
F '

Notes 011
Implementation of Sparsely Distributed Memory

James D. /fee/er
Peter J. Denning

August 7, 1980

Research Institute for Advanced Computer Science
NASA Ames Research Center

RIACS Technical Report 86.15

(N f l S A - T H - 8 9 2 5 H) NOTES ON IK.FI-EHEN.TATIOM OF
S P A R S E L Y DISTRIBUTED. B E H O B Y * (U A S A) 31 .p

CSCL 09B

N86-33031

Unclas
G3/60 •- 44589

Research Institute for Advanced Computer Science

TR-86.15 . - 1 - A u g u s t 7, 1986

Notes on
Implementation of Sparsely Distributed Memory

James D. Keeler
Peter J. Denning

Research Institute for Advanced Computer Science
NASA Ames Research Center

RIACS Technical Report 86.15
August 7, 1986

The Sparsely Distributed Memory (SDM) developed by Kanerva is an unconventional
memory design with very interesting and desirable properties. The memory works in a
manner that is closely related to modern theories of human memory. In the following,
the SDM model is discussed in terms of its implementation in hardware. Two appen-
dices discuss unconventional approaches to components of the SDM: Appendix A
treats a resistive circuit for fast, parallel address decoding; Appendix B treats a systolic
array for high-throughput read and write operations.

Work reported herein was supported in part by Cooperative Agreement NCC 2-387
between the National Aeronautics and Space Administration (NASA)

and the Universities Space Research Association (USRA).

James Keeler's permanent address is Department of Physics and Institute for
Nonlinear Dynamics B-019, U.C. San Diego, La Jolla, CA 92093.

TR-86.15 -2- Augus t 7, 1986

Notes on
Implementation of Sparsely Distributed Memory

James D. Keeler
Peter J. Denning

Research Institute for Advanced Computer Science

August 7, 1986

1. Introduction

The Sparsely Distributed Memory (SDM) is exactly what the name implies:

It is a set of storage locations whose addresses are distributed sparsely over the

space of possible addresses. The advantages of this memory design are many. It

can perform pattern recognition with automatic error correction. It can perform

brain-like functions. It is immune to failure of particular elements; the SDM

would be able to function reliably if 5 to 10% of its elements failed. It is versa-

tile: It can act as a content-addressable memory, a random-access memory

(RAM), or a sequential-access memory. In this report, we discuss briefly the

SDM model and give a schematic description of how the SDM could be realized

in hardware, both digital and analog.

A few concepts should be explained before we discuss the hardware imple-

mentation of the SDM. The SDM starts with an address space, the set of 2

TR-86.15 -3- August 7, 1986

distinguishable n -bit addresses. For n moderately large, the number of possible

memory locations becomes astronomical.. Indeed, for n =1000, 2 is larger than

the number of particles in the known universe. Obviously, there is no way of

associating all, or even a relatively small fraction, of these addresses with physi-

cal storage locations. Hence, we pick at random m addresses to be associated

with physical storage locations; we are assuming m on the order of a million to

a billion. Because m is small compared to 2" , these randomly chosen addresses

point to a set of memory locations that are sparsely distributed in the address

space.

To function as a memory, this system should be able to write and read

data. To write, we need as input both the address and the data word itself. In

the SDM, the address size and the data-word size are the same. This size

equivalence is not a limitation since there need be no requirement that the

address and the data-word size be different.

2. Selection

Given an address, where are the corresponding data written? The given

address is quite unlikely to point to any one of the m randomly chosen memory

locations. However, some of the memory locations are closer to the input

address than others. The selection rule is: select all locations whose addresses

are within a Hamming distance D of the given address. If we view n -bit

addresses as points in n -dimensional address space, the selected locations will lie

TR-86.15 - 4 - August 7, 1986

within a (hyper)sphere of Hamming radius D centered at the input address (see

Figure l). The data are written into every memory location within this sphere.

This is why we say that the information is distributed over all the selected

memory locations.

Address (n bits)

1' 0 1 1 1 0 1 1 0 . . .]

Memory location
in address space
(m locations)

Hyper-
sphere
of Hamming
radius D

Address space of 2npossible points

Figure 1. This qualitative picture of address space shows memory locations in the address
space, an input address to read from or write into memory, and the Hamming (hyper)sphere con-
taining all selected locations.

Each memory location is actually a set of n counters. The reason is that

we may wish to write two (or more) sets of data whose addresses point to over-

lapping spheres; by allowing memory locations to be written into more than

once, we allow retrieval of multiple sets of data. The data-word is written in the

selected locations by adding it bitwise to the location's counters; the rule is, a 1-

bit of data causes 1 to be added to the corresponding bit counter, while 0 causes

TR-86.15 - 5 - A u g u s t 7, 1986

1 to be subtracted. The details of how this scheme works can be found else-

u !-3where.

3. Reading and Writing

Figures 2 and 3 are schematic representations of the SDM hardware; Figure

2 describes writing into the memory and Figure 3 describes reading. The system

consists of two basic functional parts: First there is the address-decoding stage,

in which the input address is broadcast on an address bus and is compared to

each and every of the m (fixed) addresses of the ro memory locations. This

comparison is done in the device labeled "Address comparator" in the figures.

The address comparator is a very simple device that performs bitwise XORs on

the two addresses and computes the number of bits in which the two addresses

differ. If the Hamming distance is less than D , select is set true and the data

are written into that memory location by adding the n bits of data individually

to the location's n counters.

TR-86.15 - 6 - August 7, 1986

Address in Loc. 1 address Location 1 counters'
ii P O O - I ii io i o-i I I I I I -

Address
comparator! sel.

n bits

Loe. 2 address Location 2 counters

I IOO III • • • • I I I I I •" I

JAddress I \ \
[comparator! sel.

m locations

J

11 O O I I O

n bits

Figure 2. Writing into the SDM. An input address is given along with its input data. The in-
put address is compared to each and every address in the list of memory locations. If the address
is less than D Hamming units away, then tcl. is set true, and the data are written into that
memory location. Each location is actually a group of n counters, where n is the data-word size.
Upon writing, each selected location will increment or decrement each of its n counters according
to the data in. The address comparison is done for all m locations, and the writing is done only
for each of the selected locations.

Reading is done by giving the address for the data to be read. As with

writing, the address is compared to each of the m location-addresses, selecting

those within D of the read address. Then, the contents of the counters for each

of the selected memory locations are added together to yield n separate sums.

Each of these n sums is then passed through a threshold. If a sum exceeds the

threshold, the corresponding output-data bit is set to 1; otherwise it is set to 0.

TR-86.15 - 7 - August 7, 1986

In this manner the data that were written for a given address are retrieved with

a very high probability.

Address in Loc. 1 address Location 1 counters

" O O P -I i ioooi-i - I

Address
comparator sel.

Loc. 2 address Location 2 counters /m locations

Address
comparator! sel.

n bits Threshold

I • • -I Sum of counters of
selected locations

HOI o i o .TT| Data out

n bits

Figure 3. Reading from the SDM. Reading is simply done by giving the address of the data to
be read. This address is compared to the address of each and every location in the memory. If
the address is less than D Hamming units away, sel. is set true. All locations with their sel. =
true have the contents of their counters added together yielding n sums. The sums are passed
through a threshold device that yields the data out.

The discussion above omits important details on how to implement the

address decoders and how to perform the read and write operations. These func-

tions can be implemented in straightforward (but tedious) ways in conventional

logic. Two slightly unconventional alternatives are discussed in the appendices.

TR-86.15 - 8 - Augus t 7, 1986

Appendix A analyzes a resistive network capable of determining the cells in the

selected hypersphere in parallel, in time proportional to n + m . Appendix B

presents a systolic array that can perform read and write operations of many

requests in parallel.

4. References

[l] Pentti Kanerva, Self-Propagating Search: A Unified Theory of Memory.
MIT Press Bradford Books (1986), in press.

[2] Pentti Kanerva, "Parallel structures in human and computer memory,"
RIACS Technical Report TR-86.2 (1986).

[3] Peter Denning, "A view of Kanerva's sparse distributed memory," RI-
ACS Technical Report TR-86.14 (1986).

TR-86.15 , -9- A u g u s t 7. 1986

APPENDIX A: Analog Parallel Address Comparator

The SDM is based on massively parallel processing. Some of this processing

could done in analog. There are two stages in the SDM where a linear-threshold

circuit is required. Linear-threshold circuits are difficult to build with digital cir-

cuitry; the linear threshold is usually achieved with a number of XORs, adders

and a comparators. However, analog circuits can perform linear thresholds all at

once in a resistive bridge (among other things). The following is a description of

a simple analog circuit that could be used for the address-comparison stage of

the SDM, and would perform the address selections in parallel simultaneously.

The main idea behind the address comparator is to compare one address to

another address and to set a select signal to true if the addresses are within D

Hamming units of each other. Although the input address is variable, the

addresses of the cells (memory locations) are fixed (and randomly chosen).

Thus, it is possible to encode the addresses of the cells in a fixed resistive net-

work. In the analog address comparator, the input address is given in parallel

on an input-address bus. The input address is represented as a string of Os

(ground) and Is (V} , the source voltage). The addresses of the cells are also

represented as strings of Os and Is, but these addresses are encoded by the plac-

ing of resistors at proper intersections between address lines and cell lines in the

resistive network; The principle behind the operation of the circuit is that the

current flowing through the wires of each cell line will be proportional to the

Hamming distance between the input address and the address of that particular

TR-86.15 - 1 0 - Augus t 7, 1986

memory location. This current is converted into a voltage that can be compared

to the threshold to give a select signal.

Suppose that the address of one of the cells is given by the string

(1,1,0,1,0,0,...). This address is encoded in the resistive network in the following

fashion: For each cell, there are two wires (running vertically in Figure Al), the

"Os" wire and the "Is" wire; the Os wire is attached to ground, and the Is wire

to V . The address is simply encoded by placing resistors at intersections
S

between the input-address wires and the cell wires according to the address bits.

For example, if the address of the first cell were (1,1,0,1,0,0,...), a resistor would

be placed between the first line of the input address and the Is wire of the first

cell (this is marked with a black dot labeled R at the intersection of the first

horizontal and vertical wires in Figure Al), another resistor would be placed at

the crossing of the second input-address wire and the Is wire of the first cell, a

third resistor on the third input line and the Os wire of the first cell, etc. In all,

there would be n resistors for each address in the memory location, and if there

are ro cells, there would be m pairs of wires on which to place resistors. Thus,

the number of wires is 2m -I-n in the resistive bridge and the number of resis-

tors is nm . Buffers can be used on the input-address line after so many cells to

boost the signal on the input-address bus. These buffers are shown at the top

right in Figure Al.

How does this circuit work? First, look only at the Os line of the first

address from the top of the circuit down to ground in Figure 1. If Ra is zero

•a
•o
a ^

•*"* 1

i=v.

V,

Address 1 Address 2 Address3

1 0 1 0 1 0

R

R

R

R

R

R

V

R2
•^ ^^^

VH.

select

Hamming threshold voltage

Figure Al. Schematic diagram for the analog address comparator. The first six bits of the In-
put address are 101011 and of Address 1 they are 110100. The black dots marked R represent
resistors at the intersection of address lines and cell lines. The current running through the cell
lines is proportional to the Hamming distance. The op-amps at the bottom are used to sum the
currents as voltages and threshold this voltage with the input Hamming voltage. The op-amps
could be realized with 2-4 transistor circuits not shown here explicitly.

TR-86.15 - 1 1 - August 7, 1986

resistance, then it is clear that the current flowing through the Os wire is propor-

tional to the number of places at which the input address has Is and location 1

address has Os. The resistor Ra is just put in the circuit to convert this current

to a voltage (i.e., this is just a very simple ammeter). Next, look only at the Is

line of the first address. If Ra were absent, the current flowing through this

wire would be proportional to the number of places at which the input address

has Os and the location address has Is. The sum of the two currents would then

be proportional to the total number of places at which the input address and the

location address differ (that is, the current is proportional to the Hamming dis-

tance). The rest of the circuit converts these currents to voltages and sums

them together to get a voltage that can be compared with a programmable

Hamming-distance voltage to give the final select signal.

Detailed Circuit Analysis

The above paragraph is qualitative. Now we will give a quantitative

analysis to demonstrate the truth of the claims. In this section, we assume that

all circuit elements are ideal. The nonideal case will be discussed in the next

section. The resistive network for the first two cell lines can be reduced to the

equivalent circuits shown in Figures A2 and A3. Both circuits are just simple

voltage dividers. The key point is being able to produce a good ammeter, which

means choosing Ra very small compared to the parallel sum of all the other R s.

This is feasible since we want R /n « R ; for n =1000, and R =100fi, R can

'10

R < R ... < R < R < R

R < R ... < R < R < R

• vio
10

00

10

"00

Figure A2. The circuit equivalent for the second vertical wire (the Os line) and the input-
address lines in the address decoder of Figure Al.

01

'11

R < R ... < R < R < R

R < R < R

01

•* X.

01

01

Ra

-. V

Figure A3. The circuit equivalent for the first vertical wire (the Is line) and the input-address
lines in the address decoder of Figure Al.

TR-86.15 - 12 - A u g u s t 7, 1986

be 100 Mf2.

The equivalent circuit for the input address and the Is line is shown in Fig-

ure A2. From this circuit, elementary circuit analysis shows that

where RZ = R /n 10, R = Ra R / (n O Q R a +R), where n IQ is the number of

places where the input address has Is and the location address has Os, and n QQ is

the number of places where the input address and the location address both have

Os. If nO QR a «R and n lQRa «R , we get

R a
(A2)

R

By a similar analysis, we get

Ra

V 0 1 = V
S - » O l — *.'•

R

Hence,

Ra R
Vio + (F

s -^oi) = Ki+»io) — =D— , (A4)

where n Q1 is the number of places where the input address has Os and the loca-

tion address has Is, and n n is the number of places where the input address and

the location address both have Is. Thus, we have found a quantity proportional

to the Hamming distance, D . The rest of the circuitry is just to perform the

summation of VIQ and (Vg - V Ql) and to compare the result to the Hamming

TR-86.15 - 1 3 - A u g u s t 7, 1986

voltage VH , which can be changed to give different Hamming distances.

The above analysis holds for every location address (as shown in the next

section). Thus, the total circuit would have m copies of these two lines and the

summing-threshold circuit at the bottom. These m copies could certainly be

placed on different circuit chips and connected together by buffering the input-

address bus as described earlier.

The analysis above considers currents on a cell's two lines. Another argu-

ment is needed to show that there is no leakage current — i.e. no additional

currents from other cell lines. We will show that no leakage currents exist for

the ideal case of perfect grounds and perfect source voltages.

Consider a circuit for two cells. To help visualize this circuit, the address

lines and the input-address bus are shown in 3-dimensional perspective in Figure

A4. The equivalent circuit is shown in Figure A5. From this equivalent circuit, it

is easily seen that no current can flow through Ra on any cell line starting from

a different cell line.

For implementing a real circuit, one could choose n =1000, R - 100M ft,

and Ra = lOOfl. For the worst case, n I 0=n , these values would yield a max-

imum error of 0.1% for the simple ammeter we have constructed here. The

number of addresses could be anything if we remember to place buffers on the

address bus to boost the signal power. With conventional off-the-shelf op-amps,

we would have to place buffers every 50 to 100 address lines to meet the power

requirements. The input address could be multiplexed onto the chip to reduce

Address 1 Address 2

1 0 1 0 0 1 0

Figure A4. A three-dimensional perspective drawing of a circuit for two address lines connected
to the address bus.

Address 1 (0) Address 1 (1) Address 2(0) Address 2(1)

3< 5 8< 6

01

Figure AS. The equivalent circuit for the address decoder shown in Figure A4. Note that each
of the address lines decouple because the current flowing through each Ra is dependent only on
the resistors in that address line, not on the resistors in the entire network.

TR-86.15 - 14 - A u g u s t 7, 1986

the number of wires going into the chip.

Nonideal Circuit Analysis

The preceding arguments assumed ideal resistors and voltage sources. In

real circuits, the resistors and voltage sources are likely to differ from their nom-

inal values. It is reasonable to assume that the source voltages and grounds for

the cells have no errors. In this case, the current in each cell depends only on the

cell's address-line voltages and resistors; thus the error in the current in Ra

depends only on the errors in these voltages and resistances.

Next, we assume that an erroneous address-line voltage can be simulated by

a nominal voltage applied to an erroneous resistor. It is, therefore, sufficient to

consider the effects of resistance errors on the voltages across Ra . In Figure A2,

let each resistor now be R +6 where 6 is a random variable representing the ran-

dom, errors in the resistances. For an approximation, we will suppose 6 is nor-

mally distributed with mean 0 and standard deviation a. What is a good value

of al Assume that the combined errors are equivalent to 10% tolerance resis-

tors; then 99.99% of the resistors will be in the range [0.9.R ,1.1 R } if 40- = O.lR ,

or a = 0.0255 .

We are interested here only in the error incurred in the main network, not

in the ammeter portion. Hence, assume for the moment that the Ra have no

errors. Keeping track of the errors in the cell's resistors, the equivalent circuit

now yields

TR-86.15 - 15 - August 7, 1986

R

where

R
R

n 10 1 -

and where

R

noo

t « oo .
1

1~7~^E<5 '

If we assume R « min(R , R) the equation for V Q reduces to

R

R R
1 - V .

3

(A5)

(A6)

(A7)

(A8)

The sum in this expression has expected value 0. Thus, the expected voltage is to

be proportional to n 1Q:

E[y, n l = -^-V. (A9)
R

Similarly, the expectation value of V _ is

(A10)
R

TR-86.15 - 1 6 - A u g u s t 7, 1986

Let's examine the sum in equation (A8) more closely. The sum is

1 "'"
E-5, ' (All)

n ioR , -=,

and a similar expression for the sum in V0 1- By looking at this sum, we gain a

measure of the relative error of the voltage across Ra . The expectation of 5 is

2 2
0, and the variance is a /n 1Q.ff . To achieve a 99% confidence level that the rela-

tive error incurred by this sum is less than 1%, and with a~0.025J? , we must

have n .„ > 42. Since the expectation of n .„ is 0.25n , this would require

n > 168. Thus, for n ~200, the relative less than 1% relative error in the voltage

across R is caused by the cell's erroneous resistors.

Equation A9 showed that the voltage is expected to be proportional to n IQ.

The proportionality constant is Ra . If Ra has a 10% error, the final signal will

be off by 10%. This emphasizes the need for fairly good ammeters (a 10% error

does not constitute a good ammeter). Fortunately, this error does not present a

problem. The structure of the SDM itself allows sloppy components. The only

requirements are that the cells selected by an address for writing are the same as

those selected by the same address for reading and that addresses close to this

address will select almost the same set of cells. This will happen with very high

probability in the above circuit even when it has imprecise elements. If Ra has a

small error, this effectively increases or decreases n 10 or n or Hence, the selected

addresses lie within a hyperellipsoid instead of a hypersphere. Since there is a

range .of Hamming distance of about 10% around an optimal distance that works

TR-86.15 - 1 7 - Augus t 7, 1986

quite well for the SDM, this ellipsoid will have the same characteristics as the

sphere (as long as it is not too elliptical and the mean of the principle axes is the

mean value of the range of proper Hamming distances). This range can be

achieved by adjusting the Hamming-threshold voltage.

Finally, we comment on a few other features of this circuit, and speculate

on its performance. First, the Hamming voltage can be used to control the

number of selected addresses. This voltage could be adjusted through a feedback

loop to insure that the number of selected states is approximately constant.

This adjustment may improve stability of the SDM. Second, the Hamming vol-

tage could also serve as a "concentration level." For very small voltages, nothing

is written or read, hence the "concentration" of the system is very small. For a

higher voltage, many locations are written to or read from, indicating a higher

concentration level. This could be used to tell the system to pay attention only

to important data. Third, present technology allows the placing of resistors in a

network such as this using wires of 1 micron width and spacing of 2 microns

between the resistors. Hence, one could achieve a 1000-bit address comparator

with 1000 cells on a chip of approximately 3 mm x 6 mm. The other com-

ponents, such as the op-amps, could be placed on the outer part of the chip.

TR-86.15 - 1 8 - August 7, 1986

APPENDIX B: Systolic Implementations

The large fan-ins and fan-outs of data during write and read operations can

be implemented in various ways. We will discuss one based on systolic arrays,

and organization that can permit many queries to be processed in parallel.

Figure Bl shows the memory structure in the form of a matrix. The follow-

ing notations are used:

a = (a j, . . . , an) — the address bits

d = (d r . . . , dn } — data bits

mi = (m, i> • • • ' min) "" address of cell i

ci = (c
t i> • • • ' cm) "" contents of cell i

s = (S j , . . . , sm) — selection bits

Note that sf =1 if and only if H (a ,m))^D , where H denotes Hamming dis-

tance between two vectors. A write operation follows the rule:

*i

where / (x ,1) = x +1 and / (x ,0) = x -1. A read operation follows the rule:

m

i =1

where g (x) = 1 if x >0 and 0 otherwise.

Figure B2 shows the set of counters of the memory array arranged in a two

dimensional network. Position 0 of the memory array serves as a port to write

in address and data bits, and to read out data bits. The n vertical lines denote

n bits

i
2

m

Data out

Figure Bl. The SDM can be visualized as two m x n matrices. The rows of the address matrix
(left) compared in parallel against the input address a, to produce an m-6tt selection vector «.
Data are written into selected cells by adding (subtracting) one to (or from) counters in the
memory array corresponding to Is (Os) in the data; they are read out by generating Is whenever
a column sum of counters is positive. The address array need not be implemented explicitly; it
can be encoded into the logic that determines whatever «,- = 1 for a given address.

I I

c..

Figure B2. Portion of the memory array. At each vertical time step, a row of query packets is
shifted down one position; at each horizontal time step, a column of bookkeeping packets is shift-
ed right one position. The rows and columns are implemented as rings. Row 0 acts as an
input/output port; column 0 acts as a bookkeeping-packet initializer.

TR-86.15 - 1 9 - Augus t 7, 1986

rings carrying address bits and data; there is wraparound from row m to row 0.

The horizontal lines denote rings carrying information used to make the selec-

tions of address decoding; these lines also form a ring, with wraparound from

column n to column 0.

Information transmitted along the horizontal and vertical rings is contained

in packets. At each vertical time step, all vertical packets are shifted one posi-

tion downward along their rings. Similarly, at each horizontal time step, all hor-

izontal packets are shifted one position rightward along their rings.

It is convenient to describe the operation of the array in two stages. In

stage 1, called vertical pipelining, we will assume that the vertical time step is

small compared to the horizontal time step: the horizontal ring can be used to

determine completely whether the given cell is selected before vertical packets are

moved. In stage 2, called full pipelining, we will replace this with the assump-

tion that both the horizontal and vertical time steps are equal.

Let us focus first on a row of vertical packets. Each packet will be of the

form (RW,A,B), where RW is a bit indicating read (0) or write (l) , A is an

address bit, and B is a data field. For a write operation, the row of vertical

packets generated at the port at time 0 has the form

(l . a j . r f j , • • • , (l,aB ,rfB)

At time t =i ' , these packets arrive at the row of counters for cell t . The address

bits in them can be used to determine whether or not that cell is selected — i.e.,

TR-86.15 - 2 0 - A u g u s t 7, 1986

whether s^ =1. (This can be done quickly using a highly parallel circuit such as

the one described in Appendix A, or more slowly using a horizontal pipeline tech-

nique described below.) After the selection bit is determined, the write rule is

performed, and the row of packets is passed downward at time t =i +1.

For a read operation, the row of vertical packets generated at the port at

time 0 has the form

(0,apO) , • • • , (0 , a n , 0)

At time t =i' , these packets arrive at the row of counters for cell i . The address

bits in them can be used to determine whether or not that cell is selected, and

the read rule performed, using the data field as a running sum. At time t =m ,

these packets return to the port; their data fields are then thresholded to obtain

the output data bits.

With this organization, a query (consisting of a read/write request, an

address, and data) can be entered into the vertical ring at each vertical time

step. After the pipeline is filled, the memory array will return one response each

time step. The delay for a response to a particular query will be m time steps.

For example, if the vertical time step is 1 microsecond and m =10 , the memory

will be capable of processing 1 million queries in parallel and the response time

to any one query will be 1 second.

Let's turn now to full pipelining. Consider what must happen in one verti-

cal time step in the stage-1 description: the address decoder must compute

TR-86.15 - 21 - A u g u s t 7, 1986

n

JJ (a . m .) = £Mvm.y) ,

;=i

where h (x ,y) = 1 if x ^y and h (x ,x) =0. (Note that XORs are not neces-

sary: because h (x ,l) = x and h (x ,0) = x , the address of a cell, m(, can be

encoded by hard-wiring in a random choice of a~ or a •. at each counter of the

memory array.) This sum could be computed by passing a running sum, H- ,

along each horizontal row. After n horizontal time steps, the values in the H-

emerges from the rightmost columns; then the selection bits are computed from

,-=»(,•)•

How do we synchronize this computation with the passage of the vertical

packets? A simple approach is to stagger the insertion times of the set of pack-

ets corresponding to a given query: packet (RW,A, ,Bj) is inserted at time 1,

packet (RW,A2 ,B2) at time 2, and so forth. Then, the arrival of packet

(RW,A ,5) at counter ci will be synchronized with the arrival of the horizon-

tal packet containing Hf .

Staggering the insertion of address bits complicates the read/write opera-

tions, n time units after the first address bit reaches the first counter of a row,

the selection bit si of that row will be available; that bit will require an addi-

tional n time units to be passed around the horizontal ring a second time. This

means that the packets corresponding to a query must be split in two: the

address bits are sent out in one wave of packets and, n time units later, the

(RW,5) bits are sent out in a second wave. (See Figure B3.) As before, this

•*- 1

Wave front of (RW, data) query bits

/Wave front of
query address bits

Horizontal ring

Vertical ring .

Figure B3. With' vertical and horizontal pipelining, horizontal packets carry partial sums for
Hamming distances between addresses on Front 1 and memory cell addresses. When Front 2 ar-
rives at cell i the selection bit *(- has been computed and passed along the same ring in synchroni-
zation with data-part of the query.

TR-86.15 - 2 2 - A u g u s t 7, 1986

circuit will yield one new response each time step (with smaller time steps than

in stage 1), but the delay for a response is m +2n time steps.

Note how fields of queries are distributed among the actual packets travel-

ing along the rings. Each vertical packet contains the address bits for one query

and the data bits for the query made n time steps earlier. Each horizontal

packet contains the Hamming partial sum (Hi } for one query and the selection

bit (st) for the query made n time steps earlier.

The systolic organization has high throughput but relatively long response

time to any given query. The original model of SDM assumes that the Focus

(processing element) generates one query and then awaits one response. Is this

organization compatible with the original model? The answer is, may be. Large

patterns representing sensory input may well be decomposable into smaller

chunks, each representing the local output of a part of the sensor; each chunk

can be checked separately for similarity to a pattern stored in the memory, and

the result formed by joining the queries. Moreover, one systolic SDM could

simultaneously serve many Foci working in parallel.

RIACS
Mail Stop 230-5

NASA Ames Research Center
Moffett Field, CA 94035

(415) 694-6363

The Research Institute for Advanced Computer Science
is operated by

Universities Space Research Association
The American City Building

Suite 311
Columbia, MD 21044

(301) 730-2656

