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SUPERCOMPUTER IMPLEMENTATION OF FINITE ELEMENT ALGORITHMS
FOR HIGH SPEED COMPRESSIBLE FLOWS

By

Earl A. Thornton1 and R. Ramakrishnan2

ABSTRACT

Prediction of compressible flow phenomena using the finite element

method is of recent origin and considerable interest. Two shock capturing

finite element formulations for high speed compressible flows are described.

A Taylor-Galerkin formulation uses a Taylor series expansion in time coupled

with a Galerkin weighted residual statement. The Taylor-Galerkin algorithms

uses explicit artificial dissipation, and the performance of three dissi-

pation models are compared. A Petrov-Galerkin algorithm has as its basis

the concepts of streamline upwinding. Vectorization strategies are develop-

ed to implement the finite element formulations on the NASA Langley VPS-32.

The vectorization scheme results in finite element programs that use vectors

of length of the order of the number of nodes or elements. The use of the

vectorization procedure speeds up processing rates by over two orders of

magnitude. The Taylor-Galerkin and Petrov-Galerkin algorithms are evaluated

for 2D inviscid flows on criteria such as solution accuracy, shock resolu-

tion, computational speed and storage requirements. The convergence rates

for both algorithms are enhanced by local time-stepping schemes. Extension

of the vectorization procedure for predicting 2D viscous and 3D inviscid

flows are demonstrated. Conclusions are drawn regarding the applicability

of the finite element procedures for realistic problems that require hun-

dreds of thousands of nodes.

iprofessor, Department of Mechanical Engineering, Old Dominion University,
Norfolk, Virginia 23508.

2Graduate Research Assistant, Department of Mechanical Engineering, Old
Dominion University, Norfolk, Virginia 23508.
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Chapter 1

INTRODUCTION

Until the late 19th century scientific analyses were non-existent

in engineering practice and engineers relied heavily on empirical rela-

tions. The fields of engineering and mathematics were considered to be

totally unrelated. The great mathematician Hilbert was said to have

pronounced, "The mathematician and the engineer have nothing to do with

each other and never will." The historic flight of the Wright brothers

in 1903 shattered this notion and ushered in the era of scientific

technology wherein research and its practical applications proceeded in

parallel. The aerodynamicist of today is very much aware of the strong

interplay between mathematics, engineering, and numerical analysis in

the prediction of flow behavior around flight vehicles.

A system of nonlinear equations of special interest to aerody-

namicists are the compressible flow equations. The compressible in-

viscid equations or the Euler equations describe flow of a friction-

less, non-heat conducting fluid. The addition of viscosity and heat

dissipation to the inviscid equations results in the compressible, vis-

cous Navier-Stokes equations. Numerical studies aimed at predicting

the flow features these equations describe have mushroomed due to the

availability of bigger and better "number crunchers." A new field

known as Computational Fluid Dynamics (CFD) has evolved which is

devoted to the numerical simulation of fluid dynamic equations.
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The role of CFD in fluid dynamics and aerodynamics has seen a dra-

matic increase in the last few years. A new breed of computational

fluid dynamicists are daring to dream of a future free from the tyranny

of wind tunnels. The rapid advancements in computer technology with

the proliferation of supercomputers and the evolution of ultra-com-

puters indicate that those dreams are fast assuming proportions of

reality. The role of CFD has also received a boost with recent initia-

tives to develop the hypersonic research airplane, the "Orient

Express." Numerical simulations will have a major role in the design

and development of the hypersonic research aircraft as well as in the

design of transatmospheric vehicles (TAVs) that form part of the con-

troversial SDI or "Star Wars" concept.

Supersonic flight vehicles such as the Anglo-French "Concorde"

cruise at speeds exceeding Mach 2. The proposed hypersonic research

aircraft is envisaged to have applications in the range of Mach 6 to

Mach 25. At these extremely high speeds, the aerodynamic heating on

vehicle surfaces have substantial effects on flight performance.

Deformations and stresses that result from heating effects are signifi-

cant and means of predicting these effects .are clearly necessary.

Detailing deformations and stresses due to aerodynamic heating requires

integrated fluid-thermal-structural analyses. The accurate prediction

of high speed compressible flow features described by the Navier-Stokes

equations forms the backbone of such integrated analyses.



1.1 Background

The use of computers to predict flow features has become an

important and indispensable part of understanding flow behavior. Use

of digital computers to solve problems of fluid dynamics started in the

early forties of this century [1]* and has continued ever since. Until

the early seventies the method of finite differences enjoyed exclusive

use in efforts aimed at predicting flow features. It was only in the

early seventies that researchers began to consider the use of finite

element methods for flow analyses. Early applications of finite ele-

ment methods to flow problems were in the incompressible flow domain

[2, 3]. During the last three years researchers have developed the

first finite element formulations for prediction of high speed compres-

sible inviscid and viscous flows.

A tour d'horizon of research efforts for incompressible and com-

pressible flow simulations using the finite element method appears in

[4, 5]. Most of the literature in finite element compress.ible flows

deal with transonic flows. Potential flow formulations have been

developed by Ecer and Akay [6] and extensions for the Euler equations

in non-conservative form are presented in [7]. The use of implicit and

explicit procedures to solve inviscid transonic problems about airfoils

and engine inlets is detailed by Argrand, et al. [8, 9]. A Galerkin

finite element formulation was recently used by Jameson [10] to study

the flow features about an entire Boeing 747 aircraft. Two families of

finite element formulations for high speed compressible flow analyses

have evolved: the Taylor-Galerkin [11, 13] and the Petrov-Galerkin

[14, 16] formulations.

*Numbers in brackets indicate references



A question that often arises, especially from devotees of the

finite difference method, is why use finite element methods for com-

pressible flow computations?' Admittedly, finite difference methods

have reached a high level of sophistication, but some capabilities of

the finite element method suggest that the method deserves investiga-

tion. The need for integrated fluid-thermal-structural analyses was

mentioned earlier, and the finite element method lends itself well to

such an approach. The capability to model complex flow domains with

relative ease is also one of its major selling points. Compressible

flow situations are often characterized by regions that need to be

adaptively refined. The geometric flexibility of finite elements makes

it highly amenable to mesh refinement procedures. Factors such as

these have infused new interest in the application of finite element

methods to compressible flow problems.

A research effort is underway at the NASA Langley Research Center,

in concert with industry and university researchers, to improve the

capability and efficiency of finite element methods for high speed com-

pressible flows and to develop more efficient integration of finite

element fluid, thermal and structural analyses. The culmination of

these research efforts will be the ability to predict accurately aero-

thermal loads for complex three dimensional bodies.

1.2 Purpose

The need for integrated fluid-thermal-structural analyses and the

motivations for choosing the finite element method for such analyses

appear in earlier sections. Finite element formulations suitable for



compressible flow calculations are of recent origin. The Taylor-

Galerkin and Petrov-Galerkin formulations continue to evolve being

modified to enhance their capabilities for accurate solutions. A

Flux-Corrected-Transport (FCT) version of the Taylor-Galerkin was

developed recently [17], and modifications of the Petrov-Galerkin

formulations continue [18].

The procedure to simulate the characteristics of compressible

fluid flow involves, in addition to the finite element algorithm,

issues such as fast-and-easy model generation, efficient programming

strategies to implement the algorithms, and results display using color

graphics. In this study the generation of the flow model and the

results display are done using the commercially available software

package, PATRAN [19].

The use of efficient programming strategies is of major importance

to predict flow behavior around complex 3D configurations. The purpose

of this study is to develop computational procedures for implementing

finite element formulations for compressible flows on a supercomputer.

The highly vectorized computational 'procedures can be used to analyze

compressible inviscid and viscous flows and can be extended to develop

integrated fluid-thermal-structural analyses.

The basic concepts of shock capturing methods which are based on

the theory of weak solutions are introduced in Chap. 2. Two shock

capturing finite element formulations are then introduced. The

Taylor-Galerkin formulation uses explicit artificial dissipation and

three popular dissipation models are explored. The Petrov-Galerkin

formulation, being based on the concepts of upwinding, needs no

explicit artificial dissipation. Chapter 3 discusses the need for



vectorization strategies and develops procedures to vectorize the

finite element algorithms effectively on the NASA Langley VPS-32. The

effects of local time-stepping procedures and the use of different

explicit dissipation models for the Taylor-Galerkin finite element for-

mulation are illustrated in Chap. 4. The Taylor-Galerkin and Petrov-

Galerkin formulations are evaluated for a variety of 2D inviscid prob-

lems. Evaluation criteria include solution accuracy, computational

speed, and storage requirements. Extension of the vectorization proce-

dure to 2D viscous flows using the Petrov-Galerkin formulation appears

in Chap. 5. The finite element methodology for 3D inviscid compres-

sible flow computations using the Taylor-Galerkin formulation is

described in Chap. 6. Finally, conclusions are drawn regarding the

performance of the two vectorized finite element formulations for in-

viscid and viscous flows, and recommendations are made for further

research.



Chapter 2

SHOCK CAPTURING FINITE ELEMENT ALGORITHMS

Compressible flow problems involve flow situations that may con-

tain shocks, contact surfaces and expansions. Shocks are difficult to

model being characterized by abrupt changes in all variables across a

very thin region. In reality, the shock occurs across spatial dimen-

sions of the order of microns, but due to computational limitations,

shocks are modelled as spread over a few grid points. A numerical

scheme is rated according to how well it captures the shock - the

crisper the shock, the better the method.

Prediction of shock location and strength can be achieved by

either "shock fitting" or "shock capturing." Shock fitting methods use

the Rankine-Hugoniot relations to fit the shock relative to the flow

field [20]. Shock capturing methods, on the other hand, predict shocks

and other discontinuities as part of the solution. Though the pre-

dicted shocks are smeared a bit, the generality of the concept makes

the method attractive.

2.1 Theory of Weak Solutions

The principles of shock capturing are based on the theory of weak

solutions of hyperbolic equations. Consider the hyperbolic system of



equations given by,
U,t + F,x = 0 (2.1)

where U is a vector of unknowns and is a. function of x and t. F is a

vector function of U, x and t. The above equation may be written in

coefficient form as,

U,t + A U,x = 0 (2.2)
•

where A, the coefficient matrix, is given by,

A = F.y (2.3)

Since Eq. (2.1) is a hyperbolic system of equations, the eigenvalues of

matrix A are all real.

Nonlinear hyperbolic partial differential equations exhibit two

types of solutions, weak and genuine solutions. A genuine solution of

the above equations occurs when U is continuous over the domain but

derivatives of U may be discontinuous. A weak solution, on the other

hand, occurs when U is continuous in the domain, except along a line or

surface where U may be discontinuous. The presence of shocks in super-

sonic flows is an indication of the presence of weak solutions for the

hyperbolic equations. Let the solution U(x,t) of Eq. (2.1) be

subjected to the initial data,

U(x,o) = $(x) (2.4)

Let w(x, t ) be a test function that satisfies the integral version of

Eq. (2.1),

rAw»+ u + w'v F) <*xdt + fw(x,0) * (x) dx = 0 (2.5)jj T: x j

which is obtained by multiplying Eq. (2.1) by w(x,t) and integrating by

parts [21]. If U is a weak solution it can be shown that across a line



8

of discontinuity,

F(UR) - F(UL) = S(UR - UL) (2.6)

where S is the speed of propagation of the discontinuity and UL and

UR are the states to the left and right of the discontinuity,

respectively. For the Euler equations these relations are the shock

relations or the "Rankine-Hugoniot" relations.

Weak solutions exhibit nonuniqueness for an initial value

problem. For instance, the solution of the Burgers equation,

u ' t + f ' x = 0 (2 .7 )

can be either of two weak solutions. For Eq. (2.7) with initial

conditions of

u(x,-0) =

two solutions are possible:

u(x,t) =

and

u(x,t) =

x < 0

x > 0

0 x < 0

x/t 0 < x < t

1 t < x
t

0 2 x < t

1 2 x > t

(2.8)

(2 .9 )

(2.10)

This implies that the initial value problem for weak solutions is not a

meaningful one. If the mathematical model is to reflect physically

relevant solutions, an additional principle is needed to select a

unique weak solution. One principle that has found wide acceptance is:

"Weak solutions that occur in nature are limits of viscous flow." This



statement forms the basis of the artificial viscosity methods. Adding

a diffusion term to Eq. (2.1) results in a nonlinear parabolic system

given by,

U>t + F > x =e U 'xx (2.11)

where e is the dissipation coefficient. The initial value problem can

be solved for a wide variety of initial conditions, and it can be shown

that as e becomes smaller the corresponding solutions converge

boundedly to the "right" solution for Eq. (2.1). The addition of this

viscosity term does not exactly correspond to the addition of viscosity

or heat conduction, but does produce solutions that "make sense." The

use of artificial viscosity in simulating compressible flow is common

for finite difference methods. The pioneering work in this area was

done by Von Neumann and Richtmyer [22] who introduced an artificial

dissipation term into the equations so as to give shocks a thickness

comparable to the grid spacing. The popular finite difference methods

such as those of MacCormack [23], Beam and Warming [24], and Burstein

[25] use the concept of artificial viscosity in combination with second

order difference schemes.

A number of schemes that are currently popular are those based on

upwind differencing. These schemes use the concepts of characteristic

theory and wave propagation. They are physically consistent and pro-

duce sharp shocks without explicit artificial viscosity. Schemes such

as those of Steger and Warming [26], Roe [27], and van Leer [28], are

upwind schemes that contain internal dissipation due to the one-sided

differencing. Upwind schemes can be shown to be equivalent to central

difference schemes with added dissipation [29].
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The Taylor-Galerkin formulation which uses the concepts of explicit

artificial viscosity, and the Petrov-Galerkin method which is based on

the concepts of upwinding are shock-capturing finite element

formulations.

2.2 Euler Equations

The conservation equations can be written in two dimensions as,

U ' t+F i , i 0 . (2.12)

where U is a vector of conservation variables, and F^ are flux com-

ponents of the mass, momentum and energy in the coordinate directions.

The index i denotes the component in the 1-th direction, and a comma

denotes partial differentiation. Repeated indices indicate summation

over the range of i. The vector U and the flux vectors Ff are given

by,

U = p J F. = u.U + p , '11

Ji (2.13)

where p is the density, Uj are the velocity components in the

coordinate directions, and E^ is the total energy. The Kronecker

delta 5i is defined as,

f °U (2.14)

and the pressure p as,

p = (Y-l) p[Et - 0.5(u.Ul.)] (2.15)

Equation (2.12) is solved subject to proper initial and boundary

conditions.
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2.3 Taylor-Galerkin Algorithm

The Taylor-Galerkin algorithm was first proposed by Donea for the

advection equation [30]. The concept was then applied to the inviscid

Euler equations by Lohner, Morgan and Zienkiewicz [11, 12]. One step

Taylor-Galerkin and two step Taylbr-Galerkin formulations [13] have

been applied to high speed inviscid equations.

2.3.1 Finite Element Formulation

The Taylor-Galerkin formulation is easier to derive by considering

just one variable. For a scalar variable u the typical equation is,

u,t + Ff f = 0 (2.16)

where u, F-j are analogus to the corresponding vector quantities in

Eq. (2.12). The Taylor-Galerkin formulation used in this dissertation

is a two step method with element quantities being calculated at .the

first step and nodal quantities at the second step. A detailed

derivation of the algorithm is presented in [4]; for brevity, only the

key equations are presented herein.

Time level tn+i/2 :

The constant element value u^+ ' is computed from,

A un+l/2 =J [N] dA {u}n - £ y [N,.] dA {F.}n (2.17)

where A denotes an element area, At is the time step, and [M] is a row

matrix of element interpolation functions. On the outflow plane the

element side quantities are computed from,



= J" [Ns] ds {us}
n - |1 f CNS] ds {FM}n

12

(2.18)

In the above [Ns] denotes the interpolation function of the flux

components on the outflow surfaces, and L is the outflow surface

length. The interpolation of the flux quantities on the boundary

differs from that on the interior. Other variations of calculating the

outflow terms, and the rationale behind those calculations appear in

[4]. The quantities obtained at the half step are used to calculate

the nodal quantities at the second step, t=tn+i«

Time level tn+i:

An approximation to the Taylor series expansion of u at tn+i/2

and the application of the weighted residual statement on the resulting

equations yield,

CM] {5U}"*1 - At r [N,,] dA F?+1/2 + {R}n+1/2 (2.19)
JA n 1

where [M] is the element consistent mass matrix given by,

CM] =f CN]TCN] dA (2.20)
JA

and the load vector {R} is given by,

{R}n
+l/2 = _At f ̂  Fn+l/2 {N}ds (2>21)

In Eq. (2.21) li are the components of the unit normal surface vector

n. The flux components on the surface FS1- are computed using the

surface quantities obtained at the half step from Eq. (2.18).

The element integrals that appear in Eqs. (2.17)-(2.21) can be

evaluated in closed form to avoid numerical integration that is
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common in many finite element formulations. Numerical integration,

typically Gauss quadrature is expensive and for three dimensions

increases computer storage requirements appreciably. The element inte-

grals that appear in Eqs. (2.17)-(2.21) are evaluated just once, out-

side the time-step loop, raking the time-marching scheme very effi-

cient. Reference 31 explains the Taylor-Galerkin formulation used and

details the explicit element integral evaluations used in the implemen-

tation of the Taylor-Galerkin algorithm.

2.3.2 Artificial Dissipation Models

To guarantee physically consistent results and to stabilize the

computations, artificial dissipation is added at the end of each time-

step. The a-posteriori smoothing is given by the relation,
»

un+l a un+l + D ( u n+l } ( 2 > 2 2 )

where D(u) is a diffusion operator that depends on the artificial vis-

cosity model employed. A variety of artificial dissipation models

exist, and three popular models are investigated for use with the

Taylor-Galerkin algorithm.

Artificial dissipation models that have found wide use in CFD

literature include the dissipation models due to Lapidus [32],

MacCormack and Baldwin [33], and the blended higher order differencing

scheme due to Jameson [34].

2.3.2.1 Lapidus dissipation model: The dissipation operator due to

Lapidus [32] is second order and uses velocity gradients as dissipation

coefficients. The addition of artificial dissipation is based on the
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relation,

un+l = un+l + L (un-H} { 2 < 2 3 )

where u = u(x- j , t ) is the scalar unknown in Eq. (2.16) and L(u) is the

dissipation operator, the dissipation being added at the end of each

time-step. The dissipation operator L(u) is defined as,

L ( u ) = E. . (2 .24)1 > i
where,

E.J = kj u,.,. (i not summed) (2.25)

The coefficients or pointers, k-f , indicate where and how much dissi-

pation is added in specific regions of the flowfield. The coefficients

kj are given by,

k,. =v At A|U. .1 (i not summed) (2.26)• i i » 1 1

where u-f are the velocity components in the coordinate directions, A

is the element area, v is the Lapidus constant, and At is the time-

step.

The method of weighted residuals applied to Eq. (2.23) results in

the element equation,

N]T u"+1 dA = [N]T un+1 dA + [N]T E, . dA (2.27)
s -»A -»A '

Using the Green-Gauss theorem for the second order terms, Eq. (2.27)

reduces to,

I [N]T Au"+1 dA = -f E.[N,.] dA + T [N] E. . ds (2.28)
J s -/ J '

where

= [N] {4US}"+1
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The second term in Eq. (2.28) is the boundary term that results due to

the integration by parts. The boundary term vanishes at the outflow

surfaces, and Eq. (2.28) can be written as,

CM] Uu }n+1 = -f E. CM,.] dA (2.30)
s JA i i

where CM] is the element mass matrix that appears in Eq. (2.20).

2.3.2.2 MacCormack-Baldwin dissipation model: The MacCormack-Baldwin

dissipation model C33] uses the second derivative of pressure as a

pointer for the amount of artificial dissipation to be added. The

addition of artificial diffusion is given by the relation,

uj+1 =un+1 +MB(un+1) (2.31)

where the operator MB(u), the MacCormack-Baldwin dissipation operator

is similar in form to the Lapidus dissipation operator and is defined

as' MB(u) = E. . . (2.32)
'»'

The coefficients kj are given by,

i
(i not summed) (2<33)

The use of the method of weighted residuals and the Green-Gauss

theorem results in the element equation similar to Eq. (2.30) as,

CM] Uus}
n+1 = -f E. C M , . ] dA (2.34)

A

where coefficients k-j are given by Eq. (2.33).

The calculation of the coefficients k-j involve obtaining the

second derivatives of the pressure with respect to the coordinate
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directions. The finite element formulation detailed in the earlier

sections assumes a bi -linear variation of the conservation variables

within an element. If the pressure is interpolated similarly the

second derivatives of the pressure vanish. One way to circumvent this

problem is to make use of the Green's formula shown in Appendix A.

Appendix A shows that the second derivatives of the pressure at the

nodes of an element can be obtained from the equation,

fy

[M] [14} a -(" [N ] dA p (2.35)
lax*] JA x )X

where, p,x, the first derivative of pressure, is computed at the

Gauss points. The assemblage of the element quantities Eq. (2.35) and

solution of the global equations yields the second derivatives of

pressure at the nodes. The procedure for obtaining the second

derivatives with respect to the other coordinate direction is similar.
o

2.3.2.3 Jameson dissipation model: The dissipation model due to

Jameson [34] is a blend of second and fourth derivatives with the

coefficients depending on the pressure gradients. The second and

fourth derivatives are adaptively blended such that at shocks the

second derivatives come into play, while in smooth regions the fourth

derivative terms are used. The smoothing is done according to the

equation,

= un+1 + J(un+1) (2.36)

where J(u), the blended smoothing operator, is defined as,

J(u) = Ej . - E* . (2.37)
> 1 1 . • t <



17

The dissipative fluxes Ej are given by,

E. = k. u,.

E2 = k?

(i not summed)

(1 not summed) (2.38)

The coefficients kj and k? are functions of the local

gradients and can be written as,

pressure

where

2 = A2e2- A 5

(?)
( >

5? - max (0,e (4) - <•}) (2.39)

and e(2) and e(4) are constants. Equations (2.37)-(2.39) also

indicate that when e^ 4 ^ is zero, the fourth difference terms vanish

resulting in the Ma cCormack -Baldwin dissipation operator.

The use of the weighted residual formulation and the Green-Gauss

theorem yields the finite element equations,

n+1 - - f E} [N .] dA + f E2 [N ,] dAJ 1 jl -< 1 f1CM] {Au
(2.40)

In addition to the second derivatives of pressure, the Jameson

dissipation model requires the computation of the third derivatives of

the conservation variables. The second derivatives of the conservation

variables are obtained at the nodes of an element as,

CM] {U ..} = -f [N .] [N] dA {U .} (i not summed)
.11 JA »i .1 (2.41)

where the first derivatives of the conservation variables are
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interpolated linearly within an element. The third derivatives are

then obtained from,

CM] {U,.. .} = - /" [N .] [N] dA {U,..} (i not summed) (2.42)m j ̂  ,i ii

The second derivatives of the pressure are calculated with the first

derivatives computed at the Gauss points while the third derivatives of

the conservation variables are computed assuming linear variation of

the first derivatives within an element.

Numerical results for the Taylor-Galerkin finite element formula-

tion with the Lapidus, MacCormack-Baldwin, and Jameson artificial

dissipation models are presented in Chap. 4.

2.4 Petrov-Galerkin Algorithm

The method has as its basis the streamline upwind concepts derived

by Hughes and Brooks [35]. The addition of diffusion to stabilize the

computation is along streamlines. The directional characteristic of

the added diffusion avoids crosswind diffusion. The streamline-upwind

Petrov-Galerkin (SUPG) principles were first applied to the linear

advection equation and the incompressible Navier-Stokes equations by

Hughes and Brooks [36]. Extension of the SUPG concepts to the com-

pressible Euler equations are detailed in [37]. A major drawback of

the initial SUPG method was the absence of gradient controls in direc-

tions other than the streamline.

2.4.1 Entropy Variables

An enhancement to the SUPG concept was developed by Hughes,

et al. [14, 16], which improves the shock capturing caoabilities of the
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finite element formulation. The enhancements include writing the Euler

equations in terms of entropy variables and the use of a "shock -

capturing" operator. The use of entropy variables lead to consistent

error estimates and also results in a system of symmetric equations

which are amenable to error analysis.

The Euler equations given by Eq. (2.12) can be written as,

U , t + A i U , i = ° (2.43)

where A-j are unsymmetric Jacobian matrices in the co-ordinate direc-

tions given by,

Ai = Fi,U (2.44)

The form of matrices A-,- for the 2D Euler equations appear in Appendix

B. The matrices A-f are seen to be unsymmetric. To obtain

dimensionally consistent stable results and to obtain entropy

conservation from a weak formulation, the Euler equations are

symmetrized using entropy functions [38]. A change of variables is

introduced by defining new independent variables V to replace the

conservation variables U. A one-to-one mapping is assumed between U

and V. Equation (2.43) transforms to,

Ao V , t + A i V,i -° (2.45)

where

Ao - U,V
*;

Ai = Fi,V = AiAo (2.46)
A*

Aj are the transformed Jacobian matrices, see Appendix B. The

definition of variables V is such that the transformed Jacobian
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matrices are symmetric, and matrix A0 is positive definite and

symmetric. This condition is satisfied by using the generalized

entropy function H(U) and defining the variables V as,

V = H,U (2.47)

Hughes et al. [14], use the physical entropy s, in the definition of

the entropy function H as,

H(U) = -ps (2.48)

The new variables V, denoted as entropy variables, are thus defined as,

v = T-pi

-U

-u.

pi (y + 1 - S)

(2.49)

where s is the entropy given by,

s - . l n

and

(2.50)

pi = U. - 2IT (2.51)

The entropy variables and the Jacobian matrices that appear in

this dissertation are for 2D inviscid flows. The Euler equations based

on entropy functions can be extended directly to 3D inviscid flows, and

the coefficient matrices are given in [39].

2.4.2 Finite Element Formulation

The discretization of the domain of interest and application of

the method of weighted residuals to Eq. (2.45) results in the relation,
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NT (A^V .. +7. V .) dA = 0 /o co\o ,t i ,1 (2.52)

where N is a matrix of element interpolation functions. For the Euler

equations, the use of the simple Galerkin (or Bubnov-Galerkin, as it is

sometimes referred to) method results in a formulation that conserves

entropy. To account for the entropy production at shocks and

discontinuities, the Petrov-Galerkin formulation uses weighting func-

tions different from the interpolation functions N.

The weighted residual equations for the Euler equations become,

WT(An V + A. V .) dA = 0 (l> „,
0 ,t l ,l (Z .oo)

where W is the weighting function. The definition of W is such that

compressible flows with flow characteristics including shocks, contact

surfaces and expansions are modelled accurately. The weighting func-

tion proposed in [16] contains three components: (a) a streamline

operator, (b) a discontinuity capturing operator, and (c) a reduced

discontinuity capturing operator. The need for these operators can be

illustrated clearly by application to the advection equations.

Appendix C details the form of the three operators and the dissipation

added by each operator.

For the compressible flow equations the discontinuities are shocks

and the three operators can be tagged as the streamline operator, the

shock capturing operator and the reduced shock capturing operator. The

streamline operator adds diffusion to capture discontinuities and

suppress shock related oscillations. The addition of diffusion is

directional to avoid overly smoothed results. The directional
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characteristics can be obtained, from the Jacobian matrices A-,- given

by Eq. (2.46). The direction of propagation of information can be

obtained from a set of real eigenvalues of the Jacobian matrices. The

weighting function with the streamline operator can be written as,

W ' N + S N,i (2.54)

where S-f are the streamline operator matrices given by,

(2.55)

where A is a set of eigenvalues, and T is a matrix of right

eigenvectors.

The use of W defined as in Eq. (2.54) can be used to predict flow

features such as shocks, but localized shock related oscillations

persist. To suppress these oscillations the Petrov-Galerkin

formulation uses the shock capturing operator. The shock capturing

operator acts normal to the shock, and this direction is indicated by

the gradients of the entropy variables. The definition of the shock

capturing operator is based on splitting the Jacobian matrix operator
M

into two parts, a parallel part A^ acting in the direction of the
fj M

gradient and Aij_ , acting normal to the gradient. Afj is defined as,

AU I. = 0 for Z f J.V f (2.56)

where Zi are vectors normal to the direction of discontinuity. The
•«

use of the parallel components Ajn in the formulation modifies the

weighting function and W can be written as,
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W = H * S[ Nf1 + Rf Nf, (2>57)

where R-j are the shock capturing operator matrices. The matrices

R-f are given by,

Ri = *io To |A i |" l T |T (2'58)

An is the vector of eigenvalues, and Tn is the matrix of right
«*

eigenvectors of the transformed matrices A - J R .

Thus the Petrov-Galerkin formulation has two components - a

generalized streamline operator and a shock capturing operator. The

explicit control of the gradients is obtained by the shock-capturing

term which implies that the component of the streamline operator in the

gradfent direction is redundant. The projection of the streamline

operator in the direction of the gradient can be subtracted out. The

"reduced shock capturing" term is given by,
v*t

Yi = Ai P (2.59)

where P is the projection operator which can be written as

P = Tn a Tn (2.60)

a is a scalar, and T0 is the matrix of eigenvectors that appears in

Eq. (2.58). With the inclusion of the reduced shock capturing operator

the weighting functions W become,

W = N + $1 NM + R! NM + Y! MM (2.61)

and the weighted residual formulation is written as,

W T(A 0V, t +A. V , . ) d A = 0 (
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Details of the derivation of the coefficient matrices and the

definition of the shock capturing operators appear in [39].

The finite element formulations described are designed to be

pseudo-time marching schemes. The intent is to study problems which

could be marched out in time to steady state. This suggests an

approximation of the transient terms in Eq. (2.62) as,

/ WTA V . dA = [ NTA V ,. dA
J ° •* J 0 .t (2.63)

Equation (2.62) can then be written as,

/
J

NT A V .. dA = / WT A. V . dA
A ° 'r JA 1 ^ (2.64)

During the transient procedure, matrix A0 which appears on the LHS of

Eq. (2.64) is computed at nodes. This makes possible the solution of

the global equations given by,

/ NT N dA {V ..} = -/ WT A. V .
j« »*• JA ' >'

dA
(2.65)

which can be rewritten as,

Ao Mii(V,t =fi 1 = 1.2.--nodes (2<66)

Equation (2.65) is valid for each node in the domain. Mi-j is the

value in the global mass matrix corresponding to node i, A0 is the

coefficient matrix computed at node i, and f-f is the corresponding

right hand side value. The time stepping procedure that results is

given by,

V?+1 • f1 * ̂  M^ ̂  1 - 1.2.3...no*. (2.67)

where Vn is the value of the entropy variable at node i at
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t=tn+j, v" the nodal value at t= tn and At the time-step. Details of

transient algorithm used in this study can be found in [39].

2.5 Comments on finite element algorithms

The previous sections describe the formulations for the Taylor-

Galerkin and Petrov-Galerkin f ini te element algorithms. A brief over-

view contrasting the characteristics of the two algorithms is

appropriate.

Both the Taylor-Galerkin and the Petrov-Galerkin algorithms are

based on the principle of shock capturing. They d i f fer by virtue of

how the necessary artificial dissipation is added. The Taylor-Galerkin

uses explicit artificial dissipation to capture shocks whi le the

Petrov-Galerkin uses implici t numerical dissipation. To s impl i fy the

solution procedure both algorithms use explicit time-stepping schemes.

The Taylor-Galerkin formulation based on Taylor series expansion

is a model of algorithm simplicity. In contrast, the Petrov-Galerkin

formulation is rather complicated. The defini t ion of the weighting

functions is complex and involves numerous matrix mul t ip l ica t ions .

Matrix mult ipl icat ions expand memory requirements and are computation-

al ly expensive. Algorithms are usual ly reformulated to avoid such

operations. The evolution of the one step Taylor-Galerkin to the two

step formulat ion used in this dissertation is typical of this desire to

eschew matrix multiplications.

The implementation of the Taylor-Galerkin algori thm is simpler

since the element integrals that appear in the formulat ion can be
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evaluated in closed form. This procedure can be done just once outside

the time stepping procedure. The Petrov-Galerkin algorithm yields non-

linear element integrals which need to be evaluated using numerical

integration procedures for each time-step.

Tha Petrov-Galerkin formulation has good mathematical features

sincfr it is conducive to accurate error analysis and error estimates,

and in the limit of vanishing dissipation ensures conservation of

entropy. The algorithm is based on "upwinding" and needs no "tuning"

parameters. Reduced integration procedures on the Petrov-Galerkin

formulation have shown encouraging trends and may result in reduced

computational expense with accuracy of results comparable to full

integration procedures.

The primary evaluation criteria for both algorithms include solu-

tion quality, shock resolution, extent of vectorization, computational

speed, and ease of extension to multidimensional inviscid and viscous

flows. The chapters that follow develop vectorization strategies for

the two formulations and demonstrate the performance of the algorithms

for inviscid and viscous flows.



Chapter 3

VECTORIZATION STRATEGIES FOR FINITE ELEMENT CFD

To predict flows encountered in realistic problems accurately, two

ingredients are essential. The first is the development of finite ele-

ment methodologies such as the Taylor-Galerkin and Petrov-Galerkin,

described in the previous chapter. The second ingredient is the effec-

tive implementation of the finite element formulation on the computa-

tional facility at hand.

For realistic 3D problems the number of degrees of freedom needed

for an accurate analysis is astronomical, and the size of the database

that must be handled taxes the storage available on most computers.

Supercomputers, with their huge central memory as well as large and

fast secondary memory, are designed to address such storage demands.

Driven by the insatiable needs of computational fluid dynamicists for

more memory and higher computational speeds, the supercomputer has in a

very short time become an essential research tool for serious CFD

researchers.

On a supercomputer, the desirability for low computational costs

and rapid turn-around times dictate the need for very effective

programming strategies, in particular strategies aimed at vectorizing

the computational procedure. Supercomputers, such as the CRAY II, CDC

205 and the Langley VPS-32, are all endowed with large central memory

but differ in their hardware configuration. Vectorization strategies

27
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employed on these computers should be tailored to fit each machine's

special characteristics if optimum performance is to be approached.

The vectorization procedure should also be global, that is, as

much of the program as possible should be vectorized. Figure 3.1 shows

the ratio of computational speed to maximum computational speed attain-

able for various level of vectorization. The three curves correspond

to computers with vector/scalar speeds of 5, 10, and 20. It can be

seen for the VPS-32 (vector/scalar ratio of 20), a program that is 90%

vectorized will run only at 30% of the maximum attainable speed. Vec-

torization levels close to 100% are a must if the intent is to work

problems modelled with elements and nodes that number in the hundreds

of thousands.

3.1 VPS-32 Characteristics

The MASA Langley Research Center uses the VPS-32, a CYBER 205 with

a central memory of 32 million full precision words, for its CFD appli-

cations. The special features of the VPS-32 which set it apart from

scalar machines are its virtual memory and pipeline processing

capability.

Virtual memory: The VPS-32 is a virtual memory computer which means

that the user has the ability to access a virtual address range that

exceeds the physical size of the central memory. Information not

within the central memory is brought into central memory by the operat-

ing system. Information, which may be working arrays or code, resides

on blocks of data called pages. The process of retrieving pages,

placing them in central memory, and if needed, removing other pages
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from the central memory is called paging. Virtual memory is useful in

cases where a "small" problem is made "big" by change of one or more

parameters.

Pipeline processing: One of the principal features of the VPS-32 is

its efficiency in handling long vectors. The reason for this

efficiency is the concept of "pipeline processing." The arithmetic

hardware consists of two units or pipelines, Pipe 1 and Pipe 2. Pipe 1

is used for all vector arithmetic operations except divide and square

root. Pipe 2 is used for all vector operations. Each pipeline is

segmented, that is, a portion of the specific operation on two operands

is done at the same time at the first step. The results of the first

step are moved down to the next step of the operation while a new set

of operands is moved into the first step. The segmented or pipeline

construction of the vector machine allows vectors to be streamed

through the pipeline at high rates. A good measure of effective vec-

torization on the VPS-32 is obtained by looking at the timing informa-

tion for various operations. The vector timing for operands of length

n is given by,

T = S + n/£

where T is the time in seconds, S the startup time, and £ the number of

results obtained per operation. For example, the multiplication opera-

tion has the timing information given by,

T = 52 + n/2

where I is taken to be 2 for the VPS-32.

It is .seen that for a fixed number of operations, the longer the

vector the more efficient the computational procedure., This is due to
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the fact that each vector operation requires a startup time or overhead

time to begin operation, but after the first result the succeeding

results occur at very high rates. The most effective rates are when n

is very large and close to optimum rates are achieved for vector

lengths in excess of a thousand.

3.2 Strategies for Implementation of Finite Element CFD

The characteristics of the VPS-32 indicate that a finite element

procedure should be implemented such that most, if not all, operations

are done with long vectors. Vectorization procedures for implicit

algorithms designed to take advantage of this concept are detailed by

Noor and Lambiotte [40]. The procedure advocated in [40] works well

for dynamic analysis of structures using higher order finite elements.

The vectorization procedure takes advantage of the large number of

nodes per element and the need for a large number of integration

points. This procedure is not well suited for fluid flows. Finite

element compressible flow programs use simple elements (3 or 4 nodes/

element in 2D) and numerical integration of order 2 is usually

adequate.

Finite element procedures for simulating compressible flow fea-

tures usually employ explicit time-stepping procedures. The explicit

solution of the global equations is based by computing element matrices

that occur in equations such as Eqs. (2.19) and (2.64). The left-hand

and right-hand sides of Eqs. (2.19) and (2.64) are assembled resulting

in a global system of equations given by Eq. (2.67). The right hand

side vectors on an element level are called element residual vectors,
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and the assemblage of the element vector results in the global residual

vector. The solution of the system equations, Eq. (2.67) is repeated

for each time-step until the conservation variables are perceived to

have attained steady-state.

Typical finite element formulations contain processes that are

element-to-node operations and node-to-element operations which are not

easily vectorizable. These hard-to-vectorize processes include:

(a) element localization

(b) computational of element residuals

(c) assembly of global residual vectors

(d) solution of the global equations

(e) application of boundary conditions

(f) Gauss integration .

Tasks (a) to (f) are all critical since they are repeated at each

timestep. Effective processing rates are obtained only when all these

operations are highly vectorized. The vectorizing strategies that

follow were developed to exploit the hardware and software capabilities

of the VPS-32. However, the overall vectorization strategy can be used

to implement finite element formulations effectively for compressible

flow analyses on other supercomputers such as CRAY machines.

3.2.1 Element Localization

In finite element procedures the region defined by the flow field

is discretized into elements. The node numbers associated with an
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element are contained in a row of the element connectivity matrix. The

coordinates of the nodes defining an element, the value of the

variables at these nodes, and other characteristic element quantities

are obtained from global arrays using the connectivity row. This

process is termed as localization. The vectorization of tiic

localization process is simplified by the use of the Fortran supplied

"gather" function on the VPS-32. The gather function generates a

vector of real or integer numbers from a vector of the same type using

an integer index vector. The use of the "gather" is- illustrated in

Fig. 3.2(a). The index vector i is used to gather appropriate values

of vector u into the vector v.

The program structure of the scalar and vectorized versions for

the process of obtaining element nodal coordinates is shown in Fig.

3.2(b). The element connectivity matrix plays the role of index

vectors to obtain the "right" nodes for the localization 'process. For

the scalar version, the index vector is a row of the connectivity

matrix which is of length equal to the number of nodes per element.

The index vector on the vectorized version is a column of the

connectivity matrix which is of length equal to the number of elements

in the discretized domain. Since realistic problems use elements that

number in the thousands, the vectorized version of the localization

procedure is highly efficient. The procedure to obtain other element

quantities, such as element nodal variables, is vectorized along

similar lines.

3.2.2 Computation of Element Residuals

Finite element scalar codes generate the global residual vector by

the following sequence of operations: (1) evaluate the stiffness
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matrix for an element, (2) compute the element residual matrix using

the vector of element nodal variables, (3) assemble the element

residual matrix into the global residual vector using the connectivity

array, and (4) repeat steps (1) to (3) for each element. For most

finite element programs, the generation of the element residual

matrices and the assemblage of these residual matrices into the global

residual vector lays a heavy demand on the computational resources

available.

Generation of the element stiffness matrices is vectorized by

using the vectors obtained from the localization process. The arrays

that result from vectorization of the localization process of 3.2.1,

are of length equal to the number of elements in the discretized

domain, and use of these vectors enables vectorization of the element

stiffness computations. To gain further insight into how the scalar

and vectorized versions for generating the element stiffness matrices

differ, consider the "chips and soda straws" analogy shown in Fig.

3.3. The scalar version bears resemblance to the stack perceived in a

can of Pringles potato chips. The ordering is horizontal and each chip

can be considered as an element stiffness matrix. However, the

vectorized version generates the long vectors and the ordering is

vertical, reminiscent of a stack of soda straws. Element stiffness

matrices generated by this procedure are used to compute the residual

matrices for all elements.

The assembly of the element residual matrices into a global resi-

dual matrix is vectorized with the aid of the "scatter" function avail-

able on the VPS-32. The scatter operation is the reverse of the gather
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ELEMENT STIFFNESS MATRICES

NUMBER OF ELEMENTS = N

SCALAR

DIMENSION KU.A)

I / f f I I

^ / / / /-/t, I 111-7 1*27 . 7

VECTOR

DIMENSION KIN,/,,4)

/ / I I /

Fig. 3.3 Illustration of differences in scalar and vectorized versions

for generating element matrices.
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operation and is illustrated in Fig. 3.4. The index vector "i" is used

to scatter the appropriate values of vector u into the vector v. It is

to be noted that if the index vector has repeating numbers in it, the

value indicated by the first index is overwritten by that pointed to by

the second repeated index. In the example in Fig. 3.4 "a" was over-

written by "d" as the first value in vector v.

3.2.3 Assembly of Element Residual Vectors

Finite element meshes can be either "structured" or "unstruc-

tured." A structured mesh results when the node numbering in a mesh is

"well ordered" and the region modelled is of simple geometry. A struc-

tured mesh and its connectivity appear in Fig. 3.5. The node numbering

for the finite element mesh is such that the connectivity starts at the

node on the lower left hand corner of the element and goes counter-

clockwise. The vectorized version, as indicated earlier, uses the

columns of the connectivity matrix as index vectors for the assemblage

process. For a structured mesh, a node number appears but once in the

same column, which reduces the assemblage to simple scatter operations.

Typical finite element meshes are "unstructured." This implies

that the number of elements connected to a node is not constant within

the domain. An unstructured mesh and its connectivity appear in Fig.

3.6. It is seen that in column 3 of the connectivity matrix node 11

appears twice. Using a simple scatter with this column as the index

vector will produce erroneous results. This is due to the fact that

the value pointed to by the second index in that column is overwritten

by the value pointed to by the fifth index in the same column. This
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Q8VSCATR (u, 1; v)

p q r s t x y

v

(final)

a b c d e

1 3 5. A 4

d q b e c x y

Fig. 3.4 Illustration of the scatter operation.
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2 3 7 6
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5 6 10 9

6 7 11 10
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9 10 14 13

10 11 15 14
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Fig. 3.5 Structured finite element mesh and connectivity matrix.
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(a) Finite element unstructured mesh

Eleaent Nuri>er

1

2

3

4

5

6

Connectivity

1 J k 1
»

1 2 7 6

2 3 11 7

3 4 8 11

4 5 9 8

6 7 11 10

8 9 12 11

Events counter

1 J k 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 2 1

1 1 1 2

(b) Connectivity array (c) Events counter array

Fig. 3.6 Unstructured finite element mesh and associated matrices.
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loss of information can be prevented by the use of a

"recursi ve-scatter."

The recursive-scatter is a multipass scatter, the number . of

passes needed being equal to the number of times a node is repeated in

a column of the connectivity array. The number of times a node appears
M

in a column is tagged by an integer array, denoted as the "events

counter" array. When a node repeats twice a value of 2 is entered in

the events counter array corresponding to the location of that node in

the connectivity array. The scattering process uses the events counter

array to ensure that no information is lost or overwritten. The events

counter array for the unstructured mesh in Fig. 3.6a appears in Fig.

3.6b. The assemblage procedure using the recursive-scatter concept is

detailed in Fig. 3.7.

The assembly process uses columns of the residual arrays, the

length of a vector being equal to the number of elements in the

domain. For the scatter process, columns of the connectivity array

serve as index vectors. Node 11 appears in column 3 twice and two

passes or iterations will have to be made to properly assemble the

residual matrices corresponding to this column of. the connectivity

matrix. At the first pass the first occurrences of all the nodes are

used as pointers to assemble element residual vectors. During this

first pass, the second occurrence of nodes are assigned to point to a

dummy location. On the second pass, the second occurrence of nodes are

used as pointers for assemblage while the first occurrences are dumped

into the dummy location. For an assembly process that needs two

passes, such as for the mesh on Fig. 3.6, the results obtained from the

two passes are added. The event counter matrix thus permits the use of
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Res1dual array a b c d e f

PASS 1:

Residual array

Column 3 of
connectivity natrix

Column 3 of events
counter matrix

Global residual
vector tl

a b e d e f

7 11 8 9 11 12

I N N !
1 111 2 1

O O O O O O a c d O b f

PASS 2:

Residual array

Colum 3 of
connectivity Matrix

Col inn 3 of events
counter matrix

Global residual
vector *2

a b c d e f

7 11 8 9 11 12

1 1 1 1 2 1

I I I I

0 0 0 0 0 0 0 0 O O e O

Global residual vector (pass tl + pass K)

correct result O O O O O O a c d O b + e f

Global residual vector (without recursive scatter)

incorrect result O O O O O O a c d O e f

Fig. 3.7 Assembly process us ing recursive scatter.
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an unstructured mesh but makes sure that the assemblage process Is done

consistently. Figure 3.7 also shows the erroneous results that might

accrue using a simple scatter on an unstructured mesh.

The section of the code which computes the events counter array

is not vectorized. The penalty to be paid for this scalar operation is

quite small since the generation of the events counter array is done

outside the time loop. The use of the events counter array enables the

assemblage procedure, which has to be repeated for each time-step, to

be fully vectorized. The scalar and vectorized versions of the process

of generating element stiffness matrices and their assemblage appears

in Fig. 3.8.

3.2.4 Solution of Global Equations

Element equations, such as Eqs. (2.19) and (2.64), are typically

evaluated for each element and then assembled into global arrays

according to the locations defined by the connectivity array. The

assembled equations are of the form

M.. 6U. = R. (3.1)

where M-J-J is the element in the global lumped mass matrix correspond-

ing to node i, 6U-j is the solution vector corresponding to node i,

and R-J is the corresponding nodal residual. The element lumped mass

matrix is calculated using closed form integration and then assembled

to form the left hand side of Eq. (3.1). The assembly process is done

using the events counter array for unstructured meshes.
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Scalar version Vectorized version

— loop over elements

l_ loop over nodes

1— obtain element stiffness

matrix

.— loop over nodes

I— gather element nodal

variables

compute element residual

matrix

l_ loop over nodes

I— assemble element residual

matrix

- end loop

— loop over nodes

loop over elements

obtain all element

stiffness matrices

loop over elementsr
L_ obtain all element nodal

variables

— end loop

obtain all element

residual matrices

— loop over nodes

assemble all element

residual matrices

— end loop

Fig. 3.8 Scalar and vectorized versions for generating global

residuals.
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A multipass iterative scheme can be used to include the contribu-

tions of the non-diagonal terms in the consistent mass matrix [4]. The

inclusion of the non-diagonal terms improves solution quality for

structural analysis, but this trend has not been established for com-

pressible flow calculations.

The use of vectors of length equal to the number of elements in

the domain, and the use of the scatter, or the recursive-scatter if

need be, ensure the procedure of calculating the global mass matrix to

be fully vectorized. The solution of the system equations is then a

simple vector division operation.

3.2.5 Application of Boundary Conditions

Inviscid analysis of flow fields include processing nodes that may

have constraints such as slip and no penetration. The vectorization

procedure uses gather operation to grab specific nodes, processes

these nodes, and then scatters them back into the global arrays. Since

the solution process is explicit, the imposition of the boundary condi-

tions is done after the solution of the global equations. Use of

gather and scatter functions ensure effective vectorization of this

process.

3.2.6 Gauss Integration

Element integrals that are complex or those that contain nonlinear

quantities cannot be evaluated in closed form and must be evaluated

using numerical integration techniques. The Taylor-Galerkin artificial

dissipation terms that appear in Eqs. (2.30), (2.34) and (2.40), and

the Petrov-Galerkin element integrals in Eq. (2.64) are evaluated using
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numerical integration. The numerical evaluation of these integrals

replaces a typical integral by a summation process. The most popular

evaluation procedure for finite element integrals is Guass-Legendre

quadrature [41]. The number of sampling, points used for the element

evaluation depends on the degree of the polynomial in the integral. If

the element integrals involve complex expressions, numerical experi-

ments may have to.be done to determine the number of integration points

needed for sufficient accuracy.

To illustrate the strategy to effectively vectorize the process of

numerical integration, the generation of a global stiffness matrix is

explained. For the scalar version the process is to: (a) evaluate the

contribution of the element stiffness matrix due to one Gauss point,-

(b) add up the contributions to a element stiffness matrix from all the

Gauss points, (c) assemble the element stiffness matrix into the global

stiffness matrix, and (d) repeat this procedure for each element in the

domain.

The vectorized version of this procedure turns the scalar concept

inside out. The inner loop, the loop over the Gauss points, becomes

the outer loop for the vectorized version. The flowchart for the two

versions is illustrated in Fig. 3.9. The vector lengths used in the

numerical integration is of the order of the number of elements in the

domain which implies good vectorization.

3.3 Comments on Vectorization Strategies

This chapter introduced strategies for vectorizing explicit tiroe-

marching finite element algorithms for compressible flow. The
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procedures described were used to develop vectorized Taylor-Galerkin

and Petrov-Galerkin programs. The programs developed include 2D

inviscid, 2D viscous and 3D inviscid flow codes. In the following

chapters these finite element programs are used to detail inviscid and

viscous features for a variety of flow problems. The results obtained

from these analyses are used to compare and contrast the performance of

the Taylor-Galerkin and Petrov-Galerkin algorithms.



Chapter 4

COMPUTATIONS FOR 2D INVISCID FLOWS

The Taylor-Galerkin and Petrov-Galerkin finite element formula-

tions described in Chap. 2 were applied to 2D inviscid flow problems to

assess solution accuracy, shock resolution, convergence rates, and com-

putational speed. The Taylor-Gal erkin formulation uses explicit

artificial dissipation and the performance of the three dissipation

models introduced in Chap. 2 are compared. The use of local time-

stepping schemes to stimulate faster convergence rates is also

investigated.

4.1 Performance of Artificial Dissipation Models

The performance of the three dissipation models for the Taylor-

Gal erkin algorithm are compared by solving a flow problem with an exact

solution. Mach 3 inviscid flow over a compression corner is chosen for

this purpose. The flow parameters after the shock can be computed

exactly by using oblique shock relations. The flow variables for the

entire flow field for the compression corner are shown in Fig. 4.la.

The top boundary is assumed free, and slip boundary conditions are

imposed along the wall as shown in Fig. 4.1b. The finite element mesh

used for comparing the performance of the three dissipation models

contains 1239 nodes and 1160 elements, Fig. 4.1c.

49
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0.5

(a) Flow variables (exact solutions)

0.8

(b) Boundary conditions

(c) Finite element mesh

Fig. 4.1 Flow configuration and finite element mesh for compression
corner.
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The density contours obtained using the Lapidus dissipation model

appear in Fig. 4.2. A dissipation constant of v = 1 was used for the

computations. The contours show the presence of spurious oscillations

at the root of the oblique shock, and an inflow of spurious information

from outside the domain is seen at the free top boundary. The free-

stream oscillations show an undershoot of 7% (1.23 instead of 1.4).

The density contours obtained using the MacCormack-Baldwin dissi-

pation model are shown in Fig. 4.3. The use of the MacCormack-Baldwin

dissipation model results in a dramatic reduction in the freestream

oscillations. The results also indicate the absence of the spurious

oscillations at the top of the region. The shock structure is seen to

be crisper with the contour lines coming together at the shock. A

small undershoot of about 2% is seen close to the shock.

The density contours obtained using the Jameson dissipation model

with dissipation coefficients of e^2^ = 1 and e^4^ = 1/64 are shown

in Fig. 4.4. The blended dissipation model of Jameson yields results

that show lesser oscillations than the Lapidus model, and the

freestream oscillations are limited to less than 1% ( 1.39 instead of

1.4). The contours in Fig. 4.4 also indicate the inflow of spurious

oscillations from outside the domain at the top.

A further comparison of the solutions obtained by the use of the

three dissipation models is shown in Fig 4.5. The density distribution

at the outflow shows the superior results obtained by the MacCormack-

Baldwin and Jameson dissipation models. The results obtained by the

Jameson model also show better control of post-shock freestream oscil-

lations. The Lapidus dissipation model shows the presence of shock

related oscillations and the overall solution accuracy is quite poor.
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I

Fig. 4.2 Density contours for compression corner using Lapidus

dissipation.
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FLOW

Fig. 4.3 Density contours for compression corner using

MacCormack-Baldwin dissipation.
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FLOW

Fig. 4.4 Density contours for compression corner using Jameson

dissipation model.
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Fig. 4.5 Comparative density distribution at the outflow of compression

corner for dissipation models.
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The results obtained for this model problem indicate that the

Lapidus model produces spurious oscillations at the shock and in the

freestream. The results obtained using the MacCormack-Baldwin and

Jameson operators are virtually identical. The Jameson model reduces

freestream oscillations and improves convergence rates. The disadvan-

tages of the Jameson model include the need for the expensive second

and third derivative evaluations of the conservation variables. The

scheme introduces two "tuning" parameters which may indicate the need

for parametric studies to find the "right" values for the two constants

for each problem of interest. The MacCormack-Baldwin dissipation model

shows the least oscillations in the freestream, and the accuracy of the

procedure is uniformly good. The results presented in the remainder of

this chapter for the Taylor-Galerkin formulation were obtained using

this dissipation model.

The use of triangular elements instead of "quad" elements for the

Taylor-Galerkin formulation using dissipation a la Lapidus has shown a

reduction in freestream oscillations [4]. For the triangular elements,

the use of the MacCormack-Baldwin dissipation model has shown no signi-

ficant advantages over the Lapidus model [42]. The contours of Figs.

4.2 and 4.3 suggest the Taylor-Galerkin formulation with quad elements

is sensitive to the artificial dissipation model used. For quad ele-

ments significant improvements in solution quality are obtained using

the MacCormack-Baldwin dissipation model.

4.2 Local Time-stepping Scheme

Many problems of concern to the aerodynamicist are steady state

problems wherein the transient behavior is of little interest. The use
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of time-steps that depend on the local flow conditions and geometry can

help accelerate convergence. The allowable time-step varies throughout

the mesh and is locally constrained by the CFL condition [43]. The CFL

condition relates the propagation of information within the mesh to the

grid spacing of tha mesh. In two space dimensions the CFL condition

limits the local time-step to (At)r.FL given by,

(At) CFL

ui
A X .

+ C
1 1

AX. AX .

1/2" -1
(4.1)

where u-j are the velocity components in the coordinate directions,

AX-J the grid spacing in the coordinate directions and c is the local

speed of sound.

Finite difference methods use i-j grids where the geometry data is

completely structured, Fig 4.6a. For finite elements the orientation

of an element is random and the definition of AX-,- is not

straightforward. For finite element meshes a better approach is to

compute AS and An as defined in Fig. 4.6b, where 5 and n are the local

directions that depend on the orientation of the element. The CFL

condition can then be written for a typical finite element as,

(At)CFL

ul
AC ATI

i -1
(4.2)

where u-j are the local velocity components. The velocities u-j can

be obtained by a transformation of the velocity components in the

coordinate directions given by,

(4.3)
M- -
U2/

cos e sin e
cos 8 sin e

'V

1U2
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finite difference grid

(a) Typical finite difference grid

(b) Typical quad element

Fig. 4.6 Definition of grid spacings for finite difference and finite

element meshes.
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where 8 and B are the inclination angles of the local directions with

the global coordinate axes.

The allowable time-step for an element is calculated from the

relation,

(At)e l e = a (At ) ( 4 .4 )

where a is a safety parameter that depends on the algorithm of choice.

Finite element algorithms typically need local time-steps defined at

the nodes in addition to those defined for the elements. The local

time-step at a node is calculated based on the minimum element

time-step of all the elements surrounding that node. For a typical

node i, the local time-step is calculated from,

where nel is the number of elements surrounding node i.

The benefits of using this time-stepping procedure are demon-

strated by predicting the Mach 3 flow over the compression corner of

Fig. 4.1. The artificial dissipation model used is the MacCormack-

Baldwin model with a dissipation constant v = 1. Figure 4.7 contrasts

the density contours for the Taylor-Gal erkin procedure with global and

local time-steps. The use of local time-steps is seen to reduce pre-

shock oscillations at the top right corner of the flowfield. Figure

4.8 plots the density distribution at the outflow and indicates a

sharper shock with the local time-stepping scheme with the shock being

captured within 5 nodes instead of within 7 nodes. The use of local

time-steps results in faster convergence rates as indicated by Fig.

4.9. The local time-stepping causes the L£ norm of the density
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(a) Density contours using global time-steps

(b) Density contours using local time-steps

Fig. 4.7 Comparison of the density contours for compression corner

using local and global time-stepping schemes.
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Fig. 4.8 Comparative density distributions at the outflow of

compression corner for time-stepping schemes.
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Fig. 4.9 Comparative convergence rates for compression corner using

local and global time-stepping schemes.
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changes to drop over two orders of magnitude within 200 iterations,

compared to the 400 iterations needed for the global time-stepping pro-

cedure.

4.3 Evaluation of Inviscid Formulations

The Taylor-Galerkin formulation implemented with the MacCormack-

Baldwin dissipation model and the local time-stepping procedure de-

tailed in the previous section is compared with the Petrov-Galerkin

formulation for a variety of problems. The Petrov-Galerkin formulation

is also implemented with the local time-stepping scheme to provide a

better basis for comparison. The evaluation of the finite element for-

mulations is based on criteria which include solution accuracy, shock

resolution, spurious oscillation control, computational speed, and

storage requirements.

The problems that are used for the evaluation consist of: (1)

Mach 3 flow over a compression corner, (2) Mach 6 expansion over a

sharp corner, (3) interaction of a scramjet exhaust with the free-

stream, and (4) Mach 6.57 flow over a blunted leading edge.

The compression corner and the Prandtl-Meyer expansion were chosen

due to the availability of exact solutions. In addition to illus-

trating basic features of compressible flows such as shocks and expan-

sions, these two problem helped validate the computer programs. The

interaction of a scramjet exhaust with the freestream and the Mach 6.57

flow over the blunted body are chosen because of the availability of

solutions by other numerical methods such as finite volume or finite

difference methods. These problems are also typical of the flow

situations encountered in realistic problems.
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The Taylor-Galerkin and the Petrov-Galerkin formulations were used

to predict the flow behavior for the problems listed above. The

Taylor-Galerkin formulation with the MacCormack-Baldwin dissipation

model uses a dissipation constant of v = 1 for the first three prob-

lems. Results obtained for the hypersonic flow over the blunt leading

edge indicated the need for a dissipation constant of v = 2 to suppress

shock related oscillations.

4.3.1 Compression Corner

The density contours for the compression corner using the Taylor-

Galerkin and Petrov-Galerkin formulations appear in Fig. 4.10. The

results obtained for the Taylor-Galerkin formulation indicate the

smeared shock along the wall and other flow details that have been

discussed in section 4.2. Results obtained using the Petrov-Galerkin
•

formulation indicate the absence of spurious oscillations. The shock

obtained is very crisp as indicated by the contour levels running close

together, and the density at the wall shows no oscillations.

The distribution of density along the wall and at the outflow

plane for the two methods are compared in Fig. 4.11. Both methods show

good shock capturing properties with the shock defined within five

nodes. The Taylor-Galerkin algorithm exhibits a little undershoot at

the corner and spurious oscillations occur along the wall. The pres-

ence of these oscillations is seen clearly by the distributions of Fig

4.lib. The results obtained by the Petrov-Galerkin formulation show no

such oscillations, and the density at the wall compares exactly with

analytical solutions.
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FLOW
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2.21

1.42

(a) Taylor-Galerkin contours

(b) Petrov-Galerkin contours

Fig. 4.10 Comparison of the density contours for the compression

corner.
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(b) Density distributions at the outflow

Fig. 4.11 Comparative density distributions along the wall and at the

outflow for compression corner.
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4.3.2 Prandtl-Meyer Expansion

The capability of the finite element formulations for detailing

expansion waves is illustrated by predicting the features of a Mach 6

flow over a 10° corner. The flow parameters after the expansion can be

obtained from isentropic relations. The flow configuration and the

boundary conditions for the region are shown in Fig. 4.12a. A finite

element mesh containing 1800 quad elements and 1920 nodes is used to

predict the effects of expanding the Mach 6 flow through 10°.

The density contours for the Taylor-Galerkin and Petrov-Galerkin

formulations appear in Fig. 4.13. The contours for the Taylor-Galerkin

indicate the presence of a few oscillations at the root of the expan-

sion fan and an overshoot of about 5% in the freestream. The density

contours for the Petrov-Galerkin formulation show very little oscilla-

tions. The contour levels indicate a smooth transition through the

expansion fan. The root of the expansion fan is smeared along the

wall, but the smearing is not as severe as that obtained using the

Taylor-Galerkin formulation.

The distributions of density at the outflow plane and along the

wall for the two methods appear in Fig. 4.14. The distributions at the

outflow plane indicate the smooth transition of values from the free-

stream to the values at the tail of the expansion fan. The presence of

the slight overshoot mentioned earlier for the Taylor-Galerkin formula-

tion is seen more clearly from this distribution plot. The density

distributions along the wall indicate the presence of a kink at the

corner for the Taylor-Galerkin. The results of the Petrov-Galerkin

formulation indicate the presence of a few oscillations near the

corner, but the expansion predicted at the wall is smoother.
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(a) Flow configuration

(b) Finite element mesh

Fig. 4.12 Flow configuration and finite element mesh for Prandtl-Meyer

expansion.
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(a) Taylor-Galerkin contours

(b) Petrov-Galerkin contours

Fig. 4.13 Comparison of density contours for the Prandtl-Meyer

expansion.
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Fig. 4.14 Comparative density distributions at the outflow and along

the wall for the Prandtl-Meyer expansion.
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Adequate resolution of the root of the expansion fan is critical

for obtaining accurate solutions throughout the flowfield. The distri-

butions of Fig. 4.14 indicate the need for more refinement- at the

corner to capture essential details of the expansion.

4.3.3 Scramjet Exhaust Flow

The scramjet has come under renewed scrutiny due to its potential

applications in hypersonic research vehicles. The exhaust from the

scramjet engine interacts with the freestream at the exit producing a
!

shear layer and a shock; the predominant flow features that result due

to this interaction are shown in Fig. 4.15a. The finite element mesh

used to predict the flow feature appears in Fig. 4.15b. .The mesh con-

tains 2100 elements and 2226 nodes and is refined at regions where the

gradients of the flow variables are expected to be large.

The density contours obtained for the finite element formulations

appear in Fig 4.16. The expansion through the nozzle exhaust is indi-

cated by the contour levels (1-0). The interaction of the expanded

flow with the freestream at the bottom results in the shock and shear

layer shown. The figures indicate the good shock capturing capabili-

ties of both methods. The Taylor-Galerkin formulation shows a few

localized oscillations at the corner where the flow from the nozzle

exit interacts with that from the freestream. The shock location for

the Petrov-Galerkin is seen to be sharper and closer to the shear

layer. Details of the flowfield can be better shown by the distribu-

tion of quantities such as pressure and Mach number at the outflow.

Figure 4.17a compares the distribution of pressure at the outflow

for both methods and the difference in the shock location is clearly
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(a) Flow features

(b) Finite element mesh

Fig. 4.15 Flow configuration and finite element mesh for scramjet

exhaust interaction.
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(a) Taylor-Galerkin contours

0.28-

(b) Petrov-Galerkin contours

Fig. 4.16 Comparison of density contours for the scramjet exhaust

interaction.
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seen. The shock location predicted by the finite difference program

SEAGULL [44] is also shown for comparison with the finite element

results. The Taylor-Galerkin formulation is seen to be in excellent

agreement with the finite difference code for the shock location while

the Petrov-Galerkin formulation predicts a weaker shock shifted closer

to the shear layer.

The distribution of Mach numbers along the outflow plane is

plotted in Fig. 4.17b. The sharp drop in the Mach number at around y =

1.4 indicates the location of the shear layer. Flow exhausting from

the scramjet interacts with the freestream along the line defining the

shear layer.

4.3.4 Blunt Leading Edge

The Aerothermal Loads Branch at the NASA Langley Research.Center

uses the 8' High Temperature Tunnel to test a variety of structural

configurations. The panel holder used in testing has a blunt leading

edge, and the finite element formulations are used to simulate the flow

over the blunt section. The geometric configuration and the finite

element mesh used for the analysis is shown in Fig 4.18.

Figure 4.19 shows the density contours obtained for the Taylor-

Gal erkin and Petrov-Galerkin formulations. The location of the shock

in front of the leading edge and the shock location at the outflow are

seen to be radically different for the two methods. The density con-

tours for the Taylor-Galerkin formulation are smooth, and no post-shock

oscillations are visible. The shock standoff distance is seen to be

considerably smaller for the Petrov-Galerkin algorithm. The density

levels at the body, especially at the outflow, is lower than that
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3200 quadrilateral elements

MOO 3 6« 57

T - L38

Fig. 4.18 Flow configuration and finite element mesh for Mach 6.57 flow

over a blunt body.
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(a) Taylor-Galerkln contours

(b) Petrov-Galerkin contours

Fig. 4.19 Comparison of density contours for blunt leading edge
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predicted by the Taylor-Galerkin formulation. The presence of

post-shock oscillations for the Petrov-Galerkin formulation is also

evident from the density contours.

The shock locations predicted by the two finite element

formulations along the centerline are compared wi I'n the shock location

given by the empirical relation of Billig [45] in Fig 4.20a. The

Taylor-Galerkin formulation is seen to predict the shock location

better than the Petrov-Galerkin. The comparison of the u-velocity

component at the outflow for the two finite element formulations

appears in Fig. 4.20b. The results obtained by the finite element

methods are also compared with the finite volume results of Walters

[46] for the same problem. The Taylor-Gal erkin results show a few

oscillations close to the surface of the body. The location of the

shock predicted by the Taylor-Galerkin and the finite volume method are

close, but the shock location of the Petrov-Galerkin formulation is

clearly in error. The velocity at the body for the Petrov-Galerkin

formulation is also higher which can be related to the low density

levels at the wall.

Recently a modification of the Petrov-Galerkin formulation was

proposed [18] to make the method more "conservative." Better

conservation of the flux quantities are obtained by integrating by

parts the convective term in the weighted residual formulation. The

weighted residual formulation is given by Eq (2.64) as,

W T A . V , . dA ( 4 > 6 )

The use of Eq. (4.6) ensures conservation as long as the numerical

integration procedure is of sufficient accuracy. The loss of
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Fig. 4.20 Comparative velocity distributions along the centerline and

at the outflow for the blunt leading edge.
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conservation is of the same order as the error in approximations using

numerical quadrature. To circumvent the possibility of loss of conser-

vation the weighted residual formulation can be recast by using an

integration by parts procedure. The balance law for the Euler
*v

equations defines the transformed flux quantities F-j as,

«• M

Fi,i = Ai V'i (i not summed) (4.7)

Using Eq. (4.7) the advective terms can be written as,

JV FM dA = -/^T. F. dA +Js W
T F.n. ds (4>8)

The use of the integration by parts procedure ensures conservation of

the advective flux especially when approximate integral evaluation pro-

cedures are used.

Researchers at Stanford University have used the Petrov-Galerkin

formulation with this modification to predict the flow over the hyper-

sonic blunt body for the flow parameters and the finite element mesh

given in Fig. 4.18. The density contours obtained for the revised

Petrov-Galerkin formulation appear in Fig. 4.21. The contours Indicate

a very well defined shock and the absence of oscillations throughout

the flowfield. A comparison of the shock standoff distance at the

centerline appears in Fig. 4.22 and compares very well with the predic-

tion of Billig [45]. The results obtained from the Petrov-Galerkin

formulation are also compared with an interpolation between the finite

difference results for Mach 6 and Mach 8 flows [47].

The distribution of the u-velocity component at the outflow for

the Petrov-Galerkin formulation is compared with the results of Walters

[46] in Fig 4.23. The results indicate excellent agreement with the
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Fig. 4.21 Density contours for blunt leading edge using a modified

Petrov-Galerkin formulation, Ref. [18].
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finite volume method. The shock at the outflow is seen to be captured

within 3 nodes without any post-shock oscillations.

The results of the modified Petrov-Galerkin method indicate the

need to use this modification for compressible flow calculations,

especially for flows where conservation of the advection flux is criti-

cal. The modifications to the Petrov-Galerkin algorithm do not seem to

present any special hardships for vectorization. A preliminary inves-

tigation of the modified Petrov-Galerkin formulation indicates minor

changes in the programming strategy and computational speed and a major

improvement in solution quality and accuracy.

4.4 Evaluation of Programming Strategy

The merits of the vectorization procedures of Chapter 3 are high-

lighted by Table 4.1 which compares the computational speed for the

scalar and vectorized version of the Taylor-Galerkin algorithm. Three

flow problems, ranging from a problem with 100 elements to one with

over 1000 elements, are used to quantify the effectiveness of the vec-

torization procedure. The scalar program was run on a CDC 855 and the

vectorized version was run on the VPS-32. The figures in Table 4.1

indicate that the larger the number of elements in a flow analysis the

bigger the computational benefits of using the vectorization procedure.

The performance evaluation of the finite element programs involves

issues such as computational speed, storage requirements, and speed of

convergence. Effective programming strategies on the VPS-32 include,

in addition to vectorization schemes, factors such as efficient use of

central memory, organization of data structures, and use of virtual

memory.
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Table 4.1

Comparison of Computational Rates for Scalar and
Vectorized Versions of Taylor-Galerkin Algorithm

PROBLEM CPU SECS

N is the number
of elements

Shock tube
N = 100

Wedge
N = 672

Woodward
Collela
N = 1008

SCALAR CODE
CY 170-855

234

4047

1962

VECTOR CODE
CYBER 205

3.5

14

6

SCALAR
. VECTOR

68

280

330
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The computational speed of a compressible flow program is usually

rated as the processing time in CPU time per node per time-step. Typi-

cal computational speeds of the Taylor-Galerkin and Petrov-Galerkin

formulations are:

Taylor-Galerkin - 3.3 x 10~5 CPUs/time-step/node

Petrov-Galerkin - 9.1 x 10"5 CPUs/time-step/node

The results show that the Taylor-Galerkin program is about three

times faster than the Petrov-Galerkin program. The numerical integra-

tion procedure for the evaluation of the element matrices needed for

the Petrov-Galerkin algorithm at each time-step is the reason for its

higher computational times. Yet, the processing rate for the Petrov-

Galerkin formulation with the four point Gauss integration is seen to

be competitive with the Taylor-Galerkin procedure. If one point inte-

gration procedures could be developed for accurate integral evalua-

tions, the computational speed of the two formulations would be compar-

able.

On the VPS-32 it is possible to use a timing package to obtain

information regarding the CPU time spent in each subroutine or in spe-

cific operations within a subroutine. Information obtained from the

timing package can be used to identify the most expensive operations in

the formulation. Strategies can then be developed to improve the

method of programming those expensive operations.

Figures 4.24 and 4.25 illustrate the flowchart for the Taylor-

Galerkin and Petrov-Galerkin algorithms. The timing data for the main

operations of both algorithms appear in Tables 4.2 and 4.3. For the
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Fig. 4.24 Program flowchart for inviscid Taylor-Galerkin algorithm



Table 4.2

Timing Data for Principal Operations for Inviscid
Taylor-Galerkin Algorithm

OPERATION CPU TIME
(*)

Input 1

Element integrals 0.5

Surface integrals

Half step calculations 13

Second step calculations 12

Artificial dissipation ' 56

Solution of global equations 6

Application of boundary conditions 1

Local time-step computations -7
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Fig. 4.25 Program flowchart for inviscid Petrov-Galerkin algorithm
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Table 4.3

Tiding Data for Principal Operations for inviscid
Petrov-Galerkin Algorithm

OPERATION CPU TIME

Input 1

Element information 0.5
(element interpolation
derivatives, etc.)

Computational of element 86
residuals

Assembly of element residual 1
matrices

Solution of global equations 4

Application of boundary 1
conditions

Local time-step computations 6
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Taylor-Galerkin formulation it is seen that the addition of artificial

dissipation takes over 50% of the total CPU time. The element inte-

grals that need to be evaluated for the artificial dissipation terms

use four point Gauss integration which, even when fully vectorized, are

seen to be computationally expensive. The timing information for the

Petrov-Galerkin formulation indicates that major portions of the total

CPU time is shared between the various terms needed in the evaluation

of the element residual vectors.

On supercomputers, such as the VPS-32, programs are usually

written to have all the working arrays stored in central memory. The

capability of the two finite element programs to handle large problems

can be gauged by comparing the central memory required to work a sample

problem. For a problem containing 1800 elements and 1911 nodes the

storage required for the two algorithms is :

t

Words of memory Large pages

Taylor-Galerkin 350,000 6

Petrov-Galerkin 325,000 5

These numbers show that the Petrov-Galerkin algorithm requires about

10% less storage than the Taylor-Galerkin algorithm. This difference

can be attributed to the Taylor-Galerkin algorithm computing and

storing all the element integrals outside of the time-step loop.

The finite element programs developed are pseudo-steady state

codes wherein the steady state solutions are obtained by time

marching. Convergence is assumed to occur when the 1-2 norm of the
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conservation variables drop over three orders of magnitude. For such

time marching schemes fast convergence rates are essential. The faster

a program converges the less the computational cost. The use of local

time-stepping procedures to improve convergence was demonstrated

earlier and both formulations were implemented with the time-stepping

procedure of section 4.2. Experience gained working numerous inviscid

problems indicate that the Taylor-Galerkin formulation can be run at

higher values of the safety factor <j. Typically the Taylor-Galerkin

formulations can run at values of a over 0.6, while the Petrov-Galerkin

formulations usually work at a values of about 0.3. The trend is typi-

cal of upwind schemes which need lower safety factors than the explicit

artificial dissipation schemes.

The rate of convergence for both formulations can be compared by

plotting the L£ norm of the changes in the conservation variables.

For Mach 3 flow over the compression corner, the L2 norm of the

changes in the. regular conservation variables for the Taylor-GaTerkin t

algorithm and in the entropy variables for the Petrov-Galerkin

algorithm appear in Figs. 4.26 and 4.27. The figures indicate that all

the conservation variables follow similar trends regarding the rates of

convergence, and the Petrov-Galerkin algorithm is seen to converge an

order of magnitude more than the Taylor-Galerkin algorithm.

A realistic measure of the convergence rates can be obtained by

comparing the rate of convergence of the total pressure force on a body

surface. For the compression corner the pressure force on the inclined

wall can be computed exactly since the flow parameters after the shock

can be obtained from the oblique shock relations. Figure 4.28 plots

the time history for the total pressure force on the inclined wall for
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Fig. 4.26 Convergence rates for conservation variables for compression

corner using Taylor-Galerkin algorithm.
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Fig. 4.27 Convergence rates for entropy variables for compression

corner using Petrov-Galerkin algorithm.
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the Taylor-Galerkin and the Petrov-Galerkin algorithms. The pressure

force computed using the exact shock relations is also indicated in

Fig. 4.28. The Taylor-Galerkin algorithm reaches the value of the

pressure force given by the exact solution in about 250 iterations

while the Petrov-Galerkin needs about 500 iterations to reach the same

pressure force value. The fast convergence for the Taylor-Galerkin

algorithm can be attributed to the higher safety factor a used for

computations.

The convergence trends implied by Figs. 4.26 and 4.27 are at odds

with those indicated by Fig. 4.28. The use of the pressure force is

seen to be a better indicator for convergence rates than the L£ norm

of the change in conservation and entropy variables. The use of total

pressure force for inviscid flows and shear or heat fluxes for viscous

flows for evaluating convergence rates merits further investigation.

4.5 Closing Comments

The vector!zation strategies of Chap. 3 have been applied to the

Taylor-Galerkin and Petrov-Galerkin algorithms for 2D inviscid flows.

This chapter has presented comparative results for the two algorithms.

The algorithms have basic differences in philosophy which include the

mode of artificial dissipation and the method of integral evaluations.

The vectorization of the algorithms resulted in programs of comparable

computational speeds and storage. The vectorization strategies used

for the 2D inviscid flows are extended to 2D viscous flows in the next

chapter.



Chapter 5

VISCOUS 20 COMPUTATIONS

In the realistic problems encountered in high speed compressible

flows, the flow behavior is influenced a great deal by viscous

effects. For supersonic and hypersonic flight vehicles the effects of

viscous heat dissipation, and shock-viscous interactions may play a

crucial role in the performance of the vehicle.

The flow features for high Reynolds number compressible flows can

be predicted by two approaches. The first approach is to divide the

flowfield into an inviscid region and a viscous region. A matching of

the viscous boundary conditions enables the coupling of the viscid and

inviscid regions. This approach reduces computational costs but is

limited in applications to problems not involving effects such as flow

separation or shock-boundary layer interactions [48]. The second

approach is a global approach, wherein the Navier-Stokes equations,

which are valid throughout the entire domain, are used to predict flow

details everywhere. This approach is relatively straightforward but

computationally difficult; however, the approach is necessary for com-

plicated viscous problems such as shock-boundary layer interactions.

In this dissertation a finite element Petrov-Galerkin formulation for

the compressible Navier-Stokes equations is used to predict 2D viscous

flow characteristics.

97
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5.1 Navier-Stokes equations

The compressible Navier-Stokes equations describe the characteris-

tics of a laminar, compressible, viscous, heat conducting fluid and can

be written as,

u,. (5.1)

where U is the vector of conservation variables and pY, FY, and F>

are the fluxes that correspond to the advection, viscous dissipation,

and heat diffusion respectively. The vector U and the flux vectors in

two dimensions are given by,

F. =

0

"1 •"•

;;;UJ
1

\
0
0
0

(5.2)

Here p is the density, p the pressure, u-j the velocities in the

coordinate directions, q-j the heat fluxes, T^ the viscous stress
' J

components and E^ the total energy. The Kronecker delta 6fj is as

defined in Eq. (2.14). The shear stresses and the heat fluxes are

given by,

Uk,k6 i j j (u- • + u • .) (5.3)

q1 = -k T,. (5.4)

where u and x are the coefficients of viscosity, k the thermal conduc-

tivity, and T is the temperature.
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The Petrov-Galerkin formulation uses entropy functions to symme-

trize the Navier-Stokes equations. The advantage of using a symmetric

.system of equations is that a weighted residual formulation based on

these equations automatically inherits the stability possessed by the

exact solution of these equations [14].

The spatial derivatives of the inviscid, viscous, and heat fluxes

can be written as,

Fi,i - F i ,U U > i =A iU ' i (5 '5)

Using the above relations in Eq. (5.1) the Navier-Stokes equations

become,

U,t + A.U,. = (Kjfj + Kfj)M (5.8)

A change of variables is introduced by defining new independent

variables V to replace the conservation variables U. A one-to-one

mapping is assumed between U and V and Eq. (5.8) transforms to,

AQ V,t + A. V,. = (K... V > j ) M (5.9)

where

AQ = U,y (5.10)

A f = A.AQ (5.11)

K. . = K . . A 0 (5.12)

<w ** <v

The matrices A0, A-j and K^j are symmetric, and A0 and KJJ are

positive definite. The terms of these matrices are given in [39]. The
i-

definition of V is based on the entropy functions and is given by

Eqs. (2.47)-(2.51).
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5.2 Finite element formulation

The weighted residual formulation for (5.9) is given by,

WT (AoV, t + A .V, . - (K f j V,..),.) dA = 0 (5.13)

where W is a matrix of weighting functions different from the shape

functions [N] that appear in Eq. (2.12). The weighting function for

the viscous formulation is based on the weighting function used for the

inviscid formulation Eq. (2.34). The modification in W in Eq. (5.13)

is the need to gauge the\ relative importance of the artificial and

viscous diffusion in specific regions of the flow. The weighting

functions W for the streamline upwind part of the Petrov-Galerkin

formulation is given by Eq. (2.54) as,

W = N + (Aj TJAJ^T1)1 NM . (5.14)

where the matrix T depends on the eigenvalues of the Jacobian matrices

A-j as well as on the local Peclet number. The Peclet number is a

measure of the relative importance of the convective and diffusive

effects and is defined as,

Ix . lh
Pe = ' 1! (5.15)

2k

where x-j is defined by the eigenvalue problem for T-j, and k is the

thermal diffusivity. In the boundary layer, the local Peclet number is

small, and viscous diffusion terms predominate. In the inviscid domi-

nated regions, the local Peclet number is very large (advection domi-

nates), and the numerical diffusion terms come into play. The use of a

doubly asymptotic function of the local Peclet number to limit the
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effects of numerical dissipation in the boundary layer is discussed in

[39] and is used here for the viscous calculations that follow.

5.3 Sample Problem

The performance of the vectorized Petrov-Galerkin formulation is

illustrated using the steady viscous supersonic flow past an isothermal

flat plate as a test problem, Carter [49]. The solution domain and the

discretization for this problem appear in Fig. 5.1. The finite element

mesh for the problem contains 3111 nodes and 3000 elements. The mesh

is graded near the leading edge to resolve the leading edge effects.

The inflow is'supersonic at Mach 3, and a Reynolds number of 1000 based

on the length of the flat plate is assumed at inflow. The viscosity of

the f lu id was assumed to vary according to the Sutherland law, ami the

thermal conductivity was obtained from a constant Prandtl number taken

to be 0.72. Figure 5.2 shows the density contours for the f lowfie ld at

convergence us ing the Petrov-Galerkin algorithm. The presence of the

leading edge shock and the boundary layer is clearly v is ib le from the

contours. The results obtained from the Petrov-Galerkin formulat ion

are compared to those of Carter [49] and Taylor-Galerkin results,

[50]. Carter's mesh was 45x50 and the mesh used by the Taylor-Galerkin

algorithm was 66x51. The distribution of density and velocity at the
v

outflow for the three methods appears in Figs. 5.3a - 5.3c. The

density and u-velocity distribution for the three methods compare

wel l . The Petrov-Galerkin distributions for the v-velocity show a k i n k

at the wall but away from the wal l the distributions agree well with

those of Carter and the Taylor-Galerkin algorithm. The discrepancy at



102

FLOW

I

M=3

Re=103

STAGNATION TEMP

T*2.8

Fig. 5.1 Flow configuration and finite element mesh for Mach 3 flow

over flat plate.
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Fig. 5.2 Density contours for flow over a flat plate using the

Petrov-Galerkin algorithm.
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the wall is due to the Petrov-Galerkin formulation being sensitive to

the outflow conditions close to the wall where the flow is subsonic.

Fig. 5.3d shows the distribution of pressure along the plate for the

three methods. The Petrov-Galerkin and Taylor-Galerkin algorithms show

a smooth variation along the flat plate while the pressures predicted

by Carter show a few oscillations at the leading edge. The plots

indicate the validity of the. computing procedure for 2D viscous flows.

5.4 Comments on 2D Viscous Program

As with the inviscid terms, the viscous terms in the Petrov-

Galerkin formulation are nonlinear and need to be evaluated using Gauss

quadrature. The vectorization strategies used to vectorize the in-

viscid terms can be extended to the integrals that arise from the addi-

tion of the viscous terms. The assemblage of the residual vectors due

to the viscous terms and the solution of the system equations is simi-

lar to the procedures outlined in Chap. 3.

Figure 5.4 details the program flowchart for the 2D Petrov-Galerkin

viscous formulation. The CPU seconds required for the main operations

in the formulation appear in Table 5.1. Computation of the viscous

terms takes a relatively small fraction of the total time (15 %), with

an increase in storage of less than 5%. Typical computational speeds

of the 2D viscous Taylor-Galerkin and Petrov-Galerkin algorithms are:

Taylor-Galerkin - 4.5 x 10~5 CPUs/time-step/node

Petrov-Galerkin - 10.5 x 10~5 CPUs/time-step/node
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Table 5.1

Timing Data for Principal Operations for Viscous
Petrov-Galerkin Algorithm

OPERATION CPU TIMEm

Input , 1

Element information
(element interpolation 0.5
derivatives, etc.)

Inviscid terms 80

Viscous terms " 13

Solution of global equations 4

Application of boundary conditions 1
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The storage needed for the two algorithms can be compared by comparing

the total arrays, both real and integer, needed to work typical prob-

.lems. Storage requirements for the two formulations are given by,

Taylor-Galerkin - -60 x NPOIN + 336 x MELEM

Petrov-Galerkin - 13 x NPOIN + 170 x NELEM

where NPOIN and NELEM are the number of nodes and elements in the

domain. The figures indicate that the Petrov-Galerkin formulation uses

less than 50% of the storage needed for the Taylor-Galerkin formula-

tion. The element integrals for the inviscid and viscous terms are

calculated and stored before the start of the transient loop for the

Taylor-Galerkin, and thus the need for a substantially larger storage.

A drawback of the Petrov-Galerkin viscous formulation, as men-

tioned earlier, is the need for numerical integration. For 2D problems

the use of 2x2 Gauss quadrature is seen to be adequate. This implies

the need for 2x2x2 integration procedures for 3D analysis. In the vec-

torized program, the Gauss integration procedure needs to store the

derivatives of the shape functions at the nodes for al'l elements at

each Gauss point. For 3D problems this results in prohibitive storage

requirements. Thus the development of accurate one point reduced Gauss

integration will be necessary before the Petrov-Galerkin algorithm can

be extended for 3D viscous flows.



Chapter 6

COMPUTATIONS FOR 3D INVISCID FLOWS

The use of vectorization strategies in simulating 20 compressible

flow situations showed significant computational benefits. Vectoriza-

tion is highly desirable for 2D flows but is essential for detailing 3D

inviscid and viscous flows. To gain a further understanding of the

role of vectorization in 3D, the strategies developed in Chap. 3 were

used to implement the Taylor-Galerkin algorithm for three dimensional

inviscid flow. Model generation procedures, display of results,

details of the finite element formulation, and quality of solutions

obtained are discussed in this chapter.

6.1 Model Generation and Results Display

The commercially available PATRAN program [19] is used extensively

for finite element structural analysis. Modelling features of PATRAN

can be exploited for fluid flow analysis. Modelling compressible fluid

flow with PATRAN begins with the creation of a geometric representation

of the computational domain. A 3D computational domain is shown in

Fig. 6.1 and is represented by solid regions called hyperpatches.

Finite element meshes are created by subdividing the hyperpatches into

hexahedron or tetrahedron elements. The use of these elements depends

on the capability of the analysis program. In the problems that

follow hexahedron elements are used exclusively.
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Typical hyperpatches

Flow

(a) Hyperpatch representation

Typical node

Typical
hexahedral

element

(b) Finite element mesh

Fig. 6.1 Computational domain for typical flow problem.
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Translator and inverse translator programs [19] have been devel-

oped at NASA Langley to interface PATRAN with flow analysis programs.

The translator program uses output files generated by PATRAN to produce

input data for a finite element analysis program. The results obtained

frctf the analysis program are converted into the format required by

PATRAN for results display by the inverse translator program.

PATRAN has extensive capability to display scalar solution results

with contour plots. Contours may be curved lines which connect points

of constant value or solid, color-filled bands which define the limits

of certain ranges of the quantity being displayed. Regions of interest

in the model (e.g. surfaces, symmetry planes, outflow planes, etc.) are

identified and elements in these regions are grouped together in

"active sets." Active sets are smaller than full models, containing a

few hundred elements and can be used effectively to display the salient

characteristics of the entire flow. Figure 6.2 illustrates the concept

of an active set and results display for a typical active set.

6.2 Taylor-Galerkin Algorithm

The Taylor-Galerkin algorithm was introduced in Chap. 2 and the

extension of this formulation to three dimensions is straightforward,

but key equations are repeated here for reference.

The 3D Euler equations in conservation form are given by,

U,t + F. 1 = 0 (6.1)
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CUTTING PLANES

FLOW DOMAIN

(a) Cutting planes through flow domain

(b) Active set elements (c) Contours displayed on

active set elements

Fig. 6.2 Active set creation and display.
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where U is the vector of conservation variables, and Fi are the flux

vectors of mass, momentum and energy in the coordinate directions. The

vector of conservation variables, U, and the flux vectors F.J are

given by,

U = p ( F. = u.U + p ( (6.2)
U3 ' 1 6 '

where p is the density, u-,- the velocity components in the x, y, and z

directions, and E^ is the total energy. The pressure p is defined

as,

p - (Y - 1) P CEt - O.SdijUj)] (6.3)

Equation (6.1) is solved subject to proper initial and boundary condi-

tions. The Taylor-Gal erkin formulation is easier to derive by consid-

ering just one variable. For a typical variable u Eq. (6.1) can be

written as,

u,t + Fi .j = 0 (6.4)

The computation proceeds through two time levels tn+i/2 and tn+j.

At time level tn+i/2, values for u are constant within an element

while at time tn+j, these constant element values are used to compute

nodal values of u.

Time level

The constant element value ul is computed from,

V uj+1/2 = j [N] dV (u}n - ** f [N,.] dV {F.}n (6.5)
0 Jy <• J\i ' '
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where V denotes an element volume, At is the time-step, and [N] is the

matrix of element interpolation functions. On the outflow surfaces the

weighted residual equation is written as,

A u"+1/2 = f [NJ <JA {u}n - £ f [NJ dA {F. .}" (6.6)s JA s _ /A s 1,1

In the above, [Ns] denotes the interpolation functions of the

gradients of the flux components on the outflow surfaces, and A is the

outflow surface area. The element and surface quantities at tn+i/2

are used to obtain the nodal values at time

Time level tn+i:

An approximation to the Taylor series expansion of u at tn+j and

the application of the weighted residual statement on the resulting

equation yields,

= [M]{u}n + Atf [N,.] dV E?+1/2 + {R}n+1/2 (6.7)

where [M] is the element consistent mass matrix given by,

[M] -J [N]T [N] dV (6.8)

and the load vector {R} is given by,

L. En+1/2 [N] dA (6.9)i siM
j

where £-,- are the components of the unit normal surface vector n. The

flux components on the surface, E". ' are obtained using the surface

quantities, u" ' , computed at the half step.
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To handle flows with sharp gradients such as shocks, artificial

dissipation is added at the end of each timestep. The 3D formulation

uses Lapidus dissipation Eq. (2.30), and the addition of dissipation is

of the form,

un+l = _

where,

Ei '1.1
u,. (i not summed) (6.11)

where v is the Lapidus coefficient, At the timestep, and h a character-

istic element length.

The element integrals that appear in Eqs. (6.5)-(6.9) were

evaluated using closed form integration. The use of numerical integra-

tion in three dimensions would result in inflated storage requirements

and increased computational expense. In [31] the CPU time required for

closed form solution of the mass matrix, Eq. (6.8), is compared to the

CPU time require for computing the mass matrix with different orders of

Gauss quadrature. Significant savings in CPU times are indicated for

the closed form integration, and this is of considerable importance in

the development of efficient 3D compressible flow codes.

Of the three artificial dissipation models detailed in Chap. 2,

the Lapidus dissipation model requires the least computations and mini-

mal storage. The Lapidus dissipation Eq. (6.10) being highly nonlinear

is evaluated using numerical integration. The order of the terms in

Eq. (6.10) indicates the need for second order integration (in 3D, 8

integration points), but preliminary numerical experiments indicate

that one-point Gauss quadrature appears adequate for most problems.
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6.3 Computational Speed and Storage

The 3D vectorized finite element program was used to analyze flow-

fields for problems ranging from a small number of nodes (a few thou-

sands) to these needing.-large numbers of nodes (about 36,000). Exper-

ience gained from these problems indicate the speed of computations for

this program to be 6xlO~5 CPU seconds per time-step per node. This

figure is competitive with existing finite difference codes. Another

important concern is the storage reauired for the finite element

program to run realistic problems. The VPS-32 has 32 million full

precision (64 bits) words of central memory which translates to over

500 large pages (65,536 words make up a large page) of memory. The

finite element program was written as an "in-core" program, which

imposes a ceiling on the size of the model that can be used for flow

simulation. The storage needed for a problem can be estimated from the

relation,

MTOT = 40 x NPOIN + 270 x NELEM

where MTOT is the total storage required. NPOIN and NELEM are the num-

ber of nodes and elements, respectively. In terms of large pages

MTOT/65,536 has the upper limit of 448, beyond which "page faulting"

degrades the performance of the program. Thus, the maximum problem

size that the finite element program can process is about 120,000

nodes. If larger problems are encountered major modifications to the

program are required. A possible strategy would be to restructure the

data in such a way that paging, even when it occurs, is handled
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efficiently. Programming strategies such as "packing" and "unpacking"

memory, recalculation instead of storage, and use of efficient input-

output requests can also help in handling very large problems.

6.4 3D Sample Problems

The capability of the computational procedure to..accurately calcu-

late internal and external flowfields containing expansions, shock

waves, and shear regions is demonstrated by two sample problems. Com-

parison solutions obtained by other methods are also presented to gauge

solution accuracy and shock resolution.

6.4.1 Square Nozzle

The first problem presented is the flowfield in an expansion-

recompression square nozzle (Fig. 6.3). The problem is reduced to

one-fourth its size using symmetry with the flow region being bounded

by two planes of symmetry, an upper wall and a side wall. The flow

field is characterized by expansion waves emanating from the upper and

the side walls in the region 0<x<5. In the region 5<x<10, the flow is

recompressed resulting in shock waves emanating from the upper and side

walls. The shock waves intersect at x=17 and reflect from the symmetry

planes.

The inlet Mach number is 2.94 and a finite element mesh consisting

of 7865 nodes and 6400 elements was used to march the solutions to

steady-state. Convergence was indicated by a decrease in the (-2 norm

of the density changes by three orders of magnitude. The computational

procedure used a global time-step that satisfied the CFL criterion.
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Figure 6.4 shows the pressure contours on the symmetry plane of

the nozzle at z=0. The presence of the expansion waves at the inlet

section and the formation of the shock wave and its subsequent

reflection from the symmetry plane.at x=17 is apparent in the figure.

Figures 6.5 and 6.6 compare the finite element solution with the

solutions obtained from a reference plane finite difference procedure

[50]. Figure 6.5 shows the axial variation of pressure at the

intersection of the planes of symmetry (y=z=0). The sharp increase in

pressure at x=17 occurs due to the intersection of four shock waves

emanating from the walls of the nozzle. The variation of pressure

along the corner formed by the intersection of the upper wall and the

side wall is shown in Fig. 6.6. These figures indicate that the flow

features are accurately predicted by the finite element solution.

6.4.2 Scramjet Exhaust Flow

The second problem is the flow field associated with an outboard

module of a hypersonic research aircraft. A hypersonic vehicle and

typical flow features downstream of the nozzle exhaust are shown in

Fig. 6.7. The external flow, both below and beside the nozzle, inter-

acts with the nozzle outflow, and the complete geometric configuration

to be modelled is detailed in Fig. 6.8.

To analyze the three dimensional shear flow, the problem was split

up into three subproblems: (1) a 3D divergent nozzle, Fig 6.9a, (2) a

2D expansion over the vehicle body, Fig 6.9b, and (3) the 3D region

downstream of the nozzle exit, Fig 6.9c.

The 3D flow field in the divergent nozzle was modelled with 8721

nodes and 7168 elements. The inlet Mach number is 1.657 and the
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Fig. 6.5 Comparative pressure distributions along intersection of

symmetry planes of square nozzle.
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NOZZLE INLET

M=1.657

NOZZLE OUTFLOW

(a) 3D divergent nozzle

M=5

FREESTREAM

EXPANSION OUTFLOW

(b) 2D expansion over vehicle body

BODY SURFACE

3D NOZZLE OUTFLOW sk^

20 FREESTREAM,
EXPANSION OUTFLOW

FREESTREAM <>—|—

SYMMETRY

PLANE

(c) 3D flow region downstream of nozzle.

Fig. 6.9 Subproblems for scramjet exhaust flow.
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specific heat ratio is 1.27. Figure 6.10 shows the predicted pressure

contours on a layer of elements on the symmetry plane of the nozzle.

Flow enters parallel to the x axis, expands in the inlet section of the

nozzle, and then a further expansion occurs downstream due to the

downward turn of the nozzle walls. The second subproblem is a

Prandtl-Meyer expansion with an inclined outflow plane. A 2D model

consisting of 2057 nodes and 1920 quad elements was used to analyze

this flowfield. The exit solutions from these two problems form the

inlet condition for the third subproblem. This problem, the 3D shear

region downstream of the nozzle, is modelled with a finite element mesh

of 11,781 nodes and 10,240 elements.

The flowfield that results in the 3D shear region includes expan-

sions, shocks and contact surfaces. The exhaust from the nozzle inter-

acts with the freestream below the nozzle, producing an expansion

region, a plume shock, and an interface or contact discontinuity. The

flow field caused by the exhaust of the nozzle and the expansion over

the vehicle body near the nozzle sidewall also results in a sidewall

shock, interface and expansion waves. The intersection of these two

families of expansions results in a complex three dimensional flow-

field.

Figure 6.11 presents the predicted pressure contours on the

outflow of the 3D shear region. The flow field on the left and the

bottom of the outflow are seen to be relatively undisturbed. The 2D

simple expansion waves are seen on the left by the horizontal contours

H-N, and the lower region without contours remains undisturbed at free

stream values. The presence of the shock envelope that comes off the

bottom and the side walls of the nozzle is indicated by the closely
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spaced contours while the complex expansion wave interactions appear in

the upper right regions of the figure. The top right corner of the

flow field is the region outside the intersection of the expansions and

remains at freestream pressure.

The interaction between the nozzle outflow and the freestream is

further illustrated by pressure contours on a layer of elements in the

symmetry plane as shown--in Fig.. 6.12. The expansion waves generated

and the shock that results (see Fig. 6.7) indicate the qualitative

accuracy of the solution procedure.

The finite element results are compared with predictions from the

GIM [44] program in Figs. 6.13 and 6.14. GIM (General Interpolants

Method) combines features of the finite element and finite difference

methods. Figure 6.13 shows the pressure distribution at the outflow

plane of the shear region along a vertical line in the symmetry plane.

The expansion region and the shock waves are displayed by both

methods. The pressure distribution predicted by the finite element

approach appears to be more realistic than the GIM results as indi-

cated, for example, by the prediction of the sharper shock. Post-shock

oscillations appears in the finite element results while the GIM

results are seen to be overly smooth especially near the shock.

A further comparison of the two methods appears in Fig 6.14 where

the pressure distribution at the outflow plane is plotted normal to the

symmetry plane. The finite element scheme predicts the expansion near

the symmetry plane and the weaker shock that results from the sidewall

nozzle exhaust/freestream expansion. In contrast, the GIM results show

an almost continuous expansion to freestream pressure values.
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6.5 Closing Comments on the 3D Formulation

This chapter demonstrates the capability of the Taylor-Galerkin

algorithm to simulate complicated inviscid flow for 3D problems. The

computing speed of the program is competitive and indicates good

possibilities for extension of the formulation to 3D viscous flows.

The addition of the viscous terms appears to be straightforward and

will be the subject of future research efforts.



Chapter 7

CONCLUDING REMARKS

7.1 Conclusions

The development of strategies for effective vectorization of

finite element compressible flow programs is described in this study. .

The vectorization procedures are tailored to exploit the hardware and

software characteristics of the NASA Langley VPS-32. The use of these

strategies for 2D and 3D inviscid and viscous flow computations is

demonstrated.

The basic principles of shock capturing methods are described.

Two shock capturing finite element algorithms, the Taylor-Galerkin and

the Petrov-Galerkin, are described. The Taylor-Galerkin algorithm uses

explicit artificial dissipation, the Petrov-Galerkin algorithm is based

on streamline upwind methodology. The use of three explicit dissipa-

tion models for the Taylor-Galerkin algorithm is described. Results

obtained using Lapidus, MacCormack-Baldwin, and Jameson dissipation

models are compared.

The Taylor-Galerkin algorithm with MacCormack-Baldwin dissipation

and the Petrov-Galerkin algorithm are used to solve a variety of 2D

inviscid flow problems. Comparisons for the two algorithms are made

using criteria such as solution quality, shock resolution, computa-

tional speed and storage requirements. Results obtained show good

135
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shock capturing properties for both methods. The Taylor-Galerkin

algorithm exhibits local spurious oscillations at compression and

expansion corners. The Petrov-Galerkin formulation shows minimal

oscillations and good shock resolution. Results for the hypersonic

flow ever a blunt leading edge using the Petrov-Galerkin algorithm

indicates the need to implement an "integration by parts" procedure to

ensure flux conservation.

The computational speeds for the formulations indicate the

Taylor-Galerkin algorithm to be about" three times faster than the

Petrov-Galerkin algorithm. Local time-stepping procedures implemented

on both formulations show the capability of the Taylor-Galerkin

algorithm to be run at higher Courant numbers, around 0.6, compared to

about 0.3 for the Petrov-Galerkin algorithm. A comparison of the

storage needed for the 2D programs indicates that Petrov-Galerkin
•

algorithm needs only 90% of the storage needed by the Taylor-Galerkin

algorithm. The size of storage needed may not be critical for 2D prob-

lems but becomes significant for 3D computations.

The vectorization strategies developed for the 2D inviscid

Petrov-Galerkin algorithm is extended to include the effects of vis-

cosity and heat conduction.. The 2D viscous Petrov-Galerkin algorithm

is validated by simulating the supersonic flow over a flat plate.

Results obtained from the Petrov-Galerkin algorithm are compared with

results from a finite difference method and a 2D viscous Taylor-

Galerkin algorithm. The comparison of computational speeds of the two

viscous algorithms indicates the Taylor-Galerkin algorithm to be twice

as fast as the Petrov-Galerkin algorithm. The slower speeds for the

Petrov-Galerkin for both the inviscid and viscous algorithms are due to
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the need for numerical integral evaluations. Comparisons of storage

needed for the two viscous algorithms shows that the Petrov-Galerkin

algorithm needs less than 50% of the storage needed by the Taylor-

Galerkin algorithm

Tne extension of the vectorization strategies for 3D inviscid

Taylor-Galerkin computations is described. Two sample problems are

shown to demonstrate the capability of the finite element procedure to

model flow details such as shocks, expansions and shear layers for com-

plicated three dimensional compressible flows. Results obtained using

the finite element procedure are compared with results from the refer-

ence plane finite difference method and the General Interpolants

Method, GIM. The computational speeds obtained with the 3D vectorized

Taylor-Galerkin procedure is seen to be competitive with existing

finite difference codes.

The development of an efficient vectorization procedure for

general explicit finite element flow algorithms and applications of

this procedure to 2D and 3D inviscid and viscous flows are demon-

strated. The computational rates obtained for both finite element

algorithms indicate the ability of the procedure to handle complex

three dimensional compressible flows requiring nodes that number in the

hundreds of thousands. Much research remains to be done to be able to

accurately predict aerothermal-structural interactions for high speed

vehicles, but a computational procedure has been developed in this

study that will play a major role in achieving this goal.
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7.2 Recommendations for Further Research

The finite element methods described in this study possess good

shock capturing properties. Shock resolution can be enhanced further

by local mesh refinements. In most flow situations the exact location

of shocks or other gradients is not known a-priori. This underlines

the need to develop adaptive mesh refinement procedures. Refinement

procedures can be developed independent of the finite element algorithm

and can be interfaced with either formulation.

The analysis of high speed viscous flow requires very refined mesh

spacings close to the surface of the body to capture details of the

boundary layer. The computational expense for viscous analyses are

usually more expensive than inviscid analyses. A good procedure for

viscous analyses is to start off with an inviscid analysis of the flow

region. The results obtained from the inviscid analysis contain

details on features such as shocks and expansions. The development of

programs to accurately interpolate the mesh information from inviscid

to viscous grids is very desirable since it results in better initial

conditions and faster rates of convergence for the viscous problem.

The Petrov-Galerkin formulation has demonstrated properties for

good shock resolution, solution accuracy, fast convergence and lesser

storage requirements. The main drawback of this method is the slower

computational speeds for both inviscid and viscous formulations. The

development of accurate one point integration procedures will improve

processing rates and result in a finite element formulation with

excellent computational properties.
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The development of accurate one point integration schemes will

also help in improving the processing rates of the Taylor-Galerkin

algorithm. The timing data for the Taylor-Galerkin formulation indi-

cates that over 50% of processing time is spent in the numerical inte-

gration needed for addition of artificial viscosity. Use of accurate

one-point integration schemes could double the processing rates for the

Taylor-Galerkin algorithm.

Viscous flow problems require very small grids spacings at the

walls and these spatial dimensions may necessitate implicit treatment

of the elements that lie inside the boundary layer. Vectorization pro-

cedure may have to be developed for mixed implicit-explicit solution

procedures.

The current interest in hypersonic flows in the range of Mach 10

to Mach 25 indicates the need to include real gas effects in the solu-

tion procedure. The need to develop vectorization strategies for these

effects is essential to solve realistic hypersonic viscous flow

problems.
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APPENDIX A

COMPUTATION OF NODAL SECOND DERIVATIVES

The dissipation models of MacCormack -Baldwin, Eq. (2.34) and

Jameson, Eq. (2.40) need second and third derivatives of nodal

quantities such as pressure and the conservation variables. The second

derivatives at the nodes of an element can be obtained variationally

from the first derivative defined within that element using Greens

formula. For example, the second derivatives in the x direction can

be written as,

U,xx = (U,x)x (A.I)

Let

L(u)=u'x (A. 2)
The adjoint operator for L(u) is given by,

L*(v) = -v,v (A. 3)
«

By Greens formula,

f
J

[v L(u) -u L*(v)] dA = [Qi - Pj] • n ds
A JD , (A. 4)

where A is the region enclosed by D, the boundary of the region, n is

the outward normal to the boundary D. P and 0 are evaluated on the

boundary and depend on the differential equation. The values of P and

Q are given by,

P = 0
Q = uv (A. 5)
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Substituting the above in Eq. (A.4) results in,

I [v L(u) - u L*(v)] dA =/ uv ( i»n) ds
-V JA (A.6)

The boundary term is assumed to vanish for outflow surfaces and

Eq. (A.6) reduces to,

/ vu,¥ dA = -/ u v. dA (A.7)JA x JA x

where u and v are functions of x and are well behaved. Let u and v be

defined as,

v - N .
u = U'x (A.8)

where N is a matrix of element interpolation functions and U is a nodal

variable. Substituting the values of u and v in Eq. (A.7) results in,

U>xx <* = -JA
 U>x N'x dA . (A '9)

Assume an interpolation of the second derivatives at the nodes given

by,

U 'xx = N {U 'xx } (A.10)

and the first derivatives is evaluated inside the element, typically at

a Gauss point. The resulting equation is,

J {N} [N] dA {U,xx> = -J N,x dA U,x (A>11)

which can be written following Eq. (2.20) as,

{ U 'xx> ' ~ N' dA U'

An alternate procedure to obtain the nodal second derivatives is

to assume a linear variation of the first derivatives at the nodes,
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U,x = N {U,x} (A.13)

The second derivatives at the nodes can then be written as,

CM] {U,xx> = -I >i,y N dA

The procedure adopted in this dissertation is to compute the

second derivatives of pressure as given by Eq. (A.12) but to compute

the second and third derivatives of the conservation variables along

the lines of Eq. (A.14).



APPENDIX B

DEFINITION OF JACOBIAN MATRICES FOR COMPRESSIBLE FLOW EQUATIONS

The following matrices are the Jacobians of the Euler fluxes with respect to the

conservation variables:
/ 0 I

-ti,tt,

<*S1 -(7-

0 N

(7-D

0

0

7«t

ttl((7-l)u»-7«)

/ 0

<hi "(t —

—ttjU, 0

0

0

"(7-

-(7-

0 A

0

(7-D

0

7*,

/ 0

7 - l)u' - 70)

7-l)(u!|4-ttV2)

0 1

0 u.

—ti,Us 0

a« -(7 -

-(7 -

0

0

0

(7-1)
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Ail the formulas now refer to V. The following combinations of variables are

introduced to simplify subsequent writing:

= 7-1,

^" tl* *9*vA* I JM fc — ^ Jb— Jsj •• *T«i f /i "t ~ l*t ~ it

The Euler fluxes may be written as:

/ m > / < '\

The matrix 4, and its inverse are given by

ayrnm c,

\ '

/ • \
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and

-<*, -<*,

aymm «* — V, «,

The Jacobians of the Euler fluxes are:

,)F, -c,F, -c.Vi

*

jymm

aymm



APPENDIX C

PETROV-GALERKIN OPERATORS FOR ADVECTION EQUATION

Chapter 2 described the Petrov-Galerkin formulation which uses the

streamline, discontinuity capturing, and reduced discontinuity captur-

ing operators to detail flow discontinuities. The need for these three

operators can be illustrated by application of the Petrov-Galerkin

formulation to model equations, such as the advection equation. The

advection of u can be written as,

u,t + a
Tvu = 0 (C.I)

where u = u(x,t) and 1 is the characteristic vector. The simple Galer-

kin formulation results in the weighted residual equation given by,

/ W 11 j ^3 \7 LI I dA ~ 0

where W = N, the shape functions. For the finite element procedure the

use of the Galerkin procedure is equivalent to a central differencing

of the spatial derivatives which results in oscillatory solutions.

Diffusion needs to be added to the scheme to suppress these oscilla-

tions. The direction of the added diffusion can be obtained from the

characteristic vector 'a which defines the direction of propagation of

information. A way to add this diffusion is to modify the interpola-

tion functions W by adding a discontinuous function p to N. The
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function p can be written as,

p = T aT 7N (C.3)

where T depends on the characteristic vector 15. The use of the charac-
M

teristic vector (and the use of the characteristic matrices Aj for

the compressible flow equations) injects into the finite element

formulation the eigenvalue/eigenvector information of the hyperbolic

system. The addition of p to the weighting functions can be shown to

result in the addition of artificial dissipation terms to the advection

equations. To illustrate this, consider the weighted residual

statement of Eq. (C.2). With the definition of W as,

W = N + p (C.4)

Eq. (C.2) can be written as,

/ (N + p)T [u,t + aT 7u] dA = 0 (C .5)
JA T

or

NT (u,. + aT7u) dA =/ pT (u,t + aTVu) dA (C.6)
* -»A r

Using the discontinuous function p for the spatial derivatives only,

Eq. (C.6) can be written as,

/ NT (u,f + aTvu) dA = /" pT<aTvu dA (C.7)
JA r J A

or

/ NT (u,t +"aTvu) dA = f (T'aT7N)TaTvu dA (C.8)
JA l J AA

Using integration by parts, Eq. (C.8) can be written as,

/ NT (u,t +aTvu) dA = [ NT7(ataTvu) dA (C.9)
J A l -> A
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which is the weighted residual statement of Eq. (C.I) with added

artificial dissipation.

The addition of the streamline diffusion terms enhances the

ability of the Petrov-Galerkin formulation to capture discontinuities

but the oscillations at these discontinuities are not completely elimi-

nated. Additional diffusion needs to be added at the shocks. The

direction of the streamlines is along a while the direction of the dis-

continuity is grad(u) and these directions are shown in Fig. C.I. To

capture discontinuities better, diffusion needs to be added normal to

the discontinuity or along grad(u).

To get the projection of a onto the direction normal to the dis-

continuity, a can be split into components in directions normal and

parallel to the discontinuity as shown in Fig. C.I.

a = a,! + a (C.10)

By definition, a satisfies the relation

"aj" vu = 1T vu (C.ll)

The addition of diffusion normal to the discontinuity is enabled

using a\\ which contains this directional information. The addition

of the required dissipation can be accomplished by modifying the

weighting function further to include the "discontinuity capturing"

term. W is modified as

W = N + p + q . (C.12)

where q.can be written as,

q = T, a! 7N (C.13)
u II

The addition of q to the weighting function adds diffusive terms on the
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Vu

Fig. C.I Decomposition of a into parallel and normal components.
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right hand side similar to the streamline term and this is given by,

MT v (a n rnaT 7u) dA
U II

/ NT (u,«. + aT vu) dA = f NT v(a raT 7u) dA + /
-/ A -/A ^ AA A A

With the contributions of p and q to the weighting function W, too

much diffusion is added normal to the discontinuity. The diffusion

needed at the discontinuity can be explicitly controlled by q which

implies that the component of the streamline operator along the direc-

tion of grad(u) is redundant and can be subtracted out. This avoids

the occurrence of overly smoothed discontinuities.

The use of streamline, discontinuity capturing and reduced

discontinuity capturing terms in the weighting function serves to add

artificial diffusion in a manner similar to the explicit viscosity

schemes. The use of the characteristic vector and its projection in

the direction of the discontinuity provide control of the direction of

the added diffusion. The directional addition of diffusion serves to

provide accurate details of flow discontinuities.




