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ABSTRACT 

William Kyle Anderson, Doctor of Philosophy, 1986 
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ABSTRACT 

The full approximation scheme multigrid method is applied to 

several implicit flux-split algorithms for solving the three-

dimensional Euler equations in a body fitted coordinate system. Each 

iii 

uses a variation cf approximate factorization and are implemented in a 

finite volume formulation. The algorithms are all vectorizable with 

little or no scalar computations required. The flux vectors are split 

into upwind components using both the splittings of Steger-Warming and' 

Van Leer. Results comparing pressure distributions with experimental 

data using both splitting types are shown. The stability and smoothing 

rate of each of the schemes are examined using a Fourier analysis of the 

complete system of equations. Results are presented for three-

dimensional subsonic, transonic, and supersonic flows which demonstrate 

substantially improved convergence rates with the multigrid algorithm. 

The influence of using both a V-cycle and a W-cycle on the convergence 

is examined. Using the multigrid method on both subsonic and transonic 

wing calculations, the final lift coefficient is obtained to within 0.1 

percent of its final value in as few as 15 cycles for a mesh with over 
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210,000 points. A spectral radius of 0.89 is achieved for both subsonic 

and transonic flow over the ONERA M6 wing while a spectral radius of 

0.83 is obtained for supersonic flow over an analytically defined 

forebody. Results compared with experiment for all cases show good 

agreement. 
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Chapter I 

INTRODUCTION 

Upwind difference schemes for solving the Euler equations are 

becoming increasingly popular for several reasons. The time-dependent 

Euler equations form a system of hyperbolic equations and upwind 

differencing models the characteristic nature of the equations in that 

information at each grid point is obtained from directions dictated by 

characteristic theory. Some of the methods include the A-method,1 the 

split-coefficient method,2 flux-vector splitting,3,4,5 and flux

difference splitting. 6 These methods can be classified, in general, as 

upwind methods and have the advantage of being naturally dissipative. 

Separate spatial dissipation terms, such as are generally required in a 

central difference method to overcome oscillations or instabilities 

arising in regions of strongly varying gradients, need not be added. 

While the A-method and the split-coefficient method closely mimic 

the method of characteristics, they are both applied to the 

nonconservative form of the equations and consequently require the use 

of shock-fitting techniques to obtain the correct location and strength 

of shocks in transonic flows. Use of the conservation-law form allows 

shock waves to be captured as weak solutions to the governing equations 

and circumvents the difficulty in applying shock-fitting techniques to 

arbitrary flows. Both the flux-difference-splitting and flux-vector

splitting methods can be applied to the conservation-law form. 

The particular upwind method used in the current work is the flux 

vector splitting method in which the flux vectors are split into for

ward and backward contributions based on an eigenvalue decomposition and 
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differenced accordingly. The splittings investigated include those of 

steger-warming3,4,7 and Van Leer. 5 ,8,9 The advantages of flux splitting 

are obtained at the cost of increased computational work in comparison 

to unsplit methods, since two sets of fluxes are computed for each 

coordinate direction and implicit schemes require two sets of flux 

Jacobians (e.g. dF+/dQ and dF-/dQ) for consistent linearization of the 

fluxes. In addition, the split fluxes and flux Jacobians are also 

generally more complicated than the unsplit terms owing to the branching 

involved with eigenvalue sign changes. 

In order to offset the additional computational work of the upwind 

methods, it is highly desirable to accelerate the convergence rate, 

especially when only steady-state solutions are sought; the objective is 

to reduce the computer time required while still maintaining the high 

level of robustness and accuracy attained from upwind differencing. 

Accelerating the convergence rate becomes increasingly important as the 

mesh is refined since the log of the spectral radius for single grid 

methods generally varies linearly with the mesh size, making 

computations on very fine meshes impractical. 

One method which has been successful in accelerating the 

convergence rate of elliptic problems, attaining a spectral radius 

independent of the mesh spacing, is the multi grid method. 10,ll Although 

most of the existing theory on multigrid methods pertains specifically 

to elliptic equations, it has been shown in several references 12- 22 that 

the multigrid method can greatly accelerate the convergence rate of 

numerical schemes used for solving the Euler equations. 
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One of the earliest applications of multiple grids in solving the 

Euler equations, was presented by Ni who used coarse grids to rapidly 

propagate corrections throughout the domain. 12 His original idea was 

first incorporated into a one-step Lax-Wendroff method and later 

extended for use into predictor-corrector type methods by Johnson. 13 

Johnson14 ,15 and Chima and Johnson16 subsequently used the method to 

calculate both inviscid and viscous flows over several two dimensional 

geometries. In 1984, Mulder applied a linear multigrid scheme to the 

Euler equations in two space dimensions using upwind differencing to 

calculate flow over a circular arc and for a weakly barred galaxy.17 

Jesperson also used upwind differencing in two spatial dimensions to 

calculate flow over airfoils. 18 In this approach, the Euler equations 

were solved by Newton iteration where the linear system arising at each 

step was solved using multigrid. One of the first uses of the nonlinear 

multigrid method in accelerating the convergence rate for both the two 

and three dimensional Euler equations was reported by Jameson who used 

central differencing in a four stage Runge-Kutta algorithm to advance 

the solution. 19 ,20 In two dimensions, recent work by Jameson and Yoon 

also used central differencing and incorporated the multigrid algorithm 

into some implicit schemes with good success. 21 ,22 

The purpose of the current investigation is to combine the full 

approximation scheme (FAS) multigrid method with flux vector splitting 

to obtain efficient solutions to the Euler equations in three

dimensions. The full approximation scheme for a general nonlinear 

problem is discussed as well as its implementation for the Euler 

equations. Both V and W type cycling strategies are also 
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investigated. Several smoothing algorithms are given involving mostly 

vectorizable computations on the VPS-32 supercomputer at NASA Langley. 

In addition, both the splittings of Steger-Warming and Van Leer are 

considered for splitting the flux vectors into upwind components. 

Numerical pressure distributions are compared with available experiment 

for subsonic and transonic flow over the ONERA M6 wing and supersonic 

flow over an analytically defined forebody. 
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Chapter II 

EULER SOLUTION METHOD 

2.1 Euler Equations in Generalized Coordinates 

The governing equations are the time-dependent equations of ideal 

gas dynamics, Le., the Euler equations, which express the conservation 

of mass, momentum, and energy for an inviscid nonconducting gas in the 

absence of external forces. The conservation form of the equations in 

generalized coordinates is given by 

A A A A 

aQ aF aG aH 
a:r+~+Tri+~= 0 

where 

p 

Q=Q=1JPU 
J J 1 pv 

(:M 

e 

pU 
pUu + ~ p 

x 
F = - { pUv + ~ p \ 

J y 
pUw + ~ p 

z 
(e + p)U 

pV 
pVu + n p 

x 
G="":'" 

J 
~ pVv + nyp \ 

pVw + n p 
z 

(e + p)V 

(2.1 ) 

(2.2) 

( 2.3) 

(2.4) 
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(1N 

pWu + I'; p 
x 

1 ~ pWv + l';yP H=-J (2.5) 

pWw + I'; p 
z 

(e + p)W 

The pressure p is related to the conserved variables through the ideal 

gas law 

222 
P = (y - 1) [e - p (u + v + w )/2] (2.6) 

The equations have been generalized from Cartesian coordinates using a 

steady transformation of the type 

F; = F;(x, y, z), n= n(x, y, z), I'; = I';(x, y, z), T = t (2.7) 

where the contravariant velocity components are 

U=F; u+F; v+f; w x y z (2.8a) 

v nu+nv+nw x y z (2.8b) 

W=I'; u+z: v+1'; w x -y z (2.8c) 

The transformation to generalized coordinates is given in Appendix A. 

The equations, while written in generalized coordinates, are used 

in a finite-volume formulation. Equation (2.1) can be interpreted as 

describing the balance of mass, momentum, and energy over an arbitrary 

control volume. In this connection, the vectors grad(f;)/J, grad(n)/J, 
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and grad(~)/J represent directed areas of cell interfaces in the 

~,n, and ~ directions and the Jacobian J represents the inverse of the 

cell volume. Likewise, the quantities pU/J, pV/J, and pW/J represent 

the mass flux crossing the cell interfaces in the ~, n, and ~ 

directions. 

2.2. Flux Vector Splitting 

The upwind differencing in the present work is effected through 

the technique of flux-vector splitting. The generalized 

fluxes F, G, and H are split into forward and backward contributions 

according to the signs of the eigenvalues of the Jacobian matrices and 

differenced accordingly. For example, the flux in the ~ direction can 

be differenced as 

OF:. F . 0- ;+ 
~ 

+ 
+ O~ F (2.9) 

since ;+ has all non-negative eigenvalues and F has all non-positive 

eigenvalues. For the current study, two methods of splitting the flux 

vectors into upwind components are considered. Although the details 

of each method can be found in references 3, 4, 5, 7, and 9 both 

methods are briefly discussed below. 

The first method presented is the technique outlined by Steger 

and Warming in reference 3. Since the flux vectors are homogeneous 

functions of degree one in Q they can be expressed in terms of their 

Jacobian matrices. Considering the flux vector in the ~-direction for 

example, F can be written as 
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F AQ = Cl: Q (2.10) 
ClQ 

Using a similarity transformation, equation (2.10) can be rewritten as 

F ~Q = TAT- 1Q (2.11) 

The matrix A is a diagonal matrix composed of the eigenvalues 

of A and is given by 

A1 0 0 0 0 

0 A2 0 0 0 

A = 1
0 0 A3 0 0 (2.12) 
0 0 0 A 0 

4 
0 0 0 0 AS 

A =U=~u+~v+~w 1,2,3 x Y z 

where A4 = U + Igrad(~) la (2.13) 

AS = U - I grad ( ~) I a 

The eigenvalues can then be decomposed into non-negative and non-

positive components 

A. + = A. + A. (2.14) 
1. 1. 1. 

where 

A.± 
A. ± I A·I 

1. 1. (2.15) 
1. 2 
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Similarly, the eigenvalue matrix A can be decomposed into 

+ -A = A + A (2.16) 

where A+ is made up of the non-negative contributions A. + and A is 
~ 

constructed of the non-positive contributions A. • This splitting of 
~ 

the eigenvalue matrix, combined with equation (2.11) allows the flux 

vector F to be rewritten as 

F = T(A+ + A-)T-1Q = (j\+ + j\-)Q = ;+ + ;- (2.17) 

The flux vector F has three distinct eigenvalues given by (2.13) 

and can therefore be written as a sum of three subvectors, each of which 

has a distinct eigenvalue as a coefficient. 7 

F = F1 + F2 + F3 (2.18) 

where 

p 
pu 

F = A y-1 l pv 
1 1 Jy PN 

} (2.19) 

P 2 2 2 "2 (u + v + w ) 

P 
PI ± pa ~ ..x 

F 
1 pv±pa~ 

A -) ~ l 2,3 4,5 J2y PH ± pa ~ 
(2.20) 

z 
e + paU 

p ± Igrad(~) I 
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and the direction cosines of the directed interface in the ~-direction 

are 

~x = ~x / I grad ( ~) I (2.21a) 

~ = ~y /Igrad(~) I (2.21b) 

~z = ~z / I grad ( ~) I (-2.21c) 

A+ A_ 
The forward and backward flux vectors F and F are formed from 

equations (2.18), (2.19), and (2.20) by inserting 

+ -A. = A. and A. = A. , respectively. It should be noted that for 
1 1 1 1 

supersonic and sonic flow, in the ~-direction, i.e., IM~I = lu/al ) 1, 

where u = u/lgrad(~)1 represents the velocity normal to a ~ = constant 

face, the fluxes in this direction become 

A+ 
F = F, F = 0, M~ ) 

F - = F, 
A+ 

M (-1 (2.22) F = 0, 
~ 

The split fluxes in the other two directions are easily obtained by 

interchanging n or Z; in place of ~. 

The fluxes split in this manner above are not continuously 

differentiable at zeros of the eigenvalues (i.e. sonic and stagnation 

points).23 This is illustrated in figure 1, where the split mass flux 

contributions for the one-dimensional Euler equations, non-

dimensionalized by division through pa, are shown as a function of the 

Mach number. The gradient discontinuities in the split fluxes are 

evident as the eigenvalues pass through zero. The lack of 

differentiability of the split fluxes has been shown in some cases to 
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cause small oscillations or glitches at sonic points but which are 

rarely noticeable for most aerodynamic applications. 

It should also be noted that the Jacobian matrices of ;+ and F 

which are required for proper linearization for an implicit scheme do 

not have the same eigenvalues as A+ and A defined in equation 

(2.17).23 
A+ A 

However, the Jacobian matrices of F and F do have the same 

sign as A+ and A so that upwind differencing the spatial derivatives 

remains appropriate. 23 Although they are easier to form, the use 

of A± in implicit schemes instead of the correct linearizations ~± has 

been shown in many cases to cause severe time step limitations. 3,24 

In 1982, a new method of splitting the flux vector was proposed by 

Van Leer. 5 The approach taken in the derivation was to split the fluxes 

so that the forward and backward flux contributions t"ransitioned 

smoothly at eigenvalue sign changes, i.e., near sonic and stagnation 

points. Just as for the Steger-Warming splitting, it was required that 
A+ 

h b ' ,aF h t e Jaco ~an matr~ces --A- ave 

A 

, , 1 d aF- h 
non-negat~ve e~genva ues an --A- ave 

aQ aQ 
non-positive eigenvalues so that upwind differencing could be used for 

the spatial derivatives. In addition it was required that both 

Jacobians have one zero eigenvalue for subsonic Mach numbers which leads 

to steady transonic shock structures with only two transition zones. 5 

In practice, when second-order spatial differencing is used, shocks with 

only one interior zone are usually obtained. 9 This feature is not 

observed with the Steger-Warming flux splitting. 

The three-dimensional splittings of Van Leer were originally given 

for Cartesian coordinates. The extension to generalized coordinates is 

given in Appendix B with the resulting split fluxes given below. Only 
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the splitting for the flux in the ~-direction is given, as the others 

can be obtained similarly. The flux vector F is split according to the 

contravariant Mach number in the ~-direction, defined above 

as M~ = u/a. For supersonic flow, IM~I )1, 

"+ " 
F = F, F = 0, M~ ) + 1 

" - "+ 
F = F, F = 0, M~ ( -

and for subsonic flow, IM~I < 1 

f± 
mass 

" f± [~(-u±2a)/y+u] 
mass x 

"± 
F = I grad(~) I 

J 
f ± [~( - U ± 2a) / y + v] mass y 

f± [~( - U ± 2a) / y + w] mass z 

f± 
energy 

where 

f% 
mass 

2 = ± pa(M~ 1) /4 

f± 
energy 

± -2 -= f [ {- (y - 1) u ± 2 (y - 1) ua mass 

2 2 222 
+ 2a }/(y - 1) + (u + v + w )/2] 

(2.23) 

(2.24a) 

(2.24b) 

(2.24c) 

For forming ;±, ~ , ~ ,~ are given by equation (2.21) and u is the x y z 

velocity normal to a ~ = constant face. The fluxes in the other two 

directions are easily formed by interchanging ~ with either n or r;. 

In figure 2, the non-dimensionalized mass flux, using the Van Leer 

splitting, is shown as a function of Mach number for the one-dimension-

al Euler equations. The split fluxes are continuously differentiable at 
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sonic and stagnation points; the improvement over the Steger-Warming 

splitting is apparent. 

2.3 Baseline Solution Algorithm 

The baseline algorithm for updating the steady Euler equations 

stems from a backward Euler time integration of the unsteady equations 

which yields8 

[I + t.t(o:A++o:A-) + t.t(O-B++O+B-) + t.t(o-c++o+c-»tQ = -t.tRn 
~ ~ n n ~ ~ 

where the residual at time level n is given by 

n _ A+ + 
R = o~ F + o~ F + 0- ~+ + 0+ ~- + 0- ~+ + 0+ H 

n n ~ ~ 
(2.25) 

The split-flux differences in equation (2.25) are implemented as a 

flux balance across a cell, corresponding to MUSCL type differencing 

(Monotone Upstream-centered Schemes for Conservation Laws).25 For 

example, the flux balance in the ~-direction across a cell centered at 

point i,j,k can be written as 

0- p++ 0+ F 
~ ~ 

[P+(Q-) + P-(Q+)]i+1/2 

- [;+(Q-) + ;-(Q+)]i-1/2 (2.26) 

The notation ;+(Q-)i+1/2 denotes the forward flux evaluated using the 

metric terms at the cell interface i+1/2 and the conserved state 

variables on the upwind side of the interface, obtained by a fully-



16 

upwind second-order state variable interpolation: 

Q i+1/2 1.5 ~ - 0.5 Qi-1 (2.27a) 

+ 
Q i+1/2 = 1.5 Qi +1 - 0.5 ~+2 (2.27b) 

As seen in figure 3, Q~ . k denotes the average value of Q in the cell 1,J, 

centered on (~. ,n.,~) at time tn; for simplicity, wherever the script 
1 J Ie 

notation is i,j,k, or n, it is most often dropped. 

In equation (2.25), if second order differencing is used on both 

sides of the equation, Newton iteration for the steady Euler equations 

is obtained as ~t tends to infinity. The solution however requires the 

solution of a large banded block matrix at each step which is generally 

not feasible due to the amount of operations required to invert the 

system. Even if the differencing on the left hand side of the equation 

is reduced to first order, which would not effect the second order 

accuracy of the final solution, the resulting system of equations 

usually remains uneconomical to solve. Therefore, the solution is 

obtained using approximate factorization, which splits the implicit 

operator into a sequence of easily invertible equations. 

When using flux vector splitting, there are numerous ways of 

factoring the implicit operator into a sequence of simpler operators. 3 

For the results shown below, three ways of factoring are considered. 

Each of the schemes uses first order spatial differencing on the 

implicit side of the equation while second order differencing is 

maintained for the residual calculations. Since the steady state does 



1+1/2,J-1/2,k-1/2 
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/ -/ 
/ 

1+1/2,J+1/2,k+1/2 

--- -

1-1/2,J+1/2.k+1/2 

1-1/2,J+1/2.k-1/2 
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Figure 3. Computational cell indexing 
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not depend on the differencing of the implicit side, the final steady-

state result will be spatially second order accurate. All the schemes 

employ simple explicit boundary conditions. Since only steady-state 
• 

solutions are sought, each cell is advanced at its own time step 

corresponding to a given CFL number defined by 

CFL = fit [ lul+lvl+lwl+a( Igrad(~) 1+lgrad( n) 1+lgrad( r;) I)] (2.28) 

The first scheme considered is a spatially-split algorithm given by 

[I+flt( O~A+ +O~-)] [I+flt( O~~+ +O~~-)] 
(2.29) 

-"+ +"-" n [I+flt( 0 C +0 C )] l::Q =-fltR 
r; r; 

The computational module for the implicit side of equation (2.29) is 

shown in figure 4a for the ~ sweep. Since the solution at each point is 

directly coupled to the two neighboring points, the scheme requires the 

solution of a system of block tridiagonals. Similarly, the other two 

factors also require a block tridiagonal inversion. This scheme has the 

advantage however of being completely vectorizable and viscous effects 

can be easily incorporated into the left hand side. Since the speed of 

the VPS-32 is much faster for long vector lengths than it is for short 

ones, the computations in the present implementation take advantage of 

the large memory available on the VPS-32 computer and solve the block 

matrix equations over multiple planes simultaneously, yielding longer 

vector lengths and faster processing rates. As seen in figure 5, the 
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block tridiagonal matrices can be solved with vector lengths 

corresponding to the number of lines in a plane times the number of 

planes taken. The residual calculations, on the other hand, can be made 

with vector lengths corresponding to the number of points in the grid. 

To decompose the implicit operator into lower and upper matrices (LU 

decomposition) and perform the back sUbstitutions requires 695 

multiplications and additions per factor resulting in a total of 2085 

operations for each sweep through the grid. 

The second method considered to factor the left hand side of 

equation (2.25) is a two-factor method in which the implicit operator is 

split such that one operator contains the Jacobians with all positive 

eigenvalues and the other operator contains the Jacobians with all 

negative eigenvalues. The scheme can be written as 

[I+llt( Q;i+ +Q-B+ +1'1-2+)] 
., n Z; 

(2.30) 

[I+llt(Q~-+Q~~-+Q~C-)]~ = _lltRn 

This scheme only requires the solution of block lower triangular 

equations. Each factor is solved by starting at one corner of the grid, 

solving for each point by marching across the field to the opposite 

corner. From the computational module shown in figure 4b for the first 

factor in equation (2.30), the solution at the center node requires that 

the solution of each of the points behind it be previously obtained. 

These terms are taken to the right hand side of the equation and added 

to the residual. A similar procedure is carried out for the second 
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factor. For the present implementation of this scheme, only 270 

operations are required for each factor to invert the left hand side and 

perform the back substitutions and most of the algorithm is 

vectorizable. This scheme requires that a 5 x 5 matrix be inverted at 

each point in the grid which can be carried out with vector lengths 

corresponding to the number of points in the grid. However, since the 

solution of each plane requires that the solution of the previous plane 

be known, the back sUbstitution cannot be performed over multiple 

planes. The maximum vector lengths in the back substitution process 

corresponds to the number of points in a plane. The only scalar 

computations correspond to back substitution along a line requiring 

roughly a third of the total operations. Although the scheme requires 

only about 25 percent of the operations required for the spatially split 

scheme, the scalar computations degrade the processing rate 

significantly so that the overall processing rate on the VPS-32 is about 

twice as slow as for the spatially split scheme. 

The last scheme considered is another two factor scheme which is 

spatially split in two directions, with the third direction split 

according to the sign of its eigenvalues. The resulting scheme, which 

is referred to as combination splitting, is given by 

,.. ,.. A+ A A A A 

[I+llt( O~+ +O~-+o-C )] [I+llt( O-B+ +O+B- +o+C-)] llQ 
I; I; I;; n n I;; 

_lltRn (2.31 ) 

and the computational module for the first factor is shown in figure 

4c. This scheme also requires the solution of block tridiagonal 

systems, requiring about 695 multiplications and divisions for each 
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factor. This scheme is completely vectorizable; however, as in the 

previous two-factor scheme, the solution of each plane requires that the 

solution of the previous plane be known thereby eliminating the 

possibility of extending the vector operations over several planes. The 

result is that even though this scheme requires only two-thirds of the 

operations of the 3-factor scheme, the computational rate is actually 

degraded by about ten percent. A summary of operations required to 

solve the left hand side for each of the three schemes is given in table 

1 • 

2.4 Boundary Conditions 

The boundary conditions for the solutions presented below are 

applied explicitly. On the body, the normal velocity is set to zero 

while the pressure and density are determined by extrapolation from the 

interior. In the farfield, for subsonic flow, the velocity normal to 

the boundary and the speed of sound are obtained from two locally one-

dimensional Riemann invariants given by 

.:I:: - 2a 
R =u.:l::-

Y-1 

These are considered constant along characteristics defined by 

dx.:l:: -
(dt) = u .:I:: a 

(2.32) 

(2.33) 

For subsonic conditions at the boundary, R- can be evaluated locally 

from conditions outside the computational domain, and R+ locally from 

the interior of the domain. The two Riemann invariants can be added and 

subtracted to determine a local normal velocity and speed of sound at 



Scheme 
Operations required per factor and vector length 

LU decomposition Additional right-hand terms· Backsubstltutlon 

3-factor spatially split 550 (mul tlplane) a 1~5 (multlplane) 

2-factor combination split 550 (mul tlplane)"+ 50 (plane) 1~5 (single plane) 

Operations required per factor and vector length 
Scheme 

(U1S) -1. (RflS) Additional right-hand terms· LU decomposltlon-· 
50 (plane) 

75 (multlplane)++ '15 (scalar) 2-factor eIgenvalue splIt 50 (lIne) 
50 (scalar) 

·Terms requIred on rIght-hand sIde (RIIS) In additIon to residual 
*·LU decomposItion of a 5 x 5 matrIx only 
+length corresponds to the number of lines In a plane tImes the number of planes 

++length corresponds to the number of poInts In a plane times the number of planes 

Table 1. Opera tion coun ts for solving the impllci t opera tors. 
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the boundary respectively. Depending on the sign of the normal velocity 

(inflow or outflow where inflow at the boundary corresponds 

to U < 0), the entropy and tangential velocities extrapolated from the 

exterior or interior of the domain are used with the speed of sound to 

determine the density and pressure on the boundary. The Cartesian 

velocities are obtained by decomposing the velocity tangential and 

normal to the boundary. 

For supersonic free-stream conditions along inflow boundaries, 

quantities are extrapolated from the exterior; along outflow boundaries, 

quantities are extrapolated from the interior of the computational 

domain. 

2.5 Stability Analysis 

In order to examine the stability characteristics of the three-

dimensional approximate-factorization algorithms considered above, a 

Fourier analysis is conducted on the complete system of equations in 

Cartesian coordinates. 26 ,8 Because of the mixed signs of the 

eigenvalues of the Euler equations and the fact that the three-

dimensional Euler equations cannot be diagonalized to yield a system of 

convection equations, stability analysis of the scalar convection 

equation is not sufficient to determine stability properties of the 

three schemes. The complete system of equations can be written as 

n 
MtoQ = -L =-~tR 

where for Cartesian coordinates 

(2.34) 
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n - + + - - + + - - + +-
R =oF+oF+oG+OG+OH+oH x x y y z z (2.35) 

and M is an implicit operator corresponding to the scheme considered. 

Linearizing the residual Rn as 

Rn = A+ o-Qn+ A- o+Qn + B+ o-Qn 
x x y 

(2.36) 
-+n +-n -+n 

+BOQ+COQ +CoQ 
y z z 

and assuming that the Jacobians are locally constant, the stability can 

be analyzed by letting 

~ = ~U ei~eiWei~ 
o 

(2.37) 

where Uo is an initial constant vector. Upon substitution into equation 

(2.34) and dividing out the common factors, the generalized eigenvalue 

problem for A, which is the vector of amplification factors, can be 

obtained 

(M-L)v =" MAv (2.38) 

where M and L are the Fourier symbols of M and L, respectively. The 

stability characteristics are determined by cycling through a fixed 

number of each of the spatial frequencies, in this case sixteen 

frequencies, in the range 

a ( 86x, ylly, allz ( 21T 
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for a series of CFL numbers between 0.1 and 50. The generalized 

eigenvalue problem is solved each time using a routine from the 

International Mathematics and Statistics Library (IMSL).27 Each time, 

the maximum eigenvalue, average eigenvalue, and the smoothing factor are 

determined, where the smoothing factor, defined as 

_ max {IAI} 
1l - Tr/2 <; max ( 8l1x, y~y, allz) <; 3n/2 (2.39) 

corresponds to the damping of the high frequencies and serves as an 

indication of how effectively the multigrid procedure can accelerate 

convergence for a given scheme. 

Results are shown using the Van Leer splitting for each of the 

schemes given above. Identical cases were run using the Steger-Warming 

splittings with little change in the results. Each result was obtained 

by using first order differencing on the implicit side of the equation 

and fully-upwind, second-order differencing for the residual 

computations. All the calculations assume Cartesian coordinates, a Mach 

number of 0.8, and zero degrees yaw and angle of attack. 

The average eigenvalue, the smoothing factor, and the maximum 

eigenvalue is shown in figure 6 for the three schemes given above. For 

the 3-factor, spatially split scheme, shown in figure 6a, the maximum 

eigenvalue indicates that this scheme is conditionally stable with a 

maximum CFL number of approximately 20. The minimum smoothing factor 

occurs at a CFL of about 5 which is somewhat less than the CFL number 

where the maximum eigenvalue is lowest. In contrast to the spatially 

split algorithm, both of the 2-factor schemes shown in figure 6b and 6c 

appear to be stable for all CFL numbers considered. The maximum 
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eigenvalues and smoothing factors also exhibit less sensitivity to the 

CFL number than the 3-factor scheme with minimum smoothing factors also 

occurring at a CFL number of about 5. However, the 2-factor eigenvalue 

split scheme has a somewhat higher smoothing factor than the other two 

schemes which are therefore more appropriate for multigrid applications. 



3.1 General Algorithm 

Chapter III 

MULTI GRID 

30 

The multigrid method used in the current study is the full 

approximation scheme (FAS) which appears in many references 10 ,28,29,30 

and is summarized below. It is most easily understood by first 

considering the solution of a general nonlinear equation 

L(Q) = S ( 3.1) 

Equation (3.1) is to be solved numerically by dividing the domain 

into discrete cells yielding a system of equations to be solved 

simultaneously at each point as 

LN(QN) = SN ( 3.2) 

where ~ is the exact solution to the "discretized system and ~ is the 

discrete analog of the operator L. If initial conditions are close 

enough to the final solution, equation (3.2) could be solved iteratively 

using Newton iteration. This approach however may be prohibitively 

expensive if the number of unknowns is large as typically occurs in 

multi-dimensional problems. Many other iterative schemes have therefore 

been devised which require significantly fewer operations. After a few 

iterations however, these methods generally exhibit a slow convergence 

rate, reducing the residuals by a very small amount each time. 29 The 
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reason for the slow asymptotic convergence rate is inadequate damping of 

the low frequency errors." 

The multigrid method efficiently damps the low frequency errors 

using a sequence of grids GO' G" ••• GN where GN denotes the finest 

grid from which successively coarser grids can be formed by deleting 

every other mesh line. In this context, the high frequency error 

components on a given grid are those which cannot be resolved on the 

next coarser mesh due to the increased grid spacing. If an iterative 

method is chosen which quickly damps the high frequency errors on a 

given grid, the remaining errors will be the lower frequency smooth 

components. The sequence of coarser grids can then be used in 

accelerating the convergence rate on the finest grid by reducing the 

remaining low frequency errors since some of these same frequencies 

appear as high frequency errors on a coarser grid. Therefore, the 

errors on the fine grid which are responsible for slow convergence are 

quickly damped using the coarser grids where the computations are 

relatively cheap. 

In order to use the coarser grids, it is necessary to obtain an 

equation on the fine mesh which can be accurately represented by the 

coarser mesh. It is important to first realize that neither the high 

frequency solution or error components on the fine grid can generally be 

resolved on a coarser grid. The high frequency errors however can be 

sufficiently damped on a fine grid using a variety of iterative s~hemes 

so that the remaining errors will" mainly be composed of smooth low 

frequency components which can be adequately represented on coarser 

meshes. For this reason, it is necessary to obtain an equation on the 
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fine mesh in terms of the errors. 

When solving in an iterative fashion, equation (3.2) is solved 

approximately at each step as 

LN(qCN) = ~ + ~ (3.3) 

where qCN is tile most current approximation to ~ and RN is the residual 

which will only be zero when q~ QN and hence the exact solution is 

obtained. Subtracting (3.3) from (3.2) yields an equation on the finest 

grid in terms of the residual 

LN(QN) - ~(qCN) = -RN (3.4) 

If the high frequency errors have been previously smoothed, then the 

fine grid residual equation (3.4) can be adequately approximated on a 

coarser mesh by 

L 
N-1 (QN-1 ) = iN-1 (_R ) + L (IN- 1q c) 

N N N-1 N N (3.5) 

Where I~-1 and ~-1 are restriction operators for transferring the 

dependent variables and the residual from the fine grid to the coarse 

grid. H N-1 c , 't' 1 't' t th 1 t' ere, I q serves as an 1n1 1a approx1ma 10n 0 e so u 10n 
N N 

on the coarse mesh whereas QN-1 is the exact solution which is the sum 

of the initial approximation and a correction. 30 Since the full 

solution is computed and stored on each grid level as opposed to only 

the corrections, this is referred to as the full approximation scheme 

(FAS) • 
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On the coarser grid, equation (3.5) could possibly be solved 

exactly using a variety of numerical techniques to obtain ~-1 from 

which the correction can be formed as 

VN- 1 
N-1 c 

= ~-1 - IN qN (3.6) 

This can then be passed up to the fine grid and used as a correction to 

qNC which is replaced by its previous value plus the correction 

c + C + IN V 
q N q N N-1 N-1 (3.7) 

This process yields a simple FAS two level algorithm where the 

operations on the coarse grid (equations 3.5-3.7) which are used to 

update the fine grid solution are termed the coarse grid correction. 

Often however, the exact solution of (3.5) can still be quite expensive 

to obtain. Also, since the correction on the coarse grid serves only as 

an approximation to the fine grid correction, the exact solution of 

(3.5) is not required. Therefore, instead of solving (3.5) to 

completion, several iterations can be carried out to get a reasonable 

approximation to ~-1. After each iteration of equation (3.5), the 

equation satisfied by q~-1 is given by 

c :N-1 N-1 c 
LN_1 (qN-1) = IN (-~) + LN_1 (IN qN) + ~-1 (3.8) 

which differs from the solution of (3.5) only by the residual term which 

will be zero when q~-1 = ~-1· If the errors are smooth, then 
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subtraction of (3.8) from (3.5) yields an equation which can be well 

represented on yet a coarser mesh, ~-2' Writing this equation on GN- 2 

yields 

L (Q ) - L (IN- 2 c ) + iN-2 (-R ) 
N-2 N-2 - N-2 N-1 qN-1 N-1 N-1 

(3.9) 

where equation (3.8) defines ~-1' The solution to (3.9) may be solved 

for exactly, approximated by several iterations, or alternately, by 

introducing more coarse grid levels. On all coarse grids, one or more 

FAS cycles (smoothing followed by coarse grid correction) are done. In 

this manner, each of the coarse meshes is used to obtain a correction 

for the solution on the next finer mesh. Since only the equations for 

smooth error components may be represented well on coarser grids, it is 

important to only pass corrections from a coarse grid up to the next 

finer one and not the full solution. 28 As a result of using the coarser 

meshes, a fast convergence rate may be obtained since the low frequency 

error components on the fine grid are quickly damped on the coarser 

meshes. 

Note that equation (3.5) can be recast using equation (3.3) as 

LN_1 (QN-1) S + T = P 
N-1 N-1 N-1 

(3.10) 

where 

S _ :N-1 
N-1 - IN SN (3.11) 

N-1 c "N-1 c 
TN_1 = LN_1 (IN qN) - IN (LN(qN) ) (3.12) 
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Here TN_1 is the relative truncation error (or defect correction) 

between the grids so that the solution on the coarse grid is driven by 

the fine grid and the defect correction accounts for the difference in 

trunca tion error between the coarse and fine grids. 28 The analogous 

equation for (3.9) is given by 

LN- 2(QN-2) = SN_2 + TN_2 

where 

S 
N-2 

T
N

_
2 

:iN-2 S 
N-1 N-1 

N-2 c) :N-2 c :N-2 = LN_2 (IN_1 qN-1 - I N_1 (LN_1 (qN-1» + I N_1 TN_1 

(3.13) 

(3.14) 

(3.15) 

Note that the relative truncation error on the N-2 grid is the sum of 

the relative truncation error between grids Nand N-1, as well as N-1 

and N-2. 

3.2 Algorithm for the Euler Equations 

For the steady Euler equations iri generalized coordinates, equation 

(3.2) can be written as 

LN(QN) = 0- ;+ 
~ 

+ 
+ o~ F 

- A+ 
+ 0 G 

11 
+ 0+ G 

11 

- A+ 
+ 0 H r; 

+ + 0 H 
I; 

o (3.16) 

In the multigrid solution process, a forcing function arises on the 

coarse grids from restricting the residual equation on a fine mesh down 

to the coarser one. Since for the Euler equations, S 0 in (3.2), the 

forcing function is the relative truncation error between the two 
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meshes. The resulting equation to be solved on any mesh Gi can be 

written 

L.(Q.) T. 
~ ~ ~ 

(3.17) 

where T. 0 on the finest mesh and is the relative truncation error on 
~ 

each of the coarser grids. The solution of equation (3.17) is updated 

by introducing a time derivative of the dependent variables to the left 

hand side so that the solution can be advanced in time using the 

approximate factorization methods described in Chapter Two. The 

resulting scheme written on mesh Gi is given by 

Mtq~ = 
~ 

c -At(L. (q.) - T.) = - AtR. 
~ ~ ~ ~ 

(3.18) 

where M is the implicit operator of the scheme considered and L. (q~) on 
~ ~ 

the right hand side is due to the linearization of Li(Qi) from the 

backward Euler time integration. Note that even on the coarse meshes 

where T. is non-zero, equation (3.18) maintains the same form as the 
~ 

equation on the fine mesh. The result of this is that the coarse meshes 

can be updated using the same scheme as on the fine mesh with only a 

slight modification to the right hand side. 

There are several strategies for deciding when to switch from one 

grid level to another, generally falling under the categories of fixed 

or adaptive cycling algorithms. The strategy used in the present study 

is a fixed cycling strategy in which each global cycle consists of a set 

number of FAS cycles on each of the coarser grids. Recall that one FAS 

cycle consist of a smoothing step followed by coarse grid correction. 
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In addition, a predetermined number of iterations is performed on each 

grid level to smooth the errors before applying the coarse grid 

correction. 

The conserved variables are transferred to the next coarser grids 

each time by the rule 

i-1 
Q. 1 = I. Q. 
1- 1 1 

(3.19) 

where I~-1 is a volume weighted restriction operator which transfers 
1 

values on the fine grid to the coarser one and is defined by 

i-1 
I. Q. 

1 1 
lYQ/LV (3.20) 

and the summations are taken over all the fine grid cells ~hich make up 

the coarse grid cell. As shown in Appendix C, restriction of the 

dependent variables in this manner conserves mass, momentum, and energy 

in each of the cell volumes. The relative truncation error is 

calculated on the coarse grid as 

T. 1 = 
1-

( i-1 c .... i-1 
L. 1 I. q.) - I. R. 
1- 1 1 1 1 

(3.21) 

where I~-1 is the restriction operator for the residual defined as 
1 

;~-1R. 
1 1 L Ri (3.22) 

where again, the summation is over the cells on the fine grid which make 
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up the coarse grid. By summing the residuals, the surface integral of 

the fluxes crossing the cell boundaries on the coarse grid are the same 

as would arise by integrating around all the fine grid cells making up 

the coarse grid (see Appendix C). On this grid, several iterations of 

the approximate factorization scheme can be conducted to get an 

approximation to the steady solution on Gi _1 with the right hand side 

modified to include the relative truncation error. If only one coarse 

grid is used to correct the finest grid, the result is the simple FAS 

two-level cycle. On the other hand, if more grid levels are introduced 

so that one or more FAS cycles can be recursively carried out on each 

subsequent coarse grid level to get a better approximation to QN-1' then 

a multilevel algorithm results. When only one FAS cycle is carried out 

for each of the coarser grids, the resulting global cycling stragegy is 

termed a V-cycle and is depicted in figure 7. Another cycle of 

interest, which is shown in figure 8, is termed a W-cycle and results 

when two FAS cycles are used on each of the coarser meshes. Results 

will be shown in the next section using both types of cycles where on 

the coarsest mesh, three smoothing iterations are performed in lieu of 

solving the equations on the coarsest mesh exactly. The corrections on 

coarse meshes are passed to the next finer mesh using trilinear 

interpolation with no additional iteration steps between meshes. When a 

W-cycle is used however, note that an iteration is carried out at the 

beginning of each FAS cycle correction in order to smooth the high 

frequencies. 

In order to further clarify the multigrid procedure, the overall 

process is summarized below for an exemplary case where three grid 
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Figure 7. Multigrid v-cycle 
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levels are used in a V-cycle. 

1. Starting on the finest grid, smooth the errors by doing one 

iteration of equation (3.18) with Ti = O. 

2. Calculate the residual on the fine grid from equation (3.3) where 

LN(qNC) is given by equation (3.16). 

3. Restrict the dependent variables to the first coarse grid, GN_1 , 

using equation (3.19). 

4. Restrict the residual from the finest grid to GN- 1 using equation 

(3.22) and calculate the relative truncation error using (3.21). 

5. Calculate the right hand side of equation (3.18) and update the 

solution on mesh GN- 1• (This serves to smooth the errors on this 

grid so that a coarser grid can be introduced.) 

6. Calculate the residual on this mesh using equation (3.8). Note 

that this can be written as 

c RN_1 = LN- 1 (qN-l) - TN_1 (3.23) 

Since T
N

_
1 

has been previously calculated, the residual is easily 

calculated by simply calculating L l(qC 1) from the most current 
N- N-· 

values of the dependent variables on the mesh and 

subtracting T 1 
N-

7. Restrict the dependent variables on ~-1 to ~-2 using equation 

(3.19). 

8. Restrict the residual from equation (3.23) to the N-2 grid and 

calculate T
N

_
2 

from equation (3.21). 

9. Calculate the right hand side of equation (3.18) and update the 

solution on this mesh. Since this is the coarsest mesh used in the 

present example, three iterations of equation (3.18) are done to 
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get an approximation to QN-2. Each step, the right hand side is 

updated to use the most current values of the dependent variables 

in LN-2(q~_2). Note that LN_2 will not change. 

10. Calculate the correction on this mesh 

c N-2 c 
VN_2 = qN-2 - I N_1 qN-1 . (3.24) 

11. Pass the correction to the next finest mesh using trilinear 

interpolation and update the solution 

c + c N-1 
qN-1 qN-1 + I N_2 VN_2 

(3.25) 

Note that steps 5-11 make up one FAS cycle on grid N-1 where steps 

6-11 constitute a coarse grid correction. At this point, if a W-

cycle were being employed, another FAS cycle (steps 5-11) would be 

c 
done to further update q 1. 

N-

12 Calculate the correction on the N-1 mesh as 

c N-1 c 
VN_1 = qN-1 - IN qN 

13. Pass this correction to the finest mesh and update the solution 

c c IN 
qN + qN + N-1 VN_1 

14. Do one smoothing iteration using equation (3.18) to smooth the 

errors. 
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Three-dimensional subsonic and transonic flow computations over the 

ONERA M6 wing are shown below. Comparisons are made with experimental 

data at a Reynolds number of 11.7 million,31 corresponding to conditions 

for which viscous effects are relatively small. The wing consists of 

symmetrical airfoil sections with a planform swept thirty degrees along 

the leading edge, an aspect ratio of 3.8, and a taper ratio of 0.56. 

Solutions are obtained for two mesh types, C-H and C-O, both of which 

are c-type mesh topologies around the airfoil profile. The C-H mesh, 

has uniform spacing in the spanwise direction whereas the c-o mesh wraps 

around the wing tip, consequently leading to a more precise definition 

of the actual rounded tip geometry tested in the experiment. The c-o 

mesh has been generated with a trans-finite interpolationn procedure 

developed by Bruce Wedan of NASA Langley Research Center. The C-H mesh 

was obtained by simply stacking a series of two dimensional cross 

sections along the span. The surface mesh for both are shown in figure 

9. 

The first computation is the ONERA M6 wing at transonic 

conditions: Mach number of 0.84 and an angle of attack of 3.06 

degrees. Figure 10 shows the effect of multigrid on the residual and 

lift history for a 193 x 33 x 33 C-H mesh, corresponding to 193 points 

along the airfoil and wake, 33 points approximately normal to the 

airfoil, and 33 points in the spanwise direction, 17 of which are on the 

wing planform. For this case, the Van Leer splittings are used with a 
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(0) 97 x 17 x 17 C-H mesh 

(b) 97 x 17 x 17 C-O mesh 

Figure 9. Surface mesh for the ONERA M6 wing 
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V-cycle and four grid levels (a fine grid and three coarser ones). The 

multigrid scheme is very effective in accelerating convergence of both 

the residual and the lift. The residual is reduced to machine zero in 

400 cycles while the single grid scheme has only reduced the residual 

between one and two orders of magnitude. The benefit of multigrid is 

especially pronounced in the lift history where the final lift value is 

obtained to within 0.1 percent of its final value in 41 cycles. This is 

a dramatic improvement over the single grid result which required more 

than 400 iterations to settle in on a final lift coefficient. It should 

be noted that for all the cases considered, several cycles (usually 5) 

were run with first order spatial differencing before switching to 

second order. 

A comparison of convergence rates between the three schemes 

discussed in Chapter 2 is shown in figure 11 for identical conditions as 

given above with the exception that only every other point from the 193 

x 33 x 33 mesh is used, resulting in a 97 x 17 x 17 C-H mesh. For this 

size mesh, only two coarser grids are used. The 3-factor, spatially

split algorithm demonstrates a higher rate of convergence than either of 

the two factor schemes yielding a spectral radius of approximately 

0.898. The 2-factor scheme in which the implicit operator is split 

according to the sign of the eigenvalues displays the slowest 

convergence rate with a spectral radius of 0.93. It should be pointed 

out however that even though the spectral radius using this scheme is 

not as good as for the spatially split scheme, this still represents a 

good improvement over a corresponding single grid spectral radius of 

0.98. All the runs on the 97 x 17 x 17 meshes were made at a CFL 
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number of 7. This was determined experimentally to be about optimum and 

agrees well with the CFL number for best smoothing predicted by the 

stability analysis. In 64 bit precision, the computational rate using a 

v-cycle and three grid levels for the 3-factor scheme is about 75 

microseconds per grid point per cycle whereas the 2-factor eigenvalue 

split and combination split schemes exhibit computational rates of 140 

and 85 microseconds per grid point per cycle, respectively. It should 

be noted that the computational rate is decreased by approximately 40 

percent when the computations are done in 32 bit precision. Due to the 

higher performance of the three-factor spatially split algorithm in both 

the convergence rate and the computational rate, it is used exclusively 

in the results that follow. 

The effect of using a W-cycle over the previously used V-cycle on 

the residual is shown in figure 12 for the 97x17x17 C-H mesh. An 

improvement using a W-cycle in the convergence rate is apparent. In 

addition, the lift coefficient is obtained to within 0.3 percent of its 

final value in only 14 cycles and to under 0.1 percent in 24 cycles. 

This is an improvement over the V-cycle which took 37 cycles to get the 

error in lift below 0.1 percent. Although the work involved for a W

cycle is more than for the V-cycle due to the extra smoothing iterations 

on the coarser grids, the time required per cycle only increased by 

about 13 percent over a. V-cycle. Therefore, even though more work is 

involved for each cycle, a net gain is still achieved by employing the 

W-cycle. A summary of results for this case is given in table 2 for 193 

x 33 x 33 and 97 x 17 x 17 for both C-H and c-o type grids. The table 

includes the spectral radius based on cycles and the number of cycles 
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Mesh size and 
Cycles required to obtain 

type of cycle CR, to 0.3% CR, to 0.1% Ct to 5 
of final value of final value decimal places 

97 x 17 x 17 C-H 
V-cycle 20 37 75 
W-cycle 14 24 42 

97 x 17 x 17 C-O 
V-cycle 34 45 91 
W-cycle 15 27 44 

193 x 33 x 33 C-H 
V-cycle 37 41 153 
W-cycle 12 23 47 

193 x 33 x 33 C-O 
V-cycle 27 68 149 
W-cycle 14 19 47 

Table 2 Summary of results for ONERA M6 wing 
Moo = 0.84; a = 3.06°. 

Spectral 
radius 

0.898 
0.871 

0.912 
0.879 

0.948 
0.923 

0.952 
0.926 

111 
o 
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required to obtain the lift coefficient to within 0.3 and 0.1 percent of 

its final value as well as how many cycles were required to obtain the 

lift to five significant digits. Note that the number of cycles 

required for the W-cycle to obtain the lift coefficient is relatively 

insensitive to the number of grid points. 

Figure 13 shows the upper surface pressure distributions on the 193 

x 33 x 33 C-H mesh as well as the 193 x 33 x 33 C-O mesh. The wing 

under these conditions exhibits both a swept shock emanating from the 

apex and a nearly normal shock emanating from the root, which coalesce 

at about 80 percent of the span to form a single shock. Figure 14 shows 

upper surface pressure contours. 

In figure 15, pressure coefficients obtained using the Van Leer 

splitting on both the 97 x 17 x 17 and 193 x 33 x 33 c-o meshes are 

compared with experimental data at six spanwise locations. The 

computations are obtained at the same spanwise locations as the 

experimental data by linear interpolation. The computations on both 

meshes agree reasonably well with experiment for each spanwise location~ 

the effect of the finer mesh is to resolve the leading edge suction 

pressures and shock positions, and improve the agreement with experiment 

at the most outboard station. Results obtained with the Steger-Warming 

splitting on the same two meshes are compared with experimental data in 

figure 16. The computations are nearly identical to the previous ones 

with small differences occurring near the shock regions. 

The next three-dimensional test case is the ON ERA M6 wing at a 

freestream Mach number of 0.699 and an angle of attack of 3.06 

degrees. At these conditions, the flow remains subsonic over the entire 
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Figure 13. Upper surface variation of pressure coefficient; 
ONERA M6 wing; Mm = 0.84; a = 3.06°. 
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Figure 14. Pressure coefficient contours on upper surface; 
ONERA M6 wing: Mm = 0.84; a = 3.06°. 
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wing. Results were obtained for this case on a 97 x 17 x 17 C-O mesh, a 

97 x 17 x 17 C-H mesh, and both a 193 x 33 x 33 C-H mesh and c-o mesh. 

Figure 17 shows the residual history for both the 97 x 17 x 17 c-o and 

C-H meshes using the Van Leer splittings and a V-cycle. The convergence 

rate on the C-H mesh is slightly better than on the C-O mesh. Machine 

zero is reached for the C-H mesh in approximately 200 cycles while the 

C-O mesh requires about 300 cycles, corresponding to an asymptotic 

spectral radius of .891 and .926, respectively. For both meshes, the 

lift was obtained to less than 0.1 percent of its final value in less 

than 28 cycles requiring only about 46 seconds of computer time. On the 

193 x 33 x 33 C-H mesh, a spectral radius of 0.929 was obtained with the 

multigrid algorithm while a spectral radius of 0.95 was obtained on the 

same sized c-o mesh. When using a W-cycle, a spectral radius of 0.866 

is obtained for the 97 x 17 x 17 C-H mesh and one of 0.891 is obtained 

for the c-o mesh. Using the 193 x 33 x 33 mesh, the spectral radius 

using the W-cycle is also about 0.89 for the C-H mesh and 0.912 for the 

c-o mesh. A summary of results is given in table 3 similar to those 

shown in table 2. 

The pressure distributions on the 97 x 17 x 17 c-o mesh and the 193 

x 33 x 33 C-H mesh are compared with experiment at six spanwise stations 

in figure 18 using the Van Leer splitting and in figure 19 using the 

Steger-Warming splittings. At the inboard stations, the results for 

both meshes are essentially identical and compare well with 

experiment. At the outboard station, however, the pressures computed on 

the c-o mesh agree much closer to experiment due to the increased 

resolution at the tip. 
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Cycles required to obtain 
Mesh size and CR, to 0.3% CR, to 0.1% CR, to 5 
type of cycle of final value of final value decimal places 

97 x 17 x 17 C-H 
V-cycle 19 28 38 
W-cycle 11 19 33 

97 x 17 x 17 C-O 
V-cycle 21 22 48 
W-cycle 13 15 31 

193 x 33 x 33 C-H 
V-cycle 29 37 71 
W-cycle 11 21 37 

193 x 33 x 33 C-O 
V-cYcle 21 38 55 
W-cycle 11 15 36 

Table 3 Summary of results for ONERA M6 wing 
Moo = 0.699; a = 3.06°. 

Spectral 
radius 

0.891 
0.866 
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4.2 Analytic Forebody 

The last test case considered is an analytically defined forebody 

for which experimental data is available at supersonic Mach numbers. 32 

The grid used, shown in figure 20 along with static density contours, 

was a 49 x 49 x 49 grid with a symmetry plane along the centerline. The 

conditions correspond to a freestream Mach number of 1.7 and an angle of 

attack of 0 degrees; this leads to an oblique shock at the nose and 

supersonic flow over the entire length of the body. 

The residual and lift history obtained using a V-cycle and the Van 

Leer splittings are shown in figure 21. As can be seen, the residual is 

reduced 3 or~ers of magnitude in only 50 cycles (10 of which were first 

order accurate) and an asymptotic spectral radius of 0.83 is achieved 

based on the last thirty cycles. The lift is obtained to 0.3 percent 

error of the final value in only 22 cycles. The pressure distribution 

compared with experimental data at the forebody symmetry plane is shown 

in figure 22 over both the leeward and windward sides of the body. As 

seen, the pressure coefficients compare well with the experimental data 

over both the lower and upper surfaces of the body. 



Figure 20. Grid for analytic forebody. 
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Multigrid acceleration has been applied to the three-dimensional 

flux-split Euler equations in generalized coordinates. Three implicit 

schemes have been used to smooth the errors at each grid level. Results 

from a linearized stability analysis of the coupled equations for each 

of the schemes agree well in overall trends with the numericai 

experiments and indicate that the 3-factor spatially-split algorithm is 

conditionally stable (up to a CFL of about 20) but offers a slightly 

better smoothing rate than the other two schemes and hence, the best 

multigrid performance. The stability analysis also indicates that the 

other two schemes, both two-factor schemes, are less sensitive to CFL 

variations. Results obtained for subsonic and transonic flow over the 

ONERA M6 wing and supersonic flow over an analytically defined forebody 

are compared with experimental data for cases with weak viscous 

effects. In the wing calculations, two methods of splitting the flux 

vectors were compared with experiment; the splitting of Steger-Warming 

and Van Leer. For both the subsonic and transonic cases, both methods 

of splitting the flux vector agree well with experiment and with each 

other. 

Results obtained for a series of subsonic, transonic, and 

supersonic flows demonstrate a substantial improvement in convergence 

rate using the multigrid algorithm in comparison to the single grid 

algorithm. Using a W-cycle, solutions can be obtained in as few as 19 

cycles for transonic conditions on a 193 x 33 x 33 mesh whereas a V

cycle takes about 41 cycles to reach the same level of accuracy (final 
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lift coefficient to within 0.1 percent). Using a v-cycle, a spectral 

radius of 0.891 and 0.898 is obtained for a 97 x 17 x 17 wing solution 

at subsonic and transonic conditions. A W-cycle for the same cases 

results in spectra radii of 0.866 for the subsonic case and 0.871 for 

the transonic case. In addition, the W-cycle is less sensitive to the 

size of the grid than the V-cycle for obtaining the final lift 

coefficient. Both of these save an order of magnitude in computing time 

over a single grid. 
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APPENDIX A 

TRANSFORMATION TO GENERALIZED COORDINATES 

The three dimensional Euler equations in cartesian coordinates and 

strong conservation law form are given by 

aQ + ~ + ~ + 1!!. = 0 
at ax ay az (A.1 ) 

where 
p pu Pv PN 

2 pu pu + p puv puw 
2 

Q=lPV F = 
puv 

G = 
pv + p 

H = 
pvw I (A.2) 

2 
f::M puw pvw PN + P 

e (e+p)u (e+p)v (e+p)w 

1 2 2 2 
and p = (Y-1 )(e- 2" p(u + v + w » 

Using the chain rule and the body-fitted coordinate system given by the 

steady transformation 

~ ~(x,y,z) 11 = 11(x,y,z) r,; = r,;(x,y,z) T t 

the Euler equations can be recast as 

~ ~ ~ ~ ~ ~ ~ 
~+~~+~~+~~+~~+~~+~~ 

aH aH aH 
+ ~z~+ 11z~+ r,;z~= 0 

(A. 3) 

(A.4) 



Now, again using the chain rule, the derivatives with respect 

to T, ~, n, and r;; can be wri tten in rna trix form as 

a 
0 0 0 

a 
aT at 
a 

0 
a 

~ x~ Y~ z~ ax 
a = 

~, 
an 0 x Yn 

Z 
n n ay 

a a 
ar;; 0 xr;; Yr;; zr;; ~ 

from which Cramer's rule can be used to solve for the x,Y,z and t 

derivatives. Using these to evaluate the metric terms gives 

~x = J(y nZ r;; - Z r?' r;;) nx = J(z ~Y r;; - Y (- r;;) r;;x = J(y t n - Z ~Y n) 

~y=J(znxl;-xnzr;;) \r=J(xtr;;-z';xr;;) ~ J(Z~n-x(-n) 

~ = 
Z 

J(x y - y x ) 
n r;; n r;; 

n = J(X Y r - Y X r) 
z r;; '" r;; '" 

r;;Z = J(x ~ n - y ~ n) 
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(A.5) 

(A.6) 

-1 
where J = x~(Ynzr;; - znYr;;) - y~(xnzr;; - znxr;;) + z~(xnYr;; - ynxr;;) (A.7) 

In order to regain the strong conservation law form, equation (A.4) can 

now be multiplied through by J-1 and rearranged using the chain rule on 

certain terms. -1 . For example, the term J ~xF ~ can be reWrl. tten as 

J-1~ F =~[(J-1~ )F)] _ F(~(J-1~» 
x ~ a~ x a~ x 

(A.8) 
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After rewriting all the appropriate terms and noting that many parts of 

the resulting equation can be shown to be zero by substituting equations 

(A.6) for the metrics, the Euler equations can be written in generalized 

coordinates maintaining the strong conservation law form as 

,. 
aQ aF aG aH 
a:r+~+Tn+~= 0 

-1 where Q = J Q 

-1 
F = J (~F + ~ G + ~ H) x y z 

-1 
G = J (n F + n G + n H) x y z 

-1 
H = J (~F + ~ G + ~ H) x y z 

(A.9) 

(A.10) 

Using equations (A.2) in (A.10), the flux vectors can be further written 

in an alternate form as 

pU pV r:M 
puU + ~ p x p.lV + n p x 

puw + ~ p x 
pvU + ~~ 

G=-
pvV + V 

H=-
pvW + zyp 

(A.11 ) 
F = J } pwU + ~ p 

I J ,:MV + n p J 
pwW + ~ p 

z z z 
(e + p)U (e + p)V (e + p)W 
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where U, V, and Ware the contravariant velocities defined as 

U=~u+~v+~w x y z 

V=Tlu+Tlv+Tlw x y z 

W=l;u+l;v+l;w (A.12 ) 
x y z 
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APPENDIX B 

SPLITTING THE FLUX VECTORS IN GENERALIZED COORDINATES 

The Van Leer method of splitting the flux vectors was originally 

given only for a Cartesian coordinate system. 5 For example, the split 

flux vectors in the x-direction was given in terms of the local one-

dimensional Mach number M = u/a. For supersonic flow, i.e., x 

1Mxl ~ 1, we have 

F+ = F, F- = 0, 

F+ = 0, F- = F, 

MX :> 1 

M <:-1 x 

and for subsonic flow, IMxl < 1 

1 2 
:!:pa {2"(M

x 
:!: 1)} = f ± 

mass 

f ± {( y-1 ) u ± 2a} / y 
mass 

F:!: =~ f ± v 
mass 

f ± w 
mass 

f ± [{(y-1)u:!: 2a}2/{2(1-1)} + (v2 + w2)/2J 
mass 

For many applications, however, it is advantageous to construct 

generalized (body-fitted) coordinate systems of the type 

(B.1 ) 

(B.2) 
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~ = ~(x,y,z) n = n(x,y,z) I; = I;(x,y,z) T = t (B.3) 

where, in the present work, the transformation is chosen so that the 

grid spacing in the computational domain is uniform and of unit 

length. In the discussion that follows, the superscript A indicates 

variables in generalized coordinates while superscript - indicates 

variables in a locally Cartesian system. If no superscript is used, 

Cartesian coordinates are assumed. The strong conservation form of the 

Euler equations in generalized coordinates is given by 

A ,.. A At. 

aQ aF aG aH 
a.+~+an+~= 0 (B.4) 

A 

For the purpose of determining a generalized splitting for F, only 

the derivatives in the ~ and t directions are considered while 

the nand r; derivatives are treated as source terms. For determining 

the splitting of F, equation (B.4) is transformed by a local rotation 

matrix in order to decompose the flux vector F into components normal 

and tangential to a ~=constant cell face. The rotation matrix is given 

by 

0 0 0 0 

0 ~x ~y ~z 0 

T =1 0 t t t 0 (B.5) x y z 

0 r r r 0 x y z 

0 0 0 0 
I 

where ~x' ~ , and ~ are components of a unit vector N normal to y z 

a ~-constant line. The t. and r. are components of vectors which are 
1 1 
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normal to N and to each other so that the three vectors form a locally 

Cartesian coordinate system. Note that an infinite number of vectors 

normal to N exists which form a locally Cartesian coordinate system. 

These vectors however are arbitrary and their exact specification is 

unnecessary. Multiplication of equation (B.4) with the matrix T then 

yields 

where 

F = TF 

Qt + F~ = -T Gn + Tt Q + T~ F - TH~ 

J 
Q = TQ = 

I grad ~I 
J 

p 

pu 

pv 

(:M 

e 

-pu 

1 ~: + p 

~w 

(e + p) u 

} 

(B.6) 

(B.?) 

(B.8) 

The rotated velocity component u is the velocity normal to a line of 

constant ~, representing the scaled contravariant velocity component, 

while v and ware normal to u and to each other 

u = (~u + ~ v + ~ w) x y z 
(B.9) 

v = (t u + t v + t w) 
x y z 

(B.10) 
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,. 
w = (r u + r v + r w) 

x y z 
(B.l1) 

The transformed flux F is of the same functional form as the cartesian 

flux vector and thus can be split according to any splitting developed 

for cartesian coordinates. Therefore, equations for both the Steger-

Warming and the Van Leer splittings can be used to split the flux 

vector F after replacing the Cartesian velocity components u, v and w by 

the rotated velocity componentsu, v and w. Applying the rotation T to 

equation (B.4) simply allows the flux vector to be split in a one-

dimensional fashion, along a coordinate axis perpendicular to the cell 

interface. After splitting F, the appropriate splitting for F is 

determined by applying the inverse transformation matrix T-l to equation 

(B.6), leading to 

+ - (B.12) Q + (F + F )~ + G + H = 0 
t n ~ 

with 

f:l: 
mass 
:I: f [~ (- u :I: 2a) / y + u] 
mass x 

F ± = T-l F ± = Igrad(~)1 ~ f± [i (- U ± 2a)/y + v] 
J mass y 

± -f [~ (- u ± 2a) / y + w] mass z 

f± 
energy 

where 

f± -mass -± pa(M~± 1)2/4 (B.13) 
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energy 
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% -2 
= f [ {- (y - 1) u % 2 (y - 1) ua mass 

2 2 222 
+ 2a }/(y - 1) + (u + v + w )/2] 

Note that the inverse transformation restores the original form of the 

equations, i.e., no additional source terms arise and the form 

of G and H is unaffected. This allows a splitting of G and H similar to 

the splitting of F shown above. 

Carried out with the Steger-Warming cartesian splitting starting 

with equation (B.8) yields 

F = F1 + F2 + F3 (B.14) 

where 

p-
pu 

F = Igrad( E;) I ). y-1 I ~ 
1 J 1 Y (M 

(B.15) 

P -2 -2 -2 2" (u + v + w ) 

p 
-I)l:!:pa 

= Igrad( E;) I \,5 ~pV 
F2,3 J 2y I(M 

(B.16) 

-e + p :!: pau 

_ A1 U 

A1 = laradCOI = Igrad(E;)I 
(B.17) 

where 

).4,5 
_ A4 ,5 

- Igrad(E;)1 
U :!: 

(B.18) 

Applying the inverse transformation to (B.14) gives 
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-1 -
F = T F = F1 + F2 + F3 (B.19) 

p 
pu 

; = A y-1 1 pv 
1 1 Jy (M ~ (B.20) 

p 2 2 2 "2 (u + v + w ) 

p ,. 
Pl ± pa~ ...x 

1 PI1 ± pa~ 
F = A -) ~ I 2,3 4,5 J2y PH ± pa~ 

(B.21) 
z 

e + ± I paU 
P grad ( ~) I 

This is identical to the generalized splitting given in references 3 and 

7. 
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APPENDIX C 

RESTRICTION OPERATORS 

The dependent variables are transferred from a fine mesh to a 

coarse mesh so that the mass, momentum, and energy contained in the 

coarse grid cell is the same as that contained in the fine grid cells 

which compose the coarser grid. Referring to figure 23, for a two 

dimensional example, the mass, momentum and energy in any given cell is 

given by Q*V where V is the volume of the cell and Q is the column 

vector of dependent variable representing the conserved quantities per 

unit volume. Since cell A is comprised of the smaller cells a, b, c, 

and d, a relationship is easily established for transferring the 

dependent variables which conserves mass, momentum, and energy. 

Q = 
A 

QaVa + QbVb + QcVc + QdVd 

VA 
(C.1 ) 

The restriction of the residuals is also guided by conservation 

laws. The steady Euler equations can be written in integral form as 

J ; nds = 0 (C.2) 

Here, the integral is the surface integral over the volume 

. + . h cons1dered, F 1S the flux of mass, momentum, or energy across t e 

boundaries, and n is the outward pointing unit vector normal to the 

boundary. 

Considering the two dimensional case given above for simplicity, 

the integral around the large volume shown in figure 23 is given by 



2A 
2c 2d 

I 

I 

3c c lc I 3d d Id 

I 

4c I 4d 
3A I- - - - - - - -A - - - - - - - I lA 

20 I 2b 
I 
I 

30 0 10 I 3b b Ib 

n'L I 

40 4b 

~~ 4A 

Figure 23. Control volumes for restriction of dependent 
variables and residual. 
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+ + J F . nds (F n) S + (F • n)2A S2A 
(C.3) 

1A 1A 

+ 
+ (F 

+ 
n) S + (F • n)4A S4A 3A 3A 

Now, the integral along each of the larger faces is the sum of the two 

integrals along each of the smaller ones. For example 

+ 
(F n)1A S1A = (F + 

n)1b S1b + (F • n)1d S 1d (C.4) 

Also, note that since the outward pointing normals on adjacent cell 

boundaries point in opposite directions, several terms which share a 

common boundary will cancel. For instance 

+ 
(F n) S + 1c 1c = -(F n) 3d S3d (C.S) 

Therefore, by performing the integrations around each of the smaller 

cells and adding them together, it is seen that the integral around the 

larger cell is simply the sum of the integrals around each of the 

smaller ones. 

J ; • nds = L J + 
F • nds (C.G) 

large cell small cells 

In order to better relate this specifically to the Euler equations, 

consider the steady continuity equation given by 

J PU nds o (C.7) 
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+ . . 
U = U1. + vJ (C.8) 

A "At Vk 
n = kxi + kyj = N (C.9) 

A normal to a ~=constant line is given by using k ~ in (C.9) and the 

normal to an n=constant line is obtained using n in the same manner. 

NOw, the length of each face is given by 

S. =W 
1. J 

(C.10) 

where k is again chosen to be ~ or n depending on which face is desired 

and J represents the inverse of the cell volume (i.e. the Jacobian). 

+ + 
Using equations (C.3) (with F = pU), (C.7), (C.8), and (C.9), the 

integral around cell a in figure 23 can be written as 

!PU . nds = (PU) _ (PU ) + (PV ) _ (PV) 
J 1a J 3a J 2a J 4a (C.11) 

where 

U=~u+~v x y 

v=nu+nv (C.12) 
x y 

When calculated numerically, this is simply the residual for the 

continuity equation. Similar results are obtained for the momentum and 

energy equations. Therefore, the residuals on a fine grid can be 

transferred to a coarser grid so that the integral of the fluxes over 

the cell boundary is conserved simply by summing the fine grid residuals 

which make up the coarse grid. 
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