth shock crossing
the outflow boundary, and the major grid has none of the kinks that have been found
in all the other cases. Figures 5.37 through 5.40 are the corresponding Mach number
and pressure contours for this run,

The second grid tested used the overset grid of figure 5.4, in which the
upstream boundary was moved to within one half of a radius of the shock position.
However, in this run the hole boundary allowed for an overlap of eight grid points
between the overset grid boundary and the hole boundary. Thus, the hole boundary
was kept away from the shock to avoid interference. The convergence history for
this run (fig. 5.41) shows that moving the upstream boundary of the overset grid
closer to the shock had a negative effect on the convergence rate. The third and
last grid tested used the same overset grid, but allowed for only four overlapping
points in determining the hole region. This put the hole boundary in the steady-
state shock region. The convergence history for this run (fig. 5.42) demonstrates
the same convergence history experienced by direct interpolation on the same grid.
Thus, despite the improved convergence caused by the characteristic approach for the
overset boundary scheme, the location of the overset grid boundary and hole boundary
is important in determining the overall convergence of the scheme.

These tests have demonstrated favorable properties of the characteristic bound-
ary approach. However, they have also shown that if either the hole boundary or the
overset-grid outer boundary are positioned where they can interfere with the shock,
the convergence will be adversely affected.

A scheme was tested using characteristic boundaries for the hole boundary in
addition to the overset grid boundary. This scheme was unsuccessful as the shock
tried to cross the hole boundary, because the data predicted for the boundary by the
major grid always suggested pure supersonic flow. Therefore, there was no vehicle
for communicating with the minor grid to allow the shock to propagate. This concep-
tual problem should be noted if characteristic boundary schemes are to be used in
other overset grid applications.

50

5.4 Comparison with Other Data

Merely improving the convergence rate of a scheme does not make it useful. The
solution should compare favorably with known correct results. The two schemes that
were judged were the direct interpolation approach of section 5.3.1 and the charac-
teristic approach of section 5.3.6, both using the grid system of figure 5.13.

While interpreting the data, one should keep in mind that the grid used was fairly
coarse. Therefore, with shock smearing, the shock appears much thicker than a
physical shock. However, it is still possible to locate the approximate shock
position in order to get an estimate of the quality of the solution.

The direct interpolation test is compared with the results of Rai (ref. 3) and
Lyubimov and Rusanov (ref. 29) in figure 5.43. These results show that the shock
location is in better agreement with that of Rai. This result is forward of the
more accepted shock position predicted by Lyubimov and Rusanov. Rai used a first-
order accurate scheme and suggested that this was the cause for his erroneous shock
location. The nonconservative interpolation at the overset grid boundary is the
most likely culprit in the example presented here.

The characteristic boundary approach shows more favorable agreement with
Lyubimov and Rusanov's predictions. Figure 5.44 demonstrates that the characteris-
tic approach positions the shock in the immediate neighborhood of the accepted shock
position and downstream of Rai's shock position. It appears that in addition to the
advantages of the characteristic boundary scheme described in section 5.3.6, this
approach gives solutions which are in agreement with accepted results.

A comparison of the results of direct interpolation in figure 5.43 with the
results using the characteristic approach in figure 5.44 shows a significant move-
ment in the shock location. Although this result suggests that the characteristic
approach is superior, it points to a strong sensitivity of the results on the over-
set-boundary scheme.

5.5 MIMD Notes

One major aim of the Centaur code was to study the numerical problems of over-
set grids. The code was implemented on the NASA Ames MIMD test facility to also
study concurrent processing. The procedure used is similar to the previous study of
the airfoil/flap problem so the implementation will only be reviewed here.

The primary difference between Centaur and Chimera is that the Chimera grid
package is resident in both tasks so that the tasks are completely decoupled except
for the overset-grid boundary data and the synchronizations. In other words, what-
ever constants are required by both tasks are duplicated in the task-global data
blocks. With this minimal amount of shared data, the two processors may conceivably
be remote nodes in a major computer network. Since the overhead of the duplication
is small, it makes little difference in the overall time required to run 1000 itera-
tions. An additional feature of this implementation is that the two tasks could be

51

implemented using an identical source. This feature has the advantage of requiring
only one program image to manage. '

The basic implementation of the code is as follows. The same code is submitted
for execution on both machines. The first operation each machine performs is to
find out which task it is--the major or minor grid task. This is accomplished by a
first-come/first-serve algorithm. The first processor to claim a task gets the
major grid task. The other processor finds the task-flag set and, therefore, will
choose the minor grid task. This simple technique can be applied to any number of
processors and tasks and does not require any special startup procedure. Once the
tasks have been chosen, initialization is duplicated by both tasks. A Sync point
occurs at the beginning of the first iteration loop. This is the first synchroniza-
tion in the execution. At this point, each task solves its own independent grid,
and each outputs to its own output files, independent of the other task. All of the
results presented previously used a synchronous solution procedure in which the
tasks were synchronized before the beginning of each iteration.

An asynchronous implementation of Centaur is somewhat more complex than the
stream-function program of the preceding section. Centaur is a nonlinear, nonsteady
code which allows a shock to propagate away from the wall before it reaches its
final, steady location. This code is more complex because the coefficient matrix,
when expressed in the fixed-operator notation of section 4.4, is nonlinear and may
develop into a noncontracting matrix. This problem uses balanced grids to avoid
wide deviation in iteration levels, which would cause the coefficient matrix to
cease to be a contracting matrix. Another factor which determines the contracting
properties of the coefficient matrix is the time step. The time step in a time-
accurate scheme should be lowered whenever chaotic relaxation is employed. An
asynchronous solution procedure does not fall under the general category of asyn-
chronous iterative methods described in section 4.4, but can be classified with the
more specific chaotic relaxation methods. A direct-interpolation approach was
tested asynchronously, with no apparent difference in the solution to the synchro-
nous results. However, at this time there is still too little understanding of
overset grid implementations in unsteady, transonic flow to justify studying chaotic
techniques. As more becomes known about the asynchronous solutions, the chaotic
solutions will warrant further study.

5.6 Conclusions

The Centaur code was introduced as a test problem to investigate some of the
properties of overset grids in transonic flow. The Chimera grid scheme was used and
the Euler equations were solved numerically. The study focused on the information
exchange between the major and minor overset grids. The primary goal was to under-
stand some of the factors that contributed to the poor solution obtained by Benek
et al. (ref. 2).

A series of overset grid boundary schemes were investigated. The first test
was identical to the method used by Benek et al. (ref. 2). When the hole region of

52

the major grid was removed, the only convergent boundary scheme was the characteris-
tic scheme. This result showed linear convergence and removed the smearing where
the shock crossed the boundary. It was discovered that the scheme is affected by
the manner in which signs of the eigenvalues are chosen. When this scheme was
applied to the coupled grid system with the hole being updated by direct interpola-
tion, the results agreed with the accepted results of Lyubimov and Rusanov. The
results also showed that the shock position is sensitive to the overset-boundary
scheme chosen and that the hole boundary and overset grid boundary can destroy the
convergence rate if it is allowed to interfere with the shock.

Current research at NASA Ames is focusing on conservative interpolation
schemes. Suggested approaches have been to interpolate the conservative variables,
apply a flux balance equation on the boundary, or apply a shock correction proce-
dure. It is hoped that the results obtained in this study will be of some use to
large-scale, multiple-geometry problems.

6.0 CONCLUDING REMARKS

Parallelism in computer architectures is increasing with each new generation of
computers. Multiple-processor architectures will probably be the primary innovation
in the next decade (ref. 8). The goal of this study was to gain knowledge in the
application of state-of-the-art algorithms on multiple-processor computers.

A method for implementing approximate factorization algorithms onto MIMD compu-
ters has been suggested. This method followed the approach that is used on vector
machines. The decoupled operators of each spatial sweep were solved concurrently on
the multiple processors. This technique, applied to a well-known CFD code, AIR3D,
on the NASA Ames MIMD test facility, showed a optimal speedup of 1.905 for two
processors. This study has shown the feasibility and the benefit of using multiple
processors for solving approximate factored algorithms and has also introduced ideas
for creating algorithms better suited for concurrent processing.

The study of AIR3D and reviewing of certain current CFD research trends led to
the study of multiple grid problems. Multiple grid solution procedures lend them-
selves nicely to concurrent processing since they consist of loosely coupled
tasks. The airfoil/flap problem of Steger, Dougherty, and Benek was studied on the
Ames MIMD test facility, and their results were reproduced. An implementation using
asynchronous iterations was also tested, and is the first known trial of this
chaotic procedure on a CFD application. Asynchronous iterations with minimal data
communication can be an advantage when implemented on a MIMD facility with a small
shared memory.

The overset grid scheme had some poor qualities, which were improved in this
study. The Chimera grid scheme was applied to a blunt-body problem, in a code
called Centaur, which served as a convenient test vehicle. The poor qualities that
have been attributed to overset grids are a poor convergence rate, and a smeared
shock wave where the shock crosses a grid boundary. These problems have been blamed

53

on the handling of the overset grid boundaries. A successful boundary scheme was
implemented that uses characteristics to allow proper information transfer. The
interaction between the shock wave and the overset grid boundaries demonstrates the
need to move boundaries that run parallel to the shock as far from the shock as

possible.

This study represents only a small selection of codes that can be implemented
on MIMD machines, but the basic knowledge that has been developed may be used to
design algorithms in the future. Concurrent processing represents the future in
large-scale scientific computing, so the achievement of an understanding of machine-

algorithm interactions is necessary.

54

10.

1.

12.

3.

REFERENCES

Steger, J. L.; Dougherty, F. C.; and Benek, J. A.: A Chimera Grid Scheme.
Advances in Grid Generation. FED, vol. 5, the American Society of Mechani-
cal Engineers, New York, 1983.

Benek, J. A.; Steger, J. L.; and Dougherty, F. C.: A Flexible Grid Embedding
Technique with Application to the Euler Equations. Proceedings of the 6th
ATAA Computational Fluid Dynamics Conference, Danvers, MA, 1983.

Rai, M. M.: A Conservative Treatment of Zonal Boundaries for Euler Equation
Calculations. AIAA Paper 84-0164, Reno, NV, 1984,

Hessenius, K. A.; and Pulliam, T. H.: A Zonal Approach to Solution of the
Euler Equations. AIAA Paper 82-0969, St. Louis, MO, 1982.

Atta, E. H.; and Vadyak, J.: A Grid Interfacing Zonal Algorithm for Three
Dimensional Transonic Flows About Aircraft Configurations. AIAA/ASME 3rd

Joint Thermophysies, Fluids, Plasma and Heat Transfer Conference, St. Louis,
MO, 1982.

Dwyer, H. A.: A Discussion of Some Criteria for the Use of Adaptive Grid-
ding. Proceedings of the 6th AIAA Computational Fluid Dynamies Conference,
Danvers, MA, 1983.

Lomax, H.; and Pulliam, T. H.: A Fully Implicit Factored Code for Computing
Three Dimensional Flows on the ILLIAC IV. Parallel Computations, G.
Rodrigue, ed., Academic Press, New York, 1982.

Hockney, R. W.; and Jesshop, C. R.: Parallel Computers. Adam Hilger Ltd.,
Bristol, 1983.

Flynn, M. J.: Very High-Speed Computing Systems. Proceedings of the IEEE,
vol. 54, no. 12, Dec. 1966.

Lambiotte, J. J.; and Voigt, R. G.: The Solution of Tridiagonal Linear Systems
on the CDC STAR-100 Computer. ACM Transactions on Mathematical Software,
vol. 1, no. U4, Dec. 1975.

Stone, H. S.: Parallel Tridiagonal Equation Solvers. ACM Transactions on
Mathematical Software, vol. 1, no. 4, Dec. 1975.

Barlow, R. H.; and Evans, D. J.: Parallel Algorithms for the Iterative Solu-
tion to Linear Systems. The Computer Journal, vol. 25, no. 1, 1982.

Chazan, D., and Miranker, W.: Chaotic Relaxation. Linear Algebra and Its
Applications, vol. 2, 1969.

55

14,

15.

16.

17.

18.

19.

20.

21.

22.

23.

2L,

25.

26.

27.

Baudet, G. M.: Asynchronous Iterative Methods for Multiprocessors. Journal of
the Association for Computing Machinery, vol. 25, no. 2, Apr. 1978.

Pulliam, T. H.; and Steger, J. L.: Implicit Finite-Difference Simulations of
Three Dimensional Compressible Flow. AIAA Journal, vol. 18, no. 2, Feb.

1980.

Holst, L. L.; and Thomas, S. D.: Numerical Solution of Transonic Wing Flow-

fields. AIAA Journal, vol. 21, no. 6, June 1983.

Rogallo, R. S.: Numerical Experiments in Homogeneous Turbulence. NASA
TM-81315.

Steger, J. L.: Implicit Finite-Difference Simulation of Flow about Arbitrary
Two-Dimensional Geometries. Journal of Computational Physies, vol. 16,

1978.

Beam, R, M.; and Warming, R. F.: An Implicit Factored Scheme for the Compres-
sible Navier-Stokes Equations. AIAA Journal, vol. 16, no. 4, Apr. 1978.

Baldwin, B. S.; and Lomax, H.: Thin Layer Approximation and Algebraic Model
for Separated Turbulent Flows. AIAA Paper 78-257, Huntsville, AL, 1978.

Peaceman, D. W.; and Rachford, H. H.: The Numerical Solution of Parabolic and
Elliptic Differential Equations. Journal of the Society of Industrial and
Applied Mathematics, vol. 3, 1955.

Douglas, J.: On the Numerical Integration of azu/ax2 + azu/ay2 = 3u/3t by

Implicit Methods. Journal of the Society of Industrial and Applied Mathe-
maties, vol. 3, 1955.

Douglas, J.; and Rachford, H. H.: On the Numerical Solution of the Heat Con-
duction Problems in Two and Three Space Variables. Trans. Am. Math. Soc.,

vol. 82, 1956.

Douglas, J; and Gunn, J. E.: A General Formulation of Alternating Direction
Method--Part I. Parabolic and Hyperbolic Problems. Numerische Mathematik,

vol. 6, 1964.

Baudet, G. M.: The Design and Analysis of Algorithms for Asynchronous Multi-
processors. Ph.D. Thesis, Carnegie-Mellon University, April 1978.

Yee, H. C.: Numerical Approximation of Boundary Conditions with Applications
to Inviscid Equations of Gas Dynbamics. NASA TM-81265, March 1981.

Pulliam, T. H.: Characteristic Boundary Conditions for the Euler Equations.
Numerical Boundary Condition Procedures. NASA CP-2201, 1981.

56

28. Moretti, G.: A Physical Approach to the Numerical Treatment of Boundaries in
Gas Dynamics. Numerical Boundary Condition Procedures. NASA CP-2201, 1981.

29. Lyubimov, A. N.; and Rusanov, V. V.: Gas Flows Past Blunt Bodies. NASA
TT-F-715, 1973.

57

TABLE 1.- TASK TIMINGS--EULER EQUATIONS--PROGRAM BREAKDOWN

Task Time-MIMD Time-Serial Speedup
Code Code

Serial Concurrent

Setup 6.58 6.03 0.916
RHS .02 4,02 7.78 1.926
BC + Resid. .74 .74 1.000
LHS .09 13.64 26.76 1.949
Output (1.64)

(optional) not measured assume 1.000
Time/Iteration (.85) (17.66) (35.26) 1.905
Output routines 3.24 3.29 1.015

Speedup = t?etu * n(t"bc: M trhs * tlhs) + toutput

U 1 1]
setup M n(tbc * trhs M tlhs) M boutput

n - iterations
t - serial
t!' - concurrent

-Examples

Iterations Speedup Iterations Speedup

1 1.574 15 1.872
2 1.705 50 1.895
5 1.813 100 1.900
10 1.857 koo 1.904

58

TABLE 2.- TASK TIMINGS--NAVIER-STOKES EQUATIONS--

PROGRAM BREAKDOWN

Task Time-MIMD Time-Serial Speedup
Code Code
Serial Concurrent

Setup 6.57 6.07 0.924
RHS .02 7.84 15.15 1.927
BC + Resid. .84 .84 1.000
LHS .08 15.47 30.50 1.972.
Output (1.64)

(optional) (not measured) assume 1,000
Time/Iteration (.94) (23.31) (46.42) 1.914
Output routines 3.24 3.22 .994

Examples
Iterations Speedup Iterations Speedup
1 1.635 50 1.906
2 1.751 100 1.910
5 1.842 4oo 1.913
10 1.876
15 1.889
25 1.899

59

TABLE 3.- TOTAL CPU TIMINGS FOR THE EULER EQUATIONS

EULER CPU TIMES

Iterations tMaIN tRHS tLus tMIMD tserial Speedup
1 11.60 4.21 13.67 29.48 1.537

1 11.79 4.23 13.74 29.76 45.32 1.523

2 14.25 8.41 27.36 50.02 82.70 1.653

5 16.10 20.98 67.95 | 105.03 187.36 1.784

10 22.60 42,04 | 132.38 | 197.02 365.60 1.856

15 28.03 63.03 | 204.58 | 295.64 544 .49 1.842

25 33.45 [104.79 | 338.04 | 476.28 897.78 1.885

TABLE 4.- TOTAL CPU TIMINGS FOR THE NAVIER-STOKES EQUATIONS

NAVIER-STOKES CPU TIMES

Tterations | tyary | Ygus | ®Lhs | ®MimD | Pseriar | SPeedup
1 11.62 | 7.84 | 15.47 | 34.93 | 56.70 | 1.623

2 13.93 15.69 30.87 60.49 105.07 1.737

5 16.19 | 39.15 | 77.15 | 132.49 | 2uh.2u | 1.843

10 20.58 | 78.17 | 155.13 | 253.88 | 478.13 | 1.883

25 33.36 | 196.72 | 386.95 | 617.03 | 1173.25 | 1.901

60

TABLE 5.- STOPWATCH TIMINGS FOR THE EULER
EQUATIONS--EULER CLOCK TIMES

Iterations tyuaIN tSerial Speedup
1 Ly, 61 1.034

1 36.98 46.14 1.248

2 58.10 82.70 1.423

5 114.68 188.32 1.642

10 213.66 366.98 1.718

15 311.86 545.98 1.751

25 hog 4y 899.53 1.801

TABLE 6.- STOPWATCH TIMINGS FOR THE

NAVIER-STOKES EQUATIONS--
NAVIER-STOKES CLOCK TIMES

Iterations tMaIN tserial Speedup
1 43.73 58.39 1.335

2 68.58 106.75 1.557

5 151.50 246. 11 1.642

10 269.69 479.39 1.778

25 647.78 | 1175.21 1.814

61

Figure 2.1a.- Channel with step.

Figure 2.1b.- Non-rectangular grid in computational space.

62

ZONE 4

ZONAL
BOUNDARY 2 oS

ZONE 2

-
g
,i%f\‘
R z}?_
G
/E L:I:
T
2
J.'1_|j_
g ol

<
X
v
2L
1
17
I-
kL

¥
N
139
174
It
e
a1

nk

Figure 2.3.- Airfoil/flap geometry using overset grids.

63

VAX-11/780 VAX-11/780

MA780

Dual Ported
Memory

Figure 2.4a.- NASA Ames MIMD test facility.

Processor | Processor
1 2

Memory J

Figure 2.U4b.- CRAY X-MP.

6l

Fork i'— ‘

Task A Task B

Join
123 l Jmaz

Do loop Fork
(parallel)

Join

Fork

Do loop
(erial)

Sync

Join

Figure 2.5.- Sample program flow chart.

65

Fork

Join

Event

Figure 2.6.- Summary of MIMD operations.

66

Initialization
=0 |
Boundary Conditions
Fork ——O——
Computation of Right-hand
Side of Equation 3.11
Join o Residual operator
I (Convergence Calculation)
Main Fork O
Iteration Inversion of £,
LOOp Join Q
Fork O—
Inversion of L,
Join o
Fork I
Inversion of £,
Join
Output Routines
Figure 3.1.- Flow chart of AIR3D for ideal two-processor MIMD implementation.

67

fmax :
2
3
k=1 4
i=1 imax
SWEEP 1
Kmax
1 2 3 4
k=1
i=1 Jmax

SWEEP 2

Figure 3.2.- Implementation of a two-dimensional problem on a four-prdcessor
system.

Kmax
) 1,1 1,2 L3'i 14
21| 22| 23| 24
3,1 32 | 33| 34
41| 42 | 43 | 44
k=1
i=1 imax

Figure 3.3.- Memory partition for a four-processor system set up for a two-
dimensional problem.

68

Main
Iteration
Loop

Fork E*ﬁ*——*?*?
Ll
1 ! (]
1 1 U
Event : e + |
) X |
] 1 |
) ')
) I)
1] {
) 1)
i)
Sync/Event | o O I
]
| T :
[| 1
Event (o NN - 1 O
i
: 1
P
Sync/Event ?-:—I-:-?
Event (o) : : e
L
1 1
Sync/Event ?-E-I—:-(l)
Event (o] : | : o
I
[.
Sync/Event : I
)
1
]
Join

69

Initialization
Boundary Conditions
Computation of Right-hand

Side of Equation 3.11

Residual operator
(Convergence Calculation)

Inversion of L,
Inversion of £,

Inversion of £,

Output Routines

Figure 3.4.- Actual flow chart of AIR3D for this study.

" amms COMPONENT TIMINGS

@ TOTAL CPU TIME .-
D REALTIME

1.9

SPEEDUP
)

-t
~J

o, I . .
1 10 100 1000
- ITERATIONS T

Figure 3.5.- Speedup of the Pulliam-Steger AIR3D code using two processors to solve
the Euler equations.

70

— COMPONENT TIMINGS
@ TOTAL CPU TIME

O REALTIME

201

SPEEDUP

1.5 :

1 10 . 100 1000
. ITERATIONS

Figure 3.6.- Speedup of the Pulliam-Steger AIR3D code using two processors to solve
the Navier-Stokes equations with a thin-layer approximation and an algebraic
turbulence model.

T

Py L Y- T
'.’". ~°‘\.

e ..
R ~
/ N
a . : \..
’ \
4 - Processor 1 | \
! | o
) 1}
[] ‘
! gttt
! | B aaid g
‘ .. ‘o. - ‘- 1 d
.\ : .::. ‘: .l
\ N 2 > 7
L J ..’-o.." ,‘
\ ‘
. 7
N, S
N, °
\s\' ',’ ¢

.‘ .
Lt eane e L

Figure U4.1.- Multiple grid application using multiple processors.

T2

1.00

0.75

0.50

0.25

3 [N

0.00

-0.25
I

-0.50

-0.75

-1.00

]
-0.50 -0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

Figure 4.2.- Airfoil/flap configuration with overset grid (ref. 1).

73

Figure 4.3.- Transfer of information between grids (ref. 1).

T4

CHIMERA GRID

o
™
=1 r=- - —_
-] “ A -
ot ' (i \ ”\I'
A \w_u.ll r .l‘ ! l)l
’
> v N “ [) Ihs ’ S wn
- r, { Y) YU N N
%= b s'l ’ 4 [N -]
v \ ey ’\ ’ IV\I \\ \V -t
'~
J\V\ r... l\l p (4 \\ P rl
L v hql P N t\,\ Pla)
AR AT NS RLW d S N .) [=]
Yo/ N A% </ A v P
~e V\V\ < (X9 Fial \ N A N
~/ YVJ\& A V, \ -
Sy a2 Iy .~ - » hend
SSFLT IS et 2T e -
Al 117 £ (P £
L [1 -\ C \
P Sy e A -
13 Rk bty SO -~ w
= - i . n '

20/ BIIQ A -
ANy YT~ . (e -
Wi) S A o St .

- < 7 AR
P._1~ :1~'~.ll. e - L TR0 l..-.l —
T mns Yy T~ 7 - A))
T f 1 r~_ /1 LTS
(. - - - ——- o
~t .l_.L .‘“ ~L PI 2?2)) .“ -
VAT AL SN e ~-54] : S
—4-] iy ! .y ~d n.l' - -
0 L ~. 7°-0C IIM R\~ [
r Y T~ Py 48 1)~
(] hof~t_ 1 - ATV A Ny
L AN D VAN, w
) A NG TS (S S~ o
T PA i K SALA RS (O) b o
&l ! VA > =) —
af 217 = ~ '~ ~ ~ B .
_a . * U ~ -
T) ls:s :-II ~a A » e
T 1T R L S Qs A4 X~ /
T 1.:. f\ﬁx‘lﬁl N / /I IA ~ II 7
- o ~ ~
s Ly LA~ PYREN ~ AN N\ / m
& ;.\V\A. ¢ SN S =
SN SRUIAIN'Y v A\ ’,
/\/A{TW\V‘ TN/ K\/ \ IA\// I/\ -
TNIATNNTE N\ RN 2
P - P S)\r AV Y \ II
oy A% LA NN
QAP Ry Vv NI w
I_ ! -1t \! \ (o]
- & \ \ »V\! ﬁ| .
) (AN " o
) \
I-I -
o
(=]
L
o

1.35

|
S1°0-

X

.,_] ' -
02 0- &2*0- 0£°0- SE°0-

0¥ 0-

Figure 4.4.- Flap grid showing hole and fringe points.

75

Processor 1 Processor 2

Fork O—I

E Initialization

Sync :’ ?—4?
Sync ' Y ! %l

: :

I !

[I

| 1

I 1

|]

I ! Main

! ! Iteration

: : Loop

! l

! !

! I

1 1

I |

[} 1

I I
Sync | |

:)
! E Output

Join

Figure 4.5.- Flow chart for concurrent application of incompressible problem using
overset grids.

76

L

-oso ¥ 1 T 1
-850 -26 0 28 60 76 10 125 15

Figure 4.6.- Streamlines. Results of airfoil/flap configuration--synchronous.

“4r "'
!
§
-3k |
¢
2k i
':
{
°v !
-1l 1\
r_\. l\
- .]
T . \.\-N | \\
0._”-' --——-,_____--—\}' ,’4
. , '
l
.
|

Figure 4.7.- Incompressible pressure distribution. Results of airfoil/flap
configuration--synchronous.

T7

A
—
«25
-.50 T)) L} T T ™ -
-.50 -025 0 '26 050 . 075 100 1 025 1 .5

Figure 4.8.- Streamlines. Results of airfoil/flap configuration--asynchronous.

..4r- \
]
!
{
-3} ’
' d
-2 | i
f
|
Cp h
()
-11. I
i I\
’ \.\ | \\
. .- \-‘-.~ i ~
0'.”. ----'—-d—-—\" I'%
[L}
/ Tl
g .’ !
1 1 1 !] 4 | J
o .2 4 & 8 10 12 14
X/C

Figure 4.9.- Incompressible pressure distribution. Results of airfoil/flap
configuration--asynchronous.

78

Figure 5.1.- Solution of transonic airfoil/flap configuration (ref. 2).

79

6.0

|

-1.0

-6.0 =5.0 -4.0 -3.0 ==2.0 -~ - -1.0 0.0

Figure 5.2.- Major grid for blunt-body application.

80

6.0

o
v
(=
d
-
<
N\)‘\
13
2 , .
© NS '
o \
ANYEZeN %
oL
\ A N ‘}\
N 4 ~ 8} N
o AN
- Rt N ‘\‘».
N
|\\ ~ \\'\\ A N A
| ~d CAUIRS
ALY S0 A
S
|‘~:\ SRS > \
N
~ A7 " ot
Q by : ;
- f~ Y
§ 4
]
1
Pk
° - ~F
- '- =
i S bt
I S
o
.
-
' ¥ L T ¥ T
-6.0 ~S5.0 -4.0 -3.0 -2.0 -1.0

0.0

Figure 5.3.- Minor grid overset on major grid.

81

6.0

5.0

4.0

3.0

2.0

1,0

0.0

Figure 5.4.- Larger minor-grid overset on major grid.

82

107

3
=
"
o
-y
4
T
[o]=N
_g.—.-
33
1]
z A
o A
o -
Co
]
2 24
& 7
.
-
?
o
—
by
9 T T T T —
0.0 200.0 400.0 600.0 800.0 1000.0

ITERATION

——— Major grid
- --- Minor grid

Figure 5.5.- Convergence history--direct interpolation, small minor grid.

83

6.0

1
-6.0 -5.0 -4.0 -3.0 -2.0 -1.0 0.0
X

Figure 5.6.- Mach number contours--major grid using direct interpolation boundary
' scheme and small overset grid. '

o

l’;_.

o

-

o

t’;-

>

(=}

f\;"

e

o

o‘u

e

T r -

-6.0 -5.0 -4.0 -3.0 -2.0 -1.0 0.0

X
Figure 5.7.- Mach number contours--minor grid using direct interpolation boundary
scheme.

84

-6.0 -5.0 -4.0 -3.0 -2.0 -1.0 0.0
X

Figure 5.8.- Pressure contours--major grid using direct interpolation houndary
scheme and small overset grid.

o
3
wn

4.0

3.0

1.0

0.0

-1.0

Figure 5.9.- Pressure contours--minor grid using direct interpolation boundary
scheme,

85

10°

1t 11111}

i)

0™

(BB RN |

A

10°

. tatal

2-Norm of Restdual

L

0.0 200.0 400.0 §00.0 600.0 1000.0
ITERATION

Figure 5.10.- Convergence history--single grid.

86

-6.0 -5.0 -4.0 -3.0 -2.0 -1.0 0.0

Figure 5.11.- Mach number contours--single grid solution.

87

-6.0 -5.0 - =4.0 -3.0 -2.0 -1.0 0.0

Figure 5.12.- Pressure contours--single grid solution.

88

6.0

——
o
2 -
wn
n
\\
o
-] S
- N\
[S
.
QN \'h)
) $ X
3 SN
.
s, AN
~,
A N
Ci AR . .
- Q \ ~
™ AN ~ 2N LN
s BN
s b RS e AN
N SR M \J‘
> AN DOV C
S eI IS
N S S <0 ~
1)
o S TN
~ ™~ . ~)
R ~ TR
~ ~ S O ~
B
4 LN :"\ SR
' 'K\ R) N9ch .8
N AR CAT R TS
i AS - ~ N N
o] » Q
9 PR SRAA
-] N -
4 P
1 RS N =L o
1 =
[S —t] AT 4 e
i e &
' 2 30
o [3k s 1 3 -
. T R ol Fals i =
° I U RS Yo P 1 o
o
-
' T T Y T T

-6.0 -5.0 -4.0 -3.0 -2.0 -1.0 0.0

Figure 5.13.- Larger minor grid overset on major grid with smaller hole.

89

10*

107

1112111l

d

10°

it 1l

10° .

1t 2 taatd

2-Norm of Residual

10* .

Lol.1 it

10

0.0 200.0 400.0 §00.0 800.0 1000.0
ITERATION

——— Major grid
- - = = Minor grid

Figure 5.14.- Convergence history--direct interpolation, large minor grid.

90

-6.0 -5.0 - -4.0 -3.0 -2.0 -1.0 0.0

Figure 5.15.- Mach number contours--major grid using direct interpolation boundary
scheme and large overset grid.

o
.
v

4.0

3.0
L

2.0

1.0

0.0
L

o
—
1

-6.0 -5.0 -40 3.0 -2.0 1.0 0.0

Figure 5.16.- Mach number contours--minor grid using direct interpolation boundary
scheme.

91

-6.0 -5.0 -4.0 3.0 -2.0 1.0 0.0
X

Figure 5.17.~ Pressure contours--major grid using direct interpolation boundary
scheme and large overset grid.

[~}
o
o
*:..
o
F;-
>
o
“;...
o
o
Q‘_
o
T |l 4 T U 1
-6.0 5.0 -4.0 -3.0 -2.0 -1.0 0.0
X
Figure 5.18.- Pressure contours--minor grid using direct interpolation boundary
scheme,

92

10®

gL 11111

10°

L1 11utl

10*

L 214111

1
N en
-

g

10

1102301l
.

2-Norm of Residual

A1 1 t181] 1
———

1

107

0.0 200.0 400.0 600.0 800.0 1000.0
ITERATION

~—— Major grid
= ==~ Minor grid

Figure 5.19.- Convebgence history--direct interpolation--500 iterations boundary
data frozen--after 500 iterations.

93

-3.0 -2.0 " -1.0 0.0

Figure 5.20.- Mach number contours--major grid using'direct.ihterpolatibn boundary
scheme for first 500 iterations, then boundary frozen,

(=]
wn

1.0 2.0 3.0 4.0

0.0

o
—
1

-6.0

-5.0

-3.0 -2.0 -1.0 0.0

Figure 5.21.- Mach number contours--minor grid using direct inﬁerpolation boundary
scheme for first 500 iterations, then boundary frozen.

94

(B

\
1

il

t

J

6.0 5.0 -4.0 T0 | 20 -1.0 0.0
X
Figure 5.22.- Pressure contours--major grid using direct interpolation boundary

scheme for first 500 iterations, then boundary frozen.

1

-6.0 -5.0 -4.0 -3.0 -2.0 -1.0 0.0

Figure 5.23.- Pressure contours--minor grid using direct interpolation boundary
scheme for first 500 iterations, then boundary frozen.

95

b
o
3
)
30
15 B
- -
CR
o
ORI
o 1
o -
Ce
£
N3
o
3
b
o
-— I 1 T LS 1
0.0 200.0 400.0 600.0 800.0 1000.0
ITERATION
—_—Major grid

- — =~ Minor grid

Figure 5.24.- Convergence history--boundary data averaging.

96

-6.0 -5.0 -4.0 -3.0 -2.0 -1.0 0.0

Figure 5.25.- Mach number contours--major grid using boundary-data-averaging
boundary scheme.

-1.0

-6.0 -5.0 -4.0 -3.0 -2.0 -1.0 0.0

Figure 5.26.- Mach number contours--minor grid using boundary-data-averaging
boundary scheme.

97

6.0

/(@)

e ;

e

T L i 1 T L
-6.0 -5.0 -4.0 -3.0 -2.0 -1.0 0.0
X
Figure 5.27.- “ressure contours--major grid using boundary-data-averaging boundary
scheme.
o
u;..
(=)
‘:_
(=}
l";-
>~

o
“;..
e
o
c'_
e
T T T ¥ T T

-6.0 -5.0 -4.0 -3.0 -2.0 -1.0 0.0

Figure 5.28.- Pressure contours--minor grid using boundary-data-averaging boundary
scheme,

98

M>1
u-a = u+Gle

uta = u——ﬁ?-a

u =8

Figure 5.29.- Information flow through supersonic boundary.

M<1
u+3;—la < u-—a

u+a => u—'—"%la

u = s

Figure 5.30.- Information flow through subsonic boundary.

99

10°
1t 112110

s

107

11 11411l

10”

L r il

10°

2-Norm of Restdual

L

10°

Lt 1t

1

10”7

0.0 200.0 400.0 600.0 800.0
ITERATION

——— Major grid
- - -~ Minor grid

Figure 5.31.- Convergence history-~no hole in major grid,
on minor grid.

100

1
1000.0

characteristic boundaries

[E]

6.0

5.0
1

4.0

3.0

2.0

1.0

0.0

(=]
-
]

-6.0 -5,0 -4.0 -3.0 -2.0 -1.0 0.0

Figure 5.32.- Mach number contours--minor grid using characteristic boundary scheme
and no hole in major grid.

-6.0 -5.0 -4.0 -3.0 -2.0 -1.0 0.0

Figure 5.33.- Pressure contours--minor grid using characteristic boundary scheme
and no hole in major grid.

101

107

11 1 113af

10°

Lol t1114!

10
L1 2 11ial 1

of Residual

10°

11 a1l

2-Norm

10°

11 11191

10”7

0.0 200.0 400.0 §00.0 £00.0 1000.0
ITERATION

——— Major grid
- === Minor grid

Figure 5.34.- Convergence history--characteristic boundaries on minor grid.

102

10

1 1.t 8t

L

107

14 1 111tl

107 .

10°

I3 131211

2-Norm of Residual

10"

10”7

0.0 200.0 400.0 600.0 800.0 1000.0
ITERATION

— Characteristic boundary scheme

- = - — Direct interpolation

Figure 5.35.- Convergence history--characteristic boundary scheme vs. direct
interpolation--major grid.

103

Figure 5.36.-

. 10-2

-3
10
Il Lt 11}

i b 111l

10°

I EENE)

10° ,

I B ENEE

2-Norm of Restdual

]

sl 11 e9sd

107

0.0 200.9 400.0 §00.0 800.0 1000.0
ITERATION

——— Characteristic boundary scheme

- - — — Direct interpolation .‘

Convergence history--characteristic boundary scheme vs. direct
interpolation--minor grid.

104

-6.0 -5.0 -4.0 -3.0 -2.0 -1.0 0.0

. X
Figure 5.37.- Mach number contours--major grid using characteristic boundary
scheme.
2]
>=
2
3
-
2
il
o
' 6.0 -5.0 -4.0 -3.0 -2.0 -1.0 0.0
: X
Figure 5.38.- Mach number contours--minor grid using characteristic boundary
scheme.

105

Figure 5.39.- Pressure contours--major grid using characteristic boundary scheme.

o
w

-6.0 -5.0 -4.0 -3.0 -2.0 -1.0 *0.0

Figure 5.40.- Pressure contours--minor grid using characteristic boundary scheme.

106

10° 10’
01 1 11141 41 1 1111

10"

Ll liaanl

.dual

1

10°

2-Norm of Re:
1 1. vl

L1 111931l

107

0.0 200.0 100.0 600.0 800.0 1000.0
ITERATION

Major grid

~ — = — Minor grid

Figure 5.41.- Convergence history--characteristic boundary scheme using grids of
figure 5.4,

107

10°

bl
=
-7
QO
S
©
B]
[}
e]
o
o -
£
6%
< -]
&
?
=F
'rCl
-— ¥ T U L 1
0.0 200.0 400.0 600.0 800.0 1000.
ITERATION
Major grid
===~ Minor grid

Figure 5.42.- Convergence history--characteristic boundary
figure 5.3.

108

0

scheme using grids of

‘d

6.0

-6.0 -5.0 -4.0 -3.0 -2.0 -1.0 0.0

u ~ Lyubimov and Rusanov
e - Rai
Figure 5.43.- Mach number contours (M = 2.0)--direct interpolation boundary scheme.

109

6.0

5.0

0.0

-8.0 -5.0 -4.0 -3.0 -2.0 -1.0 8.0

. @ — Lyubimov and Rusanov
e — Rai

Figure 5.44.- Mach number contours (M = 2.0)--characteristic boundary scheme.

110

1. Report No. 2. Government Accession No.

NASA TM 86675

3. Recipient’s Catalog No.

4. Title and Subtitle
MULTIPLE GRID PROBLEMS ON CONCURRENT-PROCESSING
COMPUTERS

5. Report Date
February 1986

6. Performing Organization Code

7. Author(ssy D, Scott Eberhardt and Donald Baganoff
(Department of Aeronautics and Astronautics,
Stanford University, Stanford, CA 94305)

8. Performing Organization Report No.
A-85103

9. Performing Organization Name and Address

Ames Research Center
Moffett Field, CA 94035

10. Work Unit No.

11. Contract or Grant No.

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, DC 20546

13. Type of Report and Period Covered
Technical Memorandum

14. Sponsoring Agency Code
505-37-01

15. Supplementary Notes

Point of Contact: D. Scott Eberhardt, M/S 229-4, Ames Research Center,
Moffett Field, CA 94035, (415)694-5235 or FTS 464-5235

16. Abstract

Three computer codes have been studied which make use of concurrent
processing computer architectures in computational fluid dynamics (CFD).
The three parallel codes were tested on a two processor MIMD facility at
NASA Ames Research Center, and are suggested for efficient parallel

computations.

The first code studied is a well-known program which makes use of the
Beam and Warming, implicit, approximate factored algorithm. This study
demonstrates the parallelism found in a well-known scheme and it achieved
speedups exceeding 1.9 on the two processor MIMD test facility.

The second code studied made use of an embedded grid scheme which is

used to solve problems having complex geometries.

The particular applica-

tion for this study considered an airfoil/flap geometry in an incompressible
flow. The scheme eliminates some of the inherent difficulties found in
adapting approximate factorization techniques onto MIMD machines and allows
the use of chaotic relaxation and asynchronous iteration techniques.

The third code studied is an application of overset grids to a super-
sonic blunt body problem. The code addresses the difficulties encountered
when using embedded grids on a compressible, and therefore nonlinear, prob-
lem. The complex numerical boundary system associated with overset grids
is discussed and several boundary schemes are suggested. A boundary scheme
based on the method of characteristics achieved the best results.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement
Concurrent processing Unlimited

Parallel processing
Comp. fluid dynamics

Overset grids Subject category - 059

19. Security Classif. (of this report) 20. Security Classif. (of this page)}
Unclassified Unclassified

21. No. of Pages 22, Price’
110 A06

“For sate by the National Technical Information Service, Springfield, Virginia 22161

End of Document

