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CHAPTER 1

INTRODUCTION

An approximate but sufficiently accurate high frequency solution is developed
in this study for the problem of electromagnetic (EM) plane wave scattering by
an open-ended, perfectly-conducting, semi-infinite hollow rectangular waveguide
(or duct) with a thin, uniform layer of lossy or absorbing material on its inner
wall, and with a planar termination inside. This high frequency solution is based
on a combination of the uniform geometrical theory of diffraction (UTD) [1] ray
technique with the aperture integration (AI) method. The UTD is a modification of
Keller’s geometrical theory of diffraction (GTD) |2] such that it remains valid even
within the transition regions adjacent to the shadow boundaries associated with
.the discontinuities of the geometrical optics incident and reflected rays. Basically,
the reflected fields in the present UTD analysis are characterized by a Fresnel
reflection coefficient that is associated with the pro_blem of plane wave reflection
from a uniformllayer of dielectric/ferrite coated perfectly-conducting surface of
infinite extent. Likewise, the diffracted fields here are characterized by a uniform
diffraction coeficient that is associated with the problem of plane wave diffraction
by the edge of a perfectly-conducting half-plane which is coated on one side by
a uniform layer of dielectric/ferrite material. The total field scattered by the
semi-infinite waveguide consists firstly of the fields scattered from the edges of

the aperture at the open end, and secondly of the fields which are coupled into



the waveguide from the exterior and then reflected from the interior termination
to radiate out of the open end. The first contribution to the scattered field can
be found directly via the UTD ray method; whereas, the second contribution is
found via the Al method which employs rays to describe the fields in the aperture
that arrive there after reflecting from the interior termination. The approximate
ray method of- _amalysis in combination with Al is selected here because of its
conceptual simplicity and efficiency. It is assumed in the present study that the
direction of the incident plane wave and the ciirection of observation lie well inside
the forward half space that exists on the other side of the half space which contains
the semi-infinite waveguide geometry. Also, the medium exterior to the waveguide
is assumed to be free space. B |

While the problems of EM's‘cattv,ering and radiation by perfectly-conducting
sémi-inﬁnite, open-ended parallel plate, rectangular and circular waveguides have
been analyzed in the past using a variety of techniques, é.g. the Wiener—-Hopf
method (for the semi-infinite parallel plate and circular waveguides) [3], the mode
matching precedure (4,5,6], a hybrid combination of ray and modal techniques
[7], etc., there does not appear to be much work done on the EM scattering and
radiétion‘by semi-infinite perfectly-conducting waveguides with an absorber ('di;
electric /ferrite material) coating on its inner walls. Besides the presént work, the
only-other related study which is available in the open literature (or as a report)
appears to be that conducted by Lee et al. [8]; the latter deals with the plane
‘wave scattering by a pel;féct]y-conducting semi-infinite circular waveguide with anv
absorber coating on its inner wall. A purély modal description is used for the fields
inside the waveguide in (8]; this is in contrast to the present work which employs
rays to do the safne. As in the present approach, the one in [8] also employs the

Al method to find the ﬁeldé radiated from the interior of the waveguide; however,
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the field in the aperture, which is required in the Al calculation, is expressed in
"terms of modes in [8] rather than in terms of rays as done here, obviously because
the work in [8] employs a modal description for the interior fields.”

In addition to developing a high frequency solution for the three dimensional
(3-D) problem of the scattering by a semi-infinite rectangular waveguide, a high
frequency solution for the less difficult but useful problem of the EM scattering by
a two dimensional (2-D), semi-infinite parallel plate waveguide with an absorber
coating on the inner walls is also devéloped as a first step. In the case of the
simpler semi-infinite 2-D parallel plate geometry excited by an EM plane wave
as shown in Figure 1, it is ihitially assumed that a uniform surface impedance
boundary condition exists on the innér walls. The impedance boundary condition
in this problem serves to model a thin layer of lossy dielectric/ferrite coating on the .
otherwise perfectly-conducting interior waveguide walls. The reason for initially
choosing this simpler parallel plate problem with an im‘pedaﬁce boundary condition
on the interior walls was to examine the accuracy and efficiency of an approximate

. ray method of analysis while retaining the essential features of the absorber coated .
rectangular duct geometry but without the added complexity of the latter.

A rigorous representation for the fields inside the waveguide region is usually
given in terms of a modal expansion. It is noted, of course, that at high frequen-
cies where the width of the parallel plate waveguide becomes large in terms of the
wavelength, one “generally” requires many modes to represent the fields within
the waveguide. In addition, for wavéguides with lossy walls, the determination of
eigenvalues which characterize the modal sets becomes difficult and inefficient. Qn
the other hand, one may anticipate that the ray procedure can become more effi-
cient if the impedance surface is lossy as is true for inlets with absorbgr coating on

the inner walls. In order to study the utility and relative efficiencies of the ray and



Figure 1: Coupling and scattering of electromagnetic plane wave by an

open-ended semi-infinite parallel plat

e waveguide with inner impedance walls and

perfectly-conducting outer walls.
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modal approaches for describing the fields within the lossy walled parallel plate
-waveguide region, it became necessary to study a second problem directly related
to the first one in Figure 1. The configuration of the second probléfn consists of an
interior line source exciting a parallel plate waveguide with an impedance boundary
condition on its inner walls as shown in Figure 2. It is important to note that the
geometry in Figure 2 is infinitely long; whereas, that in Figure 1 is semi-infinite.
'An exact modal solution can be obtained for this source-excited infinite waveguide
problem in Figure 2 in terms of a wavéguide Green’s function (7,9). Basically, an
integral representation for the waveguide Green’s function is developed in which
the fields interior to the waveguide are proportional to. the Green’s function. A
formal modal expansion for the wavegﬁide fields is readily obtained via an applica-
tion of the Cauchy resiAdue theorem to the above mentioned integral representation.
Due to the surface impedance boundary condition, the modal eigenvalues cannot
be determined analytically and must therefore have to be determined numerically
in this pfoblem from the resonant denominator of the integrand (pertaining to the -
_ integral representation of the waveguide Green’s function). Once the roots of the |
fesonant denominator are found numerically, the modal (eigenfunction) expansion
. for the interior impedance walled parallel plate waveguide Green’s functi(;n can
“also be computed numerically. Furthermore, anvasymptotic approximation of the
integral representation for the waveguide Green’s function (after the resonant de-
nominator is expressed as a geometric series) yields the approximate ray solution
for the fields inside the waveguide. The latter ray solution is the one which is
of major interest in this study. Some of the dominant ray paths in the ray solu-
tion for this problem in Figure 2 are shown in Figure 3. In the ray method, the
field from a source point to an observation point propagates along ray paths that

obey the rules of geometrical optics. Some of the advantages of the purely ray
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Figure 3: Dominant ray paths for the problem in Figure 2.

approach are as follows. The ray solution provides some physical insight into the
scattering mechanisms particularly in connection with the coupling of the fields
from the exterior to the interior regions in the case of the semi-infinite waveguide
configuration, as well as into the effect of the wall impedance on the fields in the
interior waveguide region. Also, the ray solution does not require one to evalu-
ate the eigenvalues which are essential for the construction of the modal solution.
- This eigenvalue equation must be solved numerically for different impedance values
and for each mode, thereby making the modal approach far more cumbersome as
compared to the ray approach. Furthermore, it has been found from a numerical
study of the modal and ray solutions that, ih general, the ray solution converges
much faster than the: modal solution for the case of interest, namely, when the
wall surface impedance is‘lossy; furthermore, it has also been found in this work
‘that, in general, the rate of convergence of the modal solution does not improve
significantly even with the presence of loss in the wall surface impedance.

After establishing the usefulness of the ray repfesentation inside the line source
excited, impedance walled infinitely long parallel plate waveguide (see Figure 2) in

Chapter 11, the EM plane scattering by the semi-infinite parallel plate wa\{_:egui"iie



‘geometry of Figure 1, with perfectly-conducting outer walls and with an impedance
‘boundary condition on its inner walls, is then analyzed in Chapter III. In Chapter
111, the UTD is employed to calculate the contribution to the field scattered by the
‘ édges of the aperture at the opeﬁ end, and it is also used to provide a description
for the field coupled into the waveguide region. The latter ray field propagates
within th¢ waveguide and undergoes reflection at the interior termination to arrive
béck at thé aperture and radiate into the exterior region. The radiation is found by
| integrating that reflected ray field over the aperture using a physical optics (PO)
type approximation in the Al method. Next, the impedance boundary condjition on
interior walls is relaxed, and the above solution is extended to provide a more ac-
curate analyéis, also in Chapter III, w}Ilich. accounts for the presence of an absorbe;
coating with finite thickness. The latter analysis sets the stage for the analysis of
the main problem of interest in this work, namely that of the EM scattéring by
a 3-D perfectly-conducting, open-ended semi-infinite rectangular wavéguide with
an absorber coating on its inner walls as discussed in Chapter IV. Numerical re-
sults are presented and discussed in each chapter. Finally, a summar& and some
conclusions are .presented in Chapter V.

It is found that, in generél, the ray solution converges faster than the modal
solution for the case of interest, namely, when the interior wall coating is lossy.
F urthermore; it is also found in this work that, in general, the rate of convergence
of the modal solution does not improve significantly even with the presence of loss
‘in the wall coating. In addition, the level of the fields which are coupléd into the
interior of the semi-infinite waveguide and then radiate from the open end, after
undergoing reflection at the interior termination, can be controlled by changing
the value of the absorber lining on the interior of the waveguide Walls, as might be

expected. If these fields radiated from the open end are made sufficiently small,



the only other contribution to the total exterior scattered field, which comes from
the diffraction by the edges of the aperture at the open end, will then be dominant.
Various analytical details are given in Appendices A through F.

An et time dependence is assumed and suppfessed in this analytical de-
velopment. In addition, a character with a bar (E), with a cap (E) or with bold
type style (E) represents a vector quantity; also several abbreviations used in this

study are listed below.

EM : | Electromagneti_c
GTD : Geometrical Theory of Diffraction
UTD : Uniform Geometrical Theory of Diffraction
PTD : Physical Theory of Diffraction
GO : Geometrical Optics | |
PO : Physical Optics
2-D : Two Dimensional
3-D : Three Dimensional
G : Green’s function
SDP : Steepest Descent Path
ISB' : Incident Shadow Boundary
RSB : Reflection Shadow Boundary '
Al : Aperture Integration
ECM Equiva]eﬁt Current AMethod
MSM : Multiple Scattering Méthod



CHAPTER II

ANALYSIS OF EXACT MODAL AND APPROXIMATE‘RAY
SOLUTIONS FOR AN INFINITELY LONG PARALLEL PLATE
WAVDGUIDE WITH AN IMPEDANCE BOUNDARY CONDITION
' ON ITS INNER WALLS

2.1 TFormulation of the problem

The problem of a line source excited two dimensional (2-D) parallel plate
waveguide of infinite extent with impedanée walls is analyzed in this chapter. The
* 2-D time harmonic wave equation for the pérallel plate Green’s function G due to
.a line source at z = z’ and z = 2/ in the waveguide g‘eometry of Figure 2 is given
by _ .

8% 82

(—9?+622+k2 G=-b(z—2)é(z- 2 N (2.1)_.,'

where k is the_frée-_space wavenumber and 6(:1:) is the Dirac delta function. In -
th.is 2¥D problem, the EM fields can be simply related to the Green’s function G.
because one can scalarize the problem separating it into the TE, and TMy cases.
One notes that the magnetic field has only a § component for the TE, case and

likewise, the electric field has only a ¥y component for the TM, case. Thus, let

H = yH, represent the magnetlc field in the TE, case, likewise let E = yE, -

represent thc e]ectrlc field in the TMy case. The exc1tatlon in the TE, case canif' ’

be a magnetic line source of strength M at (', 2'); likewise, an electric line source - -



of strength I at (z/,z’) generates the TMy, fields. These line sources are of infinite
extent in the ¥ direction. It can be shown that Hy = —jkYMG and Ey = —jkZIG
where Z (or Y) is the free-space impedance (or admittance), provided G satisfies

the following boundary conditions:

-%:— +jkG = 0 as |z} — oo | (2.2)
oG : '
— ~3k¢gG =0 = .
5x Jk g ' atz=0 (2.3)
aG
— 4 3k¢uG = = (2.
3z +_J $u 0  atz=a (2.4)

where

Ghu = 2y for TEy case (2.5)

Y. Jfor TMy case
and Z;, (or Y;,) is the surface impedance (or admittance) at z =0 and z = ¢
which is normalized to the free-space wave impedance (or admittance). The bound-
ary condition in Equation (2.2) is also known as the radiation condition and the
impedance boundary conditions for G given by Equation (2.3) and (2.4) are de-
rived in Appendix A in detail. Using separation of variables, the Green’s func-

tion G(z,z'; 2,2') is represented in terms of the one dimensional Green'’s functions

Gz(z,z') and G;(z,2') as [7,9,10,11]

G(z,z';2,2) = —-5%; Gs(z,2') - G(z,2') dA, (2.6)

‘20

where the integration contour C, in the above equation encloses only the singu-

larities of G,. Solving Equation (2.1)-for G subject to the boundary conditions

10



in Equations (2.3) and (2.4), Gz(z,z'} is found to be:

n_ (eJ'\//\—zz< + R,e—jmk) (e—jmb + Ruej‘/gb)
Galz,2) = - 2jVAz (1 - RiRu) 1)

where < and z> denote the values of z which satisfy £ < z' and z > z/, respec-

tively and

Viz — k¢
R = Yz_ M (2.8)

vAz-kCu e-—j2 Az a .

R —_— 29
¢ VAz + k¢y ( ) ‘
In addition
Az + A, =k? | (2.10)

Now G:(z,2z') which satisfies the radiation condition given in Equation (2.2) for

|z| — oo is likewise given by:

e—IVAz [2-2'|
27V A;

G:(z,2') = o (21)
The one dimensional Green's functions Gz(z,z') and G;(z,2') given in Equations
in (2.7) and (2.‘11), respectively, are derived in detail in Appendix B.

Therefore, G(z,1';2,2') becomes via Equations (2.6), (2.7) and (2.11), the

following:
¢ = -1 (V72 3< 4 Re=IVAz <) (e=3VAe 2> 4 RyeiViz 2>
- Je, 2jv2z (1 - RRu) |

1



e~ Ve Jz—2')

D\ o
252 2
1 (e.‘sz I< 4 Rl;g".‘l"?z =<) (e—jkz >4 Ruejkz =>)
ce kel g, | (2.12)

where v/Az = kz and /A, = k; transformations are used and the integration path
is also changed from C;, to C; accordingly. An evaluation of the above integral in
Equation (2.12) via the residue théorem yields a representation for G in terms of
a summation of the conventional guided modes propagating along the z direction;

namely:

2 1 (eFkznT< 4 Rje~Tkzn 2<) (¢~Tkzn 7> | R eTkan 2>)

G =

. ¢~ Tkzn l2=2| | (2.13)
where
ky — kfl
R, ko + kg (2.14)
_ kg — kfu ~72kz a
Ru = kI T kgu € (2.15)

It is noted that the modes arise from the résidues of the poles in the integrand of
“Equation (2.12). The zeros of the denominator of the integrand in Equation (2.12)
yields the required poles. Also these zeros yield the eigenvalues of the modes.
‘Specifically, these eigenvalues are obtained by solving the transcendental equation
1-R;R, = 0in the'integrand of Equation (2.12) via a numerical ‘ Newton-Raphson’

iteration method which is described in Appendix C. One typical figure showing a

12



set of singularities in k; and k; plane is shown in Figure 4 for Z, = b.l + 70.3
and Z; = 0.0 + 70.0 with a waveguide electrical height ka being 50. Note that
the singularity marked with a small dot in the complex k; plane corrésponds to
the same one in the complex k. plane. For an e*7%! time conventibn, the closed
integration path (C;) encloses all the singularities in the lower half plane as shown
in the figure (C, = CI + C.). Also, note that all the singularities on the kz and k.
planes wouid lie on the real or imaginary axis for lossless case. When the surface
is lossy, the poles are displaced away frdm the real énd imaginary axes as shown
in Figure 4.

An alternative ray expansion representation for G is obtained by expanding

the resonant denominator of the integral in Equation (2.12) into a geometric series,

1 — n
T RE ;‘:O (RiRw)" (2.16)

Then, noting that for the employed time convention the contribution from C! is

zero, one obtains

; / {2 (e7%z =< 4 Rje~Tkz3<) (e77k= 2> 4 Ryetkzo>)
4 Jor kz

‘'z n=0

e~ Tkel2=21 (R R)" dk, (2.17)

It is convenient for subsequent evaluation of Equation (2.17) to introduce further

transformations

k; = kcosa - (2.18)

k: = ksina (2.19)

13
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‘The Green’s function G(z,z';2,2') of Equation (2.17) is now expressed in the

complex a plane as

. 0o '
c - _‘_1,17; / Z (ejkcosa T< 4 Rle—jlccosaz<) (e—jkcosa > 4 Rueikcosaa?)
C
n=0 : - '
. e—jksina |z_zll (RlRu)n da . (2.20)
where .
R - Ssa—g¢ (2.21)
L'~ cosa+ 9] .
R, = COs @ — (y e-—jzka cosa (2.22)
U cosa + ¢y

[

and C is the contour obtained by transforming C] using Equations (2.18) and
(2.19).

After interchanging the orders of summation and integration, each of the

integrals in the sum is evaluated asymptotically for large kv/(z — z')2 + (2 — 2/)?
term by term via the method of steepest descent to arrive at the ray expansion.

For convenience, let G be expressed as

oo 4 o :
G=)_ ) Gmn | (2.23)

n=0 m=1
where
Gin = _J e+jk[cos.a(:c<'_z>).—-sina|z—2'” . (RlRu)-n da (2.24)
47 Jo .
Gop = __:ilﬂ/ c+jk[cosa(z<+z>)—sinalz—z'l] . RlnRLz-\\—l da | (2.25)

15



G3p = __:__;r Ce—jk[cosa(x<+=>)+sina|z—z'|] . R?-HR:: da (2.26)
Gyn = _;‘% Ce—jk[cosa(z<—z>)+sina|z-z'|] ~.(R1Ru)"+l'da

(2.27)

Note that each G, corresponds to each term of the integrand of Equation
(2.20) and the relation between the index m and the number of reflections at upper

or lower boundaries is as follows:

m =1 : n reflections at both boundaries.
m =2 : n reflections at lower boundary and
n + 1 reflections at upper boundary.
m=3 : n+l feﬁections at lower boundary and
n reflections at upper boundary.

m=4 : n+1 reflections at both boundaries.

The ray trajectories for each m are shown in Figure 5 for n = O case.
For analytical details, an asymptotic evaluation of Gy, is considered here for
m = 1 case. From Equation (2.24), Gmn for m = 1 may be represented by
Gin = - / F(a) e/(2) o (2.28)
a7 Jo
where

Fla) = (RIR:,)"A - | (2.29)

16
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fla) = j [cosa(z< — > — 2na) —sind|z—z’|]

= jrcos(a+fB) . A (2.30)
't cosa—(u |
R, = cosa + ¢u , (231)
ro= \/(a:< — 2> — 2na)? + (2 - 2/)?2 | (2.32)

_ -1 |z = 2|
B = tan (:z: ) | (2.33)

<—ZI> —2na

Note that the exponential term in Ry is involved in the phase term f(a) in the
integrand of Equation (2.28). Then, employing the method of steepest descent

-[9,11] to Equation (2.28) gives

—-27

o | eI (kr=n/4) (2.34)

Gin = —:_;r [ R,(as)R;(qs) ]n :

where the saddle point a; is given by

@y = f= tanf1< |2 = 2 ) (2.35)

The steepest descent integration path (Cgspp) and the saddle point (as) in the
above equation are shown in Figure 6. Théh, the ray field can be obtained using
Equation (2.34). Since the ray decays consid-erably as it travels bouncing back and |
- forth inside thé waveguide, only a few ferlns (upton = 2 or 3) are summed up in

the first summation in Equation (2.23) depending on the impedance values of the

18-
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inner walls. The analysis for m =_.2,3 and 4 cases are verj similar and ther.efore
ommitted here. |
It is noted that the ray solution in Equation (2.23) could also be constructed
directly from the geome@rica] optics c‘ohsiderations.‘ In order to assess the accuracy
of the ray field representation which is mentioned above, the magnitude of the ray
aéymptotic approximation to the Green’s function in Equation (2.23) is e_xa_mined
by comparing tﬁis with the magnitude of the exact guided mode seriés in Equation
(2.13) which is used as a reference solution in this study. The magnitude of the
Green'’s function in terms of the ezact modal solution is plotted against the normal--
“ized distance kz as a sélid line in each of the figures, while that of the ray solution
is plotted as a dashed line. For the.sake of convenieﬂcq, the various parameters

which appear in these figures are defined below.. .



ka : normalized waveguide height

kz' : normalized z-coordinate of the source point
kz : normalized z-coordinate of the observation point
kz : normalized z-coordinate of the observation point

pm : number of propagating modes inside the waveguide
em : number of evanescent modes included in the calculation -
. n : number of terms which have been included in the summation

of the ray expansion of Equation (2.23)

R; : resistance of the lower waveguide wall (z = 0)

X, : reactance of the lower waveguide wall (z = 0)

R, : résistance of thé upper ;avaveguide wall (z = a)

Xy : reactance of thé upper waveguide wall (z = a)
k : wave number in the medium given by k = 27/
A : wavelength in free-space

It is noted that the term propagating mode (pm) cannot be defined for the lossy
‘case becausevAall poles corresponding to each mode are cofnplex valued and each
imaginary part of the complex eigenvalues causes attenuation with propagation of
the modal field. In this sfudy, however, each mode is defined as propagating (o4r
' evavnescent (cm)): mode for convenience if the réal part of kz of the correspondiﬁg
pole is less (or greater) than ka. As shown in Table (2.1), if the real part of
k; is greater than ka (¢ > 17 cases in Table (2.1)), the imaginary part of the
correép.onding k> becomes very big and it fesu]ts in a very rapid attenuation for the
field as it propagates. For ka = 50.0," there are'16 propagating modes for an electric
line source and the modal solution is plqttcd as a solid line in Figure 7 for the range

1.0 < kz < 41.0 which is examined here. The source and observation points are
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Table 2.1: Poles on k; and k,

kz,

3

planes for an electric line source for ka = 50.0 and
21 =2y = 0.1+ ;0.3

ks,

[

w N

L I = > B < L BN

© oo

10
11
12
13
14
15
‘16
17
18
19
20

3.104+j 0.012
6.209+5 0.025
9.313+5 0.037
12.417+5 0.049

15.522+5 0.061

18.626+; 0.073
21.73145 0.085
24.836+; 0.006
27.940+5 0.108
31.045+7 0.119
34.151+7 0.130
37.256+5 0.141
40.362+7 0.152
43.468+ 0.162
46.574+7 0.172
49.680+5 0.181
52.787+7 0.191
55.894+7 0.200

59.001+5 0.209

62.108+5 0.217

49.904—5 0.001
49.613—j5 0.003 -
49.125-5 0.007
48.434—5 0.013
47-.530— 7 0.020
46.401—; 0.029
45.031—5 0.041
43.396— 7 0.055
41.465~3 0.073
39.194—; 0.094
36.521—5 0.122
33.347~; 0.158
29.513— i 0.207
24.712—7 0.285
18.197—7 0.440

5.857—j 1.539
0.595—516.934
0.447— 724.985
0.393—531.324
0.366—536.845

22



both equi-distant from the wﬁveguide walls in this ;:aée. The corresponding ray
field is shown as a dashed line for the same range. Only n = 3 is used in the
ray solution in contrast with 16 moaes in the modal summation. As seen from the
figure, there is a good agreement between the modal and ray solutions for the range
kz > 15.0. The discrepancy for kz < 15.0 is due to the fact that the contribution
of the evanescent modes is strong when the observation point is near the source
point. When this evanescent field contribution is included in the modal solution,
it is then found to agrée_ with the ray solution i'ery well except in the region
where the observati}on point is very near the source point (kz < 3.0) as shown in
Figure 8 where the ray solution looses accuracy. It is anticipated that the -modal
and ray éqlutions will show excellent agreement even in this region (kz < 3.0) if
the cylindrical wave (line source excitation) type behaviour in the asymptotic ray _
Solution of Equation {2.23) is replaced by the more exact representation in terms
of é Hankel function of the second kind. 'Hence, the first three evanescent modes
are includ'ed in the modal vs‘o]ution shown in all the other figures. In Figures 9-11,
- the ray 'solhtion is compared again with the modal solution for different impedance
“values of the waveguide wall. As shown in the figures, the réy solution shows very
good agreerﬁent withi'the corresponding modal solution. The magnitude of G is
.again plotted for a magnetic line source in Figures 12-15. From Figures 8-15, it .
may be concluded that the ray 'sbolution converges féster than the modal solution.

This convergence of the two solﬁtions is examined in detail later in this chapter.
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Figure 9: Magnitude of G for an infinitely-long parallel plate waveguide excited
by an electric line source as a function of the normalized distance kz.
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2.2 Surface waves in the modal and ray solutions

Another interesting phenomenon which can take place in the case of a waveg-
uide with impedance walls is that pertaining to the excitation of surface wave type
fields. In the modal expression for the conﬁguration in Figﬁre 2, there are two
suﬂ_'ace wave type modes in addition to the usual waveguide type modes which are
excited if the impedance is inductively (or capacitively) reactive when the excita-
tion is due to a magnetic (or an electric) line source within the waveguide. These \
surface wa\-/e modes ',are'di_stinct from the other waveguide modes; in particular,
these modes exhibit the behaviour of the usual bound surface wave fields that can
exist on a single impedance sqrface excited by a line source if the wall spacing is
. made sufﬁéién_tly large. o

An important characteristic of these surface wave type fields is that the energy
associated with these fields is guided very close to the impedance surface. ‘To check
thié ch'aracterisvti.c., the magnitﬁde of G for a magneti.c line source is plottéd in
_ 'Figur'e 16 as. a function of normalized transverse distance kz for fixed kz when
the source is very near the lower wall. As shown in the figure, the two solutions
show discrepancy when both the source and the field points are near the _saxhe
impeda'nce wall. This is because the surface wave contribution to the ray solution

is anticipated to be very strong in that case and this surface wave contribution
is not included in the ray solution in that figure. Note that the surface wave is
' includéd in the modal solution m the Figure 16. The details of the analysis which
include the surface wa\;e for both solutions are presented later in this section.
However, as the field point moves to the upper wall for a given source point which
is close to the lower wall, the two solutions agree well again. This good agreement

is to be expected because the surface wave in the ray solution becomes weak and
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contributes nggligibly due to the exponential decay‘ of the surface wave field as
the field point is moved away from the impedance surface in whose vicinity the
source is located. Figure 17 shows the fields inside the waveguide of Figure 2 when
the source and observation poinfs are both located close to one of the impedance
walls of the waveguide, and the impedance is chosen to be inductively reactive
for a magnetic line source excitation so that surface wave modes can exist. Note
that the sﬁrface wave type fields are not included in either the modal or the ray
solutions in the figure. -

The surface wave modes can be included in thg modal solution by simply -
evaluating the integral in Equation (2.12) via the residue theorem for the surface
- wave poles a.s done for the other ordinary modes. The distinction between the
surface wAave_v poles from the other ordinary poles is that the real part of k. ofl-
" the surface Wave pole is greater than ka as shown in Table (2.2). It is clear that
the surface wavé-pole at a = ap in the complex angular spectrum or a plane of
* Figure 19 is complex valued. Therefore, this complex valued surface wave pole
(at @ = ap) cannot be excited by a plane wave which has a real valued angle of
incidence. When the Vpleme wave is incident on the edges at the open end of the
- semi-infinite waveguide with a non-zero surface impedance (or ébsorber cpéting)
on its inner wai!s, it scatters to produce the reflected and edge diffracted ﬁeld#.
The scattéred fields can be expressed as an integral (over a contour C of Figure 19)
in thg-angular spectral (a) domain; an asymptotic (saddle point) approximation
“to this angular spectrum integral furnishes the so called “diffracted rays” which
vpropagate from the edges to an observation point along localized paths or fays. A
pole exists in the integrand at a ret;l value of «; it can be captured for a certain
range of observation angles to furnish the reflected field which propagates along the

reflected ray.- The exact integral representation in the angular spectral domain, h
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. Table 2.2: Ordinary and surface wave poles on k; and k; planes for a magnetic

line source for ke = 50.0 and Z; = Z, = 0.1 + 0.3

t

kz,

ks

1
2

=N

b B 2]

10
11
12
13
14
15
16
17

18

3.559+j 0.154

7.094% 5 0.269
10.582+5 0.331
14.009+ 0.351
17.379+5 0.347
20.702+5 0.331
23.998+5 0.312
27.247+j 0.291
30.486-+j 0.272
33.708+; 0.254
36.917+; 0.238
40.117+j 0.223
43.309+7 0.210
46.494+7 0.198
49.674+; 0.187
52.850+5 0.177
56.022+7 0.168

59.191+5 0.160

4.999+715.000

5.0014 715.000

49.873—5 0.011
49.495— 0.039
48.869—j 0.072
47.999—5 0.103
46.884—5 0.129
45.514—5 0.151
43.871-7 0.170
41.925—5 0.189
39.633—7 0.209
36.931—7 0.232
33.723—5 0.260

29.846—; 0.300

24.990-7 0.363

18.400— 5 0.500
5.913—5 1.571
0.547—-3717.129
0.373—725.270

0.300— ;31.680

51.983—7 1.442
51.982—5 1.442

ordinary

poles

surface wave

poles
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however, also contains a complex valued angle @ = ap at which the integrand
exhibits another pole singularity; this pole can also be captured for a certain
range of angles to furnish the surface wave; i.e. the phenomenon of scattering
(or diffraction) by an edge in an irnpédance surface can indeed excite a surface
wave. Thus, the edges of the semi-infinite waveguide with an impedance boundéry
condition on its inner walls will excite a surface wave w'hen they are illuminated
by a plane wave'. This surface wave will then propagate inside the waveguide. It
is convenient to think of “equivalent” line currents located at the edges, which can
be deduced from the expression for the edge diffracted fields, as the sources which
produce the surface wave. It is therefore of interest to find the surface wave which
is excited by a line source on ohe of the wéveguide boundaries as in Figure 2 to
simulate the effect of a surface wave excited by the diffraction of a plane wave
which is incident on one of fhe edges of the semi-infinite waveguide walls. In this
instance where the line source is located at (or near) one of the v‘vaveguide walls,
only the n = 0 case in Equations (2.24)-(2.27) is important, and even for this
n=20 case only the corresponding m = 2'and m = 3 terms are dominant, as the
remaining terms emphasize repeated interactions of the sﬁrface wave field with the
opposite wall; the latter interaction is assumed to be small because the surface
wave decays exponentially on the boundary on which the source is located and its
field is therefore weak at the opposite wall if the wall spacing is sufficiently large.

Despite the inclusion of the surface wave effects, the agreement between the
exact modal and the approximate ray sb]ution'is not so good in Figure 18, unless
the distance from the source to the observér is sufficiently large. It was found
that the reason for this discfepancy betweeﬁ the two solutions could be traced to
the need for an increased accuracy in the asymptotic approximation of the ray

solution near the surface when the observation point lies within the surface wave
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“transition region” where the Surface wave is not fully established. This “transition
- region” extends over a certain distance from the source depending on the value of
the impedance; e.g., it becomes larger for the magnetic line source excitation of
an inductively reactive impedance boundary as the inductive reactance becomes
smaller. This transition region may be viewed as a “launching” or “peel out” dis-
tance required to establish the surface wave. A uniform asymptotic treatment
of the integral represgntation of the waveguide Green’s function which yields the
ray expansion provides.a_ simple transition function correction to the surface ray
‘ solution‘in terms of a Fresnel integral. The ordinary ray series solution includ-
ing the surface wave (or ray) contribution results from a non-um’]orrﬁ asymptotic
treatment of the integral for the waw)eguide Green’s function; this ordinary ray so-
lution is éccurate only outside t_he surface wave transition region. Mathematicall'y. _
speaking, the observation point lies within the surface wavé transition region when
the surfac'ebwave pole ap is élosé to the. saadle point as as shown in Fig‘ur¢‘19.’
Consider the integral given by
I(kr) = / o) krsle) g L (238)
Cspp @~ @p | .
wher'e'a,; ‘and o aré-a §uffa'ce wave pole and sad‘dle point, respectively and thie
su_rfacéWaQe pole is near the saddle point as shown in the #bove figure. Then, the
integral is evaluated asymptotically using the uniform saddle point approximation

~ as in Felsen and Marcuvitz [9], and is given by

I(kr) = eIk [\/g 7(0) 4 27 Flay) ¢ Q(w’b\/ﬁ)J (2.37) o

; Im(b) 2 0
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Figure 19: Integration path and a surface wave pole ap which is near the saddle '»

point aj.
whgre :
b = \/I(ae) = S(ap) i 38)
1) = Mled Sl g -
. a—ap - v
" fMes) (‘2.40)._
Q(y) = /9o &% dr (2.41)

Using the above formula, the integral in Equation (2.36) can be evaluated to obtain
~ the surface ray field.

For analytical deétails, consider G, in Equation (2.25). For n =0, Gzn
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~reducesto -

Gy = ——
20 17 Jo,

an Jc,

where

6 =

cosa— Zy e+jk[cos a(z<+z>)—sin °|z‘;z'|] da

cosa+ Zy

‘e

cosa — Zy e+jkrcos(a-—9)

cos a + Zu

[+ 2007 4 (= 272 ]1/2

)

I — T>

)=

Then, the parameters in Equations (2.38)-(2.40) are expressed as

fla) = jcos(a— as)

/"()

—J cos(a — ay)

b = | V7 (1 = cos(a — a,))

T(0) =

\/§e+j1r/4 f(as) 4

fle)

Qg —

h — \/é e—jﬂ’/4

V2 e Im/4 sin(25%4)

The analysis for G3q is very similar and is thus ommitted here.

(2.42)

(2.43)

(2 ’44 ); PRSIt sk LA '-“m’.*-*-. s

(2.45)
(2.46)
(2.47)

(2.48)

(2.49)

A comparison of the improved or uniform ray solution with the exact modal

solution shown in Figure 20 now indicates that they are in excellent agreement.
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Note that the modal solution.in Figure 20 is unchanged as compared to that in
Figure 18; only the ray solution has been improved in Figure 20 by including the
uniform surface wave transition function. Since surface wave effects are dominant-
only in the vicinity of the boundary on which the source is located, these surface
wave effects may be neglected whenever the observatic_m point is located far from
the surface near which thé source is placed as shown in Figure 21. A particulary
interesting result ié observed when the source and observation points lie on the
same ifnpedance wall of the parallel plate Waveguide as in Figure 22. In Figure
22, the ray solution which is composed of the direct ray contribution from the
source together with the contribution from rays singly and multiply reflected from
the walls interferes strongly with the surface wave field plus the term containing
~ the surface wave transition effects since all of the latter surface wave effects are
particulary significant at and near the surface containing the source.

The result in Figure 22 indicates tha£ the surface wave launched by the inci-
dent wave‘at the edges in Figu're 1 could reflect strongly from any discontinuity
placed close to the walls of an absorber lined duct; the reflected surface wave could
vt}.xen radiate outside the semi-infinite waveguide geometry in Figure 1 again \)ia
diﬂfaction' from the edges at the waveguide opening. On the other hand, the effect
of the surface wave field could be controlled to exhibit a greater attenuation along
the direction of :propagation with the inclusion of éreater loss in the impedance

surface characterizing the thin absorber lined waveguide walls.

2.3 Convergence test of the modal and ray solutions

To check the nature of the convergence of the modal and ray solutions, the

magnitude of G is plotled against the number of modes and rays involved in the
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- calculations for a fixed k2 iﬂ Figures 23-26 which pertain to an electrié line source,
and in Figures 27-30 for a magnetic line source. Different impedance values are
employed in each of these figures. It is observed from the figures that the modal
solution reaches a stable field value after summing all the propagating modes for
kz = 20.0. On the other hand, at most n = 3 terms are needed in the ray solution
to arrive at the same result.

As poihted out above, it is observed from Figures 23-30 that the convérgence of
the ray siolut,ion is faéter than the modal ‘solu.tion, and secondly, the convergence of
the modal sélution is not significantly improved by the presence of loss in the walls
since all the propagating modes in this case (plus one evanescent mode near the
- source region) .Are requirea for convergence. On the other hand, the com%ergence
of the ray solution is improved much as the impedance value becomes bigger (for
the TE, case) as shown in the figures. It is conceivable that a special selection of
modes whlich contribute significantly for a given kz and kz will converge faster;
however, a differenﬁ selection ‘would be required for each different kz. It is not

-clear at this time how such a special selection of the modes can be made.
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CHAPTER I

ANALYSIS OF ELECTROMAGNETIC SCATTERING FROM AN
OPEN-ENDED PARALLEL PLATE WAVEGUIDE WITH LOSSY
| INNER WALLS '

3.1 Ray solution for the interior fields of an open-ended parallel plate
waveguide with an 1mpedance boundary condition on its inner
walls

The ray field inside an open-ended seml-mﬁmte parallel plate waveguide with
an 1mpedance boundary condition on its inner walls is found via the uniform
geometrlcal theory of diffraction (UTD) in the present section of this chapter. The
analysis is later extended to include an absorber coating of ﬁnite thickness on the

_ inner waveguide walls in the next section. According to the UTD [1,12], the total

ray field U at an observation poinﬂ consists of the usual geometrical optics (GO) :

incident and reflected fields together with the fields diffracted by the edges such

that

Uttt = U + U + U o (3.1)

4Note that in the present 2-D case, U'° represents the total electric field which is §-
dlrected if an electric line source is used whereas, lt represents the total magnetic
field which is y-directed if a magnetlc line source is present (see Figure 34). The -
fields U* and U" arec associated with the usual GO incident and reflected rays; -

whereas, the ﬁeld'Ud is associated with the edge diflracted rays. The contribution
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Figure 31: Dominant ray paths for the problem in Figure 1.

of the GO field-is given in the first part of this section and the contribution of thé
edge diffracted field is described in the second part of this section. In tﬁe later -
sections, the effect of an interi.o'r'planrar termination is also included, and the total
: .'scz.1ttered field is then taken be a superposition of the field scattered by the edges at
the open end, and the field whff.h is coupled into the wavéguide and then reﬂécted
back from the termination to radiate out into the exterior region from the open

_end of the Waveguide..

3.1.1 Geometrical optics (GO) field

' Retur‘ning to the problem in Figure I, the GO field at some observation point
inside the semiéinﬁnite parallel plate waveguide is due to the incident and reflected
raysbwhich would result when an external plane wave illuminates the semi-infinite
waveguide as shéwn in‘ Fi'gufe 31. The_' GO rays inside the waveguide unde.rgoA
mu]tiplé reflections which result in the separate regions (1), (2), (3) - etc., with
bouhdéries as shown in Figure 32. Each region corresponds io a certain number of
reflections from the top and/or bottom wall. Then according to the location <‘>f‘the

field point inside the waveguide, different combinations of rays such as direct (or
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Direct ray

Region (1

)
(2) Direét and singly reflected rays
) None |

(4) Singly reflected ray

(5) None

(6) Singly and doubly reflected rays
(7) Doubly reflected ray

Figure 32: Semi-infinite parallel plate waveguide showing different combinations
- of geometric optical direct, singly and multiply reflected rays in each region of
' the waveguide.
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incident), reflected, and also multiply reflected rays reach the observation point.
However, the GO field inside the waveguide has discontinuities when one crosses
the boundaries between different regions as shown in Figure 32. TheseAnon-physica.l
discontinuities are compensated in the UTD by the diffracted rays which originate
ffom the edges as shown in Figure 31. The edge diffracted rays and some numerical
'examples-are presented following this discussion of the GO field.

| In this analysis, each type of rays is considered as shown in Figure 33 The
Idlrect ray ﬁeld can be obtamed by simply including the phase term e ~jkO'P for a

plane wave if the phase reference is at the lower edge O such that

Uﬁ (P) _ Uﬁ (O) . e—jka'? (3.2)
vip) | |uvio
- where Uﬁ'(i)_(}.’) and Uﬁ(i)(O) represent the components of the incident eieetric .
or magnetic field which‘are'polarized parallel (perpendicular) to the edge (or §--
_difeﬁtioh). Note that O' is the prqjectien of O onto the ray path. The singly
: feﬁected ray is calcuiated by .includin.g' the phase term given by eIk W, where |
E the extension of the incident fay to P is the unfolded path of the singly reﬂec_ted
'ray to P, and by t»aking into account the reflection coefﬁcient of the walls; i.e., '
00| e [0 ] e g
vyepy | Lo

where RE(M) is the reflection coefficient matrix when U refers to the electric

(magnetfc)_ field. The entrics of the reflection coefficient matrix are given as |
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o

(¢) MULTIPLY DIFFRACTED -REFLECTED RAY

Figure 33: Semi-infinite parallel plate waveguide showing direct, singly reflected,
doubly reflected, direct diffracted and multiply diffracted-reflected rays.
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Ry o

RE(M) = (3.-4)

0 Ry

where ji’"( 1) is the reflection coéfﬁcient for the electric field which is polarized
* parallel (perpendicular) to_ the plane of incidence and it is derived in Appendices
"D and F for the impedance boundary condition and the absorber coated peffectly-
cqnducting‘surfaces,v respectively. Similarly, the doubly reﬁectéd ray field is cal- |
culated by including the phase term given by e‘jk'W, where the extension of
the incident ray tb P" is the unfolded path of the doubly reflected ray to P, and
_by taking into account the réﬂection coefficient of the walls two times in this case;

ie.,

Ur (P)
| UL (P)

U" (0)
U (0)

= RE(m)

. ¢~ Ik O P (3.5)
It is noted that the number of reflections which the ray experiences as it propagates
‘inside the waveguide is determined analytically by ascertaining the region in which
the field point is located as shown in Figure 32. The multiply reflected rays which -
aré diffracted by edges in Figure 33(c) follow the same analysis as the reflected

: GO rays as discussed above. | |

3.1.2 Edge diffracted rays

The incident field impinging on the edges at the open end produces diffracted
”rays which can be calculated via Maliuzhinets’ edge diffraction coefficient [13]
that is valid for the problem of plane wave diflraction by a wedge with two face

| impedancés. Here the Maliuzhinets’ result {13] can be specialized to the configu-

" ration in Figure 1 corrésponding to the case of a half plane pertainihgvtoeach of
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the semi-infinite waveguide walls. In particular, the half‘pl'ane here is a special
case of a Wedge with a zero internal angle and with a non-zero impedance on one
face (corresponding to the inner waveguide wall) and with a zero impedance on
the other facé (corresponding to the outer perfectly-conducting waveguide wall)
of the half plane. An alternative, more approximate but simpler method (12] for
computing the diffracted rays by the edges at open end is to modify the diffraction
coefficient which i; based on the UTD solution for a perfectly-conducting half plane
(1,2] to make it valid for a half plane with two face impedances. In this study, the |
modified diffraction coefﬁcent‘ [12] is used for its simplicity. The simpler solution
in [12] is discussed below for completeness. -

~ Consider a line source which illuminates a half plane whose one side is perfectly¥
cdnducting and the otﬁer side is characterized by a non-zero surface impedance
as shown in Figure 34. According to the regions where the observation point P

is located (see Figure 34), the individual terms may be expressed in the following .

forms,
( e_jksi . . . . .
Ao 75 ; in Regions I and II, and Ay is some
: known complex constant related to '
UipP) = ¢« - (3.6)
the strength of the line source.
| 0 ;inRegionIIL
; —Jker . . ’
U'(QR) Rm(E) CT ; in Region I with
: , —iks"
U(P) = . UYQp) = Ao e\/J:l; (3.7)
0 . ; in Regions 11 and I1L. |
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Figure 34: Rays associated -.with the problem of line source excitation of an
- impenetrable half plane with two face impedances.
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; L » ~jks'
‘t]d(P) _ U'(QE) Dy (E) e\/qd ; where U*(QE) = Ao ;'7;-'," (3.8)
"~ in Regions I, II and IIL

In the above, s; (or s;) is the distance from the source (or point of reflection Qp)
- to the observation point P and s is the distance from the point of diffraction bn
the edge (Qg) tb_ the observation point P.

For the half plane considered here (see Figure 34), the diffraction coefficient

D) for the TEy (TMy) case is given by [1,12]

DM(E) = D(1) + D(2) + k"(.L) D(3) + D(4) (3.9)
“where
e LIL - 4
- D(1) = —%{/?_fk cot( ZL(%’L)) F[kLa(¢ —¢')] (3.10)
Y LIL) (A A " :
D(2) = ﬁzen\/sz cot ( L%—L)) F LkLa(<;s—qb')] (3.11)
—in/4 ! -
D@3) = -2‘; == cot ﬁ—(;;*—d’—)) FlkLag+4)]  (312)
. ) e_j,r/4 T — (¢+¢;) -
D) = -~ cot( T2 L)) FlkLa(s+4)]  (313)
and
n o= 2 fora half-plane | | _ (314)
L= S 3.15
s’-{»sd ( ) )
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a(8) = 2 cos?(B/2); B=o¢F¢ (3.16)

oo ‘

F(z) = 2jyz el / et gy )

z

The F(z) of Equation (3.17) which appears in Equations (3.10) through (3.13) is
_called a transition function and it involves a Fresnel integral. The .magn.itude and
‘phas-ev' of the transition fuh;tion is shown in Appendix E. Note that both anglgs_q&'
and ¢ are measured f_rom the perfectly-conducting side of the half plane as shown
in Figure 35. ‘ _ o
The. approximate UTD edge diffraction coefficient in Equation (3.9) provides
- continuity in the total high frequency ray field across the incident and reflection
shadow boundary transition regions. It is noted from Equations (3.6) and (3.7)
that the GO field is discontinuous at these shadow boundaries; thus the diﬁ‘raﬁted
field must 'proﬁerly compensate the discontinuities in ‘the incident and reflected
ﬁeld.s there. In particular, the D(¢ — ¢') type terms (D(l)b and D(2)) in the Dy g |
'keep t"h'e féta] field bounded at ti’ne incident shadow boundary (ISB); likewis.e, the

| D(¢ + ¢') terms (D(3) and D(4)) do the same thing at the reflection shadow

o ‘boundary (RSB).

If the line source receeds to infinity, then the ﬁeld_ incident on the half pl‘ane is
- a plane wave. Normalizing the strength of the plane wave to be of unit amplitude

at QEV in Figure 34, one may write

. Uz(QE) =-1 : . (3.18)
UYP) = elkR cos(é=¢) (3.19)
4 Ur(P) = RM(E) eij cos(¢+¢l) ' : (320) :
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P (FIELD POINT)

£ or R

Figure 35: A plane wave incident on a half plane geometry with
perfectly-conducting on one side and impedance surface on the other side.

where R, ¢ and ¢' are defined in Figure 35. The only change in the solution for
U4 in Equation (3.8) is that L in Equation (3.15) is replaced by s4 as s/ — oo for

the case of plane wave incidence.

3.1.3 Total UTD ray field

Using the diffraction coefficient developed in the previous section, the inci-
dent, reflected, diffracted and total fields are examined for the half plane geometry
as shown in Figure 35. The only difference between Figures 34 and 35 is that the
line source is allowed to receed to infinity in Figure 35 giving rise to a plane wave
illumination. In the above figure, R is the dist#r_lce from the edge of the half plane
to the field point, and ¢' and ¢ are incident and observation angles, respectivgly
as indicated earlier. In addition, one recalls th.at R; and X; correspond to the
surface resisfance and reactance of the impedance wall, respec'tively as defined in

the previous chapter. For an incident TMy plane wave of unit strength (and zero
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phase at @ g) which is polarized such that E* = § E;, the corresponding GO (inci-
dent and reflected) and diﬂ‘ractedAﬁelds are plotted against the observation angle
in Figure 36. The incident and obsen}ation angles are measured from the perfectly-
conducting face in this case. The reflected field is plotted as a dashed line; whereas
the incident field is shown as a solid line in the figure with vertical axis marked IN-
CIDENT. The ripples in the magnitude of the GO field result from an interference
between the incident and reflected fields. Note also that the discontinuities in the
GO field are compensated by the correspoﬁding discontinuities in the diffracted
field as shown in the-ﬁgures with vertical axis marked DIFFRACTED and TOTAL
fields, respectively. The total ray field is thus continuous for all observation angles
- including the ISB (¢ = 210°) and RSB (¢ = 150°) directions. Similar plots are
| shown in Figures 37-40 for different incident angles. In all the figures (Figﬁr_es |
~ 36-40), the total fields are continuous for ;clll observation angles. Additional cal-
culations are also shown in Figures 41—45‘for TE, case for the various impedance |
values on the same half plane. The incident and observation angles are measured
from the impedance wall side in Figures 41-45. One notes that the ripples in the
.total fields becomes smaller as the loss or the resistiv_e part of the wall surface
impedance becomes larger, because the magnitude of reflected field decreases with
higher loss. |
" The analys}s developed above can be emplo_yéd to treat the scattering and
coupling problems associated with ihe semi-infinite parallel plate waveguide. illu-
minated by a plane wave as shown in Figure 46 because the waveguide can be
formed by two paralle] half planes; one half plane corresponds to the lower wall,
and the other onc corresponds to ‘the upper wall as shown in this figure. As an -
illustration, each type of ray field is plotted inside the waveguide configuration of

Figure 46 as a function of the axial distance in Figures 47-49 for a plane wave
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Figure 46: Semi-infinite parallel plate waveguide geometry showing the incident
plane wave and the angle of incidence.

with TMy or parallel polarization fbr various incidence angles. Note that the ob-
servation point in all these plots is located off the walls; hence, the surface wave
effects are not ezpected to be strong in this case and thus the surface wave contri-
bution is not considered. As shown in these plots, the total fields are continuous
for all the boundaries designated in Figure 32. Similar plots are shown for dif- -
ferent impedance values in Figures 50-52 for a TE, incident plane wave. Note
that the general shape éf the total field is determined roughly by the GO (incident
and reflected) fields and the total field coupled into the waveguide region can be
reduced by properly choosing the value of the wall impedance. Also, the sufface
wave attenuates sufficiently rapidly as it propagates if the wall loss (real part of the
impedance) is made even moderately large; in such é.case, the surface wave effects

become negligible at a sufficient distance from the open end of the waveguide.

78



2.0
.

T ---<- REFLECTED FIELD
g SRVOOR SRS RS SN SRR SRR SOSIOS SOti i e T
ae i
L.)—. _________________________________
Z iy DT et S S R SR SOOI SIS
— i

t

2.00.0

.........................................................................................

GO
0

Il l

2.00.0

DIFFRACT
1.0

“0.0 r'2:0 " 4o 60 8.0
: Z (WRVELENGTHS)

L
10.0 12,0

10.0 (WAVELENGTHS)  ¢'=30.0 (DEGREES)
8.0 (WAVELENGTHS)  2g=10.5,0.5)

>x
[ ]

Figure 47: Each ray field within a semi-infinite pa.rallel plate waveguide with -
impedance walls plotted as a function of the axial distance from-the. open end to
the field point for an incident plane wave with a parallel polarization (TMy).
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Figure 48: Each ray field within a semi-infinite paralle] plate waveguide with
impedance walls plotted as a function of the axial distance from the open end to
the field point for an incident plane wave with a parallel polarization (TMy).

80



INCIDENT

DIFFRACT

TOTAL

o

§ T N S

do i 2T 7 REFLECTED FIELD

o ............................................................................

Lok SSESS TSN S U IS NI NN SR SRS SIS SO
[ S S P

Q. 1 Y L

o

[=]

"

o

)

o

o~

Y PSSO VA SO SUOUDS TSNS SN SOOI SR S S S

o

O’.

(=}

o

o

[en) L N . N N . N :

o' Ll I L) 1 1 I L l L] j ]

0.0 2.0 4.0 6.0 8.0 10,0 12.0

Z (WAVELENGTHS)

10.0 ‘(NHVELENGTHS)i ¢'=60.0 (DEGREES)
8.0 (WAVELENGTHS) Z5=10.5,0.5)

> D
" n

Figure 49: Each ray field within a semi-infinite parallel plate wavegui

impedance walls plotted as a function of the axial distance from the op

the field point for an incident plane wave with a parallel polarization
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3.2 Ray solution for the interior flelds of an’ open-ended parallel plate
waveguide coated with an absorbmg material on its inner walls

Consider the waveguide whqse inner walls are coated with a thin dielec-
“tric/ferrite material. The only difference between the analysis of this waveguide
configuration and the one involving an impedance boundary condition which was
considered in thé previous section lies in the reflection coefficients in Equations
(3.7) and (3.9). The reflection coefficients which must be used for the absorber
coating of finite thickness, i.e. for a grouﬁded dielectric/ferrite slab are derived in
Appendix F using the usual transverse resonance method [4]; these new reflection
cogﬂ’icients éhould replace the ones for the impedance béundary condition obtained
iﬁ Appendix D. It is noted that these .Fresnel reflection coefficients of Appehdix '
F are a function of the incideﬁt angle ¢', the thickness of the slab t, and the per-

mittivity € and permeability u of the slab; they are given below for convenience as

. sin @' — L €rity — cos2 @' tan (kt €rfly — COS2 ¢’)
R“ = (3.21)

sin@’ + ;% €rpty — cosZ @' tan (kt €r iy — COS2 ¢’)

. sin ¢’ + L €rpty — cos? ¢! cot (kt €rpiy — cos2 ¢’ )
R, = e (3.22)

. sing! — ;fr- erpty — cos2 @' cot (kt Erply — cos2 ¢’)

: whefe €r and u, are the permittivity and permeability of the.aixbso‘rber (dielec-
t.ric/ferrite) material relative to the free-space values, respectively, and k is free-
space‘wave number. As before, ¢’ is the angl_e of incidence. Then, following the
same proéeaure as that for the impedance Walled waveguide, one can calculate the
reflected and diffracted (as well as diffracted-reflected) ray fields for the waveguide

coated with a dielectric/ferrite composite material. The numerical results based
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on that analysis are plotted in Figures 53-55 for various values of the thickness ¢
and other parameters of the absorber coating. Similar plots are shown in Figures
56-59 for various ‘values of the permittivity ¢, and in Figures 60—'63 for various
values of the permeability u, respectively. As shown in the figures, the interior
field of the waveguide can be reduced ;igniﬁcantly by choosing the parameters of

the absorbing material in a proper way.

3.3 Ray solution for the interior fields of an open-ended parallel plate'
waveguide coated with an absorbing material on its inner walls

. and with a planar termination inside

A simple planar termination which is L wavelengths away from the open end
is placed inside the waveguiae as shown in the Figure 64. It is noted that the
rﬁateria] of the termination need not be necessarily the Same as that of the inner
~ walls but for the present it is assumed to be the same for convenience. Then
the field at the observation point consist§ of the fields associéted with two groups
of rays. One group is associated with the incident, reflected and diffracted rays
from the open end of .the wa\keguide as in the case of the waveguide without a
termination. The other group of rays corresponds to those which are reflected
back from the términation and then reach the field point. The ray field due to
" the reflection by the termination can be calculated by simply using an eﬂ'éctive
: obser\.'ation point at an image location _which is symmetrical with respect to the
. actual observ‘ation point about the termination as shown in Figure 64.
| Thus the ray field at P is calculated by adding the field of the rays from the
open end reaching P without passing through the termination as well as the field
of thé rays reaching P’ after they are extended or continued past the termination

"to P’ and by including the reflection coefficient of the termination wall to the fields
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polarization (TMy) case.
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Figure 55: Each ray field within a semi-infinite parallel plate waveguide coated

with a dielectric /ferrite material plotted as a function of the axial distance from- -~

~the open end to the field point for an incident plane wave with a parallel
polarization (TMy) case.
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Figure}57: Each ray field within a semi-infinite parallel plate waveguide coated
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Flgure 61: Each ray field within a semi-infinite parallel plate waveguide coated
with a dielectric /ferrite material plotted as a function of the axial distance from
-the open end to the field point for an incident plane wave with a parallel
polarization (TM,) case.
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Figure 63: Each ray field within a semi-infinite parallel plate waveguide coated
with a dielectric/ferrite material plotted as a function of the axial distance from
the open end to the ficld point for an incident plane wave with a parallel
polarization (TMy) case.
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Figure 64: A semi-infinite parallel plate waveguide with a planar termination
showing singly reflected ray by the upper wall and doubly reflected ray by the
: upper and the termination.

of the fays reaching P'. Each type of ray field is plotted in Figures 65 and 66 for
the two diﬂ'erent wave polarizations. It is notéd that the small ripples in each
field are due to the interaction between the rays coupled into the guide from the
exterior and those reflected back from the termination after being coupled into the

waveguide.

-3.4 . Field backscattered from a semi-infinite parallel plate waveguide
with an impedance boundary condition on its inner walls

U‘sing the same diffraction coefficients as in Equation (3.9), the far zone fields

backscattered from a semi-infinite parallel platé waveguide with inner impedance

walls are computed and shown in Figures 67 and 68 as a function of the incident

“angle for parallel and perpendicular polarization cases, respectively. The pertinent

rays used in this Ease are shown in Figure 69. In Figure 69, R, represents the far

zone distance from the lower edge of the waveguide (zero phase reference) to the
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Figure 65: Each ray field within a semi-infinite parallel plate waveguide coated
with a dielectric/ferrite material and with a planar termination inside when a
plane wave with parallel polarization is incident.
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Figure 66: Each ray field within a semi-infinite parallel plate waveguide coated
with a dielectric/ferrite material and with a planar termination inside when a
plane wave with perpendicular polarization is incident.
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field point. Note that the backscattered field is ent_irély due to the edée diffracted
rays for the semi-infinite waveguide without any interior termination, and the rays
multiply diffracted across the aperture are ignored in t;he figures. Rays multiply
diffracted across the aperture become important if the waveguide width (a) is
not sufficiently large in terms of the wavelength. Additional plots are presented
in Figures 70 and 71 which show the behaviour of the backscattered field as a
fg-nctio_n of the waveguide width for different incident wave polérizationé. ‘Similiar
results can also be obtained for a perfectl;ﬁconducting parallel plate waveguide |
with absorber coating on its inner walls by simply using the results in Appendix F
ratherthan Appendix D for the reflection coefficient which occurs in the difffaction _

coefficient of Equation (3.9).

3.5 Field radiated from the interior .cavity region formed by the semi-
infinite waveguide and its interior planar termination
The field which is initially coupled into the wavegﬁide from the open end and

then reflected from the interior termination to radiate out of the open end is cal-
“culated using an aperture integration (Al) technique together with the equivalence
theorem [14,15,16] in this section. This field is referred to as the field radiated from
the interior waveguide cavity region where the open-ended cavity is formed by the
semi-infinite wai'eguide and its interior termination as shown in Figure 72. The
total field scattered by the semi-infinite waveguide consists of this cavity radiation
contribution and the fields scattered frorﬁ the edges at the open end of the semi-
.inﬁnite walls of the waveguide; the latter contribution was found in the previous
Section 3.4 for the special case of backscatter. In order to use Al to calculate the
cavity radiation field, one can find a set of equivalent electric and magnetic currents

Js and M; on an appropriate surface that encloses the semi-infinite waveguide.
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Figure 67: Plane wave backscattering by a semi-infinite parallel plate waveguide
with an impedance boundary condition on its inner walls as a function of
incident angle for the parallel polarization case.
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Figure 68: Plane wave backscattering by a semi-infinite parallel plate waveguide
with an impedance boundary condition on its inner walls as-a function of
' incident angle for the perpendicular polarization case.
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Figure 69: Plane wave backscattering by a semi-infinite parallel plate waveguide
with an impedance boundary condition on its inner walls as a function of the - -
waveguide width for the parallel polarization case.

" These equivalent currents thén radiate the same fields as fhose originally radiated A
from the open end by the fields reflected from the interior waveguide termination;
also, J; and M, radiate a null field inside thé chosen surface. Since the interior
cavity radiation in the forward half space is- of major interest in this study, it is
convenient to choose a mathematical surface which is infinite in extent and is de-'»
" fined by the plane z = 0 (which also contains he waveguide aperture at the open
end). The equivalent séurce Js; and M, then reside at 2z = 0~ and extend over
—0o<zr<o00,—00<y< oo as shown iﬁ Figure 73(a). Actua.lly, the problem is
2-D in nature, so that there is no variation in y. ’_l‘.hev equivalent sources Js and -

M, are defined by

3, = axHe (323

Ms = ECY X ﬁ . (3.24) .
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Figure 71: Plane wave backscattering by a semi-infinite paralle! plate waveguide
with an impedance boundary condition on its inner walls as a function of the -
‘ .~ waveguide width for the perpendicular polarization case. -
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in which & = —% is the unit normal outward to the chosen surface (wnich encloses
‘the waveguide configuration). Here, E., and H,, are the electric and magnetic _
fields radiated by the open-ended waveguide cavity. As seen from Figure 73(a),
the above Js and M; at 2 =0~ radiate null fields for z > 0 and they generate E,,
and H., for 2 < 0. A diﬁerent form of the equivalence theorem shows that only
M, over the perfect electric conductor at 2 = 0 as in Figure 73(a) generates the
same f_ielde for 2 < 0 as the problem in F igure 73(a). It is noted that in Figures
.v73(a) and 73(b), the sources in the equivalent problem radiate with the original -
waveguide geometry removed. The fields E,, and H,, afe themselves unknown
: .énd are quantities' to be determined Consequently, J; and M, as defined above
in Equations (3.23) and (3 24) are also unknown at this point. However, one can

introduce a Kirchhoff approxnmatlon for determining J; and M in Figure 73(a) |
: ~or for M; in Flgure 73(b). Knowing the values for the equivalent sources J5 and.

, M,‘ based on the Kiichhoﬁ approximation then allows one to find E_c, and Hcr '
approxim}ately.} In the Kirchhoff approximation, Js and Mls in the present case are

~ given by only those ﬁelds' in the ‘waveguide aperture (at-z = 0) which arrive there

after undergoing-a reﬁectxon from the interior wavegmde termination; additional

wave 1nteractlons between the open end and the interior-termination are expected
‘ 'to contnbute weakly to the cavnty radlatlon because the interior waveguxde wall

] ls,lossy, and hence -thelr effect is ignored. It is con‘vement to deal with only ,M-’
. ',,a$ 1n the equi\}elent problem of Figure 73(b); thus, a. Kirchhofl approximation to
,‘ t.he'equivalent problem in Figure 73(be) is shown in Figure 74(a), wherein M is
set equal to zero outside the pllysical eXtent of the original Waveguide aperture at
: the open end Then the conﬁguratlon equwa]ent to that in Figure 74(a) which is |
‘ glven in F)gure 74(b) w1th the ground planeat z = 0 removed and with 2 M

over 0 <z < a at z = 07, serves as the starting pomt for calculating the cavity
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FIELD REFLECTED FROM
THE TERMINATION AT 2z=L

Figure 72: Radiation of the field reflected from the interior termination.

radiation field. The final equivalent configuration in Figure 74(b) may be viewed -
as the physical optics (PO) approximation (using magnetic currents} to the exact

equivalent configuration in Figures 73(a) or 73(b). It is noted that

_":v‘vher.e Ea is the Kirchhoff approximation for the electric field in the aperture. For
‘ At?he_s:a'ke of -.convenience, a fu_rther: approximation is introduced in Eq such thet
-o‘nly: the geometrical optics fields which enter into the waveguide from the open
‘ é‘nd and then undergo reﬂection at the termination within the waveguide to return -
' . back at the open end are used to descrnbe E,;i.e. . the effect of edge diffracted rays |
- whlch are coupled mto the wavegulde and then reﬂected by the termination are
' vlgnored Next an appropriate radlatlon mtegral is employed to calculate the ﬁelds-' '

“radiated in the forward half space (z < 0) by the above magnetic current ZM, |
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(a) Equivalent problem in which J; and M, reside

at z = 07 over the entire domain —oco < z < oo.
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ONLY (0,0)
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ELECTRIC
CONDUCTOR

8 ===,
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| (b) A problem equivaleht to that in (a). A perfect electric conductor

is placed at z = 0; this shorts out J; Aleaving only M;.

. 'Figure 73: Equivalent configurations for calculating the cavity radiation field.
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(a) Kirchhoff approximatibn to the problem in Figure 73(b).
| M; is assumed to exist only over the physical extent

of the aperture at the open end (0 < z < a);
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(b) A problem equivalent to -that in (a). The perfect electric

- conductor'at z=0is r:emoved and its effect is accounted
for by doubling the strength of M. This is like the PO
approximation ﬁsing m_agnetic 'curreﬁt. |

Flgure 74: Kirchhoff or phys:cal optlcs approximated versnons of the equwalent“:-
: problem in Flgure 73(b). o '
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TO THE OBSERVATION
POINT

Figure 75: A ray tube reflected back from the termination.

The analysis of t.his radiation problem is described .Below; this analysis begins by -
- giving an expression for E,.

- Consider a ray tube w.h'i.ch after being reflected from the termination occupies .
the portion a; <z<a within the aperture in Figure 75. Also, the angle at which
tﬁis ray tube arrives in the aperture plane is 7 + ¢' as shown in the figure. The -

‘electric field at the aperture is then given by

e | 9 Eso e-—jk[(n-(—l) asin ¢'+2L£os¢'] ] e]'kzsimﬁ' . for odd n (.3 26)
e | ¥ Ea e'—jk[nd sin ¢'+2L cos ¢'] . e—jkzsin ¢ : for even n RS

- where
Eqo : electric field strength of the reflected ray tube

in the aperture; this is a known quantity.

L : distance from the open end to the termination
a : waveguide height
n : number of reflections of a ra‘y‘tube
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The 2 M, for odd values of n is given by

2IM, = 2% E, e—jk[ (n+1) asin ¢'+2L cos ¢'] . eJ'k-‘! sin ¢' (3.27)

The E; radiated in the far zone exterior to the aperture by the M, in Equation

(3.27) is represented as [14]

, 7k X e kR '

where Z, (or Y,) is free-space wave impedance (or admittance) and R is a unit

vector in radiation direction. Then the aboye equation reduces to

: ag R ~J7kR
E: = ,/;_’; / - (% x R) 2M, e\/ﬁ dz' (3.29)
ap .

" where

R = Ry-z'sing | (3.30)

-

R = —Xsing—£Zcos¢ (3.31)

Also, ¢ is an observation angle and Ry is the distance from the origin to the

observation point. Hence, Equation (3.29) reduces to

. - . - -kRO
- A / 'ﬁ —Jk[(n-l-l) asin¢’+2Lcos 45'] e’)
E 271’ an [ - Cés ¢ \/E .

y
. /a2 ejk:z'( sin ¢+sin ¢’) dr’
ot |

: - ' —JkR
Jk —jk[(n+1) asing¢’'+2Lcos ¢'] e” %0
“ Eape? : cos ¢
27 o VvV Ry
. o . ’ ) . . .
.2d; s':: 1 grkag | - (332)
.71 :

112



where

2} = kd,(sing+sing’) - (3.33)
£ = kdy(sin¢ +sing') | (3.34)
d = 2 > = (3.35)
d = 2 ; “ (3.36)

Similarly, the radiated field Ej for even values of nis expresséd as

TR ~7kRy
E; - ;72_; Eqo e-_J'k[nasm ¢’+2Lcos¢'] cos ¢ €

. /a? e];kz'(sin ¢—sin ¢') dz'
ay _

O GE , e~ikRq
— -7_ Egoe _Jk[na5111fﬁ+2Lf:os¢] cos ¢

RYRLL g N (3.37)

o

where |
z§ - = kd,; (sin¢ —sin¢') (3.38)
25 = kdy(sing—sing!) (3.39)

" Note that thé limits'al and a; in the integral of Equ#tion (3.29) can be deter-
‘mined analytically and they are functions 4of the incident angle ¢, the w_avgguide
" width @ and the location of the termination at z = L. It is also noted that there

are always two ray t.ube components to be considered over the aperture with dif-
_ ferent number of reflections and arrival angle; one has n reflections wnth its arnva] :

angle at m + ¢' in the aperture and the other has n + 1 reflections with an arrwal .

angle of m — ¢' (see Flgure 75) The total radiated ﬁe]d can then be obtained by L
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LOCATION OF THE IMAGE OF THE
WAVEGUIDE TERMINATION OPEN END ABOUT
AT Z:=L THE TERMINATION

Figure 76: Rays incident on the op‘en end of the semi-infinite parallel plate
~ waveguide with an incident angle ¢’ and a simple planar termination at z = L.

superimposing the field radiated by each component. It is further noted that had |

" the effect of the edge diffracted raye which are coupled into the waveguide and then ‘
‘reﬂec'ted from the termination been included in the Kirchhoff approximation for

- Eq, the’ hmxts of mtegratxon would have been over the whole aperture0 < z<a

) rather than a <z < ay. As an example consnder the rays incident on the open |

'end of the semi-infinite waveguide wnth an incident angle ¢ and the planar termi- .

E natnon at z = L as shown in- Flgure 76. The rays in region I are: reﬁected by the» e o

- 'termmatlon and propagate outward from the waveguide wnth the angle -—¢' On*l' A
the other hand ‘the rays in reglon Il hlt the top wall and the termination and are

E _scattered backward wnvth the angle +¢' as_shown in the figure.
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The EM plane wave scattering by a semi-infinite parallel plate waveguide
with an impedance boundary condition on its inner walls and with an interior
termination is plotted as a function of the aspect angle ¢ in Figures 77-82 for
various impedance values and different polarizations. Each scatfering pattern has
two peaks at ¢ = +15° and ¢ = —15° directions as expected because the incident
angle is defined by ¢/ = 15°. The level of the two peaks are slightly different from
each other because the width of each ray tube on the aperture is different.and one
ray tube has one more reflection than the’othér inside the waveguide as mentioned
earlier. It is recalled that the planar interior termination is chosen to satisfy the
same boundary conditions as those on the inner walls for convenience. Note that

the pattern for the lossless case or vanishing surface impedance in Figure 77 is

dominated by the interior radiation. However, as the real part of the impedance

becomes larger, the interior radiation becomes weaker and the fields diffracted
from the wavegﬁide edges at the open end mainly contribute to the total scattered
fields. In Figures 83—88, the ‘plar}e wave scattering patterns are again plotted
for a semi-infinite perfectly-conducting waveguide in which the inner waveguide
walls and the planar perfectly-conducting interior te;mination are coatéd with the
same dielectric/ferrite maﬁerial. As shown in the figures, the interior radiation
éaﬁ be reducéd by properly choosing the permitti\(ity and permeability of the
dielectric/ferrite coatin.g; notice that the rim diﬂ'raction-is not significantly affected
by the .changes‘in the pafametérs of the coating in these cases. |
In order to check the accuracy of the scattering patterns shown in Figures 77—
88, the.:y.are compared with those obtlained by the use of a hybrid combination of a
mo_dal.and higﬁ freqﬁéncy techniques together: with the multiple scattering inethpd '
(MSM)’-[17,18,19]. Basically, the analysis in [17,18,19] combines asymptotic highl -

freqﬁency teéhhiqu'es such as the GTD ray method, the equivalent current method -~
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(ECM), and the physical theory of atﬁ'ractz'on (PTD), with the uéugl modal fech-
niques to deal with only perfectly-conducting semi-infinite waveguide geometries
with perfectly conducting interior terminations. In Figures 89-90, the two scatter-
ing patterns are compared for different values of the interior termination length L.
As shown in Figure 89, the two solutions show good agreement in the main and the
first sidelobe regions. The discrepancy in the other regions is due to the fact that
the contributidn from the diffracted rays to the interior radiation is not inciuded
in the Kirchhoff approximation for analytical simplicity' in the present study as
mentioned earlier. For the longer waveguide, the two solutions show some differ-
ences as indicated in Figure 90; this is because the effect of the edge diffracted rays
which have been ignored contribute more significantly to the interior field in the
: wavegﬁide with a larger L than those in thé waveguide with a smaller L. For the
waveguide with a larger L, there are more discontinuities in GO rays (see Figure
32) and the diffracted rays which compensate for these discontinuities give signif-
icant contribution to the field over the aperture. Therefore, a better agreement |
is anticipated if the diffracted rays are included for describing E, in the present

solution.
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CHAPTER IV .

ANALYSIS OF ELECTROMAGNETIC SCATTERING FROM A
- RECTANGULAR WAVEGUIDE WITH LOSSY INNER WALLS

- 4.1 Ray solution for the interior fields of a semi-infinite rectangular
waveguide with lossy interior walls

In this chapter, the problem of electromagnetic scattering by an open-‘ended, B |

perfeétly-conducting rectangular waveguide with absorber coated inner walls and "
with an interior termination is analyzed. The geometry of this open-ended, semi-
- infinite re-c‘ta‘ngu]ar wé,veguide Str_ucttire Withqut the términation is shown in Figure
91. Tﬁe outer wa}l is perfect‘ly-c_onducting and the inner wall is coated with a thin,
uniform lﬁyer of absorbing (dielectric/ferrite) material. The height and width
. of the wa’vegﬁide arev a and b wavelengths, réspective]y. This open-ended, semi-v

.inﬁ'nite rectangular waveguide is illuminated by an arbitrarily polarized exterﬁél
- plaﬂe wave. field. A pér( of this field incident on the openend is scattered back o
into the exterior region and the rest is coupled into the interiof waveguide regidh.. L
Theée interior an:d exterior fields aré énalyzed using tiie uniform geometricalitheory
._.Of diffraction (UTD) ray app'roac'h. 'The_UTD'ﬁeld.consists of the incident and
- reflected geometrical optics (GO) fields and the fields diffracted by the edges at
fhe open end. The GO contribution to the fields coupled into the interior of the
waveguide is discussed in the first part of this Section, This discussion is followed by
a dés,cr'iption of the edge diffracted fields coupled intp the wavegﬁide in the second -

~ part of this section. The effect of including an interior termination is also discussed .. - -
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in the later sections of this chapter; in particular the field which is coupled inside
the waveguide region and then undergoes reflection from the interior termination
to radiate back into the exterior region is found using aperture integration (AI)
in conjunction with a physical optics (PO) approximation qu the aperture field as
_ idone previously for the 2-D case in Chapter III. The total scattered field is the
- sum of the field scattered from just the edges at the open end, and the field which
is initially cdupled into the waveguide and then reflected from the termiﬁation to

radiate out into the exterior region of the waveguide.

4.1.1 Geometrical Optics (GO) fields

A plane wave incident on the open end sets up planes of incidence as shown
in Figure 91 and the incident ray travels in these planes of incidence to reach the
ob_éerx)aﬁon point P after reflecting off the top and side walls of the w%weguide.
The top and side views of this waveguide togetﬁer with the ray path which rea.ches
P and also the incident angles 6’ and ¢' are shown in Figure 92. The angle 6’ is the
angle between the. y axis and the.projection of the incideﬁt ray onto the top wall
‘and #' is the elevation angle from the y — z plane to the incident ray. Note that the
side view in Figure 92 is not the actual side view of the rectangular waveguide but
-an 'unf&ded side view of the planes of incidénce shown in Figure 91. Therefore,
the ray path of the unfolded side view contains the actual length of the ray path
_ to the field point. Note also that the angles ¢’ and 8’ are defined differently from |
'~ the conventional spherical coordinate angles. Then, the incident unit vector iis

given by

I=%sin¢’+9 cos cos¢’ + 2 sinb cos ¢’ : -(4.1)
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Figure 92: Top and unfolded side views of the ray path in Figure 91.
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The path reaching the field pbint P in the top view of Figure 92 is a projection
:of the ray path onto the top wall of the waveguide. From these top and side
views, one can easily determine the humber of reflections which occur before the
ray reaches the field point for a given incident angle; the top view accounts for the
number of reflections by the side walls, while the side view indicates the number of
_ reflections by the top and bottom walls. In the specific example shown in Figure
92, there are five and four reflections by the top and bottom walls, respectively,
and one reflection by each side wall.

This rectangulaf waveguide problem can be analyzed easily in a fashion similar
to that employed in the previous chapter for the 2-D semi-infinite parallel plate
v_va\-’eguide case. For a given observation point inside the waveguide, a possible set
of diflerent combination of rays such as direct, singly.and multiply reflected rays
| by the side walls is determined by looking .at the top view (as in Figure 92) and |
| theh using the analogy of Figure 32 gi,ven‘ in the previous chapter. For each ray
determined by the top view, this procedure is then repeated for &certainiﬁg the
set of rays which have different number of reflections from the top and side walls
by lookingvat the side view of the rectangular wéveguide as shown in Figure 92(b).
THerefore‘, there is a maximun of four different rays reaching a given observation’
point.ilnside the waveguide for a given incident angle; a rﬁaximum of two different
-iays which have different reflections by top and bottom walls and each ray has also’
a maﬁcimum of two -diﬁ‘erent reflections by side walls (see Figure 32). As shown in
Figure 93, each wall with its front edge is; denoted by numbers ‘1’ through ‘4’ for
convenience. It is also convenient to consider the incident GO, and the singly and

- mutiply reflected GO fields separately as done below.
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Figure 93: Rectangular waveguide showing the assignment of the wall numbers to
the waveguide.

i) Incident GO field

_ For the three dimensional (3-D) case, it is necessary to express the fields in
a reference coordinate system. The rectangular coordinate system is chosen as
the reference coordinate in this study. The incident field at the observation point
inside the waveguide is then computed in terms of the field incident at the origin
and then by including the corresponding phase term in which the phase is referred

“to the origin O in Figure 91; i.e., the incident electric field E*(P) at P is given by

E'(P) =% EL(P) +§ Ei(P) + & E.(P) (4.2)
4whe4re ' .
.rEi(P)- . FE;‘(O)-‘ ‘
Ei(P) | =| Ei(0) | e (4.3)
| EL(P) | | Ei(O)
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and s' is the distance from the observation point to thé plane which is perpendicular

to the incident unit vector I and which contains the origin (O); this ' is given by
s* = sin ¢ - zp + cos @' cos ¢’ - yp + sin ' cos ¢’ - 2p (4.4)

‘where zp, yp and 2, are the_ coordinates .of the observation point P. It is noted
' that the raﬁge of values for the axial distance_ z which pertains tb the incident field
. must safisfy the following criteria; namely, that it must fall within the i'ncident.
field region (Region (1) in Figure 32) in the both top"and side views of Figuré 92;
if not, it is not anincident field, and it is then categorized as a singly reflected

field. The si.ngly‘ and mulf,iply reflected fields are treated next.

ii) Reflected GO fields

'Each component of the reflected electric field E"(P) at the field point P inside .
fhe waveguide can be represented by a matrix in terms of each component of the

. incident GO field at the origin as given below; namely,

E"(P) = % EL(P) +§ E}(P) + & Ej(P) | (4.5)

where
’E;(P) - | -AE;': (Q,,?)T o
Ey(P) | = [f?] Ei(Qp) | - (4.6)
| Bz (P) | I E;(QR) ] |

in which Qp is the point of reflection and s" is the distance from Qg to P along

the reflected ray, and R is the reflection coefficient (involving Rll and R, asin
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Figure 94: An electric field E' incident on z — y plane with incident angles 6/ and

¢
A_ppendices D and F for the impedance boundary condition and the absorber

coated perfectly-conducting surfaces, respectively).

Let the ﬁéld E' be incident on the £ — y plane with incident angle 6* as shown

in Figure 94. Then E! is expressed by
Ei - Ei e;jk (sin 6* cos ¢* z+sin 6* sin ¢* y+cos 6° z) (4.7)

where

EL=%XE, +§E, +iEi, (4.8)
As shown in Figure 95, Ef, can be expressed in the plane of incidence as
E,=pE.+¢Ey+2E, (4.9)

where
p = % cos¢' +¥ sing’ o (4.10)
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¢ = —FKsing' +§ cosgt (4.11)

E, = Ej; cos¢' +E}, sin¢' (4.12)
E‘; = fE:;, sing' + Ef,y cos ¢* ' (4.13)
E; = Egz | o - (414)

- The reflected field E" is represented by

E™ = E[ ¢ 7k’ (4.15)

where

OB = -b Ry E, +¢R_LE¢,+zR“

= —R“Ep( % cos¢' +§ sm¢‘) + R_LE¢( — % sing' +§ cos¢') + R” E. & :
= [ R"(E(’,:E cos¢' +E: ysin ¢* )‘cos¢’ - R_L( - Ef,zs,m# + E’ cos ¢') sm¢’] x -
[—R||(E‘ Icos ¢' + Et sin ¢i) sin ¢* + R, (- E;', sin 451' + Eoy cos ¢') cos ¢‘] 2
| _',+R”Eoz i ) | | | | |
| ‘.»"=? [ oz( - R"cos2¢>z + R_L sin d>’) + E;y( R" R_L)squ cos 4"] X
+[E R” R_L)sde cos¢' + Eby( - R“smzd)' +Rl cos ¢')] v |

',+R“ o - (4.’16)

in which kll(.L) is a reﬁectibn coefﬁcierllt"fer the electric field which is polarized par- - ‘: "'_ ,
allel (perpendncular) to the plane of incidence. The Rll(.L) have been defined previ- “

: ous]y in Appendlx D for an lmpedance boundary condmon on the inner walls and .

o in Appendlx F for an absorber coatmg on the inner perfectly-conductmg waveg- :

: ,mde walls; Therefore, from the -above equat:on the reflection coefﬁcnent can be
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Figure 95: The incident field Ef, in Figure 94 in the plane of incidence.

expressed in a matrix form

-

-

—f2” cos? ¢* + R sin® ¢ —(fi’” + iZ_L) sin ¢* cos & 0
—(iZH + R )cos¢'sin g’ _Rll sin?¢' + R, cos?¢* 0

0o ) : 0 kll

(4.17)

In order to obtain the reflected field, this reflection coefficient matrix is multiplied

sequentially to the incident field each time a ray is incident on the waveguide wall,

after transforming into the ray coordinate system pertaining to each waveguide

wall from which the reflection occurs. It is noted that the incident unit vector I is

changed each time the ray is reflected by the wall.

4.1.2 Edge diffracted fields
i) 3-D edge diffraction coefficients

In this part, the 3-D edge diffraction contribution to the field inside the open-

ended rectangular waveguide is discussed. Again, it is convenient to express the
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2-D diffraction coefficients as in the previous chapter in terﬁxs of the ray »ﬁxed
coordinate system. In this system, the incident field is expressed by components
parallel and perpendicular to the edge fized plane of incidence, the plane containing
the incident ray and the diffracting edge, and the diffracted field expressed by
components parallel and perpendicular to the edge fixed plane of diffraction, which
contains the diffracted ray and the edge [12]. The “ray fized coordinate system” is
illustrated in Figure 96. Let & be the unit vector along the edgé direction and D
be the unit vector along the diffracted ray'_fr.om the point of diffraction (Qg) to

the observation point P. Also, one may define the following:

i = -—|:i;| (4.18)
3= ¢ xi (4.19)
¢ = |::g| | (4.20)
Bo = ¢xD I (4.21)

These vectors form the two orthonormal basis of the edge fixed plane of incidence
4 and_d'iﬂ'ract'ion.'_ Note that the ordinary plane of incidence intersects the edge fixed

- plane of incidence along the incident ray; whereas, the plané of reflection intersects

" the edge fixed plane of diﬁraétion along the reflected ray. The _relations.hip between

| the ray fized coordinate 'syétem'aﬁd the. edge fized coordinate system is depicted in
Figu.re 97. It can.be. shown that the angles a and a; déﬁhed as shown in Figure
97 -are rel‘at'ed'.by a = —a;. The unit vectors Zif,, 55’ and 1 form the $pherical
coordinate unit vectors fixed in the incidént ray; like\'/vise'ﬁ.‘,, é and D form the
spherical coordinate unit vectors ﬁ_xed in the diffracted ray. It is apparent that
the components of incident electric field E* along the A’ and ¢/ direction defined

by E, and E', respectively in the incident ray fixed coordinate system can be
A .

i
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“expressed in terms of the incident field components E'|'| and Ei referred to the

“ordinary plane of incidence such that

E’f% = El'l cosa — El sin & (4.22)

;,, = l’l sina + EfL oS & (4.23)

Where Efl(l) is an incident electric field parallel (perpendicular) to the ordin‘ary
plane of incidence. These expressiohs may be written more compactly in a matrix

‘notation as

E.j = :r('— a) B . (4.24)

~where E, ; denotes mc1dent field components (E ' and E? ,) in the edge fixed inci-
dent ray coordinates and E! is the mCIdent field in the ordinary plane of incidence.

Also,

143



cosl a —sina
T( -~ a) = ' (4.25)
sina cos a

The 3-D edge diffracted electric field E4(P) at an observation point P for a half
plane whose one side is perfectly-conducting and the other side is coated with a

thin absorbing material (dielectric/ferrite), is written as [12]

ES(P) | _|~Da -Dy || Ey(Qg) | ek’ (4.26)
. d °
E4(P) -D. D || Byles) | Ve
in which
E'Qp) = 4 E;:;(QE)"'&IE;l(QE) (4.27)
EYP) = fo E§ (P)+ & EY(P) (4.28)

and s? is the distance from the diffraction point at Qg to the field point at P.

. Also the elements of the diffraction coefficient matrix are given by

Do = D(1) + D(2) - D(3) - (Ry cos’ a — R, sin®a) D(4) (4.20)
D, = —(Ry+Ry)D() (4.30)
D. = +(Rj+Ry)D() | (4.31)

Dy = D(1)+ D(2) + D(3) + (R sina— R, cos’a) D(4)  (4.32)

and D(1), D(2), D(3) and D(4) are as given previously in Equations (3.10) through
(3.13). kll and R are the reflection coefficients which are derived in Appendix D
for an impedance boundary condition on the inner waveguide walls or in Appendix
F for an absorb-er cbating on the perfectly-conducting inner walls.. Note; that

in case of the half plane which is perfectly-conducting on one side and which
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exhibits an impedance boundary condition on the other side, or which has the other
perfectly-conducting side coated with an absorbiné material, there is a coupliﬂg
between the TE, 4, and TM, 4y, conﬁponent; of the diffracted fields; this fact is
readily evident from the non-diagonal form of the diffraction matrix as shown in
Equation (4.26). Such a cross coupling takes place if the incident ray strikes the
edge obliquely and it does not occur for a normal incidence on the edgé; it is
also absent for a normal or oblique incidence on a completely perfectly-co‘nducting
edge. - -

i) Diffracted fields

" The shadowing or the discontinuous behaviour of the GO incident and .re-

flected rays By the waveguide walls is compensated for in the total field 'b'y the

' é_xddition of the 3-D edge diﬂ"raded ﬁeldlof Equation (4.26) to the GO part_of the :

~solution. There is.é]so diffraction by the corners of the édges in addition to the

| edge diﬂ‘raétidn. waever, the co'ntr?'bution of this cornefdiﬂ?a‘ction 18 _n“eg_le_ct.ed“ -

: :'n" thi,_s si_udy becaUSe‘_‘it is generally weaker in comparison to the GO and _edgé

- '_,diﬂ'racted‘ fields, and its inclusion adds additional complexfty to.thg ray dnalysis. :

| For a given near ﬁgld point, it is well known that there is only one point along an

" infinitely long Straig_ht edge from which the diffracted field can emanate. Théfe-

| fore, one needs to de'_cerfnine w:hether a diffraction point lies oh the finite length of

each of tile four edges a_t the open end of the waveguide, so that it can be included
iﬁ_the total écattefed field.

'The point of diffraction at R on an edge due to a given source location and -
a faf zone observation pointA, as illusfrated in Figure 98, can be obtained birll a -
straigthforWard rﬁanner. It is noted that this situation is the reciprocal §f the

~ one involving an observation point which is located at a finite distance within ,
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| Figure 98: Geometry for finding the diffraction point along the rim edge at the
open end of a waveguide.

the waveguide when the latter is excited by an external plane wave; however, the
| procedure to obtain the point of diffraction is the same in both cases. In particular,

a vector ‘pefpendicular from the source to the edge can be found from

Since all the rays diffracted by the édge lie on a cone as shown in Figure 96, the

“scattering direction is known so that

cot B = (4.35)

a'ém
Vi-@-em)
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The diffraction point can now be found from

Ry=Rp+sp cot B, ém ; (4.36)

where

~To determine if the diffraction point (z, yd_v and zy = 0) is on the finite limits of
the edge in the present waveguide problem of Figure 91, the 'z-coordinate of the -
diffracting pomt must fall between 0 and a for vertlcal edges (edge 1 and 3) and
likewise, the y-coordmate must fall between 0 and b for hornzontal edges (edge 2

and 4), respectlvely, ie.,

0<zy<a  foredges1and3  (4.38)

. 0<yy<b  foredges2andd4 (4.39)

Ovthefwise' each edge which does not satisfy the above equations has not diffracted
| ﬁeld giving contrlbotlon to the observation point P. |

Once the diffraction point is known for any edge, the field dlﬂ'racted from
_thét edge to the field pqint P can be found from Equation (4.26) and this process
s then repeated fbr _the other edges of the wavegtiide rim. The diﬂ'ractéd fields
which aré represented by ‘parallel (E'go) and perpéndicular (Eg) components are -
.then transformed into the compdnems m the rectangular coord.inate system to be
: | added to the G'(') field also in the latter coordinate system. For multiply diﬁracted—
reﬂected’.réys, the same proce_dure'as emp]oyed for the multiply reflected fields in
‘the preVioué sectidh is feﬁéated by including the appropriate reﬂeétion coefficients

- at ééch_boﬁnéé (reflection) off the walls.
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As an illustration, each type of fay field in Figufes 99-106 is plotted against the

- axial distance 2z from the open end to the observation point for various Waveguide
E widths and heights, values of the inner wall impedance or absober coating, incident
_dngles' and wave polarizations. In Figures 99-106, the magnitude of the total field
~(which is gfven as a sum of its X, § and £ components) is plotted in each case.

In Figt_lre 100, the discontinuify at z = 9.0 A is due to the corner diﬁ'ra.:ction and
total field is not affected much as shown in the figure. Note that the numérical
sequence appearing in thg figures represents the wé.veguide walls which the incident
‘ray hits dur_ing its travel to the observation point; these walls are numbered as
_sﬁown iﬁ Figure 93. Figures 99-102 pertain to tﬁe rectangular waveguide with an
’bimpedance boundary condition on its inner walls. The same plots are repeated in

. Figures 103-106 for the pe'rfectly-conducting waveguide coated with a dielectric
._an'd‘ ferrite material on its iﬁner walls. As shown in the figures, the discontinuities
of the GO field at the shadow boundaries are ;:ompensated by the corresponding
discontinuities of the diffracted field. From the plots of the toyt.al ﬁeld in the é.bove
ﬁgureé, it can be concluded that thé corner diffracted field is very weak and ‘does

not affect the total field much inside the waveguide.

4.2 Ray solution for the interior field of a semi-infinite rectangular
waveguide with an absorber coating on its inner walls and with a
planar termination inside

Let a simple planar termination be placed at z = L inside the semi-infinite
-rectanguiar waveguide of Figure 91 and the termination wall is designated by the
number ‘5°. If the impedance Boundary condition is assumed to hold on the inner

waveguide walls (wall #1,2,3,4) then the termination (wall #5) is also assumed

- to satisfy the same impedance boundary condition. On the other hand, if the - "
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perfectly-conducting, semi-infinite waveguide is assumed to possess an absorber
»coating on its inner walls, then the termination wall is also assumed to be perfectly-
conducting and coated with the same absorber material. The present method
of analysis is also valid if the impedance or a dielectric/ferrite coating at the
termination wall is not the same as that of the inﬁer walls, but they are as.sumed
hére to b§ the same for the sake of convenience. The field at the obsefvation
~ point inside. this terminated geometry can be computed in'# manner which is very
 similar to that employed in the case of a terminated semi-infinite 2-D parallel plate .
wa\feguide as done m thé f)revious chapter. There are two groups of rays‘ reacHing
the observation point, one is from the open end side as if theré is no termination
ins_idg and the other is from the the rays reflected from the termination. o
| Some numerical results for the fields inside a semi-infinite rectangulaf wavég-'
uidg are showh in Fiéures 107-108 and 109-110 for the case of an interior planar"
~ termination with an. impedance boundary condition ana for a planar perfectly-
conductih‘g tefmin_ation coated with a dielectric/ferrite absorbing material cases,
respectively. Note that .the ripples in the GO field are due to the interactions

" between the above-mentioned two groups of rays.

4.3 Field scattered into the exterior region by a semi-infinite rectan-
gular waveguide with an absorber coating on its inner walls and
with a planar termination inside : '

The field scattered outside the semi-infinite rectangular waveguide with an -
interior termination and with lossy inner walls is calculated in a manner similar
to that done for the 2-D case in the previous chapter. The exterior scattered field
consists of two basic contributions"; one is the field due to the radiation from the
interior effects which is found using the Al method (together with a physical optics |
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approximation) and the other is due to the direct edge diffraction from the rim
at the open end which is found via the UTD in conjunction with the equivalent
current method (ECM).

For calculating the radiation frorh the interior cavity, the 3-D radiation inte-
gral (over the aperture at the open end) which is used to represent this radiated -
electric field E7 , in the forward half space (see the discussion in Section 3.5 for

the 2-D-case) is given as [14,15]

e~ikR
R

K] JkZO

tnt ~

/ Y,R x2M, : ds (4.40)
~where Z, (or Y,) is free-space wave impedance (or admittance), R is a unit vector
"in'radiat‘ion direction (see Figure 111). 2 M, is the equivalent magnetic current

- in the aperture region which radiates in the forward half space as in the previous

~ 2-D case (which employs a 2-D rather than a 3-D radiation integral). In general,

- the amplitude and phase terms in the above integrand are separable in terms of

-the aperture coordinates as follows.

M, = M:(I) My(y) | (4°41.) .

e IkR _  gikaz ogkyy o~7kRo (4.42)
where R, is the distance from the origin to the field point. Thus,

‘,A 1k e —7kRo
int- E;T—

_ . e |
/ M, (2') elkzz' gyt J, My(y') e?kvV/ dy' (4.43)
1

" Clearly, for separable aperture distribution the calculation of the radiation pattern
reduces to the product of two 2-D patterns. Note that there are four patches to

be integrated on the aperture each giving different radiation patterns. These four
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different patches originate frorﬁ the combination of two ray tubes from each top
and side views as shown in Figure 76. The total radation pattern can then be
obtained by superposing the field radiated by each of the patches of 2 M, in the
aperture. . . |

In order to include the contribution from the field directiy diffracted by the
edges at the open end, the equivalent current method (ECM) [20-24] is employed
in conjunction with the GTD. Generally, this rim edge sca.tte;ed field E::m is the
sum of the fields of all the singly diffracted. rays which are initiated at various
points on the rim edge by the incident field in accordance with the law of edge
diffraction. However, in some situations, there may be a continuum of diffraction
~ points contributing to the scattered field [20]; in such a situation, a direct appli-
cation of the GTD fails and one must resort to an integration around the edge
as in the ECM. The rays diffracted from the corners of the rim of the waveguide
also contribute to the diffracted fields in #ddition to the edge diffracted rays." ‘It
is noted th'at the ECM automatically but approximatgly takes into account the
presence of the corners at the open end. - |
o In the ECM, the equivalent currents I,y and M4 of the electric and magnetic
type, respectively, are located at the rim edge as shown in Figure 111. These equiv-
alent currents radiate in free-space to produce the scatte;ed field. The strength of
the equivalent cu:rre'nts are calculated indirectly fror'n the GTD, but they give a
bounded result even in the caustic regfons where the GTD gives a singular result_
because a.continuurr.) of rays contribute to the field at such points.of observation.

The strength of the equivalent electric and magnetic currents are given by

[20,22)
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& _RIM OF THE WAVEGUIDE

Figure 111: Equxvalent currents I and M4 on the rim at the open end of the

wavegulde
no_ 8 DE(’»b ¢' Bs, B) V] _ ’
Lo(l') = Y\/: vy (2 1) (4.44)
no_ 87’ Dy (¢, ¥ Bo, B) T
Mll) = -2o/ 70 T2 (m-1) (4.45)

where I’ is the unit vector'along the edge direction. The angles (8o, 8, ¥' and
¥) appeared in the diffraction coefficients (Dg and D)) in Equations (4.44) and
(4.45) are mdlcated in Figure 112. Note that the diffraction coefficients D)y and

Dg correspond to D, in Equation (4.29) and D, in Equation (4.32), respectively.

Then, the equivalent currents I,y and Mg, are incorporated into the radiation

integral to calculated the scattered field E; . [22];i.e.,

k7 . . . -JkR
E;, ~ 1-2° /r.m [R x R x Ly(l') + Y, R x Meq(z')] £
1

47

dl’ (4.46)
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" B+ B, ON KELLER CONE

Figure 112: Angles 8o, 8, ¢' and ¢ which occur in the wedge diffraction
coefficients Dys and Dg.

where R = RR is the vector pointing toward the 6bservation ponit from a source
‘point on the rim edge as in Figure 111. Although the rim scattered field E?;  is
not expressed explicitly here, the integrand of Equation (4.46) can be calculated
- in terms of each component of the incident field easily for each edge of the rim
once the incident and radiation vectors afe specified.

- Numerical results for the far zone scattering patterns in the £ — z plane are
plotted m Figvures 113-115 for the problem of plane wave scatfering by a Qemi-

infinite rectangular waveguide with an interior termination as a function of the

angle v. In these figures, the inner waveguide walls as well as the interior planar -

termination are assumed to satisfy an impedance boundary condition. As in the 2-

D case, the field scattered from the interior cavity region dominates the total field

for small values of the loss in the wall impedance, however, as the wall loss becomes 4

larger, the field scattered by the rim contributes mostly to the total field. It is

also seen that this direct rim contribution to the total scattered field.can béc_omé
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stronger than the contribution due to the re-radiation from the inter-ior cavity
as the incident field couples into the waveguide with incident angles far from the
waveguide axis. The latter is to be expected because there will be more ray bounces
inside the waveguide for these incfdent angles and thus making the interior field
weaker due to the loss effect at each bounce. In Figures 116-118, the same plots are
repeated for the case in which the perfectly-conducting waveguide and its interior
planar termination are coated on the inside by an absorbing (die]ectric/fe;‘rite)
material. Note that the field scattered by the rim is not changed much for different
values of € and p characterizing the absorbing material, whereas, the scattered field
due to the interfor radiation is affected much more by the absorbing rﬁaterial.

- The surface wave type field similar to that considered in Chapter II, which is
lauﬁched by the diffraction of the incident wave at the edges of the opeh end of the
rectangular waveguide, could reﬂéct strongly from any discontinuity placéd closely
to the walls of the waveguide. The reflected surface wave could then radiate outside
the rectangular waveguide again via diffraction from the edges at the w.a‘veguide
opening. However, the effect of the sﬁrface wave field could be controlled to exhibit
a greater attenuation along the direction of propagation wi.th the inclusion of
~ greater ioss-in the absorbing material. Assuming that the planar termination is |
not.»located too c]gse to the open end of the waveguide and assuming. that the loss
in the absorbing material is sufficient to repidly attenuate the surface wave over. -
that distance, one can then neglect the effect of the surface wave on the radiation
patterns. The above assumpﬁions are expected to be valid for the calculations"

shown in Figures 113-118 in which surface wave effects are ignored.
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Figure 118: Far zone pattern in the z — z plane of the field scattered by a

semi-infinite rectangular waveguide with an interior termination illuminated by
an external plane wave whose electric field is polarized parallel to the plane of
incidence. ,
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CHAPTER V

SUMMARY AND CONCLUSION

’.I‘he' problem of ele’ctrloma.gnétic (EM) plane wave scattering i)y open-ended,
'-perfectly-conducting, 'semi-i.nﬁnife 2-D parallel plate as well as 3—D rectangular
waveguides, with a planar interior termination and with a thin, uniform layer of
lossy material on their inner walls as well as on the interior termination are an-
aiyzéd héré .us‘ingz high frequency methods. The high frequency methods provide
" an approximate and simple but sufficiently accurate analyéis for this problem as |

' .long.'as thé waveguide is large enough (in terms of the wavelength) so that it

' één_subport propagatiﬁg"modes. Ah impedance boundary condition on tﬁe inner

; walls #nd ‘tyhe t.er_mination.has also been treated for both the 2-D'and the 3-D
‘semi-infinite waveguide configurations. The total field scatiered from these config-
an u_fations is given rby a s‘uperposition of the fields scattered from the edges at the
o obeh end, and the fields which are initially coupled from the external plane Wave

A in_to' the wavegui-d_e r'egiqn and then reflected from the intérior termination to fadi-

A ate back into t.he exterior region. The fields scattered from the open end as well as
that cbupled into the waveguidé are found via the GTD/UTD réy method. For the
fields scattered from ‘the rim edge of the 3-D rectangular wéVeguide, it is necessary
fof some aspecté to use GTD m .conjunctiovn with the equivalent current 'mef.hod-' :

(ECM). The contribution to the total scattered field whiéh comes from the interior -

waveguide cavity radiation (due to the reflection from the interior termination) is - T
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found using Al in conjunction with the physical opfics (PO) approximation for the
magnetic currents in the aperture. The effect of the edge diffracted rays is ignored
in this PO approximation. :

- The numerical results from the GTD/UTD ray method for representing the
interior waveguide fields are compared with those obtained from the formally ex-
act, conventional modal solution for a line source excited interior 2-D waveguide
problem (invoh;ing an infinitely long waveguide) with an impeda'nce bounaary
condition (;m its inner walls in order to check the accuracy and convergence of the
ray approximation. It is found that there is an excellent agreement between the
- two solutions. Some of the advantages of the purely ray approach over the modal

approach are that it-does afford sofne physical insight into the propagation and
-scattering mechanisms particularly i.n connection with the coupling of the fields

from the exterior to the interior regions in the case of the semi-infinite waveguide

.conﬁgu_ration, as well as into the effect of the wall loss on the fields in the interior
-'Waveguide region. The ray solution does not require one to evaluate the eigen-
valu_es which are essential for the construction of the modal solﬁtion; these modal
eigenvalues must be found An'umerical]y for different values of the absorber lining
bn the interior walls, and for each mode, making the modal approach more cum-
bersome and inefficient as corripared to the ray approach. Also, it is found that,
in general, the ray sc;lution converges faster than the modal solution for the case
of interest, namely, when the interior waveguide wall Becomes lossy. Furthermore,
1t ié also found in this work‘that, in general, the rate of convergence of the modal
solution does not improve signiﬁcaﬁtly even with the presence of loss in the intefior
| , w'avegt_xid.e‘ wall. | |
It is found that the electromagnetic plane wave scattering by the semi-infinite

’Walveguides with an interior termination is strongly dependent on the interior wall
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loss. .As the wall loss increases, the interior radiation is reduced considérably and
the field scattered by the edges at the open end then becomes the dominant con-
tributor to the total scattered field. For the lossless perfectly-conducting case, t;he
scattered field obtained by the present approach is compared with that calculated
by a hybrid combination of modal and ray techniques in conjunction with the mul-
tiple scattering method (MSM). The two solutions show good agreement in the
regioh of the main ahd the first side lobes. The discrepancy in other regions is
due to the exclusion of the diffracted field for reasohs of simplicity in the present
calculation dealing with the interior radiation.

While a sig‘niﬁcant amount of further work is necessary to improve the Al con-
" tribution to the total scattered‘ﬁeld in the present approach, and also to deal with
the s"catltering by semi-infinite waveguides of arbitrary cross-section and tapers, it‘
_is hoped that the present study will efficiently provide a resonable estimate of the
effect of absorber coating on the scattering properties of semi-infinite, perfectly-
conducting parallel plate and rectangular waveguide configurations with an interior

perfectly-conducting planar termination coated with the same absorbing material.
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~ APPENDIX A

BOUNDARY CONDITIONS AT AN IMPEDANCE WALL

Consider an infinite parallel plate waveguide excited by a ¥ directed magnetic
line source (TE, case) as shown in Figure 119. Then, the surface impedance Z; at
£ = 0 is defined by the boundary condition [24]

E—(ﬁ~E)ﬁ=~zgﬁxH atz=0 (A

‘Sinice H has only ¥ component, the right side of Equation (A.1) is reduced to

Z'axH = Z'%x§ Hy

= Z'iH,  (A2)

Zy== atz =0 - (43)
V From Maxw_ell."s equation,

'V'VxI.-_I = juweoE |
i(a;;f‘— %’iﬁ)w (% ey, (aiy—aalz’)‘ (A4)

9z 0Oz

il
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Figure 119: An infinitely long parallel plate waveguide excited by a ¥ directed
‘ magnetic line source (TEy).

for the given time convention (_e"'_J""t). Since E and H have Z and ¥ components,

' ;espectivély, Equation (A.4) is reduced to -

oH .
., 2y
R ]

ik Zs Hy _ (A.5)

where Z, is free-space wave impedance and Z; is surface impedance normalized to

 Z,. Consequently, for Hy = G, the boundary condition at £ = 0 is given by

9G._ 'EZSG-%'O - atz=0 (A.6)‘
- Ox - ' _

Similarly, the boundary condition at z = a is expressed as

. 4G | -
. T ] 8 = t = . . ’ . ’
_az-f—fykZ‘G.O atz=a . (A7)
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By employing the duality, the boundary conditions at z = 0 and a can be repre-

sented compactly as follows;

aG

P kg¢G = 0 atz=0 (A.8)
oG . -
-é—;+quuG =0 atz=a | (A.9)
where
Z for TE, case
Gu=1 b o (A.10)
Y. for TMy case

~ and.Z;, (or Y,) is the surface impedance (or admittance) at z =0 and z = a
which is normalized to the free-space wave impedance (or admittance), respec-

tively.
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APPENDIX B

- CONSTRUCTION OF ONE DIMENSIONAL GREEN;S
FUNCTIONS

" Let Gz(z,2') éatisfy the differential wave equation

o [;—I—z »kz] Gz(z,2') = =6 (z - 7) for 0<z<a (B.1)

‘and the Bdundary conditions

dG; .
d; - jk¢ Gy = 0 at z=0 (B.2)
diz +Jk¢uGz = 0 atz=a (B.3)

- where k 1s the free-space wavenumber and §(z) is the Dirac delta function, and

o Zl,. Jor TE, case :
Qu=14 | (B.4)
Yy for TM,, case =

where Z; ,, (or Y} ,) is the surface impedance (or admittance) at =0 and z = a.

-T.}'xé.n Gz(z,z') may be expressed as [11] -

o o v@TE) . . -
. . —U—(-;l <z o
, wTry *= | Lo
| Ga(z,2) = U(::s) T(z) b __(11.3.5.).‘ SR

W(Tsl’) T Z z
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where U(z) and T(z) are two independént solutions of
2 Uz
{_‘.i_+k2] () =0 0<z<a (B.6)
énd W (T,U) is the conjunct of T(z) and U(z) defined by
W(T,U) = | () Lu(e) - U(z') 1) (B
' ' dz ‘ dz ‘ .

- Equation (B.5) may be compressed into a single expression by using the notation

as shown below: -

_ Ulz<) T(z5) '
)= ==t 8
Gz(z,z') W(T,U) (B )
where :c-< méans_ﬁse rif £ <z orusez if £ < z.
Let U(z) be represented by
U(z) = etike? 4 Ry ¢~ikez (B.9)

where R; is a constant to be determined. From the boundary condition at z = 0 -

B gfven in Equation (B.2), it follows

o kg (et7k22 _ R, e7tkaz) kg (etker 4 Rkt =0 (B10)
"Then,
: kz ~ k¢
R =22
l k:z: + k 9]

(B.11) |
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and U(z) is given by

; kz —k SI —q4k .
Ulz) = etikzz o 22~ 28 —jkzz .
(z) = e t kz + kg e (B 12)

Likewise, let T'(z) be expressed by
T(z) = e 7*2Z 4 R, etikaz (B.13)

Similarly, applying the boundary condition at £ = a in Equation (B.3) to T'(z)

and solving the equation for the constant Ry gives

T(z) = e Tkaz | ——,,:: ; : ::: ¢~ I2kz 0 tikaz (B.14)

Next, from Equations (B.7), (B.9) and (B.13) the W(T,U) is given by

W(TU) = T() % Ulz) - U(z) % T(z)

z=x'

_ ( e_].kzx' + Ru e+]'kzz' ) (sz e+J'kzz' _ sz Rl e—jkzz )
. : ! . (] . ' .
-—( e+]kzI + Rl e_szz ) ( —jkz ef]’cz.‘l + sz Ru e+]kzz )

"= 2jk(1- R Ry) (B.15)

Consequently, G(z,z') is found to be

( eJkz< 4 R, e Tkac ) ( e~ Tkas 4 R, ejk’>)

, —_
Ga{z,2) 2jkz (1 - RiRu)

(B.16)

For G;(z,7'), a similar prof:edure is repeated for the differential equation
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where G (z, z') satisfies the boundary condition

dG,
dz

+jkG,=0 as |z| — oo

Let U(z) and T(z) be represented by

U(z) — e+jkgz

T(z) = eTkez

Then, the conjunct W(T,U) is given by
W(T,U) = jk; (C—J'kzz' e+fk;z' + e—-jkzz' e+jkzz')
= J2k: (B.21)

Therefore, G;(z,2') is expressed as

e—jkz |z-z'|

Gz (2, z') - 25k,

(B.22)
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APPENDIX C -

A METHOD FOR THE NUMERICAL SOLUTION OF MODAL
| EIGENVALUES

The transcendental equation for solving the modal eigenvalues is obtained by

‘setting the denominator of the integrand in Equation (2.12) equal to zero. Let this

o equation be written symbolically as F(k;) = 0. This transcendental equation can "

b'e.re-exprelssed in terms of aﬁy of its »roots denoted by k; as:
* Flka) = (ks — ka) (kz = kgu) €77%%2 — (ks + kg) (ks + k) (C.1)

. A popular method of ﬁhding the roots of a transcendental equation is the ‘ Newton-
'Raphson’ method. The basic theory behind this method is that the function F(z)

is expanded in a Taylor series about some point z, which gives

F(z) = F(zo) + (2 ~ 20) F'(20) + -;- (z—zo) F'zo) 4 (C2)

- With the assumption that z is the root and z, is a good initial guess of the root,

the series can be written approximately as

 F(z) ~ Flzo) + (- o) Fl(ze) RCEY
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since (z — z,) is small due to z being approximately equal to z, by a good initial

guess.A Then the above equation can be rewritten as

F(zo) '
Zo = Fi(z,) (C4)
which gives the iterative equation
' F(z
T+l & Tn = F’((an)) - (c5)

where z, and z,,; are the values of z after the nt* and (n + 1)** iterations,

rgspectively.

As seen from the above approximation, it is'necessary to have a good initial
guess when using the ‘Newton-Raphson’ method. This will allow rapid convergence
to the proper root. The eigenvalues of th.e waveguide withlperfectly-conducting
inner walls are used as the initial guess in the modal analysis of the waveguide with
impedance walls. The computer program stops iterating when the percent change

in the magnitude of the root between successive iterations is less than 10~4.
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APPENDIX D

REFLECTION COEFFICIENTS FOR AN IMPEDANCE
| ‘BOUNDARY

- Consider: a plane wave 'obliquely incident on a surface impedance boundary,
_ as shown in Figure 120. The incident and reﬂected_waves make angles of 6* and
4" with the z axis, respectively, and Z; is a normalized surface impedance. The - -
ﬁeld vectors shown in the figure are those corresponding to the TEy case and thus -
H has only a § component. |
~ The incident and reflected magnetic fields H® and H' in thxs TEy case are ‘

represented by

H = ¥ H = ¥ e]k(a:cosﬂ‘-zsm 6') (Dl)
H = yH =% }"2" eI k(zcosb”—2sind") (D.2)
“ where }~2" is the reflection coefficient for the §-directed magnetic field (or for the
electric field which is po]arized”parallel to the plane of incidence (z = 2z plane in

Figure 120)) The total magnetic field Hy satisfies the following equation on the

. vimpedan'ce boundary

8Hy

-k, Hy =0 atz=0 (D.3)

~ Therefore, incorporating Equations (D.1) and (D.2) into Equation (D.3) gives
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Figure 120: A plane wave obliquely incident on a surface impedance boundary.

o (_jk cos 8 —jkzs) e~ ikeoind' _ ie“ (jk cosd” + ij(,) e~kzeind” — g (D)

From Equation (D.4) one obtains the law of reflection (6* = 6") so that the fields
can be phase matched at the boundary in order to satisfy Equation (D.3). As a

 result, Equation (D.4) reduces to
i?u (Zs + cos ﬁi)+ (Zs — cos 0’): 0 (D.5)

Hence the reflection coefficient for the y-directed magnetic field in the TEy case is

given by

- cosbt — 7,

- s D6
I cosf* + Z; | ( )

' ‘Likewise, the _reﬁ‘e,cvtion coefficient for the y-directed electric field in jthe TMy case '

" is given by -
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cos* — Z;1

= _ D.7
= cosa'+Z,°1 ( )
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APPENDIX E

TRANSITION FUNCTION

MAGNITUDE

1.0 %0
| _ g : —]es
o8}— 2H48E op . b¢¢°° ~—{40
W —3s 3
osf— . —{so ¥
| . &
F(KLo) » 2] /KLo o'""fo"' dr -2 8
0.4}— Ko -—zoé
—{is £
a
0.2}— o
| =s
Tl v vpd vl a1 i,
0001 0.01 : o) 1.0 10.0

KLo

Figure 121: The magnitude and phase of the transition function.
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APPENDIX F

REFLECTION COEFFICIENTS FOR A DIELECTRIC/FERRITE
SLAB ON A PERFECTLY CONDUCTING GROUND PLANE

The dielectric/ferrite sl.ab rﬁaking up the semi-infinite parallel plate and rect-

angular wa\}eguide v;'alls is illustrated in F igure 122. The slab has a thickness ¢,
and it is backed by a perfectly conductor of electricity. While the Region 1 (free-
space) for z> t'is_.chracter.ized by (€1, p1), the Region II (dielectric/ferrite slab) is
characterized by (e, p2) for 0 <.z < t. A plane wave is incident on the slab at an-
'V‘a'ngle' of ¢' from the z-axis. The transverse resonance method [4,25] is employed
for the Fresnel reflection coefficient of the slab. The equivalent transmission-line
circuit 'modél for the Figure 122 is shown in Figure 123. Z; and Z; are wave
impedances of tﬁe wave in Region I and II, respectively. |

' The characteristic impedances for TMy and TEy polarizations are given by '

’ | |

Zi, = %ﬂl—’z for TMy case (F.1)
1,2 .

zp = hphiz g TE, case - (F2)

n1,2

where

N e e (F3)




INCIDENT
PLANE WAVE

- 3>

¢

REGION I (€,u,)

\\\\\\\\\ ‘
REGION I (€,,u,) }% t
2

N )
; X v
. PERFECTLY CONDUCTOR -
OF ELECTRICITY

N>

' F 1gure 122: A Dxelectrnc/ferrlte slab grounded by a perfectly conductor of

~ electricity.
Z. B'

P o= = o o - - - X= '
z, B,

Z, Xx=0

- Figure 123: Equivalent tfansmission—line circuit for Figure 122. '
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ki = w. /12812 ' (F.4)

ﬁl = kl COS¢1 (F.5)
B2 = ky cosdy =ks \/l—s'mquz
= k; /N2 —sin?¢, » ~ (F.e)
S K12 ‘
n = — (F.7
1,2 2 - (FD)

From transmission-line theory, the input impedance at z =t is given by

"Zin(x? 0 =2 Zs +j Zp tan(fat) .

' Zy + J Zs tan(Bst) (£8)

Since Z3=0 for eléctrically perfectly conductor at z = 0, Equation (F.8) reduces
. _ _
Zin(z =t) = j Z tan(fat). (F9)

Then, the reflection coefficient for TMy at £ =t can be written as .

Zin(z = t) - Zle
Zin(z = t) + Zf

R i(; =t) = (F.10)

-Therefore, incorporating Equations (F.3) through (F.7) into Equation (F.10) gives

A o c05¢1+_7l‘l2 \/Nz—smidal cot(klt\/N2~sm ¢1)
Ry (z=t)= - (F.11)

" cos 4’1 - —1 V/NZ =sin ¢, cot(klt\/N2 — sin? ¢1)

For TEy the reﬁect:on coefﬁcnent is represented by -
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Z{n» - Zin(i = t)A

I~2"(z = t) =

F.12

Z5F Zilz = 1) (F12)
Substituting Equations (F.3) through (F.7) into Equation (F.13) gives
i cosdy — j L /N2 —sin? ¢ tan(lrc,t\/wz_sin2 ¢,)

R" (z=t)= 2 (F.13)

cos¢y + % N2 —sin® ¢y tan(klt\/ NZ? —sin ¢1)
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semi-infinite waveguide geometry. Also, the medium exterior to the waveguide is assumed to be free space.
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It is found that, in general, the ray solution used here for describing the
fields within the waveguide region converges faster and is more efficient than
the modal solution for the case of interest, namely, when the interior wall
coating is lossy. Furthermore, it is also found in this work that, in general,
the rate of convergence of the modal solution does not improve significantly
even with the presence of loss in the wall coating. In addition, the level
of the fields which are coupled into the interior of the semi-infinite waveg- *
uide and then re-radiated from the open end, after undergoing reflection
at the interior termination, can be controlled by changing the value of the
absorber lining on the interior waveguide walls as might be expected. ‘If
these fields radiated from the open-end are made sufficiently small, the only
other contribution to the total exterior scattered field, which comes from
the diffraction by the edges of the aperture at the open-end, will then be
dominant.
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