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Viscoelastic Deformation Near Active Plate Boundaries

NAG 5-750

Steven N. Ward
C.F. Richter Laboratory

Earth Science Board
University of California
Santa Cruz, CA 95064

Investigation: Model deformations near the active plate boundaries of Western

North America using space-based geodetic measurements as constraints.

Status: The first six months of this project were spent gaining familiarity with

space-based measurements, accessing the Crustal Dynamics Data Information Com-

puter, and building time independent deformation models. The initial goal is to see

how well the simplest elastic models can reproduce VLBI baseline data.

Results: From the Crustal Dynamics Data Information Service, a total of 18

VLBI baselines are available which have been surveyed on four or more occasions (see

Figure 1). These data were fed into weighted and .unweighted inversions to obtain

baseline closure rates. Figure 2 illustrates four of the better quality lines.

The deformation model assumes that the observed baseline rates result from a

combination of rigid plate tectonic motions plus a component resulting from elastic

strain build up due to a failure of the plate boundary to slip at the full plate tectonic

rate. The elastic deformation resulting from the 'locked' plate boundary is meant to

portray interseismic strain accumulation. During and shortly after a large interplate

earthquake, these strains are largely released, and points near the fault which were

previously retarded suddenly catch up to the positions predicted by rigid plate models.

Figure 3 illustrates the predicted velocity field from a model which includes predicted

RM2 plate velocities divided equally between the North American and the Pacific

plate, and the interseismic strain accumulation due to a locked plate boundary of 50

km thickness.

How well do such simple models fit the observed VLBI baselines? We judge the

quality of fit by the sum squares of weighted residuals, termed total variance. The

observed baseline closures (Table 1, column 1) have a total variance of 99 (cm/y)2.

When the RM2 velocities are assumed to model the data (column 2), the total variance

increases to 154 (cm/y)2. For California, the assumption of rigid plate motion is
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actually worse than the assumption of no motion at all. In contrast, the total variance

for the 50 km locked elastic model is 43 (cm/i/)2 (Table 1, column 3). With a 56%

reduction in data variance, we are lead to believe that elastic models of this type

probably can account for the majority of the VLBI signal.

What specifics can the VLBI baseline closures reveal about the North American-

Pacific plate boundary? Two parameters which might be extracted from the data are

the thickness of the plate boundary and the degree of locking. Generally, the deeper

the plate boundary, the wider the zone of deformation. Likewise, the less the degree of

locking, the thinner the zone of deformation. Figure 4 contours variance of fit versus

boundary thickness and degree of locking. The degree of locking is quoted in terms

of right lateral slip rate. A slip rate of 0 cm/y means a fully locked boundary. A

slip rate of 5.6 cm/y would be a completely unlocked boundary. For shallow plate

boundaries («50 km), the best models are totally locked. With increasing boundary

thickness, the best models slip at about 1/4 of the total interplate rate. This seems

reasonable, as deeper portions of the boundary probably are slipping at a faster rate

than shallower portions. The best models have interplate boundaries about 240 km

thick which slip at rates of about 1.5 cm/y. The best model has a total variance of 27

(cm/y)2 and fits the data 37% better than the 50 km, totally locked model of Figure

3.

Figure 5 illustrates the effects of plate boundary depth and degree of locking on

the width of the deformation zone. Maps in Figure 5 contour the magnitude of plate

velocity in cm/y relative to a fixed point distant from the fault on the Pacific Plate.

The left column is computed for totally locked plate boundries of 250, 160 and 70

km thickness. For locked boundaries, the width of the interplate deformation zone is

about three times the locked depth. The right hand column contours the velocities

for a boundary of 250 km depth with creeps at 0, 1.1, and 2.2 cm/y. Note that

the behavior of these two different model sequences is very similar. This tradeoff in

parameters will require a large data set to differentiate.

Reports: Results of this work will be presented in a talk entitled 'California

Deformation Models from VLBI Data' to be given at the 1986, Fall Meeting of the

Crustal Dynamics Investigators, Goddard Space Flight Center, Greenbelt, Maryland.



BASELINE

OVRO 130
OVRO 130
OVRO 130
OVRO 130
OVRO 130
OVRO 130
OVRO 130
JPL 7263
JPL 7263
VANDENBERG 7223
VANDENBERG 7223
HAT CREEK
MOJAVE
MOJAVE
DSS 13
OVRO 130
MOJAVE 12
OVRO 130

JPL 7263
VANDENBERG 7223
MOJAVE
PEARBLOSSOM
MONUMENT PEAK
PALOS VERDES
PINYON FLATS
VANDENBERG 7223
MOJAVE
MOJAVE
PINYON FLATS
MOJAVE
MONUMENT PEAK
PINYON FLATS
JPL 7263
HAT CREEK
HAT CREEK
MOJAVE 12

TOTAL WEIGHTED VARIANCE
(CM/YR)**2

BASELINE RATE
OBS
2.324
0.242
0.305
0.802
2.078
0.531
0.219
2.923
1.662
0.867
2.751
0.609
0.349
0.076
0.527
0.656
0.302
0.215

98.66

RM2
-4.452
-1.790
0.000
0.000
-5.113
-4.277
0.000
0.000
-0.910
2.117
4.447
0.000
-4.707
0.000
-0.502
0.000
0.000
0.000

154.40

(CM/YR)
CALC

-2.127
-1.201
-a, 156
-1.681
-2.633
-2.840
-1.284
1.178
-0.077
1.960
2.595
-0.207
-2.238
-1.016
0.121
-0.054
-0.206
-0.154

42.92



Figure 1) Map showing California VLBI baselines available from the Crustal Dy-
namics Information Service which have four or more surveys.
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Figure 2) Samples of typical 'good' data. Solid and dashed lines are unweighted
and weighted linear fits to the data.
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Figure 3) Map showing computed velocities for an elastic model which includes a
completely locked plate boundary of 50 km thickness.
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Figure 4) Contours of total variance versus plate boundary thickness and degree of
locking. The dark curve traces the best degree of locking given an assumed boundary
thickness. Thicker plate boundries require a lesser degree of locking.
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Figure 5) Maps illustrating the tradeoff between boundary thickness and degree
j of locking. Increasing boundary thickness for a fixed degree of locking (left) and
; increasing degree of locking for a fixed boundary thickness (right) have very similar

effects. • • - • -, /•




