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ABSTRACT

The Galerkin finite element solutions for the
scalar homogeneous Helmholtz equation are presented for
no reflection, hard wall, and potential relief exit
terminations with a variety of triangular element ori-
entations. For this group of problems, the correlation
between the accuracy of the solution and the orientation
of the linear triangle is examined. Nonsymmetric ele-
ment patterns are found to give generally poor results
in the model problems investigated, particularly for
cases where standing waves exist. For a fixed number
of vertical elements, the results showed that symmetric
element patterns give much better agreement with cor-
responding exact analytical results. In laminated wave
guide application, the symmetric pyramid pattern is
convenient to use and is shown to give excellent
results.

NOMENCLATURE

A constant coefficient

Ae element area

B constant coefficient

c speed of propagation

D domain of problem

{F} global boundary condition vector

H height of wave guide

i -1

K; local stiffness matrix component, Eq. (49)

[K^6] local stiffness matrix

[K] global stiffness matrix

k wave number, Eq. (2)

L length of wave guide :

Nj (e) local element shape factor

[N'e'] local element shape matrix

n total number of nodes

n unit outward normal

R residual error

S boundary line of domain D

t time

W-j global basis function W-j(x.y)

x axial coordinate

y transverse coordinate

3/an derivative in normal direction

v2 laplacian operator

v gradient operator

5e exit impedance, Eq. (11)

4> potential $(x,y)

it>-j nodal value of potential

4>'e' value of potential in element, c|>(eMx,y)

{*} global vector of nodal values $,

{it.}'6' element vector of nodal values

to angular frequency

Superscripts

( ) approximate value of ( )



(e) element value

* dimensional quantity

Subscripts

e exit or area

i index

j index

INTRODUCTION

The Helmholtz equation models many physical
systems. In acoustics, the classic wave equation
reduces to the Helmholtz equation which describes the
propagation of harmonic pressure disturbances (1).
Electromagnetic propagation in wave guides is aTso mod-
eled by the solution of the Helmholtz equation (2). In
fluid mechanics, a spectral approach to the Navier-
Stokes equation also leads to the second order elliptic
Helmholtz equation (3). The present paper is concerned
with linear triangle finite element solutions to the
Helmholtz equation. In particular, the optimum orien-
tation of the triangle element pattern is examined for
a number of typical boundary conditions associated with
both acoustic and electromagnetic wave guides.

In acoustics and electromagnetic finite element
modeling of the Helmholtz equation, first order linear
triangular elements made their initial appearance in the
late 1960's and early 1970's. Recently, higher order
elements have supplanted the first order elements
because of their higher accuracy. Nevertheless, first
order elements continue to find use because they are
simpler to understand and program (less chance for ini-
tial errors) and consequently they are an attractive
starting point for a new research area. Many triangular
patterns have appeared in the literature. In beam ana-
lysis, for example, the nonsymmetric pattern of tri-
angles shown in Fig. l(a) was shown to give less error
than the symmetric pattern shown in Fig. l(b) (£ p. 71).
At the present time, however, the literature does not
suggest which triangular element pattern might best be
employed in the solution of the Helmholtz equation with
boundary conditions typical of duct propagation
problems.

Herein, the finite element solutions of the
Helmholtz equation are obtained for plane wave propa-
gation in a rectangular duct with a variety of linear
triangle orientations. The correlation between the
accuracy of the solution and the orientation of the
linear triangles is examined for the following termi-
nation conditions: (1) no reflected wave at exit;
(2) hard wall (infinite impedance); (3) potential relief
(zero potential). Boundary conditions (1) and (2) are
Neumann conditions and enter the problem as natural
boundary conditions. On the other hand, the potential
relief constraint enters the problem as a Dirichlet or
forced boundary condition. Conditions (2) and (3) give
rise to resonance inside the duct.

The first section of this paper presents the
differential equation describing a scalar potential
propagation in a wave guide. The second section pre-
sents model problems along with closed form analytical
solutions which will later be compared to the finite
element results. In the third section, the finite ele-
ment formulation of the model problem is given. In the
fourth section, finite element solutions and analytical
solutions are compared for a number of triangular ele-
ment patterns and termination boundary conditions for
the proposed model problems. Finally, recommendations

are made as to the advantages of the respective element
orientations.

GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

The governing differential equation describing
the propagation of a harmonic scalar perturbation
potential $ is the classic Helmholtz equation. The
two-dimensional form of the homogeneous Helmholtz equa-
tion can be written as

(1)

where k is the wave number representing a ratio of
frequency to a propagation speed.

where all the variables are assumed dimensionless. The
nondimensionalization begins with the speed of propa-
gation c , frequency a and dimensional potential
4,* and introduces their nondimensional equivalents.
The superscript ( ) denot|s a dimensional quantity.
The speed of [propagation c is normalized with
respect to CQ the velocity of propagation in a
reference, medium, pie frequency <a is normalized
by H /c0 where H is a characteristic
length. The potential is normalized with re|pect to
c0H . In addition, lengths are scaled by H .

In wave guide propagation problems, the boundary
conditions will depend on the type of source forcing the
propagating or standing wave, the termination of the
guide, and the properties of the walls of the wave
guide. Typical boundary conditions for acoustic propa-
gation can be found in Ref. 5 while the boundary condi-
tions in electromagnetic theory are discussed in Ref. 2
(p.•67). The boundary conditions associated with the
model problem under consideration in this paper will be
presented in the next section.

MODEL PROBLEM ' . '

Finite element solutions of the Helmholtz equation
will be determined for the two-dimensional boundary
value problem shown in Fig. 2. In this problem, a uni-
form potential $ is assumed at x = 0,

= 1 (3)

and the normal gradients of the potential are assumed
zero at both the upper and lower- walls,

3n y=0

an y-i

ay

ay

o
y=0

y=l

(4)

(5)

At the exit (x = L) of the wave guide, the three
separate termination conditions shown in Fig. 2 will be
considered. Their significance will be discussed
shortly when the closed form analytical results are
developed.

Closed Form Solution

Since the boundary conditions are uniform at the
entrance and exit of the wave guide and are identical
along the top and bottom of the guide, the scalar <t>



will not depend on the y coordinate. Consequently,
the governing Helmholtz equation reduces to

which has a general solution of the form

* = Ae-1kx + Be+ikx

(6)

(7)

If the time dependence of the.wave (neglected here) is
assumed to be e1 , the Ae~lkx represents a wave
propagating in the positive x direction while
geikx represent a wave moving in the negative x
direction (exactly the opposite would occur had a
e-i(ut time dependence been assumed). Details on the
nature of wave propagation can be found in any text on
acoustics (6).

Exit Terminations

Separate analytical and numerical solutions will
be associated with each of the exit boundary conditions
shown in Fig. 2. The significance of each of these
conditions will now be discussed.

(1) No reflections at exit (ge = 1). Consider
the case where waves only propagate to the right at
x = 1. In this case,

8=0 (8)

and the exact analytical solution can be written as

• . ..: 4, = e~lkx = cos kx - i sin kx (9)

The coefficient A has obviously taken on a value of
unity to satisfy the entrance condition (3).

The exit termination boundary condition associated
with this condition can be found by differentiating
Eq. (9) and setting x = L:

11
3X

_

= -ike = -ik4,(L) (10)

In wave propagation problems, it is customary and
convenient to define an impedance of the form

or
3X (ID

For this definition, substituting Eq. (10) into
Eq. (11) yields

'e = 1 (12)

as shown as exit condition (1) in Fig. 2.
The specific problem to be considered herein will

be for a k- value of 2n. In this case, the real part
of the analytical solution becomes

RealU)

(2) Hard wal l exit

COS 2irX

= 0 (c

The exit condition

3X
0

(131

(14)

along with condition (3) yield an equally simple
solution

_ cos k(L - x)
* ~ cos kL (15)

In this solution, both constants A and B have non-
zero value. Consequently, the solution represented by
Eq. (15) is. a combination of forward (e"1**) and

1kxbackward (e1kx) traveling waves. A resonance reinr
forcement of the waves occurs when

kL = n 3n 5n (16)

The specific problem to be considered herein will
again be for a k value of 2ir. In this case, the
analytical solution becomes

<t> = cos 2ir(L - x) (17)

In contrast to Eq. (13), * does not have any imagi-
nary component, so the real designation is not required.

The term hard wall exit comes directly from acous-
tics. For a hard exit wall, the acoustic velocity
represented by the gradient of the potential will be
zero. In this case, substituting Eq. (14) into the
definition for the impedance given by Eq. (11) yields

ce = - (18)

Equation (18) will be conveniently employed in the
finite element solutions to follow.

(3) Relief Exit U = 0). The exit condition

«, = 0 at x = L (19)

along with condition (3) yields a solution of the form

k > 0 (20)sin k(L - x)
sin kL

Again, because both constants A and 8 in Eq. (7)
have nonzero values, the solution given by Eq. (20)
represents the sum of forward and backward traveling
waves. In this case, the resonance condition occurs
when

kL = n, 2it, 3n, . . . (21)

For this boundary condition, three specific example
problems will be developed. For the example shown in
Fig. 2, where L • = 1:

(a) k = 0 = 1 - x

(b) k =

(c)k.fl

sin - x)

(22)

(23)

(24)

In a sense, boundary conditions (2) and (3) in
Fig. 2 are quite similar in that they both lead to
standing wave patterns which are identical over certain
regions. However, boundary condition (3) was intro-
duced because it enters the finite element solution as
a forced (Dirichlet) condition in contrast to boundary
conditions (1) and (2) which enter the problem as nat-
ural boundary conditions. As pointed out clearly by
Silvester and Ferrari (2, p. 11) these different formu-
lations can significantly effect the accuracy of the



finite element results. • In the-weak formulation (7_, p.
140) of the finite element equations the order of the
differential equation is reduced using integration by
parts (Green's vector identity). In this case the nat-
ural (Neumann) boundary conditions are not satisfied
exactly but only in a certain mean-value sense which
causes a contour integral in the finite element solution
(to be presented shortly) to take on a prescribed value.
The "strong" formulation, which enforces gradient
boundary conditions exactly at a node (8), requires the
use of Hermitian shape functions and is not considered
herein.

FINITE ELEMENT THEORY

The finite element formulation is now generated by
using the Galerkin method (9 to 11) to obtain an inte-
gral form of Eq. (1) over tTTe whole (global) domain D
shown in Fig. 2. A simplified and complete explanation
of the Galerkin method is difficult to find in the lit-
erature. The presentation here is given in fair detail
and is tutorial in nature.

System Discretization

The continuous domain D is first divided into a
number of discrete areas staked out by the nodal points
as shown in Fig. l(a). Although the nodal points are
shown evenly spaced in Fig. l(a), the advantage of
finite element theory is that it allows the placement
of the nodes at any position desired. Next, the con-
tinuous potential $(x,y) will be approximated (curve
fitted) in terms of the nodal potential values <t>j
located at x-j.yj, see Fig. l(b). The curve fit is
required since we will integrate the governing Eq. (1)
over the domain D shown in Fig. 2. This contrasts
with the simplest form of finite difference theory
(Taylor series) which usually only determines the
potential at the lumped nodal points.

Global Weighted Residual Approach

In the classical weighted residual manner, the
potential $ is curve fitted by expanding in terms of
the nodal values (̂x̂ y,) and a series of
basis (shape) functions, such that

x,y) = L W. (x,y)$. = [W]U)
.• 1 i *1=1

(25)

where the basis or weight functions W-j(x,y) charac-
terizes the spatial dependence of $, and 4^
represents the unknown value of the potential $ at
specific nodal points in the global region. The hat
over the $ indicates that it is the approximate
solution to <i>. For example, $-j would be asso-
ciated with the potential value at the nodes shown in
Fig. l(a). In Fig. l(a), the number of elements m has
a value of 24, while the total number of nodes n has
a value of 20. The nodes are numbered 1,2, . . . n
and the global vector {4.} represents the scalar values
of the unknown potential <t> at each node, such that
in matrix form

or

(26)

The weight W-j has the property of being unity
at node i and identical to zero at the other nodes.
The weights Wi are all assumed to be known func-
tions; consequently, we must guess some approximate
form of Wi before the weighted residual approach can
be applied. The values of W^(x,y) at points other
than the nodes will generally be finite nonzero values.
However, in the finite element (Galerkin) approximation
for W-j(x.y) to follow, throughout most of the domain
the weight Wi is assumed zero not only at all other
nodes but also at all values of x and y outside the
element under consideration. This Galerkin approxima-
tion will considerably simplify the required
integrations.

In general, substitution of Eq. (25) into the gov-
erning Eq. (1) and integrating over the domain D will
not be equal to zero but will leave a residual error R.

D
k2*] dx dy = R (27)

In accordance with the method of weighted residuals, the
assumed basis functions Wi and the distribution of
errors R are forced to be orthogonal (R = 0) within
the region, such that

2ff W^v2* + k*] dx dy = 0

D

ff W2[v
2

fj" W^

dx dy = 0

+ k2*] dx dy = 0

wn[v%
0 •*•

k 4>] dx dy = 0

I (28)

D

Thus, there are n equations for the n nodal 4>i
unknowns. In a direct analogy to the finite difference
weighted residual control-volume formulation (12, pg.
30), each of the above equations can be thoughTTbf as a
higher order difference approximation at the nodal point
where Wi has a value of unity. Equations (28) can
be written in compact form as

dx dy = 0

(i = 1, 2 . . ., n equations) (29)

By making use of Green's vector identity (integra-
tion by parts - 9, Eq. 9) and using the divergence the-
orem of Gauss (Iff, p. 79, Eq. 4.7(b)), Eq. (29) becomes

= 0

(i = 1, 2 n equations) (30)

where n is the unit outward normal and S is the line
integral around the global domain D as shown in
Fig. 2.



In effect, we have reduced the order of the dif-
ferential equation allowing us to employ the weak for-
mulation of the finite element theory.
Thus, in the Galerkin finite element approximation to
follow, simple class C0 shape functions can now be
used to approximate W-j. Across an element shown in
Fig. 1 (a) for example, the class Cg functions are
only continuous in the dependent variable * and are
discontinuous in slope. As previously mentioned in the
discussion of the boundary conditions, if Eq. (29) is
treated directly, then Hermitian functions are required
to approximate Wi (8). In these functions both the
variable and its slope are continuous across a boundary.

Finite Element Approximation

Both the specifications of the global weighting
functions Wi and the global integration over the
whole domain D required by Eq. (30) are not practical.
However, the integration can readily be performed by
subdividing the domain into smaller elements Ae,
defining the global shape function W-j in terms of
the nodes of an individual element, integrating over an
individual element and summing all the elements
together.

Equation (30) is valid over the entire domain D
shown in Fig. 2 or any subdomain Ae, as represented
by the area of a small triangular element embedded in
the region as depicted in Fie- 2. To begin the finite
element aspect of the weighted residual method, the
domain D is assumed to be divided into m elements
defined by n nodes, as shown by the example in
Fig. l(a). In this case, Eq. (30) can be rewritten as

://(-,
1 A/ \

- / (W . 71 • n

- k 4,W. dx dy

/(W. 7? • n ds) = 0
s 1

(i = 1, 2 . . ., n equations)

Local Shape Factors

(31)

Each element is defined by the nodes around its
perimeter. To represent the variation inside the ele-
ments of the field variable $ and its derivatives,
local interpolation shape functions Ni(x,y) for the
linear triangle are written in both scalar and matrix
form as

*(x,y) - N(e)

>(e) .

and the shape function

,(20) (33)

(34)

The form of the local shape matrix [N6'] depends
on the type of element used. For the linear-triangle
element employed herein, the known value of NJje)
is simple in form and can readily be found in nearly
every text on finite elements (2_, Eq. 3.05). Like its
global counterpart Wi, the local NJe' has the
property of being unity at node j and zero at the
other nodes in the triangle. For example, the magnitude
of N^1) in element (1) is illustrated in Fig. 3(a).
In this case, the magnitude of N^' is represented
by the height above the x-y plane. Nje) for other
selected values are.also seen in Fig. 3.

Notice that Njf' will have a nonzero value for
elements (12), (13), (14), (19). (20), and (21). A
superscript is required for NI ' to denote which
element it resides, since the magnitude of this values
the shape function at any x and y inside the ele-
ment will depend on the location of the other corner
nodes.

Replacing £ by ^(e> in Eq. (31), the new
governing equation becomes

dy

nds) = 0

(i = 1, 2, . . ., n equations) (35;

Galerkin Approximation

In general, the approximation for the ^ dis-
tribution and the weight W-j can be different, as
seen by now comparing Eqs. (25), (32), and (35) and, for
example, as usually applied in weighted residual con-
trol-volume finite difference theory (12, pg. 32). In
conventional finite element analysis as applied here,
however, the weight function and the profile function
are usually equated. The weight W-j(x.y) is now
approximated by multiple values of N\^'. Adapting
the Galerkin approximation to the more general weighted
residual approach assumes that

(32)

where {<t>pe) is the vector of nodal values of
$ for a general element e with subscripts 1, 2, and
3 representing the nodal positions, as shown in Fig. 2.

For example, for element 20 in Fig. l(a), the vec-
tor {4>}(e) would take on the form

(36)

in all elements containing the node i. Approximation
for Wi can be visualized by the pyramid-like shapes
displayed in Fig. 3. For all elements which do not
contain the node i, the weight Wi is assumed zero
not only at all other nodes (as required by the general
definition of Wi) but also at all values of x and
y- . .

Recognizing that N\e> is zero for all ele-
ments not having the unknown $.j associated with a



particular element, as shown in Fig. 3, the finite ele-
ment Eq. (35) can be written in compact form as

nds) = 0

( i = 1, 2 n equations) (37)

where N-j are the known shape factors (2_, Eq. (3.05))

Surface Integral

The surface integral in Eq. (30) can be rewritten
along the boundary in Fig. 2 as

W
FRONT

Wiexit 1

C »:
- ->wi l^xn f\-r I a j

* A
BOT

TOP
(38)

Since, 3,)>/3y is zero (Eqs. (4) and (5)) along the
top and bottom for our
model problem, Eq. (38) simplifies to

w.v;.nds = ~ J W -||- dy +
FRONT 1 3X exit

dy (39)

or, utilizing the definition of impedance given by Eq.
(11) yields

FRONT
(40)

exit

Employing 4>(e) and the Galerkin approximation,
Eq. (36), Eq. (40) becomes

•nds = -
FRONT

'dy (41!
exit

In terms of the general W^ in Eq. (40), both
surface integrals would contribute to every element in
the domain. However, with the Galerkin approximation
the first term on the right hand side of Eq. (41) will
only contribute when the nodal point i is on the right
hand face. In Fig. l(a), this would be points 1,2,3,4,
and 5. For all other nodal positions, the value of
N-j on the front face will be identical to zero by
nature of the Galevkin approximation to Wj shown in
Fig. 3. However, at points- i on the front face
boundary, $ (Dirichlet) boundary conditions are
specified (forced). Thus, the ith equation of Eq.
(37) representing a boundary point will be discarded.
The exact known answer will take its place;

-.-• = 1 (42)

Thus, without loss of generality the first term or the
right in Eq. (41) can be discarded, and

•nds = - ik «(eUe:dy (43)

exit

For the relief exit condition, Eq. (19), the surface
integral at the exit would also be discarded for the
same reason.

The finite element equation for a general i node
can now be written as

m

e=l Ae

e x t

(i = 1, 2, . . ., n equations) (44)

EXAMPLE

The original global weighting function W-j
associated with the i*n global node has now been

(e)assumed to be composed of the separate N\ 'shape

functions which reside in the local elements surrounding

the ith node, as shown in Fig. 3. For example, for

W4 = N^, only the (5), (6), and (7) elements will

contribute to the evaluation of the summation for the
fourth node. Thus, for the grid and element notation
of Fig. l(a), the general Eq. (44) can be expanded into
the form:

= 1

= 1

*5 =

i=2

i=3

i=5

= 0 1=6

e=2,3,4, .
9,10,11 Ae

(equation continued on next page)



e=22 Ae

J'Wy-o i=l9
Se

Ae

Se (45)

In this example, the first five equations asso-
ciated with Eq. (44) reduce to the forced Dirichlet
boundary condition. The next two equations are typical
of Eq. (44) applied to the central regions. No surface
integrals appear since the, value of. N, representing
Wi in the domain 'D is zero outside the element
containing i along the exit surface. Finally, when
the i node coincides with the exit boundary, a sur-
face integral .contribution occurs, as in the last two
equations. For i = 20, no summation is required since
only one element area is associted with the final node.
There are 20 equations associated' with the 20 unknown
values of -the potential. Obviously because of the known
boundary conditions, the equations could be reduced to
fifteen.

Finite Element Equations

Expanding 4>'e' in terms of-the weighting func-
tions, Eq. (32) and neglecting the surface integrals for
simplicity,-,Eq. (44) becomes

(i ='1, 2, . . ., n equations) (46)

where the {<t>)(e) local potential vector can be
pulled outside the area integration since it does not
depend on the area coordinates.

Equation (46) could in principle be evaluated for
each i to yield a set of n simultaneous equations
for the n unknown values of $-\, as in Eq. (45).
However, this approach is not readily implemented on a
digital computer. Rather, each element is treated
independently and the contributions of a single element
to all the equations in Eq. (46) are determined simul-
taneously from the following:

- k2N<e) [N (e ) ] ]dA = 0

(j = 1, 2, 3) (47]

In contrast to the i subscript of Eq. (46) for all the
nodes in the global domain, here the subscript j sums
only the three nodes of a particular element. In com-
pact standard finite element form, Eq. (47) can be
written as

u> (e) = 0 (48)

where

.(e) i(eV.e) * N<£

ix ox i)

dx dy (49)

For triangular elements, the evaluation of Eq. (49) is
quite simple and presented in many texts (11, p. 149,
Eq. 8.42 for the first two terms and p. 45~7br the last
term). The surface integral is evaluated in a similar
manner.

Using the standard finite element procedures (11),
the elemental Eqs. (48) can be assembled into Eq. C4TT)
and the boundary conditions applied to yield the
following global set of simultaneous equations which we
can solve to obtain the unknown nodal potentials:

[K]U) (50)

Here, the column vector {F} contains boundary con-
dition information and the global stiffness matrix [K]
i s the sum of the known local stiffness matrices
[K(e)]. The solution of Eq. (50) by a banded Gauss
solver yields <t)j. Except for a few minor modifi-
cations, a complete fortran listing of the banded solver
can be found in Ref. 13, program 16, page 64.

Next, the solutions of Eq. (50) for a number of
element discretization patterns and boundary conditions
will be compared to the analytical solutions.

RESULTS AND COMPARISONS

Finite element solutions for a variety of exit
terminations will now be compared to the closed form
analytical solutions presented earlier. Four distinct
triangular grid orientations will be considered.

Nonsymmetric Grid

The nonsymmetric grid shown in Fig. 4 was used to
calculate wave propagation without reflection at the
exit, Eq. (13). This grid orientation is labeled non-
symmetric since views looking from the top and bottom
will be different. In this example, a rule of thumb (S)
requires that approximately 12 linear triangles be
employed to accurately resolve one complete harmonic
oscillation. In the vertical direction, only four tri-
angles were chosen since no variation of $ in the
y direction was expected.

Figure 5 displays a comparison between the finite
element calculations, shown.by the solid symbols and the
analytical calculation shown by the solid line. In this
and all comparison figures to follow, the finite element
calculation are displayed for the nodal points at upper
and lower walls and at the centerline. The heading on
the figures denote the respective positions.

Reasonable agreement is seen between the finite
element results and the analytical curves. However,
errors as high as + 10 percent occur at selected posi-
tions. Other grid~~orientation to be presented will
improve on this comparison. The deviation between the
upper and lower nodes is a direct result of the non-
symmetric triangle pattern. A different arrangement of
nodes contribute to the global "difference" equation
used to calculate i(>i at the upper and lower sur-
faces for the same axial position..

Figure 6 displays similar results for the non-
symmetric grid for the hard wall exit conditions



=0). In this case, the errors are very large
and the result not satisfactory.

The results for the nonsymmetric grid for the
potential relief exit condition ($ = 0) are now con-
sidered. For a wave number of zero (k = 0), exact
agreement is obtained. The upper, center, and lower
surface finite element results coincide because of the
linear nature of the solution, Eq. (22). For k
greater than zero (k = n/2), the results are very good
and just a slight variation between the upper and lower
surfaces are seen. For k = 3n/2 shown in Fig. 7, the
results are totally unsatisfactory.

In order to check for convergence of the non-
symmetric grid when k = 3ir/2, the vertical direction
was divided into 20 elements. For this case as shown
in Fig. 8, the agreement between the finite element and
analytical results is good. However, the use of many
elements to resolve a vertically nonvarying potential
is quite unacceptable. Therefore, let us now consider
some symmetric triangular grids.

Symmetric Diamond Pattern

The symmetric diamond pattern shown in Fig. 9 was
used to calculate the potential relief boundary condi-
tion (4, = 0, k = 3u/2) as shown in Fig. 10 and the
wave propagation without reflection at the exit as dis-
played in Fig. 11. In Fig. 10, agreement between the
finite element calculations and the analytical results
are excellent, and thereby preferred over the non-
symmetric grid displayed in Fig. 4. Only the upper wall
values are seen, since they are identical to the lower
wall values and thus obscure the lower values. In Fig.
11 for the nonreflecting exit, some significant error
is still seen at an x value of 0.5.

In practical applications, wave guides might have
both vertical and horizontal laminated changes in mate-
rial. To more conveniently resolve the boundary between
laminated regions, some additional symmetric triangular
patterns w i l l now be considered.

Symmetric Saw Tooth'Pattern

The symmetric saw tooth pattern shown in Fig. 12
was used to calculate the potential relief boundary
condition (4, = 0, k = 3u/2) as shown in Fig. 13. As
seen in Fig. 13, excellent results are obtained. There
is however, a slight variation between the center values
and the wall values. Again, only the upper wall values
are seen, since they are identical to the lower wall
values and thus obscure the lower value.

Symmetric Pyramid Pattern

The symmetric pyramid pattern shown in Fig. 14 was
used to calculate the potential relief boundary condi-
tion (4, = 0, k = 3n/2) as shown in Fig. 15 and the
wave propagation without reflection at the exit as dis-
played in Fig. 16. In both cases, agreement between the
finite element calculations and the analytical results
are excellent. In these cases, the values of the
potential for the upper and lower walls and centerline
are identical.. Thus, only the upper wall data point
appears in these figures. The agreement in Fig. 16 at
x = 0.5 represents a significant improvement over the
diamond pattern results of Fig. 11.

CONCLUDING REMARKS

The finite element solutions for the Helmholtz
equation were presented for no reflection, hard wall,
and potential relief exit terminations with a variety
of triangular element orientations. Nonsymmetric ele-
ment patterns were found to give generally poor results
in the model problems investigated. For a fixed number
of vertical elements, the results showed that symmetric
element patterns give much better agreement with cor-
responding exact analytical results. For layered grids
which may be needed for laminated wave guide applica-
tions, the symmetric pyramid pattern was found to give
the best results and was very convenient to program.
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(b) Symmetric x-y directions.

Figure 1. - Linear triangular elements.
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Figure 2. - Mixed boundary value problem.
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Figure 4. - Discretization of solution
domain using non-symmetric tri-
angles for k = 2 TT. £e = 1.0, AX =
0.083 and 5 vertical nodes.
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Figure 5.- Potential 0 profile using non-symmetric
discretization for k = 2?r and AX = 0.083 with non-
reflecting exit, £ = 1 and 5 vertical nodes.
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Figure 6. - Potential <D profile using non-symmetric
discretization for k = 2ir and AX = 0.083 with 5 verti-
cal nodes and hard wall exit (60/dx = 0.
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Figure 7.- Potential 0 profile using non-
symmetric discretization for dimensionless
wave number k = 37T/2 with 5 vertical nodes
and Ax = 0.1 with 0 = 0 at exit.
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Figure 8.- Potential 0 profile using non-
symmetric discretization for dimensionless
wave number k • 3?r/2 with 20 vertical nodes,
Ax = 0. landO- 0.0 at exit.
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Figure 9. - Discretization of solution
domain using symmetric diamond
pattern for k = 2?rand Ax = 0.083
with 5 vertical nodes (symmetric
x-y direction).
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Figure 10. - Potential O profile using sym-
metric diamond discretization for dimension-
less wave number k = 37r /2wi th 4 verti-
cal nodes, Ax = 0.1 and 0 = 0 at exit.



1.2

1.0

.8

.6

.4

.2

0

- 2

-.4

-.6

-.8

1.0

NODAL FINITE ELEMENT -VALUES

I UPPER BOUNDARY y = 1.0
> CENTER LINE y=0 .5

ANALYTICAL,

,25 .50 .75
AXIAL DIRECTION

1.00

Figure 11. - Potential <D profile using symmetric diamond
discretization for k = 27rand Ax = 0.083 with non-
reflecting exit, £ = 1.
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Figure 12. - Discretization of solution
domain using symmetric saw tooth
pattern for k = 3TT/2 and Ax = 0.1
with 5 vertical nodes. (Symmetric
y-direction.)
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Figure 13. -Potential 0 profile using saw tooth
discretization for dimensionless wave number
k = 37T/2 with 5 vertical nodes, Ax = 0.1 and
<D = Oat exit.
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Figure 14. - Discretization of solution
domain using symmetric pyramid
pattern for k = 37T/2 and Ax = 0.1
with 5 vertical nodes. (Symmetric
y-direction.);
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Figure 15. - Potential 0 profile using symmet-
tric pyramid discretization for dimensionless
wave number k = 3rr/2 with 5 vertical nodes,
Ax = 0.1 and d> =0 at exit.
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Figure 16. - Potential <D profile using symmetric pyramid
discretization for k = 2i\ and Ax = 0.083with non-
reflecting exit, £ = 1 and 5 vertical nodes.
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