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PREFACE

This volume comprises the Proceedings of the Third Annual Symposium

on Mathematical Pattern Recognition and Image Analysis (MPRIA) held June

10-11, 1985, at Texas A&M University, College Station, Texas.

The Symposium was initiated with a brief Program Overview presented

by Drs. Diane Wickland, NASA Headquarters, and R. P. Heydorn, NASA/JSC.

The thirteen papers of the Proceedings reflect the results of various

research efforts initiated during FY 1983 as part of NASA's Remote Sensing

Research Program. Two of the papers present results from research efforts

carried out by the following NASA principal investigators:

R. P. Heydorn - NASA/Johnson Space Center

David D. Dow - National Space Technology Laboratories

Results from an additional NASA research effort carried out at JPL appear

in the report (available from the authors):

Scene Segmentation," Final Report, NASA Fundamental Research
Program (1982-1984), Jet Propulsion Laboratory, California
Institute of Technology, Pasadena, California, 91109, March,
1985.

The remaining papers present third-year results from the eleven research

efforts initiated July 16, 1982, under Contract NAS 9-16664 and carried

out by the following principal investigators:

L. Schumaker/L. F. Guseman, Jr. - Texas A&M University

H. P. Decell, Jr./B. C. Peters, Jr. - University of Houston

E. Parzen/W. B. Smith - Texas A&M Universty

Carl Morris - University of Texas at Austin

L. Kanal - LNK Corporation

Grahame Smith - SRI International



L. S. Davis/A. Rosenfeld - University of Maryland

E. M. Mikhail - Purdue University

A. H. Strahler - Hunter College

W. Tobler - University of California at Santa Barbara

K. S. Shanmugan - University of Kansas

In an attempt to group presentations of a similar nature, the

Symposium was divided into two MATH/STAT sessions and two PATTERN

RECOGNITION sessions.

The papers appear in the Proceedings in the order in which they were

presented at the Symposium. An agenda and a list of attendees who

registered for the Symposium are included in the Appendix.

L. F. Guseman, Jr.
Principal Investigator and
MPRIA Program Coordinator
Contract NAS 9-16664

IV



THE USE OF MULTIVARIATE SPLINE METHODS
IN CLASSIFICATION

by

F. Guseman, Jr. and L. L. Schumaker
Center for Approximation Theory

Department of Mathematics
Texas A&M University

College Station, Texas 77843



Abstract

This report is a continuation of earlier papers prepared for the 1983

and 1984 NASA MPRIA Symposia Proceedings. The earlier reports dealt with

theoretical aspects of the use of spline functions in the construction of

classification algorithms. In this report we synthesize our earlier works

into a specific algorithm and discuss the results of applying this

algorithm to several test examples. The method involves tensor-product

spline fits to histograms obtained from training data, followed by

numerical determination of Bayes classification regions. Numerical

estimates for the probabilities of missclassification are also calculated

for each example.



§1. Introduction.

This paper is concerned with the use of spline functions as a tool in

statistical pattern classification algorithms. A theoretical approach to

Bayes classification based on spline functions was discussed in two

earlier NASA symposium proceedings — see [13,14], Our aim here is to

present the results of several numerical experiments using software based

on the theoretical results of [13,14],

The paper is divided into 4 sections. In Section 2 we briefly review

the Bayes classification procedure. In Section 3 we outline the algorithm

which we are using. Some numerical results are presented in Section 4.

§2. The Bayes Classification Procedure.

Suppose that some group II of objects can be divided into NC classes

which we will denote by n,, JÎ ,... »nwr- Now suppose that we are trying

to decide which class a given randomly selected object belongs to on the

basis of d measurements which have been taken on the object. In

particular, suppose X is a mapping from n = n. U ... U n... into Rd

such that if w € n, then X(w) = (x1,...,xd) is the vector of measurements

taken on w. Finally, suppose that for each i = 1,...,NC, we know the

a priori probability a. that an object will fall in class n. and that we

also know the conditional density function P. associated with measurments

taken from the i-th class.



Given this stochastic framework, the Bayes optimal classifier is

defined as follows:

Assign an element w to the i-th class n. if and only

if its measurement vector X(w) belongs to the set R.,

where R..,...,R,.C are the Bayes decision regions defined by

(2.1) R1 = { x € R d : a .P. (x ) >. o^P^xj for all j * i } .

The numerical problem of identifying the Bayes decision regions is

equivalent to finding the boundaries of the sets R.. These in turn are

defined by the equations a.P.(x) - a.P.(x) = 0 for i, j = 1,...,NC.
• ' J J

There are several well-known ways of measuring the quality of the

Bayes classification scheme described above. One convenient way is to

compute the probability of misclassification (PMC) (cf. [1,2]) denoted

below by G, and defined by

NC
(2.2) G = 1 - /. max[a P (x)]dx =1- I a. L P . (x )dx .

Rd i 1 1 1=1 1 Ri 1

In general, the evaluation of the PMC G is a difficult problem since it

involves integration over irregularly-shaped regions in d-space.

To apply the Bayes classification procedure in a practical setting,

the following steps need to be carried out:



1) estimate NC = number of classes,

2) estimate the a priori probabilities a..,...,a..-,

3) estimate the density functions P,,...,PNC,

4) estimate the decision regions R,,...,R..~,

5) estimate the value G of the PMC.

In this paper we shall discuss our experience with steps 3) - 5),

assuming that steps 1) and 2) have already been performed. Following [13,

14] we handle step 3) by using training data to construct a histogram

associated with each density P-j, after which we construct a

tensor-product spline fit s-j to this histogram based on volume

matching. Step 4) is carried out by computing the approximate Bayes

regions

(2.3) R* = { x £ R 2 : a.s. (x) _> a.s,(x) , all j * 1} , i = 1,..,NC.
1 II J J

When the equality a-js-j(x) = ajSj(x) holds, we put x in the set

it
R. provided i is the least integer j for which a.P.(x) = a.P.(x).

The boundaries of the decision regions are contour lines defined by the

equations 6..(x) = ot.P. (x) - a.P.(x) = 0. In practice we compute only
' J 'I J J

polygonal approximations R-j** to the regions R-j*.

Given the approximate Bayes regions RI**,...,RNC**» we can now

compute an estimate G* for the PMC G defined in (2.2) as follows:



NC
(2 .4) G* = 1 - I a / s . ( x ) d x .

i=l 1 R** 1

These integrals cannot be computed exactly, but using the fact that

is is possible to integrate tensor-product splines exactly over

rectangular sets, they can be computed to within arbitrary accuracy (cf.

[14]). We shall denote our approximation to G* by G**.

§3. The algorithm.

In this section we summarize the steps in the numerical algorithm

outlined in the previous section. The notation here follows [13,14],

ALGORITHM:

A. (Perform the density fits)

1. Choose a rectangle H which contains most of the volume of the

densities PI,...,PNO

2, For each i = 1,NC

a. Choose the number of bins nbxi and nbyi in the x and y-

directions, respectively.

b. Choose the bin edges in the x and y directions to subdivide

H into nbxi x nbyi equal-sized bins.

c. Choose the number npi of samples to be drawn from the ith

population to be used as training data.

d. Draw npi samples from the ith population.

e. Construct a histogram based on this data using the above bins

f. Using the volume matching method of [13,14] with knots located

at the bin edges, construct a quadratic tensor-product spline

s-j approximating the density P-j.



B. (Compute the Bayes regions)

1. Choose a rectangular grid of points K = {t..: 1 £ i £ ngi,

1 _< j _< ngj} on H.

2. For each 1 <_ k <_ NC

a. For each i = I,...,ng1 and j = 1 ngj
k

Compute the values of z.. = a. s. (t..)
IJ K K l J

u n

Compute w.. = max {z . . , £ * i }
I J * J

Compute u^ - ^ - wjj

b. Use this grid of u-values to construct the contours defining

Rk** by the method of [14].

C. (Compute the approximate PMC value G**)

1. For k = 1,NC

Compute the approximate integral I,, of s, over R£*

2. Form G** = 1 - (l^ + ... + INC).

Discussion: The choice of the number of bins and the number of samples to

be used in step A2 of the algorithm has a major effect on the nature of

the spline fit s-j to the density P-J. Our experience suggests choosing

the bin-width to be about one standard deviation.

Step A2f amounts to finding the LU-decomposition of a square matrix

of size nbxi followed by nbxi back substitutions (and a similar amount of

work involving a matrix of size nbyi). This is highly efficient (cf. the

discussion in [14]).
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The construction of the contours in step B2b is accomplished by

Algorithm 5.1 of [14]. Here we have elected to eliminate step 7 of that

algorithm and have simply taken the polygonal boundary defined by the

triangle edges. Since we have highly efficient algorithms for evaluating

splines on grids, we can afford to use a fairly fine grid and the result

is a set of visually smooth boundary curves for the decision regions.

If desired, this algorithm can be supplemented with a step B3 in

which contours defining R-j** are removed when the total volume of the

spline u inside the given contour is less than some predetermined cutoff

parameter e. We call this process "clutter removal".

§4. Test results.

In this section we present the results of applying the algorithm of

Section 3 to three test examples. For each example we give all relevant

input parameters and the computed PMC values, with and without clutter

removal. Each example is accompanied by a series of figures including

-- a perspective view of pmax = maxfP.^ P^}

— a perspective view of xmax = max{s, ,...,SN~}

— a plot of the decision regions based on the use of the true densities

p p. i
'l»*'* > tNC'

— a plot of the approximate decision regions R.**,...,RNC** computed

using the spline density fits

— A similar plot using clutter removal with e = .01



'The construction of the contours in step B2b is accomplished by

Algorithm 5.1 of [14]. Here we have elected to eliminate step 7 of that

algorithm and have simply taken the polygonal boundary defined by the

triangle edges. Since we have highly efficient algorithms for evaluating

splines on grids, we can afford to use a fairly fine grid and the result

is a set of visually smooth boundary curves for the decision regions.

If desired, this algorithm can be supplemented with a step B3 in

which contours defining Ri** are removed when the total volume of the

spline u inside the given contour is less than some predetermined cutoff

parameter e. We call this process "clutter removal".

§4. Test results.

In this section we present the results of applying the algorithm of

Section 3 to three test examples. For each example we give all relevant

input parameters and the computed PMC values, with and without clutter

removal. Each example is accompanied by a series of figures including

— a perspective view of pmax = max{P, ,... ,P-C}

— a perspective view of xmax = maxjsj,... ,SRC}

— a plot of the decision regions based on the use of the true densities

-- a plot of the approximate decision regions R,** ..... ̂wr** comPutec'

using the spline density fits

~ A similar plot using clutter removal with e = .01
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EXAMPLE 1:

Setup

NC = 2 classes

P! = normal density with mean (0,0) and covariance matrix I

?2 = normal density with mean (2,0) and covariance matrix I

A-priori probabilities <*\ = <x2 = .5

Data

10,000 random points from each population

Histogram

Equally spaced bins of width 1 on the rectangle H = [-3,5]x[-3,3],
Total number of bins = 48

Spline Fit

Using quadratic splines with knots at bin centers
Total number of coefficients = 48

Computed PMC

Without clutter removal = 0.1526072
With clutter removal = 0.1527698
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2
8 6
-3.000000
+2. 000000
-3.000000
+2.000000

3. 24.
34. 187.
65. 462.
80. 458.
28. 180.
7. 24.
0. 5.
0. 0.

8 6
-3.000000
+2 . 000000
-3.000000
+2.000000

0. 0.
1 . 3.
4. 27.

27. 175.
75. 441 .
75. 466.
31. 177.
0. 32.

-2 . 000000
+3.000000
-2 .000000
+3.000000

60. 68.
471. 477.

1220. 1223.
1 176. 1 147.
426. 424.
68. 74.
4. 2.
0. 0.

-2.000000
+3 .000000
-2.000000
+3 . 000000

0. 0.
6. 6.
70. 73.

468. 452.
1167. 1193.
1 105. 1 144.
484. 495.
67. 75.

-1 .000000
+4 . 000000
-1 .000000

27. 2
186. 30
457. 86
440. 75
192. 32
30. 3
3. 1
0. 0

-1 .000000
+4.000000
-1 .000000

0. 0
0. 1
27. 5

169. 29
475. 86
493. 77
183. 36
29. 6

+0 .000000E+00
+5.000000
+0.000000E+00

+1.000000

+1.000000

+0.000000E+00
+5.000000
+0.000000E+00

+1.000000

+1.000000

TABLE 1. Data for Example 1.
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Fig. 2. The True decision regions for Example 1.
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Fig. 2. The spline fits to the densities of Example 1
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Fig. 4. The estimated decision regions for Example 1.
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Fig. 5. The estimated decision regions for Example 1 (clutter removed)
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EXAMPLE 2:

Setup

NC = 2 classes

PI = normal density with mean (0,0) and covariance matrix .51

P2 = normal density with mean (2,0) and covariance matrix I

A-priori probabilities 04 = a2 = .5

Data

25,000 random points from both populations

Histogram

PI: Equally spaced bins of width 2/3 on the rectangle H = [-3,5]x[-3,3],
Total number of bins = 108

?2: Equally space bins of width 1 on the rectangle H.
Total number of bins = 48

Spline Fit

Using quadratic splines with knots at bin centers
Total number of coefficients = 48 and 108, respectively.

Computed PMC

Without clutter removal = 0.1128998
With clutter removal = 0.1128956
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Apr 22 26:41 1985 hgroms3 Poge 1

2
8 6
-3.000000 -2.000000 -1.000000 +0.000000E+00 +1.000000
+2.000000 +3.000000 +4.000000 +5.000000
-3.000000 -2.000000 -1.000000 +0. 000000E+00 +1.000000
+2.000000 +3.000000

11. 66 . 152. 175. 64. 12 .
75. 450. 1179. 1131. 447. 65.

179. 1163. 2959. 2999. 1172. 213.
193. 1163. 2850. 2902. 1172. 187.
76. 452. 1134. 1153. 468. 81.
11. 75. 165. 187. 75. 9.
0. 8. 6. 9. 6. 3.
0. 0. 0. 0. 0. 0.

1 2 9
-3 000000 -2.333333 -1.666667 -1 . 000000E+00 -3 . 333333E-01
+3 . 333334E-01 +1.000000 +1.666667 +2.333333 +3.000000
+3.666667 +4.333333 +5.000000
-3.000000 -2.333333 -1.666667 -1 . 000000E+00 -3 . 333333E-01
+3.333334E-01 +1.000000 +1.666667 +2

0.
0.
0.
0.
1 .
2.
3.
4 .
4.
0.
0.
0.

0.
0.
0.
0.
2.

22.
44.
81 .
52.
15.
4.
0.

0.
0.
0.
1 .
9.
95.

424.
610.
418.
110.
15.
2.

0.
0.
0.
0.
69.

410.
1428.
2217.
1386.
417.
51 .
3.

0.
0.
0.
7.
76.

676.
2198.
3332.
2174.
583.
83.
2.

0.
0.
0.
2.
59.

407.
1410.
2212.
1409.
396.
61 .
4.

0.
0.
0.
2.

17.
122.
453.
606.
427 .
128.
13.
3.

.333333 +3.000000
0.
0.
0.
0.
0.
8.
50.
87.
61 .
15.
3.
0.

0.
0.
0.
0.
0.
0.
2.
6.
3.
3.
0.
0.

TABLE 2. The data for Example 2.
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Fig. 6. The true densities for Example 2.



20

Fig. 7. The true decision regions for Example 2.



Fig. 8. The spline estimates for the densities of Example 2
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o

Fig. 9. The estimated decision regions for Example 2.
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Fig. 10. The estimated decision regions for Example 2 (clutter removed).
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EXAMPLE 3

Setup

NC = 3 classes

PI = normal density with mean (0,-1) and covariance matrix .51

P2 = normal density with mean (0,1) and covariance matrix .51

PS = normal densit with mean (3,0) and covariance matrix I

A-priori probabilities 04 = a2 = a3 = 1/3

Data

15,000 random points from each population

Histogram

PI and ?2: Equally spaced bins of width 2/3 on the rectangle
H = [-3,5]x[-3,3]. Total number of bins = 108

P3: Equally spaced bins of width 1 on the rectangle H.
Total number of bins = 48.

Spline Fit

Using quadratic splines with knots at bin centers
Total number of coefficients = 48 and 108, respectively

Computed PMC

Without clutter removal = 0.08552417
With clutter removal = 0.08537598
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3
12
-3
+ 3
43
-3
43

1

12
-3
43
43
-3
43

8
-3
42
-3
42

9
.000000 -2.333333 -1.666667 -1
.333334E-01 41 .000000
. 666667
. 000000
.333334E-0
0. 0.
2. 16.

24. 141 .
96. 517.
46. 763.
98. 514.
30. 145.
5. 19 .
0. 1 .
0. 0.
0. 0.
0. 0.
9

.000000

41 . 666667

•
. 000000E400
42..333333

-3,
43,

.333333E-01

. 000000
44.333333 45.000000
-2.333333
1 41 .000000

2. 1 .
43. 47.

346. 336.
1231 . 1 187.
1839. 1801.
1130. 1168.
321 . 294.
36. 50.

1 . 2.
0. 0.
0. 0.
0. 0.

-2.333333
.333334E-01 41.000000
.666667
. 000000

1 . 666667 -1
41 .666667
0. 0.
16. 3.

136. 26.
523. 103.
784. 158.
500. 107.
154. 32.
24. 3.
3. 0.
0. 0.
0. 0.
0. 0.

1 . 666667 -1
41 . 666667

. 000000E400
42.
0.
0.
1 .
4.

15.
1 1 .
2.
0.
0.
0.
0.
0.

.333333
0.
0.
1 .
1 .
0.
0.
1 .
0.
0.
0.
0.
0.

0
0
0
0
0
0
0
0
0
0
0
0

.000000E400
42 .333333

-3.
43.

-3
43

.333333E-01

.000000

.333333E-01

.000000
44.333333 45.000000
-2.333333

.333334E-01 41 .000000
0. 0.
0. 0.
0 . 0 .
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
6

. 000000

. 000000

.000000

.000000
0. 0.
0. 0.
0. 5.
6. 39.

43. 261.
94. 684.

167. 676.
41 . 271 .

0. 1 .
0. 7.
2. 18.
9 . 1 1 1 .

15. 141 .
9. 99.
1 . 23.
0. 5.
0. 0.
0. 0.
0. 0.
0. 0.

-2.000000

1.666667 -1
41 .666667

1 . 0.
25. 36.

. 000000E400
42.
6.

43.
145. 331 . 337.
563 . 1161. 11 86.
808. 1716. 1810.
517. 1173. 1124.
156. 360. 361 .
17. 38.
2. 0.
0. 0.
0. 0.
0. 0.

1 . 000000 40
43.000000 44.000000 45
-2.000000
43 .000000

0. 0.
1 . 0.

10. 3.
107. 115.
690. 738.

1842. 1768.
1698. 1768.
653. 668.

1 .000000 40

0. 0.
0. 0.
5. 1 .

45. 5.
279. 44.
685. 133.
674. 117.
294. 41 .

56.
4 .
0.
0.
0.

.333333
1 .

18.
153.
476.
812.
516.
146.
19.
0.
0.
0.
0 .

1
4

21
110
153
87
32
5
1
0
0
0

.000000E400

-3
43.

41 .

.333333E-01

.000000

000000
.000000
.000000E400 41 .000000

TABLE 3. The data for Example 3.
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Fig. 12. The true decision regions for Example 3.
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Fig. 13. The spline fit to the densities of Example 3.
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Fig. 14. The estimated decision regions for Example 3.
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Fig. 15. The estimated decision regions for Example 3 (clutter removed)
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ABSTRACT

This paper concerns parametric mixture models appropriate for data

presented in homogeneous blocks of varying sizes from several unidentified

source populations. For most applications, the data elements within each

block are dependent. Models are proposed for multivariate normal data

incorporating two types of dependence, exchangeability of elements within

blocks, and a Markov structure for blocks. The consequences of assuming

exchangeability, when in fact the Markov structure holds, are explored.

Computational problems for each model are considered, and results of a

simple test of the exchangeability hypothesis for LANDSAT data are pre-

sented.

A Bayesian, or penalized maximum likelihood, approach to the problem
of estimating the parameters of a mixture of multivariate normal distri-
butions is proposed. The Bayesian formulation eliminates the problem of
singularities in the likelihood function and results in an attractive
EM-like procedure. Although the question of consistency is not settled,
it is suggested that the proposed method has certain advantages over both
the constrained and unconstrained maximum likelihood procedures.
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Introduction

The mixture density estimation problem considered in this section may

be described as follows. A sample- of N independent observations 0.,...,

0N is given, each observation 0- consisting of a positive integer n-

(block size) and a p x n, matrix

whose columns X. . e IR^ are the basic experimental measurements. Each
' \J

observation 0. comes from one of k populations n,,..., U^, where k

is known but the population of origin of each observation is unknown. Let

q, > 0 denote the probability that an observation comes from n..

Although the data blocks X. are independent, the basic measurements

X.. within each block are possibly dependent. For applications in remote
' J

sensing of agricultural resources, the parameters of primary interest are

q. and E[n.|lK,], the mean block size for the &th population, where each
JC I ' """"̂

block is a set of multispectral measurements from a single agricultural

field belonging to a single crop class II,. The product q,E[n.|lL,] is

related to the acreage in the sampling region covered by the class IL.

The procedures suggested herein are automatic procedures capable of handling

large sample sizes N as well as large dimensionality p, with human

intervention restricted mainly to a posterior description of classes. It

should be possible to modify these procedures, along the lines indicated

by Walker Q.7], to provide for the inclusion of a relatively small number

of labelled samples, whose class origins are known, and perhaps to improve

upon the estimates of the parameters derived from the labelled samples at
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a relatively small additional cost.

Let the observations be generically denoted by 0 = (n, X) and let

f(n, x | n,,) be the density function of 0, given that 0 comes from

IL. Let f(x | n, n.) be the density function of X, given n and given
X, X,

that 0 comes from IL, and let f(n | n.) be the density of n given
x- jL

population IL. The mixture density for 0 is
Xt

k
(1.1) f(n, x) = Z q f lf(n, x | IL)

S, = I * £

Z q,f(n | IL)f(x | n, nj.
a - i

and the log likelihood for the sample is

N k
(1.2) L = Z log Z q/(n i | n^) f (x i | n^ IL,).

We shall assume particular parametric forms for f(n | n.) and f(x |
Ac

n, IL) which are simple enough that they'are estimable from (1.2). In
X*

particular, we shall consider multivariate normal forms for f(x | n, IL)
X.

which incorporate either exchangeability of observations within blocks

or a first order autoregressive covariance structure. The consequences

of the exchangeability hypothesis are presented in some detail, and the

possibility of approximating the autoregressive form by exchangeability

is considered. Finally, we present the results of a simple test of ex-

changeability for LANDSAT data.
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Two Covariance Hypotheses

Throughout the remainder of this paper it will be assumed that

f(x | n, nj- is a pxn-variate normal density function. To simplify
X*

notation, let Y = (Ŷ J... |Y ) be a random p x n matrix having density

f(x | n, nj. We assume that the column process Y,,..., Y of Y is
J C A l l

stationary with unknown mean VL and covariance function rnj,(h) =

cov(Y., Y.+h). Next to independence, the simplest assumption about

r (h) is the exchangeability hypothesis that Y and YW have the same
11 X/

distribution for each n x n permutation matrix W (to denote this we

write Y g YW). In terms of r ., the exchangeability hypothesis can

be formally expressed as

if\ ~n&

Wh> •

for some (unspecified) symmetric p x p matrices ^ and r satis-

fying the conditions that \p and ^n£ + nZnJi are positive definite.

Experiments in image texture generation [1-3] and studies of spatial

correlation in LANDSAT images C 5] suggest that the correlation of data

elements as a function of spatial separation might be modeled as an auto-

regressive process of low order. Accordingly, as an alternative to (£"),

we are led to consider the hypothesis (M) that rn&(h) has a first order

autoregressive, or Markov, structure.

7
*
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for some unspecified positive definite p x p matrix ft and symme-
11 JO

trie p x p matrix A with spectral radius less than one.

The theorems stated below exhibit some consequences of the exchange-

ability hypothesis which are of importance in computation and in testing

the hypothesis. Jn denotes the vector (1, 1,..., 1)T , while In de-

notes the n x n identity matrix. A1 denotes the group of n x n ortho-

gonal matrices W such that WJn = Jn-

Theorem 1: If Y is a normally distributed p x n matrix whose distri-

bution satisfies (E) then YW g Y for each member of A\ If P is

an n x (n - 1) matrix satisfying P P = I ̂  and P J = 0, then Z =

YP has columns Z,,..., Z , which are independently distributed as
_ , n n _ _

M0' O- Tne statistics Y = ± Z Y. and S = I (Y, - Y ) ( Y . - Y)
P ™ n i - 1 1 i = 1 n

are independent, T is normal N (y^, £nji + ^tyns)> and S has the

Wishart distribution W (n-1, i|>_0).p nx/

As a corollary of Theorem 1, if n > p + 2 and (E) is true, then

the distribution of

i T n - 1 T
F = n " P • Z 7T ( r 7 7 ) Z

P ' 1 j i 2 "i J 1

is central F n_D.7' "^nis observation is used as a simple test of (E)

described in a later section. It is .interesting to note that the distri-

bution of F does not depend essentially on the normality of Y. Using

results of A.P. Dawid [ 7] it can be shown that if Y is any random
n - 1 T

p x n matrix such that YW 5 Y for each W e /v 1, and E Z-Z. is
c n • _ 2 ' J
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almost surely positive definite, where Z is defined, in Theorem 1, then

F has the F n_D_2 distribution. Therefore the test based on F is

a distribution free test for the invariance of the distribution of Y

under right multiplication by elements of A1 .

By writing out the density of Y under (E) it is easy to see that

(Y", S) is sufficient for the family of all normal distributions satisfying

exchangeability. Under very mild restrictions the sufficiency of (Y, S)

implies (E). Thus, unless (E) holds for all source populations n,,
JC

some loss of estimation accuracy in the parameters of primary interest

(q and E[n. | IL]) in the mixture model is to be expected when the
** 1 X*

data within blocks is condensed to block means and scatters.

Theorem 2: Let F be a family of normal distributions of a p x n matrix

Y and suppose that some member of F satisfies (E). If (Y, S) is

sufficient for F, then (E) holds for each member of F.

Approximating the Markov Structure by Exchangeability

Even if the Markov assumption is more appropriate for applications,

the computations involved in estimating the mixture parameters are very

much simpler if exchangeability is assumed. In this section we will show

that approximating the Markov form by exchangeability leads to certain

conclusions about the dependence on n of the covariance parameters

V and Zn* of <*>•
Let f(y) be the normal density of a p x n matrix Y whose columns

satisfy the Markov assumption with mean y and convariance function
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1 1

T(h) = n A' 'jr. Let f(y) be a normal density satisfying (E) with
A

column mean y and covariance function

1

f(h) = «
r A

Z

A
Z +

A
a

h

h

* 0

= 0 ,

The degree to which f approximates f is measured by the relative entropy

H(f. f) = f f(y)log^-dy .
JJpn f(y)

The relationship between this criterion and the LI distance, which might

be considered more meaningful, is not very clear. The sharpest relationship

we have been able to find is given in the next theorem. A corollary of the

theorem is that if H(f., f) -»• 0 then \ If. - fl •* 0, a result proved
J J nn **

by Geman [l 1 ].
]Rpn

A m
Theorem 3: Let f and f be arbitrary density functions on IR . For

each e > 0,

\ J| f(y) - f ( y ) |dy , e + € - l o g ( i + £ ) "(*• f) •

IRm

It is straightforward to show that if expectations are taken with

respect to the true density f, then

(3.1) EOT) = y,

1 1
cov(T) = -i-A fi2 ,
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1 1
2"

and E(S) = nQ - ft B

where B = (I - AJ'^I + A) - (I - A)"2A(I - An)

A
The log-likelihood for the density f is

log f(y) = -H-llog|$|- log|J

The parameters which maximize the expectation, with respect to f , of
A

log f(y) are

0 • E(Y)

= COV(T) -
Combining these equations with equations (3.1), and replacing £ by

the new parameter R = \j> + ni = n cov(Y~) we have

Theorem 4: H(f, f) is minimized when

A
y = u

I
1 ^2

1 1
A -T T
R = n B n
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where B = (I - A)"̂ ! + A) - | A (I - A)"2(I - An) .

Although it is not obvious, these parameters satisfy the required

constraints; that is, ^ and R are positive definite. As n -* «>,
A A A I
R and \l> tend to constants. This implies that z is O(-) for large

n. We will make use of this observation in the next section.
A

The maximum value of E[log f(Y)] is

n -

A A
where \p and R are given in Theorem 4.

For large values of n this is approximately

Since

EClog f(Y)] = - logln| - *-± log|I - A2| - .

we have the following expression, for large values of n, for the minimum

entropy:

H(f, f) ~ - log|I - A2| .

Estimating the Mixture Parameters

The most successful method for estimating the parameters in a mixture-

of distributions from a single exponential family is maximum likelihood

When the component distributions of the mixture are parametrized
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in the right way, the EM procedure has a very natural and easily imple-

mented formulation Cie^ C 9]- For density functions f(x | n, n )

corresponding to the Markov assumption the likelihood equations for the

mixture parameters are extremely complicated, and there is no obvious

alternative to using a standard optimization procedure to maximize the

likelihood function. There are difficulties involved in obtaining exact

maximum likelihood estimates with a sample sequence from a single auto-

regressive series (see [io» p.329] and [23)» and it is reasonable to

think that these problems will be compounded in the mixture setting pro-

posed, resulting in multiple solutions, slow convergence, etc. In general,

the situation when f(x | n, n£) satisfies the exchangeability condition

is not much better; however, the special case wherein l^ - —T.̂  and

ty „ = iK, and I. and ip. are independent of n, is amenable to solu-

tion by the EM procedure. For large values of n these assumptions are

consistent with the remarks at the end of the last section, if the Markov

assumption holds with parameters independent of n.

Let each f(x | n, II.) have the form (E) with mean uno = y0& . ttjL )L

and covariance parameters ^£= ^£, Zn£ = ̂  Z£. Define R£ = ̂ £ + i^.

Then — R is the covariance matrix of the column-mean J of an observedn . x*
block of measurements given that the observation comes from IL and given

the block size n. Suppose the density f(n | n0) is from an exponential
JC

family

f(n I n£) = CU£)h(n)e
F(Vt(n) n = 1, 2,...

where the parameter A. is the expected value of t(n) under f(n | n.),
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[ 43. From (1.1) and (1.2) the derivative of the log-likelihood with

respect to Xn is

(4.1) t. =
N q£f(n1, Xjj]

f(ni, *.)

By differentiating the equation

Z C(xJh(n)eF(Vt(n) = 1

with respect to A., one sees that

C'UJ

F'(X

C(X,)

(see [4 ])• Hence |^ = 0 if and only if

N f(n., X.jnJ
x = T . .A. L ft w—r
x i = l T\n-j> A-j / i> V

Similarly, by considering -^ , one sees that for a maximum of L
3q£

we must have

(4.3) q =
q f(n., X.|n )
* 1 1 *
f(n., X. )

Now let X. and $i be the mean and scatter of the columns of Xi. Then
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<««,.*, IV ., x.|n£)
n-
T

afftn,., x.|.n,) = f(ni, x^n
JC

From these equations it follows that the derivatives of L with respect

to y , ̂  and R all vanish when

(4.4)

(4.5)

n-
i = l

N f(n»
Z P

i = 1 i' i

'N f(n., X.|nJ
Z (n, - 1)

1
f(n., X.) •

(4.6) Rr

The iterative procedure suggested by equations (4.2)-(4.6), namely,

ating the right hand sides with the estimates xP , q» » yl »
X X X

* Ri^ at the j— step* to obtain the estimates q^+1^, v[^*

*£ t R^+1\ at the (j+l)st^ step, can be shown to be a slightly

modified EM procedure (see [16J, and [ 9 ] ) .
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Testing the Exchangeability Hypothesis

Standard testing procedures for the two covariance hypotheses con-

sidered would require large block sizes n. and a large sample, of obser-

vations segregated as to block size and type. The remarks at the end of

the second section concerning the distribution of the statistic F under

the hypothesis (E) suggest a test which is much easier to implement.

For the ith block of measurements X., let Z- = (Z.,|...|2. n ,) =
~— 1 1 I J. 1 » II • — A

X.^., where PI- is a n^ x (n^ - 1) matrix satisfying the conditions

given in Theorem 1. Let

n. - p - 2 , ni '' l , ,
T T 7 7T I"1?

Mrij ; LU

If (E) holds for all classes then each F- is distributed as F_• p» n^ -p-t

Thus the number of observed blocks for which F^ falls in some given

quantile range of its distribution can be tabulated and compared to its

expected value. Table 1 shows these comparisons for 216 quasi-fields

of LANDSAT agricultural data from LACIE segment 1645 and 57 quasi-fields

from LACIE segment 1633. The quasi-fields are those found by an automatic

image segmentation program (AMOEBA) and may not be representative of real
o

agricultural fields. The given x goodness of fit statistics are sig-

nificant at levels between 10% and 20%. The hypothesis (E) appears to

be rather weakly disconfirmed for this data.
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Segment 1645 - 216 Fields
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Percentiles

Number

Frequency

0 - 5%

18

8.2%

5 - 10%

14

6.5%

10 - 90%

163

75.5%

90 - 95%

9

4.2%

95 - 100%

12

5.6%

fT = 6.72

Segment 1633 - 57 Fields

Percentiles

Number

Frequency

0-5%

6

10.5%

5 - 10%

1

1.3%

10 - 90%

44

77.7%

90 - 95%

4

7.0%

95 - 100%

2

3.5%

= 5.45
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BAYESIAN ESTIMATION OF MIXTURE PARAMETERS

Let X,, •••, Xn be a random sample from a finite mixture density

m
f(x|6) = I q^Ule^,

where the component densities are d-dimensional multivariate normal and
m

the mixing propostions q. satisfy q. > 0, z q,- = 1. We let 6. =
1 1 1=1 1 1

(U..E.J) denote the mean and covariance of the i— component density

and let 6 denote the aggregate of all the parameters involved in the

mixture density, including q = (q,, ••*, q ). We assume throughout that

m is known. It will be convenient to consider also the precision matrix

T. = T,~. , and we sometimes let 6. = (U.J,T.).

Maximum lieklihood is the method of estimating the parameters 9

which has recently attracted the most interest, [163. According to this
^ ^

method, the estimate 6 = 6(X,, ••, X ) is the parameter value which

maximizes the log likelihood function

n
fc(9) = I log f(X.(9).

i=l n

Unfortunately, as simple examples show, the function £(e) is unbounded,

and one must consider local maximizers of $>(&} or else modify £(e) in

some way so as to produce a global maximizer. Hathaway [12] took the

second approach in proposing a constrained maximum likelihood estimator.

For mixtures of univariate normal densities, he developed an effective

computational procedure for finding a maximum of S-(e) subject to the

constraints
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where o is the i— standard deviation, c ., = o., and c > o is a

constant, chosen by the user. He also proved that Me) has a global

maximizer, subject to the above constraints, and that the global maximizer

is a strongly consistent estimator, as long as the true parameter satisfies

the given constraints. Redner [15], mentions., a penalized likelihood

function of the form

m vMe) - x z ||T.|IK,
i=l 1

where X, k > 0 and |[T.|| is a norm on symmetric dxd matrices.

Bayes solutions for common loss functions, such as quadratic loss,

appear to be computationally infeasible [8 ]. For example, assuming that

the mixing propostions are the only unknown parameters, and using the

Dirichlet prior distribution given in the next section, there is an

explicit formula for the Bayes solution with quadratic loss. However, it

contains mn terms and is not useful except for very small sample sizes.

The method proposed in the next section utilizes a prior density g(e)

of a certain form on the parameter 6 and takes as the estimator the

mode of the posterior density

[ n f(X..|6)]g(e)
g(e|xr-.,xn) = -td

J[ n f(x.|9)]g(e)de .
9 j=l J

Equivalently, the estimator maximizes the penalized log likelihood function,

.e.-j(o) = J.(e) + log g(e) .
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Such a procedure can be justified in Bayesian theory as being the limit
/N

as e. •+ 0 of Bayes solutions 6 corresponding to 0-1 loss functions

C'O if | | 6-8 | | < e

Le(e,e) = 1

(j if ||e-e|| ̂  c .

It will be seen that jj,i(9) is similar to, but is more elaborate than

the penalized likelihood function suggested by Redner.

THE PRIOR DISTRIBUTION

Recall that q = (q-, , •• • , q ) is the vector of mixing propostions

and that e. = (y.,T.) is the pair consisting of the mean vector and

precision matrix of the i — component normal density.

Assumption 1 : q, e,, •••, 9 are mutually independent.

Assumption 2 : q has a Dirichlet distribution with hyperparameters

X., •••,Xm, all > 0. The prior density of q is

t ^ "" + xm> ..V1 fV(q) ~ ,) •••r(xm)
 qi "• Vi

Assumption 3 : Given T., the prior distribution of u. is

d-variate normal Nj(a- , C-T.) with mean a. e. R and precision matrix

C.T.; where c. > 0 is a hyperparameter. The prior distribution of T.
1 1 ^ 1 I

is Wishart with v- > d-1 degrees of freedom and expected value v^hT ,

where h. is a positive definite matrix. Thus the joint prior density of
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is

vrd

c.
- .- - t r . .

c. T

exp {- 21 (l̂ -cu) T

The prior distributions given in Assumptions 2 and 3 are the standard

conjugate priors for multinomial probabilities and the parameters of the

normal-Wishart distribution of the sample mean and covariance, [1].

Their use here is for mathematical convenience, rather than

because of any prior conviction as to their suitability. However, it is

apparent that the large number of hyperparameters involved (\. , v., c.,

a-, h.) allows a great deal of flexibility in applications.

The penalized likelihood function corresponding to this prior is

m
= I log f(X,|0) + Z X.log q.

° = 1 1

m T m

m

7 . trhiTi •

Here, we have eliminated terms which depend neither on the parameters,

nor on the samples and, for convenience, have also replaced A- in the

original definition of fn(q) by X. + 1.
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GLOBAL AND LOCAL MAXIMA OF

The prior density of 6 given in the preceding section is unbounded,

as is £-|(e), unless the hyperparameters satisfy A. > 0, v. > d. There-

fore, these restrictions will be assumed for the remainder of this paper.

The ordinary likelihood function can be obtained by allowing X. = 0,

v- = d, c = 0, h. = 0 for each i. This corresponds to a posterior

distribution derived from an improper, n on informative prior.

Choices of the hyperparameters which guarantee a global maximizer

of £-,(6) are given in the following theorem.

THEOREM 5. If vk > d and hk is positive definite for each k,

then £-|(6) has a maximum.

PROOF; Since A.. > 0,

n , m
< Z log max f,(x,|9.) + 4- E (v.-djlogjrj

j=l i 1 J n * 1=1 1 1

I

1 n T= -y { I max Clog|T.l-(x,-y.) T.(X.-P,)]L j=l i n 3 i i J i

m
+ Z [(vrd)log|Ti

For each i, let C^e) = (x e Rd| VoglT^-tx-v^^^x-y,.) > log|tkl -

(x-uk) ̂ k(x-pk) for each k) , let <J>.j(e) be the number of samples in

, and let
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s,(8) = I (x.-u.)Tt.{x -p.).1 xjec.(e) J 1 1 J 1

Then

1 m
•5- Z [A.(e)log T.l - trB-(e)r.]
d i=l 1 n 1 n

where . A^e) = v^-d*^. (e) and B..(e) = hi + s.(e)

Me) < j Z [(v.-d)log|t.| - trh.T,]
1 2 ' 1 1 7

+ i Z [(v.+d+n)log|r,| - trh,T.]
2 l^^l ' 1 1 1

Let TI(T^) and P(T-) denote the largest and smallest eigenvalues of T.

respectively. If P(T̂ ) •* °° or i(tk) •*• 0 for some k, then the term

corresponding to T. in the inequality above tends to -=> while the

other terms are bounded. Therefore, there is an r > 0 such that

sup £,(9) = sup £,(e) < °°, where
6 ' 6eOr '

0r = ^-e I 7 s n^Tk^ ~ p(Tk^ ~ r for each

Represent 0r as Q * if^ x • • • x ̂  where Q = ( q e R | q . >0 for each i and

m i -
Z q. = 1), and to. = { (U. ,T. ) 1 ̂ sn( i . ) , P(T. ) < r). Let i|». be the

^ _ i i i i i r i i i

one point compactification of \jj., so that 6^ e \l>^ tends to °° if and

only if H y ^ l l •+ «. If 9i -»•«», then f^xje^) -»• 0 for all j; thus,
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by allowing -«= as a value, JL (e) can be extended continuously to

0" = Q x ijT x •• • x ijj" , and has a maximum on that set, say at 6.

Suppose e" is a point at infinity; i.e., that y^ = °° for some k.

Then c = 0, because otherwise £-j (F) = -». £-j (F) is obviously not

decreased by replacing y^ by any finite value. Therefore, £-j(e) is

maximized by a point in ©r. QED.

Unfortunately, as with other penalized likelihood functions

the circumstances under which a consistent global maximizer of £1(6)

exists are not known. Even if one exists there is no procedure for find-

ing the global maximizer. Therefore, v 2 must consider local maximizers.

The necessary conditions for a local mc :<imizer of it, (e) are, for

i = 1, •••, m:

£ i |—J .i. + ̂ i

m
where x - I A. ,

c.a-1 1
(7.2) p. =

.1 j=l
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hi + ci(yrai)(yrai)
T + E qifi|Xj|9i)(xj-yi)(xj-y..)

T

(7.3) S< = — ^-B

v.-c
f(x.e)

These equations are the basis for an EM-like iteration procedure defined

by evaluating the right hand sides with the current values of the para-

meters to obtain updated values of the parameters. Each of the updated

parameters is a convex combination of some prior estimate and the EM

update for ordinary maximum likelihood estimation. Interestingly, the

updated q. is a convex combination of the EM update and the prior mode

XiT— of q., whereas the updated E. is a convex combination of the EM
A 1 1

update and the prior conditional mean

of E- given y., not the prior mode. Obviously, the larger the sample

size, the greater will be the weight given to the EM updates and the

less given to the prior estimates. When the update equation (7.3) for

E.J is evaluated using the just updated value of y.. in the products

(x-j-u^Mx.j-y. ) and (y .-a. )(u.-a. ) this successive substitutions

procedure is equivalent to the modified EM procedure suggested by

Dempster, Laird, and Rubin [93 for finding posterior modes. Hereafter,

we shall refer to this procedure as the generalized EM procedure (GEM).

The general convergence properties of the GEM procedure follow from
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[16 Theorem 4.1], more specifically, starting from any point 6^ ' in

oarameter space, the sequence (6V '} produced by the GEM procedure
k=0

converges to a nonempty, connected, compact subset of parameter space on

which the penalized likelihood £-,(6) is constant, and on which the

equations (7.1)-(7.3) are satisfied.

The next theorem assures that the GEM procedure converges to a

consistent local maxinrizer of £-,(9), given a good enough starting value.
i

THEOREM . If the true parameter 0" is in the interior of the para-

meter set, then there is a neighborhood N of 6~ such that with proba-
^bility 1, if n is sufficiently large there is a unique solution 6 of

/s,

(7.l)-(7.3) in N and 9 -»• 0" as n •*•«». Furthermore, with probability 1,
^

for large n the GEM procedure converges to 6 if the starting point
^••'s near enough to 6.

PROOF. The existence and uniqueness of a consistent local maximizer

is a consequence of a consistency theorem due to Chanda [6], (see also

Peters and Walker 0.43). A simple modification of the proof of that
2 ~theorem shows that the Hessian d £, (6) is negative definite at 9=6

for large n. Therefore, iU(e) is strictly concave in a neighborhood
/s *.

of 9. The local convergence of the GEM procedure to 6 now follows

from the consistency theorem and Lemmas 1 and 2 of 0.5].

OVERMODELED MIXTURES

For mixture problems in which the number of normal components is not

precisely known, the present model is not appropriate from a Bayesian

point of view. However, it is possible that the penalized likelihood
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function exhibits better numerical and statistical properties in this

situation than the ordinary likelihood function. To illustrate, suppose

that the model contains m normal components, but the true density is a

mixture of k < m normal components. Thus,

k_
f(x|e((c)) = z q^.Ule.) (q. > o)

is the true density, and

m
f(x !%)> = ̂Vi^V

is the model. Let the hyperparameters for the model satisfy X. = 0,

v.j > d, c. > 0, a. e R , and h. positive definite for i = 1, • • •, m.

— ^ ^By Theorem 6, there is a consistent solution e(|<)
 = (q-j >''' '^ 8T'"»ek^ of

*%

equations (7.1)-(7.3) for the k component mixture. Let q^ - 0,
*• ~ ~
wi = a.j, Ej = h^/Cv^d) for i = k+1, •••, m, and let 6/x =

/•v N̂ S\ /\ /\.

(q-ji ", qm. 6r •••, em). Clearly 9^ is a solution of (7.l)-(7.3)

for the m component mixture which is consistent in t/ie sense that
s* s\

^x'9(n)) "* f^x'9(k^ as n "*" "• In contrast» i-t is not known if there

is a consistent solution of the ordinary likelihood equations in this

situation.

REMARKS AND CONCLUSIONS

The remarks at the end of the preceding section suggest that in

cases where the number m of normal components is unknown, but a reason-

able upper bound can be assumed, one should take X^ = 0, v. > d, c^ > 0,

h.j positive definite. Otherwise, the choice of the hyperparameters may

be guided by prior guesses at location and dispersion of the mixture
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parameters. For example

X.+l

(x.+iMx^i
cov(q.,qk) = -

 1

1 k (X+m)2(X+2)

.
var(q.) = — !

(X+mrU+m+l)

can be used to aid in choosing the X., while the equation

£(Z..) = ci var(y.j)

(provided v- > d+1 ) can aid in choosing c. .

The procedures outlined herein may be especially useful in applications

such as crop inventories from satellite data. There, spectral measure-

ments may be sampled from a large ground erea (segment) which is itself

chosen from a large number of possibilities. The normal mixture model has

often been used for the distribution of spectral responses from particular

segments. Thus the parameters (q, 0, , ••, 6m) can be considered

characteristic of segments, while the prior distribution of these para-

meters can reflect their variability among the possible choices of seg-

ments. Since there are "ground truth" segments available in which each

pixel has a known class identity, it is possible that the hyperparameters

of the prior distribution could be estimated from the ground truth segments.

Further research into the numerical and statistical properties of the

GEM procedure is planned. The properties to be studied include the
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consistency of the global maximizer, the behavior of the GEM procedure

for overmodeled mixtures, and the sensitivity of the procedure to

starting values, for various choices of the hyperparameters.
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Appendix

Proofs of the Theorems

Proof of Theorem 1: The covariance of Y can be written as ty . S I +
Znt> 8 Jnjn » where & denotes the kronecker product. For W e A'nx/ n n n
YW = Ip a WT(Y) has covariance (Ip 8 W

'n Jnjn • The mean of YW is

)(Ip 8 W)

' Therefore,

YW =j Y. By a similar argument, if PTJn = 0, P
TP = In_1 and Z = YP,

then E(Z) = 0 and cov(Z) = (Ip fi I 8 P) =

^ni ® ^n-1' Tnerefore the columns of I are independently distributed

as N (0, ̂ nji). To prove the last assertion let

' ' (n"\ I P'n x n

where P has the same properties as above. In block form, the covariance

of YQ = (Y" | Z) is

i
n

Therefore, T and I are independent and Y ~ N (u , — ̂ n^ + ^n^}-

Moreover, S = ZZ and by the first part of the theorem S ~ W (n-1, ijĵ

Proof of Theorem 2: Let f be a density function in F satisfying the

hypothesis (E). Define

My) = f(y) f0(y)



61

for f e F. By a version of the Neyman- Fisher theorem (Theorem 6.1 of

C 3]), if (Y", S) is sufficient,

hf(y) = gf(y, s)

almost everywhere, where g^ is a Borel measureable function on the space

of (T, S). For a given f e F and W e'V , the set

u = (y | hf(y) * hf(yW)}

is an open set contained in B, u B2» where

Bj = {y | hf(y) * gf(y, S)} ,

and

B2 = B^1 = {y | hf(yW) * gf(y, S)} .

By Theorem 1, the pr. measure X corresponding to f is invariant

under A^ . Since X (Bj) = 0 if follows that XQ(B2) = 0 also, and

hence, X [u] = 0. Therefore u is empty and h. is an invariant func

tion. This implies that each f € F is invariant under A' and must

satisfy (E).

Proof of Theorem 3: The function

3 v e ' e - log(l + e)
A

is positive and strictly decreasing on (0, «). Thus, if t - 1 s e.

we have
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f - l * gU)C f - l - log £ ].

Therefore ,

i f A f A
i J|f -f| - J(f - f)

IRm f>f

A/ ( f -^ + A / ( f - 1 ) f

1 - 1 < € I- - 1 > 6

< e

A A

gU) J cf - i - log f] f

mm

g(e) f f log(t)
J f

+ g(OH(f, f) .
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ABSTRACT

A quantile data analysis approach to some problems of image

data analysis is outlined. The approach is illustrated on (1)

two simulated pixel vectors representing reflectance spectra of

a mineral measured in 32 bands in the wavelength range 1.2 ^m to

1.4 Urn, and (2) a simulated two dimensional 6 by 6 grid of

pixels, each with one spectral band measurement. The goal is to

determine statistical properties which can be used to classify

pixels and determine edges in pixel scenes separating pixels

with different statistical properties. Quantile data analytic

techniques illustrated are identification quantile functions,

identification quantile plot, comparison quantile function, and

IQO (identification-quantile-quantile) plots.
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0. INTRODUCTION

Image data is acquired by remote sensing of the earth's

surface from spacecraft and aircraft. Image data consists of

enormous amounts of multidimensional data; its analysis,

interpretation, and classification requires development of new

data analytic algorithms and methods. The difficulties inherent

in the analysis of multi-dimensional data is often called the

"curse of dimensionality." The dimensionality of image data is

increasing as measurements at higher spatial resolution and

narrower spectral bands are made possible by new technology for

sensors and instruments which is rapidly developing [see Goetz

et al (1985) ].

Our approach to image data analysis seeks to replace

parametric statistical methods based on approximate normal

distributions with nonparametric statistical methods based on

suitably defined ranks and quantile functions. An important

theoretical problem which this research program has investigated

is the effect of dependence on linear rank statistics and

quantile functions. Dependence is modelled by a stationary time
t

series. The theoretical results are described in the Ph.D.

thesis of A. Harpaz (1985). This paper outlines the ideas of

the quantile data analysis approach to image data analysis in

order to stimulate interest in them by the broad image

processing scientific community.

Section 1 defines the mathematical problem of data analysis

of the field of pixel vectors which represents an image.
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Section 2 defines the edge detection approach to pixel

classification. Section 3 outlines the concepts involved in

quantile data analysis of a pixel vector. Section 4 outlines

the concepts involved in comparing pixel vectors in order to

test the homogeneity of groups of pixel vectors.

1. IMAGE DATA ANALYSIS

Consider measurements taken by spaceborne or airborne

sensors on a specified date at a specified site on the earth's

surface. A site is divided into thousands of surface elements

called pixels (picture elements). On each pixel the visible and

solar reflected portions of the electromagnetic energy spectrum

are measured by sensors which provide spectral measurements in a

number, denoted L, of spectral bands. The number L of spectral

bands has as typical values 4, 7, 32, 128, 224.

Sensors such as the Landsat Multispectral Scanner (MSS) and

Landsat Thematic Mapper (TM) are optomechanical systems which

use discrete detectors to convert the reflectd solar photons

from each pixel in the scene into a sensible electronic signal.

The detector elements are placed behind filters that pass broad

portions of the spectrum. MSS has 4 sets of filters and

detectors to measure 4 spectral bands; TM measures 7 spectral

bands. Imaging spectrometry can measure images in hundreds of

spectral bands simultaneously.

Each spectral measurement is typically an integer from 0 to

255 representing 256 possible intensity levels.
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We use the following notation for measurements made by

sensors; denote by

measurement of reflected energy in the spectral band indexed by

a wavelength *•• from the pixel with coordinates x,,x2.

A pixel with coordinates (x,,x2) is represented by an L

vector

Y(x, ,x-
Y<VX1'X2>

whose components are the intensities of reflected energy in the

spectral bands.

Associated with each pixel is a "ground truth" which could

be: type of crops, trees, water, type of mineral, type of

vegetation, etc.

The ground truth of a pixel at (x,,X2) is denoted 6(x,,x~)

and is regarded as a value of a discrete parameter 6 which

indexes the different classifications of ground truth which the

investigator is discriminating.

The general problem of image data analysis; Form an

estimator 6"(x^,x2) of the ground truth field from the
-»•

image field Y (x^Xj)

A decision theoretic statistical approach to this problem

can be described formally as follows: assume a probability
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model Y 9 for the distribution of Y given 6. The estimator ®A

is the conditional probability distribution of 9 given Y,

denoted 6JY.

An alternative to the decision theoretic approach, which we

adopt, is an exploratory data analysis or nonparametric data

modeling approach. To illustrate this approach we consider in

this paper two simulated data sets (called class 1 and 2)

representing respectively reflectance spectra of a mineral

assumed to be measured over 32 bands in the range of wavelengths

1.2 Urn to 2.4 urn. Our simulated numbers were adapted from rough

approximations to the spectral waveforms in Goetz et al (1985)

of alunite and kaolinite which we call class 1 and class 2.

From class 1 we assume we have a (simulated) pixel vector

(whose components represent spectral intensities in successive

bands):

82,82,80,82,80,80,70,60,66,54,70,74,74,72,60,70,

68,66,60,58,56,54,54,50,40,32,40,58,58,44,52,40.

From class 2 we assume we have a (simulated) pixel vector:

88,86,88,84,80,70,80,90,92,92,92,92,92,90,90,90,

88,90,90,90,90,88,86,84,80,70,56,70,70,64,62,60.

Plots of these pixel vectors are given in Figures 2 and 3

respectively in a new dimension-less format introduced in our

research program called the identification quantile plot

(described in section 3).
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We refer to the above data sets as the 32 channel case. If

we average over disjoint sets of 4 bands to obtain measurements

in only 8 bands, then two spectral classes are represented by

the following pixel vectors which we call the 8 channel case:

Class 1 82,72,64,69,63,53,43,48

Class 2 87,80,92,90,90,87,69,64

In the sequel we analyze each pixel vector as a data set

and compare the data sets to determine features which can be

used to discriminate between the two classes.

2. EDGE DETECTION APPROACH TO PIXEL CLASSIFICATION

The problem of edge detection plays a central role in the

image data analysis problem; it is to determine edges which

separate pixels into contiguous groups having the same

classification of ground truth. An edge is defined to be a

boundary imagined to be drawn as a separation between pixels

which do not have the same ground truth classification. After

one determines edges on the basis of statistical (data analytic)

considerations one has the problem of determining (estimating)

the classification (ground truth) of each contiguous group of

pixels (which have been identified as having the same ground

truth).

The literature of pattern recognition and image analysis

contains a wide variety of algorithms for extracting edges from

noisy images. Methods of edge extraction are classified in two
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types: gradient or statistical. Suk and Hon (1984) provide a

bibliography of representative gradient and statistical

approaches to edge detection.

To illustrate our quantile data analysis approaches to e.dge

detection we consider in this paper an example given by Suk and

Hon (1984) of a simulated two dimensional 6 by 6 grid of pixels

with each pixel represented by one spectral band measurement:

25

5

6

5

7

8

27

7

7

11

6

8

30

29

8

9

9

11

31

31

7

11

32

10

35

39

10

37

39

39

40

41

35

45

43

47

The edge drawn in the interior of the grid as a solid line was

determined by Suk and Hong (1984) using the algorithms that they

give in their paper.

Quantile data analysis can be regarded as an approach to

statistical data analysis in which the first step is ranking the

data. The concepts introduced theoretically in the next section
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are introduced at this point by an example which shows how they

are applied.

Quantile data analysis provides a systematic way

of determining a threshold value which can be used to divide the

pixels in a grid by an edge which separates values below the

threshold from values above the threshold. Consider the data

set formed from the pixel intensities in the above 6 by 6 grid.

One determines that (1) there are K=21 values in the data set/

(2) the values in increasing order [denoted symbolically by

V(1)<...<V(K)] are

5,6,7,8,9,10,11,25,27,29,30,31,32,35,37,39,40,41,43,45,47.

These values occur in the data set with the following respective

Itiplicities (number of repetitions)mu

2,2,4,3,2,2,3,1,1,1,1,2,1,2,1,3,1,1,1,1,1.

The empirical probabilities, empirical distribution function,

and empirical identification quantile function of the data set

are as follows (these concepts are defined in the next section):
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Index
J

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

Value
V(J)

5
6
7
8
9

10
11
25
27
29
30
31
32
35
37
39
40
41
43
45
47

Empirical
Probability
P[V(J)]

.056

.056

.111

.083

.056

.056

.083

.028

.028

.028

.028

.056

.028

.056

.028

.083

.028

.028

.028

.028

.028

Cumulative
Probability
F[V(J)]

.056

.111

.222

.306

.361

.417

.500

.528

.556

.583

.611

.667

.694

.750

.778

.861

.889

.917

.944

.972
1.000

Midrank

U(J)

.028

.083

.167

.264

.333

.389

.458

.514

.542

.567

.597

.639

.681

.722

.764

.819

.875

.903

.931

.958

.986

Identification
Quantile
OKU(J))

-.290
-.272
-.255
-.237
-.219
-.202
-.184
.061
.097
.132
.149
.167
.184
.237
.272
.307
.325
.342
.347
.413
.448

Summary statistics are: mean MVY=21.9, median MQY=21.5;

standard deviation DSY=14.6, quartile deviation DQY=57; lower

and upper quartiles [Q~(.25) and Q~(.75)] equal 7.896 and 36.33

respectively. The measure of tail behavior are:

Q~I(.028) = -.290, supershort left tail;

Q~I(.986) = .448, short right tail.

Supershort tails are an indication of the possibility of

bimodality. The big gap in Q~I(u) from a value of -.184 to a

value of .061 is used to locate the values V(K*) = 11 and
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V(K +1) =25 which separate the values into two clusters. The

edge in the pixel scene is drawn to separate the values in the

two clusters. The edge drawn in this example by this criterion

is the same as the edge drawn by Suk and Hong (1984) using their

algorithms.

3. QUANTILE DATA ANALYSIS OF A PIXEL VECTOR

The L components of a vector Y (x,,x2) of spectral measure-

ments are denoted Y, ,...,Y,. From the components of a pixel we

form a data set for which one computes the empirical probability

distribution

F~(y) = fraction of data set <_ y, _»<y<a>

and the empirical quantile function

Q~(u) = F""1 (u) = inf {y: F~ (y) >_ u>, 0<u<l .

The empirical quantile function can be regarded as a

rearrangement in increasing order of the values in the data set

of the values Y,,...,YL whose order statistics are denoted by

Y(1;L)<...<Y(L;L). One can show that

Q~(u) = Y(j;L) for (j-l)/L <u_<j/L .

Statisticians have studied the statistical properties of

F (y) and 0 (u) mainly under the assumption that Y,,...,YL are a

random sample (independent random variables which are

identically distributed as a random variable Y).

To apply quantile function and nonparametric test methods

to image data requires fundamental research to extend the theory
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from random samples to data sequences of Y values which are

dependent. Our approach is to model dependence by the model of

a stationary time seriesf which assumes that Cov[Y.rY.] is a3 *•
function only of lj-k|, denoted R(j-k).

The theory of stationary time series imagines an infinite

sequence of random variables Y, and defines a sequence of

autocorrelation coefficients

P(v) = R(v)/R(0)

The spectral density f (<*>), (K<»K1 , is defined to be the Fourier

transform of the autocorrelation function:

00

f(u) = exp (-2*iv<*>) p(v)

The variable u> represents frequency; f(<*>) is a measure of the

proportion of the variance of Y values which can be assigned to

hidden sine waves of frequency w in the sequence of Y values.

The value of the spectral density function at zero frequency w=

plays a central role in statistical inference, especially in

assessing the effect of dependence on the probability

distribution of estimators of means and tests for comparing two

samples .

An empirical quantile function Q~(u) can be formed for any

set of data. Our interpretation of an empirical quantile

function is guided by initially regarding it as an estimator of

the properties of a hypothetical random variable Y of which the

data batch of Y values is a random sample.
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The true distribution function F(y) and true quantile

function Q(u) of Y are denoted

F(y) = PROB[Y£y],

0(u) = F*1(u), OlHl1 •

Mean MY and variance VARY of Y can be expressed in terms of

0(u):

MY = E[Y] = Q(u) du

VARY = VAR[Y] = /o{Q(u) - MY}
2 du

Standard deviation of Y is denoted DSY = (VARY)1/2.

Alternative measure of location is the median MQY = Q(.5).

An alternative measure of scale can be defined when Q(u) is

continuous with quantile density function q(u) = O'(u);

quantile deviation DQY = Q'(.5) = q(.5).

An approximator of the quantile deviation which we use in

practice and denote by the same symbol ( but a different name)

is

quartile deviation DQY = (Q.75)-Q(.25)>/(.75-.2S)

= 2(Q(.75) - Q(.25)> .

To classify the type or shape of the distribution we form a

normalized version which is independent of location and scale
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parameters by normalizing Q(u) to have, at u=.5, value 0 and

approximate slope 1. The identification quantile function is

denoted QI(u) or QIY(u) and defined by

1 QKu) = (Q(U) - MQ}/DQ, QIY(U) = (Q(U) - MQY)/DQY.

Identification quantile function truncated plot; The

identification quantile version Q~IY(u) of the empirical

quantile function Q~(u) of the data set is plotted truncated at

_+! in order to present the plot on a standardized scale. On the

same graph one plots the identification quantile functions of

the uniform and normal distributions. The values of 0 IY(u) for

u near 0 and 1 provide quick indicators of the type of

distribution that fits the data. Intervals used to discriminate

various types of probability distributions are as follows:

Q~IY(0)< -1

-K.Q"IY(0)< -.5

-.5< Q~IY(0)< 0

long tail

medium tail

short and supershort tail

Q~IY(1) > 1

.5 <Q~IY(1) < 1

0 <Q~IY(1) <.5

Figure 2 illustrates the format of an identification

quantile function; one always plots theoretical identification

quantile functions of a uniform distribution [the line from

(0,-.5) to (1,.5)] and a normal distribution [the curve which

coincides with the line for u near 0.5],
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A goal of our research program is to extend these concepts

to discrete quantile functions since empirical quantile

functions are discrete. Let K be the number of discrete values

in the data set (number of points of discontinuity of the

discrete quantile function). Denote these distinct values by

V(l)<...<V(K). The important concept of midranks U(1)<...<U(K)

of a discrete quantile function is defined by

U(j) = (FV(j-l) + FV(j)>/2 , j=l/...,K.

where we define FV(0) = 0, FV(j) = F(V(j)).

The continuous version QC(u) of a discrete quanitle

function Q(u) is defined by

OC(U(j)) = V(j) , j=l,...,K.

At u=0 and u=l we define QC(u) to equal respectively natural

minimum and natural maximum when they are available; otherwise

we define their values to be the sample minimum and sample

maximum:

QC(0) = V(l), QC(1) = V(K)

At other values u, QC(u) is defined by linear interpolation

between its values at 0,U(1),...,U(K),1.

The median MQ and quartile deviation DQ of a discrete

quantile function are defined by

MQ = OC(.5), DQ = 2 {QC(.75) - QC(.25)> .
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The identification quantile function of a discrete quantile

function is defined by

01(u) = (QC(u) - MQ)/DQ .

Identification quantile plot of data; A dimensionless

graph of a vector of measurements (representing spectral

intensities in successive wavelength bands) is obtained using

the identification quantile transformed values (Yj-MQY}/DOY

instead of the original values Yj. A grid of lines y=0,

+_.5,+_l are plotted on the same graph to visually indicate the

range (maximum and minimum values) of the identification

quantile transformed values.

Examplet The concepts have now been defined to illustrate

the foregoing diagnostic tools of the quantile approach to data

analysis.

The 32 channel pixel vector from class 1 (given in section

1) has mean 62, median 60, standard deviation 13.9, quartile

deviation 39. Figure 2 is a plot of the time series not in its

original units but in dimensionless units, using the

identification quantile plot.

The 32 channel pixel vector from class 2 has mean 82.3,

median 88, standard deviation 10.9, quartile deviation 35. Its

identification quantile plot is in Figure 3.

To use identification quantile functions to determine the

tail behavior of the distribution it is not necessary to plot it
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.01

.05

.10

.25

.75

.90

.95

.99

-.72
-.58
-.51
-.15

.35

.55

.56

.56

but only to examine their values for u near 0 and 1. For the

data sets of pixel vectors we obtain

U Q~Ku) Class 1 0~I(u) Class 2

-.91
-.84
-.73
-.44
.06
.11
.11
.11

A pixel vector can be classified into class 1 or class 2

using features of the different behavior of the identification

quantile function for the two classes. The value .11 for class

2 is interpreted as a supershort distribution which is explained

by the constancy of the spectral waveform from class 2 which

shows up in the quantile function as a clustering of values.

We next identify the relations between the components of

the pixel vector regarded as a time series. We model the

dimensionless time series denoted YI(t) plotted in the

identification quantile plot. Both the samples (classes 1 and

2) are identified by our time series model identification

programs as fitted by an AR(1), autoregressive scheme of order

1. For class 1, the model is

YI(t) = .77 Yl(t-l) + e(t)

where e(t) denotes a residual time series which is white noise.

It should be noted that e(t) denotes a different white noise
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process in each model in which it appears. For class 2, the

model is

YI(t) = .82 Yl(t-l) + e(t)

The goal of the time series estimation phase is to estimate

the value of the spectral density of the two time series at zero

frequency. For these two models the value is approximately the

same, and approximately equals 6. One can interpret this value

as the factor to be used as a correction for dependence when

computing the variance of estimators of. location (such as the

mean) or estimators of difference of location of two samples

(such as the Wilcoxon test). The spectral density values can be

used to answer the question of how much additional information

is obtained by measuring the electromagnetic spectrum in more

but narrower bands.

4. QUANTILE COMPARISONS OF PIXEL VECTORS

To detect edges in a scene a statistical approach is to

detect contiguous groups of pixels that can be considered as

clusters of pixels with the same statistical properties. Thus a

major problem in the statistical approach to edge detection is

how to compare two pixel vectors Y(x,,X2) and Ytx'jfX1,)

corresponding to geographic locations (x iiX^^ anc* (x'jiX1,)
•»•

respectively. From the L components of Y (x,,x2) one can form a

data set Y..,...,Y . From the L components of Ytx'./x'j) one can

form a data set Y1,,...,Y1,. The pixel vectors can be compared

by testing the equality of distributions of the two data sets.
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Conventional statistical techniques for comparing two sets

can be formulated in the language of relating a variable Y to

another variable X. If one pools (combines) all the data sets

to be compared, one imagines the pooled data set to be a sample

of a variable Y whose empirical distribution is denoted FY. The

variable X attached to a data value represents the population

(pixel location) to which it belongs. The empirical conditional

distributions of Y given X=l (denoted FY:X=1) is the

distribution computed from Y, , ...,Y.. The empirical conditional

distribution of Y given X=2 (denoted FY:X=2) is the distribution

computed from Y',,...,Y',.

Tests for the equality of the distributions of the two

samples can be formulated as comparing the unconditional

empirical distribution FY with the conditional empirical

distribution of Y given X=l. Our approach is to define a

comparison quantile function D(u;FY,FY:X) and a comparison

quantile density function d(u;FY,FY:X) as follows. Let

V( 1 ) < . . . <V(K) be the ordered distinct values in the pooled

sample. Let PY(V(J)) be the empirical probability that Y=V(J),

and let PY:X(V(J)) be the conditional empirical probability that

Y=V(J) in the sample represented by the value of X. Define

FY(V(J)) = P

U(J) = 0.5(FY(V(J)) + FY(V(J-1))} .

Recall from section 3 that U( 1 ) <. . . <U(K) are called the midranks

of the pooled sample; they play a central role in statistical
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methods based on ranks rather than values. The concepts have

been introduced to define

d(u;FY,FY:X) = PY:X(V(J))/PY(V(J)), FY(J-l))<u<FY(v(J)

D(u;FY,FY:X) = JU d(t;FY,FY:X) dto

To test equality of the distributions FY and FY:X one tests for

the equality of D(u;FY,FY:X) and Do(u)=u.

Example ; To test the equality of the 32 channel class 1

and class 2 pixel vectors in section 1, we plot in Figure 4 the

comparison quant ile function D(u) [where for convenience we

write D(u) for D(u;FY,FY:X) ] which compares the distribution of

the class 1 sample with the pooled sample. The graph can be

used to judge qualitatively the difference between D(u) and

Do(u)=u [whose graph is the 45° line].

To judge quantitatively the significance of the difference

between D(u) and Do(u)=u many test statistics are available;

they can be regarded as having as components test statistics of

the form, called linear rank statistics,

J(u) dD(u)

for suitable choices of score function J(u).

A test statistic which is always among those used is the

Wilcoxon statistic, with score function J(u)=u-0.5. It can be

writtten in an equivalent form
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W = Jj, <D(u) - u) du .

In words, W is the area between D(u) and Do=u.

To compute W in practice one introduces statistical methods

based on ranks and the rank transform denoted theoretically

UY = FY(Y). Statistical methods derived from the normal

distribution are based on the conditional distribution (given

values of X) of the values V(1)<..,<V(K) of Y. Rank methods are

based on the conditional distribution (given values of X) of the

midranks U(1)<...<U(K). In particular the Wilcoxon statistic

for comparing two samples can be expressed as conditional means

of midranks given that X=l:

W = E[UY:X=1] - E[UY] = E[UY:X=1] - 0.5

We compute W by

K
W = I UY(J) PY:X=1(V(J)) - 0.5 .

J = l

To test the significance of W computed from a random sample

of size n one would treat W as approximately N(0,l/12n), normal

with mean 0 and variance l/12n. If the sample consists of

dependent random variables (rather than independent) the

variance of W must be adjusted to account for the dependence.

Harpaz (1985) shows how to calculate the variance of linear rank

statistics when the dependence structure is that of a stationary

time series. The factor by which the variance increases (or
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decreases) can be expressed in terms of the values at zero

frequency of the spectral density of rank transformed time

series.

This paper has defined various quantile data analytic

graphic techniques for visually testing for patterns in data:

identification quantile functions (Fig. 1), identification

quantile plots (Fig. 2 and 3), and comparison quantile function

plots (Fig. 4). Another new graphical display we propose are

identification quantile-quantile (IQQ) plots. To compare two

samples, or to compare a sample with a theoretical distribution,

their respective quantile functions QI(U) and Q2(u) can be

compared by plotting the points (Q]_I(u), Q2l(u)). We call

this plot an IQQ plot, in contrast to a QQ plot which is a graph

of (Qi(u), Q2(u)). One interprets this plot by visually

detecing how well it is fit by a straight line. To help a

visual identification of a straight line fit to the IQQ plot one

adds to the graph a grid of lines x=0,_+.5,jfl and y=0,ĵ .5,̂ l.

The IQQ plot of the two 32 channel pixel vectors is given

in Figure 5. Its deviation from a 45° line indicates that the

two classes have different types of distributions.
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Captions for Figures

Figure 1. Identification quantile functions are graphed

truncated at _+ 1. The uniform distribution appears

as a line from (0,-.5) to (1,.5). The normal

distribution appears as the curve which coincides

with the line in the neighborhood of u=0.5 because

the functions have been normalized.

Figure 2, 3. Identification quantile plot of a vector or time

series plots dimensionless values formed by

subtracting median from original value, and dividing

the result by twice the interquartile range. The

pixel vectors plotted represent simulated mineral

spectral reflectance data given in Section 1.

Figure 4. Comparison quantile function (defined in section 4)

tests for the equality of distribution of the two

samples formed from the class 1 and 2 pixel vectors

defined in section 1.

Figure 5. Identification quantile-quantile plot for comparing

the equality of distribution of the class 1 and 2

pixel vectors.
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î !

Hb!
0«i
WH;

r=a
c

•H

1 Iri

!"•**. •s r

w

CO

f r-

y
rli

i i
i *



92

•*
0)

60

w
w
K
W

^ ®* gi

In

6̂



93

« CB

4»
to
H

Oft
• ^^

w
Rj

i

c
w

Wfc,
00
z
<CH
HO
^4 fc j
Ufe

w»

|
1

1

1
i

. •

•
•

i

ii

ii
:
!

»

i . •

'.

L
i

*

• •• ••

•

N

i

H

—

2
_

^f
N

"~ c

•
I

—

g l̂
^^

B

|

1 S

in

0)



95

Classification in a Spatially

Correlated Environment

C. N. Morris, D. V. Hinkley, W. Johnston *

Technical Report No. 20
July 1985.

To Be Published In:
Proceedings of the Third Annual Symposium on

Mathematical Pattern Recognition and Image Analysis,
Texas A&M, June, 1985.

* This investigation was conducted pursuant to Subcontract Agreement No. L20076 to
the Texas A&M Research Foundation, College Station, Texas. Funds were provided by
the National Aeronautics and Space Administration for a project "Mathematical Pattern
Recognition and Image Analysis"

«

RECEDING-PAGE'BLANK WOT FILMED



96

Abstract

Motivated by the LANDSAT problem of inferring crop or geological types at the pixel

level by automatic means, we discuss the general empirical Bayes approach to the estima-

tion of n attributes 0 = (6^, . . . , 0n) in a spatial setting, assuming availability of observed

data y = (j/i, . . . , yn) made on them. Within the general empirical Bayes paradigm, a

spatial logistic estimator is developed for the special case of binary attributes and inde-

pendent, normal, homoskedastic data. This estimator is relatively simple to compute and

provides a logistic estimate at each pixel of the probability P(8t = 1 | data) without as-

suming knowledge of 6 ("ground truth") in the region of interest. The rule is shown to

perform reasonably well in relation to the "ideal" discriminant rule, which could only be

computed with full knowledge of the attribute 0. We conclude with a discussion of tech-

nical extensions that could be developed for wider applicability via the empirical Bayes

approach.
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1. Introduction

Multi-channel satellite image data, available as LANDSAT imagery, are recorded as

a multivariate time series (four or more channels, multiple fly-overs) in two spatial di-

mensions, specifically on a rectangular lattice of points called pixels. A polychotomous

attribute, such as crop type, is to be estimated at each pixel from the image data, whose

aggregate frequency properties are assumed known in relation to the attribute. The set

of attributes forms an attribute map. The regularity may be characterised by spatial

correlations. The estimation problem is then one of attribute classification, with spatial

correlation among the attribute values.

In an earlier paper (Hill, Hinkley, Kostal, Morris, 1984), various suggestions were made

concerning the use of parametric empirical Bayes modeling in this classification problem.

Much of the notation and many of the ideas of that earlier paper will be used here. That

paper also contains a bibliography of related empirical Bayes literature and the use of

Markov random fields as distributions needed for this work.

The attribute at pixel t will be denoted by 0», which is polychotomous, i.e., taking on

one of m > 2 values, with t = (j,k) running over a rectangular lattice / = 1,..., J;k —

1,...,K. Measurement data t/» are reduced forms of imagery data, e.g. Badhwar numbers,

which have a joint frequency distribution /(y | 6) conditional on the underlying attribute

map parameters 6. The empirical Bayes perspective of the problem also adds a family

of joint prior distributions TIa on 6, a 6 A for the attributes. These distributions are

chosen to incorporate varying degrees of correlation, this being adaptable to a particular

application through the free parameter a.

With this description of the problem, our goal is to estimate posterior probabilities

Pa(0i | y) for each pixel, either for direct use in global inventory of attributes, or in

classification, such as map construction. We focus attention here on estimates of the

posterior probabilities approximated by a logistic form, with predictor variables determined
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by the image data in neighborhoods of the pixel of interest. After reviewing earlier work

in Section 2, this logistic procedure is described in a spatial setting for binary 0's in

Section 3. Section 4 illustrates performance of the new procedure on some trial data sets,

revealing good performance relative to "ideal" spatially-based classifiers. Desirable future

generalizations of this approach are outlined in Section 5.

2. Review of Previous Theory

The objective is to estimate the attribute map 0 = {6jk : j = 1,..., J, k = l,...,/iC}

given the image data. For convenience, we specialize immediately to binary attributes.

A. Distributions for Observed Data.

The simple potentially useful distribution for observed data t/j* in pixel (j, k) involves

binary flyjb's, with the univariate yyjt's conditionally independent and ~ N(/it,o"2 | Qjk = i).

The parameters {fJ-t} an<i ffZ are taken as known, since they are assumed to have been

estimated precisely from training set data. In fact much of the theory does not depend

on normality, but only on conditional independence of the yy^ with density ft(y) given

Ojk = t, t = 0 or 1. Then the likelihood function of 0 depends on the image data only

through the "discriminants"

(2.2)

in the homoskedastic normal case above,

Because of (2.3), and because /x0,A*i,a are known, preliminary location and scale

changes of the data permit us to take ~fi =. (M o^M l? to be zero and a = 1 without essential
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loss of generality, and be left only with the parameter

(2.4) 6 EE -^

Thus (2.3) reduces to Ujk = Gyjk and Mi and MO are replaced by | and — | respectively.

B. Distributions for the Unobserved Parameters.

The spatial structure evidenced in blocks (fields) of common attribute values has been

approximated through Markov models for the Bjk 's. The simplest instance of this involves

a line transect on the lattice, e.g. the jth row of pixels (j, 1),..., (j, K), on which the

first-order Markov model is

(2.4) Pfe+i I 9j,k = t) = Pt = 1 - Qt, t = 0 or 1.

The parameters a. — (po5Pi) characterize the lengths of blocks of common attributes.

We discussed in (Hill et. al., 1984) that the posterior log odds ratio on the jth

horizontal transect is approximately of moving average form

for r large, xt,i =• (yj,k+i + y3,*-t)/2, the average of pixel readings t units from the kth

pixel, and with -n\ = P(9jk = l) = 1 — TTO. The approximation is most accurate if the

discriminatory power between the two cases /i and /o is small. As the discrimination

increases, the logistic form is less appropriate for these posterior probabilities, but then

the probability of correct classification improves greatly so that the need for an optimal

classifier is not as great.

A few comments are in order. First, even in this simple first order Markov case, the

exact Bayes approach gives a complicated joint posterior for 6, whose maximization or

minimization is non-trivial, and for which efficient (likelihood) estimation of a = (PI,PO)

is difficult. Second, the form of A*(y) in (2.5) is adaptable to priors more general than
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the first-order Markov distribution and can be demonstrated to hold in low discrimination

cases for more general prior distributions ^(tf), including two dimensional situations. We

discuss this further in subsequent sections.

Moving from the transect to the full lattice, the natural generalization of the Markov

prior distribution (2.4) is the Gibbs distribution (Section 4 of Hill et. al., 1984) in which

6jk depends on surrounding 0's only through attributes in neighboring pixels. For example,

the isotropic first-order model Tra(9) would give, with a = (/?o,/?i),

Such models can be integrated with the likelihood function (2.2) to give a manageable

joint posterior for 6 provided /?o and /?i are known. With this provision, a time-consuming

relaxation-annealing algorithm (Geman and Geman, 1984) is available to calculate the

posterior mode of 6 given x.

There are very real attractions to the Gibbs distribution. But these attractions are

offset by difficulties, even in the binary case which we have been discussing. First, the

marginal likelihood for parameters a = (Po,fli) seems quite intractible. Second, we want

more than the posterior mode for Q, we also want to know P(0i | x). Third, the iterative

algorithm can be very time consuming in large problems.

3. Spatial Logistic Classification

We turn now to the main result, the development of an automatic spatial statistical

method for estimating the probabilities of a dichotomous attribute at each pixel that does

not utilize training attribute data from the target site. This last feature is most signifi-

cant. For example, in applications to LANDSAT data, automatic methods (i.e. methods

not utilizing a human "analyst") commonly assume a sample of ground truth attributes

6 in the target site in order to provide an appropriate prediction formula for the unob-

served attributes in that site. We do not make that requirement. Instead, we estimate
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the distribution of target site characteristics using only the remotely sensed data y, and

knowledge of the likelihood function /(y | 0), which can be obtained from training data in

a non-target site.

It is important to realize that the attribute characteristics in the target site may differ

widely from those of the training data site for which attribute data are readily available.

In such cases serious errors will result from a standard discriminant approach, i.e. one

that assumes the prediction relation between 0 and y in the training site is the same as

that in the target site. For example, in predicting crop types, the relative proportions of

crop types and field sizes in a particular site may vary markedly from the corresponding

parameters in the target site, and these parameters will affect vitally the predictions of

0 from y. Thus, the target-site attributes 6 must be determined from information in the

target site. We are saved, however, if the likelihood function /(y | 6) is the same in the

training and target sites, for then the crop proportion and field size parameters can be

estimated from the available data y, without direct observation of 6.

Numerous simplifying assumptions are made in this report relative to the complica-

tions presented by LANDS AT data. For example, independence of the {j/i}'s conditional

on a fixed ground truth attribute, is assumed. We allow no split pixels. We concentrate

mainly on the binary case. Border effects are ignored. We do not assume multivariate data

or data from multiple satellite fly-overs. We justify making these simplifying assumptions

here in order to concentrate on one fundamental advance needed for some LANDSAT ap-

plications, i.e. the unavailability of target site attribute training data, and because the

assumptions made here should be appropriate for less complicated situations, e.g. for black

and white image processing and restoration. Even so, the results that follow could apply

directly to certain summary functions of LANDSAT data, despite some model failures.
"X

Apart from the particular results developed here, we also note that the empirical

Bayes viewpoint in general provides useful insights into the more complicated situations

described. For example, the empirical Bayes model makes clear that one proper use of
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training data from sites other than the target site is to determine optimal pixel-level data

reductions, i.e. the likelihood ratio statistic. In the LANDSAT case, the Badhwar numbers,

which summarize data from multiple fly-overs, as well as the "greenness" and "brightness"

functions of multidimensional spectral data are examples of efficient reductions to which

our methods might apply directly. On another level, the empirical Bayes model allows

the conclusion that the bulk of the correlation in the target area measurement {y,} ob-

servations may be due to correlation introduced from the ground truth {0»} process. If

significant correlation remains in the conditional distribution of y given 0, perhaps caused

by cloud cover and other effects, then in principle this correlation can be modeled within

the empirical Bayes framework and used to obtain alternative results for correlated likeli-

hoods.

3.1 Models for data and parameters.

As in Section 2, we assume that at the pixel t = (/c,/) in the lattice we make the

observation t/j such that

(3.1) y N ^ - O . S ) , ! ) , t = l,...,n.

This distribution is conditional on the attribute vector 0 = (01, . . . ,0n) of binary values 6+

= 0 or 1. Increasing values of the known parameter 6 > 0 will yield greater discrimination

power. We also assume a spatially isotropic (invariant under translations and rotations)

distribution for the vector 0 with TTJ = P(0i — 1) = 1— TTO and auto-covariance function <f>t =

Cav(6k,i,8k,i+t) = Cov(0k,i,0k+t,i), which depends on t, but not on/:,/. The corresponding

correlations pt then satisfy

(3.2) pt =
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3.2 Logistic form

Because the distribution of Oj given 0; depends only on the physical distance between

pixels i and j, then as 6 — » 0 it follows that in this lattice case, as previously in the transect

case (2.5), that the logistic approximation holds for pixel t. Define

(3.3) Pi = P(*i = 1 | y) = 1 - 9t, Ai(y) = log(Pi/qi).

Then

(3.4)

with in the average of measurements in the tth "ring" away from pixel t. Neighbors of

pixels at a fixed distance away from pixel t are called "rings" , denoted RQ, -Ki> ̂ 2> e^c with

R0 = Rio being the zeroth ring (the pixel itself), .Ri = RH the four nearest points, and so

on, as in Figure 3.1.

5 4 3 4 5
4 2 1 2 4
3 1 0 1 3
4 2 1 2 4
5 4 3 4 5

Figure 3.1

Location of pixels comprising rings R0, . . . , R$

relative to pixel t at center.

Formula (3.4) defines ZJQ = y», XH = ring 1 average for pixel t = (&,/), so

+ yjk-i.i + Vk,i-i +

for t = 1, and so on, following Figure 3.1. (We ignore here, for convenience, the question

of how to modify these definitions at the borders of the region.) These averages depend
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symmetrically on the ring elements because of the isotropic assumption. If 6 is not small,

however, the posterior probability (3.3), (3.4) will not depend on the data in a linear

way, and in such cases the ring averages then are not completely adequate for use in

the approximation. Nevertheless, we continue to use the ring averages and the logistic

approximation for moderate 6 for simplicity and because discrimination will be accurate

for large 6 even for this non-optimal logistic classifier; see also Switzer (1980).

Suppose momentarily that the values {0j} are known and available to compute dis-

criminant probabilities for predicting 0, in linear logistic form from the observed zio = y<,

z"ti, ... ,z~jr, t = 1,2,... ,n. Here r is the number of rings used; in Figure 3.1 and for the

applications of Section 4, we take r — 5. Let 0 = £] 0i/n. The discriminant function

^ t y 5 0 such that

(3.5) P(0; = 1 | y) =
l-exp(-Ai(y,0))

is computed by

(3.6), A,(y,*) = log _ +__V6,(*)(*< t -?*(*)),
t=o

with the quantities RSS(0),b t(0) and mt(0) defined in (3.9) through (3.11). See Morris

and Rolph (1981, pp 206 and 88-89) for this development of discriminant estimation.

The quantities 0,b t(0),m t(0) and RSS(0) in (3.6) can be estimated as follows. Define

the n x (r + 1) data matrix to be

(3.7) X =
.. zn,r

with y, xi, . . . , xr the averages of y», z^,..., Xir for rings R0, R\ , . . . , Rr, so that the columns

of X add to zero (in a large area, we will have approximately y = z"i = ... = zr, the errors
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occuring because of border effects). Then, letting b(0) be the vector (b0(0),. . . ,b r(0)y,

and

(3.8) C(B) = X'0/n,

we have the expressions

(3.9) b(0) = SC(0)

and

(3.10) RSS(6)=0(l-8)-C'(6)SC(0).

The quantities rnt = m t(0), in (3.6) are the unweighted averages of the xti0 and xt,i,

respectively of the tth ring averages for pixels with Oi = 0 and 6i = 1, i.e.

f * i i \ ™ (fi\ * £*«•*" . * EC1-*<)*<* , n(3.11) mt(0) = ___ + _____, < = 0,...,r.

After some algebra, the r + 1 vector m(0) of elements (3.11) can be re-written as

1 — 9/9
(3.12) m(0.«

with x the vector (y,Xi, . . . ,x r) ' .

We see from (3.9), (3.10) and (3.12) that we do not need to know all the attribute

values {#,-} to compute (3.6), but only the r+ 2 linear combinations 0, C(0), and, of course,

the quantities X, S,x which are directly available from data in the target site.

Note that E(y) = 6(6 — 0.5) from (3.1) and hence that 0 has unbiased estimate

(3.13) TT = - + y/6.
2

This notation is used because TT is also an unbiased estimate of TT = P(0,- = 1).

Define the sample autocovariances of elements in ring 0 with those in ring t by

(3.14) ct = -
n
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From (3.1), write y» = 6(6* - 0.5) + z;, zt- ~ N(0,1). Then from (3.14),

n

~~ n *-*i=i

with z»t and 0a indicating ring t averages for pixel t. For t > 1, this has expectation, given

0, equal to —r t /n
2 with rt the number of pixels in ring t. Thus, a nearly unbiased estimate

of ct(0) is

(3.15) ct/6, * = l,...,r;

this could be made exactly unbiased if r t/n
2 were added. For t = 0, we have, given 0,

9^-6) = 60 (1-0).

Thus, a nearly unbiased estimate of c0(0) is 6^(1 — it). (Actually, these estimates of

ct(0) are "empirical Bayes unbiased", which means they have the same expectation as the

random quantities they estimate.) We now state the the estimation results formally.

Main Result: Empirical Bayes Logistic Spatial Estimator. The discriminant

function A t-(y,0) in (3.6), which yields probability

may be estimated under the distributional assumption (3.1) and the isotropic assumption

for 0 by

(3.16) At-(y) = log{*/(l - #)} + y;' n bt(xit - M.)t=o

with

(3.17)
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where

(3.18) K = («*(!-*),£,.'..,£)'

estimates C(0) using elements defined in (3.13) and (3.14), S is given by (3.9), and

(3.19) W = TT(! - TT) - K'SK

estimates RSS(0) in (3.10). In practice we will force W > 0.05?r(l — TT) in order to be

sure that the resulting estimate of RSS(0) cannot be negative, or an unstable value close

to 0. The quantities MO, ... ,Mr are nearly unbiased estimates of mo(0),. . . ,mr (0), being

defined by

(3.20) Mt = xt-(}L\(-^*—\ for t>l and M0 = 0.
\5'i J \7r(l - TT)/

Because of the remarks following (3.7) we have Mt = t/[l — c t/6
27r(l — TT)] for t > 1.

Formula (3.16) estimates the discriminant function without knowledge of 0, but by

using the target area average y and the autocorrelations Ci, . . . ,cr. These same statistics

also can be used to estimate the characteristics

(3.21) a=(7r,^, . ' . . ,0 r) '

of the attribute (0) process, assuming isotropy with TT = P(0j = 1), and <j>t the covariance

between attributes 0,- and 03- with Qj in the tth ring for 0^. Thus we assume the main char-

acteristics of the binary attribute process 0 are summarized by the spatial cqvariance {<j>t}

or spatial correlation {pt}, Pt = ^t/(7r(l — K)) and the probability ?r. In an application to

binary crop-type estimation, TT represents the proportion of pixels assigned to a particular

crop type, and the spatial correlations {pt} characterize the field sizes. These same pa-

rameters can be chosen to govern an isotropic Markov random field (MRF) of order r, and

hence the methods developed here compete with empirical Bayes procedures that assume

isotropic MRF distributions for the attribute process. Because the rule (3.16) estimates



108

functions of 0 rather than the parameters a of a particular distribution on 6, however, the

rule appears to be valid for a wider class of attribute distributions than isotropic MRFs.

4. Behavior of the Binary Logistic Spatial Estimator in Several Test Cases.

The rule given by the main result (3.16), which is termed an "empirical Bayes logistic

spatial estimator" (EB-LSE), will be compared with several other rules:

(a) the "ideal" logistic spatial estimator (I-LSE) (3.6) which assumes that the attributes

6 are known in order to calculate A^(y,0);

(b) an "ideal" logistic non-spatial estimator (I-LNSE), which uses the pixel level informa-

tion y, only, approximately the estimator (3.6) when r = 0:

(4.1)

and,

(c) an empirical Bayes logistic non-spatial estimator (EB-LNSE), which is (4.1) but re-

placing? by TT = 0.5+y/tf, as in (3.13). This is the EB-LSE rule (3.16) for r = 0, except

that Sy = $3(t/t — y)2/n IS replaced by an estimate of its expectation 1 + 627r(l — TT)

when necessary.

The four estimators will be compared in nine different environments, with all combi-

nations of <5 = 1.0, 1.5, 2.0 and three different ground truth maps with n — 625 pixels in a

25 by 25 grid. In each case the grid is extended to a 29 by 29 (n = 841) grid in the most

obvious manner, in order to provide a border of width two pixels for using neighborhood

data with rings Ro,. . . ,Rs, as in Figure 3.1. These three 0 patterns, labeled "checker-

board" (CKBD), "two by two" (2BY2), and "miscellaneous" (MISC), are shown in Figure

4.1. We chose 2BY2 to exhibit strong spatial correlation in relation to CKBD, and MISC

to exhibit non-patterned shapes.

We use several different measures of performance for each rule, assuming the rule

assigns the value pi = P(0 = 1 | y) to pixel t, t = 1,..., n, n = 625. They are:
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(a) the percentage of classification errors (%ERR), counting a classification as incorrect if

Pi > 1/2 and 0, = 0 or pi < 1/2 and 0.» = 1 (it never happened that PJ = 1/2 exactly)

(4.2) %ERR = 50 - 50- £ sign! (0< - 0.5)(p.- - 0.5)1;
n |_ J

(b) the mean absolute error

(4.3)

(c) the mean squared error

(4.4)
TL

and,

(d) the information measure

(4.5) INFO = ~ £{* log(pi) + (1 - Oi) log(l - p^}.

All four measures are always non-negative, and all are zero if pi = 6+ for all t (in the

INFO case p» = 0, can occur only in the limit). Small values of each measure are desirable,

and rules with generally small values are to be preferred.

All data examples in Tables 4.1 and 4.2 involve one simulation (841 data points)

according to y^ ~ N(5(0« — 0.5), l), with values of Zi — y» — 6(&i — 0.5) re-used in all

nine examples, so that only 8 is changed with the cases. Thus, results are random, but

this technique of re-using the Zi values aids by reducing the variability for comparative

purposes. The u Theoreticar values in parentheses, e.g. (30.8%)in Table 4.1 for 6 — 1.0,

CKBD, %ERR, are the exact error fractions for the ideal non-spatial estimator I-LNSE

computed from the normal distribution in repeated sampling. Comparing these values

with %ERR for I-LNSE provides some calibration of these particular data sets to the long

run. In this case I-LNSE error rates are slightly larger than expected. The efficiency

("Efficiency of EB-LSE") values in Table 4.1 illustrate, on a proportional basis, how close
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Table 4.1

Overall error proportions and mean absolute errors for various rules.

%ERR MAE
CKBD MISC 2BY2 CKBD MISC 2BY2

6 = 1.0

I-LSE 20.2 15.5 5.4 .30 .24 .08
EB-LSE 24.0 16.8 8.6 .27 .25 .11
I-LNSE 32.0 32.0 31.0 .40 .39 .40

(Theoretical] (30.8) (29.1) (30.9)
EB-LNSE 33.0 31.0 32.0 .40 .39 .40

Efficiency
of EB-LSE .68 .92 .88 1.30 .93 .91

6 = 1.5

I-LSE 13.1 10.7 2.6 .20 .15 .03
EB - LSE 15.2 10.1 3.4 .18 .15 .04
I-LNSE 24.0 23.0 23.0 .32 .31 .31

(Theoretical) (22.7) (21.6) (22.7)
EB - LNSE 23.0 22.0 24.0 .32 .31 .31

Ef ficiency
of EB-LSE .81 1.05 .96 1.17 1.00 .96

5 = 2.0

I-LSE 7.8 6.7 0.6 .13 .10 . .01
EB-LSE 7.4 6.9 1.4 .11 .09 .02
I-LNSE 18.0 16.0 18.0 .23 .23 .23

(Theoretical) (15.9) (15.2) (15.9)
EB-LNSE 18.0 17.0 18.0 .23 .23 .23

Efficiency
ofEB - LSE 1.04 .98 .95 1.20 1.08 .95
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the EB-LSE measure comes to the I-LSE measure relative to the I-LNSE measure; e.g. for

6 = 1.0, CKBD, MSE: efficiency = (24.0 - 32)/(20.2 - 32) = 0.68. The EB-LSE proportions

for %ERR average 92% efficiency in the nine examples. However, the efficiency drops to as

little as 68% in the case with lowest discrimination, i.e. 8 = 1.0, CKBD. Of course I-LSE is

an impossible-to-meet standard among logistic rules in the long run because: (a) it utilizes

the unknown values 0; and (b) it is biased favorably because it uses the true values of 6

to predict themselves. The relatively strong performance of the empirical Bayes logistic

spatial estimator is very encouraging in these examples.

In terms of the mean absolute error metric, MAE of Table 4.1, EB-LSE performs even

better, about as well as I-LSE, averaged over all nine cases. However, the MAE measure is

deficient as a measure because it rewards pushing all probability estimates pi away from |

and closer to 0 or 1, even if such extreme values are not justified or believed. The EB-LSE

rule has a slight defect in this direction and thereby prospers with respect to MAE.

Table 4.2 shows the mean squared errors (MSE) and the information metrics (INFO)

for the four estimators in the nine situations. The two measures, unlike MAE, share the

property that they reward reporting that Pi which is believed to be the best estimate of

P(0i = 1). As with %ERR, in terms of MSE, EB-LSE has average efficiencies of 92%

of I-LSE, relative to the ideal non-spatial method. Again, the efficiency varies in direct

relation to the discrimination parameter 6, with only 63% efficiency provided when 6 — 1.0

in the checkerboard case.

The results for the INFO metric in Table 4.2 parallel those of MSE, with EB-LSE

averaging 90.2% efficiency, and the exceptional case again occuring for 8 = 1.0, CKBD,

where only 50% of the I-LSE efficiency is attained by EB-LSE.

There is, as acknowledged, variability in these results. To check this, the intermediate

case 6 = 1.5, MISC, was repeated 10 times. In these ten cases %ERR for EB-LSE ranged

between 8.3% and 12.2%, with mean 10.0%, making the case considered earlier with %ERR

= 10.0% quite central. Figure 4.2 graphs these two extreme %ERR cases for EB-LSE with
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Table 4.2

Mean squared errors and information measure for various estimates.

MSE INFO
CKBD MISC 2BY2 CKBD MISC 2BY2

6 = 1.0

I - LSE .142 .117 .041 .439 .368 .139
EB-LSE .165 .126 .062 .512 .392 .207
/ - LNSE .203 .196 .201 .587 .573 .585

EB-LNSE .203 .197 .201 .524 .575 .586

Ef ficiency
of EB-LSE .63 .89 .87 .50 .88 .85

6 = 1.5

I-LSE .094 .074 .019 .304 .239 .064
EB-LSE .099 .075 .026 .319 .244 .089
I-LNSE .160 .156 .159 .478 .472 .478

EB-LNSE .160 .156 .159- .479 .472 .479

Ef ficiency
of EB-LSE .92 .99 .95 .92 .98 .94

6 = 2.0

I-LSE .060 .046 .008 .203 .152 .034
EB-LSE .056 .045 .012 .191 .151 .044
I-LNSE .117 .115 .117 .361 .360 .365

EB - LNSE .117 .115 .117 .361 .360 .365

Efficiency
ofEB - LSE 1.06 1.01 .97 1.07 1.01 .97
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8 = 1.5, MISC, alongside the case considered earlier in Tables 4.1 - 4.2.

The errors for various estimates in the cases 6 = 1.0, CKBD and 6 = 1.5, MISC are

shown pictorially in Figures 4.3 and 4.4. Assignments for the two logistic rules EB-LSE

and I-LSE are made according to p, > | or p» < |, with resulting %ERR error rates of

10.1% for %EB-LSE and 22.9% for I-LNSE. The spatial rule not only improves on the

non-spatial rule, but the greatest improvements occur in the interior of the contiguous

regions. This phenomenon of maximal improvement in interiors of regions occurs with the

other test cases too, as can be seen from the graphs of EB-LSE performances in Figures

4.5, 4.6 and 4.7, and aids in locating the central masses of large shapes accurately.

The actual error rates for EB-LSE appear in Table 4.3 as a function of the number

of nearest neighbors that are of the same type as the center pixel. Thus the possible

number of agreements range from 0 to 8, but with CKBD and 2BY2 it is always 4 (at a

corner), 5 (on a border), or 8 (for an interior point). Other possibilities occur for MISC,

but 4, 5, 6, 7 or 8 agreeing neighbors predominate (otherwise, MISC has 20 pixels with

3 agreeing neighbors, 6 with 2 agreeing neighbors and 1 with 1 agreeing neighbor), and

so only those results for N > 4 agreeing neighbors are reported in Table 4.3. The only

noticeable difference between I-LSE and EB-LSE occurs for CKBD with N = 5, i.e. on

edges. In this case I-LSE makes noticeable improvements on EB-LSE for 8 < 1.5.

When exactly four of the eight neighbors agree, the value of spatial information di-

minishes to the point that a spatial rule for these pixels performs about as well as the

non-spatial rule EB-NSE (because the neighboring pixels provide noise but no informa-

tion). More complicated procedures than considered here, ones designed to be sensitive to

straight edges, could outperform spatial estimators at such boundary and corner pixels.

Table 4.4 shows the regression coefficients for both EB-LSE and I-LSE for the nine

cases, but normalized by the number of pixels in each ring. Instead of displaying bt(0)

from (3.9) or Bt from (3.17), we display

(4.6) b*t = b t(0)/r t or 6t* = E t/r t
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= XXXXXXXXX
= XXX XXXXX

x=
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xxxxx xxxxx =
XX XXXXX =

xxxxx =
xxxxx =
XXX =

X
xxxx
xxxxxx

Worst case, %ERR = 8.3% Best case, %ERR = 12.2%

Figure 4.2

Worst and best cases for EB-LSE in 10 runs of example: 6 = 1.5, MISC.
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=-xxxx x x xxx xxxx=
=XXXXXXX XXX X XX XX XXX=
=X XXXX X XX XXXXXXX XXX=
=XXXXX X XXXXXX XXX XX=
= XXXX XXX X XX XX XXXX=
= XXX XX XXX XXXX XX =
= X XXXXXXXX XXXX XX =
= X XXX X X X X X X XX=

XXX XXXXXX X XX
=X X XX X XXXXX X X=
= XX X X XXXXX XXXXX =
= XX X XX X X X=
=X XX XX XXX X X XXXXX=
=X XXX XX XXXXXXX XXXXXXX=
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XXX X XX XXXXXXX =
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XX XX XX X =
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=XXXX X XXX X XXXXX X=

True values, %ERR = 0 I-NLSE, %ERR = 32.0%

=x x xxxxx x xxx=
=xxxxxx xxxxxxxxxxxxxxx=
=XXXXXX XXXXXXXXXXXXXXX=
= XXXXX XXXXXXX XXXXXX=
= XXXX XXXXXXXX X XXX=
= XX X XXXX X XXXX

XXXXXXX XXXXX
XXXXXXXX XXX

XXXXXX X XXXX XX=
XXXXXXXX XX =
XXX X XX
XX XXXX =
xxxxx xxxxx=
XXXXXXXX XXXXXX=

X XXXXXXXXXX XX=
XXXX
XXXXXX
XXXXXXX
xxxxx

XXX XX
xxx=

X

XXXXXX
XX XXX

XXXX X
XXXX
XXXX
XX

XXXX
xxxxx
xxxxx
xxxxx
XXX

=xxxxx
=xxxxx
=xxxxx
=xxxx
=XXX XXX

X
X XXXX
xxxxx •
xxxxx
XXXXXX

XXX

XXX =
XXX =

XXXX =
xxxxxx=

= XXXX
=xxxxxx
=xxxxxx
=xxxxx
= XXXX
= XX

XXXX X X XXXX=
xxxxxxxxxxxxxxx=
xxxxxxxxxxxxxxx=
XXXXXXX XXXXXX=
XX XXXX XXXX=
XXXXXXX XXXX

XXXXXXX XXXX
XXXXXXX XXXX

XXXXXXXXX XXX X=
XXXXXX XXXXX XX X=

= xxxxx
= XX X
=xxxxx
= XXX
= XXX

XXXX
= xxxxx

xxxxx
XXXXXX
XXX

=xxxxxx
=xxxxx
=xxxxx
=xxxx
=XXXX XX

XXX XXX =
XXX XXXXX=
xxxxx xxxxx=
xxxxxxxxxxxxxxx=
X XXXXXXXX XX=

xxxxx
XXXXXXX =
XXXXXX
XXXX
xxxxx

X XXX XXX=
xxxxx xxxx=
xxxxx xxxxx=
XXXXX XXXX =
X XXX XXXXXXX=

EB-LSE, %ERR = 24.2% I-LSE, %ERR = 20.2%

Figure 4.3

True values and assignments made by three rules. Case: 6 = 1.0, CKBD.
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xxxx=
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xxxx
xxxxxxx =
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xxxxxxxxxxxxx =

=xx xxxxxxxxxxxxxxxx=
=xxx
=xxxx
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=xxxxxx
=xxxxxxx
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= xxxxx
=xxxxx
=xxxxx
= xxxxx
=xxxxxxxxxx
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xxxxxxxxxxxxx =
xxxxxxxxxx
xxxxxxx
xxxx =
X

=

xxxxxxxxxx =
xxxxxxxxxx =

xxxxx =
xxxxx =
xxxxx =
xxxxx =

X
xxxxx
xxxxxxx

= XXXX X XXXX=
= XXXXXX X XX X XXX=
= XXXXXX X X XX X XX X =
= X XXXX X XX=
= X X X XX
= X X X XXXXXX XX
=X XXXXX X XX XX
= XXXXX X X XXXXXX=

XXX XX XX =
XXXXXXX XXX =
X X XXXX X =

XX =

= xxxx
=xxxx
= X X
= XX XX
=X XX XXX
=X XXX XX
= X X
=XXX X X X
=X . XXX

XX
X X
XX XX
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X =
xx=
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X X=

=XX X
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=XXXX XXX
=X XXXXX X
= X X
= X X

X X
X XXXXXXX =

xxxxx =
X =
XX XX =
X XX =X

X
X X X

X XX
X X X

X =

X =

True values, %ERR = 0 I-NLSE, %ERR = 23.0%

= xxxx
= XXXXXX
= XXXXXX

xxxx=
xxx=

= XXX
=xxxx
= xxxx
= XXXXXX
=XXXXXXXX
= XXXXXX
= X
=xxxxx
=x
=XX XX
=xxxxxx
=XXXXXX X
=xxxxxx ;
=xxxx

X
xxxx =

XXXX X =
xxxxxxx =

xxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxxxxx=
xxxxxxxxxxxxx =
xxxxxxxxxxx =
xxxxxxx

XXX =
X X =

xxxx x=
xxxx =
XXXXXX X =
xxxxxxxx =

XXXXXX =
xxxxx =
xxxxx =

X XX =

X =
XXX XX =

xxxxxxx =

xxxxx
: XXXXXX
XXXXXX

: XXX

:XXXX

• xxxx
= XXXXXX
= xxxxxxxx
= XXXXXX

= XXXXX
=x
:XX XX
^XXXXXX
= XXXXXX
=xxxxxx
:XXXX

xxxx=
XX XXX=

xxxxx =
XXXXX X =
xxxxxxx =

xxxxxxxxxxx =
xxxxxxxxxxxxx =
xxxxxxxxxxxxxxxx=
xxxxxxxxxxxxx =
xxxxxxxxxxx =
xxxxxxxx =

XXX =
XX =

XXX X
XXX =
XXXXXX =
xxxxxxxx =

XXXXXX =
xxxx =
xxxxx =

XX =
=

X =
XX XX

xxxxxxx

EB-LSE, %ERR = 10.1% I-LSE, %ERR = 10.7%

Figure 4.4

True values and assignments made by three rules. Case: 6 = 1.5, MISC.
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True values, %ERR = 0 6 = 1.0, %ERR = 24.0%
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= XXXX XXXXXXX X XXX=
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Figure 4.5

True values and predictions by EB logistic spatial estimator (EB-LSE).

Checkerboard case, 6 = 1.0, 1.5, 2.0
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Figure 4.6

True values and predictions by EB logistic spatial estimator (EB-LSE).

Miscellaneous case, 6 = 1.0, 1.5, 2.0
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Figure 4.7

True values and predictions by EB logistic spatial estimator (EB-LSE).

Two-by-Two case, 6 = 1.0, 1.5, 2.0
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Table 4.3
How error percentages for EB-LSE depend on the number of agreeing neighbors.

Entries are percentages, N = number of pixels (0< = 0 and 1 combined)
with given number of agreeing neighbors.

CKBD
No. Agreeing (N) I - LSE EB-LSE

S = 1.0

MISC 2BY2
(N) I - LSE EB - LSE (N) I - LSE EB - LSE

4
5
6
7
8

Summary

6= 1.5

(100)
(300)

(0)
(0)

(225)

(625)

35
24
-
-
9

20.2

33
32

—
-
9

24.0

(28)
(146)
(54)
(79)
(291)

(578)

21
32
7
8
6

15.5

32
31
7
5
8

16.8

(4)
(92)
(0)
(0)

(529)

(625)

50
30
-
-
1

5.4

50
33
-
-
4

8.6

4
5
6
7
8

Summary

6 = 2.0

(100)
(300)

(0)
(0)

(225)

(625)

28
14
-
-
5

13.1

28
19
-
-
4

15.2

(28)
(146)
(54)
(79)
(291)

(598)

21
22
7
3
4

10.7

14
20
7
4
3

10.1

(4)
(92)
(0)
(0)

(529)

(625)

50
13
-
-
0

2.6

50
18
—
-
0

3.4

4
5
6
7
8

imart

(100)
(300)

(0)
(0)

(225)

, (625)

18
8
-
-
4

7.8

20
8
-
—
1

7.4

(28)
(146)
(54)
(79)

(291)

(598)

14
14
6
1
2

6.7

14
16
6
1
1

6.9

(4)
(92)
(0)
(0)

(529)

(625)

25
2
-
-
0

0.6

50
7
—
—
0

1.4
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Table 4.4
Values of the normalized regression coefficients in the nine cases.

"Normalized" means fc« below is b< = b t(9)/r t for I-LSE or bj = Bt/rt for EB,
rt = number of pixels in ring t. See text for explanation.

6

1.0

1.5

2.0

1.0

1.5

2.0

1.0

1.5

2.0

6

CKBD

CKBD

CKBD

MISC

MISC

Sim.

MISC

2BY2

2BY2

2BY2

6 *

.520 .543

.520 .535

.520 .532

.386 .409

.386 .401

EB
EB

IDEAL
IDEAL

.386 .397

.499 .522

.499 .515

.499 .511

EB
IDEAL

EB
IDEAL

EB
IDEAL

EB
IDEAL

EB
IDEAL

Avg.
S.D.
Avg.
S.D.

EB
IDEAL

EB
IDEAL

EB
IDEAL

EB
IDEAL

b'0

.997

.885

1.503
1.337

2.013
1.818

1.021
.897

1.558
1.359

1.54
(.11)
1.42
(.15)

2.113
1.849

.990
1.073

1.486
1.557

1.983
2.028

&i

.631

.413

.702

.524

.748

.614

.424

.425

.504

.548

.61
(.20)
.62

(.08)

.544

.641

.904

.719

1.139
.950

1.337
1.146

b'z

.690

.180

.555

.134

.418

.062

.447

.209

.396

.214

.43
(.14)
.30

(.04)

.338

.201

.996

.383

.973

.376

.914

.320

bl

.136

.141

.182

.147

.207

.142

.216

.253

.255

.276

.33
(.15)
.28

(.04)

.263

.282

.617

.685

.819

.870

.991
1.017

b:
-.090
.034

-.072
-.014

-.087
-.074

.052

.132

.059

.077

.05
(.08)
.05

(.03)

.036

.012

.075

.368

.063

.338

.003

.264

bl

-.141
-.012

-.099
-.057

-.081
-.115

-.078
-.016

-.085
-.105

-.07
(.13)
-.07
(.05)

-.102
-.186

-.020
.262

-.074
.183

-.160
.069
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with rt = number of pixels in ring *, r0 = l,ri = r2 = r3 = 4,r4 = 8,r5 = 4. Thus bt(9)

or Bt multipled by the ring average zif is just 6j multiplied by the ring sum rtxit. We

expect, on a priori grounds, that &Q, 6J, 63, ... would be monotone decreasing because

data from more remote rings usually should receive less weight. (This would not hold in

periodically patterned situations, however, like the checkerboard.)

The rules EB-LSE and I-LSE nearly follow this monotone pattern, except, curiously,

&2 < 63 frequently for the ideal rule, with large differences in the 2BY2 case. This is

an unexpected phenomenon, and seems to be peculiar to the particular {2,-} values used

(recall that the same simulated data {z+} were used in all nine cases.)

Only in the case S = 1.5, MISC, were the data simulated further, with 10 repeats.

The means (Avg.) and standard deviations (S.D.) of the EB-LSE and I-LSE regression

coefficients for that case are reported in the middle of Table 4.4. Clearly, the main case

considered for EB-LSE produced regression coefficients quite central to the 10 cases, with

the corresponding main case for I-LSE being less central, but not extreme. The tendancy

toward a monotone decreasing pattern is obvious for EB-LSE, and usually for I-LSE.

However, the problem of b*2 < 63 occured for I-LSE in four of the ten cases.

Several features deserve comment:

a) The coefficient of y;, 6J, tends to be close to 8. There is theoretical justification for

this.

b) The EB-LSE coefficients b*t are consistently larger than the I-LSE coefficients, espe-

cially in the low discrimination cases like 8 = 1.0, checkerboard. This pushes the

EB-LSE probability estimates too far toward zero or one, away from 1/2. We dis-

cussed this property of EB-LSE before, in relation to its performance with respect to

mean absolute error. This effect continues, but only slightly, in the only repeated case

8 = 1.5, MISC. A correction, perhaps simply applying a constant multiple to the B»

values, would likely improve EB-LSE significantly for the MSE and INFO measures,

but would not affect the %ERR measure.
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c) Clearly 64 and 65 add little to the precision of these rules, and use of r = 3 rings would

have been nearly as effective. This issue of where to truncate the regression vector,

i.e. how to chose r, deserves further investigation.

5. Summary.

We have seen that empirical Bayes theory can help in a spatial analysis by clarifying

the separate roles that must be played by training data and data taken from the target

site. Training data can be used to determine the likelihood function, while the target

area data are required to learn about the distribution of the parameters in the target site.

These ideas are implemented for a binary spatial setting by (3.16), an estimator seen to

work quite well relative to "ideal" procedures that utilize the true target site values 6. The

key point is that, with the structure assumed, one need not have direct access to any true

values 6 from the target site. This is very useful if the target site is inaccessible or quite

costly to observe, as might occur in some LANDSAT applications.

Of course much more can be done, some things fairly straightforwardly, and others

less so. The straightforward tasks include further tests on new data sets, and comparisons

of the estimator (3.16) with other methods for spatial classification, as follows.

(A) In comparison with the method of Geman and Geman (1984), by how much does (3.16)

method dominate the Geman annealing method with respect to computing time (the

annealing algorithm is very slow)? How does (3.16) compare in terms of %ERR for

estimating the best map, that is the most likely 6 value (which is the Geman and

Geman objective)? When the characteristics a of the 0 process must be estimated,

how do the rules compare?

(B) Some fine tuning of the method (3.16) is needed. The coefficients b^ as defined for

Table 4.4 (coefficients of ring-sums) probably should be adjusted so that their magni-

tude decreases as j increases, to reflect the property that the influence of rings should

dimmish with their distance from the central pixel. What is the appropriate value of r,
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the number of rings required? How can we correct for the tendency of the coefficients

B! in (3-17) to overestimate the coefficients bt(8)jRSS(9) in (3.6) by a systematic

factor, at least for small SI

(C) The method needs to be checked with real data. Even though the assumptions are

violated, the method (3.16) may work in LANDSAT applications. For example, similar

assumptions were used successfully by Owen (1984) with LANDSAT data.

Other extensions are needed for applications like crop type estimation from LANDSAT

data. They specifically include:

(A) The polytomous case. Extensions are needed for more than two crop types.

(B) Heteroskdastic data, or non-normal distributions.

(C) Multivariate data. E.g. several spectral bandwidths. The empirical Bayes view-

point has emphasized, however, that the proper reduction of multivariate data may

be determined from training data alone.

(D) Time dependent data. This would be important in some applications. The pre-

ceding remarks from (C), about data reduction, may apply here.

(E) Edge effects. Can the method be extended to be more sensitive to the possibility

that there frequently will be straight line borders?

(F) Dependent observations. Cloud cover and weather effects, for example, would

cause correlation among neighboring spectral measurements even if the crop-type

remains constant. How can the EB-LSE method (3.16), derived for independent data,

be modified to account for known correlation patterns?

(G) Split pixels. What can be done if more than one kind of true value, e.g. crop type,

exists in a pixel? By computing estimates of the fractions of each kind of crop type,

that the method discussed already offers some advantage for split pixels.

The polytomous case seems most urgent. The problem can be approached as an

empirical Bayes problem in the same manner as for the binary case. The main difficulties

arise, however, in proposing appropriate estimates for the parameters a of the 6 process.



126

The same difficulty of finding good estimates of a arises in cases (B), and (F), although

the general theory for known a seems straighforward. Case (E) provides a challenge dealt

with earlier in (Geman and Geman, 1984) for a slightly different context.
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ABSTRACT

The problem of estimating parameters in finite mixture of probability
densities is formulated as a continuous mixture estimation problem. Writing
the finite mixture as h = /fGdG(o), where G changes only at a finite number of
points, it is shown that it is possible to construct a sequence of probability
density functions (gn) whose cumulative distribution functions (Gn) converge
weakly to G. It is proposed that this sequence be constructed using a linear
programming approach.

; 4. .
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1. INTRODUCTION

Let x be a vector intT and e another vector in1RK, where T(?N andt?K are
real product spaces over the real numbers of dimension N and K respectively.
In remote sensing, x represents the measurement values obtained from a
remotely positioned sensor (e.g., from a satellite) for some given point on
the Earth and e is a vector that can be uniquely associated with the class of
materials at that point. The x-values.are the observables but e, the variable
of interest, is not observable.

To illustrate this x, 0 relationship in terms of a remote sensing
problem, imagine that a set of x-measurements are obtained from an
agricultural area containing fields of corn, soybeans, and pasture. A
possible probability model would be

h(x) = Pr(6= e.) -e
j=l J v/27

where h is probability density function (called a mixture density) and it is a
linear combination of normal density functions. A normal density is assumed
to statistically represent the x-measurements from each one of M possible crop
classes. In this model 9 is a random variable that can take on the possible
class mean values e ., j = 1, 2, •••, M. It is seen that 9 is indeed the vari-

J

able of interest since it describes the class means, and therefore it provides
a complete statistical description of the x-measurements from a given class.
Moreover, by the fact that positive probability is assigned to only M possible
values of e, we. can determine the number of classes. If the assumption about
this representation of h is correct, then from the identif iability (a concept
that will be presented formally below) of normal mixtures, there is only one
possible choice for M and, e ., j = 1, 2, •••, M. Specifically, for this

J

example given h and the model, it should be possible to determine that M=3,
the values of three crop means e,, e^, and e3, and the values of their
proportions Pr (6 = e.), j = 1, 2, 3. If the additional fact is known that

J

the mean of corn is always less than the mean of soybeans and that the mean of
soybeans is always less than the mean of pasture, then it would be possible to
assign these crop labels to the means and proportions- , Even though x-values' '•
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can not be uniquely associated with o-values, it is possible to compute a
likelihood or a posterior probability of this association from the mixture
model. If the means can be assigned crop labels then the mixture model can be
used to infer a classification for each pixel.

A general formulation of a mixture density that is similar to the one
given for mixtures of distributions by Teicher [1] is as follows: Let
F = {f : ee "RK} be a family of probability density functions and let G be a
distribution function onf?. For the given G, define the mixture density

h-yTedG(e) (1)

The family F defines a mapping, (say F), from the set of all G-distributions
(say G), to the set of all induced h-densities (say H). If F : G * H is one
to-one and onto, then it can be said that H is identifiable. In the case of
the finite mixture, the measure induced by G assigns positive probability to
only a finite number of 0-values. For this case

h(x) = 2- pr (0 = eJ f (x) (2)
j=l J 9J

As reported in two prior papers, previous work concentrated on the case
where e is a translation parameter. In the first paper, Heydorn and Basu [2],
h was assumed to be known, and an approach based on a theorem of Caratheodory
(relating to the trigonometric moment problem as discussed in Grenander and
Szego [3]) was used to determine the number of translation parameters and
their values. In the second paper, Heydorn and Martin [4], h was estimated,
and an integral equation formulation was used to find a probability density on
e-values.

This paper also assumes that h is not given but must be estimated;
however, unlike the second paper, this paper offers a more general approach in
which e is not restricted to be a translation parameter. In common with the
second paper, the idea of estimating a probability density on o-values as a
means of deducing the number of parameters (i.e., the value of M) as well as
their values is again pursued.
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2. CONSTRUCTION OF ESTIMATORS

Given a finite mixture h onlR* that follows the model

M
h(x) = L Pr (e = 0.) f (x - 0.) (3)

i=1

a method was proposed in Heydorn and Martin [4] in which h is first smoothed
with some function t to produce ht i h*t ("*" denoting convolution). The
function ht can then be represented as a continuous model of the form

-0) g.£

By choosing the support of t to be small, the integral equation in (4) is a
good approximate representation for the finite mixture in (3) since gt will
have M modes with the modes occurring at the 0.—values.

J

For cases where 0 is not necessarily a translation parameter and h
follows the more general finite mixture model of equation (2), an integral
equatjon representation is still possible. It will be shown that this
representation can take the form

h(x) = Sf(x,0) gn (0) d0 + en(0)

where ||e nll -• o as n - <*> (11 • || being the supremum norm). In this case
(g ) is a sequence of probability density functions whose cumlative distribu-
tion functions, Gn, converge (weakly) to GeG (c.f. discussion related to
equation (1)).

The approach used for estimating G given h is as follows:

1) First define gn as

gn(°)
 = «k Bk(e), c < 0 < d

Ix ™ X
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where (Bk) Is a sequence of normalized (i.e.,/Bk(0)d0 = 1) B-splines
placed at equally spaced knots in [c,d] and where ak>0, Eak = 1. This
sequence of gn-f unctions will induce the sequence (hn) where

.hn(x) =yf(x,0) gn(0)do

2) Assuming that f(«,«) is continuous on (-»,<=) x [c,d], since h is a finite
mixture, h is uniformly continuous on any closed interval, say [a,b].
Let a = x^ < X£ < ••• < xn = b be a partition of [a,b] and define the
histogram of h to be

h(t)dt, xe (x. ,, x.], j = 2, 3, • ••, n"<
, . ,, .

Xj'XJ-l 4. J"1 J

0, x* [a,b]

Since h must vanish at -» and +», the constants a, b can be chosen so that for
a given e>o, o < h(x) < e holds for x$[a,b]. Also since h is uniformly
continuous, we can construct the partition of [a,b] so that

sup |h(x)-h(x)| < e

for any j.

3) For j = 1, 2, •••, n-i-1 let

It x e (x. ,, x.]
S, (x) = J-1 J

J '0, x f (xĵ . x..]

where XQ ̂  - = and x = + =. It follows that
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n+1
sup |h (x) - hp(x)| < £ sup |h(x) -h(x)| Sj (x)
X J *~ •*• X

n+

+ E sup |h(x) -h(x.)|S.(x)
j=l X J J

-hn(
xj)lsj(x)

+ sup|hn(Xj) -hn(x)|Sj(x)
j-i x

The first sum on the right is less than e from step 2, and the second sum is
zero from the definition of the histogram. Consider the last sum. From the
definition of hn in step 1

- hn(x)l - k-1

Since f(»,«) is continuous on [a,b]x[c,d] the family [fQ : 0e [c,d]} is
uniformly equicontinuous; therefore, it is possible to refine the partition of
step 2 so that |f (Xj, 0) - f(x, 0)|<e for any (x, 0) e [xj_lf Xjl x [c, d],
j = 1, 2, •••, n + 1. Hence for all j

|hn(x.) -hn(x)| . e « k - e

Following through these steps, therefore, it can be seen that

sup |h (x) - h(x)| < 2 e
x

provided we select the spline coefficients ok, with the constraints zak = 1 ,
a. > 0 for k = 1, 2, •••, k, so that hp coincides with hVat the partition
points.
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If the histogram is only matched to within e at the points x-, j = 1,
2, •••, n, then

sup | h(x) - hn(x) | < 3 e

Normally h is not given and therefore must be estimated. In the above
<•*•/

formulation this means that rather than computing the histogram h it must be
estimated. Given a sufficiently large sample size this can be done (see e.g.,
Tapia and Thompson [6]) so that the above construction steps will still
produce a sequence (hn) converging to h.

It is proposed that linear programming be used to solve for Gn. The
linear programming formulation is:

Minimize

A! + ̂ 2 + ••• + An

Subject to, for j = 1, 2, •••, n, k = 1, 2, •••,-<,

fd-A. < h (x. ) - / f(x., 0) gn(0)d0 < A.

> 0, a > 0,a = 1

Guseman and Schumaker [6] and Narula and Wellington [7] have used a similar
linear programming formulation for. other problems.
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3. CONVERGENCE OF THE ESTIMATOR

Given the above approach (steps 1-3) it now can be shown that the
cumulative distribution function (c.d.f) Gn related to the dens-ity gn will
converge to the true c.d.f, G, weakly. That is, if Gn (0) = ./"

0gn(y) dy, then,

/d /d
|/ q dGp - / q dG| * 0, (n * <») , for all qeC[c,d],
*̂ C */ C

where C[c,dl is the set of all continuous functions on [c,d].

Theorem: Let H be identifiable and (gn) a sequence of probability
densities. Define:

ftnn(x) =/ f(x, 0) g (0) de.
yc

If ||h - hn|| * o, (n * »), then Gn - G weakly.

The proof of the theorem follows easily from the following lemma of Blum
and Susarla [8]. In their lemma the family of kernels in the mixture is
parameterized on x (not 0) i.e., let D = {f (x, • ) : xtR}.

Lemma: If D CC[c,dj, then H is identifiable if and only if D generates
C[c,d] in supremum norm.

Proof of the Theorem: Pick qe C[c,d], e > o. From the lemma then exists
a sequence (ŝ , xk), k = 1, 2, •••, K so that (denoting f(xk, •) by fx )

|q - Ck fx I
k=l K xk
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For any function se C[c,d] let

fd
a(s) = s dG

c

s dGn

Since G, Gp are c.d.f s, the Riesz Representation theorem has that (denoting
variation by V(»))

||i|| = V(G) = 1
and

ngi -v(6n) . i
Thus

k fx )|K xk

or
fx )«L,k

Ix l\

- h ( x ) ) |n k

Therefore
11m |(a-£n) (q)| < 2 e
n

which implies

for any q e C [c,d] this completes the proof.
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4. CONCLUDING REMARKS

In this paper, which is the third in a series of papers on mixtures, the
idea of studying finite mixtures from a continuous mixture point of view has
continued. That is, the finite mixture is approximated with a continuous
mixture and the resulting mixing function (denoted by g^ or gn) is estimated.
This mixing function gives an estimate of the number (M) of components in the
mixture as well as estimates of the 0-parameter values. There are still a
number of numerical and statistical estimation problems to be studied in
relation to this approach; however, from the few numerical studies that were
done (in the second paper) it would appear that the ideas can produce
reasonable answers, and the graph of the mixing function is more informative
to the eye than is the mixture itself.

There may be some mathematical problems, however. By approximating a
finite mixture with a continuous mixture one could possibly loose some
uniqueness. It is well known, for example, that a finite mixture of normals
in which the means and variances are allowed to vary is an identifiable
mixture, (c.f. Teicher [9] or Yakowitz and Spragins [10]). However, the same
is not true of the continuous mixture of normals, as pointed out by Teicher
[11]. If, however, we hold either the means or the variances fixed, while
letting the other parameter vary, then the continuous mixture is identifiable.
The extent to which this is a limiting factor in this approach to studying
finite mixtures needs to be studied.
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ABSTRACT

In this paper we review our work over the past three years, indicate our current thinking,

and point to work generated for those wanting to pursue these ideas.
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1. Introduction

For our setting, the purpose of statistics is to extract information from data. One auxiliary

goal may be to maximize the information extracted, for example, design efficient estimators.

NASA data presents special .challenges and hence opportunities. First, the data are often high

dimensional. Second, the data sets may be extremely large. Third, the data are expected to be

non-Gaussian, that is, second-order information such as correlation is not sufficient. As a remark,

we note that any one of these features makes good data analysis very difficult. Some present and

many future NASA projects will routinely have to handle all three features. If we accept present

technology and methodology, we are simply "losing" information, perhaps critical to mission suc-

cess.

These ideas are echoed in a recent article by Goetz et al. (7), who discuss imaging spec-

trometry, which is the simultaneous acquisition of images in as many as 224 narrow contiguous

spectral bands. The authors write:

Just as imaging spectrometry requires new technology for instruments and detectors, effective utili-
zation of the data requires development of new analytic approaches and techniques. Bellman's
'curse of dimensionality' is fulfilled...

The authors rather curiously predict that deterministic methods will be superior to statistical

methods. In any case, it is clear that the new technology raise many interesting questions such as

the tradeoff between higher spatial resolution and narrow spectral bands.

Statisticians' proper role in NASA is varied but extensive: design (with physicistics, MD's,

engineers), data collection (with engineers and OS's), data analysis, data presentation (with

managers, artists), program evaluation, among others. In data analysis, relevant research activi-

ties include estimation, filtering, optimization, algorithm construction. The planning activities in

the design role are critical, such as determining whether a proposed system will generate data giv-

ing the desired information (can we predict who gets severe motion sickness or which spectral

bands should be included in a satellite?) and is the system optimal (Landsat's 4-channel sensor

contains essentially 2-dimensional information, wasting 50% of the bandwidth)?

In the following, I will briefly indicate our work and progress in the areas of data analysis

and presentation of very large non-Gaussian data sets with 3,4, and more variables. We have not

included any graphs, since these are contained in referenced articles. Particular topics include

dimension reduction of non-Gaussian data sets, graphical representation of structure in data sets

with more than 2 variables, efficient algorithms for multivariate density estimation, automatic

calibration of density estimates, and tests of our ideas on real data sets. We note we are only

beginning to have the computer power required to try new techniques for properly analyzing

"difficult" data. For example, it has been estimated that real-time computer animation will

require the power of 1000 supercomputers!

2. Large High-Dimensional Data

Scientists have attempted to cope with high dimensional data for several decades. When

such data follow elliptical patterns, statisticians have developed extremely powerful, fast, and
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efficient algorithms for all aspects of data analysis and presentation. For data not following such

"nice" patterns, we are in much worse shape. As an example, Weaver et al. (35) analyze the

series of 500 small and large earthquakes preceding the large eruption of Mount St. Helens. These

data are 5 dimensional: 3 spatial coordinates, time, and quake magnitude. The authors attempt

to display these data graphically. Two "side" views are constructed. But it is clear that some

information may be hidden in the true higher-dimensional space. We are attempting to devise

methods to reveal such structure, if it exists.

Pictures of large data sets often are misleading. This is illustrated in Scott (19) in a scatter

diagram of 412,000 pixels. The eye focuses on the edge of the data cloud where relatively little

information lies and cannot dissect structure in the middle of the data cloud. Thus relying solely

on graphs for non-Gaussian data is not likely to be sufficient for the new data analysis.

John Tukey has been a leading proponent of the new exploratory data analysis (32,33).

With Paul Tukey (34), he has given us a wealth of different ideas for graphing multivariate data.

Many may not withstood the test of time, but it is likely that many will do so. Many of his

examples deal with Anderson and Fisher's Iris data, which is 4-dimensional. In addition, examples

from 3 and 4 body particle physics experiments are presented, which are 4 and 7 dimensional,
respectively. We will mention these data sets later.

In Scott (13,14,15,16,17,18,19,20), Scott and Thompson (28), Scott et al. (23,24), and Scott
and Jee (25), we have discussed and illustrated the variety of ways available (including our new

proposals) for displaying multivariate data. Tukey has emphasized scatter diagrams and variants.

We prefer to estimate and display density curves, such as the histogram and the new improved

histograms. While estimation cannot be ignored, it is the representation of high-dimensional his-

tograms that is exciting and full of new possibilities for finding non-Gaussian structure. Many

examples are given in the references (see in particular reference 18, which contains color prints).

3. Efficient Density Estimation

Computationally, the most efficient density estimator is the classical histogram. The histo-

gram is in the class of nonparametric density estimators, which provide reasonable estimates for a

large class of smooth sampling densities. The statistical properties of the histogram were pro-
vided by Scott (12). From this work it is clear that the statistical efficiency of the histogram, par-

ticularly the multivariate histogram, is inferior to other methods such as kernel algorithms

(which, unfortunately, are not computationally effective). Thus the histogram is only useful as a

preliminary tool with univariate data.

Recently, the second most computationally efficient estimator, the frequency polygon, was
analyzed by Scott (19). It was shown that the frequency polygon possesses the same statistical

efficiency of the kernel algorithms. This is quite remarkable and the frequency polygon is quite
tul-ii i^i; ..

useful for univariate and bivariate data. Bin edge effects limit its usefulness for 3 and 4 dimen-

sional data.

Thus Scott (14) introduced a modification of the histogram to obviate the bin edge effects

while retaining statistical efficiency. This object, the averaged shifted histogram, has been
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demonstrated in Scott (15) and will be formally analyzed in Scott (20). This estimator may even

prove useful with 5 or 6 dimensional data!

4. Projections of Non-Gaussian Data

Last year, Rod Jee (25) presented a movie illustrating the capabilities of the density estima-

tion approach in an interactive computer graphics workstation environment. The data were col-

lected by Bob MacDonald over forests in Minnesota. In this work, Rod first saw the relationship

among projection methods, information content, density estimation, and feature spaces. This led

him into an investigation of projection methods called projection pursuit. Rod has just completed

his thesis (10), and we now briefly discuss those results.

It is common to orthogonally project very high-dimensional data prior to analysis. This is

the result of a common occurrence with such data: the data cloud is nearly singular in the full

space. Thus projections to ease the associated numerical problems are usually sought. There are

three projection choices. First, one may choose classical principal components. This is fast, but

not robust. We also note that principal components uses only second-order correlation informa-

tion and will not usually be satisfactory with non-Gaussian data. The second type of projection is

a "guided" or model-driven (often nonlinear) projection. For example, Badhwar (1,2) constructed

agronomic models to project 24-dimensional Landsat data (multiple acquisitions) into 3 dimen-

sions. This type of projection is usually very effective and often the best, but it requires a great

deal of research, work, and luck and is not generalizable to other data types. The third type is

"exploratory." Here, we are interested in rinding projections in which the data are maximally

"clumped." This technique was made popular by Friedman and Tukey (5), who named their par-

ticular algorithm "projection pursuit."

Recently, Huber (9) has completed a lengthy treatise on the theoretical foundations of pro-

jection pursuit. Huber shows that Friedman and Tukey 's optimization criterion function is essen-

tially

which clearly is larger for "bumpier" projected densities that for smoother densities, after correct-

ing for scale. Huber notes that other more classical information criteria may be considered, such

as Fisher Information or Shannon Entropy.

Rod shows that none of these criteria use any second-order information, which emphasizes

the difference of the projection pursuit and principal components methods. By some clever

choices of simulations, Rod finds that Fisher Information and Shannon Entropy do not prefer the

same projection subspaces, and that Fisher Information seems to provide more pleasing pictures.

Friedman and Tukey (F-T) illustrated the projection of the 7-D 4-body particle physics data into

2 dimensions. Rod found the optimal Fisher Information 2-dimerisiohal subspace and it differs

remarkably from the F-T subspace. Fisher Information has many local optima, and the F-T is

one of those. When applied to Bob MacDonald 's 7-D Minnesota data, Fisher Information is quite

similar to principal components, although clearly superior.
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5. Choosing Smoothing Parameters

Many diverse algorithms for non-Gaussian data rely upon choice of a smoothing parameter,

for example, the bin width of a histogram or the size of a neighborhood for projection pursuit.

We have found several interesting results in this area. The first was the discovery by.Terrell and

Scott (31) of intrinsic upper bounds on these smoothing parameters. For the histogram,

number of bins > (2n)1/3 .

In fact, Rod Jee used similar rules in his Fisher Information projection pursuit algorithm. Other

algorithms require subjective choice of this parameter. Similar results have been found for fre-

quency polygon, kernel, and averaged shifted histogram estimators.

A more ambitious goal would be to estimate nearly optimal smoothing parameters directly

from the data. Such estimates are called "cross-validation" estimates. Wahba had some early

results here, and current work is due to Rudemo, Bowman, Stone, and Hall; for a survey, see

(21). We have analyzed the small (finite) sample properties of these algorithms and have been led

to construct new algorithms as a result (21,27). Many of the algorithms with good theoretical

properties are surprisingly noisy with small samples (10,000 points?).

6. Future Directions

In spite of the gratifying progress in the 5 areas, we still have only begun to understand all

of the theoretical and practical issues as they relate to NASA data, particularly the new high-

dimensional sensor data. We expect to find "true" multi-dimensional features that will lead to

unusual classification and detection algorithms. Such information cannot be extracted by classical

statistical methods or "new" deterministic algorithms. Many of the issues remaining deal with

efficiency and optimization problems that we still don't fully understand. ' Effective implementa-

tion in rapidly changing computer environments is also challenging. Our research goal remains

the same: to extract the maximum useful information from data, both analytically and graphi-

cally, in an efficient, effective, and pleasing manner.
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Section 1.

INTRODUCTION

This is the third report on our research aimed at understanding and

obtaining analytical, quantitative results on subpixel accuracy in image

registration. This research was motivated by the observation that while

subpixel accuracy is very important in many practical applications of image

matching, and while many claims concerning the degree of accuracy achieved in

an application have appeared, analyses have been limited and a theoretical

basis for understanding subpixel accuracy was lacking.

Our study, represented by this report and two previous reports [Lavine et

al, 1983; Berenstein et al, 1984], has attempted to lay foundations for such a

theoretical basis. These foundations have taken two primary directions:

geometric models for subpixel accuracy in edge detection; and the matching of

image composed of random fields.

Our previous reports on the analysis of subpixel accuracy focused heavily

on the determination of the location of a real world straight edge based on a

detection of its digitization in an image. Analytical results were obtained

for the attainable accuracy in the estimation of the edge position. One

limitation of the analysis was the assumption that the correct digitization of

the edge could be determined. We made several attempts to address this

problem in the previous work. Those attempts led to several approaches which

were more flexible and accurate but still suffered from difficulties in the

estimation of average grey levels for regions abutting the edge. Then the

paper by Tabatabai and Mitchell [1984] appeared, and led us to think of new

ways to simplify the estimation problem.

The relationship between the work of Tabatabai and Mitchell and our
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previous work was unclear at first, but the computational simplicity of their

work together with the accuracy of our results made a study of this

relationship desirable. Our examination of the two approaches led to

extensions of the Tabatabai-Mitchell approach which should be useful in

applications to LANDSAT image registration. The relationship between the

approaches also has suggested the possibility of a whole range of algorithms

bridging the gap between the two approaches, in which one trades off accuracy

for computational simplicity. This report describes our investigations in

these directions (Sections 5 and 7).

A second research direction pursued in the present study was the

resolution of a conjecture on an asymptotic expression for the number of

digital lines of specified length. In our previous study of the accuracy of

line position estimation given a digitization of a line, we developed general

methods of error analysis and performed more detailed analysis for digital

segments of a fixed length, which was chosen to be ten pixels. For the

development of a more flexible theory of error analysis, we sought an

asymptotic expression for the number of digital lines of any length. A

conjecture for such an asymptotic expression, developed in our previous study,

is proved in the current report (Section 3).

The overall direction of our study in the three phases of this study have

been directed to the analysis of methods for achieving subplxel accuracy in

image registration with emphasis on the use of subpixel accuracy in edge

detection. Though many approaches to the problem have appeared, analysis has

been limited and a general theory of subpixel accuracy is lacking. Our study

has attempted to lay foundations for such a theory. These foundations have

taken two primary directions, the matching of images composed of random fields

and geometric models for subpixel accuracy in edge detection.
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Appendix A of this report titled Subpixel Translation-Registration of

Random Fields continues our work on the analysis of correlation based

techniques for matching images composed of random fields and presents results

of computer simulations which confirm the theoretical results. This

represents one of the first systematic performance evaluations of the maximum

correlation method of image registration and of a known effective variant

based on maximizing a least squares quadric surface locally approximating.the

(discrete) correlation - statistic near its (discrete) maximum. Section 8

presents a sunsary and conclusion of our work.
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Section 2.

DIGITAL STRAIGHT LINE SEGMENT PARAMENTER ESTIMATION

Estimation of the location parameters of a real world edge giving rise to

an image edge is discussed in this section. We start with.- a summary

of those parts of [Do-So] which are useful for subpixel registration. Their

basic result is a determination of all lines whose digitization is a specified

chain code. In a later section, we use this set of lines to derive

error bounds on registration accuracy.

Several line digitization procedures are commonly used in graphics and

image processing. Given a line segment in the upper right hand quadrant of

the plane, with slope and y-intercept both between 0 and 1 and strictly less

than 1, we define its digitization as follows: To each intersection (a,b)

between the line and a line x=a, a an integer, we associate the pixel with

lower left hand corner (a, [bj) (see Figure 1). The chain code of the

sequence of pixels with lower left hand coordinates (0,b_), (l,b.), ...,

(N,b J is the sequence c ,,... ,c where
N I N

c.
i

0 if

1 otherwise

The restrictions on the sope and y-intercept of the lines under consideration

are made for simplicity of presentation. By symmetry the results can be

extended to remove these conditions.



155
To determine the lines with specified chain code, it is useful to have a

parametrization of the set of all chain codes of digital line segments

resulting from digitizing the class of lines specified above. In [Do-Sm] the

following parametrization is given. A digital line segment chain code

(c, CN) is given by a quadruple of integers (N,p,q,s).

N is the length of the chain code, i.e., the number of O's and 1's. We

note that not every string of O's and 1's is generated by a line segment. For

a characterization of those that are, see [W-R].

Figure 1 - Chain code of a digital line. The digitization of the dark

diagonal line has pixels with lower lefthand vertices (0,0),

(1,0), (2,0), (3,1), (4,1), (5,1). The resulting chain code

indicated by the arrows is 00100.

Next, q is defined to be the smallest integer such that there exists an

extension CN+]_» > with periodic with period q. Define p

to be the number of ones in a period. The fourth parameter, s, provides a
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normalization of the chain code for one period. Geometrically, s may be

interpreted as follows. Any chain code corresponds to a line segment with

rational slope. Along all such segments, select the slope p/q with p/Nq=l

which has the minimum q. This q is the period. The standard . chain code

corresponding to the first period of ths chain code is the chain code of the

digitization of the first q pixels of the line through the origin, y=(p/q)x.

The ith element c ., of this chain code is given by

c± - ll(p/q)J - lii-D(p/q)J, i-1,2 ..... N

The parameter s, of a code string of length N, is defined by the condition

that the standard code string of p/q started at the (s+l)th element of the

original chain code. Given the paramenters N,q,p,s of a code string, the ith

element of the original code string can be obtained by

c± - (_(i-s)(p/q)J - |Cl-s)(p/q)J, i=l,2,...,N

The parameters satisfy the constraints Ô p̂ q̂ N and Ô ŝ q-1. A point which

will be particularly important for the registration problem is that there are

contraints on the parameters other than the above inequalities. These

additional contraints are described in [Be et.al.]. Our interest in these

matters stems from the need to enumerate the digital lines satisfying various

conditions. If it were not for these messy constraints, the enumeration

problems would often be straightforward. Without these additional constraints

for fixed N, we would obtain all digital line segments of length N by

independently varying s,p,q subject to the constraints Ô piq̂ N and Ô ŝ q-1.

We now give an example of the computation of the parameters for a chain

code .
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EXAMPLE: Chain Code 10010100
N = 8: there are 8 digits in the code
q = 5: the above code is part of the infinite code

100101001010010
p = 2: the number of 1's in the period 10010 is 2
s = l : The standard codestring of 2/5 is 00101. The standard

codestring starts at the 2nd elements of the chain
code. Hence s = 1.

Since the smallest period plays an important role, let us point out two

ways of computing it. The first one might be easier to use for long strings

with the help of the FFT, the second one is very convenient for direct

computation in short strings.

For the first algorithm extend the chain code to the right, with period,

N i.e., ci+N = c . Theni N

(1) q = inf £j: l<j£N such that 1/N 2 (-1) ci + ci+j =lj.

Notice that the maximum value of the average in the definition of q is

precisely 1. In the second algorithm, we extend the code chain in both

directions by zeroes and consider

q = inf VJ: l̂ ĵ N such that 1/N 2 (-l)ci + ci+i -1? •
I i=l J *

with the understanding that if the set of j's is empty we take q=N. What this

really means is that we slide successively to the right of the chain code and

compare the tail end of the original chain code with the first portion of the

shifted chain code, the value q corresponds to the first perfect match, if

there are no matches then q=N.

The primary result of [Do-Sm] £S a description of the set of all lines

whose digitization over the interval [0,N] is a set of pixels specified by a

chain code. This result is of great importance for our registration accuracy

results since it provides a hold on the errors which may arise by aproximating

the true edge by a feasible edge. The set of lines is described by a

quadrilateral in the (e,ct)-plane where e is the j—intercept of a line and a. is
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the slope. We will call this plane the dual plane. The proof of the

following formulas can be found in [Be et. al.].

Define functions F and L by:

(2) F(s) = s-ts/qjq

and

(3) L(s) = s+[(N-s)/qJq

Let JL be defined by the equation:

(4) l+.U<p/q)J-jKp/q) - 1/q and Oi&q,

or what is the same, by the fact that Jtp - -1 (mod q). The set of feasible

lines is a convex quadril t ral in (e,a)-space with vertices A, B, C, D given

by

(5) A = (LF(s)p/qJ - F(s)pVq",P^/q* )

(6) B = (fF(s)p/ql - F(s)p/q,p/q)

(7) C = (l+y?(s+i)p/qj - F(s+i)p/q,p/q)

(8) D = (l+LF(s+i )p/qj -

where

(9) q^ = L(s+i) - F(s), p-*-

(10) q~ = L(s) - F(s+i), p~

The above expressions for the vertices of the feasible quadrilateral will

be discussed in greater detail in later sections. We note here that none

of the vertices A, C, D nor the points in the two sides of the quadrilateral

determined by them correspond to lines that have the chain code (N,q,p,s)

after digitization. It is also very important to note that (since we are

working with lines of non-negative slope < 1 and non-negative ordinate to the

origin <. 1) the quantities pf, qf, q~ are strictly positive, while p"£ 0 (in

fact, from (10) it follows that p"~=0 only if p=q"s«l). This remark, which is

omitted in [Do-Sm], is crucial to provide a correct count of all distinct

digitial lines of length N.
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Figure 1 2 Feasible region for a digital line.
The digital line consisting of those pixels with
darkened boundaries has the shaded area as its
feasible region.

D
C

B

A

^Figure Intersections for the feasible region.
The four boundary lines A, B, C, and D of a
feasible region are shown. The intersection
of A and D always lies between the parallel
lines B and C. These lines in the x,y space
correspond to the vertices A,B,C,D of the
feasible quadrilateral in the ( e , 'f ) parameter
space .
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Section 3.

PROBABILISTIC EDGE ANALYSIS

This section presents analytical results on the error analysis of the

digital line approach to edge detection. Previous results on error bounds for

offset estimation accuracy are reviewed. An asymptotic formula for the number

of digital lines of a given length, which was conjectured previously, is

proved and corresponding asymptotic error analysis is given.

A worst case bound on registration accuracy using digital edge was

described in [Be et.al.]. More realistic error information can be obtained

using probability. In this section we consider the question of obtaining

probabilistic information on the registration error assuming the real world

edge giving rise to the digital edge is generated by a natural distribution on

edges. We have procedures for estimating these probabilities, but due to the

considerable computational cost involved in evaluating these in special cases,

we prefer to first seek analytical simplifications.

Many probabilitic questions pertinent to the geometric accuracy question

can bfe formulated. In this section we consider the problem of determining the

probability, that the actual registration error will not exceed a specified

level. We wish to determine, for any acceptable error level in the estimated

offset between sensed and reference image, what is the probability that a

random edge will result in a digitization which permits estimation to better

than that error level. Though a simple formula for these probabilities as a

function of digital line length is not available, a procedure for calculating

these probabilities for any given line length, N, is described and results for

the case N=10 are presented. In addition we present an asymptotic expression

for the error.
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The basic approach to computing the error probabilities is quite simple.

A probability density function is given on the set, A, of all lines with slope

between 0 and 1, going through the pixel with lower left vertex (0,0). Since

a line has only one chain code, the sets of lines with different chain codes

gives a partition of the set A. Hence the density on lines induces a density

on chain codes. For a chain code with period q, the maximum error is l/2q as

was shown in [Be et. al.]. Thus for any specified error h, we must calculate

the probability of the following set, B, of line chain codes.

(1) B = £(N,q,p,s): l/2q<h}

The set of all linear chain codes of length N can be enumerated. For each

chain code in B, the corresponding feasible quadrilateral can be calculated as

in Section 2. The density function on lines can then be integrated over the

quadrilateral and the sum of these integrals over all members in B computed.

This sum yields the desired probability.

The problem of enumerating linear chain codes of lines through the origin

was discussed in [R-W] where also an algorithm for generating the set of

linear chain codes was presented. We have not found any estimates in the

literature of the number of chain codes of a given length. The problem is

that the shortest period of the digital line of length N corresponding to a

line

(2) y = (p/q)x+m/q

might be strictly smaller than q. Since such lines generate all the possible

digital lines and we can associate to each a code (N,q,p,s), the problem

reduces to characterize those values of s for which this code does not

coincide with (N,"q,*p,"s) with"q<q. The answer lies in the following.
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Proposition 1: Given a code (N,q,p,s), the necessary and sufficient condition

that it does not coincide with a code of strictly smaller period is that q*>0

and q~>0, where q̂ .q" are defined by (2.9) and (2.10).

Proposition 1 and its proof give us a way to compute the number L(n,q)

of digitial lines of length N and smallest period q. In fact L(N,1)=1 so we

can consider q>l, then the situation N-s<q can only arise if N 6q+s-l4:2q-2,

that is, (N+2)/2£q. Hence, if q<.(N+2)/2, s can take arbitrary values and it

follows that

(3) L(N,q)=q0(q) for 2£q̂ (N+2)/2

where 0(q) is the Euler function that counts the number of values p, l£p^q, -

Cp,q)=l. This formula is clearly valid fo.r q=l since 0(1)=1. In-ttie remaining

range of q we can use the fact that when p runs over all the values considered

in 0(q), so does I, where we remind the reader I is defined by (2.4). We fix 2-

and divide the range of s into two classes

(4) 0£s£N-q,N-q+l£rs£q-l

The second class is not empty since we are assuming N+2̂ .2q. In the first

class every line has smallest period q, this accounts for N-q+1 lines. In the

second class we have two subclasses, s+iiq and qfcs+£. The first one cannot

introduce any lines of period q due to the condition q~>0. In the second one

we have to consider whether

(5) N-(s+£-q)>q

or not. Only if this inequality is true we get new lines (due to the

condition q*>0). Hence we must have

(6) maxIq-Z, N-q+lJ fe stmin £q-l,N-£J

which gives us 1+minSi-l, N-q, 2q-N-2, q-i-1? lines (notice that this minimum
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is non-negative). Therefore, to this range of values of q we have

-N-2, q-l-1, 1-1,

where the sum takes place over all values 1, 3£l£q-l, |Aq»l«

Proposition 2: Let L(N) be the number of digital lines of length N with both

slope and y-intercept between 0 and 1. Then

fin
N

(8) L(N}=£ q#q) 4- X (»-q+2)0(q)

N q-1
+ §jl , ? min£>q-N~2, q-J-1, J-l, N-q]

Since this expression is a little bit hard to work with, we can use upper and

lower estimates, L ** (H,q) - q (q), U(N,q) - (H-q+2) (q) forqttn this range,

Finally, setting L(N) = total number of digital lines of length N, we get the

estimates

(9)

L (H)
*

•
<» L(H) <• t (H) « I q^

q-1
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Using the above formulas we can produce the following table for N=10.

L(N,q)

1
2
3
4
5
6
7
8
9
10

1
1
2
2
4
2
6
4
6
4

I
2
6
8
20
12
30
16
18
8

1
2
6
8
20
12
36
20
22
8

1
2
6
8
20
12
42
32
54
40

TOTAL: 21 135 217

We notice that L(N) is fairly close to L̂ (N) and very different from

L (N) would have been the count if no digital lines drop their period when

considered to have finite length. A better upper bound function I/̂ (N,q) can

be defined as follows:

L^(N,q) = L(N,q) 1 <= q <=r(N/2)l
L (N'q) = MN»O + (2q-N-2)(«»(q)-2), (N/2) + l <= q
t <- (2/3)N + 2/3
L (N,q) - Lt(N,q) + (N-q) (<p( q )-2) , (2/3)N + 2/3 < q

<» N

The choice is motivated by choosing the smallest of the two terms independent

of i. in the minimum that appears in (7). Since the values i«l, ,£=q-l make

this minimum zero we only have (0(q)-2) terms in the sum. We also note that

L*(N,q)=L*(N,q) for q=(N/2)+l (if this value is an integer) and for q=N. For
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N=10, we have only three values to compute

(11) L*(N,7) = 38, L*(N,8) = 20, L*(N,9) = 22

which gives L*(10) = 137 in this case, a very good approximation (We have

used L*(N)
q=l

Proposition 3:

The following asymptotic development for L(N) holds:

(12) L(N) =Hl' + 0(N2 logN).

We can compare this proposition with the asymptotic behavior of the asymptotic

behavior of the upper and lower bounds that were proven in [Be et. al.]t

(13) L (N) - (3/47T2)N + 0(N2logN) 0.076N3

(14) L (N) - (10/97T2)N + 0(N2logN) 0.112N3

We have computed L(N) and L'(N) (the leading term of the asymptotic formula

12) for N=100 and found the following values

(15) L(N) = 104,359

(16) L'(N) = 104,949

The relative error between these two values is only 0.5%. In order to prove

Proposition 3, we need to introduce some preliminary lemmas.

Lemma 1

2 Ud)| = O(loglogn)
din d

2 I - O(loglogn)
din d
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Proof: The first sum is over the divisors that are square-free;
it coincides with H A + 1\- This is clearly as large as

p|n \ p/
p prime

possible if n is itself the product of the first r primes,
n = p , . . .p r - We now estimate r and pr. We have

logn * 2 l°SPi^ C p t

by [Ha-Wr, Theorem 414]

Also p ss rlogr , by the Prime Number Theorem

.". logn £ Crlogr

.". r £ C logn
loglogn

Now log n (! t 1\ ̂  2 iS loglogpr
p|n V p/ p^p r p

Thus II (1 + i\ = O(loglogn)
p|n \ p/

To prove the second estimate, one needs to show that

2 1 / 2 JM(d)l z c
din d / din d

We have 21
din d dn d

2
[ |n
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n2

Let F(x) 2i
(Jt.n)-l
i*x

2 ~ fxI ^_
l~

Pin 1P

( p < x )

|, y f X 1r,f. i"]
q j n

- _ r x ]
^ [pqr

-2 -+2-
p|n p p|n

qjn

pq •) + error

n

error -L. + ... s 2
p n P pq

pq

d|n
d <x

d n
= O(loglogn)

By Lemma 1

The distribution function F(x) of the number of i's relatively prime

to n, for xsn is given by

F(x) 0(n)
n x + O(loglogn)

We obtain the following corollary:

2
isn
I

= F(b) - F(a) = (b-a) -^^- + O(loglogn)
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_
Si

b ,b b
f xdF = xF(x) - J F(x)dx
a a. a.

X + O(loglogn) (b-a) - -

y x2 0(n) I + (b-a) O(loglogn)
2 ~~~n

b2 - a2 + (b-a) O(loglogn)
n

J xdx + (b-a) O(loglogn)

Proof of Proposition 3:

First we want to deal with the term

z
i

2q-N-2, q-^-1, 1-1, N-q

TNI
Where q has been fixed in the range lyj + l^q^N, and the summation

takes place over L, lii^.q, (I, q) = 1. Clearly we can assume l<i <q

otherwise the corresponding term is zero. First we divide the range of

q according to whether N-q<2q-N-2 or not.

In the first case 2N + 2<3q so

If lyj + 1£ q *=. I — •= — I , and we graph the minimum as a function of i we

have a trapezoid. That is, for small 1 the minimum is 1-1,

for i near q the minimum is clearly q - i - 1 and in the middle range we

have 2q-N-2, and we only have to find the cut off points:

1-1 ~ 2q-N-2 T±

2q-N-2 i q-J-1
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The middle range Is compatible because of the assumption on q that

2q-N-2<- N-q.

The sum

2q-N-l N-q q-1

5 (i-1} + 2?-N

can be written using the corollary to Lemna. .1 - --•

&&• (2q-N) (N-q) + 0(N. loglogN)

Over the remaining range of q we get exactly the same expression. Hence

N. N /A(a \ v
L(N) = £ q#(q) + T (N-q+2)0(q) + Z /-Siiai (N-q) (2q-N)| + O(NloglogN)

l q '

Now recall that the distribution function 4> of (q) is known to have

the asymptotic behavior [Ha-Wr, Theorem 330]

and hence the asymptotic behavior of L(N) can be computer from the above

expression using Stieltjes integrals and integration by parts as we did with the

Corollary of Lemma 1

/ xd 4Kx) - 3- T- + 0(N2logN)

N

- (N+2-x) d4Kx) = i- N3 + 0(N2logN)

2
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(N-xH2x-N) 3^ [2/3 _ |N)3 \ _

\ /

= 7-7 + 0(N2logN)-

Using these three integrals together and noting the discarded term is

only 0(N2loglogN) , we have

UN) = z + 0(N2logN).

We are now ready to study the asymptotic behavior of the error in the

offset estimate. Let us recall that for a given period q, the minimum width

of the channel parallel to the line B (Section 2) is 1/q. We set

(17) S(N) = 2 (l/q)L(N,q)
q=l

Then the average offset error incurred by using the line parallel to B passing

through the middle of the channel is given by

(16) E(N) = ((1/2)S(N))/L(N)

when we use the uniform distribution on digital lines.

Proposition 4: The asymptotic behavior of S(N) and E(N) is given by

(17) S(N) = (6(l-log2)N2)/7T2 + O(NlogN)

(18) E(N) = (3(l-log2)Hl/N + 0(lQgN/N2)

Hence on the average we expect an offset error of approximately 0.92/N.
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Proof

We have from (7)

N 1
S(N) = £ i L(N,q)

=

[1 1

N

(N-x)(2x-N) '

1

N „__., N
2 0(q)

•q-1
121

+ 0(N logN loglogN)

Now we can show as before

N

f N-x-2 3 N^
x TT^ 4

I
and

Hence

S(N) = —2: N2 \2 - 2 log2J + 0(N logN loglogN)

and

_ 3(l-log2) _,_ ̂/logN loglogN'
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Section 4.

EDGE DETECTION

One approach taken to edge detection in an earlier phase of our study on

subpixel accuracy was to search for the edge using a hypothesize and test

procedure. This procedure, which is described in [Be et.al.], proved accurate

in experiments. Unfortunately, it is difficult to evaluate the process

analytically, since the effect of noise on the search is difficult to

quantify.

A simple approach to the subpixel detection of edges which is efficient

and can be easily analyzed is described in this section. This technique is

based on the idea of matching the moments of a digital image window with those

of a continuous scene with an ideal edge in order to estimate the edge

position. This approach of matching moments for edge detection first appeared

in a paper of Tabatabai and Mitchell [1984]. Our assumptions that the edge

location is approximately known and that the edge orientation is known

provides simplifications which permit more complete analysis of the algorithm

performance. In addition, the assumptions enable us to make additional

adjustments for digitization .error.

The basic approach to edge detection taken by Tabatabai and Mitchell is

to set the first three observed moments of the image equal to the first three

moments of a continuous image with an ideal step edge. In their case, the

slope and y-intercept of the edge are unknown as are the grey levels on the

two sides of the edge. They use a digital disk for a window and write the

first three moments of the real edge in terms of three parameters: the grey

levels, hi and h2, on the two sides of the edge and the area, A, on one side

of the edge. They then set these three moments to be equal to the first three

moments of the observed image amd solve for hi, h2, and A.
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One desirable feature of the Tabatabai-Mitchell approach is that it is

unnecessary to know the average grey levels on the two sides of the edge

before estimating the edge location to subpixel accuracy. For the purposes of

the present study, we assume the edge position is known to within a pixel, so

unless the areas on the two sides are small, this additional flexibility may

not be very useful. On the other hand, if the regions abutting the edge have

relatively few pixels, it may be desirable to use the mixed edge pixels in

estimating the region grey levels for use in edge detection. In the procedure

described in this section, we assume that the grey levels for the region are

estimated without using the mixed pixels.

One problem with the Tabatabai-Mitchell approach is that it is based on

the assumption that the digital moments and real moments are equal if no noise

is present. While the first moments are the same, it can be easily seen that

other moments do not agree. We have not yet been able to develop an exact

formula to correct for this discrepancy, but we have been able to derive an

empirical correction formula which works well.

We now describe a procedure for detecting straight edges to subpixel

accuracy given that the orientation of the edge is known and given that the

mean grey levels on the two sides of the edge have been estimated. This

algorithm draws heavily on the work of Tabatabai and Mitchell [1984], adapting

it to make more effective use of the assumptions on the current problem.

The Simple Moment Edge Detector (SMED) seeks to find a single edge in an

nxn square window. A window width of ten was selected for the experimental

study. The window has lower left hand coordinates of (0,0) and upper right

hand coordinates (10,10). For simplicity of experimentation, we assumed that

the edge is given by a line y=mx+b where m>0, 0<=b<=10 and 0<=10m+b<=10. Let

the grey level above the edge be hi and the grey level below the edge be h2.
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Let Al denote the area above the edge and let A2=100-A1 be the area below the

edge. The ith moment, mi, of the real edge is defined by

(1) mi=Al*hli+A2*h2i.

The digital moments are computed in a similar fashion. Let xij denote the

pixel whose lower left hand corner has coordinates (i,j). Then the kth

moment, mek, is defined by

(2) mek= 2(xij)k.

The digital edge is formed by assigning, to each pixel not intersected by the

line, the corresponding grey level from the continuous image and by, assigning

to each pixel the line goes through, a weighted average of the grey levels hi

and h2. The weights are the fractions of the area of the pixel above and

below the line.

The slope of the line, m, is assumed known and the grey levels hi and h2

are assumed to be estimated from the data prior to the calling of the

procedure SMED. For the present analysis, we assume the estimates of hi and

h.2 are exact. Thus the only parameter to be estimated is the y-intercept of

the line. In the noise free case, the y-intercept can be written as a
\

function of m, hi, h2, and any one of the moments. Let yi denote the

y-intercept. Then

(3) A2=h2*yi+n2m.

The kth moment of the real image is given by

(4 ) ml=hlk* Al+h2k*A2 .

Equating the real and observed kth moments we get

(5) M>Al+h2kA2

2
Since the sum of the areas is n , we have

(6) Al+A2=n2.

Substituting (6) in (5) and simplifying, we get
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(7) A2 = 1 (Ixijk- hlkn2)
h2 -h!K'

From (3) and (7), we get

(2xijk - hlV) - n2m

k It
h2K - hi

This provides us with an estimate of y in terms of the known parameters and

the kth moment of the observed data.

An expression for the y intercept of an edge in terms of the first or

second moment of the observed window has been developed. Unfortunately, as

indicated above, the higher digital moments do not agree with the higher

continuous moments. This discrepancy will result in errors in the estimation

of a y-intercept, even in the absence of noise. This problem is explored in

the next section and an analysis of the error in the y-intercept estimate is

given in the following section.

A variation of the SMED will be described in Section 6. In this

variation, only pixels near the edge will enter into the moment calculation.

This has the advantage of using information only from those pixels we suspect

of being mixed pixels containing the edge. This approach is more reasonable

from a statistical point of view than using the entire square, but it is more

difficult to compute.
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Section 5.

DIGITAL MOMENTS

One problem in using the moment matching technique for subpixel accuracy

in edge detection is the fact that even for noise-free images, the digital and

continuous moments are not equal. Since the experimental investigation of

many choices of moment exponent (including fractional exponents), line slopes,

y-intercepts, and noise levels is costly, it is desirable to have a

theoretical analysis of the effect of this error. It is also desirable to

have some means for compensating for the discrepancy. We have not yet been

able to develop a general theoretical analysis of the problem. In this

section we introduce some empirical results and initial theoretical results.

The difference between digital and continuous moments can best be seen in

the case of a single pixel. Let L be a line going through a pixel. Let the

two regions into which the line divides the pixel have areas Al and A2. Let

the region with area Al have constant grey level hi and let the other region

have grey level h2. We now assume the grey levels are fixed and first

determine that value of Al which results in the maximum discrepancy between

real and computed moments and second determine that maximum resulting

discrepancy. Note that there is no error if Al or A2 is zero.

We define the computed second moment, c(Al), and the real second moment,

r(Al) and define the error, e(Al) by

(1) e(Al)=r(Al)-c(Al).

The functions c and r and given by:

(2) c(Al)=(hlAl+h2A2)2,

(3) r(Al)=hl2Al+h22A2' .

Substituting A2=n2-Al into (2) and (3) and substituting these expressions into
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(1), we get

(4). e(Al)=A1(h!
2+h22-2.hlh2) + Al2(-hl2-h22+2hlh2)

Differentiating e, setting the derivative to zero and solving, we see that the

error e is maximized when Al=l/2. The resulting error is

(5) e(l/2)=l/4(hl2+h22-2hlh2)

For n=10, hl=20, and h2=10, and a horizontal edge bisecting the window, the

second digital moment is off by 12% from the second real moment. The

resulting error in the y-intercept estimate can be much greater, depending on

the parameters of the edge. Analytical calculations for higher order moments

and for real exponents rather than integer exponents in the moment definition

are harder to calculate, but we believe that the moment error effect grows

with the size of the exponent.

Since the theoretical analysis of the digitization error in the second

moment is difficult for lines with arbitrary orientation and y-intercept, we

took an empirical approach to determining a correction term. Real edges with

intercepts ranging from 0.1 to 0.9 in steps of 0.1 and slopes from 0.1 to 0.9

in steps of 0.1 were digitized. Grey levels of 10 and 20 were used on the two

sides of the real edge. The window size was 10x10. For each slope the

average error in the second moment was computed. This average was taken over

all intercepts with that slope. The moment errors ranged from 167 at a slope

of 0.1 to 220 at a slope of 0.9. The average error was monotonically

increasing as a function of the slope. A linear function agreeing with the

observed values at the extreme slopes was used to represent the moment error.

The maximum difference between the value of the linear function evaluated at a

given slope and the corresponding error in the second moment was about 5.

Thus the linear approximation to the second moment provided a correction which

yielded a second moment which was within approximately 3% of the correct
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value. This contrasts with the uncorrected error of approximately 12% in the

horizontal line case.

While the above empirical correction scheme was adequate for the

experiments, a theoretical analysis of the error would be highly useful.

Under our assumptions, the y-intercept can be estimated using the sum of the

pixel values raised to any positive real power, not just the positive integers

as one encounters in using the moments. Based on limited experimentation, it

appears that the choice of exponent should vary with the slope of the line.

To determine the optimal exponent, it would be useful to be able determine the

exponent which results in the best y-intercept estimate for a given slope.

This optimization, which will be discussed later, depends heavily on a

knowledge of the dependence of the moment error as a function of the slope.

One aspect of the moment error analysis which may be approachable using

the digital geometry techniques of the previous report [Be et. al.] is the

estimation of the dependence of the moment error on the y-intercept for a

fixed slope. Consider the behavior of the digitizations obtained by

translating a line parallel to itself. The effect of this translation is to

cause the chain code describing the digitization to change by rotating the

portions of the chain code within each period. Thus the digitizations of the

various lines tend to exhibit considerable similarity. Since the moment error

is only dependent upon the relative areas above and below the edge in the

mixed pixels, one might hope that translating the edge results in a set of

pixels with approximately the same relative areas with the areas occuring in a

possibly different order. The rotation of the chain codes suggests that it

may be possible to derive bounds on the effect of line translation on the

sequence of relative pixel areas. This topic appears a promising direction

for future work. If the effect of translation on the moments can be bounded,
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then the determination of the variation in moment error as a. function of line

slope and intercept may be simplified.
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Section 6.

THEORETICAL INTERCEPT ESTIMATION ERRORS

We now compute the error distribution for the estimate of the y-intercept

of an edge given its slope, the average grey levels above and below, and the

observed grey levels. We consider a modification of the procedure outlined

previously in which observations from the entire nxn window were used. The

modified procedure is more realistic than the corresponding analysis based on

the full window.

The new intercept estimation procedure uses a parallelogram instead of a

rectangle where two sides of the parallelogram are parallel to the edge and

the others are vertical. Assuming a prior registration which is accurate to

within a pixel is available, many such parallelograms containing the edge can

be constructed. The following analysis contains parameters which are a

function of whichever parallelogram is selected.

The geometry of our parallelogram window is shown in Figure 1. The area

below the edge L and above the bottom of the parallelogram is Al. The area A,

of the parallelogram is equal to Al + A2. The bottom of the parallelogram has

height h and L has y-intercept yl. The area A can be easily computed:

(1) Al =• n(yl-h)

which can be rewritten as

( 2) yl • Al/n + h

We would like to set the real first moment of pixels in the parallelogram

equal to the digital first moment. If hi and h2 are the mean grey levels

corresponding to Al and A2, then the moment is hlAl + h2A2. For pixels

entirely inside the parallelogram, the contribution of these pixels to the

first digital moment is just the sum of their grey levels. For pixels which
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lie part inside and part outside the parallelogram, we take the contribution

to be the area of the part of the pixel inside the parallelogram times the

pixel grey level. Assume we have r pixels at least partially contained in the

parallelogram and let w(i), i»l,...,r denote the area of the part of the ith

pixel which lies inside the parallelogram. Then the first digital moment is

defined to be £ w(i)xi where xi is the observed value of pixel i. (All

summations in this section are for i-l,...,r.) Setting the real and computed

first moments equal,

we get

( 3) hlAl + h2A2 - 2

Solving for Al, we get

4) Al s - Ah2
1 ' hl-h2

Substituting into ( 2 ) , we get

yl - - Ah2
y n(hl - h2)

We now consider the modelling of noise in the above formulation. We

assume the observed value of each pixel can be written as

( 6 ) xi * yi + zi

where yi represents the noise free value and the fzi.? are identically

distributed independent normal random variables with mean zero and variance

The estimated value yl of yl, can be written, using ( 5 ) and ( 6) as

a2.

(7) A ,
A

It is easily seen from ( 7 ) that yl is an unbiased estimator of yl. The

expression for yl can be rewritten as

The second term in ( 8 ) is a weighted sum of normally distributed random
/

variables and is normal. Thus to completely characterize the error
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distribution of yl, we need only compute the variance of the second term.

This variance can be easily computed yielding

Defining the signal-to-noise ration S by

(10) SN = 101og
(^2

we see that a constant signal-to-noise ratio implies

(11) a2 = c(hl - h2)2,

where c is a constant.

For a constant signal-to-noise ratio, we have

(12) yAl~Nyl,~N(

Note that if one edge is horizontal, the parallelogram is a rectangle. If we

fatten the rectangle to be the nxn square, then r=n2 and w(i)=l for all i. In

this case

(13) yl~N(yl, c)

For fixed S^, the variance of yl is minimized by minimizing w(l)̂ +. . ,-h?(r) 2 .

For a fixed edge location, reducing the width of the parallelogram reduces the

variance. Intuitively this merely says we should take the narrowest

parallelogram that we are certain contains the edge.

The variation in the variance of yl , for fixed parallelogram width and

changing edge slope is difficult to determine analytically. If we assigned

the area within the parallelogram a grey level of one, and the area outside a

grey level of zero, then the second moment of the corresponding digitized

image is w(l)2 +. ,.-tv(r)2 . The second moment of the continuous image is

trivial to calculate. Thus the determination of the variation of

w(l) 2+. . ,+w(r) ̂  with slope is equivalent to the determination of the digital

moment discrepancy in the previous section and remarks there about methods

attacking the problem apply.
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Figure 1. Parallelogram Mask



184

Section 7.

EXPERIMENTATION USING THE MOMENTS

Two sets of experiments were performed. One set used a square window of

size 10X10. The second set used a parallelogram window of width 10 as

described in Section 6 . Three moments were considered: the first moment,

second moment and a "square root" moment. The square root moment is calculated

as follows:
i i i
M2= Al*hl2 + A2*h22.

The first step of each set of experiments was to determine the dependence

of the error in the estimated y-intercept on the true y-intercept and the

slope. In both sets of experiments there was no appreciable dependence on the

y-intercept. There was no appreciable dependence on slope in the square window

set of experiments. There was a slight dependence on the slope in the

parallelogram window set of experiments (see Figure 1 ) for the second and

square root moments. Although the dependence is slight, it can lead to much

larger errors in the estimate of the y-intercept which is also shown in Figure

1. Since the dependence appeared to be linear, a linear least squares fit was

made to get a correction term for the digital moments. The second and square

root moments were then corrected as follows:

M2 <— M2 + 328* slope + 958

Ml/2<__ Ml/2_ 7.27*slope - 12.4.

The linear corrections reduced the error between the real and digital moments

to less than one percent of the real moment.

Experiments were then run to determine the error in the y-intercept

estimate for the three types of moments using both types of windows. The slope

was varied from 0 to 1 and three signal-to-noise ratios were used (6, 9 and

13). Forty iterations for each slope were performed and the average and
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standard deviation for the error in the y-intercept estimation were found.

Figures 2 through 8 present the results of the experiments.

The results can be summarized as follows. In both cases (square vs

parallelogram windows), the first moment gave the least error in the

y-intercept and the least standard deviation of the error. For a

signal-to-noise ratio of 13, the average error in the y-intercept was about

1/10 of a pixel. As shown in Figure 3, the two types of windows had

approximately the same average error, but the parallelogram window does lead

to a significant reduction in the standard deviation. Figures A and 5 show the

improvement that results through the use of the correction term for the

digital calculation for the second and square root moments. Greater

signal-to-noise ratios affect both the average error and the standard

deviation of the error in the y-intercept estimate, as shown in Figures6 and 7.

The results of these experiments are positive and indicate that further

experimentation and analysis could lead to a fruitful, but simple procedure

that would be useful for Landsat registration.
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Section 8,

SUMMARY AND CONCLUSIONS

This section summarizes the work done in the three year study of subpixel

accuracy. We note which parts of this work were done in the third year of the

project. The fundamental question addressed in this work was that of

understanding the problem of achieving subpixel accuracy in image

registration. At the time we began our study, several algorithms for

achieving subpixel accuracy had been implemented and tested for use with

Landsat imagery. Ground truth of sufficient accuracy to test the claims made

for the algorithms was often not available. Our study was motivated by the

lack of theoretical tools for approaching the analysis of subpixel accuracy.

Two main classes of approaches were pursued in our study, edge-based

techniques and correlation-based techniques. The primary focus in the

edge-based techniques was on achieving subpixel accuracy in edge detection. A

match between edges in a sensed image and a high resolution control chip

representing the scene could then be used to estimate a registration

transformation. *

1 Several classes of subpixel edge detection procedures were explored. The

first problem studied was the estimation of the position of an edge from a set

of pixels forming a digital line. Many edge detection procedures are only

concerning with extracting the set of pixels which constitute an edge, and not

with the problem of determining a subpixel edge. Since registration

algorithms capable of registering a Landsat image to within approximately one

pixel were considered reliable and since rotational uncertainty was a minor

problem, we assumed that the subpixel edge detector would know the position of

the edge to within a pixel and that the slope of the edge was known.

Given the digitization of an edge, we looked for a real edge position



195

which was, in some sense, most central among the real edges which could give

rise to that digitization. Using work of [Do-Sm] which characterized the set

of all lines having a given digitization, we were able to derive an

upper bound on the positional error estimate of the edge as a function of the

parameters of the digital line. By using the unique translation and rotation

invariant probability measure on the set of real lines, we were able to

determine upper and lower bounds on the expected worst error in edge location

estimation. The worst error refers to the upper bound for the location

estimate given a single digital line. The expected value is then over the set

of all digital lines.

The tightness of the bounds on the expected worst case error were

difficult to estimate. For any particular edge length, the full probability

distribution of the worst case error could be computed. In [Be et. al.], this

computation was done for an edge length of ten. In that computation it was

shown that the probability that the maximum error exceeded 0.25 pixels was

only 0.0147.

An asymptotic error formula for the expected worst case error was

conjectured in the second year of the project. The primary difficulty faced

in proving the conjecture was the lack of an asymptotic formula for the number

of digital lines of specified length. An exact formula for the number of

digital lines of specified length was developed during the second year, but

the formula was unwieldy. In the third year of the project, an asymptotic

formula for the digital line count was developed. This result was then used

to prove our conjecture on the asymptotic worst case expected error. The

o
asymptotic expected worst case error was shown to be 0.92/N + 0(logN/N )".

In the second year of the study, we explored means of using grey levels

to gain a better edge position estimate than might be feasible with strictly
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geometric information. In particular, we were interested in exploring the

effect of noise in the estimation problem. A search procedure was developed

to estimate the y-intercept of an edge. The search procedure employeed

hill-climbing to evaluate the quality of an edge location estimate. An

estimated edge position was used to generate a digital image which was then

compared with the observed image. While this approach achieved a high level

of estimation accuracy, it was time consuming and we were unable to develop

any theoretical understanding of its performance.

A paper [Ta-Mi] appeared soon after the completion of the second year

work, which developed a new approach to the extraction of edges to subpixel

accuracy. This approach compares the observed digital moments of a circular

window in an image with the corresponding moments in a continuous image

containing an ideal edge with constant grey levels on the two sides of the

edge. This is used to estimate the relative areas on the two sides of the

edge in the observed image and ultimately to estimate the edge position. The

above approach to edge detection did not make use of the . power of the

particular assumptions we have made in the present study. In particular, we

assume that the edge orientation is known and the edge position is known to

within a pixel. These assumptions led us to develop an algorithm in which we

assume the grey levels on the two sides of the edge have been estimated prior

to the subpixel edge detection process. This enabled us to estimate the areas

below and above the edge from a single moment.

The effect on edge location accuracy of using different moments was

studied. The first moment produced better results than either the 2nd moment

or the 1/2 moment. It can easily be seen that the digital and the real

moments are usually different except for the first moment. Empirical

correction terms for this discrepancy were computed and resulted in a dramatic



197

increase in the accuracy of the y-intercept estimate, though the first moment

performed best.

Two types of y-intercept estimation procedures were studied. In one, all

pixels in an nxn window were used in estimating the edge location. While this

approach uses pixels which are known not to be relevant to the problem, it is

computationally simpler than the other approach studied. The second approach

used a parallelogram with two sides parallel to the edge of interest. This

approach necessitates computing the pixels which are intersected by the edges

of the parallelogram and finding the areas on the sides of this intersection.

By making the parallelogram narrow, it is possible to avoid using noisy grey

levels from pixels which are not relevant to the edge location estimation

problem. The two approaches produced similar mean estimation errors but the

parallelogram approach resulted in a significantly smaller variance.

Since the 1st moment approach yields the exact y-intercept in the absence of

noise, it was clear that some level of subpixel accuracy would be attainable

even in the presence of noise. With a signal-to-noise ratio of six, the

average error in the y-intercept estimate was less than 0.2 pixels.

The parallelogram and square approaches were analyzed used a Gaussian

noise model. The y-intercept estimator was shown to be unbiased and normally

distributed. The variance was computed in terms of the window width, the

signal-to-noise ratio, and the areas of intersection between the pixels and

the parallelogram.

A correlation approach to subpixel accuracy was analyzed in the study.

-An estimate for determining the error in using the peak of the

cross-correlation between sensed and reference images as an estimate of the

offset was developed. Simulations were used to determine the reliability of

the error estimate and to determine the errors resulting from interpolation of
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the correlation function to locate a subpixel peak. The level of subpixel

accuracy as a function of the signal noise was analyzed using simulations.

Several approaches to the analysis of subpixel accuracy in registration

were studied in this project. Theoretical predictions of subpixel accuracy

using various models and simulation results were obtained. New results in

probabilistic and enumerative problems in digital geometry were obtained in

the process of developing error estimates.



199

REFERENCES

[Be et. al] Berenstein, C.A., Kanal, L.N., Lavine., Olson, E.G., Slud, E.,

Analysis of Subpixel Registration, in Proceedings of the Second

Annual NASA Symposium on Mathematical Pattern Recognition and

Image Analysis, Houston, TX, 1984, 489-593.

[Do-Sm] Dorst, L. and Smeulders, A.W.M., The estimation of parameters

of digital straight line segments, Proceedings, 6th International

Conference on Pattern Recognition (Munich 1982) 601-603.

[Ha-Wr] Hardy, G.H. and Wright, E.M., An Introduction to the Theory of

Numbers, (Oxford at the Clarendon Press, 1971).

[Hy-Da] Hyde, P.D. and Davis, L.S., Subpixel edge estimation, Pattern

Recognition, Vol. 16, No. 4 (1983) 413-420.

[La] Lavine, D., Kanal, L.N., Berenstein, C.A., Slud, E., Herman, C.,

Analysis of subpixel registration accuracy, in Proceedings of the

NASA Sumposium on Mathematical Pattern Recognition and Analysis,

Houston, Texas, June 1983, 327-412.

[Ro-We] Rothstein, J. and Weiman, C. Parallel and sequential specification

of a context sensitive language for straight lines on grids,

Computer Graphics and Image Processing 5 (1976) 106-124.

[S] Santalo, L.A. Integral Geometry and Geometric Probability,



200

Addison-Wesley, 1976.

[Ta-Mi] Tabatabai, A.J., Mitchell, O.R., Edge Location to Subpixel Values

in Digital Imagery, IEEE Transactions on Pattern Analysis and

Machine Intelligence, PAMI-6, No. 3, 1984, 188-201.

[W-R] Weiman, C. and Rothstein, J., Pattern recognition by retina-like

devices, Technical Report No. OSU-CISRC-TR-72-8, Department of

Computer and Information Science, Ohio State University, 1972.



Appendix A. 201

Subolxel Translation-Registration of Random Fields

by Eric V. Slud
University of Maryland and L.N.K. Corp.

INTRODUCTION

Consider the problem of registering (I.e., finding an appropriate overlay by

relative translation of) a sensed planar Image with respect to a larger reference

Image supposed to contain It. In typical remote-sensing applications, both the

sensed and reference Images -will be given, at the same resolution, as arrays of

gray-level values, one value for each pixel. Both Images will typically be noisy,

due to minor changes In weather or ground features; to sensor characteristics; to

preprocessing and detrendlng; and possibly also to nonlinear filtering of gray-level

Images, for example by edge-enhancers and thresholding.

The primary model assumptions for our discussion of this problem are:

(a) there exists underlying continuous sensed and reference Images Z s(x) and

Z f f ( x ) before discretization Into pixels, where x=(x1,x2) are planar coordinates,

such that Zjt(.) and Z5(.) are Jointly strictly stationary random fields (I.e., have

translation-Invariant statistics) with rapidly decaying dependence between the

fields (ZK (x+y) , Z s(x+y)) and (ZR(y), Zs(y)) as a function of

\ \ x \ \ =(x? +z2
2)1/2 (see I2) for Precise conditions and definitions: ZR and Z$

CO

must be <j> -mixing with £J r $l/s (r) < oo );
r=l

(b) there exists an unknown translation-parameter 9=(8l,92'), a known pixel width

h, and a known kernel-function K(. , .) such that the observed sensed and
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reference gray-level arrays are

h H . .
Xs(j ,k ) = h-2J]K(s ,t }Zs(jh -t-^+a , kh +02+f )dsdt

a </

h h

XR (J ,k ) = h~*JjK(s ,t )ZR (jh +s , kh -H)dsdt
0 0

The Interpretation of assumption (a) Is as follows: we think of

ZN(.)=ZS(.) - ZR(.) as the random noise-field superposed addltlvely on the refer-

ence Image to give the sensed Image; to begin with, we assume that ZR and Zs

/
(or equlvalently, ZR and ZN ) have Jointly translation-Invariant statistics, but we

will find below that this requirement can be relaxed considerably as long as Z^

>

has translation-Invariant statistics; In addition, It Is Important that dependence

In Zft dies off quickly as points become widely separated. We Interpret (b) as

describing the mechanism by which our analog sensed Images ZR , Zs are dlscre-

tlzed Into pixels. In particular, since the coordinate-offset 6 Is the same

throughout the reference and sensed Images, there Is considerable redundancy In

the observable dlscretlzed Images XR , Xs for estimation of 6. There Is therefore

some hope of estimating 6 from large Images XR and X$ to an accuracy better

than 1 pixel. One of the main objects of this paper Is to address this possibility

quantitatively.

The fields ZR and Zs are of course assumed to be highly correlated Images

representing the same ground truth, and for Identlflablllty of location It Is quite

Important that the correlation between Z R (x ) and Z s(x+y) be small except for y

close to 0. The parameter 6 Is then Identifiable In principle from large Images
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and ( Z s ( y + 6 ) ) \ V l \ . \ V z \ < L k - To see whether and to what

extent 6 remains Identifiable from pixel data {XR(j,k): \ j \ , \ k \ < M] and

{Xs(j ,k): \ j | , | k | < L } Is precisely our problem. Note that the kernel func-

tion K models the linear transformation of a pixel Image to a gray level. For

simplicity (although all our results can be extended to general known K), and In

apparent agreement with previous researchers, we assume In what follows that

K(s,t)=i.
I

Our model assumptions are In some respects similar to, but substantially

generalize, those of Mostafavl and Smith [5] (who were, however, Interested also

In the effects of afflne distortion). In addition to (a), [5] assumed that ZR (.) and

Zs(. + 6} are directly observable and Jointly Gaussian. This restrictive assump-

tion Is not necessary for an understanding of the asymptotic distribution theory,

for large sensed Images, of the maximum-correlation estimator 0' for 0 (see

below). Moreover, Mostafavl and Smith do not take Into account the transforma-

tion Of ZR , Z$ which renders only XR, Xs directly observable. Thus their

analysis, which we extend and Improve In Section 1 of this report, only partially

establishes the consistent maximum-correlation estimation of 6. By contrast, we

derive bounds for each r on the probability of mis-estimating & (by the

maximum-correlation method) by as much as T pixels. We thereby Justify what

we call "neighborhood consistency" of registration for large sensed and reference

Images. In Section 2 we test the validity and stringency of our theoretical

bounds via simulations of noise fields superimposed on real and on artificial refer-

ence Images. Finally, we summarize and Interpret our results In Section 3.
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1. Neighborhood-Consistency of Maximum-Correlation Estimation

The reason that we do not need to assume Gaussian distributions for gray-

levels Is simply that the flxed-oflset "correlation" statistic for ZR(.), Zs(. + 0)

given by

T T

(*) C ( t ) = (2TT2 JJZR(x + t)Zs(x + 6)dx, T=Lh,
-T-T

Is asymptotically weakly convergent as a random process In t = (s ,t ) as L — *oo

to a Gaussian random field, under the precise condition of [De] on decay of

dependence mentioned In (a). If Za(.) and Zs(. + 0) are directly observable, then

a natural statistic to estimate 6 Is

0' = maximizer of C"(.) on \-T ,T}2

The most easily Interpreted figures of merit for this (and any other) estimator are

of the form

= p { \ e ' - e \< r ]
or

<r} = Sup{C(x): \ \x \ \ 0 0 <

where | | x \ \ TO = max( | x^ \ , \ xt \ ) and T0 Is a fixed size of window Inside

which we may assume 0 lies. We note that since Mostafavl and Smith [5] did not



205

treat C (.) as a random field, they did not propose to evaluate quantities QTO(T)

but rather to compare the asymptotically (In T) normal single-offset correlations

C ( t ) with either specified or "sldelobe" thresholds. That Is, their probabilistic

consideration of estimation-error depended solely on the (marginal) distributions

of C ( t } values. On the other hand, evaluation of <2r0(r) Is clearly a problem

about random processes - not simply finite-dimensional distributions - for which

we now formulate an asymptotic solution, assuming (a).

Let D ( t ) denote the expectation EC(t). Joint statlonarlty of ZR(.) and

Zs(. + ff) Implies

which would be consistently estimated when T Is large by the expression C( t ) In

(*). (In other words, [De]'s conditions Imply a law of large numbers for C ( t ) for

each t ). The stationary covarlance function

V(x - y) = Cov(C(x),C(y}) ~ r~ 2a(i-y) as T

(which defines the asymptotic covarlance <r(.)) can likewise be consistently

estimated by a fourfold Integral expression (cf. [5], where some simplifications

occur If ZR and Zs are Jointly Gaussian). The following result, the proof of

which Is sketched In the Appendix, bounds i-Qr0(r) theoretically In terms of

quantities derived from the Joint distributions of ZR and Zs which we can hope

to estimate consistently from data when T Is large and (a) holds approximately.

s
Bound on Probability of Registration Error. Assume (a), (*) and fix r>o. For
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simplicity, fix the units of measurement so that the pixel width h Is 1. Assume

T0 and T are Integers, and let

(1.1) H r = i n f { D ( f f ) - D ( t ) : |

Let r>0, and let *(.) be a positive function such that /*(e ""*)£/« <oo and
i

*2(u )log(i/u ) decreases as u |0, and assume

(1.2) \C(t)-C(0)-D(t}+D(e)\/r and | C(s )-C (t )-D (a )+D (t) \ /*( | \ t - » \ \ )
/

z

each have distribution functions <(2/fl-)1/2/e~"2eto for | (5 | | „, | \t\ |oo<

Then

00

f D \ t /~l f *?\̂ *" f \l/2//o 7* i t \2 i OTO o 7* 2 \
(.-" / l~Vr (T/^v""*.) iV*-* 0 ' 1J ' 378.21 o /

whenever

00
2)<fu + r] is > 2.36

In this result, (1.2) holds automatically If C(.) Is Gaussian and

(r a = s u p { V a r ( C ( t ) - C ( f f ) ) : \ \ t \ { < T 0 , \ \ t -0{\>r}

The approximate Joint Gaussian distributions of C(.) for large T followed from

the ^-mixing Central Limit Theorem of [2], and some variants of that Theorem

do not require strict statlonarlty (of ZR ,ZS) but only rapidly decaying dependence

with marginal distributions (of Z K ( t ) ,Z s ( t )~) not varying too rapidly with t.

Therefore we can expect, for moderately large T and realistic reference Images
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ZR with only approximately translation-Invariant statistics, and for ZN(.) station-

ary and approximately Independent of ZR (.), that the foregoing bounds on error-

probabilities should remain approximately valid. It will be the task of our next

Section to test the stringency and validity of (B) for realistic and artificial exam-

ples by Monte Carlo simulation.

2. Simulation Study of Registration Error-Probabilities

In this Section, we describe the purpose, design, and numerical results of a

Monte Carlo simulation study of maximum-correlation translation-registration of

some realistic and some artificial random fields sensed with a fixed offset and

Independent stationary noise. The general objectives of the study were

(a) to compile empirical distributions for Euclidean distances and | | %-Q \ \ and

| \6 L S ~0\ | under various conditions, where # denotes the pixel-vertex where

C(.) Is largest, and where ^5 denotes the location t of the maximum for the

least-squares quadrlc surface approximating C(x) at the nine points (j ,k) with

j and k= -1,0,1;

(b) to compare the performance of 9 and 013 with a view to examining the feasi-

bility of subplxel registration;

(c)- to gain Information on how large the standard deviation of additive noise

must be compared to gray-level standard deviation In various reference Images

before pixel-level and subplxel registration (estimation of 8} Is seriously degraded;

(d) to check the validity and usefulness of the theoretical results of Section 1 for

35 by 35 reference Images, window size T=L=io, and T0= 5, where the pixel
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size h Is l.

Design of the Study

We specify now exactly what was computed In our study. To begin, we

fixed six reference Images ZR , each on the 35 by 35 grid of pixel vertices

{(J,k) : max (|j|,|k|) < 17}. The first three were artificially constructed:

for image 1, ZR (j ,k )= 55.0 - 1.5* ( | ; | + | k \ ), j ,k =-17,-16 ..... +17;

. *«.*)-{»; * JJ f«

The remaining three (numbered 4, 5, and 6) were real 35 by 35 gray-level arrays

chosen more or less arbitrarily from an 80 by 125 LANDSAT Image of a rural

(United States) scene Including cultivated fields, some wooded areas, and some

roads. Before further processing, each of the six reference arrays was centered

17 17

and scaled to have average value 0 and "£ 2 Z/(j ' ,*)=!•
;'=-17 i=-17

Some further assumption was of course required to define the continuous

variation of ZR (and similarly, of Zs or ZN=ZS-ZR) within pixels. For a point

t = = ( f 1 i 2 ) in the plane, we define [*]=([* iU*a]) and {t}=t-[t} where [x] Is the

greatest-Integer function of x. Also let e1=(i,o), e2=(0,l), and e=(i,i). Con-

sider the following two model-assumptions for a random field Z: for

(Ml)
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or

(A/2)

Assumption (Ml) would mean that Z at a point t Interior to a given pixel J

takes a value which Is a weighted average of the values at the corners of / with

weights proportional to the area of overlap of a unit square with lower-left corner

t with squares whose lower-left corners are the four corners of /. Assumption

(M 2) would mean that the field Z Is homogeneous within each pixel

[ j . j '+i)x[fc ,k+l). For the purpose of our study, we took Z^ = Zs - ZR always

to satisfy (Ml), with ZR satisfying (Ml) In Study 1 described below and satisfy-

ing (M2) In Study 2.

It remains to tell how the oflset 6 and the noise-process ZN at lattice points

were generated. On each Iteration of each simulation, Z N ( t ) was denned for

lattice-points t with | | t \ |oo<i7 by

(2.1) Z N ( t )= £ £ &1+;.<a+t W( j , k )
/=_! Jt=-l

where {&,„,} was a simulated array of Independent Identically normally distri-

buted random deviates with mean 0 and variance a2 (another design-parameter In

the study), and the W(j ,k) were fixed weights which took the form

f 1/36 1/9 1/38 ^
W1 = I 1/9 1/4 1/9 I in Study 1 where (M. 1) was assumed for ZR

I 1/36 1/9 1/36 '

( 0 1/4 1/4 \
W2 = 0 1/4 1/4 m Study 2 where ZR satisfied (M. 2)

^ 0 0 0 '

The oflset-vector 0 for each simulation-Iteration was generated uniformly In [O.i]2.
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The correlation-statistic C(.) was computed, for each lattice-point In the

square [-5,5]2, as follows. First, the expectation-term D ( t ) was calculated as a

sum rather than the Integral In Its definition from Section l:

. 10 10

(2.2) z?(o = -J— s S zR(j ,k)ZR((j ,k)+e-t)
(21)z ;_io*— 10

This modification was made for two reasons: (1) although the Integral could,

under either assumption (Ml) or (Ml), be expressed as a weighted sum of terms

ZR (x ),ZR (y ), the weights would depend on 8, and It was computationally much

easier to make use of the equally plausible definition (2.2); (2) In actual practice,

In the absence of a validated model assumption like (Ml) or (M2), (2.2) Is the

definition one would use, with sums similarly replacing Integrals In the definition

of C (.). Then C (t) - D (t) was calculated as

(2.3) C ( t ) - D ( t ) = -±- S E Z n ( j , k ) Z r t ( ( j . k ) - t ) .
(21) j=-io t=-io

In this definition we have replaced (4T2)"1 for T=io by (21)~2 and modified some

boundary terms, but (2.3) Is otherwise the same as In Its double-Integral

definition If ZN(.) had been made up of Independent N(o,<72) variables at lattice

points and had been Interpolated according to (M. 1) while ZR was Interpolated

according to (Ml) or (M2). [For example, under (M. 1) for both ZR and ZN ,

( 2 L r J + i ) i

36
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Results of the Study

Two simulation experiments were performed on the DEC 2080 at Cornell

University, Study 1 with 450 Iterations using weight- matrix W \ and Study 2 with

250 Iterations using weights Wz. For each Iteration, one oflset 9 and one array

{£jt} was generated for each of six reference Images, and D ( t ) and C ( t ) - D ( t )

were calculated according to (2.2) and (2.3) with <r=l. Then for each of a

number of different values of a, the arrays {D (t )+<r (C( t ) - D (O)}< :«,.<£=-* ..... +5

(correlation-statistic arrays corresponding to the noise-fields a ZN(.) generated

from the same random numbers ) were used to calculate estimators # (the

lattice-point t corresponding to the largest array element) and 8LS (the

maximum-point (x ,y) for the least-squares quadrlc surface for the nine

correlation-array values at &+(j ,k) , j ,k = -1,0,1). In addition, a third estimator

was defined as

~0 = 1) + .5 * (sign (df5 - 0J, sign (df5 - dj),

in order to check whether any possible Increase In accuracy of tf over # might

simply be ascribed to allowing Q18 to take values In the Interiors of pixels. For

each reference Image and each of seven values of <r, the empirical distribution

functions P of | \ d - 0 \ |, FLS of | | 9LS - 8 \ \ , and F of | \ ~ 9 - 6 \ \ were

tabulated, at Intervals of 0.1 In Study 1 and of 0.125 In Study 2. (The empirical

distribution function of a simulated quantity Q at the point x Is simply the rela-

tive frequency with which the value Q Is <x ). For selected values of a, the

empirical distribution functions f and FLS are displayed In Figure 1. In Table I
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are exhibited, for selected c and all six reference Images In Study 1, the empirical

upper-quartlle values for the distances | | 0 - 6\ \ , \ \ e1-5 - 0 \ \ , and | \~6 - 0 \ \

(that Is, the smallest values x for which the respective empirical distribution

function values exceeded 0.75), obtained by linearly Interpolating the empirical

distribution functions from Study 1. Further tabulation of the empirical distribu-

tions In Studies 1 and 2 Is omitted because of the similarity of the results to Fig-

ure 1 and Table I.

3. Discussion and Interpretation of Results.

The results of our simulation experiments are summarized roughly In Table

I, In which we remark:

(1) for all six reference Images (but especially for the real Images, numbers 4-8,

and the smaller values of a ), the least-squares estimator 615 gives a noticeable

Improvement In accuracy over 0 In estimating 6; for all the Images except number

l, the artificial estimator 9 (which Is an attempt to bridge the gap between # and

&15 by shifting 9 to the center nearest ^ of a pixel with vertex 0) is markedly
\

worse than both £ and f^5; thus, for the types of moving-average Gaussian noise

fields studied, the subplxel Improvement of # by &13 makes O15 the estimator of

choice for 6 (In the absence of more detailed geometric Information about ZR );

(2) Images 1 and 3 (both artificial, with strong geometric structure, and quite

nonstatlonary) show very little advantage for 615 over 8, except for the smallest

value of ff, and show very rapid loss of accuracy as a Increases (e.g., the upper-

quartlles In Table I for | | ̂ 5 - 6 \ { are larger for Images l and 3 than for the
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other

Images, with p only half as large or less );

(3) the accuracy of # Is relatively Insensitive to the noise-level parameter a for

the real reference-Images (4-6), and | | S - 8 \ | 2 Is less than 0.5 pixel, for c

between 0.4 and 1.2, roughly 75% of the time; for these Images, | \6LS - 0\ j 2

has upper-quartlle ranging from .2 to .5 pixels as 6 ranges from .4 to 1.2, and the

advantage of ff15 over 0 deteriorates as a gets longer than 1.0.
/

Indeed, Figure 1 and the tabulated empirical distribution functions In Stu-

dies l and 2 (not presented here) strongly support conclusions (l)-(3) as well as

the following generalization: for Images 2 and 4-8, when | | # - 6 \ \ Is less than

about 0.8 pixel, | \9LS -6\ \ Is (stochastically) smaller than | | 0 - 6 \ \ by 0.1

pixel or more for small a (but this advantage Is diluted by larger a}. Quite gen-

erally, for all six Images, there seems to be no advantage of ff13 over 0 when

| | 0 - 6 | | Is 0.9 pixel or more.

We next discuss the accuracy of the empirically estimated numbers In Figure

1 and Table I. All the distribution function values p are with approximate pro-

bability I-Q contained In the symmetric Interval of length p (i-p ^"^i-—)/v/"~
2

around the empirically estimated values, where * Is the standard normal distribu-

tion function and n Is the number of Iterations In the simulation. With n =450,

substituting 1/2 for p , we find the conservative (1-a) quantlles for each t:
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(.019 if a=.10
percentage points for | Feit ( t)-F ( t) \ = | .023 if c*=.05

1.026 if a=.02

In order to take account of our having estimated values F (t ) by empirical esti-

mates F e t t( t) for many t simultaneously, the Kolmogoroff- Smirnoff approximate

percentage points for n =450 are relevant:

(.058 0=.10
percentage points for sup {Fett(t)-F (t): 0<f<oo} = I .064 o=.05.

1.077 0=.01

Finally, In Table I we have empirically estimated upper quartlles for random

variables like | | 0 - Q \ \ . Although It Is hard to assess the accuracy of the linear

Interpolation we have used, the ordinary binomial-normal confidence Interval

(with n=450 ) for any t near the upper quartlle of F(.) (with F ( t ) near 3/4)

yields F ( t ) with 98% probability In the range Fttt ( t ) ± .02. Therefore, we can

ascribe extremely high confidence to the first decimal place of the upper-quartlle

estimates, and If F(.) (e.g. the df. of | | 0 - d \ \ 2) were approximately linear

within Increments of .1 for x between 0 and 1.7, we could have approximately

98% confidence that the error In upper-quartlle estimates would be at most .02.

It Is striking that, when the standard deviation of superposed Gaussian noise

Is a fixed proportion of the "sample standard deviation"

the estimation of 0 Is actually more accurate for the real reference Images (4-6)

than for the highly structured artificial Images (1-3). Clearly the variability

within the reference Image and the sharpness of the peak In D (t) at d Interact In

a nontrlvlal way In determining the feasible subplxel accuracy of estimation of

the offset 0. We can productively unify the theoretical results of Section l with

the simulation results of Section 2 by describing the features of the reference
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Image which seem to govern subplxel registration accuracy. An Important aspect

of this unification Is the comparison of the theoretical bounds (B) of Section 1

with the simulated empirical distribution function for | | $ - 0 \ \ .

Inequality (B) of Section 1 says that the (upper bound for the) probability

that | | 9 - 0 | | >T depends on the statistics of the reference Image only through

oo

2. = Z,(T) = HT/(r + -2-

where HT r, and ^ are given by (1.1) and (1.2). In our simulation studies, where

T =10 and T0=5, for each of six reference Images the quantities HT r, *, and

*(1.414) are given In Tables n and HI. Only the values of *(u ) for o<u <i/2 are

relevant in calculating Z,(T), and for purposes of approximate calculation we

treat *(.) as being linear on (0,1), In which case 2(v/2-i)~1/*(2~"8)<fu=i.22 *(i). In
i

further calculations, we therefore estimate X,(T) by Hr/(T+i.22 *(!))• Now

oo

according to (B), with T0=5 and T=io, and the Inequality JV'a/2<fc <e~*2/*/x ,

(3.1) P{\ \ 9 - 6 \ \ > T } < 8900 (e

The right-hand side of (3.1) Is approximately .75 for x,=4 and .01 for i, =4.5.

We show in Table IV, for all six reference Images, the smallest r (Interpolated

between multiples of .7 pixels) for which z,(r)>4 when cr=i. (Note that reducing

a by the factor 1/2 does not change HT but multiplies both r and * by 1/2, so

that it Is Inversely proportional to a ]. Table IV already Indicates why 9. Is

harder to estimate for reference Images 1 and 3 than for the others. A com-
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parlson between Tables I and IV indicates that while upper quartlles for

| 10 - 61 | can of course not be reasonably predicted via the bound (B),

nevertheless there Is some value In the flgure-of-merlt x,(r) (estimated by

//r/[r-ri.22 *(!)]) for discriminating those reference Images for which 0 Is easier to

estimate (2 and 4-6 In our cases).

Summary:

According both to theoretical Inequalities and the simulation study reported

here, automatic subplxel registration with respect to real gray-level reference

Images (assumed to be observed translated, with a stationary noise field added to

the pixel gray-levels) seems quite feasible. The present simulation study one

of the first systematic performance evaluations of the maximum-correlation

method of Image-registration and of a known effective variant based on maximiz-

ing a least-squares quadrlc surface locally approximating the (discrete)

correlation-statistic near Its (discrete) maximum shows that even If the addi-

tive noise has standard deviation as large as that of the 35 by 35 reference Image,

the upper quartlle of the error In registration need be no more (and may be much

less) than .25 to .5 pixel.
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Appendix. Proof of upper bound on misregistration probability

Let Y ( t ] be a real-valued separable random field on [0,2 T0]
d where d >2 and

2 T0 are Integers, and let 5 be the complement In [0,2TQ}d of a convex set.

Assume also that for s, t£S, fixed r, and a non-decreasing continuous function *

CO

satisfying Jv(e~x )dx <oo and *2(u)log(i/u ) decreasing In u , that
.1

(A. 1) | Y( t ) | /F and | Y(t )-Y(s) \ /*( | \ t - s \ \ 2) each have distribution

! x

functions (at x) < (2/-7r)1/2/e'^du.
o

Lemma A.I. Under the foregoing assumptions, whenever x >(4dlogn )1/2, where

n >2 Is a fixed Integer,

oo
2P {sup (I y ( « ) | : t£S} >x(r+-2—f*(n- t t3)du) } <C(d,n)fe-u*'adu

V2-1 i ,

where

T n^ aogn /a
0 ^ ;

The proof, which we omit, Is a direct Imitation of the method of [4], using

for each 165 a sequence k (p )/c (p) of points In S such that

| | c (p ) t - k ( p ) | |oo<l. where k ( p ) has Integer coordinates and c(p)=2T0n* r

for p >i. We must remark that Marcus assumed his random process Gaussian

although he used only the property (A.I) (In the one-dlmenslonal case). Lemma

A.I Is a simple generalization of the main results of [4] to the d-dlmenslonal case.
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Now specialize to the case d—1 and n=2, replace [o,2T0]
d by [-T0iT0]'

2, and

fix 0ei-T0,ro]2 and r>o. Let S = {t € !-T0,T0l
2 : I \ t - 4 \ \>T}, and put

y([) = C(t)-C(d)-D(t)+D(6}, where C and D are as \n Section l. Then

M Ii<r0 , \ \ t - 4 \ |a>r}>

(0 : <r. t-9

and putting HT = inftD (S)-D (t ) : | |t| |i<ro> | \ t - 0 \ \ 2>r} and applying

Lemma A.1 yields the bound (B) of Section 1.



Figure 1

These graphs display the simulated empirical distribution functions for

| | 0 - 0 | | 2 (lower curves) and | \9LS - 9\ \ 2 (upper curves) from Study l

(n=450). For reference Image l, the graph corresponds to a — .2; for Image 2,

to a = .4; for Image 4, to a = A; for Image 5, to a = .8; and for Image 6, to

a = 1.2.



Table I

Triples of empirical 75th percentlle values for

(I I 3 - * I I 2' I I 6LS ~ 6 I I 2, I I * - s I I 2) from Study 1 (450 Iterations), for

each reference Image and each of three values of a.

a Image l a Image 2

.10 (.83, .64, .80) .2 (.50, .24, .58)

.20 (1.45, 1.32, 1.31) .4 (.58, .46, .73)

.30 (2.1, 1.86, 1.94) .8 (.86, .8, 1.02)

a Image 3

.12 (.62, .55, .90)

.24 (.67, .64, .97)

.38 (.8, .82, 1.1)

a Image 4 Image 5 Image 6

.4 (.49, .26, .59) (.48, .19, .55) (.49, .19, .53)

.8 (.51, .36, .66) (.50, .44, .64) (.51, .28, .60)

1.2 (.57, .50, .75) (.57, .52, .80) (.55, .41, .68)



Jqble II T vs. Hr for six reference Images

.7
1.4
2.1
2.8
3.5
4.2
4.9
5.8

/6.3
7.0

Image 1

.014

.027

.082

.098

.150

.202

.235

.329

.399

.489

.212

.382

.551

.636

.808

.890

.975
1.0
1.0
1.0

.034

.069

.103

.103

.137

.172

.172

.322

.372

.422

.187

.401

.518

.518

.580

.590

.590
1.0
1.0
1.0

.244

.434

.530

.608

.643

.678

.678

.734

.770

.866

.197

.461

.662

.862

.669

.669

.669

.720

.850

.895

Table m
T, *(1), and *(>/2) values (for o =1)

Image
1 .0453 .0075 .0105
2 .0615 .0207 .0284
3 .0538 .018 .022
4 .0603 .030 .035
5 .0581 .025 .029
6 .0588 .028 .034



Table TV

Smallest r (linearly Interpolated from HT between multiples of .7 pixel) for

which z, (r)>4, for six reference Images and four values of a.

Image 1 2 3 4 5 6

a=

1 7.0 1.3 5.5 1.4 1.1 1.1

.5 5.2 .8 3.7 .7 .5 .7

/25 3.4 .3 1.5 .35 .3 .3

.125 2.2 .1 .7 .2 .1 .2
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Abstract

The conventional approach to the recovery of scene topography from multiple

images is based both on the identification of distinctive scene features and on

the application of constraints imposed by the viewing geometry. We offer a new

prescription for recovering a relative-depth map. We integrate image irradiance

profiles to find dense relative-depth profiles. Our procedure neither matches image

points (at least, not in the conventional sense) nor "fills in" data to obtain the

dense depth map. Although there are outstanding problems associated with depth

discontinuities and image noise, the technique is effective.



I. Introduction

The objective of classifying areas of the earth's surface according to attributes

of that surface is central to the science of remote sensing. These attributes can

be divided into two classes: those associated •with the topological and geometrical

nature of the surface, and those related to material composition, surface coverage

and usage. A substantially different approach has been taken to ascertain the

attributes of these two classes. While remotely sensed measurements must recover

surface shape if they are to determine topological and geometrical properties of

the surface, measurements designed to elicit data regarding material composition,

surface coverage and usage have not usually sought to "understand" the shape of the

surface. Such an understanding, however, may be vital for successful determination

of those properties. We therefore address the problem of recovery of surface shape

not only to establish the topological and geometric properties, but also to provide

an underlying three-dimensional model to assist in recovering those other attributes

of material composition, surface coverage and usage.

What information is needed to determine surface shape uniquely? Previously [l]

we examined the shading information available in a single image. We concluded that

there is not enough information in the shading to determine surface shape, although

that information does constrain the possible shapes. Is there enough information

in two or more images of the surface? Certainly the human visual system can fuse

a stereo pair of images, but conventional approaches to stereo processing have not

The research reported herein was supported by the Defense Advanced Research Projects Agency
under Contract MDA903-83-C-0027 and by the National Aeronautics and Space Administration
under Contract NASA 9-16664. These contracts are monitored by the U.S. Army Engineer
Topographic Laboratory and by the Texas A&M Research Foundation for the Lyndon B. Johnson
Space Center.
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provided a completely automatic procedure for doing so. Most conventional stereo

processing systems require corrective human intervention when a deviant surface

shape is produced. This paper takes an alternative approach to processing two or

more images in an effort to understand the nature of multi-image interpretation.

First we shall examine conventional stereo methods to determine where different

procedures might be warranted. Then we present an alternative for the more

demanding aspects of the conventional approach. Finally we present the results

we have obtained and discuss their implications.

2. Conventional Stereo Processing

The conventional approach to recovering scene topography from a stereo pair

of images (or from a motion sequence) is based on the identification and matching

of distinctive scene features and on the satisfaction of constraints imposed by the

viewing geometry. Typically, three steps are required: determination of the relative

orientation of the two images, computation of a sparse depth map, and derivation

of a dense depth map for that scene.

In the first step, points corresponding to unmistakable scene features are

identified in each of the images. The relative orientation of the two images is then

calculated from these points. This is, in part, an unconstrained matching task.

Corresponding image features must be found. Without a priori knowledge, such a

matching procedure knows neither the approximate location (in the second image)

of a feature found in the first image, nor the appearance of that feature. We may

often assume that appearance will vary little between images and-that they were
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taken from similar positions relative to the scene, but this assumption is based on

a priori knowledge of the acquisition process.

Recovery of the relative orientation of the images reduces the computation of

a sparse depth map from unconstrained two-dimensional matching to constrained

one-dimensional matching. The quest for a scene feature identified in the first

image is reduced to a one-dimensional search along a line in the second image.

Identification of this feature in the second image makes it possible to calculate the

feature's disparity, and hence its relative scene depth.

Identification of corresponding points in the two images is based primarily on

correlation techniques. Area-based correlation processes may be applied directly

to the raw image irradiances or to images that have been preprocessed in some

manner. For example, edges (identified by the zero crossings of the Laplacian of

their image irradiances) have been used in obtaining correspondences.

The outcome of this second step is a sparse map of the scene's relative depth

at those points that were identified in both images of the stereo pair.

A sparse depth map does not define the scene topography. The third and final

step in recovering the topography of the scene is "filling in" this sparse map to obtain

a dense depth map of the scene. Typically, a surface interpolation or approximation

method is used as a means of calculating the dense depth map from its sparse

counterpart. A surface approximation model may be formulated to provide desirable

image properties (such as the lack of additional zero crossings - in the Laplacian

of the image irradiances - that are artifacts of the surface approximation model),

but often the surface model is based on a priori requirements for the fitted surface,

such as smoothness.
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The problems encountered in the first two steps - recovery of the relative orien-

tation of the images and computation of the sparse depth map - are dominated by

the problems of image matching. False matches that arise from repetitive scene

structures, such as windows of a building, or from image features that are not dis-

tinctive (at least, on the basis of local evidence) occur more frequently in the uncon-

strained matching environment than in the constrained environment. Fortunately,

in recovering the relative orientation of the images, we can use redundant informa-

tion in an effort to reduce the influence of false matches. This is not the case when

the sparse depth map is computed. While constrained matching is less susceptible

to false matches than is unconstrained matching, there is no redundant informa-

tion that can be used to identify problems. Furthermore, we have little choice as

to which features we may use for sparse depth mapping; if we choose not to use a

feature, we cannot recover the relative depth at that scene point.

The selection of suitable features for determining image correspondence is

difficult in itself. Correlation techniques embed assumptions that are often violated

by the best image features. Area-based correlation techniques usually reflect the

premise that image patches are of a scene structure that is all at one distinct depth,

whereas edges that arise at an object's boundaries are surrounded by surfaces at

different scene depths. Edge-based techniques are based on the assumption that an

edge found in one image is not "moved" by the change in viewing position of the

second image, whereas zero crossings found at boundaries of objects whose gradients

are tangential to the line of sight contradict this assumption. These would seem

minor problems, were it not for the accuracy required of the matching process.

Typically, the spatial resolution of disparity measurements must "be an order of
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magnitude better than the image's spatial resolution. Matching appears to require

distinct features whose properties are incompatible with the assumptions needed to

implement the matching process.

The third step, derivation of a dense depth map from a sparse one, is barely

adequate. While stereo pairs of images are used to compute the sparse depth map,

they have generally been ignored when the dense surface is being filled in. The

dense depth map should, in principle, serve as a potential basis for reproducing

the stereo pair of images. The computation of the dense depth map should make

explicit use of the stereo irradiance data.

While the first step, recovery of the relative orientation of the images, is not an

easy problem it does have the advantage of redundancy. We assume in this paper

that the relative orientation of the images has been computed. The most demanding

steps are the final two: computation of a sparse depth map, and derivation of its

dense counterpart. We offer a new prescription for these steps by combining them

to recover a dense relative-depth map of the scene directly from the image pair.

We use image irradiance profiles as input to an integration routine that returns the

corresponding dense relative-depth profile. Our procedure neither matches image

points (at least, not in the conventional sense), nor does it "fill in" data to obtain

the dense depth map.

First, we extract "corresponding" irradiance profiles from a stereo pair of

images. This is the epipolar mapping that allows stereo reconstruction to be treated

as a set of one-dimensional problems. Then we formulate the one-dimensional

integration procedure that returns relative depth. This is the main result presented

in this paper.
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AB _ CD

0LB COL

GH FD

D is the point (x, -z)

DN= ( s - x )

0RN= (h -z )

Figure 1 Geometrical Arrangement. The two-dimensional arrangement in the
epipolar plane that contains the optical axes of the imaging systems.

While we phrase this presentation in terms of stereo reconstruction, it should

be noted that there is no restriction on the positions from which acquisition of the

two images occurs; they may equally well be frames from a motion sequence.
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3. "Corresponding" Image Irradiance Profiles

The integration procedure takes two image irradiance profiles - one from the

left image, one from the right - and computes the corresponding relative-depth

profile of the scene. In this section we define "corresponding" irradiance profiles.

These are basically the epipolar-mapping considerations, but they provide a means

of introducing our notation and establishing the one-dimensional situation analyzed

in the next section.

We could select any coordinate frame to describe scene depth, provided that

we know the position and orientation of the optical systems relative to that frame.

Without loss of generality, we shall select a particular frame based on the optical

arrangement of the left imaging system. Scene depth recovered in this frame may

be transformed into any desired frame of reference.

If two optical systems are pointed in arbitary directions this adds a level of

complication that we wish to avoid in this presentation. We shall assume that the

left and right optical systems are such that their optical axes intersect and that,

consequently, these axes are coplanar. This restriction can be removed with minimal

modification of the model presented [2]. However, clarity of explanation is gained

by adding this restriction.

We consider a scene depth profile that is the intersection of an epipolar plane

through the two optical centers and a point in the scene. Figure 1 illustrates the

two-dimensional situation. The optical (lens) centers are points OL and OR. Two

rays emanate from the scene point D and intersect the image planes of the left and

right optical systems at points A and G respectively. The image plane coordinates

are XL and XR. The world coordinate system we adopt is based, on the optical
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arrangement of the left imaging system. The optical axis of the left system defines

the z axis. The positive z direction is from world to image, with the optical center

of the left system, OL, as the origin. The x coordinate axis lies in the plane and is

parallel to the XL axis.

The two irradiance profiles, one from the left and one from the right

image, viewed as functions of the particular coordinates XL and XR, are our

"corresponding" image irradiance profiles. We use these irradiance profiles to com-

pute the scene depth profile associated with these irradiance profiles.

By rotating the epipolar plane about the axis through the two optical centers,

we can build up the two-dimensional scene depth map by recovering the one-

dimensional depth profiles.The circumstances depicted in Figure 1 are the same for

any "corresponding" image irradiance profiles when these are described as functions

of XL and XR. Consequently, the following analysis of the situation shown in Figure

1 is independent of the epipolar plane used. Once a depth profile of the scene has

been recovered (by using the algorithm presented below), this profile can be related

to others simply as a function of the angle between the epipolar plane and the

optical axes of the imaging systems.

4. Recovery of Relative Depth

The geometrical arrangement presented in Figure 1 allows us to derive expres-

sions relating the world coordinates of the scene to the image coordinates of its

projection. The similar triangles ABO^ and CDOi, along with those of

and FDOn, allow us to write 35 = €&> an^ hence
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<"
AUr, GH — FD Km FD — LN-MN _ OgN sin <t>-DN cos <f riW — (» ^
™so OaH — FO^' DU ' FOft — LO/j+MD — ORN cos £+£>N sin #' ^^ — Vs ~ zj>

and O/fJV = (li — z), yielding

i/; (h — z) sin <j> — (a — x) cos ^

//? (/i — r)cos^+ ( « — z ) s i n ^

Solving Equations (1) and (2) for x and z, we obtain expressions for the world

coordinates of a scene point in terms of image-measurable quantities and the imaging

parameters that specify the relative orientation of the two images. The equations

are the usual ones obtained from the stereo geometry:

x = x • (3)
L //z/z,)tan <j> - xRfL + xLfR

and
tan <f> + xRh •

•7 + /R/t)tan^ — xRft, +

Equations (3) and (4) form part of the algorithm we present. Equations (1) and (2)

are used as part of our analysis of the image irradiance information available to us

in the two images.

We now turn our attention to scene radiance. Rays of light emanate from

a scene point and travel to their image projections. What is the relationship

between the scene radiances of the rays that project into the left and right images

respectively? Let us suppose that the angle between the two rays is small. The

bidirectional reflectance function of the scene's surface will vary little, even when

it is a complex function of the lighting and viewing geometry. Alternatively, let

us suppose that the surface exhibits Lambertian reflectance. The scene radiance
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is independent of the viewing angle; hence the two ray will have identical scene

radiances, irrespective of the size of the angle between them. For the model

presented here, we assume that the scene radiances of the two rays emanating

from a single scene point are equal. This assumption is a reasonable one when

the scene depth is large compared with the separation between the two optical

systems, or -when the surface exhibits approximate Lambertian reflectance. For

temporally separated images this assumption is not valid. Such images will need to

be recalibrated to remove the irradiance changes due to contrast and the like. For

images in which the scene content has changed, such recalibration is not possible.

We will consider recalibration further during the discussion. It should be noted that

there are no assumptions about albedo (e.g., it is not assumed to be constant across

the surface) and, in fact, it is not even necessary to know or calculate it. Since

image irradiance is proportional to scene radiance, for corresponding image points

we can write

/L(*'L) = /*(*'*) •

IL and //? are the image irradiance measurements for the left and right images.

It should be understood that these measurements at positions x'i and X'R are at

image points that correspond to a single scene point.

Differentiating the above equation gives

,
a)

and hence

din , , > dift
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Expressions for ^ and ̂ - are obtained by differentiating Equations (1) and (2),

as follows:

dx L _ /* + '*£ _

dxR XR tan <6 -t- fR + (XR - fR tan <t>)^

' * 'dx ~~ (h- z) + (a-

Substituting these into the preceding equation and rearranging terms, we obtain an

expression for ^, namely,

dz = /L(& -* + («-») tan 0 ) + % s ( x R tan ̂  + /fl)
dx

Note that, for clarity of expression, we have dropped the notation (z'j,) and (x1
 R)

that shows the value of the independent variable at which the image irradiance

gradients are to be evaluated. All terms that involve the image irradiance are

understood to be evaluated at corresponding image points.

We are now ready to outline an algorithm to recover scene depth:

1. Suppose we have a pair of corresponding image points, XL and XR.

We use Equations (3) and (4) to calculate z and z for the scene point.

2. Equation (7) is used to calculate ^ for this scene point.

3. Equations (5) and (6) are used to calculate a dxR for a chosen dxi.

4. The pair of points XL + dx^ and XR + dxR are corresponding image points;

Steps 1 to 3 may be repeated.

This, then, is an integration procedure that, given an initial pair of correspond-

ing image points, proceeds along the two image irradiance profiles, maintaining the

correspondence. As in other numerical integration procedures, we" can adjust the
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step size da;/, so that the scene's profile gradient, *jj, varies slowly between succes-

sive steps. In the following section we shall discuss the application of this algorithm

to scene profiles that have discontinuities.

An obvious difficulty with the algorithm, as outlined, occurs when both $*•

and -faR- are zero; ^ is indeterminate. A solution is still possible if the second

derivatives of image irradiance are not zero as well. Differentiating /x, = IK twice

gives us

dxL

which reduces to

dx

w hen and are zero. Hence

dxR

tPIR dxR

dxL
2 dx Vrf*K 2 dx

When J^L and j^ are both zero, we adjust Step 2 of the algorithm to use

Equation (8) rather than Equation (7). This allows integration through the peaks

and troughs of image irradiance.

It should be noted that scene depth profiles of planar objects have zero image

irradiance gradients and zero second derivatives. These situations must be detected

and treated separately, for, except at the object's boundaries, there is no informa-

tion available from which to assess orientation.
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Figure 2 Depth Recovery! Ideal Case. At the upper left is shown the recovered depth
from the two irradiance profiles depicted in the lower half of the figure. For comparison, the
actual depth is shown at the upper right.

The integration routine uses the information available in the geometric distor-

tion of perspective projection. It does not use the reflectance characteristics of the

scene, nor does it need to know them. The method is based on the assumption that

the scene radiances of two rays emanating from a single scene point (and entering

the two optical systems) are identical. Spatial variations in albedo and lighting are

inconsequential for this procedure.

5. Experimental Results and Discussion

The presented algorithm requires spatially continuous image irradiance profiles

as input. To apply it to digital images, we must first construct spatially continuous

profiles from their sampled counterparts. We employ simple modeling techniques,

such as linear interpolation, for this purpose.
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The result of applying the above algorithm to two synthetic, corresponding

Lambertian image irradiance profiles is shown in Figure 2. The actual depth profile

corresponding to the irradiance profiles is shown in the upper right portion of Figure

2. For this example, initial starting positions for the integration were selected near

the center of each profile. These initial positions were corresponding points, with

no error in the determination of their location. The integration process was applied

in both directions from the initial point. The recovered depth is shown in the upper

left corner of Figure 2.

A second example is shown in Figure 3. The image irradiance profiles were

obtained by "painting" the previous surface with "pigment" of continuously varying

albedo. In addition, three strips of different albedos were painted on the surface.

The eSect can be seen by examining the image irradiance profiles shown in the

bottom half of Figure 3. The processes we applied to recover depth were twofold.

First, we used a simple smoothing routine, based on moving average, to produce

intermediate profiles. This rounded the step edges associated with the albedo strips.

Next, the integration procedure was performed. The result is shown in the upper

left part of Figure 3.

You will notice small errors near the peaks and troughs of irradiance, where

second-derivative information is being used. Furthermore, there are small errors as-

sociated with albedo edges. What is happening here is that the tracking mechanism

that maintains point correspondence as it moves along the profiles is getting out of

sync. The process is "self-correcting," however, a feature that we will exploit in the

next example. Note that the continuously variable albedo change across the profiles

has no influence on the resulting recovered depth.
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Figure 3 Depth Recoveryi Painted Surface.

What would be the effect if the initial matched points were in error? We

repeat the above procedure but select initial starting points that are mismatched

by two pixels (the horizontal units in Figures 2, 3, 4 and 5). The left half of Figure

4 demonstrates the result achieved. The effect of the starting point error shows

up as depth error at positions 120 to 130 on the horizontal axis. Note the swift

correcting action, which suggests that the initial points are not critical for recovering

depth. Clearly, this algorithm has a very special feature whose implication for

stereo processing is far-reaching: approximate matches are all that is necessary for

the recovery of scene depth.

The above, examples have been based on synthetic images. We now turn our

attention to real scenes that are full of discontinuities in the depth profile, as well

as to real images that are not free of noise.

In the synthetic scene profile used in the preceding examples., we have used
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Figure 4 Depth Recoveryi Mismatched Initial Points, and Noise Concerns.

continuous-depth profiles. For real scenes this is unrealistic. At an object's bound-

aries, discontinuities in depth are likely. Because the presented algorithm cannot

integrate across these discontinuities, we need to be able to identify them. Let us

suppose that we use zero crossings of the Laplacian of image irradiance as places at

which depth discontinuities may occur. We shall apply our integration procedure,

tracking along the image irradiance profiles until we come to a zero crossing in one

of the image irradiance profiles.

If continuation implies that the scene depth gradient, g|, varies slowly, we

continue. A sudden change in gradient signals a depth discontinuity and the

integration procedure is terminated. Note that the integration routine itself signals

depth discontinuity if jj| exhibits rapid change for arbitrarily small step sizes.

This procedure also handles occlusion problems in which one view (hence its image

irradiance profile) "sees" around an object that is occluded from the other view.

Again we stop at the first zero crossing encountered in either of the image irradiance

profiles, or when jf changes too rapidly. It should be noted that the above

procedure does not require that the zero crossing from both image irradiance profiles

be matched; rather, it simply requires their detection.

Of course, there is a price that must be paid: we now need to be able to
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detect initial starting points for the integration procedure between adjacent zero

crossings. The peaks and troughs of irradiance would seem appropriate, being

invariant through most realistic image irradiance transformations that may occur

during image acquisition. Furthermore, as these peaks and troughs of the two

irradiance profiles match (considering that the value of irradiance should be identical

at matched points), the opportunity exists for correcting the image irradiances for

linear transformations in contrast. This allows for local contrast correction - an

especially important recourse for image pairs that are temporally separated. A

suggested procedure is to (1) detect the peaks and troughs in image irradiance, and

also the zero crossings of the Laplacian of image irradiance; (2) match the peaks and

troughs across the two images to provide initial points for integration;1 (3) correct

the image irradiance profiles for each profile section between peaks and troughs

for a linear transformation in contrast; (4) then apply the integration procedure,

terminating at rapid changes in gj or at zero crossings, if necessary. We are

currently giving our attention to these matters.

A serious deficiency of the present algorithm is its sensitivity to noise - a dis-

advantage inherent in any procedure that makes use of image irradiance gradients.

This sensitivity can be easily demonstrated with quantization noise alone. If the

image irradiances shown in Figure 3 are quantized to 256 different levels, the results

of applying the algorithm can be seen in the right half of Figure 4. This result

should be compared with the one shown at the upper left of Figure 3. Noise is

an undeniable problem. We have difficulty in recovering reliable depth estimates if

'We do not underestimate the difficulty of this step, but the basic assumptions implicit in cor-
relation techniques are likely to be satisfied near peaks and troughs. Some mismatch error can be
tolerated and as we can integrate through peaks and troughs of image irradiance, we have only to
detect and match the "obvious* ones.
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Figure 5 Depth Recovery! Alternative Expression for the Depth Profile
Gradient.

the signal-to-noise ratio is less than a few hundred. This sensitivity is particularly

apparent when the image irradiance gradient is small. Smoothing of the image

irradiance profiles is at best inadequate.

An approach that is competent to deal with noise (although it has other

deficiencies) is to replace Equation (7), which determines the depth profile gradient

jf from image irradiance gradients, with an expression that involves irradiance

integrals rather than derivatives. This expression is obtained by integrating the

earlier expression

with respect to the scene coordinate dx.

r'
\ IlMdx = IR(xR)dx .
Ja

Changing the integration variable to image coordinates gives
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fz 'L dx [*'" Ax
I JL(XL)-;—dxL = I IR(XR)-—dxR

Jar dXi Jao'aL

where OL, OK, and z'i, x1'R are corresponding points in the left and right images. We

replace -j^- and jf^ with Equations (5) and (6), then use this expression to compute

j|. For computation we replace the integral with finite sums. To calculate these

finite sums we use an irregular grid that is positioned at the X'L and a//? points

previously determined to be in "correspondence" as we integrated the profiles from

the starting points, QL and OR.

Figure 5 shows the results obtained when we integrated from the center of

the left irradiance profile (and from the corresponding point in the right image)

to the right. In this example the surface reflectance is Lambertian and the albedo

constant. Random noise has been added independently to each of the irradiance

profiles. While the recovered depth profile in Figure 5 is reasonable, the integration

procedure does not maintain good "correspondence" between its position in the left

image and that in the right. Consequently, we cannot handle albedo boundaries

•with the competence of the previous technique. Some combination of these two

approaches may have the desirable properties of maintaining good "correspondence"

- thus, while insensitive to noise, be effective across albedo changes. We are actively

exploring this problem in our current, research. A solution is necessary if the

presented algorithm is to become a viable technique for recovering scene depth from

pairs of real images that cannot be preprocessed to remove noise.

6. Summary

We have, presented a new approach to reconstruction of scene depth from a



238

pair of images. The technique does not depend upon matching of image features, at

least not in the usual sense, nor does the necessary matching require great spatial

accuracy. Furthermore, the features to be matched are more compatible than their

traditional counterparts with the assumptions implicit in correlation techniques.

The results point to a technique that is capable of handling changes in both

albedo and illumination. Furthermore, the technique directly yields a dense depth

map of the scene.

We are exploring several related outstanding issues. Among these are the

exploitation of depth discontinuities and the problem of reducing sensitivity to

image noise.

Besides its direct use in remote-sensing applications, the recovery of scene

geometry provides an underlying three dimensional model to assist in the reliable

recovery of attributes of the earth's surface. Competent recovery of such surface

attributes as material composition has not yet been achieved. Moreover, it is

unlikely to be until the techniques vfe use are able to truly "understand" the shape

of the earth's surface.
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ABSTRACT

The goal of this research is to develop a robust control strategy for

constructing image understanding systems (IUS). This paper proposes a

general framework based on the integration of "related" hypotheses.

Hypotheses are regarded as predictions of the occurrences of objects in the

image. Related hypotheses are clustered together. A "composite hypothesis"

is computed for each cluster. The goal of the IUS is to verify the

hypotheses. We constructed an image understanding system, SIGMA, based

on this framework and demonstrated its performance on an aerial image of

a suburban housing development.
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1. Introduction

A primary objective in computer vision research is to construct image

understanding systems (lUS's) which can analyze images based on object

models. Usually, an IUS analyzes images by constructing interpretations in

terms of the object models given to the IUS. Interpretation refers to the map-

ping between objects (e.g., houses, roads) in the object model and image

structures (e.g., regions, lines, points) in the image. During the analysis, an

IUS needs to perform the following two types of tasks:

- segmentation : the task of grouping pixels together to construct
image structures that can be associated with objects in the given
model.

- interpretation : the task of constructing mappings between image
structures and objects.

Segmentation is practical when sufficient knowledge is available about the

image to be processed and the image structures to be computed. The base of

knowledge increases as the interpretation process develops, leading to more

constrained and therefore more reliable segmentation.

Many lUS's were constructed in the late 1970's ( [BarrSl], [Ball82],

[Binf82] [Ball82].) Most systems integrate segmentation and interpretation

using-one of the following types of analysis.
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1) Bottom-up analysis: the image structures are extracted from the
image, and are interpreted as instances of the objects in the model.
For example, when a large rectangular region is extracted, inter-
pret it as a house.

2) Top-down analysis: the appearance of the object is first deter-
mined, and the associated image structures are extracted. For ex-
ample, suppose an IUS wants to find a house; the IUS invokes the
house model and establishes the descriptions of the specific image
structures to be extracted from the image.

It is generally accepted that image understanding systems should incorporate

both bottom-up and top-down analyses. Some systems use only one type of

analysis. MSYS [Barr76] developed by Barrow and Tenenbaum used bottom-

up analysis. Image structures are first segmented from the image. A set of

initial labels are assigned to these image structures (based on height, homo-

geneity, etc.) Then, geometric constraints between labels are used to filter out

inconsistent labelings. Bolles [Boll76], on the other hand, used top-down

analysis. In his system , a goal is first constructed. The system then matches

the goal, which is represented as a template, with the image. A similar

approach is used in Garvey's [Garv76] system. Other systems (Hanson, Rise-

man [Hans78|; Matsuyama [NagaSO]) incorporate both types of analysis but

use ad hoc rules to determine which type of analysis is to be used at what

stage during the analysis. Such systems often require a large set of domain

dependent control knowledge to direct the analysis of the IUS.
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It is the goal of this research to develop a robust control strategy for con-

structing image understanding systems, thus eliminating the need to use large

amounts of domain specific control knowledge in specific applications. In this

paper, we propose a general framework which enables lUS's to integrate both

bottom-up and top-down analyses .into a single flexible reasoning process. We

construct an image understanding system, SIGMA, based on this framework

and provide demonstrations of its performance on images of a suburban hous-

ing development.

1.1. Integration of hypotheses

Considering the following proposition:

If a structure of type x is present in the scene having certain spa-
tial properties, then there should exist a structure of type y having
certain properties in the image.

It is often the case that what is known about x is not sufficient to completely

characterize y (i.e., we might be able to predict its size and color, but perhaps

not its orientation). In addition, there might be many x's, each predicting the

occurrence of y, but each contributing different constraints on the properties

of y.

For example, by locating a house in the image, one may predict the

occurrences of other objects, e.g., neighboring houses. Furthermore, the

discovery of a rectangular homogeneous region in the image may also generate
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a prediction of a house. It is usually the case (depending on the object model)

that each of these predictions provides some "cues" about the occurrence of a

house and it is the integration of all these cues that may characterizes the
•

occurrence of a house adequately enough to easily recognize it.

Let us call the predictions about the occurrences of objects In the image

hypotheses. Suppose several hypotheses, which may be independently gen-

erated, are predictions about objects at the same location in the image. It is

reasonable to assume that these hypotheses are predictions about the "same"

object, although each may only constrain some subset of the properties of the

object. By integrating these hypotheses, an IUS could construct a more com-

plete description of the object and use it to direct a more effective and

informed analysis.

1.2. An overview of the SIGMA image understanding system

Figure 1-2 shows the system architecture of the SIGMA image under-

standing system. The user provides object models to SIGMA, and the results

of the analysis are available to the user through a query-answering module.

The image is first segmented by a general purpose low level vision system

(LLVS). The segmentation results are recorded in the iconic/symbolic data-

base. The high level vision system (HLVS) uses the object model either to

interpret image structures already extracted or to direct the low level

processes to search for image structures not yet discovered. During the
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analysis, the HLVS incrementally constructs an interpretation network for the

input image. A "goal" is given to the query-answering module (QAM). At

the end of each analysis iteration, the QAM is activated and "matches" the

current status of the analysis with the goal. This construction process contin-

ues until the "goal" is accomplished (i.e., a successful match between the

current status of the analysis and the goal) or no more interpretations can be

constructed. At this stage, the QAM provides the current status of the

analysis. In the following subsections, we present each module of SIGMA in

more detail.

1.2.1. The low level vision system

In SIGMA, the LLVS is formulated as a domain-independent goal-

directed segmentation system. A goal, which is described by a list of con-

straints on the image structures to be computed, is given to the LLVS. The

LLVS uses general segmentation techniques to extract such image structures.

Other systems have been constructed to perform goal-directed segmentation -

e.g., Selfridge [Self82] and Nazif & Levine [Nazi84].

Our approach differs from the approaches taken in these systems. We

assume that many specialized methods are needed to extract image features

from the image. An LLVS needs to select, from a pool, methods that best suit

the task. Furthermore, new methods are frequently developed that can aug-

ment or replace the methods currently used by the LLVS. It is important to
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design an LLVS so that adding methods to it is easy.

Our LLVS is based on a select-and-schedule strategy. When the LLVS is

asked to verify some hypothesis, it first selects those methods which are appli-

cable by matching the hypothesis against a decision table. Then, the LLVS

schedules the selected methods according to their potential. If one method

fails to verify the hypothesis, the next method will be tried until the

hypothesis is verified or until all methods have been tried and have failed.

This approach is similar to the "blackboard" method [Davi77] and the "con-

tract net" idea [Smit78]; but the implementation here is simpler. For a

detailed discussion of the LLVS, see [Hwan84].

1.2.2. The high level vision system

The high level vision system (HLVS) uses object models to interpret data

recorded in the iconic/symbolic database and construct an interpretation net-

work. The HLVS uses the integration of hypotheses principle to direct

analysis. This is implemented by the following reasoning steps.

1) Hypothesis generation: the HLVS generates hypotheses about
occurrences of objects in the image.

2) Hypothesis integration: the HLVS clusters "related" hypotheses
together.

3) Hypothesis abstraction: the HLVS computes a "composite hypothesis"
for each cluster.

4) Hypothesis verification: the HLVS selects hypotheses and verifies them
by computing values for those attributes which are not completely
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constrained.

The HLVS performs the reasoning iteratively. At the end of each itera-

tion, the HLVS checks whether the "goal" is accomplished by activating the

QAM. If the goal is accomplished or no more interpretations can be con-

structed, the construction process terminates and the status of the analysis is

available through the QAM.

1.2.3. Query-answering module

Potentially, SIGMA constructs all possible interpretations for an image.

However, SIGMA needs to select, among many interpretations, a good one as

its conclusion. Instead of finding a "best interpretation", we model this selec-

tion process as a database query answering process. A program (QAM) was

developed to answer simple queries about the interpretation network and to

display the associated image structures.

The goal of the analysis is provided to the QAM as a query. Whenever

the QAM is activated (by the HLVS), it matches the goal with the interpreta-

tions already constructed. If any interpretation that satisfies the goal is

found, the QAM enters into an answer mode and provides a query-answering

capability for selecting "good interpretations" and displaying the explanations

for these interpretations.
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1.3. Outline of the paper

We first present the knowledge representation paradigm used in SIGMA.

In Section 3, we discuss a framework for performing hypothesis integration
•

and abstraction. This is followed by a detailed description of the system con-

structed based on this framework. Conclusions are presented in the final sec-

tion.
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2. Representation of object models

2.1. What to represent?

The knowledge representation formalism determines a general framework

for organizing the necessary knowledge into a knowledge base and supports a

powerful inference mechanism for guiding the recognition of a specific scene.

An appropriate knowledge representation tool can often simplify the task of

transferring problem domain expert knowledge into knowledge bases in com-

puter systems.

Consider the following house model:

A house is "rectangular" or "L-shaped"; its area is larger than
1000 square feet but no larger than 2500 square feet. A house usu-
ally belongs to a group of houses which are on the same side of a
road. Roads can be found near the house. Usually, the road is
parallel or perpendicular to the house and a driveway connects the
road to the house.

Based on how an IUS uses such a model to locate houses in a given image, one

can categorize this scene knowledge into the following classes.

l) What to look for. This class of knowledge describes the appearances of
objects (e.g., the type of image structures associated with objects.) In the
house example, the appearance of the house is a homogeneous compact rec-
tangular region. To locate houses, an IUS segments the input image and
identifies as houses those regions which are rectangular and compact and
whose sizes are between 1000 and 2500 square feet.

2) Where to look. This class of knowledge includes the geometric and topolog-
ical relations between objects. The knowledge base might, for example,
specify (based on connectivity, relative orientation, etc.) relations between
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driveways, houses, and roads. An IUS might, if one of these objects is
discovered (say a driveway), use this relation to initiate and constrain the
search for other objects (e.g., a connected house and road) not yet discovered.
An IUS might also use such relations to examine whether a house, a driveway,
or a road already discovered satisfy the required relations.

3) When to look. This class of knowledge describes strategies regarding the
application and confirmation of relations. One the one hand, we often want to
postpone applying a specific piece of relational knowledge until sufficient
information has been obtained to strongly suggest that the relation may be
applicable. On the other hand, since the confirmation process often involves
the searching of image structures associated with other objects, we might also
want to postpone the confirmation of a specific relation until a sufficient
description of the object to be searched is collected. For example, when the
IUS generates a house hypothesis, instead of searching for an image structure
associated with it immediately, the IUS might postpone the search until a
sufficient description of the house (e.g., shape, intensity, etc.) is available.

A principal objective of this research is to develop a representation

scheme which simplifies the task of capturing domain knowledge as a

knowledge base for lUS's. This section presents the knowledge representation

scheme used in the SIGMA system. Note that the scene model is used mainly

by the HLVS (High Level Vision System) module in SIGMA.

2.2. Basic representation primitives

Our representation formalism is based on frame system theory [Mins75],

semantic networks [Wino75] [Hend79], and an object oriented problem solving

style [Stee79] [WeinSO] [Gold83]. In SIGMA, object models are represented as

a graph structure of nodes and arcs. Objects are described by "frames" (nodes

in the graph structure) while relations between these objects are described by

"rules" and "links" (arcs in the graph structure). In such a formalism, domain
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knowledge is built around a set of objects and a set of operations that can be

applied to them.

The basic entities of the representation are called frames and are used to

model abstract objects in the problem domain such as "house" or "road".

Each frame may have many associated descriptions that are defined by slots.

Slots are similar to "property lists" in LISP. Each slot is a list which contains

an indicator (i.e., name) and a value.

In addition to slots where values are recorded, we can also associate with

frames all the knowledge which is used to compute values of slots. We

represent this type of knowledge as rules.

Rules used in this context are procedural—i.e., the knowledge about how

to compute values of slots is encoded in programs. As mentioned above, these

"programs" are written using an object-oriented programming style.

Objects in the scene domain are often structured into hierarchies. It is

often natural and convenient to preserve these hierarchies when we construct

the scene model. Links are used to describe the hierarchical relations between

objects.

One object hierarchy often used is the generalization/specialization

hierarchy; CAN-BE and AKO links are employed to describe it. Link CAN-

BE describes a frame and its specializations while link AKO describes a

frame and its generalizations.
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Properties are inherited through the AKO link. This usage is similar to

the "property inheritance" in semantic networks ( [Moor79], [NilsSO].) All the

knowledge recorded in frames that are linked to a father frame by the AKO

link is inherited by that frame. For example, both the RECTANGULAR-

HOUSE and the L-SHAPED-HOUSE have centroid, shape-description, front-

of-house, and connecting-driveway slots. Also, both the RECTANGULAR-

HOUSE and the L-SHAPED-HOUSE can use rule Fdriveway to compute the

connecting driveway.

Often, the HLVS needs to reason across the CAN-BE link. For example,

suppose the HLVS needs to compute the shape of a house. The HLVS is not

able to do the computation since there is no such rule recorded in the HOUSE

frame. Instead, the HLVS needs to reason about what specialization to choose,

i.e., RECTANGULAR-HOUSE or L-SHAPED-HOUSE. The strategies for this

type of reasoning are called specialization strategies and are encoded as rules

and recorded in frames. Attaching such search strategies using CAN-BE links

is similar to the process of "plan elaboration" in Garvey's system [Garv76]

As an example, suppose that there are two type of houses, rectangular

and L-shaped, in community A. Every house has a driveway. However, each

type of house has a different appearance. Suppose Frectangle is a rule which

computes the shape description of a rectangular house, and Fdr^ev/ay is

another rule which finds the driveway connecting to a rectangular house. Rule

computes the driveway of a house. We can write the 'house model as
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shown in Figure 2-1. In this model, the HOUSE frame is a generalization of

the L-SHAPED-HOUSE frame and the RECTANGULAR-HOUSE frame while

the L-SHAPED-HOUSE frame and RECTANGULAR-HOUSE frame are spe-

cializations of the HOUSE frame. Their hierarchical relations are shown in

Figure 2-2.

2.3. Instantiation of a frame

Frames are the prototypes of objects. The SIGMA system uses frames as

models to construct interpretations of the image by making instances of

frames. An instance is a copy of a frame. The process of making instances is

called instantiation. At instantiation, values can be assigned to slots. These

values may be the "defaults" (specified in the frame definition) or may be

computed using rules. Since all instances are recorded in the iconic/symbolic

database in the HLVS as basic database entities, we use the term Database

Entities (DE's) interchangeably with the term "instances" in the rest of the

paper.

An important property of an object is its appearance. During the

analysis, the HLVS needs to direct the LLVS (Low Level Vision System) to

process the image and locate image structures which are associated with

objects. Some objects' appearances are defined in terms of image structures

that can be directly computed by the LLVS. Those frames which define such

objects are called primitive frames. Frames which are not primitive are called
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non-primitive frames.

Depending on what is known about the appearance of an instance, an

instance can be in one of the following two states: verified, which indicates

that the appearance of the instance is some already located image structure or

is a function of the appearances of verified instances; and hypothetical, which

indicates that the appearance of the instance has not been determined.

In addition to the appearances of objects, the HLVS also uses the iconic

description of a frame during its reasoning. The iconic description specifies an

area in the image and its definition is specified by a rule. During the

hypotheses integration, the HLVS uses the iconic descriptions to reason

whether two DE's are related (explained in Section 3). The use of iconic

description in SIGMA is similar to the use of "functional areas" in Mckeown's

SPAM aerial interpretation system [McKe84J.

The values recorded in instances may be updated during the analysis.

Every instance has a special numerical value which is called the strength of

the instance. The method used to compute strength is described as a pro-

cedure, say Pstrengtb m ^ne frame's definition. Upon instantiation, a strength

is computed for each instance. Whenever the values recorded in an instance

are updated, the strength of the instance is also recomputed by reevaluating

^strength- The HLVS uses such values to control its focus of attention mechan-

ism.
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Suppose one defines the appearance of a house (house frame) as a rec-

tangular compact region and a row of houses (house-group frame) as the

union of the appearances of all the houses in a house-group. Then the house

frame is primitive while the house-group frame is non-primitive. In SIGMA,

in order to locate a house-group, the HLVS first generates hypotheses about

the location of member houses and then direct the LLVS to locate each house

individually.

Now, suppose that the LLVS located a rectangular compact region, RQ.

The HLVS will generate a house instance, Hlt whose appearance is R0 and

mark it as a verified instance. However, suppose the HLVS further generates

neighboring house predictions for Hlt say H2 and Hz. Both #2 and H3 are

hypothetical instances since the appearances of these instances have not yet

been determined from the image.

2.4. Representing relations between objects

A major portion of the scene domain knowledge involves relations

between objects. However, these relations must be represented in forms that

can be directly used by the HLVS. Our approach is influenced by production

rules [Davi77] and the planning paradigm used in Garvey's vision system

[Garv76].

Suppose we have the following house-road relation:
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A road road^ is along a house house0 if the predicate along
(roadQ,house0] is true.

There are at least two potential uses of this relation by the HLVS:

- HLVS uses the relation to check whether road road0 is along
house

- HLVS uses the relation to direct a search for a road along house
houseQ.

In order to support multiple uses of a relation by the HLVS, we use a

test-hypothesize-and-act strategy to describe relations. A binary relation

REL(O1,O2) between objects Ol and O2 is represented using two functional

descriptions:

Ol = F(O2) and O2 = 0(0^.

Program F computes the object expected by object O2
 anc^ '1S recorded in

object frame O2 as a rule. Program G computes the object expected by object

O1 and is recorded in object frame Ol as a rule also.

As noted earlier, control knowledge for the use of relations and control

knowledge for directing search are both required by the HLVS. We represent

such knowledge as predicates associated with rules.
•

We present our rule representation scheme as follows:
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A rule is composed of three parts:

< control-condition >
< hypothesis >
< action >.

< Control-condition> is a predicate. It indicates when a rule can potentially

be applied. <Hypothesis> specifies the description of a desired object that is

created when the <control-condition> evaluates to true. <Action>

describes the code to be evaluated if <hypothesis> is verified. In general,

<action> can add facts to or delete facts from the iconic/symbolic database

of the HLVS.

The house-road relation can be written as a rule in the HOUSE frame as

follows (Figure 2-3):

To compute a road along house house0, we always generate a hy-
pothesis roadz with the following slot values:

road.orientation:
greater than (Aouse0.front-of-house + 80 degrees) but less than
(Aouse0.front-of-house 100 degrees),

road.width:
greater than (Aouse0.width * 0.3) but less than (A0use0.width *
0.5).

road.centroid:
resides within REGION(Aouse0.centroid + T(Aouse0.front-of-
house)).

T(.) is a function. If the hypothesis roadx is verified by some road
, then road road^ is along house houseQ.
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Figure 2-4 shows a model for suburban housing developments. Objects

are described by nodes (square) and relations are described by arcs. In this

model, Rectangle and Picture-Boundary are the "primitive frames".

The HLVS makes use of the different parts of a rule to perform its rea-

soning. We discuss this in Section 4.
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3. Integration of hypotheses

3.1. Introduction

Consider a binary relation REL(O1,O2) between two classes of objects,

Ol and O2. This relation can be used as a constraint to recognize objects from

these two classes by first extracting image structures which satisfy the

specified appearances of Ol and O2, and then checking that the relation is

satisfied by these candidate objects (Figure 3-1). In this bottom-up recognition

scheme, analysis based on relations cannot be performed until image struc-

tures corresponding to objects are extracted.

In general, however, some of the correct image structures fail to be

extracted by the initial image segmentation. So one must, additionally, incor-

porate top-down control to find image structures missed by the initial segmen-

tation. Such top-down processes use relations to predict the locations of

missing objects, as in the system described by (Garvey [Garv76], Selfridge

[Self 82])

As noted above, the use of relations is very different in the two analysis

processes : consistency verification in bottom-up analysis and hypothesis gen-

eration in top-down analysis. An important characteristic of our hypothesis

integration method is that it enables the system to integrate both bottom-up

and top-down processes into a single flexible spatial reasoning process.
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As will be described in Section 4, the HLVS first establishes local environ-

ments. Then, either bottom-up or top-down processes are activated depending

on the nature of the local environment. The following sections describe the

concepts and characteristics of this process.

3.2. The representation of database entities

All instances, hypothetical or verified, generated by the HLVS are

recorded in a database. In the rest of this section, we use the term database

entity (DE) to refer to instances recorded in the database. In addition, we use

the term hypothesis to refer to instances in the hypothetical state.

The description of each DE consists of two parts. One part is the iconic

description. This description is a region in the image which indicates where

the DE may be located. It is generated by the rule which specifies the iconic

description of the frame used to generate the DE.

The second part is the symbolic description, which includes the values

filled into the slots of the DE, and the set of constraints imposed on these

values. These constraints are represented by a set of linear inequalities in one

variable (the slot name).

3.3. Consistency between a pair of DE's

"Related" DE's are integrated and analyzed together. In SIGMA, "relat-

edness" between DE's is defined in terms of "consistency" between pairs of

DE's. A pair of DE's, DEl and DE^, are said to be consistent if the following
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conditions hold:

l) The iconic descriptions of the DE's must intersect. It is also possible to
impose some requirements on the size and shape of the area of intersection.

2) The DE's are compatible. Let OP be the intersection arising from two
DE's, and let Fl and /% denote the frames from which DEl and DE2 were
copied. DEi an<^ DE% are said to be compatible if Fl and Fz are linked by
GAN-BE or AKO links. Otherwise, DEl and DE2 are said to be incompatible.
This will be explained in more detail in Section 3.5.

3) The constraints imposed on the attributes of the DE's must be satisfiable.
Every DE has associated with it a set of linear inequalities in one variable
that constrain the permissible values of the DE's attributes. A simple con-
straint manipulation system is used to check the consistency between the sets
of inequalities by generating the solution space (also represented by inequali-
ties) to the intersection of those sets. If this solution space is non-empty, then
the constraints are consistent.

3.4. Formation of maximum consistent situations

Consistent DE's are combined into situations. These DE's are said to

participate in the formation of a situation. The P-set of a situation is its set

of participating DE's. Situation Sa is less than situation Sb if the P-set of Sa

is a subset of the P-set of Sj. This ordering is used to structure all the situa-

tions into a situation lattice. Note that a single DE is also a situation. The

rest of this section presents the algorithm used to form situations.

Two DE's are said to be 2-consistent if they are consistent. In general, a

set of DE's is said to be n-consistent if every possible subset of (n-l) of the

DE's is (n-l)-cons5stent. Clearly, a set of DE's is n-consistent if and only if

all possible pairs of DE's in the set are 2-consistent.
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When a DE, say DEnew, is inserted into the iconic/symbolic database, the

current situation-lattice is updated by first computing the set, U, that con-

tains all DE's whose iconic descriptions intersect with the iconic description of

DEntw. Then, we iteratively compute all lists of n-consistent DE's for those

DE's in the set U. Each such list of n-consistent DE's forms the P-set of some

situation. Algorithm 3-1 describes this process.

The maximum consistent situations are those situations which are the

roots of the situation lattice.

Algorithm 3-1 : Updating the Situation Lattice

Step 1: Suppose the newly inserted entity is DEnew. Compute the set U.
N=2.

Step 2: Compute the set, R, of all the N-consistent DE's for the DE's in
U. Remove any which do not contain DEnew.

Step 3: If R is empty, then exit. Otherwise, insert all the elements of R
into the situation-lattice.

Step 4: Increment N by 1. Construct all the pairs for elements in R.
Represent each pair by the union of the members in each ele-
ment. Remove any which is not N-consistent or does not contain
DEnew. Set R to be the set of resulting N-consistent DE's.

Step 5: Go to step 3.
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Figure 3-2 shows an example of how the situation lattice is updated when

a DE is inserted. Each DE is represented by a letter. A situation is

represented by all the DE's in its P-set. Figure 3-2(a) shows the situation lat-

tice before the insertion of DE% and the iconic descriptions of the DE's. Sup-

pose that the new DE, DE& is consistent with DEA, DEB and DEp. The set

U would then include

DEA, DEB, DEC, DED, DEE.

The first time that step 3 is evaluated, set R contains the following situations:

The second time that step 3 is evaluated, set R contains the following situa-

tion:

The updating stops at the third iteration. Figure 3-2(b) shows the situation

lattice after the updating process.

When a DE, say DETemove, is being removed from the iconic/symbolic

database, the current situation lattice must also be updated. This can be done

simply by removing all the situations in the situation lattice which are larger

than DEremove.
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Suppose, for example, that DEA is removed from the situation described

in Figure 3-2(b). Figure 3-3 shows the resulting situation lattice.

It is possible that the number of situations in the situation lattice may

grow exponentially. In practice, this does not happen since the number of

participants in a situation is usually quite small, e.g., two or three.

3.5. Constructing the composite hypothesis

A situation is a collection of consistent DE's. The HLVS selects a situa-

tion and proposes a composite hypothesis which "summarizes" the constraints

imposed on the attributes of all the participating DE's. The strategy for com-

puting the composite hypothesis is specified by a procedure recorded in the

frame's definition. (Note that two DE's are consistent only if they are

instances of the same frame or instances of frames in the same

generalization/specialization hierarchy. Therefore, all the participants in a

situation must be instances of frames in the same generalization/specialization

hierarchy. The procedure for computing the composite hypothesis is recorded

in the most general frame.) This section presents some strategies for comput-

ing the composite hypothesis.

One simple strategy is to use the solution sets of all the constraints

imposed on the attributes of all the participating DE's (explained in Section

3.4) as the constraint set of the composite hypothesis. The target object of

the composite hypothesis is the most specialized object expected by all the
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DE's.

Suppose that the constraint set of DEl is

target object = HOUSE,
house.centroid = (100,130),
230 < house.area < 300

while the constraint set of DE2 is

target object = RECTANGULAR-HOUSE,
house.centroid = (100,130),
250 < house.area < 320,
house.region-contrast > 3.

Using this method, we generate the composite hypothesis for DE1 and DE2 as

follows:

target object = RECTANGULAR-HOUSE,
house.centroid = (100,130),
250 < house.area < 300,
house.region-contrast > 3.

Another strategy is to take the union of all the solution sets of the constraints

imposed on the attributes of all the participating DE's. Suppose, for example,

that two hypotheses, DE\ and DE%, about a road have constraints on their

starting and ending points as follows:
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hypothesis
target object = road,

road.end-points = {(100,100),(100,150)

hypothesis
target object = road,

road.end-points = {(100,125),(100,180)j

We may want to construct a road hypothesis whose constraint set is the union

of these constraints on DEl and DEji

target object = road,

road.end-points = J (100,100),(100,180) .
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4. An implementation of SIGMA

4.1. Overview

The goal of SIGMA is to segment the image into image structures which

correspond to the objects specified in the object model. Section 1.3 outlined

the architecture of the SIGMA image understanding system. This section

describes its implementation.

Figure 4-1 illustrates the different stages of the control of SIGMA.

SIGMA first directs the LLVS to perform an initial segmentation of the

image. A set of image structures are computed at this stage. At the second

stage, the HLVS constructs partial interpretations based on the results of the

initial segmentation. However, during the construction, the HLVS may direct

the LLVS to compute more image structures. When all construction activities

finish, SIGMA provides a query-answering module for selecting "good

interpretations" and displaying the reasoning paths used to derive these

interpretations. During the entire analysis, SIGMA maintains a database

(the iconic/symbolic database) to record all the intermediate results gen-

erated at each stage.

The rest of this section discusses the implementation of SIGMA.

4.2. Description of goals

The Query-Answering Module (QAM) is activated by the HLVS at the

end of each reasoning iteration. The goal of SIGMA is described as a query to
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QAM. QAM matches the query with the interpretations already constructed.

If any interpretation matches the goal, QAM enters into an answer mode and

provides an interactive query-answering capability.

Suppose, for example, that the goal is to locate any road whose length is

longer than 300 feet in the image and has at least two houses along it. This

goal can be represented by the following query:

road(x) and (x.length > 300 feet) and (x.number-of-houses >2).

During the interpretation stage, whenever a road instance is constructed

whose length is longer than 300 feet and has at least two houses along it (i.e.,

x is bound to some interpretation constructed by the HLVS), QAM will enter

an answer mode and make the specific road instance that satisfies the goal

available to an interactive program. One can use this program to traverse the

interpretation network (the network which is constructed by the HLVS during

the interpretation process), and display symbolic and iconic descriptions of the

interpretations constructed.

4.3. The initial segmentation

SIGMA starts its processing by directing the LLVS to extract image

structures. The schematic diagram of the initial segmentation process is

shown in Figure 4-2. The set, I, which contains a list of hypotheses about

primitive objects, is used to describe the goal of the initial segmentation pro-
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cess.

• The Initial Segmentation Controller (ISC) sequentially selects hypotheses

from the set I and directs the LLVS to extract image primitives which satisfy

these hypotheses. For each image primitive extracted, the ISC makes an

instance of the frame of which the hypothesis is a copy, and then inserts the

instance created into the iconic/symbolic database.

Suppose, for example, that we want to first extract all regions which

might correspond to house groups and roads in the image. A set which con-

tains the following hypotheses can be used as the set I:

hypothesis 1: /* extract compact and bright rectangles */
target object = rectangle,
in-window = whole image,
rectangle.elongatedness < 10,
rectangle.compactness < 18,
rectangle.region-contrast > 3,
180 < rectangle.area-of < 400.

hypothesis 2: /* extract elongated rectangles */
target object = rectangle,
in-window = whole image,
7 < rectangle.width < 20, .
rectangle.elongatedness > 10,
rectangle.length > 10,
rectangle.compactness > 18,
rectangle.region-contrast > 3.

The set I for the initial segmentation could, in principle, be computed

from the scene model, since the appearances of objects are described in terms

of the appearances of "primitive frames". The ISC could choose those primi-
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live frames whose appearances are salient (i.e., they can be located "easily"

by the LLVS) as the I-set. However, this was not implemented in SIGMA; the

I-set is simply given as part of the scene model.

4.4. Construction of partial interpretations

The schematic diagram of the processing involved in constructing partial

interpretations is shown in Figure 4-3. The HLVS iterates the following steps

in this stage:

(1) hypothesis generation,
(2) focus of attention,
(3) composite hypothesis construction,
(4) solution generation,
(5) action scheduling.

Detailed discussions of each step are presented in the following subsections.

4.4.1. Hypothesis generation

For each DE (hypothetical or verified) recorded in the iconic/symbolic

database, the Iconic/Symbolic Database Manager (ISDM) evaluates all the

rules that are "applicable".

Suppose IQ is an instance of frame F. For each rule, say Rz, defined in

frame F, the ISDM evaluates the <control-condition> part of rule Rx. If the

evaluation result is true, the ISDM performs the following tasks:
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(1) Compute the < hypothesis> part of rule Rt, and insert the
computed hypothesis into the iconic/symbolic database.

(2) Insert the <action> part of rule Rz into the Action List which
records all the actions waiting to be evaluated.

The actions in the action list are called delayed actions. For each

delayed action, there is an associated hypothesis (computed at step 1)

recorded in the iconic/symbolic database. Such a hypothesis is called the

cause of delay of the action.

Note that for rules whose <hypothesis> part is nil, the <action> part

is not put into the action list. Instead, the < action> is evaluated immedi-

ately. At the hypothesis generation stage, the ISDM evaluates, for each

instance in the iconic/symbolic database, the <control condition> of every

rule in the associated frame definition. (This strategy is not efficient. A more

efficient strategy would evaluate only those < control condition > s whose

values are affected by changes made to the attributes of the instance since the

last time the <control condition>s were evaluated.)

The DE's in the iconic/symbolic database are combined into situations.

All the situations are structured into the situation lattice. The Situation Lat-

tice Database Manager (SLDM) updates the situation lattice whenever DE's

are inserted into or removed from the iconic/symbolic database. The algo-

rithm (3-1) for updating the situation lattice was presented in Section 3.4.
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"Identical instances" may be created during the construction process of

the HLVS. Two instances are identical if all the values filled in the slots of

those instances are identical. It is necessary to detect identical instances and

replace them by a single instance. This process is called unification of

instances, and is performed during construction of composite hypotheses.

For example, a house group instance containing house instances H0 and

HI can be constructed from instance H0 by first constructing a house group

instance, say HG0, which contains fIQ , and then expanding HG0 to include

house instance Hl (see Figure 4-4(a)). An identical house group instance HG\

can also be constructed from house instance HI (see Figure 4-4(b)).

One natural way to detect identical instances is to examine the P-set of a

situation. For each situation selected by the focus of attention mechanism, the

HLVS examines the instances in the P-set of the situation to find sets of

identical instances.

The HLVS unifies identical instances as follows. All identical instances

are first collected in a set, L. Then the HLVS selects one instance from the set

L, say IQ. For each instance Iz £ L, the HLVS replaces every reference to Ix in

the iconic/symbolic database by a reference to instance 70.

Figure 4-5 illustrates the result of unifying HG0 and HGl (assuming the

HLVS chooses HG0 as /0).
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4.4.2. Focus of attention

The focus of attention mechanism selects a situation with greatest

strength from the situation lattice. If there are several situations with equal

strength, the HLVS selects one arbitrarily.

For example, Figure 4-6 shows a situation lattice. There are two maximal

consistent situations that can be selected (both situations have strength = 3).

The HLVS can select either one (i.e., /V10, or /Vu).

The situation selected by the focus of attention mechanism is given to

the Composite Hypothesis Constructor to construct the composite hypothesis.

The construction of composite hypotheses was discussed in Section 3.5.

4.4.3. Solution generation

The Solution Generator (SG) computes solutions for the composite

hypothesis. The SG obtains/constructs instances to satisfy the composite

hypothesis by one of the methods discussed in the following paragraphs.

First, the SG may discover an existing instance in the iconic/symbolic

database that satisfies the composite hypothesis. In this.case, the SG returns

the instance found as the solution. In general, it may be necessary to search

the iconic/symbolic database to find some instance which satisfies the compo-

site hypothesis. However, since the composite hypothesis is constructed by

taking the solution space of all the constraints imposed on the DE's partici-

pating in the situation (see Section 3.5), to find an existing instance which
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satisfies the composite hypothesis, the SG needs only examine the P-set of the

selected situation and use any instance in the P-set as the solution.

Suppose the SG cannot find any instance in the iconic/symbolic database

that satisfies the composite hypothesis. There are two possibilities:

(1) the target object of the composite hypothesis is a primitive ob-
ject (such hypotheses are called primitive hypotheses);

(2) the target object of the composite hypothesis is not a primitive
object (such hypotheses are called non-primitive hypotheses).

In the first case, the SG first directs a top-down segmentation by provid-

ing to the LLVS the descriptions of the composite hypothesis. Then the SG

creates instances based on the results of the LLVS. Finally, the instances

created (if any) are returned as a solution.

In the second case, no top-down segmentation is performed. The SG

simply returns the composite hypothesis as the solution.

4.4.4. Action scheduling

The Action Scheduler (AS) schedules the actions in the action list using

the solution provided by the SG. Three possible types of solutions may be

provided:
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(1) nii,i.e., the hypothesis cannot be verified,
(2) an instance,
(3) a composite hypothesis.

In both the first and the second cases, the AS selects those < action >s in

the action list whose "causes of delay" are in the P-set of the selected situa-
(

tion. Let the solution be 70, the actions selected be Alf . . . ,An, and their

causes of delay be Hlf . . . ,Hn, respectively. The AS performs the selected

actions sequentially:

(a) replace all the references to H{ in action A,- by 70,

(b) evaluate Aj,

(c) remove //, from the iconic/symbolic database, or update the
attributes of //,- (we will discuss this in more detail in Section 4.5).

In the third case, the AS marks the composite hypothesis, say CH0, as

partially processed and inserts it into the iconic/symbolic database. The AS

also marks the currently selected situation, say S0, as unconclud&d. The

hypothesis CH0 is said to be derived from the situation S0. We will present a

more detailed discussion of the effects of such processing in Section 4.4.4.1.

Table 4-1 summarizes the terms defined in the previous paragraphs.

The removal of hypotheses from the iconic/symbolic database has the

following side effects:

(l) If a hypothesis, say H0, is removed from the database, then all the
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Table 4-1. Glossary.

Primitive hypothesis:
A hypothesis whose target object is a primitive object.

Non-primitive hypothesis:
A hypothesis whose target object is a non-primitive object.

Unconcluded situation:
A situation which was selected by the focus of attention mechanism,
but for which the Solution Generator cannot yet compute a solution.

Partially processed hypothesis:
A composite hypothesis, recorded in the iconic/symbolic database,
which is computed for some unconcluded situation.

situations in the situation lattice whose P-sets conta'm H0 are also removed
from the situation lattice.

(2) If an unconcluded situation is removed from the situation lattice "in (l),
then the hypotheses which were derived from the situation are also removed
from the iconic/symbolic database.

The updating of attributes of hypotheses is implemented by removing the

original hypothesis and inserting a new hypothesis.

When all the actions selected are evaluated, the action scheduler ter-

minates, and the next cycle of hypothesis construction begins.
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4.4.4.1. Computing solutions for a non-primitive composite

hypothesis

The SG does not directly propose solutions for a non-primitive composite

hypothesis. Instead, a top-down parsing approach is used to compute the

solution. Suppose the composite hypothesis constructed for a situation , say

50, is CHa, To compute the solution for CHa, we first generate a set of

hypotheses H{,l<i<n and compute the solution for each //,. The solution for

CHa can be computed from the solutions for Hitl< i<n.

To support such an approach, we associate with each non-primitive

frame a decomposition strategy (represented as a rule) which describes how to

generate a new set of hypotheses to be verified, and how to compute a solu-

tion for the non-primitive frame using the solutions for the generated

hypotheses.

For example, the rule for the decomposition strategy of a

RECTANGULAR-HOUSE frame is

•p 1ixuie

< control-condition> : true,
< hypothesis > :

H = F0(RECTANGLE,self),
< action > :

if H=n\\ then conclude(nil)
else conclude(make-instance(RECTANGULAR-HOUSE,/0)-

This rule indicates that a RECTANGULAR-HOUSE instance can be created
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if a RECTANGLE instance which satisfies the attributes specified by F0 is

created.

As discussed in Section 4.4.4, the Action Scheduler (AS) marks the non-

primitive composite hypothesis as partially processed and inserts it into the

iconic/symbolic database. The AS also marks the situation selected as uncon-

cluded. Partially processed hypotheses and unconcluded situations are pro-

cessed by other modules of the HLVS in the following ways:

(1) If a situation, say S, is marked as "unconcluded", then all the situations in
the situation lattice which are less than 5 are also marked as unconcluded.
The focus of attention mechanism does not select any unconcluded situation.
This strategy is based on the observation that if no conclusion can be drawn
from the analysis of a situation, say 5, then the analysis of all the situations
which are "less than" 5 (i.e., composed of a subset of the instances of 5) can
be postponed.

For example, by marking situation NIQ in Figure 4-6 as unconcluded, all
the situations that are less than N10 are also marked as unconcluded (i.e.,

(2) The function "conclude" indicates that a solution, say /ao/, has been com-
puted for an unconcluded situation, say 5. Whenever this function is
evaluated, the HLVS schedules 5 as the situation to be selected in the next
iteration cycle and the solution proposed for the composite hypothesis of this
situation is Itol.

(3) Since a partially processed hypothesis, say H, is the composite hypothesis
constructed for some unconcluded situation, S, H should not participate in the
formation of new situations with any DE's in the P-set of 5. HLVS uses the
more efficient strategy of not allowing a partially processed hypotheses to par-
ticipate in the formation of any situations. '

(4) In the hypothesis generation process, only the rules which describe the
decomposition strategy can be evaluated for partially processed hypotheses.
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All the hypotheses generated are inserted into the iconic/symbolic database.

(5) The removal of a partially processed hypothesis from the iconic/symbolic
database causes the removal of all the hypotheses in the database which are
generated by the decomposition strategy.

Suppose, for example, that the situation N10 shown in Figure 4-6 is

selected by the focus of attention mechanism and the composite hypothesis

constructed, say CHa, is:

target object : RECTANGULAR-HOUSE;

Since RECTANGULAR-HOUSE is not a primitive frame, the SG returns CHa

as the solution to the situation Nlo. The AS marks Nlo as unconcluded and

inserts CHa into the iconic/symbolic database.

At the subsequent hypothesis generation process, CHa activates the rule

Rfint-order-propcrtie, >n the RECTANGULAR-HOUSE frame and creates

hypothesis Hg:

target object : RECTANGLE;
• • •

Figure 4-7 shows the relation between CHa and Hg and the action which is

delayed by Hg. The resulting situation lattice is shown in Figure 4-8.

Suppose a RECTANGLE instance, say IK, is proposed to Hg by -the SG.

The AS evaluates the action whose cause of delay is Hg and:
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(1) creates a RECTANGULAR-HOUSE instance, say IRH,

(2) evaluates the function "conclude".

The evaluation of the function "conclude" indicates to the HLVS that situa-

tion N10 is to be scheduled in the next iteration cycle and the solution pro-

posed for CHa is IRfj.

At the next iteration, the SG proposes IRH to the hypotheses in the P-set

of NIQ (i.e., HI, HZ, HZ). Those actions whose causes of delay are HI, //2, and

H3 are now evaluated by the Action Scheduler. Suppose Hl, H%, and H3 are

removed after the evaluation of these actions. Figure 4-9 shows the resulting

situation lattice. Note that this is usually the case when an appropriate solu-

tion is proposed to the hypotheses.

The processing of partially processed hypotheses and unconcluded situa-

tions are summarized in Table 4-2.

4.5. A taxonomy of actions

In this section, we discuss a taxonomy of the actions that are often used

to specify the scene domain knowledge. The term action in this section refers

to the activities described in the < action> part of a rule.

One type of action is the filling in of attributes of an instance. For,

example, a rule in the HOUSE-GROUP frame is:



281

Table 4-2. Summary.

Unconcluded situation:
- Will not be selected by the focus of attention mechanism.
- If a solution is proposed by the SG for some unconcluded situation,
the HLVS schedules that situation in the next iteration cycle.

Partially processed hypothesis:
- A composite hypothesis for some unconcluded situation.
- Recorded in the iconic/symbolic database.
- Does not participate in the formation of any situations.
- Removal of a partially processed hypothesis, //, causes the removal of
all the hypotheses generated by H.

< control-condition > : true
< hypothesis > : H = AR(self,ROAD),
<action> : self.along-road = H.

This rule specifies that if a ROAD instance which satisfies H is found, fill it in

the slot "along-road" of the HOUSE-GROUP instance.

In addition to filling in attributes, actions often create new instances or

unify several instances (as described in Section 4.4.1). Such actions are

described by two functions:

- "make-instance" : create an instance and insert it into the iconic/symbolic
database;
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- "unify-instance" : unify a list of instances in the iconic/symbolic database
into a single instance.

For example, a rule in the RECTANGLE frame is:

< control-condition > : IS-RECT-HOUSE(self)
<hypothesis> : nil,
< action > :

make-instance(RECTANGULAR-HOUSE,F(self)).

This rule describes the following piece of knowledge:

"If a RECTANGLE instance which satisfies the IS-RECT-HOUSE criteria is
created, then create a RECTANGULAR-HOUSE instance using function F
and insert it into the iconic/symbolic database."

Similarly, the following piece of knowledge:

"If more than one HOUSE-GROUP instance is filled in the "belongs-to" slot
of a HOUSE instance, replace it by another HOUSE-GROUP instance which
is created by the function COMBINE-H."

can be described by the following rule in the HOUSE frame:

< control-condition > :
if number-of-elements(self.belongs-to) > 1,

<hypothesis> : nil,
< action > :

unify-instance(self.belongs-to,COMBINE-H(self.belongs-
to)).
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Another class of actions deals with the removal of hypotheses and the

updating of the attributes of hypotheses. Usually, hypotheses are removed by

the Action Scheduler after the Solution Generator proposes solutions to them.

However, instead of always removing hypotheses when no acceptable solution

is found, we may want to update the attributes of the original hypotheses

when more information is available. The function "update" is used to describe

the updating of the attributes of a hypothesis.

For example, consider the following rule:

< control-condition > : ...
< hypothesis > : H— F(self)
< action > :

if H = nil then
else ...

The action specifies that if the solution proposed for H is nil, then the AS

replaces some attributes of hypothesis H by CS^ However, H is not removed

from the iconic/symbolic database. The <action> part is inserted again into

the action list (its cause of delay is H.)

There is yet another category of actions which specifies the constraints

on the evaluation of multiple rules. We describe this type by an example.

Any instance of a HOUSE-GROUP frame can be "along" at most one

ROAD instance. Given a HOUSE-GROUP instance, say IHG, we may not yet

know the location of the road along IUQ ,i.e., at location FI or at location Fr

(see Figure 4-10). One strategy is to create hypotheses about a ROAD at
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both locations. However, once one hypothesis is verified, the other hypothesis

must be removed.

The above knowledge is represented as follows:

Rule J?j.
<control-condition> : true,
< hypothesis > : H\ = F/(self),
<action> : self.along-road = HI,

Rule R2.
< control-condition > : true
< hypothesis > : /£> = Fr(self),
< action > : self.along-road =

In addition, the following rule for the HOUSE-GROUP frame constrains the

simultaneous evaluation of R1,R2:

Rule R eontrol'
< control-condition >

< hypothesis > : nil,
< action > :

where anyone(-R1,^22)=
if is-evaluated(/?1) then R»
else if is-evaluated(/22) then Rl

else nil

The above rule specifies that whenever one of the < action > parts of the

rules R± or Rz is evaluated, rule RCOntrol *1S evaluated which causes the removal

of all the hypotheses that are created by the evaluation of R:.<hypothesis>
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or -R2-<hypothesis>.

Suppose a HOUSE-GROUP instance is created. The instance activates

rules RI and R2 and generates two hypotheses about the ROAD object.

Whenever the SG proposes a ROAD instance to one of the hypotheses, the AS

evaluates one of the delayed actions, and causes the removal of the other

hypothesis.

We summarize the actions discussed in this section in Table 4-3.

4.6. Pursuing alternative hypotheses

It is possible that several hypotheses may be generated at the same time.

This can be represented as the following rule:

Table 4-3. A taxonomy of actions

Action Type
Attributes
Instances

Hypotheses

Rules

Example
Filling in of attributes in an instance.
Create instances.
Unify instances.
Remove hypotheses.
Update hypotheses.
Constrain the simultaneous
of several rules.

evaluation
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if < control-condition> then
< hypothesis 1> < action 1>

or
< hypothesis 2> < action 2>

or
< hypothesis n> < action n>

Whenever <control-condition> evaluates to true, all of the <hypothesis>s

can be generated. These hypotheses are called alternative hypotheses and we

assume that at most one of the hypotheses is in fact true. However, it is

difficult to decide which one should be pursued first, since a promising selec-

tion may turned out to be incorrect as new facts (generated by resegmenta-

tion) are obtained.

In SIGMA, all the alternative hypotheses are generated and participate in

the hypothesis integration process. However, the associated actions of these

alternative hypotheses are not evaluated (put in the delayed-action queue).

When any one of the alternative hypotheses is verified, it is left to the associ-

ated action to decide whether other alternative hypotheses should be pruned.

On the one hand, this strategy allows multiple alternative hypotheses to be

pursued simultaneously. On the other hand, expert domain knowledge, which

can be described in a rule, can be used to prune unpromising hypotheses when

enough facts are known.
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4.7. The selection of good interpretations

Potentially, SIGMA could construct all possible interpretations for the

image. It is natural to require that no region be interpreted as two different

objects in the scene model. However, in SIGMA, a region may be interpreted

as several objects (e.g., an elongated region might be interpreted both as a

road or a driveway). Intersecting image structures may be used to construct

DE's whose iconic descriptions should never intersect. A pair of DE's whose

iconic descriptions intersect while the scene model specifies otherwise are

called conflicting DE's. The associated interpretations are called alternative

interpretations.

For a set of conflicting DE's, we need to select a DE which "best" inter-

prets the image. It is possible to design an algorithm to select such "best"

interpretations. However, we did not investigate this issue in SIGMA.

Instead, we model the final selection process as a database query answering

process. A program (QAM) was developed to answer simple queries about

DE's in the interpretation network and to display the iconic descriptions of

the DE's selected.
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5. Examples

5.1. Introduction

This section presents detailed examples of the application of SIGMA to

the analysis of a high resolution aerial image to locate houses, roads, and

driveways in a suburban scene.

We first present an example of the initial segmentation process. Then we

discuss how the HLVS analyzes the image in several typical situations.

Finally, we show the results of analysis by SIGMA on an aerial image.

5.2. Initial segmentation

The image used in the example is a 250 * 140 window of an aerial image

(Figure 5-1) with intensities in the range of 0 to 63. The scene contains

houses, roads, and driveways.

5.2.1. Initial segmentation goals

We want to locate houses and roads in the image. Since their appear-

ances are either compact rectangles or elongated rectangles, and they are usu-

ally brighter than the background, the following hypotheses are used as the I-

set of the initial segmentation process:
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/* extract compact and bright rectangles */
hypothesis Hbial>:

target object = rectangle,
in-window = whole image,
rectangle.elongatedness < 10,
rectangle.compactness < 18,
rectangle.region-contrast > 3,
180 < rectangle.area-of < 360.

/* extract bright and elongated rectangles */
hypothesis Hribbon:

target object = rectangle,
in-window = whole image,
8 < rectangle.width < 20
rectangle.elongatedness > 10,
rectangle.length > 10,
rectangle.compactness > 18,
rectangle.region-contrast > 3.

5.2.2. Verifying hypothesb Hbiob

The Initial Segmentation Controller (ISC) first selects hypothesis Hblob.

The ISC activates the LLVS to compute image primitives that satisfy

hypothesis Hbiob. The LLVS selects the following segmentation operators

arranged in descending order of their priorities as follows:

Blob finder
Upper threshold method

The Ribbon finder and the Lower threshold method are not selected since

their selection criteria evaluate to false.
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The LLVS activates the Blob finder first. The Blob finder first convolves

the original image with a Laplacian operator. Then it computes the positive

connected regions in the convolved image (Figure 5-2). The regions computed

by the Blob finder which satisfy the constraints of Hbiob are shown in Figure

5-3.

Since the set of results computed by the Blob finder is not empty, the

LLVS returns the computed regions to the HLVS. The Upper threshold

method is not evaluated.

5.2.3. Verifying hypothesis Hribbon

The ISC then selects hypothesis Hribhon. The ISC activates the LLVS to

compute regions which satisfy hypothesis Hribbon. The segmentation operators

selected by the LLVS for this task arranged in descending order of their prior-

ities are as follows:

Ribbon finder
Upper threshold method

The Blob finder and the Lower threshold method are not selected since their

selection criteria evaluate to false.

The LLVS activates the Ribbon finder first. The Ribbon finder first com-

putes the skeletons of the positive regions shown in Figure 5-2. The resulting

skeletons are shown in Figure 5-4.
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Finally, the Ribbon finder decomposes these skeletons and computes the

skeletons for the ribbons. Figure 5-5 shows the skeletons of the ribbons com-

puted by the Ribbon finder which satisfy the constraints of hypothesis Hribbon.

Since the set of results computed by the Ribbon finder is not empty, the

LLVS returns the computed regions to the HLVS. The Upper threshold

method is not evaluated.

5.2.4. Generating instances

The ISC collects the results computed by the LLVS, creates RECTAN-

GLE instances, and inserts them into the iconic/symbolic database.

There are .26 RECTANGLE instances created at this stage. Figure 5-6

shows the iconic descriptions of these instances. Note that some of the

instances intersect.

5.3. Constructing partial interpretations

A situation is classified into one of the following classes based on how the

Solution Generator computes its proposed solution:

Case 1: The SG discovers an existing instance in the iconic/symbolic database

which satisfies the given composite hypothesis.

Case 2: The SG cannot find any instance in the iconic/symbolic database

which satisfies the given composite hypotheses. The composite hypothesis is

non-primitive.



292

Case 3: The SG cannot find any instance in the iconic/symbolic database

which satisfies the given composite hypothesis. The composite hypothesis is

primitive.

Case 4: The SG obtains the solution from the previous iteration (i.e., the solu-

tion for an unconcluded situation is now computed.)

5.3.1. Case 1—Discovering an existing instance

Consider the situation shown in Figure 5-7. The relations between the

DE's shown in this figure are described in Table 5-1.

Figure 5-8 shows the portion of the interpretation-network which is

related to this situation.

Assume the focus of attention mechanism selects situation S1 whose P-

set is as follows:

Suppose the composite hypothesis, say CHa, computed for Sj is :

target object = ROAD,
• • •

Since the P-set of the situation Sj contains an instance, DEr, the SG proposes

it as the solution to the composite hypothesis constructed for this situation.
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The AS activates those actions whose causes of delay are DEl and DE3 respec-

tively. Figure 5-9 shows the resulting interpretation network. Note that

hypotheses DE2 and DE4 are removed. This is caused by a control rule in the

HOUSE-GROUP frame which specifies that each HOUSE-GROUP instance

can be along at most one road.

5.3.2. Case 2—Decomposing a hypothesis

Consider the situation shown in Figure 5-10. The relations between the

DE's shown in this figure are described in Table 5-2.

Figure 5-11 shows a portion of the interpretation network related to this

situation.

Assume the focus of attention mechanism selects the situation S^ whose

P-set is

Assume the composite hypothesis, say CHa, computed for Sj is

target object = DRIVEWAY,

The SG cannot find any existing instance that satisfies CHa. Since CHa is

non-primitive, the AS marks it as partially processed and inserts it into the
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iconic/symbolic database.

At the subsequent iterations, CHa activates the rule Rfiret-ordeT-propertiee

frame DRIVEWAY to generate hypothesis DE3:

databaseentity DE3:
target object : RECTANGLE,

end-database-entity.

Suppose the action which is delayed by DE3 is Afirst_ordeT_propertiee. We will

revisit this example in Section 5.3.4. Note that DEZ can participate in the

formation of situations with other DE's in the iconic/symbolic database. Fig-

ure 5-12 shows the resulting interpretation network after DEZ and CHa are

inserted into the iconic/symbolic database. Note that CHa is marked as par-

tially processed hypothesis. Table 5-3 summarizes the relations between the

DE's, action A.fir8t_order_propertiee, and S^

5.3.3. Case 3—Directing the segmentation

Suppose the composite hypothesis, say CHa, given to the SG is primitive.

The SG activates the LLVS to compute regions which satisfy the constraints

provided by the SG. The regions computed by the LLVS are used by the SG

to create RECTANGLE instances. The SG then proposes those created

instances which satisfy the constraints of CHa as solutions. If no instance is

computed, the SG proposes nil as the solution. We illustrate the process used
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by our system in the following two examples.

Suppose the composite hypothesis, say CHa. given to the SG is:

target object = RECTANGLE,
in window : Wj,
rectangle. elongatedness < 10,
rectangle. compactness < 18,
275 < rectangle.area-of < 325.

The window Wl is shown in Figure 5-13.

The LLVS first activates the Blob finder and fails to compute any region.

Then the LLVS activates the Upper threshold method to compute regions. A

region is successfully computed by setting the threshold value at 24. Figure

5-14 shows some of the intermediate results of the segmentation process. The

measurements (the area and the compactness of a region) are shown for the

largest region extracted at each specified threshold value.

The LLVS returns the computed region to the SG. The SG checks the

features of the region and creates a RECTANGLE instance DE^£C^ and pro-

pose it as the solution. Figure 5-15 shows the RECTANGLE instance created

by the SG.

Suppose the composite hypothesis CHa is again given to the SG. How-

ever, the window Wl is as shown in Figure 5-16.

The LLVS activates the Blob finder, the Upper threshold method, and

the Lower threshold method and cannot compute any region which satisfies
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the given constraints. "The LLVS returns "nil" to the SG. The SG then pro-

poses nil as the solution.

5.3.4. Case 4—Analyzing an unconcluded situation

Consider the interpretation network shown in Figure 5-12. Suppose that

at some other iteration the SG computes a solution, say 70, for DE3. Action

rder-prepertiet is now evaluated by the AS.

Two possible outcomes can be produced by the evaluation of

rder-properties First> the evaluation of action Afirlt_order_propertie, generates

a solution, say Ilt for CHa. This causes the HLVS to analyze the unconcluded

situation Sl in the next iteration. The SG will propose 7X as the solution to

CH0 the composite hypothesis of Sl.

Figure 5-17 shows the resulting interpretation network in this case. The

unconcluded situation Slt the partially processed hypothesis CHa, and the

hypothesis DE3 generated by the "decomposition method" are all removed.

Second, suppose no solution is generated by the evaluation of

Afiret-order-propertiea- Instead, the evaluation cause changes to be made to the

attributes of DE$. In this case, situation 5j is removed from the situation lat-

tice and new situations are constructed. Suppose DE3a is the updated

hypothesis. Figure 5-18 shows the resulting interpretation network in this

case.
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5.4. A complete example

In this section, we present the result of applying our image interpretation

program to the image shown in Figure 5-1. No explicit goal is given to the

system. The analysis terminates when all the hypotheses created are verified

or refuted.

Figure 5-6 shows the RECTANGLE instances generated by the initial

segmentation process. Figure 5-19 shows those RECTANGLE instances

which are interpreted as RECTANGULAR-HOUSE instances (requiring that

200<rectangle.area-of<400) , and Figure 5-20 shows those RECTANGLE

instance which are interpreted as VISIBLE-ROAD-PIECE instances (requiring

that 6<rectangle.width<12). No RECTANGLE instances are interpreted as

DRIVEWAY instances.

Instead of showing the processing of each situation by the program, we

show only the processing of several interesting situations.

In the scene model, two HOUSE-GROUP instances are identical if they

both share a common HOUSE instance and should be unified to a single

instance. Figure 5-21 (a) shows such an example. Let P^ and P2 denote two

HOUSE instances, Rt and R2 two HOUSE-GROUP instances, and £>£,• a

HOUSE hypothesis.

Each HOUSE-GROUP instance creates hypotheses about more houses

that belong to it. The process to unify the house groups is as follows:
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(1) The situation whose P-set is

is selected by the focus of attention mechanism.

(2) SG proposes HOUSE instance F2
 as the solution to the composite

hypothesis of situation S1. The evaluation of the action which is delayed by
DEl fills P2 in the "contains" slot of HOUSE-GROUP instance Rlm

(3) Since P^ "belongs to" two HOUSE-GROUP instances at the subsequent
iteration, the evaluation of a rule in HOUSE frame unifies Rl and R2.

Let us denote the resulting HOUSE-GROUP instance by Rv Figure 5-22

shows the result of the analysis.

Figure 5-23 shows another example. Resegmentation of the image is

required in this example. Let /?, denote a HOUSE-GROUP instance, Pf a

HOUSE instance, DE{ a HOUSE hypothesis. Also let CH{ denote a partially

processed hypothesis, and T\ a RECTANGLE instance. These DE's are not

shown in Figure 5-23. They are used later in this example.

The processes to activates the LLVS to process the image are as follows:

(1) Situation Sl whose P-set is

is selected. Since the composite hypothesis (target object is HOUSE object) is
non-primitive, a partially processed hypothesis, say CH^ is generated.
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(2) At the next iteration, the evaluation of the rule Rspecialization-strategy °f tne

HOUSE frame generates a hypothesis DE$ whose target object is
RECTANGULAR-HOUSE (Figure 5-24(a)).

(3) Situation 52 whose P-set contains DE$ is selected. Again, a partially-
processed hypothesis, say CH2, about RECTANGULAR-HOUSE is generated.

(4) At the following iteration, the evaluation of the rule Rfiret-0rdeT-properties °^
RECTANGULAR-HOUSE frame generates a hypothesis DE6 whose target
object is RECTANGLE (Figure 5-24(b)).

(5) The SG activates the LLVS to segment the image. A region is computed
by the LLVS (see Figures 5-13, 14, 15). The SG creates a RECTANGLE
instance 7\.

(6) The evaluation of 'the <action> of Rflrst-order-properties creates a
RECTANGULAR-HOUSE instance P4. Since a solution is now ready for the
unconcluded situation 52, the HLVS schedules it to be processed next. After-
wards, since a solution is now ready for the unconcluded situation Sv the
HLVS schedules it to be processed next. Now, the actions delayed by DE\
and DE% can be evaluated. The resulting interpretation network is shown in
Figure 5-24(c).

(7) P4 "belongs to" two HOUSE-GROUP instances. At the subsequent itera-
tion, the evaluation of a rule in the HOUSE frame unifies Rl and /?2.

Figure 5-25 shows the resulting HOUSE-GROUP instance.

In the scene model, every ROAD instance is smoothly extended from one

ROAD-TERMINATOR instance to another ROAD-TERMINATOR instance.

A ROAD-TERMINATOR is defined to be the boundary of the image. We

present an example in the following paragraphs.
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The extension of ROAD instances is similar to the merging of two

HOUSE-GROUP instances discussed above. Figure 5-26 shows two ROAD

instances Rl and R2. Pl and P2 are two ROAD-PIECE instances. DE^ denotes

a ROAD-PIECE hypothesis. The extending of ROAD instance Rl activates

the merging of R^ and R^ into one ROAD instance (Figure 5-27).

Figure 5-28 shows another case. Rt and 7?2 are two ROAD instances. DE{

is a ROAD-PIECE hypothesis generated by R±. Since R? is not "connected"

to Rlt hypothesis DE^ is modified as shown in Figure 5-29.

Figure 5-30 shows yet another case. Road instance R-^ cannot be extended

any longer. When this is detected, the original ROAD-PIECE hypothesis is

removed and a ROAD-TERMINATOR hypothesis is generated.

Figure 5-31 shows another example. Let DET denote a ROAD instance,

DEh a HOUSE instance, DEre a RECTANGLE instance, and DE{ a DRIVE-

WAY hypothesis. House instance DEh and ROAD instance DET create

hypotheses DEl and DEZ about the DRIVEWAY object respectively. There is

no DRIVEWAY instance in the iconic/symbolic database which satisfies these

hypotheses. However, there is a RECTANGLE instance, DEre, which, if inter-

preted as a DRIVEWAY object, would satisfy these hypotheses. Note that

DEre is not interpreted as a DRIVEWAY object, a VISIBLE-ROAD-PIECE,

or a RECTANGULAR-HOUSE since there are not enough distinguishing

features-of DETt to make these interpretations.
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The HLVS performs the analysis as follows:

(1) A composite hypothesis, CHlt is first constructed for the situation whose
P-set is

(2) A hypothesis, DE3, about the RECTANGLE object is created by the com-
posite hypothesis

(3) DETt satisfies DE3. A DRIVEWAY instance DEdr is created by the
< action > part of the rule Rfirtt-order-proptTtie, of the DRIVEWAY frame. The
DRIVEWAY instance DEdj satisfies both DE{ and DE2. Figure 5-32 shows the
resulting interpretation network after DE^ and DE% are removed.

The resulting interpretation network is shown in Figure 5-33. The iconic

descriptions of the instances created during the analysis are shown in Figures

5-34 and 5-35.

Finally, we present two examples of the final selection stage of the pro-

gram. Figure 5-36(a) shows a ROAD instance whose length is longer than 100.

Instances of related objects are shown in Figure 5-36(b),(c), and(d).

Figure 5-37(a) shows a HOUSE-GROUP instance with more than four

houses. Instances of related objects are shown in Figure 5-37(b) and (c).
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6. Conclusions

This paper has described a model for the development of image under-

standing systems that involves representing scene domain knowledge using

frames and controlling the actions of the system by hypothesis integration.

Using such a framework, we developed a flexible image understanding system

called SIGMA which performs both top-down(goal-oriented) image analysis

and bottom-up construction of composite image structures, and demonstrated

the system's performance on an aerial image of a suburban scene.

Developing computer systems for visual applications is one way to inves-

tigate how humans see, and also to make computers more useful. As pointed

out by many researchers [Hall79], [Binf82], image analysis systems usually

consist of several types of modules: low level vision modules(e.g., segmenta-

tion) and high level vision modules(e.g., matching, inference). This research

leads to the conclusion that a powerful vision system should rely on a balance

of performance between these two types of modules. The low level modules

should provide descriptive information about the image to the high level

modules and the high level modules should provide "hints" about image

structures to the low level modules. This research is only a small step toward

the construction of general vision systems.
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Scene Model An Interpretation

House Group

House 1

I . , O0ad

Driveway

Image

Legend:

Object : EH
Instance of Object :
Mappings : O

Figure 1-1. Mappings between the scene and the image.
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Image ||

Low Level Vision
System

N High Level Vision
System

Query Answering
Module

\ / X

\ X

\ \

Iconic/Symbol ic||
Database

Interpreta t ion!
Network i

I I Program module

OData/Know!edge

—> Control f low

—> Data f low

Figure 1-2. System architecture fir the SIGMA image
understanding system.
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frame. RECTANGULAR-HOUSE;
rules: •

link*:

end-frame

rtcttnglt *

AKO: HOUSE;

frame L-SHAPED-HOUSE;
rales:

link*:

end -frame
AKO : HOUSE;

frame HOUSE;
' tlott:

centroid;
shape-description;
front-of-house;
connecting-driveway;

rvlct:
* irii ew«f >

end -frame

CAN-BE : RECTANGULARrHOUSE, L-
SHAPED-HOUSE;

Figure 2-1 Frame definitions for HOUSE, RECTANGULAR-HOUSE,
and L-SHAPED-HOUSE.

Links:

AKO :

CAN-BE

"Figure 2-2 Links between HOUSE, RECTANGULAR-HOUSE
and L-SHAPED-HOUSE frames.
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TT

HOUSE DRIVEWAY

,NGDLAE

H

RECTANGLE

ROAD

/ ^

$ [BLE
-E

§8IRlNATOR

• i

L4

Legends:
AKO links
CAN-BE links
rules

Figure 2-3 A model of a suburban housing development.
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ROAD

HOUSE

Figure 2-4. Pictorial description of house-road relation.

pictorial entity- 1 pictorial entity-2

extract

image

Figure 3-1. Using a relation as a constraint.
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B

iconic descriptions situation lattice

Figure 3 -2 (a ) . The situation lattice before the insertion.

iconic descriptions situation lattice

Figure 3-2(b). The situation lattice after the insertion.
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Figure 3-3. The situation lattice after the removal of A.



313

Stage 1:
Initial Segmentation

I

Stage 2:
Construction of Partial
Interpretation

Stage 3:
Selection of Good
Interpretation

Iconic/Symbolic
Database

Legend
control flow:
data flow:

Figure 4-1. The stages of the control of SIGMA.

Iconic/Symbolic
Database

'initial Segmentation
Controller(ISC)

^

/

Image LLVS

Legend
control flow: >
data flow: >
data: O
programs: CD

Figure 4-2. The schematic diagram of the i n i t i a l segmentation
process.
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Iconic/Symbolic
Database

Situation >\
Lattice Database
Manager (SLDM) J

Situation
Lattice

Iconic/Symbolic
Database Manager
(ISDM)

Focus of Attention
Mechanism

v

Action List

I
I
Y.

V

Composite Hypothesis
Constructor

Action Scheduler V<~
(AS)

{ Solution Generator
(SG)

Legend
control flow:
data flow:
data: CD
programs: ( )

F igure 4-3. The schematic d i ag ram of the in terpreta t ion stage.
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a house group instance generate hypothesis fill H l in instance HG 0

containing H0 is created about possible house in

Figure 4-4(a) . Reasoning steps for constructing HGQ.

a house group instance
containing H1 b created

generate hypothesis
about possible house in
HGl

fill HQ in instance HG l

Figure 4-4(b). Reasoning steps for constructing HG,
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before unification after unification

Figure 4-5. Unification of identical instances.

Figure 4-6. A situation lattice.
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Target object of CHt:
RECTANGULAR-HOUSE

Target object of H9:
RECTANGLE

Delayed-action:
if H —nil then conclude(nil)
else conclude(make-instance(RECTANGLE-HOUSE,H)).

Figure 4-7. Decomposition of CH .

Legend: ^—^
unconcluded situation: ( j .

V-X S~*\partially processed hypothesisf J

Figure 4-3. The resulting situation lattice.
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Legend: X~^T
unconcluded situation:

partially processed hypo

Figure 4-9. The situation lattice after actions are evaluated.

•otnesis (

Figure 4-10. Possible road locations along I,HG1
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Figure 5-4. Skeletons of the
connected components.

Figure b-5. Skeletons of the ribbons
extracted by Ribbon-finder.

Figure 5-6. Iconic descriptions of the RECTANGLE instances generated
based on the initial segmentation process.
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rD--

-*—M -__/j i

DE.
h2

Figure 5-7(a). An example (see
Section b.3.1.)

Higure b-7(b). A depiction of the
situation.

DE's
DEr

DEh\
DEhi
DEl

DE*
DE3

DE4

Type
ROAD instance
HOUSE-GROUP instance
HOUSE-GROUP instance
ROAD hypothesis
ROAD hypothesis
ROAD hypothesis
ROAD hypothesis

Generated-by

DEkt
DEhl

DEk9

DE^

Table 5-1. The descriptions of the OE's.
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Figure 5-3. Portion of the interpretation network related to the situation,

Figure 5-9. Resulting interpretation network.
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DE

rr
DE. -DE.

Figure 5-10(a). An example (see
Section 5.3.2.)

Figure 5-10(b). A depiction of the
situation.

DE's
DEr

DEk

DE\
DE?

Type
ROAD instance
HOUSE instance
DRIVEWAY hypothesis
DRIVEWAY hypothesis

Generated-by

DEk

DEr

lable 5-2. The descriptions of the DE's.
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Figure 5-11. Portion of the
interpretation related to the
situation.

Figure 5-12. Resulting interpretation
network.

Action
AfiT tt -eritr —vrtittrtiet

Cause-of-delay
DE*

Unconcluded-situation
5,

Composite hypothesis
CH.

Table 5-3. Relations between the DE's, action Afirst_order_properties'

and S-,.
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Figure 5-13. A window generated by the HLVS.

Figure 5-14. Intermediate results of the LLVS.
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Figure 5-15. The RECTANGLE instance generated by the HLVS (based on
the results computed by the LLVS).

Figure 5-16. Another window generated by the HLVS,
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Figure 5-17. Resulting interpretation
network (when a solution has been
generated).

Figure 5-18. Resulting interpretation
network (when no solution has been
computed).

Figure 5-19. Initial set of RECTANGULAR-HOUSE instances.
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'•">>. -'-JO 90O*?

l-igure 5-20. Initial set of VISIBLE-ROAD-PIECE instances.

Figure 5-21(a). Two HOUSE-GROUP
instances (see Section 5-4).

, Figure 5-21(b). Portion of the interpret
network related to the situation.
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Figure 5-22(a) Resulting HOUSE-GROUP
instance R,.

Figure 5-22(b). Hypotheses generated
by R

i DE

Figure 5-23(a). Two HOUSE-GKOUP
instances (see Section 5-4).

Figure 5-23(b). Portion of the interpretatioi
network related to the situation.
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5-24(a),

5-24(c).

Figure 5-24. Snapshots of the interpretation network related to R, and

(see Figure 5-23) at various stages of the processing.
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Figure 5-2b(a). Resulting HOUSE-GROUP Figure 5-25(b) Resulting interpretation
instance. network.

Figure 5-26(a). Two ROAD instances Figure 5-26(b). Portion of the inter-
(see Section 5-4). pretation network related to the situation



332

\1!..'AUO

Figure 5-27(d). Resulting ROAD
instance.

Figure 5-27(b). Resulting interpretal
network.

DE,

Rl \ t t
1
1

R2

Figure b-28(a). Two ROAD instances
(see Section b-4).

Figure b-28(b). A depiction of the
situation.
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DE.

Rl \

J.

I
R2

Figure 5-29. Hypothesis UE-, has been modified,

Figure 5-30. A ROAD-TERMINATOR hypothesis has been generated.
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Figure 5-31. Iconic description of a situation and its interpretation
network (see Section 5-4).

Figure 5-32. Resulting interpretation network,
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Figure 5-34. Final results,

Figure 5-35. Final results (cont.)
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Figure b-36. Explanation of a ROAD instance.

Figure 5-37. Explanat ion of a HOUSE GROUP instance.
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ABSTRACT

An extensive mathematical model for rectification of satel-

lite scanner data was developed. Using this model, factors

affecting rectification accuracy were studied. Previous results

included the effects of the following: (1) error in parameters

singly and combined; (2) different mathematical models; (3)

density of control points; (4) error in image coordinates; (5)

error in ground coordinates of control points; (6) use of edge

control in single image rectification; and (7) application of

block adjustment. Current results include: (1) effect of

errors in internal sensor geometry; (2) effect of error in

weights of image and ground coordinates; (3) effect of dif-

ferent combinations of parameters defining the satellite position

perturbations and the sensor orientation; (A) use of edge con-

trol in block adjustment; (5) study of

rectification/registration sequence; (6) detection and identif-

ication of blunders; and (7) analysis of the potential for

merging satellite scanner imagery and digital terrain model (DTM)

data.
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1. INTRODUCTION

The need for rapid and up to date acquisition of information

pertaining to the earth and its atmosphere is increasing. One

technology that shows promise in satisfying this need is the use

of satellites to acquire remotely sensed data of the earth sur-

face. Present day sensors on board satellites are capable of

gathering enormous amounts of data in a timeJLy fashion. Because

of this, one pressing problem is the conversion of these data

into useful information in an up-to-date and accurate manner.

Data from satellite sensors have found applications in many

disciplines for identification, classification, and monitoring of

earth features of interest. In all these applications, often

there is need to integrate data from different sources including

satellite data. This implies that all these data must be reduced

into a common reference system which most often is earth based.

One type of sensor data which needs reduction to the earth

surface in order to fully exploit its information content is the

scanner type data. The process of defining the transformation

required to relate scanner data arrays to the earth surface is

called rectification. This process is an end in itself in the

production and update of maps. In other applications, it is a

necessary preprocessing step in order to obtain accurate results.
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2. REVIEW OF LITERATURE

The earliest attempt at rectifying scanner data is through

the use of polynomials to transform these data to the ground.

With enough points of known image and ground positions called

control points, this approach produces reasonable results with

accuracy of up to a pixel in the image. Its main drawback is

that positional accuracies are not uniform (Forrest, 1974;

Trinder, 1976; Bahr, 1978; Dowman, 1981). An alternative

approach called parametric, attempts to model the geometry of the

scanning process itself. The simplest parametric model assumes

that, within the image extent, the earth is flat and the satel-

lite path is straight, which is often the case in conventional

photogrammetric mapping (Kratky, 1972; Konecny, 1976; Dowman,

1981). The most comprehensive model considers the earth as an

ellipsoid of revolution and the satellite path an ellipse

(Mikhail, 1983; Paderes, 1983). In between, the earth can be

assumed to be a sphere (Caron, 1975; Bahr, 1976; Sawada, 1981)

and the satellite orbit a circle (Forrest, 1981; Levine, 1981;

Synder, 1982). Deviation of the satellite position from the

ideal can be assumed to be deterministic or random and modeled

accordingly. The same is true for the attitude and azimuth of

the sensor which ideally should be along the vertical and the

flight path, respectively (Wiesel, 1984).

All the above-mentioned methods are solely based on ground

control points. If the satellite position and sensor attitude
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are known a-priori from other sources, i.e., satellite tracking

data, then the transformation necessary for rectification can, in

principle, be completely defined. Currently available tracking

information cannot supply the required data with sufficient accu-

racy. Instead, these and other ancillary data are used in con-

junction with control points to define the rectification process

(Friedman, 1983).
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3. MATHEMATICAL MODELING

We have developed a comprehensive parametric model which is

based on the geometry of the scanner imaging process. This model

assumes that the earth is an ellipsoid of revolution and that the

path of the satellite is an ellipse. Deviation of the satellite

position, sensor attitude, and sensor azimuth from the nominal

are modeled as polynomial functions of time and any a-priori

information regarding these deviations can be incorporated in

this model. The ,. model which is based on the premise that the

ground point, the image point and the position of the satellite

at the moment of sampling are collinear, is given by:

kM

X - X

Y - Y

Z - Z

where

[x y z ]

[X Y Z]

[X Y Z ]1 s s s

M

is a vector defining the position of a point
in the image coordinate system and is a
function of the pixel row and column
numbers, and the interior scanner
geomet ry;

is the position of the corresponding ground
point in a geocentric coordinate system;

is the satellite position, in a geocentric
coordinate system at the moment of sampling
and is a function of orbital parameters,
deviation of the satellite position from
the ideal and time;

is a 3x3 matrix which brings the ground
coordinate system parallel to the image
coordinate system and is a function of
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parameters defining the satellite orbit,
the geometry of the earth, deviation of
the satellite position from the ideal,
the sensor attitude and azimuth and time;

k is a proportionality constant which varies
from point to point.

This model can be used both for rectification and for creating

simulated data which are very useful in the analysis of the rec-

tification process.
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4. MODEL VALIDATION

In order to study, analyze, and draw significant conclusions

regarding the rectification process, an extensive set of image

frames with suitable control data must be available. Further-

more, the control data must have known accuracy. To satisfy this

requirement is time consuming and costly. An alternative which

is both flexible and less expensive is to, use simulated data.

Assuming that the same model is used for both simulation and rec-

tification, the main drawback of this approach is that rectifica-

tion results are more accurate than they really are if the model

used is not valid. This is because systematic errors introduced

by the inadequacy of the model during simulation is canceled out

in the rectification process. So, before using simulated data to

study rectification, the relevant model must be validated.

Model validation requires at least a few real image frames

with control data of known accuracy. These frames are rectified

using only a part of the control data set. The remaining control

can then be used as check points to independently verify the

accuracy of rectification. The next step in validating a model

is to produce simulated image frames similar in characteristics

to the real ones. The given image coordinates from the real

image frame, elevations of the corresponding object points, all

exterior orientation parameters and constants of that frame are

used in the model to calculate the horizontal coordinates of

these object points. This consistent set of image and
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corresponding ground coordinates are subsequently perturbed to

realistically reflect the accuracy of the real control data set.

The simulated frames are then rectified using the simulated con-

trol data set in exactly the same manner as the real frames. The

last step in model validation is to compare the accuracy of rec-

tification for the real image frames with the accuracy for the

corresponding simulated frames. If there are no significant

differences in accuracy between the real and, its corresponding

simulated frame, then the model is considered adequate.

We used two real image frames taken by LANDSAT 2 to validate

our model. Precise estimates of the quality of the control data

is not available but on the basis of the procedure used in

obtaining the data, a reasonable estimate of the standard devia-

tions of coordinates is as follows: 0.5 pixel in row, 0.5 pixel

in column, 15 meters in Northing, 15 meters in Easting, and 15

meters in elevation. For manual methods of control point iden-

tification, which is the one we used, the best accuracy that can

be expected is 1/3 pixel in row and 1/3 pixel in column (Bahr,

1976). For the first frame which covers Kansas, the standard

deviations applied in simulation are 0.44 pixel in row, 0.40

pixel in column, and 15 meters for each ground position coordi-

nates. The RMS planimetric error in rectification for the real

frame is 64 meters and for the simulated frame is 62 meters using

81 control and 72 check points. The second frame covers Louisi-

ana and the standard deviations applied in simulation.are 0.40

pixel, 0.64 pixel, and 15 meters for row, column, and each ground
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coordinate, respectively. Using 70 control and 122 check points,

the RMS rectification errors are 68 and 61 meters for the real

and simulated frames, respectively. A detailed discussion of the

above experiment can be found in Paderes and Mikhail (1984).

From these, it can be concluded that our model is adequate and

that it may produce only a very small systematic error, if at

all, when used for rectification.
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5. EXPERIMENTAL RESULTS

We have carried out an exhaustive series of experiments

using simulated data to understand and clarify problems regarding

rectification. Simulation is a very powerful and flexible tool

whenever it can be appropriately applied as is the case here.

Previous results include the study of the effects of the follow-

ing on rectification accuracy: (1) error in parameters singly

and combined; (2) different mathematical models; (3) density

of control points; (4) error in image coordinates; (5) error

in ground coordinates of control points; (6) use of edge con-

trol in single image rectification; and (7) application of

block adjustment. These results are discussed in detail in

Mikhail and Paderes (1983), Paderes and Mikhail (1983), Paderes,

Mikhail, and Forstner (1984), and Paderes and Mikhail (1984).

New results which are reported in this paper include: (1)

effect of errors in the internal sensor geometry; (2) effect of

error in weights of image and ground coordinates; (3) effect of

different combinations of parameters defining the satellite posi-

tion perturbations and the sensor orientation; (4) use of edge

control in block adjustment; (5) study of rectification-

registration sequence; (6) detection and identification of

blunders; and (7) analysis of the potential for merging satellite

scanner imagery and digital terrain model (DTM) data.
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5 .1 Effect^ of Errors in Internal Sensor Geometry

Errors in sensor geometry are primarily due to variations in

scanning speed which should be constant during pixel sampling.

This error plus other sensor instabilities cause errors in pixel

row and column numbers. Since one scan consists of very few rows

relative to the number of columns, and the scanning action pri-

marily affects the columns only, then row errors are very small

compared to column errors. Assuming that errors in internal sen-

sor geometry constitute the factor that limits observation accu-

racy, an experiment was designed to determine the rectification

accuracies that can be expected. For this purpose, an image

frame was simulated with 100 uniformly distributed control points

and the same number of well-distributed check points. The ground

positions of the control points were perturbed using the normal

distribution with only a one meter standard deviation in each of

the three coordinate directions. The pixel row numbers were per-

turbed using the normal distribution with standard deviation of

0.01 pixel. The pixel column numbers were also normally . per-

turbed with a series of standard deviation as seen in Table 1.

The image is then rectified and the accuracy computed using the

check points. The experiment was repeated three times with a

different "seed" for the random number generator used for deriv-

ing the errors applied to the observations. The average RMS

planimetric error of rectification corresponding to the different

image column standard deviations are shown in Table 1. It can be
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seen that sub-pixel accuracy is possible only if the scanning

speed can be controlled to a very high degree of accuracy.

5.2 Effect of Errors in Variances of Image and Ground Positions

Ideally, only the true variances of observations should be

applied in an adjustment problem. In reality, difficulties in

determining the true accuracy of observations prevent us from

doing so, especially if more than one type of observation is

involved. Rectification of scanner data is largely an adjustment

problem, and at least two different types of observations are

involved (i.e. image positions and ground coordinates). To

study the effect of errors in variances, a nine frame block in

three adjacent orbits with three frames per orbit was simulated.

The center of the block is approximately at 60 N latitude result-

ing in about 60% sidelap between frames belonging to different

orbits. Adjacent frames in a single orbit have an artificial 15%

overlap. There are 506 control points uniformly distributed over

the whole block. The ground positions were normally perturbed

with a standard deviation of 15 meters in each of the three coor-

dinate directions. The image positions were perturbed using a

combination of uniform and normal distribution. The uniform dis-

tribution had a range of +0.5 to -0.5 pixel and the normal one.

had a standard deviation of 0.5 pixel. Each frame contains 100

check points. Different cases, where either the image or ground

position variances but not both were multiplied by a different

factor, were run. The RMS planimetric error for each frame was

computed using the check points and averaged over all nine frames.
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The results are shown in Table 2. The image position variances

can be in error by a factor of 0.1 or greater while the ground

position variances can be in error by a factor of 10 or smaller.

This means that the image position can be assumed to be less

accurate than they really are and the ground coordinates to be

more accurate than they really are or even assumed fixed without

affecting rectification accuracy.

.*•

5.3 Effect of Different Parameter Combinations

One major problem in the rectification of satellite scanner

imagery using a model elaborate enough to adequately describe the

scanning process is caused by the very weak geometry of the

image. Because of this, the parameters in the model are corre-

lated with each other. In practice, therefore, only a subset of

the total parameter set can be recovered in the adjustment. The

modeling approach we used, which alleviates this problem, is to

divide the satellite position and sensor attitude and azimuth

into two components, i.e., ideal and perturbed. The ideal satel-

lite position can be derived from satellite tracking data, the

ideal sensor attitude can be assumed to be always in the direc-

tion of the vertical and the sensor azimuth to be parallel to the

orbital plane. If no tracking data are available, those ideal

satellite position parameters which vary from orbit to orbit can

be derived using the control data set itself, assuming no pertur-

bations. Errors in ideal satellite position, sensor attitude,

and sensor azimuth, from whatever source, can be compensated for

by the perturbation parameters. Therefore, only those parameters
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describing the perturbation components need be considered as unk-

nowns in the rectification process. The deviation of the satel-

lite position from the ideal has three components, the sensor

attitude with respect to the vertical has two and the sensor

azimuth has one. Of these six components, only four are indepen-

dent because the sensor attitude is highly correlated with the

along and across track components of the satellite position devi-

ation. Nevertheless, for high accuracy applications, the parame-

ters defining all six components should be recovered. This

experiment is designed to determine when all six components can

be recovered and compare the accuracy of this approach to the

case when only four components are used in rectification.

A block similar to that used in section 5.2 was simulated.

The initial approximations used in the adjustment for the parame-

ters defining the six perturbation components are their true

values plus a given error as shown in Table 3. Since a given

component is modeled as a third degree polynomial function of

time (having four parameters), the component standard deviation

is actually twice the individual parameter standard deviation.

For case 1, all the six components were exercised in the adjust-

ment. For parameter weights smaller than their true weights

times 125, the solution did not converge except when the error of

the parameters are equivalent to 0.1 pixel or smaller. In the

latter case, the solution did converge using the true parameter

weights. For case 2, the along and across track satellite posi-

tion deviation components were held fixed and the remaining four
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components were given very small weights in the adjustment. The

along and across track components were selected because among the

six perturbation components, these two contribute the smallest

error in rectification. All 506 points in the block were used as

control for both cases. For computing the rectification accu-

racy, each frame had 100 check points. The RMS planimetric

errors were averaged over all frames. The results are shown in

Table 3. Case 1 is superior to case 2 wheji the error for each

parameter is smaller than 0.1 pixel and the opposite is true when

the error is greater than 1 pixel. This experiment shows that if

the solution to the adjustment converges using the true parameter

weights, exercising all the six components is superior to using

only four.

5.4 Use of Edge Control In Block Adj ustment

A block of nine frames in three adjacent orbits with three

frames per orbit similar to that in Section 5.2 was simulated.

There are 360 control and 140 tie points uniformly distributed

over the whole block. The ground coordinates of the control

points were perturbed by a 15 meter standard deviation in each of

the three coordinate directions using the normal distribution.

The tie points ground coordinates were similarly perturbed except

that the horizontal positions have standard deviation of 1000

meters. The image position of both the control and tie points

were perturbed using a combination of uniform and normal distri-

bution. The uniform distribution, which takes care of truncation

errors, had a range of +0.5 to -0.5 pixel. The normal
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distribution had a standard deviation of 0.5 pixel both in row

and column direction. A second set of control data representing

control and tie edges were simulated in exactly the same manner

as the control point set except that the image coordinates were

perturbed in a different way. Instead of perturbing the image

position along the row and column directions, they were perturbed

along a randomly directed line. The standard deviation along the

line was 10 pixels and that perpendicular, to the line was 0.5

pixel. The perturbations along the row and column direction were

then derived by rotation given the direction of the line. A

third set of data consisting of check points were simulated. The

image and ground coordinates of these points were self consistent

and they were used for computing the accuracy of the rectifica-

tion procedure. Each frame had a set of 100 check points which

were independent of other frames.

By varying the number of control and tie points/edges a

total of 12 cases of block adjustment were run; 7 using points

and 5 using edges as control. The whole experiment was repeated

three times with a different "seed" for the random number genera-

tor which computed the perturbations. For each case, by using

the check points, the RMS planimetric error for each frame is

computed. The RMS planimetric error is averaged over nine frames

and three replications. The results are plotted in Figure 1.

From the figure, it can be seen that approximately a pair of edge

control is equivalent to a single point control. This is the

theoretical limit because a point is the same as a pair of per-
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pendicular edges. This conclusion seems to be in conflict with

previous results for edges with random directions which indicated

that about three pairs of edges is equivalent to a single control

point (see Paderes, Mikhail, and Forstner 1984). The more accu-

rate results of the present experiment can be explained by the

fact that the error along the edges was only 10 pixels instead of

being infinitely large as was previously assumed. A 10 pixel

error in measuring edge position (taken as the mid-point of the

edge of finite length), especially if it is short enough, is

quite achievable. A practical means to locate the edge-points on

the map is to first get their approximate locations in the image

using a simple transformation with a few control points for the

whole frame. After that, each edge-point is then manually

shifted to lie on the edge.

5.5 Study of Rectification/Registration Sequence

Rectification has been defined as the transformation of the

scanner images into the ground reference system or into a scaled

representation of the terrain such as a map. Registration, on

the other hand, is the transformation of one or more images into

another image covering the same segment of the earth. The images

to be registered can be taken by similar or entirely different

sensors (multi-sensor) at approximately the same or vastly dif-

ferent times (multi-temporal). For proper registration, the

relevant images should preferably be taken from approximately the

same sensor locations although those that are not can in princi-

ple be taken care of if the terrain shape is known.
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In theory, if images covering the same segment of the earth

are rectified, they should then also be registered with respect

to each other. Conve'rsely, if these images are registered witfi

respect to each other and if one of these is rectified, then the

rest should also be rectified. At first glance, the process of

registration is superfluous because rectification alone can pro-

duce both rectified and registered images. In practice, regis-

tration stands on its own since it is considered to be more accu-

rate because it is easier to find common features between images,

than between an image and the corresponding terrain segment or

its representation. This is especially true if the images were

taken by similar sensors under approximately the same conditions.

Furthermore, if matching images is the sole object, registration

is more efficient than rectification.

Like rectification, the first step in registration is the

finding of common features between images to serve as control.

Then the rest of the images are transformed into the arbitrarily

selected reference image using a mathematical model. Ordinarily
' -vi.

the resulting system of,, equations is over-determined, therefore a
• ' x^

method of adjustment' is necessary (e.g. least squares). Since

registration involves a minimum of two images the resulting

geometric model will be very complex. For cases similar to this,

the usual approach is to use polynomials or other mathematical

series. This approach to registration, which is the approach we

used, is feasible because of the relative ease of finding common

features between similar images.
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We performed a series of five experiments to study the util-

ity of rectification for registration purposes and the usefulness

of registration for rectification. This study is feasible

because of our extensive set of simulation programs.

Experiment !_: Registration (Transformation) of Frame A_ to Frame B^

Experiment I was designed to measure the accuracy of registering

one image to another. The following are the .steps in this exper-

iment :

(1) Select a suitable set of nominal orbit, sensor and earth

parameters and constants such that the resulting simulated images

are located at approximately 60° N latitude.

(2) Add a positive error equivalent to one pixel in the image to

each of the nominal parameters and assign them to frame A.

(3) Select, on frame A, 16 control and 225 check points that are

uniformly distributed throughout the whole frame.

(4) Compute in a forward simulation procedure the planimetric

ground coordinates of the above image points, using the parame-

ters of frame A, and assuming that their ground elevations are

zero.

(5) Add a negative error equivalent to one pixel in the image to

each of the nominal parameters and assign them to frame B. This

step together with step (2) assures us that the two frames are

overlapping each other, with only a few pixels difference.
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(6) Using the ground coordinates from step (4) and the parameters

of frame B, compute the image coordinates of the control and

check points in frame B in a reverse simulation procedure. This

step results in a consistent set of control and check points

between frames A and B.

(7) Perturb the image coordinates of control points only in frame

A selected in step (3) using a normal distribution with standard

deviation of 0.1 pixel.

(8) Repeat step (7) for image coordinates of control points in

frame B, which were computed in step (6).

(9) Compute the registration parameters needed to transform frame

A to frame B using the simulated control points and a second

degree polynomial model.

(10) Transform the image coordinates of the check points in frame

A, computed in step (3), into frame B.

(11) Compute the rms of the position errors of check points in

pixels from the differences between the computed check point

position in step (10) and the ideal check point position from

step (6).

(12) Repeat steps (l)-(ll) five times with different perturba-

tions applied to control data and compute the average rms error.
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(13) Repeat steps (1)-(12) for 25, 49, 81 and 144 control points.

A plot of the average rms check point position errors vs. the

number of control points is shown as curve (1) in Figure 2.

Experiment II: Rectification of Frame A^

Experiment II was done to determine the accuracy of single frame

rectification. This experiment consists of the following steps:

(1) Repeat steps (l)-(4) in experiment I resulting in a con-

sistent set of image and ground coordinates for 16 control points

and 225 check points in frame A.

(2) Perturb the image coordinates of the control points only in

frame A using a normal distribution with a standard deviation of

0.1 pixel in the row and column directions.

(3) Perturb the corresponding control point ground coordinates in

each of the three coordinate directions using a normal distribu-

tion with '5m standard deviation.

(4) Compute the rectification parameters needed to transform

frame A into the ground system using the perturbed control points

and our rectification model via a least squares adjustment pro-

cedure .

(5) Transform the image coordinates of check points from step (1)

into the ground in a forward simulation procedure using the com-

puted rectification parameters in step (4).
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(6) Compute the rms of the planimetric position errors in meters

of check points from the differences between the computed check

point position in step (5) and the ideal check point position

resulting from step (1).

(7) Repeat steps (l)-(6) five times with different perturbations

applied to control data and compute the average rms position

error of check points.

(8) Repeat steps (l)-(7) for 25, 49, 81 and 144 control points.

The results are plotted as curve (2a) in Figure 3.

(9) Repeat steps (l)-(8) using 0.5 pixel and 15m standard devia-

tions in steps (2) and (3), respectively. Curve (2b) in Figure 3

is the plot of these results.

Experiment III; Independent Rectification of Frames A_ and B^.

In experiment I frame A was registered to frame B. In experiment

II frame A was rectified to the ground. If experiment II is

repeated for frame B, then the two frames should be registered

with respect to each other. These two rectifications, which

result from experiment III, should be compared to the result from

experiment I. The steps in this experiment III are as follows:

(1) Repeat steps (l)-(6) in experiment I which results in a con-

sistent set of image and ground coordinates for 16 control and

225 check points in frames A and B.
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(2) Repeat steps (2)-(4) in experiment II resulting in rectifica-

tion parameters for frame A.

(3) Transform the image coordinates of check points in frame A

into the ground using the computed rectification parameters in

step (2) via a forward simulation procedure.

(4) Repeat step (2) for the rectification of frame B.

,"•

(5) Compute the image coordinates of check points in frame B

using the computed ground coordinates in step (3) and the rectif-

ication parameters in step (4) via a reverse simulation pro-

cedure.

(6) Compute the rms of the check point image position errors in

pixels from the differences between the image coordinates of

check points computed in step (5) and the corresponding true

positions in frame B computed in step (1).

(7) Repeat steps (l)-(6) five times with different perturbations

applied to control data and compute the average rms position

error of check points.

(8) Repeat steps (l)-(7) for 25, 49, 81 and 144 control points.

The average rms errors vs. the number of control points are plot-

ted as curve (3a) in Figure 2.
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(9) Repeat steps (l)-(8), in this experiment, using 0.5 pixel and

15m standard deviations in step (2) for image and ground coordi-

nate perturbations, respectively. The results are plotted as

curve (3b) in Figure 2.

Experiment IV; Registration of Frame A_ t_o B^, Followed by Rectifi-

cation of B_.

In experiment I frame A was registered and transformed to frame

B. If experiment I is followed by rectification of frame B to

the ground, then frame A is also rectified. The sequence of

registration followed by rectification is then equivalent to a

simple rectification of frame A. Experiment IV was performed to

measure the accuracy of this sequence. The following steps were

done in this experiment:

(1) Repeat steps (l)-(4) in experiment I resulting in a con-

sistent set of image and ground coordinates for 16 control and

225 check points in frame A.

(2) Repeat steps (5)-(6) in experiment I which produces image

coordinates in frame B for control and check points which are

consistent with those in frame A.

(3) Repeat steps (7)-(10) in experiment I which results in

transformed check point image coordinates from frame A to frame

B.

(4) Repeat steps (2)-(4) in experiment II for frame B instead of

frame A which results in rectification parameters for frame B.
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(5) Transform the image coordinates of check points produced by

step (3) into the ground using the rectification parameters com-

puted in step (4) in a forward simulation procedure.

(6) Compute the rms of the planimetric position errors in meters

of check points from the differences between the computed check

point position in step (5) and the true check point planimetric

ground position in step (1).

(7) Repeat steps (l)-(6) five times with different perturbations

applied to control data and compute the average rms check point

error.

(8) Repeat steps (l)-(7) for 25, 49, 81, and 144 points. The

average rms check point position errors vs. the number of control

points are plotted in Figures 3 and 4 as curve (4a).

(9) Repeat steps (l)-(8) using 0.5 pixel and 15m standard devia-

tions in step (4) for image and ground coordinate perturbations,

respectively. A plot of the results similar to those in step (8)

is shown in Figures 3 and 4 as curve (4b).

Experiment V_.

Experiment V is essentially experiment III except that the regis-

tration errors between frames are computed on the ground instead

of in the plane of frame B. This was done to facilitate com-

parison between the results of this experiment and experiment IV.
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This comparison is interesting because both experiments deal with

a sequence of two processes. For completeness the steps in

experiment V are as follows:

(1) Repeat step (1) in experiment III.

(2) Repeat steps (2)-(3) in experiment III for frame A resulting

in transformed .ground coordinates of check points.

.-•

(3) Repeat step (2) for frame B.

(4) Compute the rms of the differences between the computed check

point planimetric ground position in step (2) and in step (3).

(5) Repeat steps (l)-(4) five times with different perturbations

applied to control data and compute the average rms position

difference.

(6) Repeat steps (l)-(5) for 25, 149, 81 and 144 control points.

The results of this experiment are shown as curve (5a) in Figure

4.

(7) Repeat steps (l)-(6) using 0.5 pixel and 15m standard devia-

tions in step (2) for image and ground coordinate perturbations,

respectively. The results are also shown in Figure 4, as curve

(5b).

The above series of five experiments essentially covered two

major cases. Case (a) assumed that the image coordinates of com-

mon points for both rectification and registration have the same

standard deviation of 0.1 pixel. This implies that
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correspondence for both registration and rectification can be

accomplished at the same level of accuracy. Case (b), on the

other hand, assumed that the image coordinates of common points

for registration have 0.1 pixel standard deviation, while those

for rectification have 0.5 pixel standard deviation. This case

stems from current practical considerations where correspondence

between like images (thus registration) is determined to a higher

degree of accuracy than for rectification.

From the results of these experiments, if the common points for

rectification have the same accuracy and number as those for

registration (case (a)), it can be concluded that rectification

is superior to registration. Under the more realistic assump-

tions in case (b), it can be concluded that if the sole purpose

is to register two similar images taken from nearly the same sen-

sor location, then direct registration is better than the

indirect approach of rectifying both images. On the other hand,

if rectified images are the desired results, then rectification

should be the only procedure used. If both rectified and

registered images are desired, the pure rectification approach is

as accurate as the combined registration-rectification approach,

still under the assumptions of case (b).

5 .6 Blunder Detection and^ Identification

In any system involving observed data like rectification and

registration of satellite scanner imageries, the elimination of

blunders in the observations is of utmost importance for reliable



and accurate results. Ideally, if the true errors of observation

are known or can be computed, they can readily be tested for

blunders. Unfortunately, this is not possible so, a traditional

approach has been to attempt minimizing blunders before the

adjustment and reduction of data. This usually involves a care-

fully designed observation scheme with repetitive measurements to

assure that as few blunders as possible are left undetected. A

limited version of this approach should always be applied but

full implementation is seldom done because of cost considera-

tions. Hence, blunders remain in many instances which can con-

siderably degrade the quality of the resulting products.

An alternative approach is to do statistical testing on

functions of true errors after data adjustment and reduction. It

had been shown (see Mikhail, 1979), that the residuals, v,

resulting from a least squares adjustment are related to the true

errors, e, hence to blunders, by the following equation:

v = - 0 We
vv

where Q is the cofactor matrix of residuals, v, and W is the

inverse of the cofactor matrix of observations, Q. The cofactor

matrix, Q, is related to the covariance matrix of observations,

E, by the following relation:

E - °0 Q

2
where a is the a-priori reference variance. This equation can-

not be solved for e, although all the other quantities are known

after a least squares adjustment, because Q is singular. Since
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v is a linear function of e, then v or functions of v can be

tested for blunders. This post adjustment approach is the tech-

nique which we applied for blunder detection and identification.

Blunder detection only requires that we determine whether

the vector of observations has blunder(s) in it. In order to

eliminate blunder(s) we have to go one step further and identify

the specific elements of the vector of observations which have
.-*

blunders. In this context, multivariate statistics which are

functions of v are only useful for blunder detection but not for

identification. Paradoxically, univariate statistics which are

functions of individual elements of v has the best chance of

identifying individual blunders.

One commonly used statistic for blunder identification is

the normalized residual

'i • V\[°0 qvivi
where v is a specific element of the vector of residuals, v, and

q . , is the i diagonal element of the cofactor matrix of resi-
vivi

duals, Q . If the original vector of observations, 1, is nor-

mally distributed, v. is also distributed normally with zero mean

and unit variance. The method based on this statistic is known

as data snooping (Baarda, 1968; Mikhail, 1979).

2
If o is not known, we can use the a-posteriori estimate of

2
the reference variance, &_, in its place resulting in

i \J &0
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2the a-pos t e r io r i r e f e r ence va r i ance , "&.., can be compu ted us ing

the equation

"b.. = v W v/r
* +

where r is the redundancy of the adjustment. This statistic v ,

assuming normally distributed observations, has a tau distribu-

tion. The .tau distribution can be derived from the Student t

distribution using the following relationship:

T - \J? t(r-l)/\jr-l + t(r-l)2'

where T is the tau distribution, t is the Student t distribution,

and r designates the degree of freedom or redundancy of the

adjustment (Pope, 1975).

Another useful statistic is the partial quadratic

q = V2 Qv2v2 V2/00

where v is a sub-vector of residual vector, v, and Q » „ is the

corresponding submatrix of cofactor, Q . The statistic q is

2
distributed as a x (p)> where p is the number of elements in v«

which can never exceed r, the redundancy of the adjustment. If p

= 1, the partial quadratic approach is equivalent to the data

snooping approach (Stefanovich, 1978).

The v. and v. statistics are ideally suited for blunder

identification when the vector of observations, 1, has only one

blunder, because they essentially are univariate statistics. For

more than one blunder in the observations, these statistics do

not perform as well. To alleviate this problem, we developed a
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sequential blunder identification strategy based on these two

statistics where the blunders are identified and eliminated one

at a time. A shortcoming of the present implementation of the

strategy is that once an observation is eliminated, even if it

has no blunder, it can not be returned into the adjustment.

Since the statistic is most sensitive when there is only one

blunder in the set of observations, the eliminated observations

should be returned one by one into the adjustment and retested.

The statistic q is multivariate, hence it can usually detect

but can not identify blunders in a subset of observations.

Stefanovich (1978) developed a search strategy using the q

statistic which can identify the subset of observations that con-

tains only blunders. The strategy is based on the fact that the

statistic q for the subset of observations with no blunders will

pass the chi-squared test while the subset containing only

blunders will fail the test. Any other subdivision of the set of

observations will fail to satisfy the above conditions. A major

drawback of this strategy is that the chi-squared test becomes

insensitive when the redundancy is large.

Stefanovich's strategy and the sequential strategy we

developed to identify blunders require the repetitive elimination

of one or more observations from the adjustment. At first

glance, this would require repetitive readjustments which would

be costly. A closer look will show that the only quantities we

use in the tests which varies with the number of observations in

the adjustment are the residuals, v, and the cofactor of
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2
residuals, Q . The estimated reference variance, "&.., also

varies, but this is essentially a function of v. The cofactor of

observations, Q, which is used in computing for the estimated

2 2reference variance, 8-, and the a-priori reference variance, o_,

2
are constants. It turns out that the quantities v, Q and t ̂

can easily be updated after eliminating some observations without

readjustment (Stefanovich, 1978). Also, only a subset of v which

contains the observations that are most likely to have blunders

and the corresponding subset of Q need be stored and updated.

To test the effectiveness of the strategies outlined above

for identifying blunders in control points used in rectification

of satellite scanner imageries, two simulated MSS image frames

were created. Frame A has 25 control points frame B has 49, both

control point sets being uniformly distributed. The coordinates

of image points for both frames were perturbed using a normal

distribution with standard deviation of 0.5 pixel and a uniform

distribution with a range of +0.5 to -0.5 pixel to take care of

truncation errors. The corresponding ground coordinates were

assumed fixed without loss of generality because whatever errors

the ground coordinates have, these can be compensated for at the

image positions. The two frames are at approximately 60 N lati-

tude .

The level 6f significance for the tests were: 0.0005,

0.0005, and 0.005 for data snooping, tau test, and chi-squared

test, respectively. The first two are two-sided tests while the
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last is one-sided. These values were selected such that there is

no misidentification when the control data sets have no blunders.

Three different numbers of blunders (1, 2 and 4) were tested for

both frames. The blunders were introduced on the row coordinates

of image points only. If a coordinate is identified as having a

blunder, the whole point is eliminated. The single blunder was

introduced near the middle. The two blunders were introduced

along a diagonal and one quarter of the diagonal length from the

corners. The four blunders were introduced along both diagonals

in a manner similar to the two blunders.

Results of the experiment are shown in Table 4. Methods 1,

2 and 3 correspond to data snooping, tau test and chi-squared (or

partial quadratic) test, respectively. Entries in the table are

the smallest blunder for which a given strategy identified all

blunders correctly without misidentification at the selected lev-

els of significance. This implies that whenever blunders are

larger than those shown, they are always detected. If smaller,

they may or may not be detected. The upper entry corresponds to

25 control points while the lower entry corresponds to 49. The

row entries vary with the number of blunders and the column

entries vary with the methods.

The results show that post adjustment blunder identification

is feasible especially for large blunders with magnitudes of 10

or more. The procedure is expected to work quite well if the

number of control points, hence the redundancy, is high and vice

versa. It worked quite well for 25 control points, where the
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redundancy is 34 even when there are four blunders. Further

tests are necessary to determine the lower limit in the number of

control points for the procedure to work well. As expected the

data snooping and the chi-squared test performed a little better

2
than the tau test because the o. is perfectly known. In this

2 2context, the performance of the tau which uses t*n instead of o

is very good.

5.7 Analysis of the Potential for Merging Satellite Scanner

Imagery and DIM Data

Digital terrain models or DTMs are becoming more and more

common. A DIM is a digital representation of the topography or

shape of the terrain as opposed to the conventional graphical

representation in terms of lines of equal elevation called con-

tour lines. DTMs essentially consist of a collection of three-

dimensional vectors representing the horizontal position and

elevation of points. These points might be arranged in a regular

grid which is more common, or they might be arranged in an arbi-

trary manner. The density of these points depends on the charac-

ter of the terrain and the ultimate application of the resulting

data. Sometimes, other planimetric features such as roads may

also be incorporated into the DTMs.

Since the terrain is continuous, representing it as a col-

lection of discrete points may not be sufficient to completely

describe the terrain. This inadequacy becomes very apparent when

terrain points other than those available in a DTM are required.
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Because of this, the definition of DTMs is sometimes extended to

include the procedure used for interpolating the elevations of

these other points. As a further consequence of this discrete-

ness, DTMs can be stored in a more compressed form using suitable

interpolation models.

Relatively speaking, the shape of the terrain does not

change compared to the planimetric features on its surface. Once
„•«

collected, the elevation component of DTMs need not be updated

for a relatively long period of time except in cases where more

accurate terrain models are required. This relative stability of

DTMs is a blessing because the shape of the terrain is often more

difficult and time consuming to observe and measure. If the ter-

rain shape were to change as much as its planimetric features,

the resulting DTMs might become obsolete by the time their compi-

lation is finished. Furthermore, only one type of sensor, the

photogrammetric camera, is suitable for securing images useful

for compiling DTMs.

With the availability of satellite-borne sensors, up-to-date

images useful for mapping the surface of the earth became avail-

able. It seems that the problem of up-to-date maps may finally

be nearing solution. As it turns out, because these images are

taken from very high altitudes and the angular coverage is usu-

ally small, the resulting image geometry is such that the shape

of the earth surface cannot be readily recovered from them. So,

the primary information that is recovered from these images con-

sists of the planimetric features of the earth's surface. Even
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the proper positioning of these features in the ground system,

i.e. rectification, requires some knowledge of the shape of the

terrain.

A complete description of the terrain requires both its

shape and the planimetric features on it. The shape of the ter-

rain can be supplied by DTMs which are compiled through a photo-

grammetric process which is relatively tedious and time inten-

sive. Since the terrain shape does not change much with time,

the resulting DTMs are useful for a variety of applications and

for a relatively long time. The planimetric features can be sup-

plied by more modern sensors on-board satellites. Even though

planimetric features change rapidly, these sensors are able to

provide us with timely images.

The above discussion leads to the necessity of merging or

registering DTMs and satellite images in order to produce com-

plete and up-to-date terrain data. In general, two different

entities can be merged only if they describe the same phenomenon.

This is true for satellite imagery and the DTM covering the same

segment of the earth surface. The first step in merging, which

is very similar to rectification, is to find the sensor position

and angular orientation as a function of time. Presently, these

can be provided by satellite tracking observations and by auxili-

ary sensors on-board the satellite. Unfortunately the accuracy

of these observations are not sufficient for merging DTM and
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satellite imagery. In the design of the next generation of sen-

sors, effort should be expended to accurately measure the sensor

position and its angular orientation.

An alternative is to use common features between the DTM and

the imagery to solve for the sensor position and angular orienta-

tion. This is quite similar to rectification. At first glance,

satellite imagery and DTM cannot be merged because they do not

describe the same property of the terrain. The former describes

the planimetry of the terrain while the latter describes the

shape of the terrain. Fortunately, DTMs may also contain some

planimetric features such as roads which do not change as rapidly

as other features such as vegetation. The problem of efficiently

and accurately finding these common features has to be resolved

before any viable merging procedure can be implemented.

Once the sensor exterior orientation parameters are known,

the image coordinate of any ground point, hence any DTM point,

can be solved for. This procedure is very similar to reverse

simulation of satellite image point. The solution is iterative

because the sensor angular orientation and position are functions

of time. Time, in turn, is a function of image position, which

is. the unknown quantity. The resulting equations are highly

non-linear in terms of the image coordinates. This approach of

solving for the image coordinates for DTM points is appropriate

if we wish to maintain the point density of DTMs.
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The next step in merging is to assign densities to image

points corresponding to DTM points. In general, these points

will not coincide with pixel centers, hence an ' interpolation

method is needed to assign the proper density to these points.

The simplest method is the zero order interpolation also known as

the nearest neighbor interpolation. As the name implies, the

computed image point is assigned a density equal to that of the

nearest pixel center. Higher order interpolation such as bi-

linear, bi-cubic, etc. can also be applied. Questions regarding

the resampling of satellite imagery need to be addressed.

Instead of solving for the image coordinates of DTM points,

we can solve for the ground coordinates of the image pixel

centers. The spectral densities of these points will automati-

cally be the densities of the corresponding pixels. This

approach makes sense if we want to maintain the point density of

the image which corresponds to pixels. This approach is very

similar to rectification whereby we are only interested eventu-

ally in the horizontal ground position of pixels. The solution

for the three ground coordinates of image points given the sensor

angular orientation and position is not possible without some

knowledge of the shape of the terrain. This is because we are

trying to transform a 2-dimensional image into the corresponding

ground segment which is 3-dimensional.

The above-mentioned problem can be visualized as that of

finding the intersection of a vector and a complex surface in 3-

dimension, the surface being represented in digital form. This
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problem is complicated because we are interpolating at the same

time that we are solving the intersection problem for the

discrete surface. We might simplify this problem by representing

the terrain as a continuous surface using models such as B-

splines. In rectification, if we do not have a DTM, a way around

this problem is to assume that the terrain is flat but not neces-

sarily horizontal. For MSS imagery the horizontal error in this

assumption is negligible compared to the pixej. size except for

very mountainous regions where the angular coverage is very small

(less than 11 degrees).

Whether we maintain the integrity of the points in the DTM

or the pixels in the image depends on the eventual application

and on the relative density of the two data sets. If the final

end product is a rectified image and if DTM points are denser

than the pixel density, then the ground coordinates of pixel

centers should be solved for. If the final product is still a

DTM and pixels are denser than DTM points, then the image coordi-

nates of DTM points must be solved for. The critical point to

consider is the accuracy of interpolation, whether implicit or

explicit. The interpolation should preferably be from dense to

less dense point distribution.

The possibility of merging DTM data and satellite scanner

imagery is based on the premise that the sensor angular orienta-

tion and position is available and/or can be computed using

features common to both data sets. These common features are

usually called control. Therefore, any approach that will make

* = *-

\i v**
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control selection and measurement faster, more accurate, and will

decrease the required number of control' features should be inves-

tigated. Identifying common features between the DTM and satel-

lite imagery is difficult because these two sets describe

inherently different aspects of the terrain. DTM primarily

describes the terrain shape with a few selected planimetric

features added while satellite imagery describes its planimetric

features. These few planimetric features incorporated into DTMs

are the only features that the DTMs have in common with the

satellite imagery. The situation is worsened by the fact that

any planioetric feature in a DTM is represented by lines whereas

those in an imagery is continuous.

The problem of dissimilar representation of available common

features can be solved by filtering the imagery using differen-

tial filters to produce binary images consisting of lines and

edges. This binary image is more similar to planimetric features

in DTMs than the original continuous image. If the original pho-

tographs used in compiling the DTMs are available, these might be

digitized and correlated with satellite images to find common

points. These photographs are more similar to satellite images,

hence more common features can be found. Common features between

DTM source photographs and satellite imagery can be used for

merging DTM and satellite imagery because these photographs are

registered with the DTM.

With the advent of space photography (such as the Large For-

mat Camera on-board the Space Shuttle) merging of DTMs with
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satellite imagery is, at least theoretically, made easier. The

first step in merging DTMs with satellite imagery using space

photographs is to first merge DTMs and the corresponding space

photos. The required number of common features in this case is

very few (minimum of three control points) because the geometry

of space photographs is much stronger compared to satellite

scanner imageries. Then the space photo is merged with the

corresponding satellite image. Common features between space

photos and satellite imagery is much easier to find because both

are continuous images of the terrain. Space photographs are more

efficient than the DTM source photographs as tools for merging

DTM with satellite imagery because of scale. A single space

photo, for example, covers almost the same area as a single frame

of MSS imagery whereas a large number of DTM source photographs

is needed to cover the same area.

In selecting common features between images, the primary

tool in matching these features is the use of correlation algo-

rithms. Advanced correlation algorithms are capable of compen-

sating for scale differences, differences in direction of digiti-

zation and higher order distortion. Procedures are available

also for correlating images with different pixel sizes.

Nevertheless, because correlation is central to the measurement

of common features, more study and experimentation are needed in

this area for our specific application.

Theoretically, the number of common features needed as con-

trol for merging or registering DTMs and satellite imageries will
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be reduced if overlapping frames of imageries taken from dif-

ferent perspective positions are available. This is because

features common to overlapping imageries but not found in the DIM

can be used to strengthen the geometry of each individual

imagery. These are commonly called pass features. The procedure

of using overlapping imageries is called block adjustment. For

imageries taken by Landsat MSS or other similar scanners, where

the base-height ratio is very small (for overlapping strips if

there is any overlap at all), the promise of block adjustment can

not be fulfilled. However, this procedure might be advantageous

for imageries produced by scanners whose direction can be

remotely controlled like those on-board the Spot satellite for

example.
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6. CONCLUSIONS

Error in the reconstruction of the scanner interior geometry

results in image position errors primarily along the column

direction which severely limit the obtainable accuracy through

rectification. Unless this problem is corrected, highly precise

control data sets, even if available, will not be effective. The

question of proper weights for image and ground position of con-

trol features is easily resolved because we can assume that the

image positions are less accurate and the ground positions are

more accurate than they really are without adversely affecting

rectification accuracy. Regarding the proper parameter combina-

tion that should be recovered during rectification, ideally, all

six perturbation component parameters should be used. However,

unless these parameters are known to within 0.1 pixel equivalent

error, fixing the along and across track perturbation components

produces more accurate results. Edges are very effective substi-

tutes and/or complements for points as control. Our results show

that a pair of edges is equivalent to a point under certain con-

ditions. When correspondence for rectification is established at

the same level of accuracy as for registration, then image rec-

tification, for whatever purpose, will always be superior. Given

the present capabilities for measuring the positions of common

points, single rectification should be used when rectified

imageries are primarily the desired results. Direct registration

should be used when the registered imageries are of primary

interest. Double rectification in general is as accurate as the
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registration/rectification sequence. With respect to blunders,

post adjustment identification is feasible in rectification of

single image, especially for relatively large blunders. Digital

Terrain Models (DTMs) can effectively be combined with remotely

sensed imagery. This procedure may provide suitable means for

rapidly updating maps.
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Table 1. Effect of Error in Internal Sensor Geometry

COLUMN STANDARD
DEVIATION (pixel)

0.01
0.05
0.1
0.5
1.0
2.0

AVERAGE RMS ERROR
IN PLANIMETRY (meters)

3.55
3.90
4.73
14.70
28.16
53.70

Table 2. Effect of Errors in Variances of Image and Ground Coordinates

VARIANCE
FACTOR

0.0001
0.01
0.1
1.
10.
100.

10000.

AVERAGE RMS PLANIME
IMAGE

*
*

59.06
29.34
29.34
29.34
29.34

TRIG ERROR IN METERS
GROUND

29.94
29.34
29.34
29.34
59.06
*
*

* Solution did not converge,

Table 3. Effect of Different Parameter Combinations

PARAMETER
ERRORS IN
PIXEL

0.1
1
2
5
10
20

AVERAGE RMS PLANIMET
CASE 1

11.19
24.83
71.44
170.81

RIC ERRORS IN METERS
CASE 2

15.36
16.00
16.13
29.34
53.21
105.53

Case 1: True weights for all satellite position deviation, sensor
attitude and sensor azimuth component parameters are
multiplied by a factor of 125 except the first entry.

Case 2: Along orbit and across orbital plane satellite position
deviation components are fixed; radial or elevation
component, sensor attitude and sensor azimuth parameters
are free.
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Table 4. Results of Blunder Identification

NUMBER
OF BLUNDERS

1
2
4

METHODS
1

4a/4o
6a/8a
6cr/8a

2

4a/6a
8a/8o
10a/8a

3

4o/4a
6a/8a
6a/8a

Method 1. Data snooping (normal test)
Method 2. Tau test
Method 3. Partial quadratic (chi-squared test)
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Abstract

sim-

Variograms are used as a tool to study spatial variation in remotely sensed

images from both theoretical and empirical perspectives. The theoretical analysis

involves deriving variograms that incorporate the effects of regularization for

pie scene models. In addition, variograms are calculated from remotely sensed

images from scenes with known characteristics in an empirical portion of the

study. The two diverse approaches are linked through the use of simulated

images. Several kinds of information about ground scenes can be recovered from

analysis of variograms derived from images of the scenes. Also, the effects of

changing spatial resolution on the spatial structure of images can be determine

through understanding the effects of regularization.
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1. Introduction

The long term goal motivating the research presented in this paper is the

development of scene inference methods that exploit spatial relationships in

remotely sensed imagery. For many years the spatial variation present in images

has been a primary information source used in manual interpretation of remotely

sensed imagery. However, it has proven a difficult task to quantify the spatial

structures that humans recognize in images and incorporate them in computer-

assisted scene inference methodologies. Thus, as an intermediate goal an attempt

has been made to understand the nature and causes of spatial variation in images

as they relate to the characteristics of the ground scene and the spatial resolution

of the imagery.

In order to incorporate the characteristics of ground scenes in this investiga-

tion, an organized method of describing scenes is necessary. Thus, a scene model

is defined which specifies the form and nature of the energy and matter in the

scene. One characteristic of the scene models used in this research is that they

are discrete in nature, assuming there are boundaries or discontinuities where the

properties of matter change abruptly over space. In this model setting, the scene

is perceived as consisting of objects on a background. A scene-model element is

an abstraction of a real object in the scene which can be regarded as having uni-

form properties or parameters.

The elements in a scene model can vary widely according to the interests of

the interpreter and the scale of the observations, or the spatial resolution. Exam-

ples of elements in an agricultural scene could include: leaf, branch, plant, crop

row, field. In addition to these discrete elements, a particular type of element,

the background, should be recognized. The background is usually assumed to be
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spatially continuous and is typically partially obscured by other elements in the

scene. Soil, snow, rock, and vegetative understory are examples of backgrounds.

It is also important to recognize that scene models may be complex, or include

more than one type of element as well as the background. Nested models are also

possible in which the properties of larger elements are derived from smaller ones.

In this investigation it is necessary measure spatial variation in images in

order to compare them. Variograms were selected for this role in the investiga-

tion because they are mathematically quite tractable and are easy to understand.

Other choices such as autocorrelation functions or power spectrum density func-

tions are also available. Variograms are approached from both a theoretical and

empirical perspective in this investigation. The theoretical phase involves deriv-

ing explicit variograms for scene models. The empirical use of variograms con-

sists of calculating observed variograms from images of scenes with known

characteristics. These two divergent approaches are linked through the use of

simulated images. The variogram, then, becomes the tool linking scene models,

simulated images, and real images.

2. Variograms

Variograms measure spatial variation in a regionalized variable. Any ran-

dom variable whose position in space or time is known is a regionalized variable.

In this formulation, variables are indexed by their location. Thus, assume F ( z )

is a regionalized variable associated with location x. For numerous realizations of

the variable Y at different locations, it becomes necessary to index the locations

as x,:, where t = l,...n correspond to n observations. If the Y ( x { ) are uncorrelated,

then the image will consist of random noise. If however, the Y(x { ) are in some

.way related, then the data will exhibit spatial structure. Perhaps the weakest

assumption one can make about this structure is what Matheron [5] refers to as
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the "intrinsic" hypothesis, that the increments 7 (z,-- t- / i )-F(z,-) associated with a

small distance h are weakly stationary. Under this assumption, the first moment

of the increment, its expected value, is constant or at least only slowly varying

with spatial position x; and the second moment is also invariant with spatial posi-

tion. The second moment is called the variogram:

27(/0 = E [ Y ( z + k ) - Y ( z ) } 2

Just as the variance characterizes the distribution of a nonspatial random

variable, so the variogram characterizes the distribution of a regionalized vari-

able. The distance at which samples become independent is often called the

range of influence and is denoted as a. The value at which the variogram levels

off is denoted c and is called the sill (Clark [l]).

Geostatisticians have used the variogram as a primary tool in many spatial

studies. In particular, variograms are used as part of a process called kriging.

Kriging is a method of estimating local values from surrounding point samples, a

process generically referred to as interpolation. Kriging uses the relationships

between point samples established by the variogram to produce the best linear

unbiased estimator (Clark [l]). For kriging, a model describing the shape of the

variogram is necessary.

One commonly used model for the shape of a variogram is the spherical

model:

l ( h ) = c [3/i / 2a - h3/ 2a3} when h ^a

and

7(/i) = c when h >a
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Figure 1 shows an example of a spherical model of a variogram. As expected, the

variogram passes through the origin. If samples are taken exactly zero distance

apart then they are the same sample and their variation will also be zero. As h

increases within the range of influence, the difference between measurements

increases and the variogram rises. Past the distance a. samples from the data are

independent and the variogram reaches a stable peak at the value c, the sill.

Just as a sample variance is an estimate of the true variance of a variable, the sill

is an estimate of the true variance of a regionalized variable. Thus, one can esti-

mate the sill via a sample variance.

The spherical model is often referred to as the "ideal" model for a

variogram because there is a well defined sill and the meaning of the range of

influence is easily interpreted. Not all models for the shape of a variogram share

these characteristics. Figure 2 shows the shape of an exponential model for a

variogram compared with a spherical model with the same sill and range of influ-

ence. The exponential model is calculated as follows:

7(M = c[l-exp(-h/ a)}

D I S T A N C E ( h )

Figure 1. The spherical model of a variogram (modified from Clark [l]).
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exponential

D ISTANCE

Figure 2. The spherical and exponential models for the same values of a and
c (modified from Clark [l]).

The exponential model never reaches its sill, but asymptotically approaches

it. In addition, the meaning of a, the range of influence, is not clear. In the

spherical model there was a direct physical interpretation of a, but in the

exponential model it is a parameter necessary to describe the shape of the model,

but has limited interpretive value.

There are models for the shape of variograms which do not have a sill. The

simplest form of these is the linear model:

where p is the slope of the line. An extension of this model is the generalized

linear model:

where O^A<2. Figure 3 shows the effect of the exponent. A. on the shape of the

generalized linear model.

While the above models are commonly used in geostatistics, other models

could be used. For example, all the above models are monotonic, assuming that
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Figure 3. The linear model and generalized linear models of variograms
(modified from Clark [l]).

variation will only increase as a function of distance. However, if the data exhi-

bit periodicity models based on trigonometric functions might be appropriate.

Also, variograms can be multidimensional. All the examples have shown one-

dirriensional variograms, but two and three-dimensional variograms are possible.

In this situation h becomes a vector and measures both distance and direction

(and possibly height). One-dimensional variograms have the advantage of being

easy to display and interpret. Two-dimensional variograms are usually displayed

as contour plots and can be useful for revealing anisotropy in the data. However,

displays using contours can make evaluation of shapes of variograms difficult. As

a third dimension is added there is again potential for information on variation in

another dimension, but the problems of display and analysis of shape increase. In

this paper, one-dimensional variograms are used because of the emphasis on the

shape of variograms as influenced by the characteristics of scenes. In a previous

paper, two-dimensional variograms of remotely sensed images were presented and

interpreted with respect to the degree and causes of anisotropy (Woodcock and

Strahler [8]). However, the analysis of shape and determination of the range of

influence proved difficult using two-dimensional variograms.
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In geostatistics. the models used to describe variograms tend to be combina-

tions of several models. These combinations can include several models of the

same type with different parameters or different types of models. The use of

combinations of models is reminiscent of fourier analysis where sinusoidal curves

with different amplitudes, frequencies and phases are combined to model a func-

tion. One difference from fourier analysis is the subjective nature of the methods

used to determine the type of models to be combined and their coefficients.

Often the nature of the model selected is guided by the specific interests of an

application. Criteria which affect model selection are the behavior near the ori-

gin, the fit near the sill, and the determination of the range of influence.

2.1 Scene Models and Variograms

The previously described models for the shapes of variograms are necessary

for kriging, and as a result have played a significant role in studies involving

variograms. However, for the purpose of understanding spatial variation in

remotely sensed images, their value is limited. The reason is that there is no

apparent way to link these models for the shapes of variograms to scene models.

A more useful tool is a variogram whose characteristics can be determined as a

function of the parameters describing a scene model. Serra [6] provides a method

for calculating explicit variograms for some simple scenes. (The use of Serra's

work was made possible by the help of Dr. David L. B. Jupp.)

The derivation of explicit variograms is based on an extension of the bino-

mial. This approach is well suited for a discrete scene model, in which the ele-

ments in the scene and the background are considered homogeneous, thus allow-

ing only two states in the image. By approximating the binomial using an

exponential, it is possible to determine q, the proportion of the area not covered
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by n randomly-distributed objects of area a within a larger area A as:

q = exp(— na / A )

The proportion of the area covered by objects is simply 1-q. The variogram for

the distance between two points h distance apart is:

= 9' — - e x p f o ( / i ) n / A\ \
q L Jl

J

where O (h ) is the overlap function. The overlap function for the case of

randomly-located, overlapping discs of radius r, when h <2r is:

O ( h ) = 2cos~ l —
2r

If h ^2r then no overlap occurs and i (h )= q (l — q)= qp , which is the binomial

variance.

This formulation of a variogram is slightly different than originally

described. In the original description, the variable Y(x) is continuously meas-

ured. For this explicit variogram, the variogram is defined as the probability

that Y (x ) and Y (x +h ) will be different, i.e.. z is located within the object and

x+h is located on the background, or vice-versa. This is equivalent to the proba-

bility of crossing a boundary between an object and the background.

Figure 4 shows explicit variograms for scenes of overlapping disks. The

variogram is calculated for n=l, 10. 25. 50, 100. and 200 objects of unit radius on

an area of size 100 ?r2 units. The variogram starts with zero variance and rises to

the sill, or maximum variance. The distance to the sill reflects the size of the

objects, and the height of the sill is determined by the number of objects. At low

values of n variance is low because most of the area is background. As n
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Distance (h)

Figure 4. Variograms for scenes with different numbers (n) of randomly-
located, overlapping discs.

increases, the curves become steeper and the sill successively higher until half the

area is covered (p=q=.5, n=69.3). As more than half of the area is covered, the

height of the sill decreases because more and more of the area becomes covered

by disks. Thus, there will be two different scenes with the same sill, one in which

the discs occupy area p, and one in which the background occupies area p. Dis-

tinguishing between these two alternatives should not normally present a problem

because the general brightness of the scene will be different. The two cases may

also be distinguished by their shape. Note that in Figure 4 the variograms for

n >69.3 have a more rounded shape than that those for n <69.3. The reason for

this may be resolved by studying another of the useful measures of variograms,

the slope at the origin. Serra [6] shows that the slope at the origin depends on

the amount of boundary between discs and background. This reduces for both

high and low n, but in different ways. For higher values of n, the background

becomes dissected into a large number of small areas, or slivers between the

disks. In this situation the amount of boundary becomes large, and 7(/i)

becomes large at short distances, leading to the more rounded, faster rising shape
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of the variogram for large n.

2.2 Variograms and Remotely Sensed Images

Whenever remotely sensed data consist of images, an important new infor-

mation component is added to the measurement output by the sensor: its spatial

position. Since the position of the measurement in the image is usually a quanti-

fiable function of the position in the scene of the resolution cell from which it is

derived, each measurement can be associated with a ground location and be posi-

tioned relative to other measurements. The sensor's response then becomes a

regionalized variable, because its position in space is known. Thus, variograms

can be used to characterize the spatial structure in remotely sensed images.

There is an important factor that must be considered when using

variograms in conjunction with remotely sensed images. The models presented

for the shapes of variograms (spherical, exponential etc.) are for punctual

variograms, or variograms derived from point measurements. Measurements in

remotely sensed images are integrated over areas, and this difference is impor-

tant. In this instance, when measurements are taken over some length or area,

the resulting variogram is referred to as regularized. Regionalized variables can

be thought of as having a true or underlying punctual variogram based on point

measurements, and regularized variograms which are an estimate of the underly-

ing variogram based on measurements taken over an area.

In remotely sensed images, the regularizing area is the instantaneous field of

view of the sensor, with the point spread function describing the form of the reg-

ularization. For this study, the resolution-cell size of the image is taken as the

units of regularization. The effects of regularization are similar to those typically
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associated with measurements that represent some form of aggregation. The

overall variance of the data is reduced and fine scale variations are blurred. Cer-

tainly variation at a scale finer than the scale of regularization can not be

detected and variations less than two to three times the scale of regularization

can not be reliably characterized.

The effect of regularization on punctual variograms can be determined

analytically, but is considerably more straightforward for some models. Geosta-

tisticians have determined the expected results of one-dimensional regularization

for several models of variograms for use with core samples. The exponential

model for samples of length / is:

= C

nples of length / is:

\2a / I + a2/ / 2[ l -ezp(- / / o )] [ezp (-/i / a )] [l-eap (// a )] \

where h ^

Determination of 7/ when h <l is considerably more complex. The linear model

is straightforward for all distances:

1,(h) = ^i_(3/-/i) when h^l
3/2

and

•7, (h ) = p (h - 11 3) when h <l

The calculation of a regularized spherical model is very complex and tables

have been produced to aid in its estimation. The sill for the regularized

variogram will be lower than the punctual variogram, as can be seen in Figure 5.

The effect of regularization of disc model variograms can be seen in Figures

6 A-H and Figure 7. These figures show the punctual variogram and the regular-
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punctual

regularised

DISTANCE

Figure 5. The effect of regularization from samples of length I on the spheri-
cal model of a variogram (modified from Clark [l]).

ized variogram for several different units of regularization for the same scene

model. The punctual variogram is the same for these Figures, but the units of

regularization are increased in size. In essence, increasing the units of regulariza-

tion is analogous to increasing spatial resolution in remotly sensed data. The

scene model used in these tests is randomly distributed discs of radius 3.5 m that

cover 10% of the area.

Figures 6 B-H show variograms as they would look if calculated from

remotely sensed imagery at various spatial resolutions. In other words, the x axis

is in integer multiples of the units of regularization. As a result, the scale of the

x axis changes in these graphs. At small units of regularization, the variograms

resemble the punctual variogram, with a well developed drop from the sill in the

range of influence. At larger units of regularization, the shape of the variogram

becomes very simple. In fact, for Figures 6 D-F, or 4, 6, and 8 m, the variogram

is essentially one point below the sill. By 12 m and beyond the variogram is

essentially flat. Figure 7 is a composite of the graphs in Figure 6 A-F that holds

the x axis constant. This composite illustrates several important points about the

effect of regularization. As the size of the regularizing units increase, three things



407

25-

20-

15-

10-

5-

10

D i s t a n c e in Meters

(6A) Punctual Variogram

20

25-,

20-

15-

10-

5-

10 20

Dis t ance in Me te r s

(6B) One Meter Regularization

25 -

20-

15-

10-

5-

10 20
Dis tance in Meters

(6C) Two Meter Regularization

25-i

20-

15-

10-

5-

20 40

Dis tance in Mete r s

(6D) Four Meter Regularization



408

25-1

20-

15-

10-

5-

20 40

Distance in Meiers
60

(6E) Six Meter Regularization

25-

20-

15

ID-

S'

20 40 60 80

Distance in Meters
(6F) Eight Meter Regularization

25-1

20-

15-

10-

5-

50 100

Distance in Meters
150

(6G) Twelve Meter Regularization

25

20

15

10

5-

100 200 300

Dis tan t^ in M e t e r s
(6H) Thirty Meter Regularization

Figure 6 A-H. The effect of regularization on a disc model variogram. All
variograms are for the same scene model but eachaises a different
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remotely sensed image. ri.s
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Figure 7. The effect of regularization on a disc model variogram. This
graph is a composite of Figures 6 A-F that holds the x axis constant.

should be noted. First, the height of the sill (or the variance of the variable)

decreases. Second, the range of influence, or the distance to the sill increases.

Third, the height of the variogram at the first measured interval of h increases

relative to the sill until they match. While one can determine the regularized

variogram from the punctual variogram. in practice, the more common situation

is the observed variogram is a regularized variogram and one is interested in the

punctual variogram. In this situation, the equation for the regularized variogram

is used to estimate a and c, which are then used in the equation for the punctual

variogram.

Variograms can be calculated from remotely sensed images as follows:
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« — i

where k is the number of observations used to estimate 7. A program that esti-

mates both the one-dimensional and two-dimensional variograms of remotely

sensed images has been written. Ideally, a variogram should be computed by

comparing each point with all others. In a normal application in geostatistics,

the number of available samples is limited and an estimate of the variogram is

produced in this way. In the remote sensing case, generally the area of interest is

entirely sampled, but due to the large sizes of images the comparison of each

measurement with all other measurements is computationally unrealistic and con-

straints need to be imposed. One constraint concerns the distance h over which

the variogram is to be measured. This distance can be thought of as a "window

size" when using image data and needs to be larger than the range of influence

and large enough for any periodicities in the data to be revealed.

A second constraint concerns the number of points in the image to be used

as centers of windows. The use of a sample results in an estimate of the true reg-

ularized variogram. The actual locations of points to be used are determined ran-

domly from the set of points inside a band of width h around the outside of the

image. This restriction is to avoid boundary conditions to assure a constant

number of points contributing to the two-dimensional variogram for each vector

h. For the one-dimensional variogram, there are not the same number of pixels

for each distance h. In fact, the possible combinations of distances between

centers of pixels grows large as their distance apart increases. To simplify the

resulting variogram, all distances between'successive integer multiples of the

number of resolution cells are combined to produce a single estimate of 7 over

that interval. The distance used to index this estimate is the average of the
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contributing distances weighted by their frequency of occurrence. For example,

there are four pixels one resolution-cell distant from any center point (its nearest

neighbors), and four pixels 1.414 resolution cells away (at the diagonals). Thus,

for the one-dimensional variogram, the contributions of these eight pixels is used

at each center point to estimate the value of 7 between 1 and 2 units of distance.

The distance used to index their result is 1.212, or the average of the distances of

the contributing pixels. As h increases, the combinations become more compli-

cated, and the number of pixels contributing to the estimate of any given interval

increases.

3. Image Simulation

In the last section, two diverse approaches to variograms were presented.

One approach is empirical, in which the variogram is calculated from observed

images. The other is theoretical, with the expected nature of variograms being

explicitly defined on the basis of a simple scene model. In an effort to bridge the

gap between these two approaches, images were simulated on the basis of known

scene models. These simulations served several purposes. First, they confirmed

the validity of the explicit variograms through empirical testing. Second, they

allowed for testing of the extension of the simple disk model to more complicated

scenes. And third, the variograms of simulated images helped lead to a better

understanding of the empirically calculated variograms from observed remotely

sensed images.

3.1 Simulation Methods

The simulated images are based on a coniferous forest scene model. The

basic approach is a modification of a Monte Carlo computer model used by Li

and Strahler [4] in their studies of forest canopy reflectance. Monte Carlo
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methods are used to locate trees on a plane which are illuminated from a speci-

fied angle and azimuth. This approach leads to four elements in the scene:

illuminated tree crown and background, and shadowed tree crown and back-

ground. The forest simulation represents a general model with several parame-

ters. For this project, these parameters are calibrated primarily by field data col-

lected in the Klamath National Forest in northern California (Li and Strahler

In the original model of Li and Strahler, many realizations of individual

resolution cells were simulated. Their approach specifies two levels of resolution:

(l) the scale at which scene elements are differentiated, and (2) the size of the

resolution cells. For this project, the simulation program was altered to simulate

one larger scene in which the scale at which scene elements are differentiated

matches the size of the resolution cells. The size used in the simulations

presented is one meter. The distinction between a simulated scene and simulated

image is minor in this case. A scene implies different elements and an image

implies reflectances (or emittances). The simulation assumes no atmospheric

effects and a square wave response on the part of the sensor. As a result, there

are only four values for reflectances in the image, one for each type of scene ele-

ment.

The primary parameters of the simulation concern the characteristics of

trees, their number, location, size, and shape. In the Li and Strahler model, the

number of trees in a single realization of a resolution cell varies according to a

Poisson or Neyman Type A distribution. However, for the single realization of a

larger area, a single value, or the mean of a Poisson distribution is used to deter-

mine the number of trees for the entire area.
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Of more interest is the manner in which the trees are located within. the

scene. Considerable effort has been devoted to this question, and several alterna-

tives considered. Li [3] measured the spatial patterns of trees using point-pattern

techniques based on locations derived from aerial photography and found that a

Neyman Type A model fit better than the random model. In a later study in a

neighboring area, Franklin et. al. [2] again used locations of trees taken from

aerial photography and found that the random model was appropriate except at

spacings of about 10-60 m. Evidence for repulsion between trees, or a more regu-

lar distribution was found at short distances. Such a result could be easily sup-

ported by a competition model of tree growth, in which the likelihood of a tree

surviving is reduced if it is very close to an established tree due to competition

for resources such as light, water and nutrients. As a result, initial simulations

used a "hard-core" model for the location of trees in which trees were randomly

located except that a new tree could not be located within the area covered by

the crown of a previously located tree. This approach was designed to modify

the random assumption to take into consideration competition at short distances.

However, it was later realized that Franklin's results may have been due to sam-

pling artifacts resulting from the use of aerial photography to determine the loca-

tions of trees.

In an attempt to determine an appropriate model for the location of trees as

well as calibrate other parameters for the model, field data was collected in the

Goosenest District of the Klamath National Forest. An account of the methods

used to collect and process the data is given in Woodcock [7]. The results of the

field data indicate that the random model is a reasonable approximation. Thus

in the simulations presented, the locations of the center of trees are determined

through random coordinates.
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The model is based on the use of inverted cones as the shapes of trees.

Thus, the model is really limited to coniferous forests. Trees are assumed to have

a constant apex angle of 10 degrees, which is based on the field data previously

mentioned. A lognormal distribution of the sizes of trees is used. This decision is

based on the results of other published studies, and the parameters of the distri-

bution were calibrated from the field data collected in the Klamath. For a more

complete description of the model and its parameters see Li and Strahler [4].

3.2 Validation of the Explicit Variograms

One use of the simulated images was to validate the explicit variograms.

Due to the nature of the forest simulation model it was easily generalized to

correspond to the disc model used for explicit variograms. By reducing the vari-

ance of the heights of trees to a number close to zero, and eliminating shadows

=•• -;.*
*•• •

Figure 8. A portion of the simulated disc image (A), and an enlargement
(B).
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through the use of a solar zenith angle of zero, an image corresponding to discs

on a background at one meter regularization was simulated. Figure 8 shows the

simulated disc image, which has discs of 7-m diameter covering 9.92% of the

background. In order to test the validity of the explicit variograms. an empirical

variogram was calculated from the simulated disc image, and an explicit

variogram for the corresponding scene model was calculated at one-meter regular-

ization. Figure 9 shows these two variograms plotted together for comparison.

These two variograms do not match exactly, but are very close.

There are several possible reasons why the observed and expected

variograms do not match exactly. The empirical variogram is derived from one

realization of a simulation process based on randomization. Thus, it is likely that

this one realization will depart from the model to some extent. Also, the empiri-

cal variogram is estimated, in this case from a sample of 600 points in the image.

25-
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10-

5-

Legend
Simulated Disc

Disc Model
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Distance in pixels

Figure 9. Comparison of an explicit variogram and an empirically calculated
variogram for the same scene model. The empirical variogram was
calculated from the simulated image in Figure 8.
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Figure 10. The effect of sampling density on empirically-estimated
variograms.

As the number of points is changed, the variogram changes slightly. Clearly, the

more points that are used, the more stable and accurate the estimate is likely to

be. Figure 10 shows four estimates of the variogram for the simulated disc image

using four different sampling densities. Their variation is large relative to the

difference between the explicit and empirical variograms shown in Figure 9.

The ability to reproduce empirically through image simulation the results

for a disc model expected by theoretical formulation is a significant step in the

use of variograms to study spatial structure in images. This "closing of the loop"

validated the theory as well as the software used to estimate variograms from

observed images and the image simulation procedures.
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3.3 Extension of the Disc Model

Having demonstrated the connection between observed variograms and

theoretical variograms using a simple disc model, it is possible to test the effect of

variations in that model on variograms. Obviously, real scenes are not composed

of randomly located discs of the same size on a uniform background. However, it

may be possible to use the characteristics of explicit variograms from this simple

model to help explain the nature of variograms derived from real images.

3.3.1 Shape. To test the effect on observed variograms of the shape of

objects, a forest image was simulated using the previously described methods.

The same parameter settings that were used for the simulated disc image (Figure..

8) were used with one exception; the angle of illumination was changed from zero

to 20 degrees in order to produce shadows. The resulting image (Figure 11) exhi-

bits all four components of the forest model: illuminated canopy, shadowed

canopy, illuminated background, and shadowed background. In order to compare

the observed variogram from this image with the disc model, it was necessary to

convert the image to only two values, or tones. In this instance, trees and sha-

dows were stretched to black and the background was left white. The resulting

image (Figure 12) looks like cones on their sides. These cones do not strictly

match the disc model due to their shape, but the ability to extend the disc model

to this case is interesting.

A variogram was calculated from the observed black and white image for

comparison with the result of the explicit variograms for the disc model. How-

ever, it was not clear what values should be used for the disc model in the calcu-

lation of the explicit variogram. In particular, it was not obvious what should be

used as the size parameter. For the forest cone image, the radius changes as a
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Figure 11. A portion of the simulated forest image (A), and an enlargement
(B).

D

Figure 12. A portion of the simulated forest image stretched to two tones
(A) for comparison with the disc model, and an enlargement (B).

function of orientation from 3.5 meters across the tree to 5.5 meters from the far
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edge of the tree to the tip of the shadow. Figure 13 shows the observed

variogram calculated from the image in Figure 12 compared with three explicit

variograms for the disc model using 3.5. 4.5. and 5.5 meters for the radii of the

discs. Interestingly, the 3.5 meter radius is the best approximation of the forest

model, which is the same size as the trees before the addition of their shadows.

The shadows markedly affect their shape but do not significantly influence their

effective size. Figure 14 presents a comparison of the observed variogram with a

variogram for discs with area equal to the area of the forest cone. While these

two variograms are not a perfect match, they demonstrate that shape is a rela-

tively minor factor in this case. Using just the area covered by individual objects

it was possible to produce a reasonable fit with the disc model. This result is

80-)

60-

40-

20-

—I—
10

Legend
Observed

Disc Model r=3.5

Disc Mod el r=4.5

Disc Model r=5.5

15
—i
20
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Figure 13. Comparison of the observed variogram from the simulated forest
image with three disc model variograms for different size discs.



420

30-,

20-

10- Legend
A Simulated Forest

* Disc Model

5 10 15
Distance in pixels

20

Figure 14. Comparison of the observed variogram from the simulated forest
7 image and the disc model. The size of the discs used in calculation of

the explicit variogram match the area of the cones in the image.

important because it indicates that the disc model might be used as a reasonable

approximation of scenes with elements of other shapes.

3.3.2 Size Variance. The derivation of the explicit variograms assumes

that all the discs are the same size, which is unlikely for real scenes. To test the

influence of variance in the size of discs, an image was simulated using the same

parameters of the initial simulation of the disc image (Figure 8) with the excep-

tion of the variance in disc size. As mentioned earlier, a lognormal distribution is

used to describe the size distribution and its standard deviation was set inten-

tionally high at 3.168. The resulting image is shown in Figure 15. To calculate

an explicit variogram for comparison it was again necessary to determine the

appropriate size to be used for the discs. The mean radius is not a good approxi-

mation as the area covered is related to the square of the radius, not the radius.

Instead, a value for the radius that produces the same area covered by discs as
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Figure 15. A portion of the simulated image in which the sizes of the discs
are lognormally distributed (A), and an enlargement (B).

the lognormally distributed discs would be appropriate. This radius can be calcu-

lated using the mean (m) and variance (s 2) of the lognormal distribution:

For the simulated image shown in Figure 8, the appropriate radius for use in the

disc model is 4.72 meters.

Figure 16 is a comparison of the observed variogram from the simulated

image with a lognormal distribution of disc sizes and the equivalent explicit

variogram for fixed size discs. The two variograms agree closely with one

interesting difference. "The observed variogram exhibits a more rounded shape
v

than the explicit variogram for fixed disc size. This rounded shape can be under-

stood by examining the effect of the distribution of sizes on the variogram. At

small distances, the variogram is a little higher than expected and at distances

near the range of influence it is lower than expected. At short distances the
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Figure 16. Comparison of the observed variogram from the simulated image
with lognormal variance of disc sizes with an explicit variogram for a
fixed size disc model.

existence of small discs causes an increased amount of perimeter for the same

area covered, increasing the likelihood that movements of short distances will

result in crossing a boundary. At distances near the range of influence, an oppo-

site effect occurs. One result of the lognormal distribution is discs larger than the

size of the fixed discs of the the explicit variogram. These discs reduce the likeli-

hood of crossing a boundary at distances smaller than their diameter, which can

still be larger than the zone of influence of the fixed disc model. This accounts

for the difference between the two graphs in the 7- to 11-m range.

4. Remotely Sensed Images

The long range goal of this research is to be able to determine directly the

characteristics of a scene using variograms derived from images of the scene. It

has become apparent that extracting information from images is dependent on

having a model for the scene and being able to determine explicit regularized
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variograms for those scene models. To date, the ability to move directly between

a scene model and an observed variogram has been demonstrated only for a sim-

ple disc model of scenes. This limited model is not sufficient to directly recover

scene characteristics. However, through the use of the disc model and simulated

images a considerable amount has been learned about the behavior of variograms

in response to scene parameters. In this section, variograms from real images will

be interpreted on the basis of the experience of the last sections. A brief sum-

mary of the major points learned through the disc model, explicit variograms,

and image simulations that relate to interpretation of variograms from real

images would emphasize the following:

- The height of the variogram, the sill, is related to the proportion
of. the area covered by objects, which is a function of their number
or density.

- The distance to the sill, or the range of influence is related to
the size of the objects in the scene. The shape of the variogram
and the range of influence are more closely related to the area of
objects than to their shape, at least for shapes not highly dissimilar
from discs.

- The shape of variograms is related to the variance of the size of
objects in the scene. A more rounded or gradual shape is char-
acteristic of higher variance in the size of objects.

- Increasing the size of the units of regularization (which is analogous
to increasing the spatial resolution of remotely sensed imagery) has
the following effects on variograms: (1) the height of the sill is
reduced, (2) the range of influence is increased, and (3) the height
of the variogram at the distance equal to one unit of regularization
increases relative to the sill.

In evaluating the variograms derived from real images, there are three

things to be determined. The first has been mentioned and concerns the charac-

teristics of the scene that can be determined on the basis of the variograms

derived from images of the scene. The second issue to be addressed concerns the
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applicability of the disc model to individual scenes at the resolution of the

images. The third issue is to assess if another model for the shape of a variogram

is more appropriate than the disc model. In particular, the exponential model

holds interest because of its resemblance to the shape of the variogram from the

simulated image with variance in the size of discs.

The approach used to compare variograms from observed images with the

disc model requires calculation of an explicit variogram for a disc model with

characteristics derived from the observed images. If the explicit variogram

matches the observed variogram for the image, then the disc model can be

assumed an appropriate scene model. To determine the necessary parameters for

the disc model several steps are required. Objects in the image that represent

"discs" must be identified. In order to match the assumptions of the disc model,

the image must be stretched so that the "discs" are assigned one value (black for

example), and the rest of the image to a different value (white). This black and

white image will be used in the comparison with the disc model. From this

image the percent cover of "discs," their approximate size, and the brightness of

the discs and background are determined. These parameters are used to calcu-

late an explicit variogram corresponding to the observed image. For comparison,

an observed variogram is calculated from the black and white image. The quality

of the match, and thus the appropriateness of the disc model for the image in

question is evaluated visually. It is worth noting that this procedure can not be

done or is not appropriate for all images. For example, objects occurring in the

scene man not be well represented by discs. Also, it is critical that the objects

can be separated spectrally from the background when converting the images to

two tones.



425

The comparison of observed variograms with fitted exponential variograms

is only a comparison of shape, as there is not a known scene model that is tied to

the exponential model for the shape of a variogram. As such, the value of this

comparison is limited and is done as an exploratory exercise. The actual com-

parison involves an empirical fit of the exponential model to the observed

variogram. Ideally the form of the exponential model that should be fit is the

regularized form given earlier. However, this form is considerably more compli-

cated than the equation for the punctual variogram and would prove tedious to

use. Instead a simple approach is used that is based on the model for the punc-

tual variogram:

7 = c (l— exp(/i / a ))

In this equation c and a are the unknown variables. In order to fit this model,

the variance of the image is used as an estimate of c, the sill, and a is estimated

using linear least squares of a natural logarithm transform:

7 = — h / a

where

7 =

This approach forces the variogram through the origin, which is a requirement of

all variograms. However, this form does not take into account regularization

which can affect the behavior of the model near the origin. Figure 17 shows the

effect of regularization on the exponential variogram, which is to reduce 7

slightly at each h, resulting in a graph that is shifted to the right near the origin.

Thus, an exponential model forced through the origin might be expected to be

shifted to the left of the observed regularized variogram at short distances. This

inconvenience is considered minor compared to the problems involved in fitting
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Figure 17. The effect of regularization on the exponential model.

the equation for the regularized variogram.

The examination of variograms from remotely sensed images involves three

kinds of environments: forested, agricultural, and urban/suburban. For each

environment there are images at two resolutions; very fine resolution (between

0.15 m and 2.5 m) designed to reveal the inherent structure of the scene, and 30-

m resolution from the Thematic Mapper (TM) or Thematic Mapper Simulator

(TMS).

4.1 Canoga Park Residential Image

An image of a residential portion of Canoga Park, California was obtained

through NASA Ames Research Center (Figure 18). The image is from the red

portion of the spectrum and has approximately 2.5-m resolution. This scene is

complex in nature, having several kinds of elements arranged in a mosaic. The

most obvious elements are houses (or roofs from the aerial perspective), trees,

streets, lawns, cars, and a vegetated canyon that runs through the area. Close
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Figure 18. The Canoga Park residential image (A) at 2.5-m resolution, with
an enlargement of a portion of the image shown in B.

examination of an enlargement of a portion of the image indicates that there are

three distinctive tones in the image: bright tones which are houses, intermediate

tones which are mostly streets, and dark areas which include vegetation of all

kinds and shadows (Figure 18B). Vegetation covers most of the spaces between

the houses and streets and is undoubtably composed of many types of plants, but

in the observed image they all appear dark and can not be differentiated. In

addition, these areas are sufficiently dark that they can not be differentiated from

shadows.

The variogram calculated from this image is shown in Figure 19 and exhi-

bits similar structure to the theoretical and observed variograms previously dis-

cussed. The variogram begins at a relatively low value and gradually rises to a

level plateau. The distance at which the variogram levels is approximately

twelve pixels, about equal to the diameter of the larger houses in the scene. The
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Figure 19. Observed variogram from the Canoga Park image.

strong influence of houses on the shape of the variogram is not surprising as they

are the most distinctive and common elements in the scene.

The dashed line on the graph is the standard deviation of the image and

serves as an estimate of the sill against which the observed variogram can be

compared. This variogram approaches but does not reach the estimate of the sill

over the 20-pixel distance for which the variogram was calculated. One reason

may be that there are homogeneous areas in the image, such as the canyon, that

are wider than 20 pixels. Because of these large, homogeneous areas, the differ-

ence between measurements for pixels a distance less than 20 pixels apart on

average will be less than if they were selected at random. Under these cir-

cumstances the variogram would not quite reach the sill. The existence of these

large areas in the image illustrates a point that will be important throughout this

discussion, that remotely sensed images commonly exhibit several scales of varia-

tion. The ability to detect and understand multiple scales of variation in images

will be important for interpreting variograms. In the long run, the ability to
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derive information about multiple scales-of variation in images from variograms

may prove to be one of the attractive features of variograms.

To compare the disc model with the Canoga Park image, houses were used

as "discs" and stretched to white, and everything else became background and

was stretched to black. The resulting image (Figure 20) was compared to the

disc model using several different fixed sizes of discs. The shape of the observed

variogram from the black and white image generally resembles the disc model but

does not match any of the sizes that were used (Figure 21). In general, the

observed variogram is more rounded or gradual, not rising as sharply to the sill.

This deviation from the disc model recalls the effect of variance in the size of

discs, which may explain the observed situation because there is substantial vari-

ance in the size of houses in this scene. In addition, the observed image does not

match two of the assumptions of the disc model. First, the houses are clearly not

Figure 20. The two-toned version of the Canoga Park image used for com-
parison with the disc model.
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Figure 21. Comparison of the observed variogram from Figure 20 with three

explicit variograms of the disc model for different size discs.

shaped like discs. The significance of this difference, however, may not be great

since the forest simulations using elongated shapes showed a good fit to the disc

model. A second factor that may be important is the regular location pattern of

the houses, which violates the random assumption of the disc model. In particu-

lar, houses do not overlap, which was an important feature of the disc model.

The exponential shape fit to the Canoga Park variogram. is compared with

the original in Figure 22. Initially, the shape of the fitted model appears promis-

ing, but the quality of the fit is adversely affected by being forced through the

origin. However, it is interesting to note that the direction of the deviation from

the exponential model of the observed variogram is opposite of the expected

influence of regularization. As mentioned earlier, the form of the exponential

model that is fit to the observed does not take into account regularization, which
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Figure 22. Comparison of the observed variogram with the exponential
model.

would cause the exponential model to overestimate 7 at short distances. The

exponential model fit to the observed variogram underestimates 7 at short dis-

tances. In addition, the Canoga Park variogram has a well-developed sill that is

not present in the exponential shape. These factors combine to indicate that the

exponential model is probably not a good approximation for this variogram.

4.2 Washington D.C. Thematic Mapper Image

A TM image of Washington D.C. was used as an example of an

urban/suburban environment. The image is the red band (Band 3, .63 - .69 p, m)

on November 2, 1982 (Figure 23). Due to the diversity of the scene, variograms

were calculated from two subareas of the image. One area includes the area

around the Capitol, including numerous government buildings, the Mall, the

Smithsonian, and several memorials and museums (Figure 24A). In this small

area there are several types of elements: large buildings, lawns, roads, trees, and
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Figure 23. A TM image of Washington D.C.

Figure 24. Enlargements of portions of the subareas of the Washington D.C.
image used to calculate variograms. (A) is the "Capitol" area and
(B) is the "city" area. The general contrast of these two subareas ap-
pear similar in this Figure, but this is an artifact of the preparation of
the photographs. See Figure 23.

ponds. The variogram from this subimage looks considerably different from those
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previously described. The variogram starts relatively high and rises abruptly in

just 2 to 3 pixels to a gently sloping plateau (Figure 25). There are multipixel

elements in the image but on average there is a high degree of difference associ-

ated with short movements in the image. The gently sloping plateau that does

not reach the estimate of the sill indicates that there are homogeneous objects in

the image of a wide variety of sizes.

The second subarea is a portion of the city that is directly east of the Capi-

tol area and extends to Kennedy Stadium and the Anascotia River. This area of

the city is primarily residential and commercial, with considerably smaller build-

ings and narrower streets. On the image of the entire Washington area (Figure

23) it appears as a fairly homogeneous region, medium grey in tone. However,

considerable variation is visible within the area in the enlargement shown in Fig-

ure 24B. The variogram for this area is essentially flat, exhibiting behavior simi-

lar to the expectation for random data (Figure 26). There is a small drop from
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Figure 25. Variogram of the Capitol area in the Washington D.C. image.
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Figure 26. Variogram of the city subarea of the Washington D.C. image.

the random expectation at the distance of one pixel, but for greater distances the

variogram has only minor fluctuations around the expected sill. This result is

dramatic, as the relationship between neighboring pixels would be expected to be

stronger solely on the basis of the overlap in the IFOV of the sensor. Close

examination of the enlargement does show a general lack of multipixel elements

in the area and a random appearance.

Figure 27 shows the variograms from both subareas of the Washington D.C.

image plotted together for comparison. The variogram from the Capitol area is

higher than the neighboring city area due to the higher overall variance or con-

trast between elements in that portion of the image. This graph also highlights

the flat nature of both graphs indicating little spatial structure in this scene at

the observed resolution.
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Figure 27. Composite of the variograms from both subareas of the TM im-
age of Washington D.C..

Comparisons of these variograms with disc and exponential models were not

done as they seemed inappropriate. There were not any definable groups of

objects to serve as "discs" in either image. Also, the shape of the exponential

model did not hold much promise for these variograms.

4.3 Agricultural Fields Image

To produce an image of an agricultural environment at very fine resolution

(0.15 m), an aerial photograph of agricultural fields in Oklahoma was scanned

using a microdensitometer at the Johnson Space Center. The image reveals the

structure within fields (Figure 28). The crops, corn and soybeans, exhibit a dis-

tinct row structure and are near maturity as the canopy is almost closed. This

image is relatively simple in structure, with crop rows, shadows, and an almost

entirely obscured soil background as the only elements.
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Figure 28. A portion of the image of agricultural fields (A) and an enlarge-
ment (B).

The shape of the variogram calculated from this image is wavelike, with

repeating crests and troughs (Figure 29). The shape indicates the periodicity in
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Figure 29. Variogram for the agricultural fields image.
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the image, as the spacing of the rows remains constant throughout the image.

The fact that the one-dimensional variograms are integrated over all directions

has a profound impact on this variogram due to the strong anisotropy in the

image. The variogram calculated over a single direction would look significantly

different, and the observed variogram is best interpreted as the average of many

variograms. First, consider the variogram calculated only in the direction along

the rows. This variogram would be essentially flat and low relative to the

estimated sill, as low variation is associated with movements of even large dis-

tances as long as the measurements are in the same position relative to the crop

row.

A variogram calculated normal to the crop rows would look very different.

with high peaks and low troughs. The troughs would be well below the

estimated sill and would correspond to movements to the same relative position

on a different row. The peaks would be well above the sill and correspond to

movements to different parts of the rows, for example from the illuminated side

to the shadow between rows. In addition, the variograms from all diagonal direc-

tions would contribute to the final observed result. The combined result still

illustrates the periodicity of the rows, but the integration over all directions

suppresses the magnitude of the effect. An interesting effect of this integration is

the relatively high value of 7 at a distance of one pixel, which is caused by the

large amount of boundary associated with the rows.

No attempt was made to compare this variogram with either the disc or

exponential models due to their obvious inappropriateness. If an attempt were

made to fit a model, sinusoidal functions such as the sine or cosine would be more

appropriate.
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Figure 31. Variogram of the Thematic Mapper image of agricultural fields.

indicates that the fields in the image are relatively large. The most common field

size in this scene is a quarter-section, which at 30-m resolution is 14 pixels in

diameter. The variogram exhibits a break in slope at the 14 pixel distance,

becoming considerably flatter. Although the variogram approaches the .estimate

of the sill, it does not quite reach it. This difference may be attributed to the

fields that are two or more quarter-sections in size.

Due to the existence of only one kind of element in the image, fields, the

comparison with the disc model is a little unusual. Instead of elements on a con-

trasting background, the image was stretched into bright fields and dark fields

(Figure 32). Figure 33 shows the comparison of the variogram calculated from

the black and white image with disc models using three different sizes of discs.

The disc model does not seem appropriate for this image as the shapes are dis-

similar. The disc model produces variograms that rise too sharply to a well-

developed sill, where the observed variogram is more gradual and still gently
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4.4 Thematic Mapper Agricultural Image

A TM Band 3 image was obtained from an area near Dyersburg Tennessee,

which also includes the corners of Kentucky, Missouri, and Arkansas. The

subimage used in this project covers an agricultural area west of the Mississippi

River (Figure 30). The area looks like a patchwork of homogeneous blocks.

With a change in resolution there is a change is the elements that describe the

scene. The elements are now entire fields rather than the crop rows that

comprise the fields.

The variogram calculated from this image begins at a low value and rises

gradually to a value very close to the estimate of the sill at a distance of 18 pixels

(Figure 31). The low values of 7 at short distances indicate two features of the

image: the relatively small amount of boundary in the image, and the homo-

geneity -within the fields (Figure SOB). The gradual rise in the variogram

A B

Figure 30. The TM image of agricultural fields (A) and an enlargement (B).
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Figure 32. Stretched version of the Thematic Mapper agricultural image for

comparison with the disc model.
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Figure 33. Comparison of the disc model with the observed variogram from
the TM agricultural image.
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Figure 34. Comparison of the exponential model with the observed
variogram for the TM agricultural image.

sloping at large distances. The inappropriateness of the disc model is not surpris-

ing as the elements in the scene dramatically violate the assumption of random,

overlapping discs.

The fit of the exponential model to the observed variogram is close except

at short distances (Figure 34). The poor fit near the origin is caused by the res-

triction forcing it through the origin, not by the shape of the exponential model

which seems to match this variogram well. Again, the direction of deviation near

the origin is opposite of the expected due to the lack of consideration for regulari-

zation.

4.5 South Dakota Forest Image

This image of a forest area in South Dakota (Figure 35) was created by

scanning an aerial photograph using a microdensitometer at Johnson Space

Center. The exact location of the area covered in South Dakota is unknown, but

it serves as a good example of a simple forest environment composed of trees on a
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Figure 35. The two subareas of the South Dakota forest image: Dense (A),
and Sparse (B).

relatively smooth background. The spatial resolution is approximately 0.75 m

and a red filter was used in scanning the image.

Variograms were calculated from two subareas of this image due to the vari-

ation in the density and size of trees in the image. One subarea is more densely

stocked and the trees are somewhat smaller (Figure 35A). The variogram from

this area rises gradually but does not quite reach the sill (Figure 36). It is diffi-

cult to determine the distance to the sill, which should correspond to the tree

diameter. By counting pixels in the image, an estimate for the diameters of trees

of 8 m (10 or 11 pixels) is obtained. By this point 7 is close to the estimated sill,

but it still continues to rise slightly at distances past that point.

The second subarea (Figure 35B) is more sparse than the last site and the

trees are a little larger. The variogram has a very similar shape but does not

come as close to the estimate of the sill (Figure 37). As can be seen in Figure
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Figure 36. Variogram of the densely stocked subarea of the South Dakota
forest image.
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Figure 37. Variogram of the more sparsely stocked subarea of the South
Dakota forest image.

35B, there are larger areas of background in the sparse subarea, explaining the

difference between the estimate of the sill and the variogram at distances larger

than the size of trees. In this variogram it is also difficult to determine a well-
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defined break in the variogram that might reflect the size of trees. Counting pro-

duces an estimate of 10m or approximately 13 pixels for the diameter. Again, 7

at this value has risen to a high level and is increasing at a very slow rate.

The composite of both forest variograms (Figure 38) illustrates the effect of

density, or percent cover on variograms. The variogram from the more dense

area is higher than the variogram from the sparse area, empirically demonstrating

the effect shown in Figure 4.

A comparison of the South Dakota forest image with the disc model was

attempted, but proved impossible because the trees and shadows could not be

reliably separated from the background on the basis of the one spectral band

available. The problem was that the well-illuminated portions of many of the

tree crowns were of the same tone as the background.

25-
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—T-
15
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Figure 38. Composite of the variograms from both subareas of the South
Dakota forest image.
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Figure 39. Comparison of the exponential model with the observed
variogram from the densely stocked subarea of the South Dakota
forest image.

An exponential model was fitted to the variogram from the dense subarea

with results similar to those for the Canoga Park image and the TM agricultural

image. The shape seems promising, but the deviation from the observed near the

origin is opposite of that expected (Figure 39).

4.6 Thematic Mapper Simulator Forest Image

This Band 3 (.63 to .69 f i m ) image (Figure 40) from the TMS was obtained

from NASA Ames Research Center and serves as an example of a forest environ-

ment at 30-m resolution. The image is from an area in northern California near

Mt. Shasta that is close to the area where the field data were collected to cali-

brate the simulations. The area is reasonably flat and is primarily eastside pine,

a vegetation association that runs along the east slopes of the Sierra Nevada and

continues in extensive stands on many dry, flat areas of northeastern California.

Pinus Jeffreyi and P. ponderosa are the dominant tree species in stands that tend
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Figure 40. A portion of the TMS image (A) of a forested area in northern
California, and an enlargement (B).

to be sparse with a broken understory of shrubs and grasses.

The elements in this scene model have different characteristics than those

previously discussed. At 30-m resolution in a forest environment the trees are

considerably smaller than the resolution cells, and thus are not useful as elements

in the scene model. Instead, stands of trees, or areas within which the charac-

teristics of the trees are similar, become the elements. The use of stands as

scene-model elements is different from those previously discussed because of the

high internal variance of the forest stands (Figure 40B). In all other cases the

elements have corresponded to objects that were spatially homogeneous, with low

internal variance. The result of the high internal variance associated with forest

stands is the relatively high level of 7 at short distances (Figure 41). In general,

the variogram exhibits a gently sloping, almost linear shape. This shape is attri-

butable to the wide variety of sizes and shapes of the forest stands in the scene.
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Figure 41. Variogram of the TMS forest image.

It is difficult to find anything approaching a common size for forest stands (Fig-

ure 40A). The variogram does not reach the estimated sill at a distance of 20

pixels which is attributable to the large stands in the scene. This image serves as

a good example of the importance of scale, as variance can occur both within ele-

ments in the scene and between elements and both factors will influence the

shape of the variogram.

5. Conclusions

Variograms are a useful tool for studying spatial variation in remotely

sensed images. Theoretically derived variograms for simple scene models illus-

trated two features of the relationship between the characteristics of scenes and

variograms. First, the range of influence in a variogram is related to the size of

the objects in the scene. Second, the height of the sill is determined by the per-

cent cover of the objects. In addition, the theoretically derived variograms were

used to investigate the effect of regularization on variograms. The concept of

regularization is critical in the use of regionalized variables in conjunction with
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remotely sensed images as individual measurements are integrated over areas and

are not point measurements. The units of regularization in a regionalized vari-

able are analogous to the spatial resolution of a sensor in remote sensing. The

effects of increasing the size of the regularizing units were shown to be: (l)

decreasing the height of the sill, (2) increasing the range of influence, and (3)

increasing the height of the first observed value of the variogram relative to the

sill.

The simulated images served as a bridge between theoretical variograms for

simple scene models and observed variograms calculated from remotely sensed

imagery. The image simulations were done using a modification of a computer

model of a coniferous forest. One result of the images simulations was the

demonstration of the link between theoretical and observed variograms via a

matching of these two types of variograms for a "disc model" of a scene. In addi-

tion, the area covered by objects was found to have more effect on one-

dimensional variograms than their shape, at least for shapes not highly dissimilar

from discs. Also, variance in the size of objects produces a more rounded shape

in variograms than the fixed-size disc model.

The analysis of variograms calculated from remotely sensed images proved

informative and served to: (l) empirically demonstrate many of the effects

observed through the use of theoretical variograms and image simulation, (2) sug-

gest that information about a ground scene can be recovered from variograms of

images of the scene, and (3) show the importance of understanding multiple

scales of effects in the interpretation of variograms derived from real images.
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Abstract

An investigation of the influence of ground control point selection on the

rectification accuracy of Landsat MSS was conducted on data from southeastern

Louisiana/coastal Mississippi and eastern Kansas. The analysis investigated

areas ranging from a full Landsat scene to a quarter of a scene in area. The

optimum nmber of ground control points required to rectify a full or partial

Landsat MSS scene is 24. An investigation of the spatial arrangement of

ground control points showed that a random and regular pattern gave comparable

rectification accuracy which was much better than that obtained when the

ground control points were clustered. Excellent rectification accuracy for

the random and regular spatial distribution cases was indicated by a row bias

of 0.11 pixels and a column bias of 0.26 pixels for the Louisiana scene, while

for the Kansas data the row bias was 0.15 pixels and the column bias was 0.27

pixels. A quarter of a TM scene from Louisiana with a random and a regular

spatial distribution of ground control points was analyzed with a row bias

0.07 pixels and a column bias of 0.08 pixels. These results are discussed in

light of other data from the scientific literature.
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Introduction

This investigation focuses on the influence of ground control point (GCP)

selection on the scene-to-map registration accuracy of Landsat Multispectral

Scanner (MSS) and Thematic Maper (TM) data. The rectification of Landsat MSS

data to a Universal Transverse Mercator (UTM) or other map base is an impor-

tant pre-processing step in the analysis of earth resources science data.

This study will investigate the influence of the number and spatial distri-

bution of GCPs on the rectification accuracy.

The accuracy with which GCPs can be selected is an important source of

error in the rectification of Landsat MSS and TM data. The construction of a

mapping equation relates the Landsat scene coordinates of a GCP (element and

scan line) to the map coordinates of the GCP (eastings and northings in the

UTM system). Investigations of GCP selection accuracy revealed the following

(Mikhail and Paderes [9]; Steiner and Kirby [13], and Welch and Usery [17]):

1. GCPs can be selected more accurately on maps than on Landsat images

(GCPs on images can be determined to an accuracy of +0.5 data pixels

if refinements are employed in choosing the GCPs).

2. GCPs can be measured more accurately on man-made features (road inter-

section) than on natural features (land-water interface).

3. Better rectification accuracy in the mapping equation is obtained if

higher degree polynomials are employed as well as more GCPs are used.

4. The rectification process compensates better for errors in the ground

position of control points than it does for errors in the image

position.

5. Sub-pixel rectification accuracy can be accomplished only if points on

the image can be identified to a sub-pixel level.
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The affine transformation and higher degree polynomials are an example of

interpolative or surface fitting models in which a least squares approach is

used to generate residuals which measures how well the data (GCPs location in

the map and Landsat image) fits the mapping equation. The root mean square

(RMS) value is a measure of the degree of fit. The residuals stem from non-

linear distortions in satellite orbit and attitude, errors attributable to the

curvature of lines resulting from earth rotation and map projection, scanner

mirror velocity nonlinearity, and random variation. Wong [18] reported an RMS

value of ^57 meters for a 20 term polynomial, while the RMS value for a first

degree polynomial applied to the same Landsat data was +}15 meters. There is

a trade off involved, however, in that up to 30 GCPs must be used per Landsat

frame to provide a least squares solution to a 20 term polynomial, which is

many more GCPs than is required for the least squares solution of a lower

degree polynomial. Also, a higher degree polynomial requires that the GCPs

must be well distributed near the edge and corners of the frame (Van Wie and

Stein [15]; Walker et al. [16]).

The P-format Landsat MSS tapes (spatially and radiometrically corrected)

have associated with them a quality assessment number, which is truncated

integer of the form (N+7)/8 (where "N" is the number of GCPs employed to

rectify a scene of Landsat MSS data). The quality assessment numbers range

from zero (machine corrected without utilizing GCPs) to 5 (33-40 GCPs employed

by Master Data Processor). In practice there is not a straight forward rela-

tionship between increasing quality assessment number and better rectification

accuracy (Graham and Luebbe [6]). In theory if 25 to 50 GCPs are used the

rectification accuracy should be within 1 pixel more than 99% of the time

(Nelson and Grebowsky [10]). A number of investigators (USGS [14]; Colwell et
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al. [2]; Graham and Luebbe [6]; Dow [4]) have reported multiple pixel recti-

fication Inaccuracies in P-format Landsat MSS data.

The other type of model used in rectification is the parametric model

which incorporates information on satellite position and sensor attitude (Horn

and Woodham [8]; Sawada et al. [12], Mikhail and Paderes [9]; Paderes,

Mikhail, and Forstner [11]). Mikhail and Paderes [9] developed a satellite

collinearity equation to combine the sensor and platform parametric models.

In this case the GCPs were employed to estimate the unknown parameters in the

collinearity equations (there were 19 unknown parameters in the 1983 version

of the parametric model of Mikhail and Paderes [9]). Some of the conclusions

of the research by the Purdue group are (Mikhail and Paderes [9]; Paderes,

Mikhail, and Forstner [11]):

1. The maximum rectification accuracy for a polynomial model is about

half a pixel.

2. Rectification accuracy is not significantly improved when the number

of GCPs utilized exceeds 25.

3. Rectification accuracy is better if the GCPs are regularly distributed

in space, rather than being randomly distributed.

4. The collinearity model gives a lower RMS value for the same number of

GCPs than does the polynomial model, (the difference being more

pronounced for 10 GCPs than for greater than 40 GCPs).

Methods

The Landsat 2 MSS frames used in this study were acquired over path: 23

and row: 39 of the world wide reference system (southeastern Louisiana-coastal

Mississippi) and over path: 29 and row: 33 (western Missouri-eastern Kansas).

The Kansas data was collected on November 11, 1981, while the Louisiana data
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was collected on November 21, 1981. Both Landsat MSS scenes had 10% cloud

cover. The Landsat 5 TM frame employed in this investigation was acquired

over path: 22 and row: 39 of the world wide reference system. The TM quadrant

utilized covered parts of southeastern Louisiana and south-central Mississippi.

The TM' quadrant utilized was basically cloud free and was collected on

September 13, 1984.

Figure 1 illustrates the differences between the Kansas and Louisiana MSS

data sets. The pictures represent a band 7 density slice, to separate the

water in black from the gray-toned land. In order to display the whole

Landsat MSS scene on the image display device, only every sixth line and every

sixth element is displayed. The Louisiana data set features the New Orleans

metropolitan area with Lake Pontchartrain in the left center of the frame and

has the Gulf of Mexico at the right of the scene. The Kansas scene features

the Kansas City metropolitan area in the upper right hand corner of the photo-

graph with the Topeka metropolitan area a little bit left and north of center.

The Kansas scene was hilly (elevation 730 to 1450 feet above sea level) with

only small amounts of open water (mostly as reservoirs). The Louisiana scene

was relatively flat (elevation: 0 to 362 feet above sea level) and contained

up to 35? open water. The extensive amount of open water and wetlands in the

Louisiana scene present a significant challenge for accurate scene-to-map

registration when compared to the Kansas Landsat frame.

The points to be utilized as ground control points (GCPs) and ground

reference points (GRPs) were chosen on 1:24,000 scale, 7.5 minute quadrangle

sheets produced by the U.S. Geological Survey (USGS). The GCPs are used to

generate the mapping equations used in the rectification procedure, while the

GRPs were employed as test points to independently evaluate the accuracy of
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Figure la. Landsat MSS frame of the LouisianarMississippi area. Band
7 density slice with water in black and land as gray tones.
The scene is reduced six fold with every sixth line and
element being displayed.
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Figure Ib. Landsat MSS frames of the eastern Kansas region. Band 7
density'slice with water in black and land as gray tones,
The scene is reduced six fold with every sixth line and
element being displayed.
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the georegistrati on procedure. The ground point map coordinates were recorded

in the UTM system as northings and eastings, while the Landsat scene coordin-

ates were recorded as scan lines and elements. The same points were identi-

fied on the 7.5 minute USGS quadrangle sheet and the Landsat A-format MSS

frame. Man made (road intersections) and natural (river intersections) fea-

tures were used as ground points. For the whole scene analysis 356 ground

points were selected for the Louisiana data set and 359 ground points were

used in the Kansas data set. The TM quadrant utilized 361 ground points in

the rectification accuracy experiment. The ground points available were

divided into GCPs and GRPs.

The Earth Resources Laboratory Applications Software (ELAS) package

developed at the National Space Technology Laboratories was used in all the

subsequently described analysis (Graham et al. [7]). The mapping equation

utilized was a linear polynomial and the fit of the GCPs to the mapping equa-

tion was quantified by the computation of the RMS value through the ELAS

module BMGC. To evaluate the rectification accuracy of the Landsat MSS and TM

products, the procedure of Graham and Luebbe [6] was utilized. This procedure

quantifies the rectification accuracy in terms of RBIAS (row offset), CBIAS

(column offset), RSD (row standard deviation) and CSD (column standard devia-

tion). Good georegistrati on accuracy would be characterized by sub-pixel

offsets and standard deviation values.

The equations for computing bias and standard deviation are:

NP

(1) Z_, (ROWli - ROW2i)

RBIAS = —

NP
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2
(2) / ^ (ROWli - ROW2i - RBIAS)

RSD =^ ^i

NP-1

where NP is the number of GRPs utilized, Row 1 is the Landsat row predicted

from the mapping equation, and ROW 2 is the Landsat row read from the MSS or

TM imagery. The units of RBIAS and RSD are in pixels. The ELAS module BMGC

is used to compute the bias and standard deviation values.

The module SSPA was utilized to compute "R" values which give a measure of

the spatial distribution of ground control point (Dow [4]). The "R" value

compares the mean observed nearest neighbor distance (irrespective of direc-

tion) to the mean nearest neighbor distance if the population was distributed

at random (Clark and Evans [1]). The "R" values can range from 0 (maximum

aggregation or a clustering of points) to 2.15 (maximum spacing or a regular/

uniform distribution of points). For the purposes of this paper "R" values of

between 0.7 and 1.3 are indicative of a random spatial distribution, while

values less than 0.7 indicate a clustered distribution and values greater than

1.3 denote a regular distribution. Another feature of the module SSPA is that

given a file of ground points, it allows the operator to choose a subset of

GCPs that are distributed randomly, regularly, or in a clustered format. The

clustered distribution of GCPs was conducted around four independent locii

spread throughout the scene for whole frame analysis. For the half scene

analysis for a clustered distribution three independent locii were utilized,

while two independent locii were used in the quarter frame analysis.
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The GCPs were chosen in intervals of eight in order to coincide with the

quality assessment numbering system used to indicate how many GCPs were

utilized to rectify a scene of Landsat P-format MSS and TM data. The number

of GCPs used in the MSS data analysis is 8, 16, 24, 32, and 40 (Tables 1

through 9, while the number of GCPs utilized in the TM data analysis is 8, 16,

24, 32, 40, 48, and 56 (Table 10, 11, and 12). In this paper the first 8

points are used in common with all other other combinations (16, 24, 32, and

40) and the 16 and 24 combination numbers share 16 points in common. This

process extends to 32 and 40 GCPs used which share 32 ground points in common.

Most of the statistical analysis utilized in this report was generated

using the BMDP Statistical Package (Dixon et al. [3]). The descriptive statis-

tics (mean, standard deviation, standard error of mean) and analysis of vari-

ance were run using program BMDP7D. The analysis of variance model was tested

for equality of variances using Levene's test and if the Levene's test results

were statistically significant at the 5% level, then the Brown-Forsythe pro-

cedure was used for the analysis of variance computations (Dixon et al. [3]).

Results and Discussion

Tables 1, 4, and 7 present the results of the analysis of a whole, half

and quarter of a Landsat MSS scene with randomly distributed GCPs and the

evaluation of the rectification accuracy using GRPs analyzed by the procedure

of Graham and Luebbe [6]. Dow [5] pointed out that 24 GCPs appears to be more

than adequate to rectify a whole or partial scene of Landsat MSS data with

randomly distributed GCPs. The RBIAS and CBIAS values, in conjunction with

the RSD and CSD values, of the randomly distributed GCPs will be used as a

baseline to evaluate the rectification accuracy of the regular (Tables 2, 5,
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and 8) and clustered (Tables 3 6, and 9) GCP distribution cases. The random

and regular GCP distribution experiments with a quadrant TM data are presented

in Tables 10 and 11, while the clustered data is shown in Table 12.

The columns represent the same parameters in all of the tables. The "N"

column gives the number of GCPs used to develop the mapping equation. The "R"

column gives an indication of the type of spatial distribution that the GCPs

exhibit across the Landsat scene. The "RMS" column is a measure of how well

the GCPs utilized fit the mapping equation (measured in meters). The accuracy

of the georegistrati on procedure is measured by the RBIAS, RSD, CBIAS, and CSD

values (measured as fractions of a pixel). The bias and standard deviation

values are computed from the GRPs. The row and column bias values were aver-

aged as absolute numbers, so that the sign of the bias values was ignored

between replicates and the magnitude of the bias number was exphasized. Some

authors have used the root mean square error values in place of the bias com-

putations as an independent measure of rectification accuracy (Welch and Usery

[17]. The individual bias value within a replicate will be lower in magnitude

than the root mean square error number because of the fact that positive and

negative values cancel one another in the bias computation.

The significance row indicates whether the analysis of variance (ANOVA) is
•

statistically significant at the 5 percent level. The values in the last row

of each column represents the mean and 95 percent confidence interval about

the mean. This row is presented as a general descriptive overview of the

results, but should not be interpreted literally in those cases where the

ANOVA results are statistically significant (indicated by *). The results

presented represent the outcome of 40 replicates for each of the "N" equals 8

thorugh 40 (MSS) or 56 (TM).
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In Table 1 through 9 the RMS column shows what appears to be a counter-

intuitive result in that the RMS value goes up as the number of GCPs utilized

increases from 8 to 40. The reason for this appears to be that as the number

of GCPs increases, it is more likely to encounter outlier GCPs which distort

the overall RMS value. The RBIAS and CBIAS values decrease in magnitude as

the number of GCPs used increases from 8 to 40. In this case outliers do not

distort the results because there are many more GRPs used to check the recti-

fication accuracy than the GCPs employed to generate the mapping equation

(GRPs = ground point file - GCPs). The RSD and CSD values are fairly constant

in magnitude with increasing N values. This being the case it was decided to

concentrate on the RBIAS and CBIAS values in order to decide what the optimum

number of GCPs required to register a whole scene of Landsat MSS data was.

The rationale for choosing the optimum number of GCPs required to rectify a

full or partial scene of Landsat MSS data for a random spatial distribution of

GCPs is described in Dow [5]. This work (Dow [5]) agreed with the results of

Mikhail and Paderes [9] that 24 GCPs is more than adequate to rectify a whole

scene of Landsat MSS data. Mikhail and Paderes [9] analyzed a parametric

model, while Dow [5] utilized an empirical appraoch with a polynomial model.

It can be seen in Table 2 that 24 GCPs is all that is necessary to rectify a

whole scene of regularly distributed GCPs data (it was not possible to produce

a regular distribution for the Louisiana scene because of the large amount of

water in this frame), while the clustered distribution case has much larger

variation between replicates which results in a non-significant between

replicate effect in three out of four cases for the RBIAS and CBIAS results.

For a whole scene of clustered data, four independent locii were chosen to

cluster around throughout the frame. This gave lower R values than the half
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scene (3 locii) or quarter scene (2 locii) cases, as can be seen by comparing

the R values in Tables 3, 6, and 9.

There appears to be no consistent differences between the Louisiana and

Kansas frames regarding the magnitude of the RBIAS, CBIAS, RSD, or CSD values,

so that both data sets yield the same conclusions. In both data sets the

RBIAS and RSD numbers were less than the CBIAS and CSD values, as can be seen

by comparing Tables 1 through 9. Thus, registration accuracy is more accurate

in the row direction than in the column direction. A similar result was re-

ported by Colwell et al. [2], when evaluating the georegistration accuracy of

a P-format Landsat MSS tape. One would expect this result from the variation

in MSS sensor attitude between scans as the satellite moves along its track.

However, the TM data (Tables 10, 11, and 12) does not exhibit a consistent

difference between RBIAS and RSD numbers and CBIAS and CSD values. This can

be attributed to the backward and forward scanning mode of the TM sensor.

In the Graham and Luebbe [6] method of assessing rectification accuracy,

our results indicate excellent georegistration as evidenced by sub-pixel bias

and standard deviation values for both Kansas and Louisiana. However, the TM

data (Tables 10, 11, and 12) appears to have achieved better rectification

accuracy than the MSS data has (Tables 7, 8, and 9). In addition, the RMS

values of the TM data (less than 24 meters) is much better than the RMS

numbers for the MSS data (greater than 69 meters). This suggests that GCPs

can be picked with greater precision for TM data than it can with MSS data.

The RMS value is a measure of how well the GCPs fit the mapping equation and

is not a measure of rectification accuracy (Dow [5]).
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Tables 1, 4, and 7 show the results obtained with a random distribution of

GCPs, while Tables 2, 5, and 8 exhibit the rectification accuracy (as measured

by the bias and standard deviation values) of a regular distribution of GCPs.

It can be seen that the RBIAS, CBIAS, RSD, and CSD numbers are of comparable

magnitude for the random and regular spatial distribution of GCPs cases,

whether one is dealing with a whole or partial frame of Landsat MSS data.

Tables 10 and 11 show that similar results are obtained with the TM data for a

quarter of a Landsat frame. This finding is at odds with the results reported

by Paderes et al. [11] which found better rectification accuracy with a

regular distribution of GCPs than with a random distribution of GCPs. Part of

the reason for this difference between the results of the present study and

that of Paderes et al. [11] is that our study used the distribution of actual

GCPs with a maximum "R" value of 1.56, while the investigation of Paderes et

al. [11] employed simulated data where the "R" value would be 2.15 (maximum

spacing case).

An examination of the clustered spatial distribution of GCPs (Tables 3, 6,

and 9) shows much poorer rectification accuracy (higher bias and standard

deviation values) for both a whole and a partial frame of Landsat MSS data. A

similar result is found with the clustered case for TM data (Table 12). In

many undeveloped regions of the world it will only be possible to choose GCPs

(around regional centers of anthropogenic activities or visible regions of

natural features) in a clustered fashion. These results should be borne in

mind when choosing the number and spatial distribution of GCPs required to

georegister a whole or partial frame of Landsat MSS or TM data.
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Conclusions

For the regular and random distribution of GCPs it appears that 24 GCPs is

more than adequate to rectify a whole or portion of a Landsat MSS frame.

Analysis of a quadrant of TM data supports this conclusion. TM data can be

rectified with greater accuracy than MSS data, especially in the column direc-

tion. The RBIAS and RSD numbers are less for Landsat MSS data than are the

CBIAS and CSD values, while they are all roughly equal in Landsat TM data. A

clustered distribution of GCPs gives much poorer rectification accuracy than

does the random or regular spatial distribution of GCP cases. A clustered

distribution of GCPs, though less costly to implement, should be avoided where

possible, when good scene-to-map registration accuracy is desired. A compari-

son of the Louisiana and Kansas Landsat MSS frame results suggests that these

conclusions are not data set specific.
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TABLE 1

Louisiana - Whole Scene: Random Distribution of Ground Control Points

N.

8

16

24

32

40

Signif:

All

Kansas

1
8

16

24

32

40

Signif:

R

0.77
0.77

0.73

0.71

0.71
*

0.74+0.

- Whole

_R
0.86

0.85

0.83

0.82

0.83

N.S.

RMS

94.58

119.18

129.02

132.72

133.95
*

02 121.89+3.94

Scene: Random

RMS
112.60

140.80

144.88

148.72

146.30
*

RBI AS

0.38

0.20

0.17

0.16

0.14
*

0.21+0.03

Distribution

RBIAS

0.27

0.21

0.17

0.16

0.15
*

RSD

0.06

0.06

0.06

0.06

0.06
*

0.06

of Ground

RSD

0.07

0.06

0.06

0.06

0.06
*

CBIAS

0.82

0.39

0.42

0.36

0.37
*

0.47+0.06

Control

CBIAS

0.70

0.44

0.39
0.30

0.27
*

CSD

0.14

0.12

0.12

0.12

0.12
*

0.12+0.002

Points

CSD
0.16

0.14

0.14

0.14

0.14
*

All 0.84+0.02 138.66^5.59 0.19j+0.02 0.06^0.002 0.42+0.06 0.14+0.002

N.S.: ANOVA not significant at the 5% level

* : ANOVA significant at 5% level

Mean _+ 95% Confidence Interval

No. Replicates: 40
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TABLE 2

Kansas Whole Scene: Regular Distribution of Ground Control Points

N R RMS RBIAS RSD CBIAS CSD

8

16

24

32

40

Signif:

1.51

1.38

1.35

1.34

1.33
*

117.90

147.10

151.25

152.02

154.25
*

0.24

0.23

0.21

0.18

0.15

N.S.

0.06

0.06

0.06

0.06

0.06

N.S.

0.64

0.40

0.34

0.34

0.30
*

0.14

0.14

0.13

0.13

0.14
*

All 1.38+0.014 144.50+5.32 0.20+0.03 0.06_+0.001 0.41+0.05 0.14+0.001

N.S.: ANOVA not significant at 5% level

* : ANOVA significant at 5% level

Means +_ 95% Confidence Interval

No. Replicates: 40
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TABLE 3

Louisiana Whole Scene: Clustered Distibution of Ground Control Points

H
8

16

24

32

40

Signif:
All

Kansas

Jl
8

16

24

32

40

Signif:

R
0.14

0.22

0.27

0.30

0.33

N.S.

0.25+0.01

Whole Scene

R

0.11

0.17

0.20

0.23

0.25
*

RMS

86.48

95.40

104.25

106.22

108.80

N.S.

100.23̂ 6.71

: Clustered

RMS

85.20

95.08

100.45

105.92

106.28
*

RBIAS

1.85

1.15

0.76

0.58

0.56

N.S.

0.98+0.41

Distribution

RBIAS

0.61

0.53

0.46

0.38

0.30
*

RSD

0.14

0.10

0.08

0.08

0.08

N.S.

0.10+0.02

of Ground

RSD

0.12

0.11

0.09

0.08

0.08
*

CBIAS

3.18

2.38

1.98

1.89

1.75

N.S.

2.23+0

Control

CBIAS

1.15
1.05

1.00

0.97

0.94

N.S.

CSD

0.25

0.22

0.20

0.20

0.19

N.S.

.57 0.21+0.02

Points

CSD

0.20

0.19

0.19

0.19

0.19

N.S.

All 0.19+0.01 98.58jK3.78 0.46+_0.06 O.lOjfO.Ol 1.02_+0.08 0.19_+0.01

N.S. : ANOVA not significant at 5% level
* : ANOVA significant at 5% level

Mean _+ 95% Confidence Interval

No. Replicates: 40
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TABLE 4

Louisiana - Half Scene: Random Distribution of Ground Control Points

RMS RBIAS RSD CBIAS CSD

8

16

24

32

40

Signif.

0.75

0.70

0.67

0.66

0.66

N.S.

84.18

100.55

108.65

110.45

111.50
*

0.19

0.14

0.12

0.10

0.10
*

0.06

0.05

0.05

0.05

0.05
*

0.54

0.34

0.31

0.28

0.27
*

0.14

0.13

0.12

0.12

0.13
*

All: 0.69+0.02 103.07+2.64 0.13+0.02 0.05+0.001 0.35+0.04 0.13+0.002

Kansas - Half Scene: Random Distribution of Ground Control Points

RMS RBIAS RSD CBIAS CSD

8

16

24

32

40

Signif.

0.90

0.81

0.79

0.80

0.79
*

111.55

133.88

140.38

143.75

146.30
*

0.43

0.26

0.22

0.19

0.16
*

0.08

0.08

0.08

0.08

0.08

N.S.

0.70

0.58

0.44

0.38

0.33
*

0.16

0.16

0.16

0.16

0.16

N.S.

All 0.82+0.02 135.17+6.59 0.25+0.05 0.08+0.002 0.48+0.05 0.16+0.002

N.S.: ANOVA not significant at 5% level
*: Significant at 52 level in ANOVA
Mean +_ 95% confidence interval
No, Replicates: 40
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TABLE 5

Louisiana Half Scene: Regular Distribution of Ground Control Points

N R RMS RBIAS RSD CBIAS CSD

8

16

24

32

40

Signif.
All: 1

Kansas

1

8

16

24

32

40

Signif.
All 1

N.S.:
*.

1.54

1.37

1.34

1.32

1.32
*

.38+0.02 113

Half Scene:

£

1.56

1.36

1.34

1.34

1.33
*

.39+0.02 128

ANOVA not
ANOVA si on

99.20

111.85

118.25

119.55

119.80
*

.73_+1.95 0.

0.26

0.21

0.16

0.12

0.10
*

17+0.02 0.

0.06
0.06
0,06

0.06

0.06

N.S."

06+0.001

Regular Distribution of Ground

RMS

98.08

124.98

134.90

140.48

146.20
*

.92+_5.98 0.

significant
ificant at 5

RBIAS

0.30

0.28

0.21

0.20

0.23

N.S.

24+0.03 0.

at 5% level
12 level

RSD

0.09

0.09

0.09

0.10

0.09

N,S.

09+0.001

0.46

0.32

0.32

0.29

0.25
*

0.33+0

Control

CBIAS

0.64

0.52

0.42

0.45

0.35
*

0.48+_0

0.15

0.15

0.14

0.15

0.15
*

.03 0.15_+0.001

Points

CSD

0.19

0.18

0.18

0.19

0.19
*

.06 0.19+0.002

Means _+ 95% confidence interval

No. Replicates: 40
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TABLE 6

Louisiana Half Scene: Clustered Distribution of Ground Control Points

1
8

16

24

32

40

Signif.
All: 0.

IR

0.16

0.25

0.30

0.33

0.37
*

28+0.01

RMS

54.78

72.68

77.22

83.10

88.32
*

75.22+2.27

RBIAS

0.38

0.33

0.28

0.27

0.27

N.S.

0.31+0.04

RSD

0.06

0.06

0.06

0.05

0.05
*

0.06+0.002

CBIAS

1.18

1.05

1.05

1.05

0.98

N.S.

1.06+0.10

CSD

0.18

0.17

0.16

0.16

0.16
*

0.16+

Kansas Half Scene: Clustered Distribution of Ground Control Points

H
8

16

24

32

40

Signif.

All: 0.

N.S. :
*

R

0.20

0.30

0.36

0.41

0.45
*

34̂ +0.01

ANOVA not

ANOVA Sid

RMS

97.95

119.15

118.12

121.18

125.98

N.S.

116.48+8.42

significant
nifirant at 1

RBIAS

1.19

0.60

0.46

0.42

0.46
*

0.62+0.14

at the 5%
l-hp R2 IPV*

RSD

0.13

0.10

0.09

0.09

0.09
*

0.10+0.008

level
»i

CBIAS

1.56

1.10

1.07

0.96

0.84
*

1.11+0.15

CSD

0.23

0.18

0.18

0.18

0.17
*

0.19+0.010

Mean +_ 95% confidence interval
No. Replicates: 40
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TABLE 7

Louisiana Quarter Scene - Area B: Random. Distribution of Ground Control Points

N R RMS RBIAS RSD CBIAS CSD

8

16

24

32

40

Sigm'f .

1.06

1.07

1.05

1.00

1.00

N.S.

60.68

71.70
75.35

76.00

76.58
*

0.26
0.17
0.10
0.12
0.11
*

0.06
0.06
0.06
0.06

0.06
*

0.36
0.22
0.21
0.21
0.17
*

0.08
0.07
0.07
0.07
0.07
*

All: 1.03+0.02 72.06+2.01 0.15+_0.02 0.06_+0.001 0.24+0.02 0.07+_0.002

Kansas Quarter Scene - Area B: Random Distribution of Ground Control Points

N R RMS RBIAS RSD CBIAS CSD

8

16

24

32

40

Signif.

1.20

1.15
1.14

1.14

1.12

N.S.

53.78

78.48

85.38

87.23

88.08
*

0.26

0.15

0.13

0.12

0.12
*

0.08

0.07

0.07

0.07

0.07

N.S.

0.27

0.25

0.27

0.24

0.21

N.S.

0.13

0.13

0.13

0.13

0.14

N.S.

A l l : 1.15+_0.02 78.58+_5.21 0.16+0.02 0.07+_0.002 0.25+_0.03 0.13+0.002

N.S.: ANOVA not significant at 5% level
*: ANOVA Significant at 5% Level

Mean +_ 95% Confidence Interval

No. Replicates: 40
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TABLE 8

Louisiana Quarter Scene: Regular Distribution of Ground Control Points

N R RMS RBIAS RSD CBIAS CSD
8

16

24

32

40

Signif:

1.49

1.38

1.34

1.32

1.32
*

81.35

102.50

106.25

105.55

105.88
*

0.18

0.14

0.11

0.09

0.08
*

0.06

0.06

0.06

0.07

0.07
*

0.43

0.33

0.25

0.25

0.23
*

0.17

0.16

0.16

0.17

0.17
*

All: 1.37+0.01 100.30̂ 2.23 0.12+0.02 0.06̂ 0.002 0.30+;0.03 0.17+0.002

Kansas Quarter Scene: Regular Distribution of Ground Control Points

N R RMS RBIAS RSD CBIAS CSD

8

16

24

32

40

Signif:

1.56

1.39

1.35

1.34

1.34
*

57.70

68.25

70.68

73.40

78.10
*

0.19

0.14

0.14

0.12

0.11
*

0.07

0.07

0.07

0.07

0.07
*

0.28

0.22

0.16

0.16

0.17

N.S.

0.13

0.13

0.13

0.14

0.15
*

Al l : 1.40+0.02 69.62+_2.43 0.14+0.02 0.07+0.001 0.20+0.03 0.14+0.002

N.S. : ANOVA not significant at 52 level

* : ANOVA significant at 5% level

Mean +_ 95% Confidence Interval

No. Replicates: 40
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TABLE 9

Louisiana Quarter Scene: Clustered Distribution of Ground Control Points

N R RMS RBIAS RSD CBIAS CSD
8

16

24

32

40

Signif:

0.24

0.33

0.40

0.45
0.50
*

48.92

58.65

63.70

67.35

68.52
*

0.94

0.58

0.41

0.32

0.34
*

0.13

0.09

0.08

0.07

0.07
*

1.11

0.59

0.52

0.46

0.48
*

0.16

0.10

0.08

0.08

0.08
*

All: 0.38+0.02 61.43+1.62 0.52+0.09 0.09+0.006 0.63+0.09 0.10+0.010

Kansas Quarter Scene: Clustered Distribution of Ground Control Points

H
8

16

24

32

40

Signif:

R

0.30

0.42

0.49

0.57

0.63
*

RMS

68.15

90.32

94.15

95.32

92.82

N.S.

RBIAS

1.10

0.39

0.35

0.31

0.28
*

RSD

0.16

0.09

0.08

0.08

0.08
*

CBIAS

1.72

0.83

0.52

0.55

0.48

N.S.

CSD

0.31

0.18

0.15

0.16

0.15
*

A l l : 0.48+_0.02 88.16^7.79 0.49+0.11 0.10+0.008 0.82+_0.31 0.19_+0.027

N.S. : ANOVA not significant at 5% level

* : ANOVA significant at 5% level

Mean +_ 95% Confidence Interval

No. Replicates: 40
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TABLE 10

Louisiana Quarter TM Scene: Random Distribution of Ground Control Points

N^ R RMS RBIAS RSD CBIAS CSD

8 0.86 19.38 0.24 0.04 0.21 0.04

16

24

32

40

48

56

Signif.

0.82

0.80

0.78

0.78

0.77

0.76
*

22.80

24.00

23.90

23.75

24.05

23.85
*

0.14

0.10

0.09

0.09

0.08

0.07
*

0.04

0.03

0.04

0.04

0.04

0.04
*

0.13

0.11

0.09

0.09

0.08

0.08
*

0.03

0.03

0.03

0.03

0.03

0.03
*

All: 0.79_+0.01 23.10+0.41 0.11+_0.01 0.04+0.001 0.11+0.01 0.03̂ 0.001

N.S.: ANOVA not significant at 5% level

*: ANOVA significant at 5% level

Mean +_ 952 Confidence Interval

No. Replicates: 40

c-
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TABLE 11

Louisiana Quarter TM Scene: Regular Distribution of Ground Control Points

N R RMS RBIAS RSD CBIAS CSD

8

16

24

32

40
48

56

Signif.

1.54

1.39

1.36
1.34
1.32
1.32
1.32
*

18.32

21.85

22.30

22.73

23.25

23.10

23.23
*

0.15

0.10

0.09

0.07

0.07
0.07

0.07
*

-0.04

0.03

0.03

0.04

0.04
0.04

0.04
*

0.18

0.11

0.10

0.08

0.09
0.08

0.08
*

0.03

0.03

0.03

0.03

0.03
0.03

0.03

N.S.

All 1.37+0.01 22.11+0.42 0.09+0.01 0.04+0.000 0.10+0.01 0.03+0.000

N.S.: ANOVA not significant at 5% level

*: ANOVA significant at 5% level

Mean +_ 95% Confidence Interval

No. Replicates: 40
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TABLE 12

Louisiana Quarter TM Scene: Clustered Distribution of Ground Control Points

RMS RBIAS RSD CBIAS CSD

8

16

24

32

40

48

56

Signif .
Al l

N.S . :
*.

0.22
0.30
0.36
0.42
0.46

0.51
0.54
*

0.40+0.01

ANOVA
AKinVA

19.28
21.78
22.78
22.55
22.90
23.30
23.38

*

22.28+0.49 0.

not significant
Q i n n i f i rant at 5

1.07
0.79
0.39
0.32
0.33
0.29

0.24
*

49+0.08 0.

at 5% level
\1 lowol

0.09
0,08
0.05
0.04
0.04

0.04

0.04
*

06+0.004

1.23
0.78
0.38
0.27
0.21
0.21

0.20
*

0.47+0.10

0.09
0.06
0.04
0.04
0.04

0.04

0.04
*

0.04+(

Mean +_ 95% Confidence Interval

No. Replicates: 40
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Abstract

A simple method of assigning values to missing data in a geographic

context is to use an average of adjacent observations. The value thus

obtained is a linear combination of neighboring values with appropriately

chosen weights. The same general method can be used when the observations

consist of regular pixels, of irregularly arranged resels, or scattered point

observations. Smooth assignments are made by this method; iterations are

required when adjacent values are missing.
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Our primary interest is in geographical problems and the discussion

focuses an examples in which the interpolation estimates are to be made in two

dimensions. We believe that the simplest and most sensible method of

geographic interpolation consists of the assignment of an average value to the

location or locations for which data are required. The set over which the

average is taken is obviously important/ and, as weighted averages are almost

invariably used, the choice of weights is also critical. For spatial

variables the relevant set usually consists of values in the vicinity of the

locations for which the estimates are desired. Observe here that we

implicitly assume that the variable of interest is numerical/ and'not

categorical, so that averages have meaning. Suggestions as to how to proceed

when this is not the case may be found in Guptill (1975), Switzer (1975), and

Tbbler (1979a). We also restrict our attention to arithmetical averages,

ignoring geometrical and harmonic averages and medians which may be

appropriate in some cases. It should be recognized that no interpolation

scheme can overcome the problem of insufficient resolution in the original

observations.

We consciously avoid explicit distance weighted averages as being

computationally too cumbersome, but recognize that they are common in the

literature. A rather thorough treatment of this subject is that of Gandin

(1965), which includes coverage of covariance and varigram estimation

approaches more recently popularized as Kriging, optimal interpolation,

objective analysis, collocation, and regionalized variable techniques.

Additional literature is referenced in Akima (1975), Barnhill and Nielson

(1984), Besag (1974), Brady (1982), Brodlie (1980), Duchon (1975), Franke

(1982), crimson (1982), Harder (1972), Hardy (1971), Hessing (1972), Journel

(1973), Kraus (1972), Lawson (1978), Matheron (1971), Moritz (1970), Ripley



484

(1981), Schumaker (1976), Swain (1976), Tobler (1979 c) j and Wahba (1980), to

give only a short selection. It is here assumed that the observations are

without error so that filtering of the values is not included; see the

foregoing references if this is of interest.

We present three simple cases in which spatial averages can be used for

interpolation. The first case involves pixels, or data on a regular mash; in

the second and third cases the known data are irregularly arranged on the

plane either as resels or as point locations.

Consider first data given as square pixels (picture elements) with the

value for one interior pixel missing (Figure One). Then (u s ing an obvious

row-column notation) the value at the missing i,j location is estimated as an

average from its neighbors by

4

This works equally well when several interior values are missing, as shown in

Figure Two, by an iteration equivalent to solving Laplace's equat ion by

f ini te difference methods (Birkhoff 1972). How the missing values are

initialized for the iterations is not critical but a good guess saves

computational effort. In order to terminate the iterations one invokes the

usual stopping rules. This of course is just the classical Dirichlet problem

in two dimensions and the interpolated value has the harmonic property

(Oourant and Hilbert 1937) by the construction method. Now it is well known

(Kantorovitch and Krylov 1958) that Laplace's equation arises from the least



ORIGINAL PAGE IS
OF POOR QUALFTY 485

Figure 1. Small boxes denote known values. Small dot indicates
location for which an estimate is desired.

B

Figure 2. Small boxes denote known values. Small dots indicate
locations for which estimates are desired.
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squares problem: .

min: J ; 9Z2 3Z2

R 3X 9Y

with, in the present instance/ Dirichlet boundary conditions. Thus the

interpolation is spatially smooth, the squared variation of the derivatives,

which is minimized, providing a measure of roughness.

The foregoing simple solution has several disadvantages. One of these is

that we have provided only a point estimate, without any statement of the

standard error of the estimate. An obvious way around this is to sample from

a distribution having the mean of the neighbors as its expectation with a

variance also estimated from these neighbors. A second shortcoming of the

harmonic interpolation is that the estimated value can never rise above, nor

fall below, its neighbors in magnitude. This restriction can be overcome by

enlarging the neighborhood and by requiring that the partial derivatives of

the estimate be smooth, that is, by solving the biharmonic equation. In

finite difference form this leads to

Zij = T± £ 8(

and iterative procedures are again used when several adjacent values are

missing.

Now suppose that the data are given in the form of irregularly arranged

resels (resolution elements) ; census tracts or counties in the United States,

with one or more values missing. A generalization of the above results, using

first order neighbors, can be written as

n
= Z L Z
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where n is the number of neighbors of region i and L^j are normalized neighbor

weights. First order neighbors are areas having direct contact along borders

of non-zero length, second order neighbors are the first order neighbors of

the initial neighbors, and so on. As an example Figure Three shows first and

second order neighbors for Kaunas, with the numerical values given in Table

One. For the population density of Kansas, using only first order neighbors,

and with normalized boundary lengths as weights we obtain 36.05 persons per

square kilometer, whereas the observed value is 27.50. Taking each individual

state in turn yields an average success rate of 72%, which may be considered

impressive in light of the simplicity of the technique (Figure Four). The

method has been extended to the case in which several interior values are

estimated (Kennedy and Tobler 1983) . Table II illustrates the comparable

biharmonic density estimate for Kansas. We believe this method of adjacency

weighting to be far superior to the use of arbitrary points ("centroids") to

represent geographic areas.

As a final example consider the .problem of interpolating a continuous

scalar field from irregularly arranged point observations in two dimensions.

As the first step, to reduce extrapolation, we rotate to principle axes. Thus

observations which, for example, fit within an oblique rectangle are readily

accomodated. We next pass one coordinate line through each observation

(Figure Five). The result is an irregular orthogonal mesh, with observations

at N of the nodes and up to N*N-N nodes at which we need to make an -estimate.

The obvious procedure is to let the mesh define the adjacencies and then to

use neighbor averaging as before. In this example we solve Laplace's equation

by using
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Figure 3. First and second order neighbors of the state of Kansas.
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Figure 4. Scatter diagram comparing actual and estimated population
densities for States. Data from Kennedy and Tobler (1983),
Table II.
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Table I

FIRST ORDER DENSITY ESTIMATE FOR KANSAS

length of Border of Kansas with neighboring states,

and their population densities

Neighbor km border Density

Colorado

Oklahoma

Missouri

Nebraska

338

667

433

572

21.3

37.2

67.8

19.4

Sum of border lengths = 2010

Sura of border * population densities = 72466

72466/2010 =36.05

which yields the density estimate for Kansas



490

Table II

SECOND ORDER DENSITY ESTIMATE PDR KANSAS

Length of Border of

Nebraska km border Density

with

South Dakota 641 8.8
Wyoming 222 3.4
Iowa 192 50.5

Colorado

with

Wyoming 419 3.4
Utah 444 12.9
New fexico 542 8.4

Oklahoma r

with

New Mexico 58 8.4
Texas 1534 42.7
Arkansas 319 37.0

Missouri

with

Arkansas
Tennessee
Kentucky
Illinois
Iowa

548
156
111
613
378

37.0
94.9
81.2
199.4
50.5

617T

Density estimate from second order neighbors = 291003/6177 = 47.11.

Density estimate for Kansas = density estimate from first order

neighbors plus difference of first order estimate and second order
»

estimate = 36.05 + (36.05-47.11) = 24.99 persons per square kilometer.
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Figure 5. Small boxes
of the mesh
desired.

denote known values. Remaining intersections
indicate locations for which estimates are
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with weights chosen from simple geometric considerations. These weights are

essentially normalized inverse distances but only to immediately adjacent

locations on this mesh. The grid is orthogonal so that onlya{*-i)distances

(instead of N(N-l)/2) are required and they can be computed in advance for the

entire mesh. With more neighbors, different weights, and additional boundary

conditions, the method is easily extendable to the biharmonic case to obtain

an interpolation with smooth derivatives. An iteration is used since most of

the mesh points do not have observations at the adjacent mesh positions.

Points which are neighbors on the mesh may not be spatially nearest points,

but the influence of all points is felt by each point, through the coupling

via the mesh. The iterations start from an initial guess and end when an

error tolerance is satisfied. Convergence accelerating techniques are

available to speed the iterations (Graham 1983). The result is a set of

smoothly varying values at the corners of the rectangles defining the mesh and

the original observations are exactly satisfied, interpolation within the

rectangles is then easily effected using conventional bilinear or splining

techniques. The method of course bears a resemblance to the "lattice tuning"

described earlier by Ttobler (1979U) except that the observational values are

everywhere retained which was not the case in that procedure. An advantage of

the rectangular mesh over a triangulation is that it can be used directly in

other computations or for display purposes. Computational experience with

several extensive sets of data has reinforced our belief in the efficacy of

spatial averaging for interpolation. Any interpolation scheme of course

requires hypotheses about the phenomena under investigation and cannot be
•

applied uncritically.
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The smooth interpolation-by-averaging techniques described here can all

be extended rather easily to higher dimensional cases and to the interpolation

of vector or tensor field components. An example application would be for

non-parametric "rubber sheeting" in order to fit satellite images to

conventional maps. It has also not escaped our notice that the methods may be

reversed, in order to parse large data sets.



494

References

H. Akima, 1975, "A Method of Bivariate Interpolation and Smooth Surface fitting

for Values given at Irregularly Distributed Points"/ Washington DC, Office

of Telecommunications Report No. 75-70.

R. Barnhill, and G. Nielson, eds., 1983, "Surfaces", Rocky Mountain Journal of

Mathematics, 14, 1:1-299.

J. Besag, 1974, "Spatial Interaction and the Statistical Analysis of Lattice

Systems," J. Roy. Stat. Soc., B, 36, 192-236.

Birkhoff, G., 1972, The Numerical Solution of Elliptic Equations, Philadelphia,

SIAM.

J. Brady and B. Horn, 1982, "Rotationally Symmetric Operators for Surface

Interpolation", MIT Artificial Intelligence Lab Memo no. 654.

K. Brodlie, 1980, Mathematical Methods in computer Graphics and Design, London,

Academic Press.

Courant, R., and Hilbert, D., 1937, Methoden der Mathematischen Physik, Berlin,

Springer.

J. Duchon, 1975, "Functions-Spline du type plaque mince en dimension 2",

Grenoble, University Technical Report No. 231.

R. Franke, 1982, "Scattered Data Interpolation: Tests of Some Methods",

Mathematics of Computation, 38(157):181-199.

Gandin, L., 1963, Objective Analysis of Meteorological Fields, Leningrad, GIMIZ

(US Department of Commerce translation, TT 65-50007).

Graham, N., 1983, A Combined Algorithm for Sample Design and Interpolation,

Discussion Paper 15, Santa Barbara, Department of Geography, UCSB.



495

W. Crimson/ 1982, "A Computational Theory of Visual Surface Interpolation", Phil.

Trans. Royal Soc. of London, B298:395-427.

Guptill, S., 1975, Spatial Filtering of Nominal Data, Ph.D. thesis, Ann Arbor,

University of Michigan.

R. Harder, and R. Desmaris, 1971, "Interpolation Using Surface Splines", J.

Aircraft 9,2:189-191; 9,12:869-871.

R. Hardy, 1971, "Multiquadric Equations of Topography and Other Irregular

Surfaces", J. Geophysical Research, 76:1905-1915.

R. Hessing, et al., 1972, "Automatic Contouring using Bicubic Functions",

Geophysics, 37,4:669-674.

A. Journel, and C. Huijbregts, 1978, Mining Geostatics, New York, Academic Press.

Kantorovitch, L., and Krylov, V., 1958, Approximate Methods of Higher Analysis,

The Hague, Noordhoff.

Kennedy, S., and Tobler, W., 1983, "Geographic Interpolation", Geographical

Analysis, 15,2:151-156.

K. Kraus, and E. Mikhail, 1972, " L i n e a r Leas t S q u a r e s In terpola t ion" ,

Photogrammetrie Engineering, 40:1016-1029.

C. Lawson, 1978, "Software for C^ Surface interpolation", Mathematical Software

III, New York, Academic Press.

G. Matheron, 1971, The Theory of Regionalized Variables and its Applications,

Fontainbleau, Ecole Nationale.

H. Moritz, 1970, "Eine Allgemeine Theorie der Verarbeitung von Schwermessungen

mach Kleinsten Quadraten", Heft Nr. 67A, Munich, Deutsche Geodaetische

Koumiss ion.

B. Ripley, 1981, Spatial Statistics, New York, J. Wiley.

L. Schumaker, 1976, "Fitting Surfaces to Scattered Data", Approximation Theory

II, New York, Academic Press.



496

C. Swain, 1976, "A Fortran IV Program for Interpolating Irregularly Spaced Data

using the Difference Equations for Minimum Curvature", Computers and

Geosciences, 1:231-240.

Switzer, P., 1975, "Estimation of the Accuracy of Qualitative Maps", pp. 1-13 of

J. Davis and M. McCullagh, Display and Analysis of Spatial Data, New York,

J. Wiley.

Tbbler, W., 1979«. , "Cellular Geography", pp. 379-386 of S. Gale and G. Olsson,

Philosophy in Geography, Dordrecht, Reidel.

Tobler, W., 19791, "Lattice Tuning", Geographical Analysis, 11,1:36-44.

W. Tobler, 1979c; "Smooth Pycnophlyactic Interpolation for Geographical Regions",

J. Am. Statistical Assn., 74(367):519-530.

G. Wahba and J. Wendelberger, 1980, "Some New M a t h e m a t i c a l Methods for

Variational Objective Analysis Using Splines and Cross Validation", Monthly

Weather Review, 108(8):1122-1143.



497

An Optimal Frequency Domain
Textural Edge Detection Filter

J. Keith Townsend, K. Sam Shanmugan and Victor S. Frost

Telecommunications and Information Sciences Laboratory
University of Kansas

Space Technology Center
Nichols Hall

2291 Irving Hill Road
Lawrence, Kansas 66045

(913) 864-4832

ABSTRACT

An optimal frequency domain textural edge detection filter is

developed and its performance evaluated. For the given model and

filter bandwidth, the filter maximizes the amount of output image

energy placed within a specified resolution interval centered on

the textural edge. Filter derivation is based on relating

textural edge detection to tonal edge detection via the complex

lowpass equivalent representation of narrowband bandpass signals

and systems. The filter is specified in terms of the prolate

spheriodal wave functions translated in frequency. Performance is

evaluated using the asymptotic approximation version of the

filter. This evaluation demonstrates satisfactory filter

performance for ideal and non-ideal textures. In addition, the

filter can be adjusted to detect textural edges in noisy images at

the expense of edge resolution.

This work was supported by NASA under Contracts NAS-9-1666M
NAGW-381.
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LIST OF FIGURES

Figure 1. Block diagram of the optimum textural edge detection

filter for two textures.

•

Figure 2. Single sided transfer function of the optimum tex-

tural edge .detection filter. The bandwidths of

H.|(U)) and (̂to are narrow enough that response at u^

and (1*2 is zero.

Figure 3. (a) Input image consisting of two ideal textures.

(b) Magnitude of the optimum textural edge detector

response (in the spatial domain).

Figure 4. Magnitude of the response of the textural edge

detection filter due to an input image with four

ideal textures and three textural edges. The nor-

malized spatial frequencies of the four textures are

.04ir, .06TT, .08TT, and .lir.

Figure 5. (a) Spectrum of an arbitrary input image.

(b) Spectrum of optimum textural edge detection

filter with bandwidth shown in terms of u> and Q.
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Figure 6. (a) Input image with both amplitude and frequency

varying in proportion to a bandlimited Gaussian

noise process (horizontal axis magnified two times

around each textural edge).

(b) Magnitude of the optimum textural edge detector

response due to (a).
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I. INTRODUCTION AND OVERVIEW

Edge detection is an important first step in extracting

information from an image. Many edge detection schemes have been

employed to enhance the boundaries between regions of different

average gray tone. These tonal edge detectors are inadequate when

regions in an image are characterized by similar average gray

tone, but different textural features.

A textural edge detection filter is presented in this paper

which is optimal in the sense that, for the given model, a maximum

amount of output image energy is placed within a given resolution

interval width and a given filter bandwidth. The resolution

interval is centered on the textural edge in the input image. The

filter is derived in the frequency domain, and is easily implemen-

ted on a digital computer using Fast Fourier Transform (FFT) tech-

niques.

The optimum textural edge detection filter is developed by

treating the textural edge as a bandpass extension of a tonal

edge. Hence, the optimum tonal edge detector derived by

Shanmugan, Dickey and Green [1] (correspondence by Lunscher [2]),

is related to the textural edge detection case via the complex

lowpass equivalent representation of signals and systems. It

should be pointed out that the development is carried out in one-

dimension. However, symmetries required for extension to two-

dimensions are retained.
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Section II presents a brief review of the optimum tonal edge

detector. The textural model used in the development of the

optimum textural edge detector is then introduced in Section

III. The mathematical form of the optimum textural edge detection

filter and some one-dimensional examples are presented in Section

IV. Concluding remarks are given in Section V.
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II. REVIEW OF THE OPTIMUM TONAL EDGE DETECTOR

Ths purpose of this section is to briefly review the optimum

tonal edge detector derived by Shanmugan, et al., [1]. For a

given filter bandwidth, the optimum tonal edge -detector places a

maximum amount of output image energy within a given resolution

interval length in the vicinity of tonal edges. The tonal edge

detector is insensitive to textural edges where the average gray

levels of the different textural regions are equal.

The derivation of the optimum tonal edge detector is based on

representing the filter output (for a step edge input) in terms of

prolate spheriodal wave functions (for the derivation, see [1],

[2]). The exact one-dimensional form of the filter transfer

function is given in Shanmugan, et al., [1] as

B 0) ty (c,

HSTEP.E(U) = ifl , h0 elsewhere

where c = —— and i(j is the first order prolate spheriodal wave

function. (The subscript STEP,E in Equation (1) denotes the Exact

form of the STEP edge detector). For any given values of spatial

bandwidth, ft, and resolution interval length, I, the transfer

function in Equation (1) places the maximum amount of energy in

I. The filter is difficult to implement in this form, because the

values of 1̂ cannot be easily calculated. Application of approx-

imations by Slepian and streifer [1], yield an asymptotic approxi-
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mation of the filter which is in closed form, hence easy to imple-

ment. The resulting expression is

HSTEP,E(«» =

Combining the constants that appear in the argument of the expo-

nent, and dropping the gain factor, K.J , yields

2 2
, . , -Koj . 2 -Kw , .

H „ (to) = OH toe ) = a) e (3)
STEP

It should be noted that the parameters I and ft can no longer

be independently specified.

Choice of K sets the bandwidth of the filter, and also the

resolution interval length. As K increases, resolution interval

size increases, and filter bandwidth decreases. Note that even

though the asymptotic approximation to the optimum transfer func-

tion is not strictly bandlimited, HSTEp(u) is effectively zero for

spatial frequencies above a certain value, depending on the choice

of K. The asymptotic approximation will be used in the remainder

of the development.
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III. TEXTURAL MODEL

One inherent difficulty with textural processing is the fact

that no single "best" model exists for characterizing texture in

images. The model used here in the development of the optimum

textural edge detector capitalizes on the relationship between

texture and spatial frequency by representing each texture as a

sinusoid of different spatial frequency (i.e., fine textures

contain greater concentrations of energy at higher spatial fre-

quencies than coarser textures do) [3], [4], [5], [6], [7], [8],

[91.

In general, a class of one-dimensional images with n textures

can be defined as

q(x) = A(x) cosdu.x + 0(x)) i = 1, 2, •••, n (4)

where

A(x) = a(1 + oc(x)) |ct(x) < 1 (5a)

and

x
0(x) = b / BU) dX (5b)

The functions a(x) and (3(x) are random processes, 01. represents

the i texture, a and b are constants, and x is the spatial

variable. Note that q(x) is allowed to be negative. This can be
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viewed as subtracting off the mean level from an image, thus

allowing negative brightness or gray level. In this model, a(x)

represents average gray level, and 8(x) represents the variation

of spatial frequency within a texture. In other words, the enve-

lope of q(x) can be thought of as the average gray level varia-

tion, while the underlying texture is represented by each diffe-

rent o)̂ , where the random change of texture for a given u>. is

controlled by 3(x). Note that if time were the independent vari-

able, q(x) would be a double sideband plus large carrier modulated

waveform, with simultaneous frequency modulation.

An ideal texture is represented in this model by a sinusoid

with constant spatial frequency and constant amplitude. Hence, a

transition between two ideal textures can be represented by a pure

sinusoid at one spatial frequency followed by a pure sinusoid at

another spatial frequency. For the ideal two texture case let

A(x) = 1

0(x) = 0

- » < x < <» (infinite size)

Thus, an image with two ideal textures and a textural edge at x =

0 is represented mathematically as

f(x) = cos(to.x), -» < x < » (6)

where

i = 1 for x < 0 and

i = 2 for x > 0.



506

The optimum textural edge detector is derived using the ideal, two

texture image, f(x).
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IV. OPTIMUM TEXTURAL EDGE DETECTOR RESULTS AND PERFORMANCE

This section presents the mathematical form of the optimum

textural edge detection filter and discusses the performance of

the filter for several different classes of input images. The

derivation is only briefly sketched here, the details are given in

Townsend [10],

For a two texture input image with one texture represented by

a sinusoid with frequency to.,, and the other texture represented by

a sinusoid with frequency u^» '̂ ne transfer function of the optimum

tonal edge detector is given by

H (to) = H (to) + H (to) (7)

where

- V + HSTEPU + V

HSTEPU *

and

It is clear from Equations (7), (8), and (3), that the optimum

textural edge detector is the sum of the responses of two bandpass

"sub" filters, H.,(to) and H2(io). Each "sub" filter is a trans-
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lated-in-frequency version of the optimum tonal edge detector,

HSTEp(u>), discussed in Section II. Note that HgTEp(u>) is trans-

lated to each of the two textural frequencies.

The optimum textural edge detector is derived by recognizing

that the two-ideal-texture input image, f(x), given in Section III

can be expressed as the sum of two truncated sinusoids, one at

frequency to. , defined for -<*> < x < 0 and the other at frequency

(1)2, defined for 0 < x < +°°. But each of these two truncated

sinusoids are bandpass at frequencies u)., and ia^ respectively.

Each truncated sinusoid has a step function for its complex low-

pass equivalent [11], Because HSTEp(w) is optimized for detecting

step type edges, a bandpass version of HSTEp(to) centered on fre-

quency oj^ is optimum for detecting the discontinuity (modulated

step function), in the truncated sinusoid at frequency co1 [10],

Similarly, a bandpass version of HSTEp(co) translated in frequency

to to- is optimum for detecting the discontinuity in the truncated

sinusoid at frequency to-. The sum of the outputs of these two

bandpass filters produces the optimized output. A block diagram

of the filter structure for the two texture case is shown in

Figure 1.

A qualitative discussion is presented here to gain insight

into how the filter works. Figure 2 presents an example of the

optimum textural edge detector in the frequency domain. Note from

the figure that the response at o>., and to2 (the spatial frequencies

representing the two ideal textures) is zero. Hence, HOPT(ID) does

not respond to any input which has spectral energy only at these
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two frequencies. Therefore, the response to an input representing

either pure texture (in steady state) is zero. The textural edge

is characterized by a transition from one texture to the other.

The Fourier transform of this boundary contains spectral energy at

frequencies other than u^ and o^. In particular, there is energy

in the passband portions of HopT(to), therefore filter response

near the textural edge is non-zero resulting in a large amount of

output image energy in the vicinity of the textural edge.

The Fourier transform of the entire input image is given by

F((o) = F^to) + F2(to) (9)

where F^(to) amd F2(to) are the Fourier transforms of the truncated

textures represented by sinusoids at to. and to2 respectively.

Multiplication of F(to) with HOPT(U)) yields the transform of the

output, G(io), i.e.,

G(to) = F(to) H (to) (1.0)

but this is equivalent to

G(to) = [F̂ to) + F (to)] [H (to) + H (to)]

= F (to) H (to) + F (to) H (to)

+ F (u) H (to) (11)
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but

(u) H2(u) = 0 (12)

and

F (u) H (u>) = 0 • (13)

Substitution of Equations (12) and (13) into Equation (11)

yields

G(u)) = F (o>) H (u) + F (to) H (id)

(14)

Hence,

g(x) = g^ (x) + g (x) (15)

Equations (12) and (13) are true because of the spectral

separation between the two sets of bandpass inputs and systems.

In non-ideal texture cases, there can be considerable spectral

overlap between the Fourier transforms of the textures. The

spectral overlap can cause non-zero response of a system, H^Cu),

for example, to a texture not centered at u^, F2(u) for example.

This could also occur if the bandpass bandwidth of H1 ( ID) is wide

enough to pass a significant amount of energy due to F2(oj).



511

Choosing the exponential parameter, K, such that the bandpass

bandwidths of HI(u) and H2(w) are wider than the spatial frequency

separation between w1 and u)2 results in non-zero response to the

two textures. There is improved resolution at the expense of an

increase in the "background" level in the output image, thus

decreasing edge visibility. The "background" refers to the out-

of-resolution-interval gray level. Edge visibility describes the

difference in gray level between the in-resolution-interval and

out-of-resolution-interval (background) portions of the output

image. The spatial frequency separation of the textures affects

the performance of the filter, i.e., the greater the separation,

the better the performance.

It was shown in Shanmugan, et al., [1] that the optimum tonal

edge detector could be used to enhance tonal edges in images

corrupted by additive white Gaussian noise. The same theory

applies to the optimum textural edge detector. The exponential

parameter, K, can be chosen to decrease the bandwidth of the "sub"

filters to decrease the effects of the noise. The price paid for

this is an increase in the resolution interval length [10]. The

benefits of increased edge visibility may more than offset the

decrease in resolution.

Figure 3 shows the result of implementing the filter on a

digital computer. Displayed are the input and output images (one-

dimensional) of the optimum textural edge detection filter for an

input with two ideal textures (one textural edge). The textural

edge is clearly marked in the output image.

-12-
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The transfer function, HOpT(<jo), can be generalized to n

textures by simply adding more translated-in-f requency versions of

Denote the generalized, n texture transfer function as

HOPT,n(a))f defined as

n
H (u) = y H. (u) (16)
OPT,n . L, i

1= i

where

H. (uj) = H (u - ID. ) + H (u> + to. ) (17)
i STEP i STEP i

and uj^ represents the frequency of the i texture. Each of the n

filters respond to transient energy where textural transitions

occur but null out response to the i texture in steady state.

An example of a one-dimensional output image for an input image

containing four ideal textures with three textural edges is shown

in Figure 4. The normalized frequencies of the four different

textures in the figure are . 04ir, ,06ir, .08ir, and .1ir, with each

texture occurring once in the input image.

It should be pointed out that although each of the "sub"

filters (i.e., H^u), H2(<i>), •••) are narrowband bandpass about

the respective textural frequencies, the overall system bandwidth

and image bandwidth are about equal, as shown in Figure 5. The

total textural edge detector bandwidth, BW, is written in terms of

the tonal edge detector bandwidth as follows:

BW = w + f2 (11)
n
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where w represents the highest-frequency texture, and 2J2 is the

bandpass bandwidth of the filter centered on ton.

The most general case of the model used in this development

is one in which each of the spatial frequencies representing the

different textures in the image are allowed to randomly deviate

about some average frequency. This complication is introduced to

allow for some of the irregularity of a real texture. A one-

dimensional example in which both the amplitude and spatial fre-

quency vary in proportion to independent random processes is shown

in Figure 6. In this example, the average normalized spatial

frequencies representing the two textures are ,04ir and ..1ir respec-

tively. In terms of the general model presented in Section III,

a(x) and 3(x) are independent Gaussian noise processes, with unit

variance. The bandwidths of the amplitude noise and frequency

noise processes are ,008iv and .006ir respectively. Note that the

filter adequately marks the two textural edges in the image, but

also responds to regions within each texture where the spatial

frequency changes. Decreasing the bandwidth of the noise modula-

ting the frequency causes the spectral separation of the textures

in the input image to increase. This results in improved perfor-

mance of the filter at distinguishing textural edges from fre-

quency deviations within a texture.
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V. CONCLUSIONS

A frequency domain textural edge detection filter has been

developed which, for the given model and filter bandwidth, places

a maximum amount of image energy within a specified resolution

interval near the textural edge. The textural edge detector was

derived by relating textural edge detection to tonal edge detec-

tion via complex lowpass equivalent transformation. Hence, the

optimum textural edge detector was found to be a sum of trans-

lated-in-frequency versions of the optimum tonal edge detector..

This form allows the filter to be adapted to multitextural ima-

ges. In addition, examples were presented which show the filter's

insensitivity to tonal features in an image. The filter is adjus-

table; resolution can be traded for edge visibility in the case

where the input image has been corrupted by noise.

The qualitative and complex nature of texture suggests that a

totally general approach to modeling and classifying texture may

never be found. It has been an objective in this investigation to

develop a filter which optimizes a certain criteria relating to

textural edge detection. But, as always, simplifications and

assumptions were made indicating the need for further research.

The model used in this development represented texture in terms of

spatial frequency, and gray tone in terms of amplitude. One

example of further research might be to base the development on a

more complex model which incorporates a statistical description of

texture. In addition, further work is needed in extension of the

one-dimensional filter to two-dimensions.
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This work has provided an approach to textural edge detection

which can be implemented on digital hardware using the FFT. With

the increased size and availability of digital computing facili-

ties at a decreased cost, digital image processing methods will

become more popular in the future.
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AGENDA

Monday, June 10:

8:00 - 8:30 Coffee, tea and kolaches

8:30 - 9:00 Program Overview

Dr. Diane Wick!and, Program Manager for Terrestrial
Ecosystems, NASA Headquarters, Washington, D.C.

"An Overview of NASA Land Processes Program"

R. P. Heydorn, Science Manager, Fundamental
Research Program: MPRIA, NASA/Johnson Space Center,
Houston, Texas

Math/Stat: Session I

9:00 - 9:45 L. F. Guseman, Jr. and L. Schumaker,
Texas A&M University

"Multivariate Spline Methods and Their Use in
Classification Procedures"

9:45 - 10:30 Charles Peters, University of Houston
"Methods of Normal Mixture Analysis Applied to Remote

Sensing"

10:30 - 10:45 Break

10:45 - 11:30 E. Parzen, Texas A&M University
"Quantile Data Analysis Methods and Edge Detection for

Noisy Images"

11:30 - 1:00 Lunch

Math/Stat: Session II

1:00 - 1:45 C. Morris, D. V. Hinkley, and W. Johnston,
University of Texas at Austin

"Classification in a Spatially Correlated Environment"

1:45 - 2:30 R. P. Heydorn, NASA/JSC
"Estimating Parameters in a Mixture of Probability
Densities"

2:30 - 3:15 David Scott, Rice University
"Experiences with Examining Large Multivariate Data
Sets with Graphical Nonparametric Methods"

3:15 - 4:00 -Discussion

PRECEDING PAGE BLANK NOT FILMED ^
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Pattern Recognition: Session I

4:00 - 4:45 Carlos Berenstein, Laveen N. Kanal, and David Lavine,
LNK Corporation

"Further Analysis of Subpixel Registration Accuracy:
Geometrical and Statistical Results"

4:45 - 5:30 Grahame Smith, SRI International
"Recovery of Surface Shapes from Multiple Images"

Tuesday, June 11:

8:30 - 9:00 Coffee, tea, and kolaches

Pattern Recognition: Session II

9:00 - 9:45 Vincent Hwang, Larry Davis, University of Maryland
and Takashi Matsuyana, Kyoto University, Japan

"Integration of Evidence in Image Understanding
Systems"

9:45 - 10:30 I. Mikhail and F. C. Paderes, Purdue University
"Investigation of Critical Issues in Rectification and

Registration of Satellite Scanner Imagery"

10:30 - 10:45 Break

10:45 - 11:30 Curtis E. Woodcock, Boston University and
Alan H. Strahler, Hunter College

"Relating Ground Scenes to Spatial Variation in
Remotely Sensed Images"

11:30 - 1:00 Lunch

Pattern Recognition: Session III

1:00 - 1:45 David Dow, National Space Technology Labs.
"Influence of Ground Control Point Selection on Landsat
MSS Rectification Accuracy: Whole Scene vs.
Portions of the Scene"

1:45 - 2:30 W. Tobler and S. Kennedy, University of California--
Santa Barbara

"Smooth Multidimensional Interpolation"

2:30 - 3:00 Discussion
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