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Abstract 

The full problem of flame stability for the two-reactant model, which 

takes into account thermal expansion effects for all disturbance wave lengths, 

is examined. It is found that the stability problem for the class of two-

reactant flames is equivalent to the stability problem for the class of one-

reactant flames with an appropriate interpretation of Lewis numbers. 
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Administration under NASA Contract NASI-IBI07 while the author was in 
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1. Introduction. Recently, Jackson and Kapila (1984, 1986a,b) reexamined the 

problem of the stability of a plane, premixed flame in the near

equidiffusional (NEF) framework. The study was aimed at understanding the 

role of thermal expansion on flame behavior. Neutral stability curves were 

obtained in the Lewis number-wave number plane and contrasted with the 

classical results of Sivashinsky (1977), who had employed the Constant Density 

Approximation (CDA). 

The analysis was based on the simple kinetic model A + B which, as is 

well known, is also appropriate for a multi-reactant system when a single, 

deficient component controls the combustion process. Near stoichiometry, 

however, revisions are necessary since the number of controlling reactants is 

more than one. The first effort in this direction was due to Sivashinsky 

(1980) who examined the stability of a two-reactant model at EXACT 

stoichiometry, under the CDA; Joulin and Mitani (1981) later extended the 

result to near-stoichiometric mixtures. The essential point made by these 

studies is that the single-reactant results hold even near stoichiometry, 

provided the Lewis number is replaced by a suitably defined effective value. 

The purpose of this note is to show that even when the CDA is abandoned 

and thermal expansion fully taken into account, the notion of an ef fecti ve 

Lewis number persists. Thus, upon suitable interpretation, the results of 

Jackson and Kapila (1984, 1986a,b) can be applied to two-reactant systems. 

2. Governing Equations. Consider the two-reactant model 

v 1M1 + v2~ + Products, 
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where Ml and M2 denotes the chemical symbols of the deficient and abundant 

reactants respectively. Here "j is the stoichiometric coefficient for 

species j. We take the reaction to be irreversible and of Arrhenius-type so 

that its rate expression is of the form 

2 In.. n (2.1) W = B P Y
1 

x
2 

exp (-E/RT), 

where p is the density, Y1 and Y2 are the mass fractions of the deficient and 

abundant components, respectively, and T the temperature. The parameters 

appearing in the rate expression are the activation energy E, the universal 

gas constant R, the pre-exponential factor B, and the reaction orders m and n 

with respect to the deficient and abundant reactants, respectively. 

The basic equations of the two-reactant system can be modelled by the 

following equations: 

(2.2) Dp + pV·v = 0 
Dt 

, P = pRT 
W 

'" 

Dv 

(2.3) - 1 2 
P Dt + VP = lJ{'3 V(V.v) + V v}, 

'" 

(2.4) DT DP 2 
pep Dt - Dt = A V T + ~, 

DYj 
(2.5) 2 

- "jWjW ,j=1,2. p De = p Dj V Yj 

Besides Yj and T, the state of the system is determined by the density p , 

pressure P and velocity y. The other quantities appearing above are the 

specific heat at constant pressure Cp ' viscosity lJ ,thermal conductivity 
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A , species diffusion coefficient Dj of species j, chemical heat release Q, 

molecular weight Wj of species j and molecular weight W of the inert. 

Finally, D/DT denotes the material derivative, defined by 

(2.6) D 
Dt 

a at + v·V 

Equations (2.1) - (2.5) are supplemental by appropriate boundary conditions 

and jump conditions across the reaction zone. 

For nondimensionalization of the governing equations, the state of the 

fresh mixture is chosen as the reference, defined by the constant values 

P , P , T and v , 
000 0 

while the initial concentrations are rendered 

dimensionless relative to the initial concentration of the deficient reactant 

Y10. The characteristic length and time scales are taken to be the adiabatic 

diffusion scales 

(2.7) R. = A/(p C v ) o 0 p 0 

2 
t = A/(p C v ). o 0 p 0 

It is convenient to introduce the flame Mach number as M = v Ic , where Co 
000 

is the frozen sound speed in the fresh mixture. Finally, pressure deviations 

from the ambient are referred to yM 2p , Y being the specific-heats ratio. 
o 0 

The governing equations then take the dimensionless form 

(2.8) Dp 
+ p V·v = a , 1 = pT , Dt 

Dv 

(2.9) p Dt 
1 2 + VP = Pr {3 V(V·v) + v v} 

,..., 

(2.10) DT V2T + an p Dt = 
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(2.11 ) 

DY. 
J -1 2 

p Dt = Lj V Yj - a j S'2 j = 1,2 

(2.12) S'2 = D --2 "IW p ym+n-l 
M 1 0 10 

p2y~n -a/T 
1 2 e • 

o 

The yet undefined nondimensional parameters appearing above are: 

Pr = II C I). 
p 

a = QYl0/CpTo"IWl 

a = E/RT o 

e: = (1 +a)2 /a 

L
j 

= )./PD
j 

Cp 
2 D = ).B/p C c 

o p 0 

a. = ". W • l"IWl 
J J J 

Prandtl number, 

Heat release number, 

Activation energy, 

Reciprocal activation energy, 

Lewis number for species j, 

Damkohler number, 

Parameter involving stoichiometry. 

When a steady, planar, adiabatic flame is analyzed in the limit 

a+ eo , i.e., e: + 0, the following expression for the Mach number 

obtained (see, e.g., Sen and Ludford (1979) and Mitani (1980»: 

(2.13) 

where 

(2.14) 

D a m+n+1(1+a)2 
2= n 
Mo 2 a 2 G(m,n,A) 

e: 
-1-m-n I-m-n Y10 

m n 
"IWIPoLl L2 

a 
l+a 

e {l + O( e:)}, 

( feo m n -~ G m,n,A) = 0 ~ (~+A) e d~. 

Here, A is the normalized final concentration of the abundant, given by 

(2.15) A = ~ (cjl-l) 
e:L

2 

M o 
is 

and cjl is the equivalence ratio ("IWIY201"2W2YI0). Equation (2.13) is valid 

for the entire range of mixture ratio. However, we are only interested in the 
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mixture-ratio range ~ - 1 = O( e ); i.e., near-stoichiometric mixtures, since 

the reaction rates are then governed by the deficient component as well as the 

abundant component of the mixture. The special cases of very-near 

stoichiometry 2 ( ~ - 1 = 0 ( e ) ; i • e., A + 0) and away-from stoichiometry 

(~ - 1 = 0(1); i.e., A +~) can be considered as limiting cases of the near-

stoichiometric analysis, and will be discussed in the conclusions. Equation 

(2.13) also shows that the Mach number is exponentially small in the limit of 

large activation energy. 

The near-equidiffusional formulation (NEF) , in addition to large 

activation energy, is characterized by near-unity Lewis numbers and nearly-

uniform enthalpies, i.e., 

(2.16) -1 1.1 
H = 1 + a + eh, L 1 =l-e(-) T + aYl :: a 

-1 1.2 
T + ~ Y :: a L = 1 - d- ) G = 1 + a

2 
Y2f + ego 2 a a2 2 

(2.17) 

Here, Y2f = Y20/Y10 denotes the dimensionless mass fraction of Y
2 

in the 

fresh mixture. Then, to leading order in e ,equations (2.8), (2.9) remains 

unaltered, while equations (2.10) and (2.11) are replaced by 

(2.18a) 

(2.18b) 

(2.19a) 

(2.19b) 

DT _ V2T = 0 
PDt in the burnt region, 

T = 1 + a in the unburnt region, 

1. 
Dh = V2h + (..l.) V2T P Dt a' 

~ 2 
1. 

P = V g + (~) V2T. 
Dt a 
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Equations (2.8), (2.9), (2.18) and (2.19) now constitute the basic set. 

The following analysis is by now standard, and the reader is referred to 

Jackson and Kapila (1984) for details, hereafter referred to as I. For a two-

dimensional flow, let the reaction-zone location be given by 

x = xf :: F(y,t). It is convenient to shift to a reference frame in which 

the reaction zone is stationary. Let a new coordinate ~ be defined by the 

transformation 

(2.20) x = F(y,t) + ~ , 

and let the unburnt and burnt regions be confined, respectively, to 

~ < 0 and ~ > O. Then one obtains equations (8)-(22) of I, except now the 

enthalpy equation (141) is replaced by the enthalpy equations for hand g, 

1 
p (ht + Sh~ + vhy) = V

2h + ( ~) V
2T, (2.21a) 

(2.21b) 
1 

p(gt + sg~ + Vgy) = V2g + ( !) V2T, 

while the boundary conditions (211) and (221) at ~ = 0 are replaced, 

respectively, by 

(2.22) 

(2.23) 

h/2 
6T = -ae 

~ I(1+F 2 ) G(m,n,A) 
y 

6\ = 
11 

(-a) 6T~ 

{J o
m ~m (A+g-h+~)ne-~d~} 1/2 

6g~ 
12 . 

= - (-a) 6T~. 

Equations (81)-(221), together with (2.21)-(2.23) describe completely the NEF 

problem. 
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3. Linearization. Small perturbations of the steady flame are governed 

by linearized equations, which can be obtained by setting 

(3.1) s -
ljI = ljI (0 + oljl (~,y, t) 

for all variables and taking the limit 0 + O. We focus our attention only on 

the enthalpy equations (2.21) and the boundary conditions (2.22) and (2.23) 

since linearization of the other equations yields the identical equations of 

I. 

Linearization of (2.21) leads to 

(3.2a) s- - - s - - - s 
P h t + h~ + m h~ = h~~ + hyy - Fyyh~ 

1. 
1 - - s 

+ (a-)(T~~ + Tyy - F yyT~ ), 

(3.2b) s- - s - - - s 
P g + g + m g = g + g - F g 

t ~ ~ ~~ yy yy ~ 

1. 
2 - - - s 

+ (a-) (T~~ + Tyy - FyyT~ ) 

for hand g, respectively, while linearization of the jump conditions (2.22) 

and (2.23) at ~ = 0 yields 

(3.3) OT~ = - ~ {Ii + H (g - li)} , 

1. 1. - 1- - 2-
o~ = - (-) oT , og = - (-) oT • 

a ~ ~ a ~ 
(3.4) 

Here, 



(3.5) 

-8-

H = n G(m,n-l,A) 
G(m,n,A) 

If we define a new function I by 

(3.6) I = h + H (g - h), 

then (3.2) reduces to a single equation for 7, namely 

(3.7) ~ - -s - - s 
p f t + f ~ + mf ~ = f ~ ~ + f yy - F y/ ~ 

1 - - s 
+ a (1 1 + H (R. 2 - 11» {T~~ + Tyy - Fyy T~ }, 

while (3.3) and (3.4) determines the jump conditions at ~ = 0, 

(3.8) o T~ a - 0 I = -'2 f , ~ 
1 -= - a (1 1 + H (1 2-1 1» oT~. 

These equations are identical to the linearized enthalpy equation for the 

premixed flame (see (301),(361), and (421» with a reduced Lewis number 1 , c 

defined by 

(3.9) 1c = 11 + H (12 - 11). 

4. Discussion and Conclusions. The stability problem of the two-reactant 

flame consists of the linear system (241)-(421), with (301) and (361) replaced 

by (3.7), and the boundary condition (421) replaced by (3.8). In particular, 

we find that this system is governed only by the parameter 1, defined in 
c 
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(3.9). It is only here that the mixture ratio appears through H, and thus we 

consider the following three limiting cases. For near-stoichiometric 

mixtures, H is given by (3.5) and can not be simplified further. For very-

near stoichiometry, H is given by 

(4.1a) H = n m+n + O(e:) cj> - 1 
2 = 0 (e: ), 

and the corresponding reduced Lewis number becomes 

(4.1b) 1. = c 

m 1.1 + n 1.2 

m + n 
+ 0 (e:), 

i.e., the average value of the two Lewis numbers weighted by their respective 

reaction orders (Joulin and Mitani (1981». Finally, away from stoichiometry, 

H is given by 

(4.2a) e:n 
H = a (cj>-l) + 0 (e: 2) cj> - 1 = 0 (1), 

with corresponding 1. c ' 

(4.2b) 1.c = 1.1 + 0 (e:). 

Thus, for far-from stoichiometric mixtures, the stability problem reduces to 

that of a one-reactant flame governed by the Lewis number of the deficient 

component. 
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Sivashinsky (1980) and Joulin and Mitani (1981) have shown that within 

the diffusional-thermal model, the stability problem for two-reactant flames 

at or near stoichiometry reduces to the stability problem for single-reactant 

flames with a reduced Lewis number. We have shown that the above result also 

holds for the more important case when thermal expansion is accounted for, and 

for the entire range of mixture ratio. The following general statement can 

now be made: The linear stability problem for the class of two-reactant 

flames is equivalent to the stability problem for the class of one-reactant 

flames with Lewis number L = 1 + e:(R. la). 
c 

gravity do not alter this conclusion. 

The effects of heat loss and 

Acknowledgements. The author would like to thank A. Kap1la for helpful 

comments in connection with this work. 
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