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INTRODUCTION

The goal of this research is to develop theoretical, computational, and experimental tech-
niques for predicting the effects of irregular topography on long range sound propagation in the
atmosphere. Irregular topography here is understood to imply a ground surface that (1) is not
idealizable as being perfectly flat or (2) that is not idealizable as having a constant specific acous-
tic impedance. The interest of this study focuses on circumstances where the propagation is
similar to what might be expected for noise from low-altitude air vehicles flying over suburban

or rural terrain, such that rays from the source arrive at angles close to grazing incidence.

PERSONNEL

In addition to the. principal investigators, A. D. Pierce and G. L. Main, a graduate student,
James Kearns, and two senior undergraduate students in mechanical engineering, Daniel Benator
and James Parish, are presently working on the project. The students have up until now been pri-
marily engaged in the construction of the experimental facility, in the construction of equipment,
in the procurement of equipment and instrumentation, and in the testing of the components of
the facility. Exploratory experiments are now beginning, with all three students participating.
The theoretical work has up until now been carried out mostly by Pierce and Main, with tutorial
sessions underway to develop Kearn’s participation in this phase of the research.

All of the personnel concerned with the project visited NASA Langley Research Center in
November 1985 and discussed complementary NASA and Georgia Tech research activities with

the NASA technical officer, Dr. John Preisser, and his colleagues.
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LABORATORY FACILITY AND INSTRUMENTATION

The principal activity during the first year of the subject grant has been the construction
of a laboratory facility (Fig. 1) that will be used in subsequent experiments. Major components
of the laboratory are an acoustic scurce, a model topographical surface with which the acoustic
signal interacts, and a data acquisition and analysis system. The room housing the laboratory
(Fig. 2) is a standard university small laboratory room of dimensions 8.2 m by 6.1m by 4.3 m.
The walls are cinderblock, the floor is tiled, and some walls are lined with shelves, so in no
sense does this space approach the ideal of an anechoic chamber. However, the room, dubbed
the “Atmospheric Sound Propagation Facility” within Georgia Tech, is solely dedicated to this
project. The investigators have been developing the instrumentation system to be such that the

echoes from walls, floor, and ceiling can be gated out in time.
Base tables for topcgraphic experiments

Four tables were made to be used for the scale model experimente. Zach table is 1.2 meter
wide by 2.4 meter long ard 0.9 meter high. The tables were constructed so that they could be
bolted together, forming one table 4.9 meter long by 2.4 meter wide. The table top is CDX
plywood, 2 cm thick. The table frame is constructed of two-by-six (5 cm by 15 cm) yellow pine
grade #1 planks; the table legs are constructed of four-by-four (10 cm by 10 cm) yellow pine
grade #2 beams. The fasterners holding the table together are machine bolts and wood screws,
so the table assembly is fully portable.

The table frame was made by running two 2.4 meter length two-by-sixes parallel to each
other, 1.2 meter apart. Then five equally spaced two-by-sixes were mounted in between these
first two. Next, a shelf was cut into the four-by-fours, so that they would fit into the corners of
the frame and still leave some of the frame resting on the shelf. Each four-by-four was bolted
into the frame with three machine bolts for extra streagth. Then the plywood was placed on the
frame and secured with wood screws.

In the experiments currently beginning, the four tables are bolted together and are being used

in the 4.9m by 2.4m configuration; the term ‘table’ implies this configuration in the remainder

of this report.
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Figure 1. General diagram of experimental configuration for studying sound propaga-
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tion over model topographical ridge. Here C is capacitor, R is resistor, P is
power supply, IBM PC is IBM personal computer, ISC is RC Electronics A/D

conversion instrumentation, A is amplifier, and P is preamplificr
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Figure 2. Photogr of interior of laboratory room used in the study, showing most of
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Laboratory scale model topographical ridge

A curved surface (Fig. 3) was constructed to be mounted on the table and used as a
laboratory scale model of a topographical ridge. The contour of the surface has the shape of an
arc of a circle. !

Four basic templates (or ribs) for the ridge were cut from a piece cf 1.2 meter by 2.4 meter
exterior plywood, 2 em thick. The top edge of each template was an arc of a circle; the bottom
edge was the chord of a circle. The chord was 2.4 meter long and the radius of the circle was
such that the maximum height of the arc relative to the chord was 29 cm. Thus the radius of

curvature of the arc was approximately 2.5 meter.

Identical halves of the curved surface superstructure to the table assemblage were constructed

as follows. For each half, a pair of templates were each secured to a 1.24 m by 2.4 m base board

of CDX plywood (2 cm thickness) by nailing a strip of 3.8 cm by 3.8 cm yellow pine to each
side of the template and then nailing the strips to the CDX plywood. The curved topographical

surface was then achieved by bending plywood sheets, 0.5 cm thick and 1.24 cm wide, over the

template arcs and then nailing the plywood to the arcs.

Spark Generator

A spark gap (Fig. 4 and Fig. 5) was constructed to serve as an impulsive acoustic source.
Sound is generated when a sudden current surge occurs across a 2-3 mm air gap. As indicated
in Fig. 6, a 10 kV power supply provides charge at the rated voltage to a 1 uF capacitor. A 1
MQ resistor is in series with the capacitor and the power supply; the voltage across the spark
gap is virtually the same as that across the capacitor plates because of the negligible electrical
resistance of the 0.5 cm diameter welding cables that carry current o and from the gap. The gap
is between two 0.5 cm diameter tungsten electrodes that form the terminal points of the welding
cables. The electrodes are held in position by a two-pronged plexiglass fork which is mounted

on a tripod stand (Fig. 7). A rotary grinder is used to shape and polish the electrode points.

This spark gap generates an acoustical signal (Fig. 8) whose spectral content is dominated by
frequencies of the order of 10 kHz and whose peak amplitude at a distance of the order of 1 m

corresponds to roughly 110 dB.
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Figure 3. Close-up photograph of oblique side view of curved ridge resting on table that

was constructed for studying propagation effects of topographic.! ridges.
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Figure 5. Photograph of spark jumping across gap between electrodes held in plexiglas

frame.
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Figure 8. Typical oscilloscope trace on the monitor of an IBM PC. Trace cortesponds to
acoustic pressure transient of a spark discharge. Positive pressure is downward

on the screen; the two large positive peaks correspond to direct wave and wave

l reflected from the table.
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Data Acquisition and Analysis System

The data acquisition system is composed of microphones, amplifiers, an analog-to-digital
converter, and an IBM personal computer (Fig. 9 and Fig. 10). The system is capable of gath-
ering data at a rate of 500 kHz which can subsequently be processed by the PC. The acoustics
laboratory VAX computer is in an adjoining room and is available for more extensive computa-
tions and storage. The amplifiers were designed and built expressly for this project; other system
components were purchased. In addition, an apparatus is being designed and constructed to
quickly and precisely position the microphones at arbitrary points in the field.

Bruel & Kjaer quarter-inch condenser microphones are used for making the necessary pre-
cision sound pressure measurements. The microphone sensitivity (ratio of induced open circuit
voltage to external acoustic pressure) for these microphones is certified by the manufacturer be
be virtually constant for frequencies up to 70 kHz, so we expect them to yield a relatively undis-
torted response to pulses predominantly composed of frequencies between 10 and 30 kHz. The
microphones are linear in their response over a dynamic range of up to 180 dB with a sensitivity of
0.1 mV/ubar. A Bruel & Kjaer pre-amplifier and power supply are also part of the rmicrophone
assembly. The pre-amplifier has a very high inmput impedance and low parallel capacitance
which are needed to maintain the flat frequency response. This high impedance is provided by
a vacuum tube cathode follower at the input stage. The B & K 2801 power supply is used to
provide voltage to the microphone and pre-amplifier.

For the circumstances of the contemplated experiments the microphone assemblage open
circuit voltage is typically of the order of 50 mV. Because such voltages are two low to exploit the
full dynamic range of the analog-to-digital conversion instrumentation, two low current amplifiers
were constructed to magnify the voltage signal. Each amplifier contains a Motorola LF351N
FET operational amplifier microchip, which hzs a high voltage slew rate (13 V/us) and a flat
response over a wide range of frequencies. The design of the amplifier contains a non-inverting
voltage amplifying circuit (Fig. 11). A variable gain is achieve by an array of feedback resistors
controlled by an external multi-position switch. Frequency independent gains from unity up to
100 are possible. The amplifier is powered by two parallel series of 9 volt batteries. The transient
voltage level is guaranteed by parallel 0.1 uF capacitors. The amplifier is enclosed by a aluminum
box which is grounded to the batteries. The box serves a8 a shield against electromagnetic noise

generated by the spark generator. Shielding considerations also motivated the use of a self-
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contained power supply.

The amplified analog signal is converted to digital form by an integrated hardware and
software system produced by RC Electronics Inc. and called ?Computerscope ISC-16". This
system consists of a 16 channel A/D board which is inserted into a slot within an IBM PC, an
external instrument interface, and the scope driver software. The system is capable of sampling
data at a maximum aggregate rate of 0.5 MHz over as many as 16 channels. This state-of-the-art
RC system is relatively new to the market and differs from other commercially available data
interfaces for personal computers in its high data accession rate, which is adequate for acoustical
experiments at frequencies in the 10’s of kilohertzes range; the 0.5 MHz sampling rate provides
50 data points per cycle for a 10 kHz signal. The system effectively transforms a personal
computer into a low cost transient recorder or digital storage oscilloscope and should allow a
greater flexibility in the digital processing of acoustical data. The system allows an input voltage
signal with a peak tc peak range of 20 volts centered at zero to be resolved to 12 bit accuracy,
or equivalently to 1 part in 4000. The incoming transient signal is stored within a 64 kilobye
memory buffer. Various modes of triggering are possible. In particular, an external channel is
provided exclusively for triggering without occupying any memory space, although it is possible
to trigger off of another channel or off of threshold levels of slope or amplitude. The Scope Driver
software allows for flexible manipulation and display of the captured data. The display is similar
to that of an oscilloscope. We anticipate that all of the necessary spectrum analysis and transfer
function calculations can be carried out, subsequent to data capture, by the host IBM PC, but
the acoustic group’s VAX in the adjoining room is available for computations too involved or

lengthy for the personal computer.
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Figure 9. Photograph of part of the experimental equipment showing microphone power
supplies, the amplifiers whose design and construction are described in the text,
and the monitor of the IBM personal computer. A typical transient acoustic

pressure trace from a single microphone can be seen on the n' -+  .r screen.
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Figure 10. Photograph of the IBM personal computer with peripheral equipment which
allows it to function as a digital storage oscilloscope or transient recorder.
Corner of table facility of model topographical ridge can be seen at the far left.
Cables from microphone assemblages lead to RC Electronics instrumentation
interface, which in turn is connected to 16 channel high speed 12 bit A/D

plug-in within the personal computer.
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Figure 11. Circuit design for noninverting amplifiers that were constriuc' ¢ ., intecface

between microphones and A/D conversion instrumentation.
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ANALYTICAL STUDIES

Successful application of theoretical acoustics to outdoor propagation over undulating ter-
rain is in principle possible, but presents challenges. The authors’ considerations are presently
limited to when the terrain is slowly varying over distances comparable to a wavelength; many
realistic outdoor situations should be well-modelled without violation of such a restriction. The
overall hope is that asymptotic and matching techniques can enable one to splice together math-
ematical models for intricate circumstances (such as multiple undulations) from those for simpler

circumstances.

Diffraction by a single ridge of finite impedance

In the research program currently in progress, the understanding of diffraction by a single
smooth ridge (Fig. 12) is a key element. Diffraction by a curved surface has a venerable and
extensive literature, although much of it is specifically written for electromagnetic wave applica-
tions. There is need for a readily assimilable treatment of acoustic diffraction by curved surfaces
of finite impedance that is easily adaptable to servitude as a building block for a broader theory for
propagation over irregular terrain. One desires simple analytical models or computational algo-
rithms that are applicable on the surface and throughout the transition between illumination and
shadow, not just deep within the shadow zone. Consequently, curved surface diffraction has been
exainined afresh, using the modern conceptual framework of matched asymptotic expansions.

The theoretical work on the project to date has been especially influenced by the work of V. A.
Fock 1], who wrote a number of important papers on electromagnetic wave diffraction during the
1940’s and 1950’s that were later translated and republished together in a single volume. However,

our method of derivation differs in some major details from that of Fock, and it is believed that

the fresh perspective will facilitate the extension to broader classes of circumstances.
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Figure 12. Source and listener on opposite sides of a topographical ridge
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Creeping wave solution

Relatively simple results have been derived for the case when the source and listener are on
opposite sides of a topographical ridge (Fig. 12) and the listener is deep into the shadow zone.
With some mincr distinctions, such results have been previously stated within an acoustical
context by Hayek, Lawther, Kendig, and Simowitz (2], who adapt a theory developed by Keller
[3] to diffraction by a cylinder-topped wedge of finite impedance. Our results, stated here for
brevity without a derivation, extend those of Hayek et al. to cases where the radius of curvature
and the surface impedance may vary with position. For simplicity, we consider source and listener
to be on vpposite sides f the ridge; the extension to the oblique incidence case can be worked

out without difficulty using relatively simple concepts [4].

The shortest path covrecting source and listener has three segments, with lengths L,, L,,
and L;. The segment of ler gth L, is straight and terminates at the ridge at point a, where the
segment is tangent to the cucved surface. Similarly, the segment of length L, proceeds from a
tangent point b to the listener posivion. The segment of length L, (g for ‘ground’) proceeds along
the curved top of the ridge from a to b. The surface’s local radius R(s) of curvature and specific
impedance Zs (s) are functions of distance s alorg the surface. Here s = 0 corresponds to point
a.

The limiting case for which the simplest results most ideally apply is that where kL, kL,,
and kL, are all substantially larger than unity; here k is the wavenumber 2nf/c of the sound
radiated by the source (strength S). It is also implicitly assumed that the listener is well below
the plane tangent to the ridge’s surface at point a, which separates the illuminated and shadowed
regions. For this limiting case, the sound reaching the listener can be regarded as carried by a
succession of ‘creeping waves’ that travel along the surface from point a and which shed rays into
the shadow zone, each such ray proceeding along a straight line that i tangent to the surface;

segment L; is a path of such a shedded ray. In the extreme limiting case of the sort considered

above, the first creeping wave term dominates the sum and the complex amplitude of the acoustic

pressure can be written

ScikL (R.,Rb

1/6
— 1/2 41/2% ¢, - N,
p_Ll/2L‘/2L‘/’ A ) A/ A ee (1)
]

Here L = L, + L; + L, is total path length; R, and R, are radii of curvature at points a and b. The
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ground-induced phase shift ¢, and the ground-induced attenuation N, in nepers are respectively

L,
b= /124 [ (k2R 21y (q)do (2)

N, = /L'(k/i’R’)‘/“n(q) ds (3)

Here rz and r; are real and imaginary parts of a quantity r that is the root having smallest

imaginary part of the equation (prime denoting derivative)
w;(a) - qui(a) =0 (4)

where w, (a) is a Fock functicn [1,5], given alternatively by
w; (a) = /4 2rt/2 Aj(ae'"/?) (5)
in Jerms of the Airy function. The root a depends on a normalized surface admittance parameter

¢ =1(kR/2)"*pc/Zs (6)

whiich varies with distance s if R or Zs vary with s.

The remaining quantities A, and A, that enter into Eq. (1) are values at a and b, respectively,

of a quantity A(q), defined such that
A(q) = 9-5/12,.~1/4 [Te—-’x/s _ q2e-~1vr/3] -1/2 [Ai(ae‘"""’)}—l (7)

'f the surface is rigid, then ¢ = 0 and

T =1.0188¢'"/% = 05094 + i0.8823 (8a)
Ai(-re™""/%) = 0.5357 (8b)
A(0) = 0.7817 (8¢)

For small but nonzero q, an appropria.e approximation is
r = 1.0188¢'"/% 4 ¢*"/% 4/1 0188 (9)

The correction affects the exponent factor N, and consequently may be of importance; in contrast,

little harm is done if A(q) is approximated by A(0). A typical value of q can be estimated by




|
I
I
|

w—

¢

a4 ‘fﬁma{

Wsu’

NAG-1-566 Semiannual Report, page 25

taking R = 3m and f = 500Hz. A survey of ground impedance data is given by Attenborough
(6], who fits semi-empirical formulas to such data. Using his expression for the impedances of
grassland reported by Embleton, Piercy, and Olson, one obtains 7.19 + 18.19 for Zs at 500 Hz.

Such values then lead to an estimate of
g = 0.22¢%72 (10)

Thus, one can regard ¢ as small, but not necessarily negligibly small.

Higher order terms in the creeping wave series have the same form as Eq. (1), the only
distinction being that the calculations must use higher roots r, of the transcendental equation
(5), the roots being ordered according to the magnitude of their imaginary parts. The sum

beccmes slowly convergent, however, when L, becomes sufficiently small that many of the N,

are close to zero.



1

~ *“
I
1 :
|
1
[ 1
r [NCIDENT A
B PLANE Wave
—_:——: ILLUMINATED
_——_—__: REFLECTED Rec1oN
]
I
.': ]
| |
e 9. Plane wavefcident st curved top ofsidge ’
L
L -




Poe B .

L e, G s e
oY :':_»;., LN RN e & AR

NAG-1-566 Semiannual Report, page 27
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Figure 14. Direct, incident, and reflected rays at a curved surface.
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Geometrical acoustics outer aolution

At the top of the ridge and in the region of tramsition from illuminaiion to shadow, a

g !
g |
' |
]

more nearly appropriate solution can be developed using the method of matched asymptotic

expansions. A prototype two-dimensional problem (Fig. 13) is when a plane wave of constant

|
v

frequency with complex pressure amplitude P, exp(i1xz) reflects and diffracts at a locally reacting

(impedance Zs) curved surface whose radius of curvature R is not necessarily constant, but is

[ N

nevertheless everywhere large compared with 1/k. One argues with confidence that the Seld
outside this surface for £ < 0 can be satisfactorily predicted by geometrical acoustics [4]; *his

technique should also apply for sufficiently large positive y when z > 0. This general region

I
p e

18 termed the outer region, because in the terminology of matched asymptotic expansions, the

e i geometrical acoustics solution for this region, when extrapolated down to the vicinity of the top

of the surface (where y ~ 0 and z « R), furnishes the outer boundary condition for an inner
‘ § solution that applies near the top of the barrier surface.

- The field in this outer region is a superposition of incident and reflected waves, such that
. p= Pe*s 4 P,[A(0)/A(8)]} *Re'k = g1kt - (11)

4 where R is the reflection coefficient and A(€) denotes ray tube area after propagation a distance
5 ¢ from the reflection point. The reflection point (z,,y,), the local angle of incidence g;, the local

; curvature radius R, and the reflected ray path length £ can all be determined for g.ven listener
coordinates (z,y) using the law of mirrors and the the mathematical description of the surface
(Fig. 14).

j Analysis of the so-derived geometrical acoustics solution for Jhe limiting case of points in the

vicinity of the curved surfzce’s top yields

p%P.e"”{l " [C_?i]l/?[q - %x-— %R ] v

AN Lau-Fiad |
3Q Q-ir+ iRl

where

: Q = ((4/9)2% + (2/3)Ry|*/? (13a)

¥ = (2k/RDQ® - (8/27)2° - (2/3)Ray] (128)

with R being the radius of curvature of the surface at the top (z =0, y = 0).

' O . e - Le i ik rumbite - OO 7 e ¢
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Solution near top of ridge

Scaling parameters L, and L,, equal to R/(kR)'/® and R/(kR)*/3, can be introduced such
that, when the pe™*** yielded by Eq. (12) above is expressed in terms of z/L, and y/L,, the
resulting expression is independent of k and R. Since this furnishes the outer boundary condition
on the inner solution, one anticipates that the inner sclution should have comparable features.

To develop the inner solution, the top of the surface is approximated by a parabola y =

-z?/2R, and the Helmholtz equation is expressed in parabolic cylinder coordinates u and v, such

that

r=u(l +[v/R]) (14a)
y=v(l + [v/2R]) - 4*/(2R) (14b)

so v = 0 corresponds to the diffracting surface. One then sets p equal to P, exp(iku) times
a function F of u/L, and v/L,. The impedance boundary condition is ulso expressed in a
nondimensional form using these variables. When the derivatives of F with respect to its nondi-
mensionalized arguments are all regarded as being of the order of unity the terms in the partial
differential equation satisfied by F become ordered by powers of (kR)~!/3.

Substantial agreement with Fock’s notation is achievad if one sets

«=(2/kR)'?, €=u/(2'°L,), n=2'v/L, ()
p=Pe* e Glg,n,q) (16)

where
¢ =t(kR/2)'pc/ 2. (17)

is an appropriately scaled and nondimensionalized surface admittance. (Expected numerical
values of q are discussed further below.) To lowest order in the expansion parameter €, the

function G satisfies the parabolic equation
10G/G€ + 9%G/dn® + nG =0 (18)

with the boundary condition

0G/3n +qG =0atn =0 (19)
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The outer boundary condition (here imprecisely stated,for brevity) is that Eq. (16) match Eq. (12)
at large positive y cr large negative z.
The general solution of the above posed boundary value problem can be developed by Fourier

transform and complex variable techniques, with the result

S =t [~ [ufa-n)- T R CR)

where v(¢) and w, (¢) (as well as the functions u(¢) and w;(s) defined further below) are Fock
functions (5] and simply related to Airy functions of complex argument. (The precise definition
of these functions is given further below.) The integral solution (20) is trivially related to what

is termed [4,5] Fock’s ferm of the van der Pol-Bremmer diffraction formula.
Field on top surface of ridge

One simple lirniting case of interest i8 the acoustic pressure on the surface of the ridge, which

1s
p=Pe** e’ 3G(¢0,q) | (21)
and corresponds to n = 0. From Eq. (20) one obtains
G ’0, - x—l/? /°° rwix(a)"(a) - v’(a)wl (a)1eia( dee 21
(£:0.9) o' (@) i) (2!

However, the numerator in the bracketed term in the integrand here is a wronskian of two solutions
of the Airy differential equation, 3o it must be a constant. One finds, after pluggiig in the leading

asymptotic expression for large positive z, that the constant 13 simply 1, so one has
wiv - wy =] (22)

and, consequenuly,
eur(

0o

G(€,0,q) = N"""’/m E{(ﬂg)*——ﬁ(‘a“) da (23)
Here ¢ is the normalized surface admittance defined in Eq. (17) and ¢ is (/' RMNAkR2)'3 with
u being interpreted as being approximately the distance s along the surface from the top of the
ridge down the chaded side. A more precise identification is that s is u - (/6 R?) such that
the sum of the exponents in tle factors «'* and e“””, whizh appear in Eq. (21), is iks. Thus

one would rewrite that equation as

p=Pe* G(g0,q) (24)

[ 4
Sibonn G g 3
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A form of Eq. (23) that is more appropriate for computation at small to moderate values
of £ cas be developed by first deforming the integration contour from the real axis to a broken
contour that goes from ocoe'?"/* to the origin and then to oo along the positive real axis. If one

uses § to denote distance from the origin along the first leg of this contour and recognizes that

wl(ﬂe‘z”la) = e‘”/aw?(ﬂ) (25a)

W (8e3%1%) = &=/ (6) (258)

one can derive
e=P8/2,-8¢3"%)2

oo saé

dﬂ+x"/’/ — _ _da (26)

wi(a) - qw. ()

— -1/ °°
G(£,0,9) =~ 2/; wy(8) — e3%/3quw, (8)

The two integrals that appear here are highly convergent because at large positive real values of

their a.guments both w, and w, approach
wy(2) = wa(z) — 2z~ /4l3/35°7 (27)

Thus one now has a version amenable to numerical computation.
The apparent insertion loss 20log(1/|G|) calculated using the above formula is plotted versus
§in Fig. 15. For the rigid barrier case, ¢ = 0, the geometrical acoustics solution predicts a pressure

doubling at the surface, so the insertion loss must approach —6dB at large negative €.

y
- aedh o Y il
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Figure 15. Apparent insertion loss along the ground surface of a topogray .
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Transition between illumination and shadow

coh

N A discussion of how the inner solution in Eqs. (16) and (20) above matches a further geomet-
M I rical acoustics solution in the shadow zone is deferred to future reports. Deep in the shadow zone
‘ N the appropriate version of the integral is a sum over residues from poles in the first quadrant,
a i each such term giving rise to a creeping wave. This creeping wave solution is essentially the same
as discussed earlier in the present report.
v ! The creeping wave series is not convergent at the boundary between iliumination and shadow,
) f : where £ = n'/2. An appropriate and suggestive form of the function G near this transition line
§ when 7 is somewhat larger than uniuy is
2

G = ¢ 3gtn _ i(3/3)0)? [H(X)c-‘("/g)x, + l_;:.AD(X)]

I
s i

i

L dn3 oo ’ et L \
_c 127¢° / e"e-(:v/a)((_"ln)< v (8) qge 3 0(8/)> ds
o

xi/in1/e wi(s) — qe' 5wy (s
(R INE 3
- . _gte in? /t"““"m)( tlz’(s) - qu(s) )ds (28)
E xiiintin J, wi(s) - qu, (s)
- 1 where X = (2/7)1/3nt/4(€~n'/) and Ap (X) is the diffraction integral (4], which is simply related

J

'i' to Fresnel integrals and which is invariably present in asymptotic expressions for diffraction by

sharp edges. Additional restrictions produce significant analytical simplification.

Airy and Fock functions of complex argument

As described in the preceding sections, the theory of diffraction by curved surfaces of finite
- acoustic impedance involves integrals (contour integrals in general) with integrands that can be
. expressed in terms of Airy and Fock functions of complex argument. It would therefore seem

imperative that one have algorithms capable of calculating such functions to high precision for

& :-::,i

arbitrary complex argument. The algorithms we found reported in the literature were developed

for functions of real argument only, so some effort was devoted to developing new aigorithms.

The subroutines described in the present report are in a version (IBM Professional Fortran or,

briefly, Profort) of FORTRAN 77 that can be used on the IBM PC, but it is intended that they

be adapted in the near future to VAX Fortran. To achieve the desired accuracy with Profort

(roughly ten significant figures), it was necessary to use double precision. IBM Professinnal

|
I
|
]
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Fortran (Profort) has complex number capabilities, but not in double precision, so the present
version does all complex arithmetic explicitly.

In principle, the Airy function of complex argument can always be calculated from the power

series form

Ai(z) = ¢, f(2) — ea9(2) (29)

where the leading coefficients are
¢y = 377/3/T(2/3) = 0.355028053887817 ... (30a)
c2 = 37'/3/T(1/3) = 0.258819403792807 .. . (300)

and the intrinsic power series are

1 1 1
=14 — 3 6
fz) =1+ 352 Te53.2° T986.53.2°

S (31a)

(z)—z+—-}—z‘+ ! 27 + ! z
e =2t T3 T T 643 10-9-7-6-4-3

D (31b)

In practice, however, this representation is useful for calculations only for moderately small
arguments z. The program presented here uses it only if |z| < 3.

For larger arguments, one is initially tempted to use an asymptotic series representation for
the Airy function. However, such a series is not convergent absolutely. Although the magnitudes
of successive terms may initially decrease, they eventually reach a minimum and then increase
without limit. If one keeps only those terms up to and including the term of minimum magnitude,
then this is as good as one can do with an asymptotic series. The error is of the order of magnitude
of the next neglected term. Some trial calculaticns suggested this would not be good enough
(given a desired precision of at least 1 part in 10°) when !z| was of the order of 3. Conszquently.

an alternate procedure was used.

To describe this alternate procedure, one first notes that the Airy function can alternately

be described by the contour integral

. 1 ; :
Ai(z) = o f etiet 3 g (32)

The contour C,; can be initially thought of as proceding in the complex s-plane along the broken

line which goes from oce'*"/® to the origin and then to cce'™/®. [f the argument variable z

lies, however, in the right 2/3-rd’s of the complex z-plane, then the integration path C,, can
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be deformed to one that passes through a saddle point, going to this saddle point up a path of
steepest descents and then away from this saddle point down a path of steepest descents. (By
the statement that the argument variable z lies in the right 2/3-rd’s of the complex plane, one
means that the phase of z lies between —2x/3 and 2x/3. Because of the identity in Eq; (47a),
given further below, this turns out to be no real restriction.)

The applicable saddle point, obtained by setting the derivative of the exponent to zero, is at
s = iz'/?. To change the contour to the path of steepest descents, one sets 8 = 1z!/2 +y such that
the exponent in the integrand can be written —(2/3)23/2 — £2 where £3 = z1/242 — (i/3)u®. The
saddle point now corresponds to u = 0 or, equivalently, to £ = 0. The path of ciezpest descents
is a path along which £ is real; the definition of £ can be refined such that the mapping of C,; to
the £-plane can be deformed to a path that goes from —oo to oo along the real axis. The integral
expression for the Airy function can accordingly be rewritten

Ai(z) = él;e—(z/sma/z:- /:w Eﬂ%ﬁ et de (33)

where £ and u are related by

2 =274 — (i/3)u® (34)

The latter is a cubic equation for u as a function of ¢; the desired root must be zero when
£ 1s zero; moreover, u(¢) must be a continuous function of £. The two possibilities correspond
to u(€) for small £ being either +¢/2z/4 or —¢/2'/*. The requirement that a contour from —oo
to oo along the real £ axis be an admissible deformation of the mapping of C,; into the £-plane

indicates that the former choice is correct. Thus one can write

Kt ,
“= 7 (35)

where K (£) is such that A (0) = 1, and is a solution of the cubic equation

1—K7_i£~[£_3

3 23/4 (36)

The appropriate solution of the above cubic equation can be worked out with some effort,

the result being

122/4

— '”‘"E'_'L'"l + csw/aA + e--nv/JA——l} (37)
where
3\, 3Y/2¢y3/3 .
A= [(l + 22572-) - E‘z‘;/;‘] (JS)
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For small values of £2-3/4 it is appropriate to replace the latter by its power series, which to

fourth order is

Sty Gume) Sum) S S

*
2 2, 5, 16,
=1-2g4 = —8 - — 39
A=1 3°t g% + 5 YE (39)
*T where here we abbreviate s = (342 /2)ez-3/4.
By Since the integral of e=¢ over £ from —oo to oo js x'/2, one can derive from the above
iy expressions
. - ~(2/3)s%/? 1 [
-3 4 . _ ¢ 34y -
= Aie) = S L+ o /_m Fa(£,2/4)e7 d] (40)
- where
: : K3t _,
v H 3 _ N
" - Fau(6,2°*) = (K - Vo) 1 (41)
.
4 } or,equivalently, with the substitution of Eq. (37),

: Fu (0 5304y = —2082734 — 1 - &37/3 42 _ o=22/p¢/3 42 42)
*‘/ i M( y 2 7 = c{?ﬂ'/3A2 + e—"2,r/3A—2 + 1 (
'.I '
T - with
5
: ' 32 12 32044/
+2 __ /
» A - [(1 + 423/2) 223/‘] (43)

The leading term in Eq. (40) (i.e., that which results when Fy, is formally set to zero) is the first

term in the asymptotic expression for Ai(z2).

What is achieved with the introduction of Eq. (40) is that the integrand is not oscillatory,

é‘-’\m -
»

so the integral is highly convergent. The-integral is done nurnerically using a Hermite integration

scheme (7], so that

oo 10
- / Fae (8,2°/4)de =3 " e™ " [Py (€, 27/%) + Fu(-6,23/4)] (44)
- e =1
" The sampling points ¢, and weights W, are tabulated in the listing of the subroutine asmairy.
I
" A similar procedure has been derived for computation of the derivative of the Airy function,
! z‘/" 3/2 1 ® 2

o — -(2/3)s 3/4y -2
} Al'(z) = YL [1 + 7 /_m Gu(€,2°7)e " de (45)

where

2:¢ e"/d 4 4 e/ 41
34y — 1 _ —
GM(Z)Z ) - 1 zs;“ 1 + c.‘?w/aA'Z + C—IZR/SA-‘Z (46)

.
e s ..,mwaMmHMJ p
4 A
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As mentioned previously, these above integral expressions, Egs. (40) and (46), are valid
only if the phase of z lies between ~27/3 and 2x/3. However, one can use these expressions in

conjunction with the Airy function identities
Ai(z) = /3 Ai(ze™"37/%) e /3 Ai(ze~ 47 /3) (47a)

Ai'(z) = e "B AL (ze727/3) + e /3 Al (2e747/3) (47b)

Note that, if the phase of z is between 27 /3 and 4 /3, then the arguments ze~*27/% and ze—1i4rx /3,
which appear on in the terms on the right sides of the above two equations, have phases between
~2x/3 and 2x/3; thus each such term can be calculated using Eqs. (40) and (46).

For the computation of the Fock functions and their derivatives, we use the relations

v(z) = x*/2Ai(z) (48a)
wy(z) = &7/%2x' /2 Ai(2¢'27/2) (480)
wy(z) = e /%2x1 /3 Aj(ze7 V2 /3) (48¢)
such that
v'(z) = x/2Ai'(2) (49a)
wi(z) = e*7/02x1 /2 AY (2627 /3) (490)
wh(z) = e“"’”/°2x‘/2Ai'(ze"2""3) (49¢)

The core algorithms are consequently those that evaluate Ai(z) and Ai'(z) for arbitrary complex
argument.

The algorithms given here have been checked against Fock’s tables (which appear on pages
393-412 of kis Electromagnetic Propagation and Diffraction Problems [1]). Fock tabulates u(z).
w'(z), v(z), and v'(z) for real z between —9 and +9 to four significant figures. The function v(z)

is just x'/?Ai(z), while

u(z) = %(wlfz) + wa{2)) (50)

such that
w(2) = u(z) + iv(z) (51a)
w(2) = u(z) ~ 1v(2) (51b)
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If z is real, then both u(z) and v(z) are real, u(z) and v(z) are the real and imaginary parts of
w, (z), or, equivalently, the real and negative imaginary parts of w;(z). Our program’s results
(believed to be accurate to 10 significant figures), when rounded off to 4 figures, agree identically
with Fock’s results. For exampie, Fock gives u'(9) = 113.10x 10%, and we find it to be 113.095831x
10%.

PAPERS AND PUBLICATIONS

The following paper will be presented at the forthconﬁﬂg meeting of the Acoustical Society
of America in Cleveland, Ohio in May 1986.

Curved surface diffraction theory derived and extended using the method of
matched asymptotic expansions. Allan D. Pierce, Geoffrey L. Main, and James A.
Kearns, School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Geor-
gia 30332, — Consideration is given to the top of a wide barrier with variable radius of
curvature R. The surface has finite acoustic surface impedance Z. Because kR is assumed
large, the illuminated region can be approximated by geometric acoustics, such that plane
wave reflection rules apply locally. The intricate interference pattern between incident and
reflected ray fields assumes a tractable analytical form near the barrier top, which is sub-
sequently used in a MAE solution of the overall diffraction problem. Unambiguous length
scales result for radial and tangential distances along the barrier top. The inner solution is
developed by expressing the wave equation in terms of such scales, subsequently identify-
ing the expansion parameter as (kR)~!/3. A parabolic equation emerges, with a boundary
condition involving a scaled impedance (Z/pc)(kR)™!/3; the outer bourdary condition re-
sults from matching to the geometric acoustics solution. Outer expansion of the solution of
the parabolic equation into the shadow zone yields an inner boundary condition on the ray
theory solution for the diffracted wave. Results are similar to those previouslv derived for
electromagnetic diffraction probiems by V. A. Fock, but the MAE interpretation facilitates
an extension tc problems of multiple barriers. (Work supported by NASA-Langley Research
Center.)
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The following paper will be presented at the forthcoming International Congress of Acoustics

in Toronto in July 1986, and will appear in the proceedings of that congress.

Sound propagation over large smooth ridges in ground topography. Allan D.
Pierce, Geoffrey L. Main, James A. Kearns, Daniel R. Benator, and James R. Parish, Jr.
School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332.
— A theory similar to those developed by Fock and others during the 1940’s and 1950’s for
electromagnetic wave diffraction by curved surfaces applies to acoustic propagation at low
angles with the ground over an intervening ridge of finite impedance. The creeping wave
series is not used at the top of the ridge or for the transition between illumination and
shadow; the analysis reduces instead to numerical and approximate integration of Fock’s
form of the van der Pol-Bremmer diffraction formula. Laboratory scale experiments are in

progress to test and guide the analytical developments.

The following paper will be presented at the forthcoming 1986 International Conference on

Ncise Control Engineering (Inter-Noise 86) in Cambridge, Massachusetts in July 1986.

Sound propagation over curved barriers. Allan D. Pierce, Geoffrey L. Main, James A.
Kearns, and H.-A. Hsieh, School of Mechanical Engineering, Georgia Institute of Technology,
Atlanta, Georgia 30332. — A general discussion is given of wide barriers with curved tops;
examples of such are naturally occurring topographical ridges and earth berms with rounded
tops. The analytical developments reviewed are for circumstances when the local radius of
curvature R of the barrier is continuous «long the surface and large compared to a wavelength.
If the source and listener are at large distances from the barrier top and the listener is deep
within the shadow zone, then the creeping wave series previously introduced into noise control
applications by Hayek and others gives simple and accurate predictions. The present paper
extends this raodel to instances where the surface impedance varies with position along the
surface. The latter part of the paper introduces a matched asymptotic expansion theory
that contains concepts and results analogous to those developed by V. A. Fock. Explicit
numerical results are given for the acoustic pressure on the surface of the barrier near the
point where acoustic shadowing begins. The extended theory also yields simple-results for

the farfield transition between illumination and shadow.
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APPENDIX — COMPUTER PROGRAMS

Listing of computer programs for Airy and Fock functions

The input and output subroutines given here are temporary and intended only for checking
out the algorithms with a desk-top monitor. The actual program per sé consists of subroutine Airy
and all those subroutines that it calls. Subroutjne Fsck uses Airy to compute the Fock functions.
For the numerical evaluation of integrals that describe the diffraction by curved surfaces of finite

impedance, programs will be written that call these two subroutines.

program Airychek

Allan D. Pierce
12/25/85

double precision X,y,airyr airyi,dairyr,dairyi,
+ ve,vidvr,dvi,wlr,wlidwir,dwli,
+ w2r,w2i,dw2r,dw2i,r,pi,angle

call input(r,angle)

pi = 3.1415926535897932D0

x = r*dcos(angle*pi/130D0)

y = r*dsin(angle*pi/180D0)

call Airy(x,y,airyr,airyi,dairyr,dairyi)

call Fock(x,y,vr,vi,dvr,dvi,wlr,wIi,dwlr,dwli,

+ w2r,w2i,dw2r,dw2i)
call print Air (x,y,airyr,a.iryi,dairyr,dairyi,
+ vr,vi,dvr,dvi,wlr,‘wli,dwlr,dwli,
+ w2r,w2i,dw2r,dw2i)
stcp
end

subroutine input(r,angle)

double precision r,angle

write (*,*) 'Program Airychek’
write (*,*) ’Version of December 1985’
write (**)
write (*%)
write (*,*) 'What is magnitude of argument? ’
read (**)

)

write (*,*) 'What is phase angle in degrees?

—~4 .
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read (*,*) angle

return
end

subroutine Fock(x,y,vr,vidvr,dvi,wlir,wli,dwlr,dwli,
+ w2r,w2i,dw2r,dw2i)

double precision  x,y,airyr,airyi,dairyr,dairyi,

+ vr,vi,dvr,dviwlr,wlidwlr,dwli,
+ w2r,w2i,dw2r,dw2i,pi,ar,ai,cr,ci,
+ er,ei,x1,y1,x2,y2 sr sitr,ti

pi = 3.1415926535897932D0

ar = dsqrt(pi)

ai = 0D0

call Awry(x,y,airyr aiyi,dairyr,dairyi)

call cprod(ar,ai,airyr,airyi,vr,vi)

call cprod(ar,ai,dairyr dairyi,dvr,dvi)

cr = deos/pi/1.5D0)

ci = dsin(pi/1.5D0)

call cprod(x,y,cr,cixl,yl)

er = dcos(pi/6DO0)

ei = dsin(pi/6DO)

ar = 2D0*ar

call Airy(x1,yl,airyr airyi,dairyr,dairyi)

call cprod(ar,aier,ei,sr,si)

call cprod(sr,siairyr,airyi,wlr,wli)

call cprod(sr,si,cr,ci,tr,ti)

call cprod(tr,ti,dairyr,dairyidwlr,dwli)

call cprod(x,y,cr,-ci,x2,y2)

call Airy(x2,y2airyr,airyi,dairyr,dairyi)

call cprod(sr,-si,airyr,airyi,w2r,w2i)

call cprod(tr,-ti,dairyr,dairyi,dw2r,dw?2i)

return
end

subroutine Airy(x,yairyr airyi,dairyr,dairyi)

double precision x,y,airyr airyi ,dairyr dairyi,
+ pi,cl,c2 fork,r
integer N

data  pi /3.1415926535897932D0/,
+ cl / 0.355028053887817D0/,




+ c2 / 0.258819403792807D0/,
f! + fork / 3.0DO/,
. + N / 20/

r = dsqrt(x**2+y**2)

! if (r .le. fork)

+ then

call Asryl (x,y,airyr,airyi,dairyr dairyi,

{ + N,c1,c2)

else if (r .ge. fork)
+ then
end if

return
end

subroutine Asryl (x,y,airyr,airyi,dairyr,dairyi,
+ N,c1,c2)

double precision x,y,airyr,airyi,dairyr dairyi,
+ br,bi,cr,ci,zetr,zetifr fi,
+ gr,gi,dfr,dfi,dgr dgi,cl,c2

i integer N

br = x
bl =y
call ¢prod(x,y,br,bi,crci)
call cprod(x,y,cr.cizetr,zeti)
call serasry(zetr,zeti,N fr fi,gr gi,
+ dfr,dfi,dgr,dgi)
call cprod(x,y,gr,gi,br,bi)
? airyr = cl*fr - c2*br
ot airyl = c1*fi - ¢2*bi
call cprod(cr,ci,dfr,df,br,bi)
§ dairyr = 0.5D0*c1*br - c2*dgr
‘ dairyi = 0.5D0*c1*bi - c2*dg:

return
end
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call Adry2 (x,y,airyr,airyi,dairyr dairyi,pi)

subroutine Asry2 (x,y,airyr,airyi dairyr dairyi,pi)
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double precision x,y,airyr,airyi,dairyr,dairyi,
pi,r,phi,ar,ai,incr,inci,phase,
ara,aia,dra,dia,arb,aib,drb,dib,
phia,phib,phic,arc,aic,drc,dic,
uar,uai,cbr,ubi,ur,uici

+ 4+ +

r = dsqrt(x**2 + y**2)
phi = phase(x,y,pi)
if (phi .gt. (4D0/3DO0)*pi - 1D-14) phi = phi - 2D0*pi
if (phi .1t. pi/1.5D0 - 1D-14 .and.
+ phi .gt. - pi/1.5D0 + 1D-14)
+ then
call Airy2a (r,phi,airyr,airyi,dairyr,
+ dairyi,pi)
else if (phi .gt. pi/1.5D0 + 1D-14 .or.
+ phi .lt. -pi/1.5D0 - 1D-14)
+ then
phia = phi - (phi/dabs(phi))*pi/1.5D0
call Airy2a (r,phia,ara,aia,dra,dia,pi)
phib = phia - (phi/dabs(phi))*pi/1.5D0
call Airy2a (r,phib,arb,aib,drb,dib,pi)
ar = 0.5D0
ai = (phi/dabs(phi))*dsqrt(3D0)*0.5D0
call cprod(ar,ai,ara,nia,airyr,airyi)
call cprod(ar,-aidra,dia,dairyr,dairyi)
call cprod(ar,-ai,arb,aib,incr,inci)
airyr = airyr + incr
airyi = airyi + iaci
1 call cprod(ar,ai,drb,dib,incr,inci)
4 dairyr = dairyr + incr
dairyi = dairyi + inci

- else

phia = pi/1.5D0 - 1D-15

call Airy2a (r,phiaara,aia,dra,dia,pi)
phib = - pi/1.5D0 + 1D-15

call Airy2a (r,phib,arb,aib,drb,dib,pi)
phic = 0DO

call Airy2a (r,phic,arc,aic,dre,dic,pi)
ar = dsqrt(3D0)*0.5D0

al = 0.5D0

call cprod(ar,ai,ara,aia,uar,uai)

call cprod(ar,-ai,arb,aib,ubr,ubi)

ur = (uar + ubr),/2D0

ui = (phi/ dabs(phi))*arc/2D0

ci = (phi/ dabs(phi))*ai

call ~prod(ar,-ci,ur,ui,airyr,airyi)
call cprod(ar,-aidra,dia,uar,uai)
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call cprod(ar,ai,drb,dib,ubr,ubi)
ur = (uar + ubr)/2D0

ui = - (phi/ dabs(phi))*drc/2D0
call cprod(ar,ci,vr,ui,dairyr,daityi)

end
return
end

subroutine Airy2a (r,phi,airyr,airyi,dairyr,dairyi,pi)

double precision r,phi,airyr,airyi,da.iryr,dairyi,pi,

+ u,el,e2,aar aicr,ci,
+ b,br,bifr fi,dfr dfi

“+

u = r*dsgrt{r)

el = u*dcos(1.5*phi)/1.5D0

e2 = u*dsin(1.5*phi)/1.5D0

a = dezp(-el) / (2D0*dagrt(pi*dsgrt(r)))
ar == a*dcos(e2 +0.25D0*phi)

2l = - a*dsin(e2 +0.25D0*phi)

call asmairy(r,phi,fr,ﬁ,dfr,dﬁ,pi)

call cprod(ar,ai,fr,ﬁ,cr,ci) ’

airyr = cr

airyi = ci

b= dsqrt(daqrt(r)/pi)*dezp(-el)/ZDO
br = - b*dcos(0.25D0*phi - e2)

bi = - b*dsin(0.25D0*phi - e2)

call cprod(br,bi,dfr,dﬁ,cr,ci)

dairyr = cr
dairyi = ci
return
end

function phase(x,y,pi)

double precision X,y,PX,py,phase,r,pi
if (x .eq. ODO .and. y .eq. 0D0)
then
phase= 0DO
return
end if

'f (dabs(x) .ge. dabs(y))
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+ then
py = dasin( dabs(y)/ dagrt(x**2+y**2))
if (x .ge. ODO .and. y .ge. 0DO)

+ then
phase = py
else if (x .le. ODO .and. y .ge. 0DO)
+ then

phase = pi - py
else if (x .le. 0DO .and. y .le. 0DO)
+ then
phase = pi + py
else if (x .ge. ODO .and. y .le. 0DO)
+ then
phase = - py
end if

A

else if (dabds(x) .le. dabs(y))
+ then
px = dasin( daba(x)/ dsqrt(x**2+y**2))
if (y .ge. ODO .and. x .ge. 0DO)
+ then
phase = 0.5D0*pi - px
else if (y .ge. 0DO .and. x .le. 0DO)
+ then
phase = 0.5D0*pi + px
else if (y .le. 0DO .and. x .le. 0DO)
+ then
phase = 1.5D0*p1 - px
if (phase .gt. 4D0*pi/3DO)
+ then
phase =: phase - 2D0*pi
end if
else if (y .le. 0DO .and. x .ge. 0DO)
+ then
phase = -0.5D0*pi + px
end if
end if

> E— "

return
end

. . ‘,YA‘ —A:.

subroutine cprod(ar,ai,br,bicrci)
double precision ar,aibr bicr.ci

cr = ar*br - ai*bi
ci = ai*br + ar*bi
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return
end

subroutine serairy(zetr,zeti,N,fr fi gr gidfr,dfi,
+ dgr,dgi)

double precision zetr zeti,fr fi,gr,gi.dfr dii,
+ dgr,dgi,denom

integer NJ

fr = 1D0
= 0DO
gr = 1D0
gi = 0DO0
dfr = 1DO
dfi = 0DO
dgr = 1D0
dgi = 0DO

do 30k = 1,N
"J=N+1-k

denom = (3D0*j)*(3D0*}-1D0)
call onestp(denom,zetr,zeti,fr,fi)
denom = (3D0*j+1D0)*(3D0%*))
call onestp(denom,zetr,zeti gr,gi)
denom = (3D0*j+2D0)*(3D0*))
call onestp(denom,zetr,zeti,dfr,dfi)
denom = (3D0*;)*(3D0*;-2D0)
call onestp(denom,zetr,zeti,dgr,dgi)
30 continue

return
end

subroutine onestp(denom,zetr,zeti,fr fi)

double precision denom,zetr zeti fr fi,
+ br,bicr,ci

br = zetr/denom
bi = zeti/denom
call eprod(br,bi,fr ficrci)
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fr = 1DO + cr
fi=ci

return
end

subroutine asmairy(r,phi,fr,f,dfr,dfi,pi)

double precision 2(10), w(10)

double precision intr,intidintrdinti,fr fi dfr,
dfi,r,phi,phia,eta,phieta,u,pi,
krl,kil,dkr1,dkil kr2 ki2,dkr2,dki2

+ +

data  z(1)
z(2

z(3

z(4

z(5

z(6
z(7
(8
(9

(
(

/ 0.2453407083009D0/,
) / 0.7374737285454D0/,
) / 1.2340762153953D0/,
) / 1.7385377121166D0/,
) / 2.2549740020893D0/,
) / 2.7888060584281D0/,
) / 3.3172545673832D0/,
z(8)
z(9)
z(10
data w(l1)

/ 3.9447540401156D0/,
/ 4.6036824495507D0/,
) / 5.38748089001 12D0/
/ 0.4909215006667D0/,

+++ ++++ 4

1
1

£

(2) / 0.4938433852721D0/,
(3) / 0.4999208713363D0/,
(4) / 0.5096790271175D0/,
(5) / 0.5240803509486D0/,
(6) / 0.5448517423644D0/,
(7)
(8)
(9)
(10

£ £ £

£

/ 0.5752624428525D0/,
/ 0.6222786961914D0/,
/ 0.7043329611769D0/,
) / 0.8985919614532D0/

£

++4+++++++
£ £

£

intr = 0DO

inti = 0DO

dintr = 0DO

dinti = 0DO

phia = phi

if (phia .gt. pi) phia = phia-2.0D0*pi
if (phia .It. -pi) phia = phia+2.0D0*pi
eta = dagrt(dsqrt(r*r*r))

phieta = (3D0/4D0)*phia

do 20 j=1,10
u = z(j)/eta

LN TRTor
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call steep(u,phieta,pi,krl,kil,dkrl,dkil)

call atcep(-u,phieta,pi,kr2,ki2,dkr2,dki2)

intr = intr + w(j)*(kr1+kr2)"dezp(-z(j)*z(j))

inti = inti + w(j)*(kil+ki2)*dezp(-z(j)"'z(j))

dintr = dintr + w(j)* (dkr1+dkr2)* dezp(-z(j *2(3))
dinti = dinti + w(_i)"(dkil+dki2)"'dezp(-z(j)*z(j))

‘ 20 continue
l fr = 1DO0 + intr/ dsgrt(pi)
fi = inti/ dsgrt(pi)
I dfr = 1DO0 + dintr/ dsqrt(pi)
dfi = dinti/ dsgrt(pi)
[ reivrn
enu

+ 4+ 4+ + + +

+

subroutine steep(u,phieta,pi,kr,ki,dkr,dki)

double precision u,phieta,pi kr ki,dkr,dki,

ub,ubr,ubi,dumr,dumi,ubsqr,
ubsqi,ucubr,ucubi,rr,ri,denom,
radsqr,radsqi,rad,pt,phase,
phirad,a32r,a32i,a32,pa32,
asq,phasq,a,pha,denomr,denomi,
denomsq,recipr,recipi,yr,yi,
numr,numi,newr,newi,xr,xibr, bi

integer kyj

ub = dsgrt(3D0)*0.5D0*u

ubr = ub*dcos(phieta)

ubi = .ub*dsin(phieta)

dumr = ubr

dumi = ubj

call cprod(dumr,dumi,ubr,ubi,ubsqr.ubsqi)

if (dabs(ub) .It. 0.001DO)

then

call cprod(ubr,ubi,ubsqr,ubsqi,ucubr.ucubi)
numr = (8D0/9D0)*ubr - (40D0/243D0)* ucubr
numi = (8D0/9DO)*ubsi - (40D0/243D0) *ucubi
numr = numr - daqrt(3DO)‘(l4D0/8‘.I)O)‘ubsqi
numi = numi + daqrt(.'}DO)‘(l4DU/81DO)‘ubsqr
denomr = - numr

denomi = - 4D0/ dsgrt(3DO) - numi

recipr = denomr / (denomr**2 + denomi**2)

A
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recipi = -denomi / (denomr**2 + denomi**2)
call cprod(recipr,recipi,numr,numi,kr ki)

newr = (32D0/9D0)*ubr - (100D0/243D0)*ucubr
newi = (32D0/9D0)*ubi - (100D0/243D0)*ucubi
newr = newr + dsqrt(3D0)*(10D0/81D0)*ubsqi
newi = ncwi - dsqrt(3D0)*(10D0/81D0)*ubsqr
call cprod(recipr,recipi,newr,newi,dkr,dki)

else if (dabs(ub) .ge. 0.001D0)

then

if (ub .gt. 10DO0)
then
rr = ubsqr/(ubsqr**2+ubsqi**2)
ri = -ubsqi/(ubsqr**2+ubsqi**2)
a32r = 0.5D0*ubr/(ubr**2 + ubi**2)
a32i = -0.5D0*ubi/(ubr**2 + ubi**2)
do 20 = 1,10
k=5-j+1
denom = (0.5D0 - k)/(k + 1D0)
call onestp(denom,rr ri,a32r,a32i)
continue
else if (ub .le. 10D0)
then
radsqr = 1DO + ubsqr
radsqi = ubsqi
rad = dsgrt(dsqrt(radsqr**2 + radsqi**2))
pt = phase(radsqr,radsqi,pi)
if (pt .gt. pi) pt = pt - 2D0*pi
if (pt .1t. -pi) pt = pt + 2D0*pi
phirad = pt/2D0
a32r = rad*dcos(phirad) - ubr
a32i = rad*dsin(phirad) - ubi
end if

a32 = dsqrt(a32r**2 + a321**2)

pa32 = phase(a32r,a32i,pi)

if (pa32 gt. pi) pa32 = pa32 - 2D0*pi

if (pa32 .It. -pi) pa32 = pa32 + 2D0*pi

asq = a32**(4D0/3D0)

phasq = pa32*(4D0/3D0)

a = dsqrt(asq)

pha = phasq/2D0

denomr = 1D0 + (asq+1D0/asq)*dcos(phasq+pi/1.5D0)
denomi == (asq-1D0/asq)*dsin(phasq+pi/1.5D0)
denomsq = denomr**2 + denomi**2

recipr == denomr/denomsq

recipi = -denomi/denomsq
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yr = -2D0*u*dsin(phieta)

yi = -2D0*u*dcos(phieta)

numr = yr - denomr

numi = yi - denomi

call cprod(recipr,recipi,numr,numikr ki)
xr = (a + 1D0/a)*dcos(pi/3D0 + pha)
xi = (a - 1DO0/a)*dsin(pi/3D0 + pha)
call cprod(yr,yi,xr,xi,br,bi)

L numr = br - denomr

numi = bi - denomi

call cprod(recipr,recipi,numr,numi,dkr,dki)

1

end if
return
end
.
| subroutine print Air (x,y,airyr,airyi,dairyr dairyi,
+ vr,vi,dvr,dvi,wlr,wlidwlr,dwli,
i + w2r,w2i,dw2r,dw2i)

, real*s X,y,airyr,airyi,dairyr,dairyi,vr,vi,dvr,dvi,
F [ + wlr,wli,dwlr,dwli,w2r,w2i,dw2r dw2i
, write (**)

1 write (*,*)

write (*,1)’x =",x,’y ="y
1 format (10X, A, F10.4, 10X, A, F10.4)
write {**)
' write (*,3) 'Airyr’, ’Airyi’, 'Derivr’, 'Derivi’
l. 3 format (12X,A,11X,A,10X,A,10X,A)
write (* %)
write (*,101) airyr, airyi, dairyr, dairyi
write (*.*)
write (*3) ' vr',’ wvi’,’ dvr’,’ dvi’
, write (**)
write (*101) vr,vidvr,dvi
write (**)
i write (*3) ' wir’,’ wli’,’ dwlr’,’ dwli’
write (**)
write (*,101) wlr,wlidwlr,dwli
write (* *)
write (*3) " w2r’,' w2i’,’ dw2r’, ' dw2i
write (**)

write (*101) w2r,w2i,dw2r,dw?2i
101 format (1x, 4D16.8)

return

(
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end
Program to compute pressure on ridge surface

Here we list the computer program that was used in the computation of the curves shown
in Fig. 15 for the apparent insertion loss of the tepographical ridge.
program ridgchek

Allan D. Pierce
2/13/86

double precision  xi,qr,qi,pi,gr,gi,g,loss

call ridgput(xi,qr,qi)

pi = 3.1415926535897932D0
call ridgint(xi,qr,qi,gr,gi,pi)

g = dsqrt(gr**2 + gi**2)

loss = 20D0*dlog10(1D0/g)
call preridge(xi,qr,qi,gr,gi g,loss)

stop
end

subroutine ridgint(xi,qr,qi,gr,gi,pi)

double precision xi,qr,qi,gr,gi,pi,
+ step,sumr,sumi x,
+ aintr,ainti

integer Jon

call stepfind(xi,step,J)

sumr = 0.0D0

sumi = 0.0D0

x = 0.0D0

call rgrand(x,xi,qr,qi,aintr aint’ pi)

do 10 n=1,J
X = X + step
call rgrand(x,xi,qr,qi,bintr,binti,pi)
sumr == sumr + aintr + 4D0*bintr
sumi = sumi + ainti + 4DG*binti
X = X + step
call rgrand(x,xi,qr,qi,aintr,ainti,pi)
sumr = sumr + aintr
sumi == sumi + ainti !

10 continue

\\I
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subroutine rgrand(x,xi,qgr,qi,intr,inti,pi)

+ 4+ + +

double precision

gr = step*sumr/3D0
gi = step*sumi/3D0

return
end

y,vr,vidvr.dviwlr,wli,

X,X1,qr,qi,intr,inti, pi,
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dwlr,dwli,w2r,w2idw2r,dw?2i,

¢,s,ar,ai,br,bi,denomr,denomt,
denomsq,recipr,recipi,cr,ci.
mult,int2r,int2iint1r,int1i

y = 0D0
¢ = 0.5DC
s = 0.5D0*dsqr¢(3D0)

call Fock(x,y,vr,vi,dvrdvi,wlr,wlidwlr,dwli,

w2r,w2i,dw2r,dw2i)
call cprod(-c,s,qr,qi,ar,ai)
call cprod(ar,ai,w2r,w2i,br,bi)
denomr = dw2r - br
denomi = dw2i - bi
denomsq = denomr**2 + denomi**2
recipr = denomr/ denomsq
recipi = - deromi/denomsq
ar = dcos(x*xi/2D0)
ai = - dsin(x*xi/2D0)
call cprod(ar,ai,recipr,recipi,cr,ci)
mult = dezp(-x*xi*s)/ dsqrt(pi)
int2r = mult*cr
iet21 = mult*ci

call cprod(qr,qi,wir,wli,br,bi)
denomr = dwlr - br

denomi = dwli - bi

denomsq = denomr**2 + denomi**2
recipr = denomr/ denomsq

recipt = - denomi/denomsq

ar = dcos(x*xi)

ai = dsin(x*xi)

call cprod(ar,ai,recipr,recipi,cr,ci)
mult = 1DO / dagrt(pi)

intlr = mult*cr

intli = mult*ci
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intr = intlr + int2r
inti = intli + int2i @

return
end

subroutine stepfind(xi,step,J)

double precision xi,step,jay
integer J

if (dabs(xi) .It. 2D0) :
I -+ then
step = 0.05D0
else
[ step = 0.1D0/ dabs(xi)
end if
» jay = 3.77DO0/ step
I J = jay
return
g end

subroutine ridgput(xi,qr.qi)
dcuble precision xi,qr,qi

write (*,*) 'Program Ridgchek’

write (*,*) *Version of February 1986’

write (*,*)

write (*,*)

write (*,*) '"What is magnitude of argnment xi? ’
read (**) xi

write (*,*) "What is real part of q? ’

read (*,*) qr

write (*,*) 'What is imaginary part of q7 ’

read (*,*) qi

return
end

subroutine prtridge(xi,qr,qi,gr,gi,g,l0ss) s

ot
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double precision xi,qr,qi,gr,gi,g,loss

write (*,*)

write (*,*)

write (*,1)’xi=",xi,"’qr =", qr,’ qi =, gi
format (10X, A, F10.4, 10X, A, F10.4, A, F10.4)

write (*,*)

write (*,3) ’ gr’, ' gi’, ’ g’, ’ loss’
format (12X,A,11X,A,10X,A,10X,A)

write (**)

write (*,101) gr,gi,g,loss

write (*,*)

101 format (1x, 4D16.8)

return
end

Complex roots for creeping wave transcendental equation

The program listed here evaluates the roots of the transcendental equation in Eq. (4). The

Present 'version is temporary and allows the user to iterate refinements based on Newton’s method
at the keyboard.
program creepwve

Allan D. Pierce
2/13/86

double precision xrstart xistart,qr,qi,
+ xrfin,xifin,gr gi

call creeput(xrstart,xistart,qr,qi)

call newtcrp(xrstart,xist:ut,qr,qi,gr,gi)
xrfin = xrstart - gr

xifin = xistart - gi

call pricreep(xrstart,xistart,xrfin,xifin)

stop
end

subroutine newtcrp(x,y,qr,qi,gr,gi)

double preci.ion X,¥,qr,qi,gr,gi,ar al,
ve,vidve,dvi,wlr wli,
dwlr,dw1i,w2r,w2i,dw2r,dw2i,
br,bi,denomr,denomi,
denomsq,recipr,recipi,
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+ numr,numi,s,c,er,ei,cr,ci

l s =0.5D0*dsqrt(3DO0)
¢ =0.5D0
[ call cprod(x,y,-c,s,er,ei)
call Fock(er,ei,vr,vi,dvr,dvi,wlr,wli,dwlr,dwli,
9 + w2r,w2i,dw2r,dw2i) ’
-4 [ call cprod(qr,gi,cs.crci)
: call cprod{cr,ci,dvr,dvi,ar,ai)
1 call cprod(er,ei,vr,vi,br,bi)
[ denomr = br + ar
denomi = bi + ai
denomsq = denomr**2 + denomi**2
[ recipr = denomr/ denomsq N -
recipi = - denomi/ denomsq ‘
call cprod(cr,ci,vr,vi,ar,ai)
[ numr = dvr + ar
numi = dvi + ai
call cprod(numr,numi,recipr,recipi,er,ei)
! call cprod(er,ei,-c,-s,gr,gi)
return
! end

LR

L

subroutine creeput(xr,xi,qr,qi)
e ‘P
17
1 double precision xr,xi,qr,ql

write (*,*) 'Program Creepwve’

write (*,*) 'Version of February 1986’

write (*,*)

write (*,*) '"What is real part of q? ’

read (*,*) qr

write (*,*) 'What is imaginary part of q7

read (*,*) qi

write (*,*) 'What is reai part of initial guess for root? '
read (*,*) xr

write (*,*) 'What is imaginary part of initial guess? ’
read (*,*) xi

return
l end
l subroutine prtcreep(xrstert xistart,xrfin xifin)

double precision xrstart xistart xrfin,xifin

S,
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write (*,1) ’ xrstart = ’, xrstart, ’ xrfin = ’, xrfin
write (*,1) ’ xistart = ’, xistart, ’ xifin = ', xifin
format (10X, A, F10.4, 10X, A, F10.4)

return
end
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