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PREFACE

This volume comprises the Proceedings of the Third Annual Symposium
on Mathematical Pattern Recognition and Image Analysis (MPRIA) held June
10-11, 1985, at Texas A&M University, College Station, Texas.

The Symposium was initiated with a brief Program Overview presented
by Drs. Diane Wickland, NASA Headquarters, and R. P. Heydorn, NASA/JSC.

The thirteen papers of the Proceedings reflect the results of various
research efforts 1nit1ated‘during FY 1983 as part of NASA's Remote Sensing
Research Program. Two of the papers present results from research efforts
carried out by the following NASA principal investigators:

R. P. Heydorn - NASA/Johnson Space Center

David D. Dow - National Space Technb]ogy Laboratories
Results from an additional NASA research effort carried out at JPL appear
in the report (available from the authors):

Scene Segmentation," Final Report, NASA Fundamental Research

Program (1982-1984), Jet Propulsion Laboratory, California

Institute of Technology, Pasadena, California, 91109, March,

1985. :

The remaining papers present third-year results from the eleven research
efforts initiated July 16, 1982, under Contract NAS 9416664 and carried
out by the following principal investigators:

L. Schumaker/L. F. Guseman, Jr. - Texas A&M University

H. P. Decell, Jr./B. C. Peters, Jr. - University of Houston

E. Parzen/W. B. Smith - Texas A&M Universty

Carl Morris - University of Texas at Austin

L. Kanal - LNK Corporation

Grahame Smith - SRI International



L. S. Davis/A, Rosenfeld - University of Maryland

E. M. Mikhail - Purdue University

A. H. Strahler - Hunter College

W. Tobler - University of California at Santa Barbara

K. S. Shanmugan - University of Kansas

In an attempt to group presentations of a similar nature, the
Symposium was divided into two MATH/STAT sessions and two PATTERN
RECOGNITION sessions.

The papers appear in the Proceedings in the order in which they were
presented.at the Symposium. An agenda and a 1ist of attendees who

registered for the Symposium are included in the Appendix.

L. F. Guseman, Jr.
Principal Investigator and
MPRIA Program Coordinator
COntract NAS 9-16664

iv



THE USE OF MULTIVARIATE SPLINE METHODS
IN CLASSIFICATION

by

L. F. Guseman, Jr. and L. L. Schumaker
Center for Approximation Theory
Department of Mathematics
Texas A&M University
College Station, Texas 77843



Abstract

This report is a continuation of earlier papers prepared for the 1983
and 1984 NASA MPRIA Symposia Proceedings. The earlier reports dealt with
theoretical aspects of the use of spline functions in the constfuctioﬁ of
classification algorithms. In thié report we synthesize our earlier works
into a specific algorithm and discuss the results of applying this
algorithm to several test examples. The method involves tensor-product
spline fits to histograms obtained from training data, followed by
numerical determination of Bayes classification regions. Numerical
estimates for the probabilities of missclassification are also calculated

for each example.



§1. Introddction.

This paper is concerned with the use of spline functions as a tool in
statistical pattern classification algorithms. A theoretical approach to
Bayes classification based on spline functions was discussed in two
earlier NASA symposium proceedings -- see [13,14]. Our aim here is to
present the results of several numerical experiments using software based
on the theoretical reéu]ts of [13,14].

The paper is divided into 4 sections. In Section 2 we briefly review
the Bayes classification procedure. In Section 3 we outline the algorithm

which we are using. Some numerical results are presented in Section 4,

§2. The Bayes Classification Procedure.

Suppose that some group I of objects can be divided into NC classes

which we will denote by Hl’ H2"”’nNC‘ Now suppose that we are trying

to decide which class a given randomly selected object belongs to on the
basis of d measurements which have been taken on the object. In
particular, suppose X is a mapping from II = II1 U.oo U HNC into Rd

such that if w € I, then X(w) = (xl,...,xd) is the vector of measurements
taken on w. Finally, suppose that for each i = 1,...,NC, we know the

a priori probability a, that an object will fall in class “i and that we

also know the conditional density function Pi associated with measurments

taken from the i-th class.



Given this stochastic framework, the Bayes optimal classifier is

defined as follows:

Assign an element w to the i-th class IIi if and only

if its measurement vector X(w) belongs to the set Ri’

where Rl""’RNC are the Bayes decision regions defined by

d, a.P.(x) > a.P.(x) for all j # i } .

(2.1) R, = {x€R Pi(x) 2 asPy

The numerical problem of identifying the Bayes decision regions is
equivalent to finding the boundaries of the sets Ri' These in turn are
defined by the equations aiPi(x) - aij(x) =0 for i, j = 1,...,NC.
There are several well-known ways of measuring the quality of the
Bayes classification scheme described above. One convenient way is to

compute the probability of misclassification (PMC) (cf. [1,2]) denoted

below by G, and defined by

NC
(2.,2) 6 =1 - | d mgx[aiPi(x)]dx =1- ) o, IR Pi(x)dx .

R i i=1 i
In general, the evaluation of the PMC G is a difficult problem since it
involves integration over irregularly-shaped regions in d-space.
To apply the Bayes classification procedure in a practical setting,

the following steps need to be carried out:



1) estimate NC = number of'c]asses,

2) estimate the a priori probabilities LOERTTTL IV
3) estimate the density functions pl""’PNC’
4) estimate the decision regions Rl""’RNC’

5) estimate the value G of the PMC.

In this paper we shall discuss our experience with steps 3) - 5),
assuming that steps 1) and 2) have already been performed. Following [13,
14] we handle step 3) by uéing training data to construct a histogram
associated with each density Py, after which we construct a
tensor-product spline fit sj to this histogram based on volume
matching. Step 4) is carried out by computing the approximate Bayes

regions

2,

(2.3) Ry = {x€R®: a5 (x) >ousi(x), all 3% 8], i = 1N

11

When ‘the equality ajsj(x) = aij(X) holds, we put x in the set

*
R provided i is the least integer j for which aiPi(x) = aij(x).

The boundaries of the decision regions are contour lines defined by the

equations Gij(x) = aiPi(x) - aij(x) = 0. In practice we compute only

polygonal approximations Rij** to the regions Ry*.
Given the approximate Bayes regions Ry**,...,RNc**, we can now

compute an estimate G* for the PMC G defined in (2.2) 7as follows:



(2.4)

G

"
—
)
“t~1
e

; fR**si(x)dx .
i

These integrals cannot be computed exactly, but using the fact that

is is possible to integrate tensor-product splines exactly over

rectangular sets, they can be computed to within arbitrary accuracy (cf.

[14]). We shall denote our approximation to G* by G**.

§3. The algorithm.

In this section we summarize the steps in the numerical algorithm

outlined in the previous section. The notation here follows [13,14],

ALGORITHM:

A. (Perform the density fits)

1. Choose a rectangle H which contains most of the volume of the

densities P1,...,Pnc.

2, For each i = 1,NC

a.

C.

d.

e.

Choose the number of bins nbxi and nbyi in the x and y-
directions, respectively.

Choose the bin edges in the x and y directions to subdivide

H into nbxi x nbyi equal-sized bins.

Choose the number npi of samples to be drawn from the ith
population to be used as training data.

Draw npi samples from the ith population.

Construct a histogram based on this data using the above bins
Using the vo]umé matching method of [13,14] with knots located
at the bin edges, construct a quadratié tensor-product spline

sy approximating the density Pj.



B. (Compute the Bayes regions)

1. Choose a rectangular grid of points K = {tij: 1 <1 < ngi,

1 <j<ngj} on H
2. For each 1 <k < NC
a. For each i = l1,...,ngi and j = 1,...,n40j

k _
Compute the values of 235 = aksk(tij)

K L ,

. = " #
Compute Wi max{z}J » 2%}

ko _ _k k
Compute uij = Zij - wij

b. Use this grid of u-values to construct the contours defining
R ,** by the method of [14].
C. (Compute the approximate PMC value G**)
1. For k = 1,NC
Compute the approximate integral Ik‘of 5, over RE*

Xk = 1 -
2. Form G (I1 + ...t INC)‘

Discussion: The choice of the number of bins and the number of samples to
be used in step A2 of the algorithm has a major effect on the nature of
the spline fit sj to the density Pj. Our experience suggests choosing
the bin-width to be about one standard deviation.

Step A2f amounts to finding the LU-decomposition of a square matrix
of size nbxi followed by nbxi back substitutions (and a similar amount of
work involving a matrix of size nbyi). This is highly efficient (cf. the

discussion in [14]).



The construction of thé contours in step B2b is accomplished by
Algorithm 5.1 of [14]. Here we have elected to eliminate step 7 of that
algorithm and have simply taken the polygonal boundary defined by the
triangle edges. Since we have highly efficient algorithms for evaluating
splines on grids, we can afford to use a fairly fine grid and the result
is a set of visually smooth boundary curves for the decision regions.

If desired, this algorithm can be supplemented with a step B3 in
which contours defining Ri;** are removed when the total volume of the
spline u inside the given contour is less than some’predetermined cutoff

parameter €, We call this process "clutter removal".

§4. Test results.

In this section we present the results of applying the algorithm of
Section 3 to three test examples. For each example we give all relevant
input parameters and the computed PMC values, with and without clutter

removal. Each'example is accompanied by a series of figures including

-- a perspective view of pmax max{Pl,...,PNC}

a perspective view of xmax = max{sl,...,sNC}'

a plot of the decision regions based on the use of the true densities

Pl,ooo,PNC}

a plot of the approximate decision regions Rl**,...,RNC** computed

using the spline density fits

-- A similar plot using clutter removal with € = .01



"The construction of the contours in step B2b is accomplished by
Algorithm 5.1 of [14]. Here we have elected to eliminate step 7 of that
algorithm and have simply taken the polygonal boundary defined by the
triangle edges. Since we have highly efficient algorithms for evaluating
splines on grids, we can afford to use a fairly fine grid and the result
is a set of visually smooth boundary curves for the decision regions.

If desired, this algorithm can be supplemented with a step B3 in
which contours defining Ri** are removed when the total volume of the
spline u inside the given contour is less than some predetermined cutoff

parameter e. We call this process “"clutter removal".

8. Test results.

In this section we present the results of applying the algorithm of
Section 3 to three test examples. For each example we give all relevant
input parameters and the computed PMC values, with and without clutter
removal. Each example is accompanied by a series of figﬂres including

-- a perspective view of pmax = max{Pl,...,PNC}

-- a perspective view of xmax max{sl,...,sNC}

-- a plot of the decision regions based on the use of the true densities

PyseeesPycl

-- a plot of the approximate decision regions Rl**,...,RNC** computed

using the spline density fits

-- A similar plot using clutter removal with € = .01
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EXAMPLE 1:

Setug

NC = 2 classes:
P, = normal density with mean (0,0) and covariance matrix I
P» = normal density with mean (2,0) and covariance matrix I

A~priori probabilities «; = ap = .5

Data

10,000 random points from each population

Histogram

Equally spaced bins of width 1 on the rectangle H = [-3,5]x[-3,3].
Total number of bins = 48

Spline Fit

Using quadratic splines with knots at bin centers
Total number of coefficients = 48

Computed PMC

Without clutter removal = 0.1526072
With clutter removal = 0.1527698



Moy

-3.
+2.
-3.
+2.

-3.
+2.
-3.
+2.

11 12:06
6
000000
ooooee
o00000
000000
3. 24.
34. 187.
65. 462.
80. 458.
28. 180.
7. 24,
e. 5.
e. 0.
6
000000
600000
oeo000
000000
e. 0.
1. 3.
4. 27.
27. 175.
75. 441,
75. 466.
31. 177.
e. 32.

1885 h211 Paoge 1

-2.000000
+3.000000
-2.000000
+3.000000
60.  68.
471. 477.
1220. -1223.
1176. 1147.
426. 424,
68. 74.
4. 2.
°. 0.
-2.000000
+3.000000
-2.000000
+3.000000
°. e.
6. 6.
7.  73.
468. -452.
1167. 1183,
1105. 1144,
484. 495,
67. 75.
TABLE 1.

-~1.000000
+4.000000
~1.000000
27.
186. 3e.
457. 86.
440. 75.
192. ©32.
3e.

3.

e.
-~1.000000
+4.000000
-1.000000

e.

e.

27.
169. 29.
475. 86.
493 . 77.
183. 36.
29.

2.

3.
1.
e.

e.
1.
5.

6.

+0.000000E+00
+5.000000
+2.000000E+00

+0.000000E+00
+5.000000
+0.000000E+00

Data for Example 1.

1

+1.000000
+1.000000

+1.000000
+1.000000
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The true densities of gxample 1.
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Fig. 2.

The True decision regions for Example 1.
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The spline fits to the densities of Example 1.

Fig. 2.



Fig. 4.

/\

The estimated decision regions for Example 1.
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Fig. 5. The estimated decision regions for Example 1 (clutter removed).




EXAMPLE 2:

Setup

NC = 2 classes
P, = normal density with mean (0,0) and covariance matrix .5I
P, = normal density with mean (2,0) and covariance matrix I

A-priori probabilities a; = ap = .5

Data

25,000 random points from both populations

Histogram

P,: Equally spaced bins of width 2/3 on the rectangle H = [-3,5]x[-3,3].
Total number of bins = 108

P,: Equally space bins of width 1 on the rectangle H.
Total number of bins = 48

Spline Fit

Using quadratic splines with knots at bin centers
Total number of coefficients = 48 and 108, respectively.

Computed PMC

Without clutter removal = 0.1128998
With clutter removal = 0.1128956

17
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Apr 22 20:41 18B5 hgroms3 Poage 1
2
8 6
-3.000000 ~2.000000 -1.000000 +0.000000E+00
+2.000002. +3.000000 +4.000000 +5.000000
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e. 0. 0. 0. 0. 0.
12 <] ‘
-3.000000 -2.333333 -1.666667 -1.0002000E+00
+3.333334E-01 +1.000000 1.666667 +2.333333
+3.666667 +4.333333 +5.000000
~-3.000000 -2.333333 -1.666667 -1.000000E+00
+3.333334E-01 +1.000000 1.666667 +2.333333
e. e. 0. e. Q. e. 0. 0.
e. 0. e. e. e. e. 0. 0.
0. °. °. e. e. e. 0. 0.
e. 0. 1. e. 7. 2. 2. °.
1. 2. 9. 68. 76. 59. 17. e.
2. 22. 85. 410. 676. 407. 122. 8.
3. 44. 424, 142B. 2198B. 1410. 453. 50.
4. 81. 610. 2217. 3332. 2212. 606. 87.
4. 2. 418. 138B6. 2174. 1409. 427. 61.
0. 15. 110. 417. 583. 396. 128. 1§.
0. 4. 15. 51. 83. 61. 13. 3.
e. 0. 2. 3. 2. 4. 3. 0.

TABLE 2. The data for Example 2.

+1

POULLULOINDODODOO®

+1

-3.
+3.

=-3.
+3.

.0600080

.000000

333333E-01
oo0000

333333E-01
000000
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The true densities for Example 2.

Fig. 6.
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Fig. 7. The true decision regions for Example 2.
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The spline estimates for the densities of Example 2.

Fig. 8.
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Fig. 9. The estimated decision regions for Example 2.



Fig. 10.

(™

The estimated decision regions for Example 2 (clutter removed).
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EXAMPLE 3

Setug

NC = 3 classes
P; = normal density with mean (0,-1) and covariance matrix .51
P, = normal density with mean (0,1) and covariance matrix .51
P3 = normal densit with mean (3,0) and covariance matrix I

A-priori probabilities a) = a; = a3 = 1/3

Data

15,000 random points from each population

Histogram

P, and P,: Equally spaced bins of width 2/3 on the rectangle
H=[-3,5]x[-3,3]. Total number of bins = 108

P3: Equally spaced bins of width 1 on the rectangle H.
Total number of bins = 48.

Spline Fit
Using quadratic splines with knots at bin centers
Total number of coefficients = 48 and 108, respectively

Computed PMC

Without clutter removal = 0.08552417
With clutter removal = 0.08537598
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12

-3.
+3.
+3.
-3.
+3.

1

12

-3.

+3

+3.
-3.
+3.

-3.

+2

-3.
+2.

1

3 18:47 1985 hgroms Poge 1
9
PP0PP®  ~-2.333333 -1.666667 -1.P0ROORE+00
333334E-01 +1.000000 +1.666667 +2.333333
666667 +4.333333 +5.000000
000000 -2.333333 -1.666667 -—1.000000E+00
333334E-21 +1.000000 +1.666667 +2.333333
0. °. 2. 1. . e. °. e.
2. 16. 43, 47. 16. 3. 0. e.
24. 141. 346. 336. 136.  26. 1. 1.
96. 517. 1231. 1187. 523. 103. 4. 1.
46. 763. 1839. 1801. 784. 158. 15. e.
98. 514. 1130. 1168. 508. 107. 11. e.
3. 145. 321. 294. 154. 32, 2. 1.
5. 18. 36. 50. 24. 3. . e.
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°. 0. 0. 0. e. e. 0. °.
e. °. 0. e. °. 0. °. e.
0. 0. . e. 0. 0. e. °.
9
000000 -2.333333 -1.666667 —1.000000FE+00
.333334E-01 +1.000000 +1.666667 +2.333333
666667  +4.333333 +5.0200000
00eoPe -2.333333 -1.666667 —1.000000E+00
333334E-01 +1.000000 +1.666667 +2.333333
0. ) 0. 1. 1. 0. 6. 1.
0. ° . 7. 25. 36. 43.  18.
°. e 2. 18. 145. 331. 337. 1583,
0. e 9. 111. 563. 1161, 1186. 476.
e. ° 15. 141. 8@8. 1716. 1810. 812.
0. ° 9. 99. 517. 1173. 1124. 516.
e. 0 1. 23. 156. 368. 361. 146.
e. e . 5. 17. 38. 56. 19.
e. e °. °. 2. e. 4. 0.
0. e °. 0. 0. e. . .
. ) e. °. 0. °. °. °.
°. ° 0. e. 0. o. °. °.
6
000000 -2.000000 —1.000000 +0.00000RE+00
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0. e. °. °. e. e.
°. . 1. °. e. °.
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TABLE 3. The data for Example 3.

-3.333333E-©1

+3.000000

COOCOOTOOOS S

1.

-3.333333E-01
+3.06000080

-3.333333E-01
+3.000000

-3.333333E-01
+3.000000

4.
21.
110.

+1.000000
+1.000000

25



26

T /I
e

Dy
.

e

' 4
4




\—\—\_________/

\w—/

+

Fig. 12. The true decision regions for Example 3.
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.

The spline fit to the densities of Example 3.

13.

Fig.



Fig. 14.

The estimated decision regions for Example 3.
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Fig. 15.

The estimated decision regions for Example 3 (clutter removed).
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ABSTRACT

This paper concerns parametric mixture models appropriate for data
presented in homogeneous blocks of varying sizes from several unidentified
source populations. For most applications, the data elements within each
bloék'are dependent. Models are proposed for multivariate normél data
incorporating two types of dependence, exchangeability of elements within
blocks, and a Markov structure for blocks. The-consequenées of assuming
exchangeability, when in fact the Markov structure holds, are explored.
Computational problems for each model are considered, and results of a

simple test of the exchangeability hypothesis for LANDSAT data aré pre-

sented.

A Bayesian, or penalized maximum 1ikelihood, approach to the problem
of estimating the parameters of a mixture of mu]tivafiate normal distri-
butions is proposed. The Bayesian formulation eliminates the problem of
singularities in the 1ikelihood function and results in an attractive
EM-1ike procedure. Although the question of consistency is not settled,
it is suggested that the proposed method has certain advantages over both
the constrained and unconstrained maximum likelihood procedures.



Introduction

The mixture density estimation problem considered in this section may

be described as follows. A sample.of N independent observations 01,...,

GN is given, each observation G),i consisting of a positive integer n;

(block size) and a p x n, matrix

Xi = (Xill"'|xini)
whose columns Xij ¢ RP are the basic experimental measurements. Each
observation @1 comes from one of k populations Hl,..., nk, where k
is known but the population of drigin of each observation is unknown. Let
q, > 0 denote the probability that an observation comes from Hl.
Although the data blocks X1 are independent, the basic measurements

X within each block are possibly dependent. For applications in remote

1J
sensing of agricultural resources, the parameters of primary interest are
q, and E[nilnzj, the mean block size for the £th population, where each
“block is a set of multispectral measurements from a single agricultural
field belonging to a single crop class HR. The product qQE[niIHQJ is
related to the acreage in the sampling region covered by the class nz.
The procedures suggested herein are automatic procedures capable of handling
large sample sizes N as well as large dimensionality p, with human
intervention restricted mainly to a posterior descrfption of classes. It
should be possible to modify these procedures, along the lines indicated

by Walker (171, to provide for the inclusion of a relatively small number

of labelled samples, whose class origins are known, and perhaps to improve

upon the estimates of the parameters derived from the labelled samples at

35
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a relatively small additional cost.

Let the observations be generically denoted by © = (n, X) and let
f(n, x | nz) be the density function of ©, given that © comes from
n,. Let f(x | n, I

2 2
that © comes from Ty and let f(n | ng) be the density of n given .

) be the density function of X, given n and given

population [ The mixture density for o is

2'0

(1.1) f(n, x) f(n, x | HR)

i
nex

q
1 %

n
N X

. a, f(n | m)f(x | n, ).

L

and the log likelihood for the sample is

(1.2) L=
1

Tog ).

1 L

M=
(LI e B

qgf(n.

i Hz)f(xi | nys 1

1 L

We shall assume particular parametric forms for f(n | nz) and f(x |

n, I which are simple enough that they are estimable from (1.2). In

)
particular, we shall consider multivariate normal fprms for f(x | n, Hz)
which incorporate either exchangeability of observations within blocks
or a first order autoregressive covariance structure. The consequences
of the exchangeability hypothesis are presented in some defai], and the
possibility of approximating the autoregressive form by exchangeability

is considered. Finally, we present the results of a simple test of ex-

changeability for LANDSAT data.



Two Covariance Hypotheses

Throughout the remainder of this paper it will be assumed that

f(x | n, I is a pxn-variate normal density function. To simplify

z)“
notation, let Y = (Y1|...|Yn) be a random p x n matrix having density

f(x | n, Hz)' We assume that the column process Yi,..., Y of Y s

stationary with unknown mean Mg and covariance function rng(h) =
cov(Yj, Yj+h)' Next to independence, the simplest assumption about
rnz(h) is the exchangeability hypothesis that Y and YW have the same
distribution for each n x n permutation matrix W (to denote this we

write Y 3 YW). In terms of T the exchangeability hypothesis can

2”
be formally expressed as

by if h=20

Ung + Ing if h=20
for some (unspecified) symmetric p x p matrices ¥n and an' satis-
fying the conditions that Yng and Y, + ni , are positive definite.
Experiments in image texture generation [13] and studies of spatial
correlation in LANDSAT images [ 5] suggest that the correlation of data
elements as a function of spatial separation might be modeled as an auto-
regressive process of low order. Accordingly, as an alternative to (F),

we are led to consider the hypothesis (¥) that T _ (h) has a first order

ng
autoregressive, or Markov, structure.

Mot T () ok o

3
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for some unspecified positive definite p x p matrix @ and symme-

ng
tric p x P matrix A with spectral radius less than one.

The theorems stated below exhibit some consequences of the exchange-

ability hypothesis which are of importance in computation and in testing

T
1xn’

notes the n x n identity matrix. Aé denotes the group of n x n ortho-

the hypothesis. Jn denotes the vector (1, 1,..., 1) while In de-

gonal matrices W such that WJ = J..
Theorem 1: If Y is a normally distributed p x n matrix whose distri-
bution satisfies (&) then YW 3 Y for each member of Aﬁ‘ If P s

an n x (n - 1) matrix satisfying PTP = In_1 and PTJn = 0, then Z =

YP has columns Z

12900 Zn—l which are independently distributed as
) - 1 N n . _
Np(O, wnz)' The statistics Y = E.i § lYi and S = i E 1(Yi - Y)(Yi -Y)

. v s 1
. are independent, Y is normal Np(“nz’ Zog * ﬁ'wnz)’ and S has the

Wishart distribution wp(n-l, wn2>'

As a corollary of Theorem 1, if n > p + 2 and (g) is true, then

the distribution of

n-1
o= fhzp-2 0y 7202
p 1Y, ° i 7 1
j=2
is central F This observation is used as a simple test of (E)

P, n-p-2°
described in a later section. It is interesting to note that the distri-

bution of F does not depend essentially on the normality of Y. Using

results of A.P. Dawid [ 7] it can be shown that if Y s any rahdom
' n-1

p x n matrix such that YW 3 Y for each W ¢ Aé’ and T zizg is
j=2
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almost surely positive definite, where Z is defined in Theorem 1, then
F has the Fp, n-p-2 distribution. Therefore the test based on F i;
a distribution free test for the invariance of the distribution of Y
under right multiplication by e]emeﬁts of Aﬁ .

By writing out the density of Y wunder (E) it is easy to see that
(Y, S) .is sufficient for the family of all normal distributions satisfying
exchangeability. Under very mild restrictidns the sufficiency of (Y, S)
implies (). Thus, unless (E) holds for all source populations Mys
some loss of estimation accuracy in the parameters of primary. interest

(q2 and E[ni | sz) in the mixture model is to be expected when the

data within blocks is condensed to block means and scatters.

Theorem 2: Let F be a family of normal distributions of a p x n matrix
Y and suppose that some member of Fr satisfies (g). If (Y, S) is

sufficient for r, then (E) holds for each member of F.

Approximating the Markov Structure by Exchangeability

Even if the Markov assumption is more apbropriate for applications, -
the computations involved in estimating the mixture paraméters are vefy
much simp]ef if exchangeability is assumed. In this section we will show
that approximating the Markov form by exchangeability leads to certain
conclusions about the dependence on n of the covariance parameters
Vng and Zng of (E). .

Let f(y) be the normal density of a p x n matrix Y whose columns

satisfy the Markov assumption with mean yu and convariance function
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1- 1
] |h|92. Let ?(y) be a normal density satisfying (g) with

A
column mean p and covariance function

h =0

>

o of
1]

T+ o,

The degree to which ? approximates f is measured by the relative entropy

H(E, ) = ff(y)logmdy

N

RPN - fy)

The relationship between this criterion and the Ly distance, which might
be considered more meaningful, is not very clear. The sharpest relationship
we have been able to find is given in the next theorem. A corollary of the
A
theorem is that if H(f.,, f) > 0 then f ]’1\’ - f| - 0, a result proved
) J pn J
R" .
by Geman {117,

A
Theorem 3: Let f and f be arbitrary density functions on R™. For

each ¢ > 0O,

1 A € ' A
2 [0 -ty < e+ oo HE 0
Rr" '
It is straightforward to show that if expectations are taken with

respect to the true density f, then

(3.1)  ET) = w,

1 1
cov(Y) = %Q?B ? .



| —

1
and E(S) = nQ - 0B QZ

where B = (I - A)"3(1 + A) - -ﬁ-(r - A)72A(1 - AT .

A
The log-1ikelihood for the density f 1is

A - :
log fly) = - 25t 1og[y| - 7 log[y + n3]

"1 Aw

- wrlls - el e - D -0

The parameters which maximize the expectation, with respect to f, of

A
log f(y) are

o= E(V)

1
o1 ES)

<>
]

o= cov(M) - s E(S).

Combining these equations with equations (3.1), and replacing § by

the new parameter R =y +nf =n cov(Y) we have
Theorem 4: H(?, f) s minimized when

A
v = U

sk

n 1 2
n*lQ-n-lQBQ

N —

<>
"

x>
r\>|o-—-
N —

QB Q ’
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where B = (I-A)N1+A) - Za(-mF1-a" .

Although it is not obvious, these parameters satisfy the required
constraints; that is, $ and ﬁ are positive definite. As n - o,
R and $ tend to constants, This implies that T ois 0(%) for large
‘n. We will make use of this observation in the next section.

A
The maximum value of E[log f(Y)1 is

n-1 A A n '
- 25t toglyl - 3 l0glRl - B,

: A A
where ¢ and R are given in Theorem 4.

For large values of n this is approximately

- 3 loglal - £log|(1 - ATHI +A)| - 2B

Since

EClog £(Y)1 = - 3 loglal - 25-E Tog|1 - AZ| - 2B

we have the following expression, for large values of n, for the minimum

entropy:

A
H(E, ) = - Dlog|l - A%] .

Estimating the Mixture Parameters

The most successful method for estimating the parameters in a mixture.
of distributions from a single exponential family is maximum 1ikelihood

[16]. When the component distributions of the mixture are parametrized
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in the right way, the EM procedure has a very natural and easily imple-
mented forﬁulation [16]; [ ). For density functions f(x | n, I,)
corresponding to the Markov assumption the likelihood equations for the
mixture parameters arelextremely complicated, and there is no obvious
alternative to using a standard optimization procedure to maximize the
likelihood function. There are difficu]ties involved in'obtainihg exact
maximum 1ikelihood estimates with a sample sequence from a single auto-
regressive series (see [10, P.329] and [ 2]), and it is reasonable to
think that these problems will be compounded in the mixture setting pko-_
posed, fesulting in multiple soiutions, slow convergence, etc. In general,
the situation when f(x | n, HZ) satisfies the exchangeability condition
is not much better; however, the special case wherein Enl = %{z iand

an = wz’ and Z2 and Y, are independent of n, is amenable to solu-
tion by the EM procedure. For large values of n these assumptions Are

consistent with the remarks at the end of the last section, if the Markov

assumption holds with parameters independent of n.

n 2
block of measurements given that the observation comes from I, and given

Let each f(x | n, nl) have the form (g) with mean Mpg = Mo
i . = i = .1_ ] =
and covariance parameters wnz ys Zoe S m Lo Define ,Rz Yy * 22.
Then %R is the covariance matrix of the column-mean. X of an observed

the block size n. Suppose the density f(n | Hz) is from an exponential

family
f(n | n,) = C(Az)h(n)eF(xz)t(n) n=1, 2,...

where the parameter Az is the expected value of t(n) under f(n | Hl)’
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[ 4]. From (1.1) and (1.2) the derivative of the log-l1ikelihood with

respect to AZ is

a,f(ngs X;[1,) [C'(x,)
1 flng, X)) C(y)

aL
(4.1) — =
Mg

nmMm=Z

+ F'(Az)t(ni4
By differentiating the equation

zc(xz)h(n)eF(}‘z)t(") -1
n

with respect to X , one sees that

)

C‘(Ag)
= - PO,
C(Az)
(see [ 41). Hence L - if and only if
: Bkz
- N f(ng, X,|T,) N flng, X:|I,)
(4.2) ay = I =y tlng) I X
i=1 it M / i=1 i* 4
Similarly, by considering %% , one sees that for a maximum of 'L
2 .
we must have
N q,f(n;, X|m,)
(4.3) q2=-§— ; 2111 %
i=1 f(ni, Xi)

Now let 7} and Si be the mean and scatter of the columns of Xi.' Then
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n.
> _ i -1
gy TN Klmg) = Flngs Xfmp) |- 7= Ry oK, “g)]
[ n. -1

9 - i -1, 1-1. -1
0, flngs X;1M) = flng, X;(0,) L- 5— ¥, * 3, Siv, ]
] - 1,-1 . np<l=
3R, F(nge Xl = Flngs X0 |- 3 Rpm + 2 R (g - )

From these equations it follows that the derivatives of L with respect

to Mgs g and Rz all vanish when

N f(n,, X;|M,) _ N fn,s Xo(m) -
(4.8) wy = Do xS Xi/Z s TR
i=1 ir % i=1 i» X
N f(n:, ;1) /N f(ng, X;|M,)
(48) vy = T >1<|)£ S /0 DT
i=1 T Xy i=1 i» Ay
N f(n,, X:|I,) n f(n,, X;|0,)
= i’ it g T v _ .3\ i? Mty
(460 Ry = 2 vy % ) “z)/f TR

The iterative procedhre suggested by equations (4.2)-(4.6), namely,

evaluating the right hand sides with the estimates AEJ), qéJ), ugJ) ’

wéJ) > RéJ) at the jth step, to obtain the estimates q§3+1), u§J+1),
W£J+1)’ R(J+1), at the (j+l)st step, can be shown to be a slightly

modified EM procedure (see [16], and [ 91).



46

Testing the Exchangeability Hypothesis

Standard testing procedures for the two covariance hypétheses con-
sidered would require large block sizes n% and a large sample of obser-
vations segregated as to block size and type. The remarks at the end of
the second section concerning tﬁe distribution of the statistic F under
the hypothesis (E) suggest a test which is much easier to implement.
For the ith block of measurements X., let Z, = (Zill“'lzi, ni'l) =

X.P

;Pys where P, is a n; x (“i - 1) matrix satisfying the conditions

3
given in Theorem 1, Let

n. -1
n,-p-z i
_ i T T -1
F.z2 ————7..( I zijzij)

. Z
i P il j=2

il

If () holds for all classes then each Ei is distributed as Fp’ ns-p-2°
Thus the number of observed blocks for which Fi falls in some given
quantile range of its distribution can be tabulated and compared to its
expected va]he. Table 1 shows these comparisons for 216 qani-fie]ds

of LANDSAT agricultural data from LACIE segment 1645 and 57 quasi-fields
from LACIE segment 1633. The quasi-fields are those found by an automatic
image segmentation program (AMOEBA) and may not be representative of real
agricultural fields. The given XZ goodness of fit statistics are sig-

nificant at levels between 10% and 20%. The hypothesis (g) appears to

be rather weakly disconfirmed for this data.



TABLE 1 - Disbribution of F-Ratios

Segment 1645 - 216 Fields

Percentiles 0 - 5% 5 - 10% 10 - 90% 90 - 95% 95 - 100%
Number 18 14 163 9 12
Frequency 8.2% 6.5% 75.5% 4,2% 5.6%

%2 = 6.72
Segment 1633 - 57 Fields

Percentiles 0 -5% | 5- 10% 10 - 90% 90 - 95% 95 - 100%
Number 6 1 44 4 2
Frequency 10.5% 1.3% 77.7% 7.0% 3.5%

"X~ = 5.45

47
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BAYESIAN ESTIMATION OF MIXTURE PARAMETERS

Let X X be a random sample from a finite mixture density

1’ R n

m
f(x]e) = .z]qifi(x]ei),
'l:

where the component densities are d-dimensional multivariate normal and
. _ m
the mixing propostions 9; satisfy q; 2 0, I q; = 1. We let 6; =
. i=1

(“i’zi) denote the mean and covariance of the izh component density

and let 6 denote the aggregate of all the parameters involved in the

mixture density, including q =.(q], e, qm). We assume throughout that

m is known.. It will be convenient to consider also the precision matrix
-1

Ty = IL, and we sometimes let 0; = (“i’Ti)'

Maximum 1ieklihood is the method of estimating the parameters 6
which has recently attracted the most interest, [16]. According to this

method, the estimate 8 = e(X], RN Xn) is the parameter value which

maximizes the 1og 1ikelihood function

2(8) = _
1

nos
—

log f(Xi(e).

Unfortunately, as simple examples show, the function 2(6) 1is unbounded,
and one must consider local maximizers of &(8) or else modify 2(8) in
some way so as to produce a global maximizer. Hathaway [12] took the
second approach in proposing a constrained maximum 1ikelihood estimator.
For mixtures of univariate normal densities, he developed an effective
computational procedure for finding a maximum of 2(8) subject to the

constraints



where 01 is the iED- standard deviation, and ¢ >0 is a

°me1 = O10
constant, chosen by the user. He also proved that £(8) has a global
maximizer, subject to the above constraints, and that the global maximizer
is a strongly consistent estimator, as long as the true parameter satisfies
the given constraints; Redner [15], mentions a penalized 1likelihood

function of the form

m
ORI

where X, k>0 and [[t;[| s a norm on symmetric dxd matrices.

Bayes solutions for common Toss functions, such as quadratic loss,
appear to be computationally infeasible [8 1. For example, assuming that
the mixing propostions are the only unknown parameters, and using the
Dirichlet prior distribution given in the next section, there is an
explicit formula for the Bayes solution with quadratic loss. However, it
contains m" terms and is not useful except for very small sample sizes.
The method proposed in the next section utilizes a prior density g(8)

of a certain form on the parameter 8 and takes as the estimator the

mode of the posterior density

[ rr; f(X.]8)3g(s)
R
g(elX]Q",xn)- n
JU m £(x:}9)3q(8)de .

Equivalently, the estimator maximizes the penalized log likelihood function,

&,(0) = 2(8) + log g(e) .

49
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Such a procedure can be justified in Bayesian theory as being the limit

as e~ 0 of Bayes solutions ee corresponding to 0-1 1loss functions
0 if |]e-8|] < ¢

1 if |le-8]] 2 e .

It will be seen that g](e) is similar to, but is more elaborate than

the penalized likelihood function suggested by Redner.

THE PRIOR DISTRIBUTION

Recall that q = (q], e, qm) is the vector of mixing propostions

and that 8, = (“i’Ti) is the pair con:isting of the mean vector-and

precision matrix of the iEh- component normal density.

Assumption 1 : q, 61, e-, B, are mutually independent.

Assumption 2 : - q has a Dirichlet distribution with hyperparameters
s all > 0. The prior density of q 1is

T(A + =<+ +2) Ay-1 A 4=1 A -1
- 1 m 17 .0 "m-1" "m
fola) = T(q) - TO) 9 -1 %m

Assumption 3 : Given Tso the prior distribution of My is

d-variate normal Nd(ai’ CiTi) with mean a; € rd and precision matrix

T4 where c; > 0 is a hyperparameter. The prior distribution of .

1

9

is Wishart with Vi > d-1 degrees of freedom and expected value vih;]

where hj is a positive definite matrix. Thus the joint prior density of
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8, = (“i’Ti) is

V. -
3 v1 d

2T T

i) = c T x

C.
T 1
X exp {- '2—1' (U.i'(!.i) Ti(ui-ai) - ? trh.7.}

~The prior distributions given in Assumptions 2 and 3 are the standard
conjugate priors formultinomial probabilities and the parameters of the
normal-Wishart distribution of the sample mean and covariance, [1].
Their use here is for mathematical convenience, rather than
because ofany prior conviction as to their suitability. However, it is
apparent that the large number of hyperparameters involved (Ai, Vis Css

oy hi) allows a great deal of flexibility in applications.

The penalized 1ikelihood function corresponding to this prior is

n m
2,(0) = 1 Tog f(X;[0) + = A.l0g q;
= . i=1
¢ 1 3 (v.-d)log! L e (ny-a.)
7. V-i" ) ngTi‘ -7 - Ci(u'i-a'i) T.i u’i-a'i
i=1 i=] :
1 m

Here, we have eliminated terms which depend neither on the parameters,
nor on the samples and, for convenience, have also replaced A in the

original definition of fo(q) by Ay * 1.
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GLOBAL AND LOCAL MAXIMA OF ﬁl(e)

The prior density of 6 given in the preceding section is unbounded,
as 1is 2](6), unless the hyperparameters satisfy Ai >0, Vi 2 d. There-
fore, these restrictions will be assumed for the remainder of this paper.
The ordinary likelihood function can be obtained by allowing xi = 0,

‘ v, = d, C; = 0, hi = 0 for each i. This corresponds to a posterior
distribution derived from an improper, noninformative prior.

Choices of the hyperpafameters which guarantee a global maximizer

of 21(6) are given in the following theorem.

THEOREM 5. If Vi > d and hk is positive definite for each k,

then 21(6) has a maximum.

PROOF: Since Ai > 0,

n m
]
Jj=1 i i=1
P m
-5 T trh.t

m
+ 3 [(vi-d)]oglri]- trh;t.1)
i=1

For each i, et C;(8) = {x ¢ Rdl1Oglri|-(x-ui)TTi(X-ui) z 109|Tk| -

.
(X1, ) Ty (x-u, ) for each ki, 1let ¢.(8) be the number of samples in

ci(e), and let
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Then

; m
2](6) <% E][Ai(e)]ongi[ - trBi(e)Til

where 'Ai(e) = vi-d+¢1(e) and Bi(e) =h; + Si(e) .

21(8) < £ lvg-d)log|t,] - trh,r,]

<
T4 1

~o| —

]

|T1‘>]

Let ”(Ti) and p(Ti) denote the largest and smallest eigenvalues of .,

respectively. If p(Tk) + o Qr n(rk) + 0 for some k, then the term
corresponding to Ty in the inequality above tends to -« while the

other terms are bounded. Therefore, there js an r > 0 such that

sup z](e) = sup 2](6) < o, where
8 OeOr

0, = {e | %-s n(rk) < p(Tk) < r for each k}.

Represent 0, asQ x E} X cce X Eﬁ, where 0 = {q ¢ leqi > 0 for each i and
- = 1 T
q; = 1}, and b = {(”i’Ti) ] i n(Ti)’ p(ri) sr}. Let Vs be the

one point compactification of wi, so that ei € wi tends to « if and

only if [lujll »=. If 8y »>=, then f.(x;[6;) >0 forall j; thus,
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by allowing -= as a value, 21(6) can be extended continuously to

6} = Q x ﬁ& X *tto% Eﬁ, and has a maximum on that set, say at ©.

Suppose 6 is a point at infinity; i.e., that Ek = o for some K.
Then ¢, = 0, because otherwise 11(5) = -, zl(é) is obviously not
decreased by replacing ﬁk by any finite value. Therefore, 2](9) is

maximized by a point 1in Or' QED.

Unfortunately, as with other penalized likelihood functions
the circumstances under which a consistent global maximizer of Q](e)
exists are not known. Even if one exists there is no procedure for find-
ing the global maximizer. Therefore, +2 must consider local maximizers.

The necessary conditions for a local m:ximizer of 2](6) are, for

i=T1, *°°, m: n
z 9ifi (518 4,
=1 flxjiei .
(7.1) 9 = n+x i
_ m
where ) = I Ai .
i=]

n 4
c.a: + I qifi(“j[ei) X,

i T2 x j
(7.2) L= T2

n
¢+ I a;;(x;184)
j=1 fojieﬁ




n
q.f.(x.16.
h1 + Ci(“i-ai)(“i—ai)T + JE]q‘ }(iJlZI)(Xj-ui)(Xj-ui)T
(7.3 Z; = 3 .
vi-d + 3 qifi(xflei)
j=1 f xj 8

These equations are the basis for an EM-like iteration procedure defined
by evaluating the right hand sides with the current values of the para-
meters to obtain updated values of the parameters. Each of the updated
parameters is a convex combination of some prior estimate and the EM
update for ordinary maximum likelihood estimation. Interestingly, the

updated q; is a convex combination of the EM vupdate and the prior mode

A
Xl' of Qi whereas the updated Zi is a convex combination of'the EM

update and the prior conditional mean

.
hitey (uy-ay) (uy-ay)
vi-d

of L4 ‘given u;, not the prior mode. Obviously, the larger the sample

size, the greater will be the weight given to the EM updates and the
less given to the prior estimates. When the update equation (7.3) for
L, is evaluated using the just updated value of ¥; in the products
(Xi'“i)(xi'“i)T and’ (“i'ai)(ui'ai)T this successive substitutions
procedure is equivalent to the modified EM procedure suggested by

Dempster, Laird, and Rubin [ 9 ] for finding posterior modes. Hereafter,

we shall refer to this procedure as the generalized EM procedure (GEM).

The general convergence properties of the GEM procedure follow from

55
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[16 Theorem 4.1]1, more specifically, starting from any'point e(o) in

(o]

(k)y

parameter space, the sequence {6 produced by the GEM procedure

k=0
converges to a nonempty, connected, compact subset of parameter space on

which the penalized likelihood 2](6) is constant, and on which the

eqﬁations (7.1)-(7.3) are satisfied.

The next theorem assures that the GEM procedure converges to a

consistent local maximizer of £,(8), given a good enough starting value.

THEOREM . If the true parameter © 1is in the intericr of the para-
meter set, then there is a neighborhood N of © such that with proba-
bility 1, if n is sufficiently large there is a unique solution 5 of
(7.1)-(7.3) in N and 6 +9 as n -+ o, Furthermore, with probability 1,
for large n the GEM procedure converges to 5. if the startihg point

~
is near enough to .

PROOF. Thé existence and uniqueness of a consistent local maximizer
is a consequence of a consistency theorem due to Chanda [6], (see also
Peters and Wa]ker'DAJ). A simple modification of the proof of that
theorem shows that the Hessian dzll(e) is negative definite at © = 5
for targe n. Therefore, £1(e) is strictly concave in a neighborhood
of 8. The local convergence of the GEM procedure to 6 now follows

from the consistency theorem and Lemmas 1 and 2 of 0O51J.

OVERMODELED MIXTURES

For mixture problems in which the number of normal components is not
precisely knowh, the present model is not appropriate from a Bayesian

point of view. However, it is possible that the pernalized 1ikelihood
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function exhibits better numerical and statistical properties in this
situation than the ordinary likelihood function. To illustrate, suppose
that the model contains m normal components, but the true density is a
mixture of k < m normal components. Thus,
k
f(xlﬁkk)) = iz E}fi(xlﬁg) (q. > 0)

1 1

is the true density, and

. m
fx le(m)) = iz]qifi(xlei)

is the model. Let the hyperparameters for the model satisfy Ai =0,

vi > d, S 0, a; € Rd, and hi positive definite for i =1, ---, m.

By Theorem 6, there is a consistent solution ékk) = (a7577 750Gy, 895°-7,8,) of

equations (7.1)-(7.3) for the k component mixture. Let q; = 0,

Wy = oy, Ly = hi/(vi-d) for i = k+1, ---, m, and let e(m) =

~

(gs "> Gy» 87> 75 8 ). Clearly 8(my 15 a solution of (7.1)-(7.3)
for the m component mixture which is consistent in tae sense that
f(xle(n)) > f(xle(k)) as n -+ o, In contrast, it is not known if there
is a consistent solution of the ordinary likelihood equations in this

situation.

REMARKS AND CONCLUSIONS

The remarks at the end of the preceding section suggest that in
cases where the number m of normal components is unknown, but a reason-
able upper bound can be assumed, one should take ‘Ai = 0, vy > d, c; > 0,
hi positive definite. Otherwise, the choice of the hyperparameters may
be guided bty prior guesses at location and dispersion of the mixture
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parameters. For example

Ai+1
E(ay) = g
(Ai+1)(kk+1)
COV(qi ’qk) = - 5
(A+m) < (2+2)

(Ai+1)(x-ki+m-1)

var(a;) = (nm) E (Atmt1)

can be used to aid in choosing the Ay while the equation
E(Zi) = c; var(ui)

(provided Vi > d+1) can aid in choosing ¢y
The procedures outlined herein may be especially useful in applications

such as crop inventories from satellite data. There, spectral measure-

ments may be sampled from a large ground area (segment) which is itself

chosen from a large number of possibilities. The normal mixture model has

often been used for the distribution of spectral responses from particular

segments. Thus the parameters (q, e], B can be considered

)
characteristic of segments, while the prior distribution of these para-
meters can'reflect their variability among the possible choices of seg-
ments. Since there are "ground truth" segments available in which each
pixel has a known class identity, it is possible that the pyperparameters

of the prior distribution could be estimated from the ground truth segments.

Further research into the numerical and statistical properties of the

GEM procedure is planned. The properties to be studied include the



consistency of the global maximizer, the behavior of the GEM procedure
for overmodeled mixtures, and the sensitivity of the procedure to

starting values, for various choices of the hyperparameters.
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Aggendix

Proofs of the Theorems

Proof of Theorem 1: The covariance of Y can be written as Yne 8 I+

Zn2 8 Jndﬁ » where @& denotes the kronecker product. For W e Aé .
- T . T T
YW Ip 8 W (Y) has covariance (Ip QW )(wnz 8 In * I ] Jan)(Ip 8 W
- _ T . T, _ T
= wnz f In + znz ) Jan . The mean of YW 1is “nﬁdnw = “nzdn . Therefore,
YW 3 Y. By a similar argument, if PTJn = 0, PTP = In-l and Z = YP,
= . = T T =
then E(Z) = 0 and cov(Z) = (1, 8P ) (v, 81, + 2, 839)(I, 8P)

Yoo @ 1, - Therefore the columns of Z are independently distributed
as N (0, y,). To prove the last assertion let

_ ~1
Q= (n Jn | P)n X n

“where P has the same properties as above. In block form, the covariance

of YQ = (V] 2) is

1

n ¥t t

|

0 i¢n£ e In-l

Therefore, Y and Z are independent and Y ~ Np(un . %’wnz +*En2).

I

Moreover, S = ZZ' and by the first part of the theorem S ~'wp(n-1, wnz)'

Proof of Theorem 2: Let fo be a density function in F satisfying the

hypothesis (E). Define

hely) = fly) / f,(y)
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for f ¢ F. By a version of the Neyman-Fisher theorem (Theorem 6.1 of

[ 31), if (Y, S) is sufficient,
he(y) = gely, S)

almost everywhere, where ¢ is a Borel measureable function on the space

of (Y, S). For a given f ¢ F and W e'Aﬁ , the set
v o= {y | he(y) = he(yW)}

is an open set contained in B1 U 82, where

By = {y | hely) = ge(y, S)}

and

B, =B = {y | he(yW) = g((7,.5)} .

By Theorem 1, the pr. measure Ao corresponding to fo is invariant

] s - 3 =
under Al . Since AO(BI) = 0 if follows that AO(BZ) 0 also, and
hence, AO(U) = 0. Therefore v 1is empty and hf is an invariant func-

tion. This implies that each f ¢ r 1is invariant under Aﬁ and must

satisfy (g).

Proof of Theorem 3: The function

- €
9le) = v
. A
is positive and strictly decreasing on (0, »). Thus, if ;-- 12e

we have
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Therefore,

IA

—h|—h>

-lsg(e)[;--l-mg?-].

N
>
[]
o
"
—
-
—h
1
-—h
o

e + g(e) f[-l-]ogf]f

e + g(e) f log(;rv)

e + g(e)H(F, ) .
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ABSTRACT

A quantile data analysis approgch_to some problems of image
data analysis is ouﬁlined. The approach is illustrated on (1)
two simulated pixel vectors representing reflectance spectra of
a mineral measured in 32 bands in the wavelength range 1.2 Bm to
1.4 vbm, and (2) a simulated two dimensional 6 by 6 grid of
pixels, each with one spectral band measurement. The goal is to
~ determine statistical pfoperties which can be used to classify
pixels and determine edges in pixel scenes separating pixels
with different statistical properties. Quantile data analytic
techniques illustrated are identification quantile functions,
identification quantile plot, comparison quantile function, and

IQQ (identification-quantile-quantile) plots.
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0. INTRODUCTION

Image data is acquired by remote sensing of the earth's
surface from spacecraft and aircraft. Image data consists of
enormous amounts of multidimensional data; its analysis,
interpretation, and classification requires development of new
data analytic algorithms and methods. The difficulties inherent
in the analysis of multi-dimensional data is often called the
"curse of dimensionality.” The dimensionality of image data is
increasing as measurements at higher spatial resolution and
narrower spectral bands are made possible by new technology for
sensors and instruments which is rapidly developing [see Goetz
et al (1985)].

‘Our approach to image data analysis seeks to replace
parametric statistical methods based on approximate normal
distributions with nonparametric statistical methods based on
suitably defined ranks and quantile functions. An important
theoretical problem which this résearch program has investigated
is thé effect of dependence on linear rank statistics and
quantile functions. Dependence is modelled by a stationary time
series. The theoretical results are described in the'Ph.D.
thesis of A. Harpaz (1985). . This paper outlines the ideas of
the quantile data analysis approach to image data analysis in
order to stimulate interest in them by the broad image
processing scientific community.

Section 1 defines the mathematical problem of data analysis

of the field of pixel vectors which represents an image.
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Section'z defines the edge detection approach to pixel

classification. Section 3 outlines the concepts involved in
quantile data analysis of a pixel vector. Section 4 outlines
the concepts involved in‘comparing pixel vectors in order to

test the homogeneity of groups of pixel vectors.

1., IMAGE DATA ANALYSIS

Consider measurements taken by spaceborne or airborne
sensors on a specified date at a specified site on the earth's
surface. A site is divided into thousands of surface elements
called pixels (picture elements). On each pixel the visible and
solar reflected portions of the electromagnetic energy spectrum
are measured by sensors which providé spectral measurements in a
number, denoted L, of spectral bands. The number L of spectral
bands has as typical values 4, 7, 32, 128, 224.

Sensors such as the Landsat Multispectr;l Scanner (MSS) and
Landsat Thematic Mapper (TM) are optomechanical systems which
use discrete detectors to convert the reflectd solar photons
from each pixel in the scene into a sensible electronic signal.
The detector elements are placed behind filters that pass broad
portions of the spectrum. MSS has 4 sets of filters and
detectors to measure 4 spectral bands; TM measures 7 spectral
bands. 1Imaging spectrometry can measure images in hundreds of
spectral bands simultaneously. B

Each spectral measurement is typically an integer from 0 to

255 representing 256 possible intensity levels.



We use the following notation for measurements made by

sensors; denote by

Y(Xj,xl.xz)

measurement of reflected energy in the spectral band indexed by
a wavelength Kj from the pixel with coordinates XyrXoe
A pixel with coordinates (xl,xz) is represented by an L

vector

A
R Y(Ayrxy0%5)
Y(X Ix ) = L] L [
172
Y()\lellxz)

whose components are the intensities of reflected energy in the
spectral bands.

Associated witg each pixel is a "ground truth" which could
be: type of crops, trees, water, type of mineral, typé of
vegetation, etc. '

The ground truth of a pixel at (xl,xz) is denoted 9(xl,x2)
and is regarded as a value of a discrete parameter 9 which
indexes the different classifications of ground truth which the
investigator is discriminating.

The general problem of image data analysis: Form an

estimator 9'(x1,x2) of the ground truth field from the
image field § (xl,xz)
A decision theoretic statistical approach to this problem

can be described formally as follows: assume a probability

69
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model Y|9 for the distribution of Y given 6. The estimator 6"
is the conditional probability distribution of 6 given Y,
denoted GlY.

An alternative to the decision theoretic approach, which we
adopt, is an exploratory data analysis or nonparametric data
modeling approach. To illustrate this approach we consider in
this paper two simulated data sets (called class 1 and 2)
representing respectively reflectance spectra of a mineral
assumed to be measured over 32 bands in the range of wavelengths
1.2 pbm to 2.4 pm. Our simulated numbers were adapted from rough
approximations to the spectral waveforms in Goetz et al (1985)
of alunite and kaolinite which we call class 1 and class 2.

From class 1 we assume we have a (simulated) pixel vector
(whose components represent spectral intensities in successive

bands): -

82,82,80,82,80,80,70,60,66,54,70,74,74,72,60,70,

68,66,60,58,56,54,54,50,40,32,40,58,58,44,52,40.
From class 2 we assume we have a (simulated) pixel vector:

88,86,88,84,80,70,80,90,92,92,92,92,92,90,90,90,
88,9%90,9%90,90,90,88,86,84,80,70,56,70,70,64,62,60.

Plots of these pixel vectors are given in Figures 2 and 3
respectively in a new dimension-less format introduced in our
research program called the identification gquantile plot

(described in section 3).
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We refer to the above data sets as the 32 channel case. 1If
we average over disjoint sets of 4 bands to obtain measurements
in only 8 bands, then two spectral classes are represented by

the following pixel vectors which we call the 8 channel case:

Class 1 82,72,64,69,63,53,43,48

Class 2 87,80,92,90,90,87,69,64

In the sequel we analyze each pixel vector as a data set
and compare the data sets to determine features which can be

used to discriminate between the two classes.

2. EDGE DETECTION APPROACH TO PIXEL CLASSIFICATION

The problem of edge detection plays a central role in the
image data analysis problem; it is to determine edges which
séparate pixels into contiguous groups having the same
classification of ground truth. An edge is defined to be a
boundary imagined to be drawn as a separation between pixels
which do not have the same ground truth classification. After
one determines edges on the basis of statistical (data analytic)
considerations one has the problem of determining (estimating)
the classification (ground truth) of each contiguous group of
pixels (which have been identified as having the same ground
truth).

The literature of pattern recognition and image analysis
contains a wide variety of algorithms for extracting edges from

noisy images. Methods of edge extraction are classified in two
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types: gradient or statistical. Suk and Hon (1984) provide a

bibliography of representative gradient and statistical

approaches to edge detection.

To illustrate our quantile data analysis approaches to edge

detection we consider in this paper an example given by Suk and

Hon (1984) of a simulated two dimensional 6 by 6 grid of pixels

with each pixel represented by one spectral band measurement:

25 27 30 31 35 40

5 7 ) ;9- | —3; N ;9- | -4; |
| -6- L ; ) 8 7 10 -3; |
| -5- | flI n —9- | -l; ) 37 —4; |
[ 7] 6| o] | a)
[ e | s | m |10 | s | a]

The edge drawn in

determined by Suk

the

and

give in their paper.

interior of the grid as a solid line was

Hong (1984) using the algorithms that they

Quantile data analysis can be regarded as an approach to

statistical data analysis in which the first step is ranking the

data. The concepts introduced theoretically in the next section
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are introdﬁced at this point by an example which shows how they
are applied.

Quantile data analysis provides a systematic way
of determining a threshold value which can be used to divide the
pixels in a grid by an edge which separates values below the
threshold from values above the threshold. Consider the data
set- formed from the pixel intensities in the above 6 by 6 grid.
One determines that (1) there are K=21 values in the data set,
(2) the values in increasing order [denoted symbolically by

V(l1)<...<V(K)] are
5,6,7,8,9,10,11,25,27,29,30,31,32,35,37,39,40,41,43,45,47.

These values occur in the data set with the following respective

multiplicities (number of repetitions)
2,2,4,3,2,2,3,1,1,1,1,2,1,2,1,3,1,1,1,1,1.

The empirical probabilities, empirical distribution function,
and empirical identification quantile function of the data set

are as follows (these concepts are defined in the next section):
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Index Value Empirical Cumulative Midrank 1Identification

J V(J) Probability Probability Quantile -
P{V(J)]. F(V(J)] U(J) QI(U(J))
1 5 .056 .056 .028 -.290
2 6 .056 .111 .083 -.272
3 7 111 .222 .167 -.255
4 8 .083 .306 .264 -.237
5 9 .056 .361 .333 ~.219
6 10 .056 .417 .389 -.202
7 11 - .,083 .500 .458 -.184
8 25 .028 .528 .514 .061
9 27 .028 .556 .542 .097
10 29 .028 .583 .567 .132
11 30 .028 .611 .597 .149
12 31 .056 .667 .639 .167
13 32 .028 .694 .681 .184
14 35 .056 .750 .722 .237
15 37 .028 .778 .764 .272
16 39 .083 .861 .819 .307
17 40 .028 .889 .875 .325
18 41 .028 .917 .903 .342
19 43 .028 .944 .931 347
20 45 .028 .972 .958 .413
21 47 .028 1.000 .986 .448

Summary statistics are: mean MVY=21.9, median MQY=21.5;
standard deviation DSY=14.6, quartile deviation DQY=57; lower
and upper quartiles [Q~(.25) and Q0 (.75)] equal 7.896 and 36.33

respectively. The measure of tail behavior are:

0 I(.028) -.290, supershort left tail;

Q0 I(.986)

.448, short right tail.

Supershort tails are an indication of the possibility of
bimodality. The big gap in Q0 I(u) from a value of -.184 to a

value of .061 is used to locate the values V(K*) = 11 and
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V(K*+1) = 25 which separate the values into two clusters. The
edge in the pixel scene is drawn to separate the values in the
two clusters. The edge drawn in this example by this criterion
is the same as the edge drawn by Suk and Hong (1984) using their

algorithms.

3. QUANTILE DATA ANALYSIS OF A PIXEL VECTOR

The L components of a vector § (xl,xz) of spectral measure-
ments are denoted Yl,.;.,YL. From the components of a pixel we
form a data set for which one computes the empirical probability

distribution
F~ (y) = fraction of data set < vy, -y
and the empirical quantile function

0 (u) = pm? (u) = inf {y: F~ (y) > u}, 0<u<l .

The empirical quantile function can be regarded as a
rearrangement in increasing order of the values in the data set
of the values Yl,...,YL whose order statistics are denoted by

Y(l;L)<.,.<Y(L;L). One can show that
0" (u) = ¥(3j:;L) for (j-1)/L <u<j/L .

Statisticians have studied the statistical properties of

F (y) and Q" (u) mainly under the assumption that Yl,...,Y are a

L
random sample (independent random variables which are
identically distributed as a random variable Y).

To apply quantile function and nonparametric test methods

to image data requires fundamental research to extend the theory
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from random samples to data sequences of Y values which are
dependent. Our approach is to model dependence by the model of
a stationary time series, which assumes that Cov[Yj,Yk] is a
function only of |j-k|, denoted R(j-k).

The theory of stationary time series imagines an infinite
sequence of random variables Y, and defines a sequence of

autocorrelation coefficients
p(v) = R(v)/R(0)

The spectral density f(w), 0<w<1, is defined to be the Fourier

transform of the autocorrela;ion function:

@

£(w) = § exp (-2mive) p(v) , O0<w<l

vV==®

The variable ®w represents frequency; f(w) is a measure of the
proportion of the variance of Y values which can be assigned to
hidden sine waves of frequenqy w in the seéuence of Y values.
The value of the spectral density function at zero frequency w=0
plays a central role in statistical inference, especially in
assessing the effect of dependence on the probability
distribution of estimators of means and tests for comparing two
samples.

An empirical quantile function Q (u) can be formed for any
set of data. Our interpretation of an empirical quantile
function is guided by initially regarding it as an estimator of
the properties of a hypothetical random variable Y of which the

data batch of Y values is a random sample.
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The true distribution function F(y) and true quantile

function Q(u) of Y are denoted

F(y) PROB[Y<y], —oly(® .

F iy, Ocu<l .

Q(u)

Mean MY and variance VARY of Y can be expressed in terms of

Q(u):

MY = E[Y] = Ii O(u) du

VARY = VAR[Y] = fé{Q(u) - MY}? du

Standard deviation of Y is denoted DSY = {VARY}I/Z.
Alternative measure of location is the median MQY = Q(.5).

An alternative measure of scale can be defined when Q(u) is

continuous with quantile density function gq(u) = Q'(u);
quantile deviation DQY = Q'(.5) = qg(.5).

'An approximator of the gquantile deviation which we use in
practice and denote by the same symbol ( but a different name)
is

quartile deviation DQY = {0.75)-0(.25)}/(.75-.25)

= 2{0(.75) - Q(.25)} .

To classify the type or shape of the distribution we form a

normalized version which is independent of location and scale
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parameters by normalizing Q(u) to have} at u=.5, value 0 and

approximate slope 1. The identification quantile function is

denoted QI(u) or QIY(u) and defined by

QI(u) = {o(u) - MQ}/DQ, QIY(u) = {Q(u) - MOY}/DOY.

Identification gquantile function truncated plot: The
identification quantile version Q IY(u) of the empirical
quantile function Q (u) of the data set is plotted truncated at
+1 in order to p?esent the plot on alstandardized scale. On the
same graph one plots the identification quantile functions of
the uniform and normal distributions. The values of Q0 IY(u) for
u near 0 and 1 provide quick indicators of the type of
distribution £hat fits the data. Intervals used to discriminate

various types of probability distributions are as follows:

0TIY(0)< -1 long tail 07IY(1l) > 1
-1< 07IY(0)< -.5 | medium tail .5 <QTIY(1) <1
-.5¢< Q7IY(0)< O short and supershort tail 0 <QTIY(1l) <.5

Figure 2 illustrates the format of an identification
quantile function; one always plots theoretical identification
quantile functions of a uniform distribution [the line from
(0,-.5) to (1,.5)] and a normal distribution [the curve which

coincides with the line for u near 0.5].
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B goal of our research program is to extend these concepts
to discrete quantile functions since empirical quantile
functions are discrete. Let K be the number of discrete values
in the data set (number of points of discontinuity of the
discrete quantile function). Denote these distinct values by
V(1)<...<V(K). The important concept of midranks U(1l)<...<U(K)

of a discrete quantile function is defined by
v(j) = {FV(j-1) + FV(3j)}/2 , j=1,...,K.

where we define FV(0) = 0, FV(j) = F(V(3)).
The continuous version QC(u) of a discrete quanitle

function Q(u) is defined by
QC(Uu(j)) = v(3j) , j=1,...,K.

At u=0 and u=l we define QC(u) to equal respectively natural
minimum and natural maximum when they are available; otherwise
we define their values to be the sample minimum and sample

maiimum:
QC(0) = Vv(1), QC(1l) = V(K)

At other values u, QC(u) is defined by linear interpolation
between its values at 0,0U(1),...,U(K),1l.
The median MQ and quartile deviation DQ of a discrete

quantile function are defined by

MO = 0C(.5), DO = 2 {QpC(.75) - QC(.25)} .
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The identification quantile function of a discrete quantile

function is defined by
QI(u) = {QC(u) - MQ}/DO .

Identification quantile plot of data: A dimensionless

graph of a vector of measurements (representing spectral
intensities in successive waQelength bands) is obtained using
the identification quantile transformed values {Yj-MQY}/DQY
instead of the original values Yj. A grid of lines y=0,
+.5,1%1 are plotted on the same graph to visually indicate the
range (maximum and minimum values) of the identification
quantile transformed values.

Example: The concepts have now been defined to illustrate
the foregoing diagnostic tools of the quantile approach to data
analysis.

The 32 channel pixel vector from class 1 (given in section
1) has mean 62, median 60, standard deviation 13.9, quartile
deviation 39. Figure 2 is a plot of the time series not in its
original units but in dimensionless units, using the
identification quantile piot.

The 32 channel pixel vector from class 2 has mean 82.3,
median 88, standard deviation 10.9, quartile deviation 35. Its
identification quantile plot is in Figure 3.

To use identification quantile functions to determine the

tail behavior of the distribution it is not necessary to plot it



but only to examine their values for u near 0 and 1. For the

data sets of pixel vectors we obtain

U Q0 I(u) Class 1 0 I(u) Class 2

.01 -.72 -.91
.05 -.58 -.84
.10 -.51 -.73
.25 -.15 -.44
.75 .35 .06
.90 .55 .11
.95 .56 .11

.99 .56 .11

A pixel vector can be classified into class 1 or class 2
using features of the different behavior of the identification

quantile function for the two classes. The value .11 for class

2 is interpreted as a supershort distribution which is explained

by the constancy of the spectral waveform from class 2 which
shows up in the quantile function as a clustering of values.
We next identify the relations between the components of
the pixel vector regarded as a time series. We model the
dimensionless time series denoted YI(t) plotted in the
'identification quantile plot. Both the samples (classes 1 and
2) are identified by our time series model identification
programs as fitted by an AR(ls, autoregressive scheme of order

1. For class 1, the model is
YI(t) = .77 YI(t=1) + e(t)

where e(t) denotes a residual time series which is white noise.

It should be noted that e(t) denotes a different white noise
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process in each model in which it appears. For class 2, the

model is
YI(t) = .82 YI(t-1) + e(t)

The goal of the time series estimation phase is to estimate
the value of the spectral density of the two time series at zero
frequency. For these two models the value is approximately the
same, and approximately equals 6. One can interpret this value
as the factor to be uséd as a correction for dependence when
computing the variance of estimators of location (such as the
mean) or estimators of difference of location of two samples
(such as the Wilcoxon test). The spectral density values can be
used to answer the guestion of how much additional information
is obtained by measuring the electromagnetic spectrum in more

but narrower bands.

4, QUANTILE COMPARISONS OF PIXEL VECTORS

To detect edges in a scene a statistical approach is to
detect contiguous groups of pixels that can be considered as
clusters of pixels with the same statistical properties. Thus a
major problem in the statistical approach to edge detection is
how to compare two pixel vectors ?(xl,xz) and ?(x'l,x'z)
corresponding to geographic locations (x 1,xz) and (x'l,x'z)
respectively. From the L components of § (xl,xz) one can form a
data set Yl,...,YL. From the L components of ?(x'l,x'z) one can
form a data set Y‘l,...,Y'L. The pixel vectors can be compared

by testing the equality of distributions of the two data sets.
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Conventional statistical techniques for comparing two sets
can be formulated in the language of relating a variable Y to
another variable X. 1If one pools (combines) all the data sets
to be compared, one imagines the pooled data set to be a sample
of a variable Y whose empirical distribution is denoted FY. The
variable X attached to a data value represents the population
(pixel location) to which it belongs. The empirical conditional
distributions of Y given X=1 (denoted FY:X=1l) is the
distribution computed from Yl,...,YL. The empirical conditional
distribution of Y given X=2 (denoted FY:X=2) is the distribution
computed from Y'l,...,Y'L.

‘Tests for the equality of the distributions of the two
samples can be formulated as comparing the unconditional
empirical distribution-FY with the conditional empirical
distribution of ¥ given X=1. Our approach is to define a

comparison quantile function D(u;FY,FY:X) and a comparison

guantile density function d(u;FY,FY:X) as follows. Let

V(1)<...<V(K) be the ordered distinct values in the pooled
sample. Let PY(V(J)) be the empirical probability that ¥Y=V(J),
and let PY:X(V(J)) be the conditional empirical probability that

Y=V(J) in the sample represented by the value of X. Define
FY(V(J)) = PY(V(1))+...4PY(V(J)),
U(J) = 0.5{FY(V(J)) + FY(V(J-1))} .

Recall from section 3 that U(1)<...<U(K) are called the midranks

of the pooled sample; they play a central role in statistical
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methods based on ranks rather than values. The concepts have

been introduced to define

d(u;FY,FY:X)

PY:X(V(J))/PY(V(J)), FY(J-1))<u<FY(v(J))

D(u;FY,FY:X) fg d(t;FY,FY:X) dt

To test equality of the distributions FY and FY:X one tests for
the equality of D(u;FY,FY:X) and Dg(u)=u.

Example: To test the equality of the 32 channel class 1
and class 2 pixel vectors in section 1, we plot in Figure 4 the
comparison quantile function D(u) [where for convenience we
write D(u) for D(u;FY,FY:X)] which compares the distribution of
the class 1 sample with the pooled sample. The graph can be
used to judge qualitatively the difference between D(u) and
Dol(u)=u [whose graph is the 45° line].

To judge quantitatively the significance of the difference
between D(u) and Dp{(u)=u many test statistics are available;
they can be regarded as having as components test statistics of

the form, called linear rank statistics,
J1 3(u) ap(u)

for suitable choices of score function J(u).
A test statistic which is always among those used is the
Wilcoxon statistic, with score function J(u)=u-0.5. It can be

writtten in an equivalent form
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W= I}) {D(u) - u) du .

In words, W is the area between D(u) and Dg=u.

To compute W in practice one introduces statistical methods
based on ranks and the rank transform denoted theoretically
UY = FY(Y). Statistical methods derived from the normal
distribution are based on the conditional distribution (given
values of X) of the values V(1)<...<V(K) of Y. Rank methods are
based on the conditional distribution (given values of X) of the
midranks U(1)<...<U(K). In particular the Wilcoxon statistic
for comparing two samples can be expressed as conditional means

of midranks given that X=1:

W

E[UY:X=1] - E[UY] = E[UY:X=1] - 0.5

We compute W by

UY(J) PY:X=1(V(J)) - 0.5 .

=
"
I ~R

To test the significance of W computed from a random sample
of size n one would treat W as approximately N(0,1/12n), normal
with mean 0 and variance 1/12n. If the sample consists of
dependent random variables (rather than independent) the
variance of W must be adjusted to account for the dependence.
Harpaz (1985) shows how to calculate the variance of linear rank
statistics when the dependence structure is that of a sfationary'

time series. The factor by which the variance increases (or
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decreases) can be expressed in terms of the values at zero

frequency of the spectral density of rank transformed time

series.

This paper has defined various quantile data analytic
graphic techniques for visually testing for patterns in data:
identification quantile functions (Fig. 1), identification
quantile plots (Fig. 2 and 3), and comparison quantile function
plots (Fig. 4). Another new graphical display we propose are

identification quantile—-quantile (IQQ) plots. To compare two

samples, or to compare a sample with a theoretical distribution,
their respective quantile functions Qj(u) and Qz(u) can be
compared by plotting the points (Q3I(u), Q2I(u)). We call
this plot an IQQ plot, in contrast to a QQ plot which is a graph
of (Q3(u), Qz(u)). One interprets this plot by visually
detecing how well it is fit by a straight line. To help a
visual identification of a straight line fit to the IQQ plot one
adds to the graph a grid of lines x=0,+.5,+1 and y=0,+.5,+1.

The IQQ plot of the two 32 channel pixel vectors is given
in Figure 5. 1Its deviation from a 45° line indicates that the

two classes have different types of distributions.
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Captions for Figures

Figure 1. Identification Quantile functions are graphed
truncated at + 1. The uniform distribution appears
as a line from (0,-.5) to (1,.5). The normal
distribution appears as the curve which coincides
with the line in the neighborhood of u=0.5 because

the functions have been normalized.

Figure 2, 3. 1Identification quantile plot of a vector or time
serieé plots dimensionless values formed by
subtracting median from original value, and dividing
the result by twice the interquartile range. The
pixel vectors plotted represent simulatgd mineral

spectral reflectance data given in Section 1.

Figure 4. Comparison quantile function (defined in section 4)
tests for the equality of distribution of the two
samples formed from the class 1 and 2 pixel vectors
defined in section 1.

Figure 5. Identification quantile-quantile plot for comparing
the equality of distribution of the class 1 and 2

pixel vectors.
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Abstract

Motivated by the LANDSAT problem of inferring crop or geological types at the pixel
level by automatic means, we discuss the general empirical Bayes approach to the estima-
tion of n attriButes 6 = (0,,...,0,) in a spatial setting, assuming availability of observed
data y = (y1,...,Yn) made on them. Within the general empirical Bayes paradigm, a
spatial logistic estimator is developed for the special case of binary attributes and inde-
pendent, normal, homoskedastic data. This estimator is relatively simple to compute and
provides a logistic estimate at each pixel of the probability P(6; = 1 | data) without as-
suming knowledge of § (“ground truth”) in the region of interest. The rﬁle is showﬁ to
perform reasonably well in relation to the “ideal” discriminant rule, which could only be
computed with full knowledge of the a_,ttribute 0. We conclude with a discussion of tech-
nical extensions that could be developed for wider applicability via the empirical Bayes

approach.
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1. Introduction

Multi-channel satellite image data, available as LANDSAT imagery, are recorded as
a multivariate time series (four or more channels, multiple fly-overs) in two spatial di-
mensions, specifically on a rectangular lattice of points called pixels. A polychotomous
attribute, such as crop type, is to be estimated at each pixel from the image data, whose
aggregate frequency properties are assumed known in relation to the attribute. The set
of attributes forms an attribute map. The regularity may be characterised by spatial
correlations. The estimation problem is then one of attribute classification, with spatial

correlation among the attribute values.

In an earlier paper (Hill, Hinkley, Kostal, Morris, 1984), various suggestions were made
concerning the use of parametric empirical Bayes modeling in this classification problem.
Much of the notation and many of the ideas of that earlier paper will be used here. That
paper also contains a bibliography of related empiric'al Bayes literature and the use of
Markov random fields as distributions needed for this work.

The attribute at pixel ¢ will be denoted by 6;, which is polycho;comous, i.e., taking on
one of m > 2 values, with 1 = (j, k) running over a rectangular lattice ;7 = 1,...,.7;k =
1,..., K. Measurement data y; are reduced forms of imagery data, e.g. Badhwar numbers,
which have a joint frequency distribution f(y | ) conditional on the underlying attribute
map parameters §. The empirical Bayes perspective of the problem also adds a family
of joint prior distributions JI, on 6,a € A for the attributes. These distributions are
chosen to incorporate varying degrees of correlation, this being adaptable to a particular
application through the free parameter a.

With this description of the problem, our goal is to estimate posterior probabilities
Po(0: | y) for each pixel, either for direct use in global inventory of attributes, or in
classification, such as map construction. We focus attention here on estimates of the

posterior probabilities approximated by a logistic form, with predictor variables determined
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by the image data in neighborhoods of the pixel of interest. After reviewing ea.rlfer work
in Section 2, this logistic procedure is described in a spatial setting for binary 6’s in
Section 3. Section 4 illustrates performance of the new procedure on some trial data sets,
revealing good performance relative to “ideal” spatially-based classifiers. Desirable future

generalizations of this approach are outlined in Section 5.
2. Review of Previous Theory

The objective is to estimate the attribute map 6§ = {6, : j = 1,...,J,k = 1,.., K}

given the image data. For convenience, we specialize immediately to binary attributes.
A. Distributions for Observed Data.

The simple potentially useful distribution for observed data y; in pixel (j, k) involves
binary 8;’s, with the univariate y;&’s conditionally independent and ~ N(u:,0? | 6,5 = t).
The parameters {u,} and ¢? are taken as known, since they are assumed to have been
estimated precisely from training set data. In fact much of the theory does not depend
on normality, but only on conditional independence of the y;. with density f,(y) given
0;x =t, t = 0or 1. Then the likelihood function of § depends on the image data only

through the “discriminants”

A

A

(2.1) | | U=log{

(2.2) lik(6 | y) = exp <Z o,-ku,-,,);

in the homoskedastic normal case above,

(2.3) wje = (m - uo> (?jk — Lo +#1))_

o o

Because of (2.3), and because ug,u;,0 are known, preliminary location and scale

changes of the data permit us to take 7 = 1“—°¥—‘l to be zero and o = 1 without essential
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loss of generality, and be left only with the parameter

(#1 — ﬂ-o)

(2.4) 6 T

Thus (2.3) reduces to uj;z = 6y;; and pu; and ug are replaced by % and —% respectively.
B. Distributions fdr the Unobserved Parameters.

The spatial structure evidenced in blocks (fields) of common attribute values has been
approximated through Markov models for the 8,;’s. The simplest instance of this involves
a line transect on the lattice, e.g. the j** row of pixels (j,1),...,(s, K ), on which the

first-order Markov model is
(24) P(oj,k+1 | 0.7‘,]; = t) =Dt = 1-— qt, t=0 or 1.

The parameters & = (po,p1) characterize the lengths of blocks of common attributes.
We discussed in (Hill et. al.,, 1984) that the posterior log odds ratio on the jt*

horizontal transect is approximately of moving average form

(2.5) Ae(y) = log { gg;: z (1) } z; } = log<;7:—:> +Zro + Z:=1 YViThi

for r large, zx; = (Yjk+s + Yj,k~i)/2, the average of pixel readings 7 units from the k**
pixel, and with m; = P(6;x = 1) = 1 — mo. The approximation is most accurate if the
discriminatory power between the two cases f; and f; is small. As the discrimination
increases, the logistic form is less appropriate for these posterior probabilities, but then
the probability of correct classification improves greatly so that the need for an optimal
classifier is not as great.

A few comments are in order. First, even in this simple first order Markov case, the
exact Bayes approach gives a complicated joint posterior for 6, whose maximization or
minimization is non-trivial, and for which efﬁcient-'(likelihood) estimation of a = (p;,po)

is difficult. Second, the form of Ax(y) in (2.5) is adaptable to priors more general than
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the first-order Markov distribution and can be demonstrated to hold in low discrimination
cases for more general prior distributions 7, (¢), including two dimensional situations. We
discuss this further in subsequent sections.

Moving from the transect to the full lattice, the natural generalization of the Markov
prior distribution (2.4) is the Gibbs distribution (Section 4 of Hill et. al., 1984) in which
0,1 depends on surrounding 8’s only through attributes in neighboring pixels. For example,

the isotropic first-order model 7, (#) would give, with o = (8o, 81),

P(;s =1| other @'s |
(2.6) log{ PEHJ-': =5 : — G'S; }= Bo + B1(05—1,k + 0541,k + 05,k~1 + O5,k+1)-
ik =

Such models can be integrated with the likelihood function (2.2) to give a manageable
joint posterior for 6 provided By and 3, are known. With this provision, a time-consuming
relaxation-annealing algorithm (Geman and Geman, 1984) is available to calculate the
posterior mode of @ given x.

There are very real attractions to the Gibbs distribution. But these attractions are
offset by difficulties, even in the binary case which we have been discussing. First, the
marginal likelihood for parameters a = (§y,8;) seems quite intractible. Second, we want
more than the posterior mode for 8, we also want to know P(8; | x). Third, the iterative

algorithm can be very time consuming in large problems.
3. Spatial Logistic Classification

We turn now to the main result, the development of an automatic spatial statistical
method for estimating the probabilities of a dichotomous attribute at each pixel that does
not utilize training attribute data from the target site. This last feature is most signifi-
cant. For example, in applications to LANDSAT data, automa.tié methods (i.e. methods
not utilizing a human “analyst”) commonly assume a sample of ground truth attributes
6 in the target site in order to provide an appropriate prediction formula for the-unob-

served attributes in that site. We do not make that requirement. Instead, we estimate
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the distribution of target site characteristics using only the remotely sensed data y, and
knowledge of the likelihood function f(y | 8), which can be obtained from training data in

a non-target site.

It is important to realize that the attribute characteristics in the target site may differ
widely from those of the training data site for which attribute data are readily available.
In such cases serious errors will result from a standard discriminant approach, i.e. one
that assumes the prediction relation between # and y in the training site is the same as
tha.t' in the target site. For example, in predicting crop types, the relative proportions of
crop types and field sizes in a particular site may vary markedly from the corresponding
parameters in the target site, and these parametérs will affect vitally the predictions of
6 from y. Thus, the target-site 'a,ttribﬁtes 0 must be determined from information in the
target site. We are saved, however, if the likelihood function f(y | 6) is the same in the
training and target sites, for then the crop proportion and field size parameters can be

estimated from the available data y, without direct observation of §.

Numerous simplifying assumptions are made in this report relative to the complica-
tions presented by LANDSAT data. For example, independence of the {y;}’s conditional
on a fixed ground truth attribute, is assumed. We allow no split pixels. We concentrate
mainly on the binary case. Border effects are ignored. We do not assume multivariate data
or data from multiple satellite fly-overs. We justify making these simplifying assuihptions
here in order to concentrate on one fundamental advance needed for some LANDSAT ap-
plications, i.e. the unavailablility of target site attribute training data, and because the
assumptions made here should be appropriate for less complicated situations, e.g. for black
and white image processing and restoration. Even so, the results that follow could apply

directly to certain summary functions of LANDSAT data, despite some model failures.

~

Apart from the particular results developed here, we also note that the empirical
Bayes viewpoint in general provides useful insights into the more complicated situations

described. For example, the emj)irical Bayes model makes clear that one proper use of
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training data from sites other than the target site is to determine optimal pixel-level data
reductions, i.e. the likelihood ratio statistic. In the LANDSAT case, the Badhwar numbers,
which summarize data from multiple fly-overs, as well as the “greenness” and “brightness”
functions of multidimensional spectral data are examples of efficient reductions to which
our methods might apply directly. On another level, the empirical Bayes model allcws
the conclusion that the bulk of the correlation in the target area measurement {y;} ob-
servations may be due to correlation introduced from the ground truth {6;} process. If
significant correlation remains in the conditional distribution of y given 8, perhaps caused
by cloud cover and other effects, then in principle this correlation can be modeled within

the empirical Bayes framework and used to obtain alternative results for correlated likeli-

hoods.
3.1 Models for data and parameters.

As in Section 2, we assume that at the pixel ¢ = (k,!) in the lattice we make the

observation y; such that
(3.1) v 24 N(5(6: —05),1), i=1,...,n.

This distribution is conditional on the attribute vector § = (61,...,0,) of binary values 0;
= 0 or 1. Increasing values of the known parameter § > 0 will yield greater discrimination
power. We also assume a spatially isotropic (invariant under translations and rotations)
distribution for the vector § with m; = P(6; = 1) = 1—m, and auto-covariance function ¢; =
Cov(0k,1,0k,1+t) = Cov(ﬂk,z, 0k+¢,1), which depends on ¢, but not on k,I. The corresponding

correlations p, then satisfy

(3.2) pt = Corr(Bx 1, 0k,14+¢) = ¢t/(7fo771)-_
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3.2 Logistic form

Because the distribution of §; given 0,: depends only on the physical distance between
pixels ¢ and j, then as § — 0 it follows that in this lattice case, as previously in the transect

case (2.5), that the logistic approximation holds for pixel 1. Define
(3.3) pi=P(0i=1|y) =1-4g, Xi(y) = log(p:/a:)-
Then

. . 7r r —
(3.4) Ai(y) = log (;:) + Zmo Vet

with Z;, the average of measurements in the t*% «

ring” away from pixel ¢. Neighbors of
pixels at a fixed distance away from pixel ¢ are called “rings”, denoted Ry, R,, R,, etc with
Ro = Rio being the zero®* ring (the pixel itself), Ry = R;, the four nearest points, and so

on, as in Figure 3.1.

5 4 3 4 5
4 2 1 2 4
31 .01 3
4 2 1 2 4
5 4 3 4 5

Figure 3.1
Location of pixels comprising rings Rg,..., Rs

relative to pixel 1 at center.

Formula (3.4) defines Z;p = y;, Zix = ring 1 average for pixel 1 = (k,1), so

Tiy = (Yk 141 + Yk—1,1 + Yk, =1 + Yit1,1) /4

for t = 1, and so on, following Figure 3.1. (We ignore here, for convenience, the question

of how to modify these definitions at the borders of the region.) These averages depend
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symmetrically on the ring elements because of the isotropic assumption. If § is not small,
however, the posterior probability (3.3), (3.4) will not depend on the data in a linear
way, and in such cases the ring averages then are not completely adequate for use in
the approximation. Nevertheless, we continue to use the ring averages and the logistic
approximation for moderate é for simplicity and because discrimination will be accurate
for large 6 even for this non-optimal logistic classifier; see also Switzer (1980).

Suppose momentarily that the values {6;} are known and available to compute dis-
crimAinant probabilities for predicting 6; in linear logistic form from the observed Z;q = Yi,
Tily +--yTir, ¢t = 1,2,...,n. Here r is the number of rings used; in Figure 3.1 and for the
applications of Section 4, we take r = 5. Let § = Y_ 6;/n. The discriminant function
Ai(y,0) such that |

1
1+ exp(—X:i(y,9))

(3.5) P =1]y) =

is computed by

(3.6), 203:0) = 108( 125 ) + s Lovc e (0 = m0)),

with the quantities RSS(6), b:(0) and 7,(#) defined in (3.9) through (3.11). See Morris
and Rolph (1981, pp 206 and 88-89) for this development of discriminant estimation.

The quantities 0, b,(),7,(6) and RSS(8) in (3.6) can be estimated as follows. Define

the n x (r 4+ 1) data matrix to be

. Y1 —Y T10—I) L1,y — Zy
(3.7) X= :
Yn— Y Eh,l - En,r -z,
with ¥, Z,,...,Z, the averages of y;, Z,,,. .., Z;, for rings Ry, Ry,..., R,, so that the columns

of X add to zero (in a large area, we will have approximately § = Z; = ... = Z,, the errors



occuring because of border effects). Then, letting b(6) be the vector (bo(6),...,b.(8))’,

and
(3.8) C(0) =X'0/n,

we have the expressions

(3.9) b(8) = SC(6), S=nX'X)"!,"
and
(3.10) RSS(6) =8(1 —6) — C'(6)SC(9).

The quantities M, = 7,(#), in (3.6) are the unweighted averages of the Z;, and %,

tth

respectively of the ring averages for pixels with §; =0 and 8; =1, i.e.

oy 1 20T 1 32(1—6:)Z
me(0) = 3 S0 32 S(1-6)

After some algebra, the r + 1 vector m(6) of elements (3.11) can be re-written as

(3.11) t=0,...,r

| =, 1-26
(3.12) m(0) =X+ m

C(9),
with X the vector (¥,Z;,...,%,)". o

We see from (3.9), (3.10) and (3.12) that we do not need to know all the attribute
values {6;} to compute (3.6), but only the r +2 linear combinations 6, C(6), and, of course,

the quantities X, S,X which are directly available from data in the target site.

Note that E(g) = 6(8 — 0.5) from (3.1) and hence that § has unbiased estimate
(3.13) = % +7/6.

This notation is used because # is also an unbiased estimate of # = P(0; = 1).

Define the sample autocovariances of elements in ring O with those in ring ¢t by

1
(3.14) Ct = ;Zy;(igt—ft), t=0,1,...,1’.
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From (3.1), write y; = 6(6; — 0.5) + z;, z; ~ N(0,1). Then from (3.14),

¢t — bcy(8) = —Z‘ (s = 66)(zi — )

=15 {0 460 -}

with Z;; and 0;; indicating ring t averages for pixel . For ¢t > 1, this has expectation, given
6, equal to —r;/n? with r; the number of pixels in ring t. Thus, a nearly unbiased estimate

of c:(0) is
(315) ct/ay t=1,...,1;

this could be made exactly unbiased if r;/n? were added. For ¢t = 0, we have, given #,

E{co(o)}= %E{Z();(y; } 51 Zo ~ 53(1 - B).

Thus, a nearly unbiased estifnate of ¢o(f) is 57‘f(1 — #). (Actually, these estimates of
c:(0) are “empirical Bayes unbiased”, which means they have the same expectation as the
random quantities they estimate.) We now state the the estimation results formally.

Main Result: Empirical Bayes Logistic Spatial Estimator. The discriminant
function A;(y,6) in (3.6), which yields probability

1
1+ exp{—-X:(y,0)}’

P(s: =1]y)

may be estimated under the distributional assumption (3.1) and the isotropic assumption

for 8 by
(3.16) ( )= log{7r/(1 —#)} + Z ¢(Zse — Mt)
with

(3.17) b= (bo,bs,...,b,) = SK/W ,
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where

(3.18) K = (67(1 — 7), E Gy =)

estimates C(f) using elements defined in (3.13) and (3.14), S is given by (3.9), and
(3.19) W = #(1 - %) - K'SK

estimates RSS(8) in (3.10). In practice we will force W > 0.05#(1 — #) in order to be
sure that the resulting estimate of RSS(f) cannot be negative, or an unstable value close

to 0. The quantities Mp,..., M, are nearly unbiased estimates of 7 (0),...,m,(6), being

defined by

= y Ct =
(3.20) Mt =Tt — (6—2> (m) for ¢ Z 1 and Mo =0.

Because of the remarks following (3.7) we have M; = g1 — ¢;/6%#(1 — #)] for ¢t > 1.
Formula (3.16) estimates the discriminant function without knowledge of 4, but by
using the target area average ¥ and the autocorrelations ¢;,...,c¢,. These same statistics

also can be used to estimate the characteristics

(3.21) a=(m,¢1,...,6.) |

of the attribute () process, assuming isotropy with 7 = P(#; = 1), and ¢; the covariance
between attributes §; and 6; with 6; in the t** ring for ;. Thus we assume the main char-
acteristics of the binal;y attribute process 8 are summarized by the spatial covariance {¢,}
or spatial correlation {p:}, p: = ¢¢/(7(1 — 7)) and the probability x. In an application to
binary crop-type estimation, 7 represents the proportion of pixels assigned to a particular
crop type, and the spatial correlations {p,;} characterize the field sizes. These same pa-
rameters can be chosen to govern an isotropic Markov random field (MRF) of order r, and
hence the methods developed here compete with empirical Bayes procedures that assume

isotropic MRF distributions for the attribute process. Because the rule (3.16) estimates
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functions of @ rather than the parameters « of a particular distribution on 8, however, the

rule appears to be valid for a wider class of attribute distributions than isotropic MRFs.

4.

Behavior of the Binary Logistic Spatial Estimator in Several Test Cases.

The rule given by the main result (3.16), which is termed an “empirical Bayes logistic

spatial estimator” (EB-LSE), will be compared with several other rules:

(a)

(b)

the “ideal” logistic spatial estimator (I-LSE) (3.6) which assumes that the attributes

6 are known in order to calculate X;(y,0);
an “ideal” logistic non-spatial estimator (I-LNSE), which uses the pixel level informa-
tion y; only, approximately the estimator (3.6) when r = 0:

5exp(6y;)

4.1 P0‘=1 i) = — — 3
(4.1) ( ) 1— 0+ fexp(6y;)

and,

an empirical Bayes logistic non-spatial estimator (EB-LNSE), which is (4.1) but re-
placing 6 by # = 0.5+F/6, as in (3.13). This is the EB-LSE rule (3.16) for r = 0, except
that s2 = 3~ (y; — ¥)?/n is replaced by an estimate of its expectation 1 + 62#(1 — #)
when necessary.

The four estimators will be compared in nine different environments, with all combi-

nations of 6 = 1.0, 1.5, 2.0 and three different ground truth maps with n = 625 pixels in a

25 by 25 grid. In each case the grid is extended to a 29 by 29 (n = 841) grid in the most

obvious manner, in order to provide a border of width two pixels for using neighborhood

data with rings Ro,..., Rs, as in Figure 3.1. These three 6 patterns, labeled “checker-

board” (CKBD), “two by two” (2BY2), and “miscellaneous” (MISC), are shown in Figure

4.1.

We chose 2BY?2 to exhibit strong spatial correlation in relation to CKBD, and MISC

to exhibit non-patterned shapes.

We use several different measures of performance for each rule, assuming the rule

assigns the value p; = P(§ = 1] y) to pixel 7,1 = 1,...,n, n = 625. They are:
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(a) the percentage of classification errors (%ERR), counting a classification as incorrect if

p; >1/2and §; =0 or p; < 1/2 and 0; = 1 (it never happened that p; = 1/2 exactly)
1
=50 - 50— i ; — 0.5)(pi — 0.5)|;

(4.2) %ERR = 50 -50n Z &gn[(ﬂ, )(pi — 0.5)

(b) the mean absolute error
1

(4.3) MAE = ;Z |p,'—0,' |;

(c) the mean squared error

C44) MSE = % S (p: - 62)7;

and,

(d) the information measure

(4.5) INFO = —% Z{H; log(p:) + (1 — 6;) log(1 — p,-)}.

All four measures are always non-negative, and all are zero if p; = 6; for all 7 (in the
INFO case p; = 0; can occur only in the limit). Small values of each measure are desirable,
and rules with generally small values are to be preferred.

All data examples in Tables 4.1 and 4.2 involve one simulation (841 data points)
according to y; ~ N(6(8; — 0.5),1), with values of z; = y; — §(6; — 0.5) re-used in all
nine examples, so that only 6 is changed with the cases. Thus, results are random, but
this technique of re-using the z; values aids by reducing the variability for comparative
purposes. The “Theoretical” values in parentheses, e.g. (30.8%)in Table 4.1 for § = 1.0,
CKBD, %ERR, are the exact error fractions for the ideal non-spatial estimator I-LNSE
computed from the normal distribution in repeated sampling. Comparing these values
with %ZERR for I-LNSE provides some calibration of these particular data sets to the long
run. In this case I-LNSE error rates are slightly larger than expected. The efficiency

(“Efficiency of EB-LSE”) values in Table 4.1 illustrate, on a proportional basis, how close



Table 4.1

Overall error proportions and mean absolute errors for various rules.

%ERR MAE
CKBD MISC 2BY2 CKBD MISC 2BY2
6=1.0
I-LSE 20.2 15.5 5.4 .30 .24 .08
EB -~ LSE 24.0 16.8 8.6 27 25 11
I-LNSE 32.0 32.0 31.0 40 .39 .40
(Theoretical) (30.8) (29.1) (30.9)
EB—-LNSE 33.0 31.0 32.0 .40 .39 .40
Ef fictency
of EB— LSE .68 .92 .88 1.30 .93 91
6=1.5
I-LSE 13.1 10.7 2.6 .20 .15 .03
EB - LSE 15.2 10.1 3.4 .18 .15 .04
I—-LNSE 24.0 23.0 23.0 .32 31 31
(Theoretical) - (22.7) (21.6) (22.7)
EB - LNSE 23.0 22.0 24.0 .32 31 31
Ef ficiency
of EB—- LSE .81 1.05 .96 1.17 1.00 .96
6=2.0
I-LSE 7.8 6.7 0.6 13 10 0 .01
EB - LSFE 7.4 6.9 14 11 .09 .02
I-LNSE 18.0 16.0 18.0 23 23 .23
(Theoretical) (15.9) (15.2) (15.9)
EB—-LNSE 18.0 17.0 18.0 .23 .23 .23
Ef ficiency

ofEB—LSE 1.04 98 .95 1.20 1.08 95



112

the EB-LSE measure comes to the I-LSE measure relative to the I-LNSE measure; e.g. for
6 = 1.0, CKBD, MSE: efficiency = (24.0 - 32)/(20.2 - 32) = 0.68. The EB-LSE proportions
for ZERR average 92% efficiency in the nine examples. However, the efficiency drops to as
little as 68% in the case with lowest discrimination, i.e. 6 = 1.0, CKBD. Of course I-LSE is
an impossible-to-meet standard among logistic rules in the long run because: (a) it utilizes
the unknown values 6; and (b) it is biased favorably because it uses the true values of §
to predict themselves. The relatively strong performance of the empirical Bayes logistic
spatial estimator is very encouraging in these examples.

In terms of the mean absolute error metric, MAE of Table 4.1, EB-LSE performs even
better, about as well as I-LSE, averaged over all nine cases. However, the MAE measure is
deficient as a measure because it rewards pushing all probability estimates p; away from %
and closef to 0 or 1, even if such extreme values are not justified or believed. The EB-LSE
rule has a slight defect in this direction and thereby prospers with respect to MAE.

Table 4.2 shows the mean squared errors (MSE) and the information metrics (INFO)
for the four estimators in the nine situations. The two measures, unlike MAE, share the
property that they reward reporting that p; which is believed to be the best estimate of
P(6; = 1). As with _%ERR, in terms of MSE, EB-LSE has average efficiencies of 92%
of I-LSE, relative to the ideal non-spatial method. Again, the efficiency varies in direct
relation to the discrimination parameter 6, with only 63% efficiency provided when 6 = 1.0

in the checkerboard case.

The results for the INFO metric in Table 4.2 parallel those of MSE, with EB-LSE
averaging 90.2% efficiency, and the exceptional case again occuring for § = 1.0, CKBD,

where only 50% of the I-LSE efficiency is attained by EB-LSE.

There is, as acknowledged, variability in these results. To check this, the intermediate
case § = 1.5, MISC, was repeated 10 times. In these ten cases ZERR for EB-LSE ranged
between 8.3% and 12.2%, with mean 10.0%, making the case considered earlier with SERR

= 10.0% quite central. Figure 4.2 graphs these two extreme %ERR cases for EB-LSE with



Mean squared errors and information measure for various estimates.

6=1.0

I-LSE
EB - LSE
I-LNSE
EB - LNSE

Ef ficiency
of EB— LSE

6=1.5

I-LSE
EB-LSE
I-LNSFE

EB - LNSE

Ef ficiency
of EB— LSE

6=20

I-LSE
EB-LSE
I-LNSE

EB-LNSE

Efficiency- |

of EB— LSE

CKBD MISC 2BY2

142
165
.203
.203

.63

.094
.099
.160
.160

.92

.060
.056
117
117

1.06

Table 4.2

MSE

A17
.126
.196
197

.89

.074
.075
.156
156

.99

046
.045
115
115

1.01

.041
.062
.201
.201

.87

.019
.026
.159
159.

95

.008
012
117
17

97

CKBD MISC 2BY2

439
512
587
.524

.50

.304
319
478
479

92

203
191
.361
.361

1.07

INFO

.368
392
.573
575

.88

.239
.244
472
472

.98

152
151
.360
.360

1.01

139
207
585
586

.85

.064
.089
478
479

.94

.034
.044
.365
.365

97
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6§ = 1.5, MISC, alongside the case considered earlier in Tables 4.1 - 4.2.

The errors for various estimates in the cases 6§ = 1.0, CKBD and 5 = 1.5, MISC are
shown pictorially in Figures 4.3 and 4.4. Assignments for the two logistic rules EB-LSE
and I-LSE are made according to p; > ; or p; < 1, with resulting %ERR error rates of
10.1% for %YEB-LSE and 22.9% for I-LNSE. The spatial rule not only improves on the
non-spatial rule, but the greatest improvements occur in the interior of the contiguous
regions. This phenomenon of maximal improvement in interiors of regions occurs with the
other test cases too, as can be seen from the graphs of EB—LSE performances in Figures
4.5, 4.6 and 4.7, and aids in locating the central masses of large shapes accurately.

The actual error rates for EB-LSE appear in Table 4.3 as a function of the number
of nearest neighbors that are of the same type as the center pixel. Thus the possible
number of agreements range from 0 to 8, but with CKBD and 2BY2 it is always 4 (at a
corner), 5 (on a border), or 8 (for an interior point). Other possibilities occur for MISC,
but 4, 5, 6, 7 or 8 agreeing neighbors predominate (otherwise, MISC has 20 pixels with
3 agreeing neighbors, 6 with 2 agreeing neighbors ahd 1 with 1 agreeing neighbor), and
so only those results for N > 4 agreeing neighbors are reported in Table 4.3. The only
noticeable difference between I-LSE and EB-LSE occurs for CKBD with N = 5, i.e. on
edges. In this case I-LSE makes noticeable improvements on EB-LSE for § < 1.5.

When exactly four of the eight neighbors agree, the value of spatial information di-
minishes to the point that a spatial rule for these pixels performs about as well as the
non-spatial rule EB-NSE (because the neighboring pixels provide noise but no informa-
tion). More complicated procedures than considered here, ones designed to be sensitive to
straight edges, could outperform spatial estimators at such boundary and corner pixels.

Table 4.4 shows the regression coefficients for both EB-LSE and I-LSE for the nine
cases, but normalized by the number of pixels in each ring. Instead of displaying b:(6)

from (3.9) or B, from (3.17), we display

(4.6) b; = bt(a)/Tt or b: = Bt/rt



= XXXXX AXXXX=
= XXXXXX =
= XXXXAXK X =
= XAXXX =
= HHXAXKXX =
= ):9,9,9.6.9.9.9.4.0.4 =
=X KXKKHXXKKKXKK =
=XX KXXKKKKKHKXAKKAKAK=
=XXX HARKKKKKKAXKA =
=XXXX HKAHARXAAXX =
=XAXXX - XXXAXKX =
SXXAXXX XAXX =
= XHXXHXXAX X =
E,0,0,0.9.¢.0.0,¢ =
2XXXAX HKAXKXKAXAX =
ZXXXXX HAXKKKKXKXX =
2XXXXX XXXXX =
=XAXXX XXXXX =
= XA AXNAANK XAXAK =
E0,9,0,0.0.0.0.0.0.9 4 XXXXX =
= X =
= KAXKX =
= D,9,9,9,:9.9,0.4 =

True values, ZERR = 0

=XAAAXAX AAXXK=
= XXXXXX X XXXX=
= XXXXX X XX =
= HKAXXX =
= HXUXAXXK =
= HKHXKAXKAAAXK =
= HUXKXHAKAXX =
= HHUKAXKAXXXX =
= XXX HHXHXHXKKKXXXK =
= XHXX XOXAX XXXX =
=XXXXX KXHXAXXX =
= XHXXX XAXX =
= XRAXXXXX X =
= XXXXXXXX XXX=
= XXX XX XX =
=T XXXXX XX X XXXX =
£2,0,0,0,0.0.0,4 HXAXXAAAXXX =
=XHXKXX HXXXXX =
TXXXXXX XXXXX =
= XXXXXAXXX XX X =
= XXXXXARXXX X XX =
= X =
= XXXX =
= HKAXXAKXXX =

Worst case, ZERR = 8.3%

= XAAXXX XAXX=
= XXXXKX XX KAX=
= XAXXXXK RKAXAX =
= XXXAXAK X =
= KHAXXKAX =
= HKARXKXHKAARAXXK =
= P 0.00.90.9 99,0094 =
= XXXKKXRHKAKKKKKKK XK=
= XXX HKXXXHAARKAXKK =
=XXXX KHAARARXAXXXK =
= XXXX XXXAXKKX =
= XXXAXX XXX =
=XXXXXXXX X X =
= XXXXXX XXX X =
= - XXX =
=XXXXX HKXXKXXX =
=X XXXXAXXX . =
=XX XX XXXAXXX =
SXXXAXX XXXX =
=HAAKKK AAAKX =
=XXXXXX XX =
=XXXX =
= X =
= XX XX =

D90 9,090,904

= AXXX AXX =
= XXXX X XXXX=
= XX X =
= XAXX =
= HXXHAKXXKX =
= $9,9.9.9.419.9 9.9,9.4 =
= XXXXXAXXAXKKXKX =
=XX HKXKXKXXXAXXKKX =
=XXX HKHEXKKXKXHXXKK =
=XAKKXX }9.0.9.0.9.9.9.9.9 ¢ =
=XAXXXX XXAAXX =
=XXAXXX XXX =
=XXXXXX X =
=XXXXX =
= XX X=
=XAXXX HKHHKAXKAKAXK=
=XXXX KXXXK XXAXX =
=AXKXX XX XXXXX =
=XXXXX XXXXX =
= XXXXXXXXX XXXXX =
= XXX XXXXX XXX =
= X =
= XXXX =
= XAXXKX =

Best case, ZERR = 12.2%

Figure 4.2

Worst and best cases for EB-LSE in 10 runs of example: § = 1.5, MISC.

115
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True values and assignments made by three rules. Case: § = 1.0, CKBD.

XXXKX XXXXX
XXXXX XXXXX
XXXXX XXXXX
XXXXX XXXXX
KXXKX KXXXX
EXXXXX XXXXX XXXXX=
= XXXXX XXXXX XXXXX=
=XXXXX XXXXX XXXXX=
=XXXXX XXXXX XXXXX=
= XXXXX XXXXX XXXXX=
= XXXXX XXXXX

= XXXXX XXXXX
= XXXXX XXXXX

HKXAXX HAXRXX

HXAKKX XXXXX
=XXXXX XXXXX HKXXXX
=XXAXXX XXXXX HAXKX=
=XAXXX XXXXX XXXXX=
=XXXXX XXXXX XXXXX=
=XXXXX XXXXX XXXXX=

True values, #ERR = 0

HAXXX X XXX=

= X
=XXXXXX A00,0,0.0,0,0.0.9,.0.9,9.9.9,C
=XXXXXX HXHXHXHKKXAKAKKKKAKK =

HKAXXXK AXXXXXX XXXKXXX=
XXXX KXXXXXXX X XXX=
XXX XXXX X KXXX
XHXXXXXX HXXXXX
KEXKHXXXX XXX
XXXXXX X XXXX XX
HKXXXXX XXXAXAXX XX
XX XXX XXX X XX
XXXX X XX XXXX
XAXX X HXXXX XXKXX=
XXXX KXAXKRXK - XAXKAK=
XX X XXAXRXXAAX XX=
XXXX XXXX
HKXAXX HXXXXX
KXKXX HKRXKXKX
XXXXX HKXAXX
XXX X XXX XX
=XXXXX X XXXX XXX
=XXXXX HKAXKXK XXX
=XXXXX XXXXX XXX
=XXXX KXXXXX XXXX
=XXX XXX XXX XXXKKX=

EB-LSE, %ERR = 24.2%

=" XXXX X X XXX XAXXK=
=XXAXXXX XXX X XX XX XXX=
XXX XXXXRXX XXK=

XXX XXX X XX XX XXXX=
XXX XK XXX XXXX XX =
K XXRAXAXX XXXX XX =

X XXX X X X X X X X X=
XXX XXXXXX X XX =
XX XX X HXHKX X X=
XX K X XXXXX XXXXX =
XX X XX X X X=
XX X X XXX X X XXXXX=
XXX KX KHAXXXK XRXXAXK=
AXXX X XXX XXX X XX=
X XX XXXX XXX X=
XK X XX XXXXAAX =

X XXXX X X XXXXKX X=

X XXX XX X X XX =
XX XX K XXX XX X=

=X XXXX X X XXX XXX=
=XAXXAXX XX XX XX X =
=X XX XXX X XXX=
=XX XX X XXX X XX =
=XXXX X X X X XXXXXX X=

X
X

LTI L 11 1 1 e L (I [ 1§

I-NLSE, %ERR = 32.0%

= XXXX XXXX X X XXXK=
=XXXXXX KAXKKAXHXARKX KKK K=
=XXXXXX KAHXKRKXKKXKXKKK X =
=XXXXX HKXXKXXXK RAXXAXXX=

AXXX XX XXXX XXXX=

XX KUXXARK XXAX =
HXXKXXX XXXX
- XXXXXXAX XXXX =
KXXXXHXKX XXX X=
XXXXXX XAXAXX XX X= -
XXXKX XXX AXX =
XX X XXX XXXXK=
KXXKX XXXXX AXXXX=
XXX KX XRKHXXKKXHKKKAX=
XXX DD 09.9,9:0.9.9.4 XX=
XXXX XXXXX
XXXXX AXXXXXX
AXKXX KRXKXX
KXXXKX XXXX
XXX XXAXX
=XXHXKX X XXX XXX=
=XXXXX AXXAX XAXX=
=XXXXX XXAXX XXXXX=
=XXXX XXXXX XXX =
=XXXX XX X XXX XXAXXAX=

LI L VI O | [ T T I T T I T O TR

I-LSE, %ERR = 20.2%

Figure 4.3



= XXAXXX XXXX=
= XXXXXX XXXX=
= XXXXXXX X =
= KXXX =
= 0.9,0,0,0.9.9.4 =
= HXAXKAXKXX =
=X HAXKXKXXXXXXK =
=XX .9,9:9,9:9,9.9,0.9, 0,0, 0.0 9. 0.C
=XXX XAXKAXXXKXXKX =
=XXXX ,9,9.0,0.9,0.9,9,9.4 =
=XAXXX HAXXAXX =
=XRKARAX HKAKXK =
=XHAXXKXX X =
=XAXXAXKX =
IXXXXX KXXXXXXXXX =
=XXXXX XXXXKXXXXX =
=XXXXX XAXXX =
=XXXXX XXXXX =
= XXHXXHRHHKK XXXXX =
ZXOORXKXXKNK XXXXX =
= X =
= KXXXXX =
= XXXHXXXX =

= XXXX HXAX=
= XXXXXX X XXX=
= XAXXXX HAXAX =
= XXXX X =
= XHHKXXXX =
= )00 0.0 9:9,9:9.9.9.9,4 =
= KXKKXHXAKXKKXX =
= P010.9.0.6.0.9.0.0,9.0,9,0.0.9 €
= XXX D 3,:9.:9:0,0,9,9.0,0,0,9.0 QI
=XXXX XHARKXKAXXX =
= XXXX HKAAXKXX =
= XXXXXX XXX =
E39.9.9.9.9.9.0.8 X X =
= XXXXXX HKXXX X=
= X XXX =
=XKXXX XAXXXX X =
=X XAXRXXXX =
=XX XX XXXXXX =
=XXXXAX XXXXX =
=XRAXXX X XXX =
=XXAXXX X XX =
=XXXX =
= X =
= XXX XX =
= HXXXAKXXX =

EB-LSE, %ERR = 10.1%

XXXKXX X XX X XXX
KXXXXX X X XX X XX X
X KAXX X XX

X X X XX
X X K XXXKAXK XX
XAXXK X XA XX
HKXXXK X X XXAXKX
XXXX XXX X X XX

x

=XXXX KAXKXXK XXX =
=X X X X XXAXX X =
= XX XX X X =
=X XX XXX X X X =
=X XXX XX XX XX XX XX=
= X X X X X =
XXX X X X XXX X X=
=X . XXX X XXXXXXX =
=XX X X X HXXAXXXK =
=X XXX X X =
SIXXXX X X X XX XX =
=X XXAXX X X X XX =
= X X X X =
= X X X X X =
= X XX X =
= X X X X X =

= XXXXX XAAX=
= XXXXXX XX XXX=
= XXXXXX XXXXX =
= XXXXX X =
= KAXXKXXX =
= HKXHARXHARKAKX =
= P9, 010:919,:0.9.9.9.6,¢.9,0 =
= PO 00.0.9.0.0.0:0.0.9,9,0.0.9.C
= XXX HKIXHKXHKRAXAXXK =
=XXXX HKAXAKKXKXXX =
= XXXX KXXHRXXX =
= XXXXXX XXX =
UXHKAKAXXK X X =
= XXXXXX XXX X =
= XXX =
=XAXXKX KKAKXK =
=X KAXKRKXXXK =
=XX XX XAXXXX =
SXAXXXXX XXX =
SXXXXXX XAXXX =
= XAAAXXK XX =
=XXXX =
= X =
= XX XA =
= XXXXXKX =

Figure 4.4

True values and assignments made by three rules. Case: 6 = 1.5, MISC.

n7



118

=XXXXX XHXXX XXXXXK=
=RAAXAX HKRAXX AKAXXK=
=XXXXX HXXXX XXXXX=
=XXXAX XAXXX XXXXX=
=XXXXX XAXXX XXXXX=

=TXXXXX KAXX XKXX=
=HRAXXX HXKRXKXXA AAXKAK=
SARXXXX HAXKAXXX XXXKAX=
=XAXAX HXAXKX XAXAX=

HXXX XAXXKXXX X XXX=

XX A AXXX X HXXK
HARKAKXX - XXXX
HXXRXKX - XXXX

XHXAXX HKAKK
HKAAXXAX KAXAXX X
XX XXX XXX

HXXXX AXK XXXX
HXXARXX AXXK XAKAKX=
XXAX XKARKXXK XAXXXK=
XXX RKAXAKKKAAAX AX=
XAXX . XAXX
RKAXAX HHXARAXKX
XAAXX 1,9,9,9,9,0,0,4
AXKAAXX KAAX
XAX X HAXKX
=XAKKX XAXKAX
=XXAXX  KXXXX XXX
SXXXAX XAXXX XXXXX=
=XXXX HKAXXXXK XXXX =
=XXXX XX X XXX AXXXXXX=

6 =1.5, ZERR = 15.2%
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ARXKAX RAXKX
XXX XXX XXXXX
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6 =2.0, %ERR = 7.4%

Figure 4.5

True values and predictions by EB logistic spatial estimator (EB-LSE).

Checkerboard case, § = 1.0, 1.5, 2.0



= XXXXX XXXX=
= XXHKXXX XXXX=
= XXXXXXX X =
= XXXX =
= $9,9,9,0.0.9.¢ =
= HAKAKKAXXKK =
=X KAXXAKXXXKXXK =
=XX D9.9.9.9.0.9.9.9,0.9.4:9,0.9.¢.C
=XXX KAXKAKRXKAXKAXK =
=XXXX XXAXKXAXKX =
SXXXXX RARXXAXXK =
=SXXXXXX XXXX =
SXRAXAAX X =
=XXXXAXXX =
=XRXXX XKXXKXXAXX =
=XAXXXK RXKXXKXAKAXK =
=XXXXX XAAXX =
=HXXXX XXXXX =
=XXXAXKXXXKXX XXAXX =
= XXXHXHXXAKXX HXAXX =
= X =
= XXXXX =
= XXXKXXX =

= HKAXX HKAAX=
= XAXXXX X XXX=
= XAXXXX XXAX =
= HXXXX X =
= RAXKKAKX =
= $,.9,09.9,9,9,0,9,9.9,0.4 =
= HKIXXXRXAXKAKYAX =
= ),9,9.9.9,9,0,:0.0,9:9.0,9.0,0,9,C
= XAX HAAXAKARAXKXK =
=XXXX XXKAXXAKAKK =
= XXXX XAXXYAX =
= XXXXXK XAK =
E0.0.9.9.9.9,94 X X =
= XXARXAX HAXXX X=
= X AXXX =
=EAARXX FAXAAK X =
=X XXXAXXXX =
=XX XX KAXRXXX =
=HAXXXXX XAXXAX =
SAAAAXX X HAAAK =
SAAXXXA X XX =
= XXAX =
= X =
= KXX XX =
= XAXXKXX =

§ =1.5, BERR = 10.1%

True values and predictions by EB logistic spatial estimator (EB-LSE).

= XXX XXXX=
= XXXXKX XXX XXX=
= XXXXXX XXXXX  XX=
= XXXKX X

= XXXXHXXK

= XXKXXKXXKKK

= KXXXXXXKXXKXX

= KXXXXXXKKXKKKX

= XXX XXXXXXXX XXX

= XXXX XXXXXXX XXX

= XXXX XXXXXXKX

= XXXXXX XXX

= XAXXXXX X X

= XXX X XXXXX XX
= X XAXX

= XXXXXX

=X XX KXXXXXX

= X X XXXXXX
= XXKXXX XXXX

= XXXXXX XX

= XXXXXX X
=XXXX

= XXX X

= XXXXXXK

= XXAXX HKAXXK=
= XXXXXXK XXX=
= XXXXXX XXXX =
= XXXX =
= XHXARKAXXK =
= XXXAXKXKKKX =
= KHKXKHKAXKARXAKAK =
= P 0,0.0.0,010:9.9,9.9,9,0,0.9.9. C
=XXXX KUXKAXXKXKXXX =
=AXXX XHAAXKRKXAKXK =
= XXXX HXXXXKXX =
=SXRXAXXX XXX =
E2 0,009,904 X X =
= XXXXXX XX =
= ’ XXX =
SAAXAX AXXXXX X =
=XX X KXXXXXXXX =
SXXARAX AKXRAXX =
=XXXXXX XXXXX =
SXAXARK A X KAAXK =
SXXXAXX X X XX =
= X X =
= X =
= XXX X =
= XAXXAKX =

6 = 2.0, %ERR = 6.9%

Figure 4.6

Miscellaneous case, 6§ = 1.0, 1.5, 2.0

19’
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= XXHXARARKAKAAAK
ED10.9:9,9,0,0.9,9.0,0.9.4
= XAXAARKKKKAKXK
£3:9,9,9,0,9,0,0,0,0,9,9.4
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= RRRAAAAARAAK
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:9,9:9:9.9.9.9:9:9,0.9.9.C
), 9,0.0.8,0,0,0,8.9,0,0,C
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6§ =1.5, %ERR = 3.4%
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Figure 4.7

True values and predictions by EB logistic spatial estimator (EB-LSE).

Two-by-Two case, § = 1.0, 1.5, 2.0
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Table 4.3
How error percentages for EB-LSE depend on the number of agreeing neighbors.
Entries are percentages, N = number of pixels {(f; = 0 and 1 combined)
with given number of agreeing neighbors.

, CKBD MIScC 2BY2
No.Agreeing (N) I-LSE EB-LSE (N) I-LSE EB-LSE (N) . I-LSE EB-LSE
§=1.0
4 (100) 35 33 (28) 21 32 (4) 50 . 50
5 (300) 24 32 (146) 32 31 (92) 30 33
6 (0) - - (54) 7 7 (0) - -
7 (0) - - (79) 8 5 (0) - -
8 (225) 9 9 (291) 6 8 (529) 1 4
Summary  (625) 20.2 24.0 (578) 15.5 16.8 (625) 5.4 8.6
§=15
4 (100) 28 28 (28) 21 14 (4) 50 50
5 (300) 14 19 (146) 22 20 (92) 13 18
6 (0) - - (54) 7 7 (0) - -
7 (0) - - (79) 3 4 (0) - -
8 (225) 5 4 (291) 4 3 (529) 0 0
Summary  (625) 13.1 15.2 (598) 10.7 10.1 (625) 2.6 3.4
§=2.0
4 (100) 18 20 (28) 14 14 (4) 25 50
5 (300) 8 8 (146) 14 16 (92) 2 7
6 (o) - - - (54) 6 6 (0) - -
7 (0) - - (79) 1 1 (0) - -
8 (225) 4 1 (291) "2 1 (529) 0 0

Summary  (625) 7.8 7.4 (598) 6.7 6.9 (625) 0.6 1.4
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1.0

1.5

2.0

1.0

1.5

2.0

1.0

1.5

2.0

CKBD

CKBD

CKBD

MISC

MISC

MISC

2BY2

2BY2

2BY2

r¢ = number of pixels in ring t. See text for explanation.

DXy

.5?0
.520
.520
.386

.386

.386
.499
.499

.499

=5

.543

.535

532

.409

.401

EB
EB
IDEAL
IDEAL

.397

522

515

511

Table 4.4
Values of the normalized regression coefficients in the nine cases.
“Normalized” means b; below is by = b,(#)/r; for I-LSE or b; = B;/r, for EB,

EB
IDEAL

EB
IDEAL

EB
IDEAL

EB
IDEAL

EB
IDEAL

Avg.
S.D.
Avg.
S.D.

EB
IDEAL

EB

IDEAL

EB
IDEAL

EB
IDEAL

997
.885

1.503
1.337

2.013
1.818

1.021
.897

1.558
1.359

1.54
(.11)
1.42
(.15)

2.113
1.849

.990
1.073

1.486
1.557

1.983
2.028

.631
413

702
.524

748
.614

424
.425

.504
.548

61
(.20)
62
(.08)

.544
641

.904
.719

1.139
.950

1.337
1.146

690
.180

.5585
134

418
.062

.447
.209

.396
214

.43
(.14)

.30
(.04)

.338
.201

996
.383

973
.376

914
.320

.136
141

.182
.147

.207
142

.216
253

.255
276

.33
(.15)

(.04)

.263
282

617
.685

.819
.870

991
1.017

—.090
.034

—.072
—.014

—.087
-.074

.052
132

.059
077

.05
(.08)
.05
(.03)

.036
.012

.075
.368

.063
.338

.003
.264

—.141
—-.012

-.099
—.057

—.081
—.115

—.078
—.016

—.085
~.105

-.07
(.13)
—.07

- (.05)

-.102
—.186

-.020
.262

-.074
.183

—.160
.069
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with r; = number of pixels in ring t, ro = 1,7, = r2 = r3 = 4,r4 = 8,r5 = 4. Thus b(0)
or B, multipled by the ring average Z;; is just b; multiplied by the ring sum r,%;,. We
expect, on a priori grounds, that by, b7, b3, ... would be monotone decreasing because
data from more remote rings usually should receive less weight. (This would not hold in
periodically patterned situations, however, like the checkerboard.)

The rules EB-LSE and I-LSE nearly follow this monotone pattern, except, curiously,
b; < b3 frequently for the ideal rule, with large differences in the 2BY2 case. This is

an unexpected phenomenon, and seems to be peculiar to the particular {z;} values used

(recall that the same simulated data {z;} were used in all nine cases.)

Only in the case § = 1.5, MISC, were the data simulated further, with 10 repeats.
The means (Avg.) and standard deviations (S.D.) of the EB-LSE and I-LSE regression
coefficients for that case are reported in the middle of Table 4.4. Clearly, the main case
considered for EB-LSE produced regression coefficients quite central to the 10 cases, with
the corrésponding main case for I-LSE being less central, but not extreme. The tendancy
toward a monotone decreasing pattern is obvious for EB-LSE, and usually for I-LSE.
However, the problem of b} < b3 occured for I-LSE in four of the ten cases.

Several features deserve comment:

a) The coefficient of y;, b5, tends to be close to §. There is theoretical justification for
this.

b) The EB-LSE coefficients b; are consistently larger than the I-LSE coefficients, espe-
cially in the low discrimination cases like 6§ = 1.0, checkerboard. This pushes the
EB-LSE probability estimates too far toward zero or one, away from 1/2. We dis-
cussed this property of EB-LSE before, in relation to its performance with reépect to
mean absolute error. This effect continues, but only slightly, in the only repeéted case
6 = 1.5, MISC. A correction, perhaps simply aﬁplying a constant multiple to the B;
values, would likely improve EB-LSE significantly for the MSE and INFO measures,

but would not affect the BERR measure.
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c¢) Clearly b} and b; add little to the precision of these rules, and use of r = 3 rings would
have been nearly as effective. This issue of where to truncate the regression vector,

i.e. how to chose r, deserves further investigation.
5. Summary.

We have seen that empirical Bayes theory can help in a spatial analysis by clarifying
the separate roles that must be played by training data and data taken from the target
site. Training data can be uséd to determine the Iikeiihood function, while the target
area data are requifed to learn about the distribution of the parameters in the target site.
These ideas are implemented for a binary spatial setting by (3.16), an estimator seen to
work quite well relative to “ideal” procedufes that utilize the true target site values §. The
key point is that, with the structure assumed, one need not have direct access to any true
values 6 from the target site. This is very useful if the target site is inaccessible or quite
costly to observe, as might occur in some LANDSAT applications.

Of course much more can be done, some things fairly straightforwardly, and others
less so. The straightforward tasks include further tests on new data sets, and comparisons
of the estimator (3.16) with other methods for spatial classification, as follows.

(A) Incomparison with the method of Geman and Geman (1984), by how much does (3.16)
method dominate the Geman annealing method with respect to computing time (the
annealing algorithm is very slbw)? How does (3.16) compare in terms of %ERR for
estimating the best map, that is the most likely 6 value (which is the Geman and
Geman objective)? When the characteristics a of the § process must be estimated,
how do the rules compare?

(B) Some fine tuning of the method (3.16) is needed. The coefficients b} as defined for
Table 4.4 (coefficients of ring-sums) probably should be adjusted so that their magni-
tude decreases as j increases, to reflect the property that the influence of rings should

diminish with their distance from the central pixel. What is the appropriate value of r,
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the number of rings required? How can we correct for the tendency of the coefficients
B; in (3.17) to overestimate the coefficients bt(B) JRSS(0) in (3.6) by a systematic
factor, at least for small 67

(C) The method needs to be checked with real data. Even though the assumptions are
violated, the method (3.16) may work in LANDSAT applications. For example, similar
assumptions were used successfully by Owen (1984) with LANDSAT data.

Other extensions are needed for applications like crop type estimation from LANDSAT
data-. They specifically include:

(A) The polytomous case. Extensions are needed for more than two crop types.

(B) Heteroskdastic data, or non-normal distributions.

(C) Multivariate data. E.g. several spectral bandwidths. The empirical Bayes view-
point has emphasized, however, that the proper reduction of multivariate data may
be determined from training data alone.

(D) Time dependent data. This would be important in some applications. The pre-
ceding remarks from (C), about data reduction, may apply here.

(E) Edge effects. Can the method be extended to be more sensitive to the possibility
that there frequently will be straight line borders?

(F) Dependent observations. Cloud cover and weather effects, for example, would
cause correlation among neighboring spectral measurements even if the crop-type
remains constant. How can the EB-LSE method (3.16), derived for independent data,
be modified to account for known correlation patterns?

(G) Split pixels. What can be done if more than one kind of true value, e.g. crop type,
exists in a pixel? By computing estimates of the fractions of each kind of crop type,
that the method discussed already offers some advantage for split pixels.

The polytomous case seems most urgent. The problem can be approached as an
empirical Bayes problem in the same manner as for the binary case. The main difficulties

arise, however, in proposing appropriate estimates for the parameters a of the 8 process.
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The same difficulty of finding good estimates of a arises in cases (B), and (F), although
the general theory for known a seems straighforward. Case (E) provides a challenge dealt

with earlier in (Geman and Geman, 1984) for a slightly different context.
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ABSTRACT

The problem of estimating parameters in finite mixture of probability
densities is formulated as a continuous mixture estimation problem. HWriting
the finite mixture as h =./?odG(e), where G changes only at a finite number of
points, it is shown that it is possible to construct a sequence of probability
density functions (g,) whose cumulative distribution functions (G,) converge
weakly to G. It is proposed that this sequence be constructed using a linear
programming approach.
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1. INTRODUCTION

Let x be a vector in®" and ¢ another vector in1RK, where ®N and ®K are
real product spaces over the real numbers of dimension N and K respectively.
In remote sensing, x represents the measurement values obtained from a
remotely positioned sensor (e.g., from a satellite) for some given point on
the Earth and & is a vector that can be uniquely associated with the class of
materials at that point. The x-values are the observables but &, the variable
of interest, is not observable.

To illustrate this x, © relationship in terms of a remote sensing
problem, imagine that a set of x-measurements are obtained from an
agricultural area containing fields of corn, soybeans, and pasture. A
possible probability model would be

: 1 2
h(x) = f& Pr(e = 6.) 1 e- 2 (x-ej)
j=1 V2
where h is probability density function (called a mixture density) and it is a
linear combination of normal density functions. A normal density is assumed
to statistically represent the x-measurements from each one of M possible crop
classes. In this model © is a random variable that can take on the possible
class mean values ej, j=1, 2, eee, M, It is seen that © is indeed the vari-
able of interest since it describes the class means, and therefore it provides
a complete statistical description of the x-measurements from a given class.
Moreover, by the fact that positive probability is assigned to only M possible
values of 0, we can determine the number of classes. If the assumption about
this representation of h is correct, then from the identifiability (a concept
that will be presented formally below) of normal mixtures, there is only one
possible choice for M and, ej, j=1, 2, eee, M. Specifically, for this
example given h and the model, it should be possible to determine that M=3,
the values of three crop means el, 92, and 63, and the values of their
proportions Pr (O = 9j), j=1, 2, 3. If the additional fact is known that
the mean of corn is always less than the mean of soybeans and that the mean of
soybeans is always less than the mean of pasture, then it would be possible to
assign these crop labels to the means and proportion;,,fﬁyen though x-values
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can not be uniquely associated with o-values, it is possible to compute a
likelihood or a posterior probability of this association from the mixture
model. If the means can be assigned crop labels then the mixture model can be
used to infer a classification for each pixel.

A general formulation of a mixture density that is similar to the one
given for mixtures of distributions by Teicher [1] is as follows: Let
F = [fe : 8¢ 1RK} be a family of probability density functions and let G be a
distribution function on1RK. For the given G, define the mixture density

h = Jf,dG(o) | (1)

The family F defines a mapping, (say F), from the set of all G-distributions
(say G), to the set of all induced h-densities (say H). If F : G+ H is one-
to-one and onto, then it can be said that H is identifiable. In the case of
the finite mixture, the measure induced by G assigns positive probability to
only a finite number of o-values. For this case

h(x) = ; Pr (@ =90, f (x) (2)
3= T

As reported in two prior papers, previous work concentrated on the case
where ¢ is a translation parameter. In the first paper, Heydorn and Basu [2],
h was assumed to be known, and an approach based on a theorem of Caratheodory
(relating to the trigonometric moment problem as discussed in Grenander and
Szego [3]) was used to determine the number of translation parameters and
their values. In the second paper, Heydorn and Martin [4], h was estimated,
and an integral equation formulation was used to findfé probability density on
g-values.

This paper also assumes that h is not given but must be estimated;
however, unlike the second paper, this paper offers a more general approach in
which 8 is not restricted to be a translation parameter. In common with the
second paper, the idea of estimating a probability density on eo-values as a
means of deducing the number of péramepgrs (i.e., the value of M) as well as
their values is again pursued.
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2. CONSTRUCTION OF ESTIMATORS

Given a finite mixture h on®! that follows the model

M
h(x) = J=21 Pr (8 = oj) f (x - oJ.) (3)

a method was proposed in Heydorn and Martin [4] in which h is first smoothed
with some function t to produce hy L opet ("*" denoting convolution). The
function ht can then be represented as a continuous model of the form

hy(x) =JSf(x-0) g4 (o) do (4)

By choosing the support of t to be small, the integral equation in (4) is a
good approximate representation for the finite mixture in (3) since g; will
have M modes with the modes occurring at the oj-values. '

For cases where o is not necessarily a translation parameter and h
follows the more general finite mixture model of equation (2), an integral
equatjon representation is still possible. It will be shown that this
representation can take the form

h(x) = SF(x,e) g, (o) do + ep(e)

where ||enl| » 0 as n~ = (|| || being the supremum norm). In this case
(gn) is a sequence of probability density functions whose cumlative distribu-
tion functions, G,, converge (weakly) to GeG (c.f. discussion related to
equation (1)).

The approach used for estimating G given h is as follows:
1) First define g, as

K
g.(0) = ). « B (6), c <o <d
n k=1 k "k
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where (B, ) is a sequence of normalized (i.e.,.ka(e)do = 1) B-splines
placed at equally spaced knots in [c,d] and where ay 20, 2ap = 1. This
sequence of g,-functions will induce the sequence (h,) where

hp(x) =Sf(x,0) gy(e)de

2) Assuming that f(e,e) is continuous on (-=,=) x [c,d], Since h is a finite
mixture, h is uniformly continuous on any closed interval, say [a,b].
Let a = x| < Xo < 08 < X = b be a partition of [a,b] and define the
histogram of h to be

1 X5
- m‘_ h(t)dt, Xe (Xj_l, Xj], J =2, 3, see . n
nx) = 751
j-1
0, x¢ [a,b]

Since h must vanish at -« and +-, the constants a, b can be chosen so that for
a given ¢>0, 0 < h(x) < ¢ holds for x¢[a,b]. Also since h is uniformly
continuous, we can construct the partition of [a,b] so that

sup |h(x)-h(x)| < ¢
Xe(Xj_l, xj]

for any j.

3) For j =1, 2, eee, n+l let

1, s 1y Xsl
5, ) - X e (x\]_1 X
0, x ¢ (xj-l’ Xj]

>

' A
where Xg === and xn+1 =+ o, It follows that
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3
e
(o

sup [h (x) - b ()] = 25 sup [h(x) -h(x)] S; (x)
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The first sum on the right is less than ¢ from step 2, and the second sum is
zero from the definition of the histogram. Consider the last sum. From the
definition of h, in step 1

K
lhn(xj) - hn(x)l s E=:1 “k/|f(?(j’9) - f(X’O)IBk (e)de

Since f(e,) is continuous on [a,blx[c,d] the family {fe : ¢ [c,d]f is
uniformly equicontinuous; therefore, it is possible to refine the partition of
step 2 so that |f (xj, 0) - f(x, 0)|<e for any (x, o) ¢ [Xj-l' xj] x [c, d],
j=1, 2, eee, n + 1, Hence for all j

|hn(xj) -hn(x)l < e gi% q = ¢
Following through these steps, therefore, it can be seen that
sup |h (x) - hn(x)l <2c¢
X
provided we select the spline coefficients s with the constraints La, = 1,

o) 2 0 for k = 1, 2, eee, k, so that h, coincides with h.at the partition
points.
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If the histogram is only matched to within ¢ at the points x.:, j =1,

J‘9
2, eee, n, then ’

sup | h(x) - h(x) | €3¢
X

Normally h is not given and therefore must be estimated. In the above
formulation this means that rather than computing the histogram F'it must be
estimated. Given a sufficiently large sample size this can be done (see e.g.,
Tapia and Thompson [6]) so that the above construction steps will still
produce a sequence (hn) converging to h.

It is proposed that linear programming be used to solve for G,. The
linear programming formulation is:
Minimize

b1 + By + 00 4+ 4y
Subject to, for j =1, 2, eee, n, k = 1, 2, eee K,

- d
-, < . ) - f(x., <A,
AJ <h (xJ ) [ (xJ 0) gn(e)do < AJ

Aj >0, @ 20,2uk=1

Guseman and Schumaker [6] and Narula and Wellington [7] have used a similar
linear programming formulation for.other problems.
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3. CONVERGENCE OF THE ESTIMATOR

Given the above approach (steps 1-3) it now can be shown that the
cumulative distribution function (c.d.f) G, related to the density gn'will
converge to the true c.d.f, G, weakly. That is, if G, (o) =./bgn(y) dy, then,

(o

d d
/ q dGn -/ q dG| - 0, (n + =) , for all qeClc,d],
c c
where C[c,d] is the set of all continuous functions on [c,d].

Theorem: Let H be identifiable and (g,) a sequence of probability

densities. Define:
d
h,(x) = / f(x, o) gn(e) de.

If ||h - hyl| » 0, (n > =), then G, ~ G weakly.

The proof of the theorem follows easily from the following lemma of Blum
and Susarla [8]. In their lemma the family of kernels in the mixture is
parameterized on x (not o) i.e., let D = {f (x, ) : xeW}.

Lemma: If D C Clc,d], then H is identifiable if and only if D generates
Clc,d] in supremum norm.

Proof of the Theorem: Pick qe Clc,d], ¢ > o. From the lemma then exists

a sequence (g, X¢), k = 1, 2, eee, K so that (denoting f(x,, *) by ka)

K
g -2 g f, || <«
=1 K %
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For any function se C[c,d] let

d .
2(s) =j s dG

c
d
zn(s) = . s dGn

Since G, G, are c.d.f's, the Riesz Representation theorem has that (denoting
variation by V(e))

[lel] = v(6) =1
and
[lepl] = V(G = 1
Thus
[(2-2,) ()] s | (2-2.) (q-%ak Fo )|
# (e-2) (25, F, )]
or ' _ "ok T
[ (e-2p) (@)= 1] 2mgp ] IIQ-./:_:E,( Fo |
+ I;Ek (h(Xk) - hn (xk))l
<2e¢+ || h- hn ||:%:|Ek|

Therefore
Tim [(2-2p,) (@)} < 2 ¢
n

which implies

for any q ¢ C [c,d] this completes the proof.
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4, CONCLUDING REMARKS

In this paper, which is the third in a series of papers on mixtures, the
idea of studying finite mixtures from a continuous mixture point of'v{ew has
continued. That is, the finite mixture is approximated with a continuous
mixture and the resulting mixing function (denoted by gy or gn) is estimated.
This mixing function gives an estimate of the number (M) of components in the
mixture as well as estimates of the o-parameter values. There are still a
number of numerical and statistical estimation problems to be studied in
relation to this approach; however, from the few numerical studies that were
done (in the second paper) it would appear that the ideas can produce
reasonable answers, and the graph of the mixing function is more informative
to the eye than is the mixture itself.

There may be some mathematical problems, however. By approximating a
finite mixture with a continuous mixture one could possibly loose some
unigueness. It is well known, for example, that a finite mixture of normals
in which the means and variances are allowed to vary is an identifiable
mixture, (c.f. Teicher [9] or Yakowitz and Spragins [10]). However, the same
is not true of the continuous mixture of normals, as pointed out by Teicher
[11}. If, however, we hold either the means or the variances fixed, while
Tetting the other parameter vary, then the continuous mixture is identifiable.
The extent to which this is a 1imiting factor in this approach to studying
finite mixtures needs to be studied.
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ABSTRACT

In this paper we review our work over the past three years, indicate our current thinking,
and point to work generated for those wanting to pursue these ideas.



1. Introduction

For our setting, the purpose of statistics is to extract information from data. One auxiliary
goal may be to maximize the information extracted, for example, design efficient estimators.
NASA data presents special challenges and hence opportunities. First, the data are often high
dimensional. Second, the data sets may be extremely large. Third, the data are expected to be
non-Gaussian, that is, second-order information such as correlation is not sufficient. As a remark,
we note that any one of these features makes good data analysis very difficult. Some present and
many future NASA projects will routinely have to handle all three features. If we accept present
technology and methodology, we are simply “losing” information, perhaps critical to mission suc-
cess.

These ideas are echoed in a recent article by Goetz et al. (7), who discuss imaging spec-
trometry, which is the simultaneous acquisition of images in as many as 224 narrow contiguous
spectral bands. The authors write:

Just as imaging spectrometry requires new technology for instruments and detectors, effective utili-

zation of the data requires development of new analytic approaches and techniques. Bellman’s
‘curse of dimensionality’ is fulfilled...

The authors rather curiously predict that deterministic methods will be superior to statistical
methods. In any case, it is clear that the new technology raise many interesting questions such as
the tradeoff between higher spatial resolution and narrow spectral bands.

Statisticians’ proper role in NASA is varied but extensive: design (with physicistics, MD’s,
engineers), data collection (with engineers and CS’s), data analysis, data presentation (with
managers, artists), program evaluation, among others. In data analysis, relevant research activi-
ties include estimation, filtering, optimization, algorithm construction. The planning activities in
the design role are critical, such as determining whether a proposed system will generate data giv-
ing the desired information (can we predict who gets severe motion sickness or which spectral
bands should be included in a satellite?) and is the system optimal (Landsat’s 4-channel sensor
contains essentially 2-dimensional information, wasting 50% of the bandwidth)?

In the following, I will briefly indicate our work and progress in the areas of data analysis
and presentation of very large non-Gaussian data sets with 3,4, and more variables. We have not
included any graphs, since these are contained in referenced articles. Particular topics include
dimension reduction of non-Gaussian data sets, graphical representation of structure in data sets
with more than 2 variables, efficient algorithms for multivariate density estimation, automatic
calibration of density estimates, and tests of our ideas on real data sets. We note we are only
beginning to have the computer power required to try new techniques for properly analyzing
“difficult”” data. For example, it has been estimated that real-time computer animation will

require the power of 1000 supercomputers!

2. Large High-Dimensional Data

Scientists have attempted to cope with high dimensional data for several decades. When

such data follow elliptical patterns, statisticians have developed extremely powerful, fast, and
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efficient algorithms for all aspects of data analysis and presentation. For data not following such
“nice’” patterns, we are in much worse shape. As an example, Weaver et al. (35) analyze the
series of 500 small and large earthquakes preceding the large eruption of Mount St. Helens. - These
data are 5 dimensional: 3 spatial coordinates, time, and quake magnitude. The authors attempt
to display these data graphically. Two “side” views are constructed. But it is clear that some
information may be hidden in the true higher-dimensional space. We are attempting to devise
methods to reveal such structure, if it exists.

Pictures of large data sets often are misleading. This is illustrated in Scott (19) in a scatter
diagram of 412,000 pixels. The eye focuses on the edge of the data cloud where relatively little
information lies and cannot dissect structure in the middle of the data cloud. Thus relying solely
on graphs for non-Gaussian data is not likely to be sufficient for the new data analysis.

John Tukey has been a leading proponent of the new exploratory data analysis (32,33).
With Paul Tukey (34), he has given us a wealth of different ideas for graphing multivariate data.
Many may not withstood the test of time, but it is likely that many will do so. Many of his
examples deal with Anderson and Fisher’s Iris data, which is 4-dimensional. In addition, examples
from 3 and 4 body particle physics experiments are presented, which are 4 and 7 dimensional,
respectively. We will mention these data sets later.

In Scott (13,14,15,16,17,18,19,20), Scott and Thompson (28), Scott et al. (23,24), and Scott
and Jee (25), we have discussed and illustrated the variety of ways available (including our new
proposals) for displaying multivariate data. Tukey has emphasized scatter diagrams and variants.
We prefer to estimate and display density curves, such as the histogram and the new improved
_histograms. While estimation cannot be ignored, it is the representation of high-dimensional his-
tograms that is exciting and full of new possibilities for finding non-Gaussian structure. Many

examples are given in the references (see in particular reference 18, which contains color prints).

3. Efficient Density Estimation

Computationally, the most efficient density estimator is the classical histogram. The histo-
gram is in the class of nonparametric density estimators, which provide reasonable estimates for a
large class of smooth sampling densities. The statistical properties of the histogram were pro-
vided by Scott (12). From this work it is clear that the statistical efficiency of the histogram, par-
ticularly the multivariate histogram, is inferior to other methods such as kernel algorithms
{which, unfortunately, are not computationally effective). Thus the histogram is only useful as a
preliminary tool with univariate data.

Recently, the second most computationally efficient estimator, the frequency polygon, was
analyzed by Scott (19). It was shown that the frequency polygon possesses the same statistical
efficiency of the kernel a.lggxl'llghms This is quite remarkable and the frequency polygon is quite
useful for univariate and bivariate data. Bin edge effects limit its usefulness for 3 and 4 dimen-
sional data.

Thus Scott (14) introduced a modification of the histogram to obviate the bin edge effects
while retaining statistical efficiency. This object, the averaged shifted histogram, has been



demonstrated in Scott (15) and will be formally analyzed in Scott (20). This estimator may even
prove useful with 5 or 6 dimensional data!

4. Projections of Non-Gaussian Data

Last year, Rod Jee (25) presented a movie illustrating the capabilities of the density estima-
tion approach in an interactive computer graphics workstation environment. The data were col-
lected by Bob MacDonald over forests in Minnesota. In this work, Rod first saw the relationship
among projection methods, information content, density estimation, and feature spaces. This led
him into an investigation of projection methods called projection pursuit. Rod has just completed
his thesis (10), and we now briefly discuss those results.

It is common to orthogonally project very high-dimensional data prior to analysis. This is
the result of a common occurrence with such data: the data cloud is nearly singular in the full
space. Thus projections to ease the associated numerical problems are usually sought. There are
three projection choices. First, one may choose classical principal componenté. This is fast, but
not robust. We also note that principal components uses only second-order correlation informa-
tion and will not usually be satisfactory with non-Gaussian data. The second type of projection is
a ‘“guided” or model-driven (often nonlinear) projection. For example, Badhwar (1,2) constructed
agronomic models to project 24-dimensional Landsat data (multiple acquisitions) into 3 dimen-
sions. This type of projection is usually very eflective and often the best, but it requires a great
deal of research, work, and luck and is not generalizable to other data types. The third type is
““exploratory.” Here, we are interested in finding projections in which the data are maximally
“‘clumped.” This technique was made popular by Friedman and Tukey (5), who named their par-
ticular algorithm “projection pursuit.”

Recently, Huber (9) has completed a lengthy treatise on the theoretical foundations of pro-
jection pursuit. Huber shows that Friedman and Tukey’s optimization criterion function is essen-

tially
f f(z)%dz

which clearly is larger for “bumpier” projected densities that for smoother densities, after correct~
ing for scale. Huber notes that other more classical information criteria may be considered, such

as Fisher Information or Shannon Entropy.

Rod shows that none of these criteria use any second-order information, which emphasizes
the difference of the projection pursuit and principal components methods. By some clever
choices of simulations, Rod finds that Fisher Information and Shannon Entropy do not prefer the
same projection subspaces, and that Fisher Information seems to provide more pleasing pictures.
Friedman and Tukey (F-T) illustrated the projection of the 7-D 4-body particle physics data into
2 dimensions. Rod found the optimal Fisher Information 2-dimensional subspace and it differs
remarkably from the F-T subspace. Fisher Information has many local optima, and the F-T is
one of those. When applied to Bob MacDonald’s 7-D Minnesota data, Fisher Information is quite
similar to principal components, although clearly superior.
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5. Choosing Smoothing Parameters

Many diverse algorithms for non-Gaussian data rely upon choice of a smoothing parameter,
for example, the bin width of a histogram or the size of a neighborhood for projection pursuit.
We have found several interesting results in this area. The first was the discovery by Terrell and
Scott (31) of intrinsic upper bounds on these smoothing parameters. For the histogram,

number of bins > (2n)Y/3 .

In fact, Rod Jee used similar rules in his Fisher Information projection pursuit algorithm. Other
algorithms require subjective choice of this parameter. Similar results have been found for fre-
quency polygon, kernel, and averaged shifted histogram estimators.

A more ambitious goal would be to estimate nearly optimal smoothing parameters directly
from the data. Such estimates are called ‘““cross-validation’ estimates. Wahba had some early
results here, and current work is due to Rudemo, Bowman, Stone, and Hall; for a survey, see
(21). We have analyzed the small (finite) sample properties of these algorithms and have been led
to construct new algorithms as a result (21,27). Many of the algorithms with good theoretical
properties are surprisingly noisy with small samples (10,000 points?).

6. Future Directions

In spite of the gratifying progress in the 5 areas, we still have only begun to understand all
of the theoretical and practical issues as they relate to NASA data, particularly the new high-
dimensional sensor data. We expect to find ‘‘true” multi-dimensional features that will lead to
unusual classification and detection algorithms. Such information cannot be extracted by classical
statistical methods or ‘“new” deterministic algorithms. Many of the issues remaining deal with
efficiency and optimization .problems that we still don’t fully understand. ' Effective implementa-
tion in rapidly changing computer environments is also challenging. Our research goal remains
the same: to extract the maximum useful information from data, both analytically and graphi-
cally, in an efficient, effective, and pleasing manner.
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Section 1.

INTRODUCTION

This 1s the third report on our research aimed at understanding and
obtaining analytical, quantitative results on subpixel accuracy in image
registration. This research was motivated by the observation that while
subpixel accuracy 1is very important in many practical applicatiomns of image
matching, and while many claims concerning the degree of accuracy achieved in
an application have appeared, analyses have been limited and a theoretical
basis for understanding subpixel accuracy was lacking.

Our study, represented by this report and ﬁwo previous reports [Lavine et
lal, 1983; Berenstein et al, 1984], has attempted to lay foundations for such a
theoretical basis. These foundations have taken two primary directions:
geometric models for subpixel accuracy in edge detection; and the matching .of
image composed of random fields.

Our previous reports on the analysis of subpixel accuracy focused heavily
on the determination of the locationm of a real world stfaight edge based on a
detection of its digitization in an image. Analytical results were obtained
for the attainable accuracy in the estimation of the edge position. One
limitation of the analysis was the assumption that the correct digitization of
the edge could be determined. We made several attempts to address this
problem in the previous work. Those attempts led to several approaches which
were more flexible and accurate but still suffered from difficulties in the
estimation of average grey levels for regions abutting the edge. Then the
paper by Tabatabai and Mitchell [1984) appeared, and led us to think of new
ways to simplify the estimation problem.

The relationship between the work of Tabatabai and Mitchell and our
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.previous work was unclear at first, but the computational simplicity of their
work ﬁogether with the accuracy of our results made a study of this
relationship desirable. Our examination of the two approaches 1led .to
extensions of the Tabatabai-Mitchell approach which should be useful in
applications to LANDSAT image registration. The relationship between the
approaches also ﬁas suggested the possibility of a whole range of algorithms
bridging' the gap between the two approaches, in which one trades off accuracy
for computational  simplicity. This report describes our investigations in
these directions (Sections 5 and 7).

A second research direction pursued in the present study was the
resolution of a conjecture on an asymptotic expression for the number of
digital 1lines of specified length. In our previous study of the accuracy of
line position estimation given a digitizatioﬁ of a line, we developed general
methods of error analysis and performed more detailed analysis for digital
segments of a fixed 1length, which was chosen to be tem pixels. For the
development of a more flexible theory of error analysis, we sough; an
asymptotic expression for the number of digital lines of any length. A
conjecture for such an\asymptotic expression, developed in our previous study,
is proved in the current report (Section 3).

The overall direction of our study in the three phases of this study have
been directed to the analysis of methods for achieving subpixel accuracy in
image registration with emphasis on the use of subpixel accuracy in edge
detection. Though many approaches to the problem ﬁave appeared, analysis has
been 1limited and a general theory of subpixel accuracy is lacking. Our study
has attempted to lay foundations for such a theory. These foundations have
taken two primary directions, the matching of images composed of random fields

and geometric models for subpixel accuracy in edge detectionm.



Appendix A of this report titled Subpixel Translation-Registratibn of
Random Fields continues our work on the analysis of correlation based
techniques for matching images ;omposed of random fields and presents results
of computer simulations. which confirm the theoretical results. - This
represents one of the first systematic performance evaluations of the maximum
correlation ;ethod of 1image registration and of a known effective wvariant
based on maximizing a least squares quadric surface locally approximating. the
(discrete) correlation - statistic near its (discrete) maximﬁm. Section 8

presents a summary and conclusion of our work.
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Section 2,

DIGITAL STRAIGHT LINE SEGMENT PARAMENTER ESTIMATION

Estimation of the location parameters of a real world edge giving rise to
an image edge is discussed in this sectiom. We start with-ra ‘summary
of those parts of [Do-Sm] which are useful for subpixel registrationm. Their
basic result is a determination of all lines whose digitization is a specified
chain code. In a later section, we use this set of lines to derive
error bounds on registration accuracy.

Several 1line digitization procedures are commonly used in graphics and

" image processing. Given a line segment in the upper right hand quadrant of
the plane, with slope'and y—-intercept both between O and 1 and strictly 1less
than 1, we define its digitization as follows: To each intersection (a,b)
between the 1line and a line x=a, a an integer, we associate the pixel with
lower 1left hand corner (a, th) (see Figure 1). The chain codé of the
séquence of pixels with 1lower 1left hand coordinates (O,bo), (l’bl)’ e,

(N,bN} is the sequence cl,...,chhere
o if [b) = b,
1 otherwise
The restrictions on the sope and y-intercept of the lines under consideration

are made for simplicity of presentation. By symmetry the results can be

extended to remove these conditions.



To determine the lines'with specified chain code, it is useful to have a
parametrization of the set of all chain codes of digital 1line seéments
resulting' from digitizing the class of lines specified above. In [Do-Sm] the
following parametrization 1is given. A digital 1line segment chain code
(ci,...,cN) is given by a quadruple of integers (N,p,q,s).

N 1is the length of the chain code, i.e., the number of O's and 1l's. We
note that not every string of O's and 1's is generated by a line segment. For

a characterization of those that are, see [W-R].

Figure . 1 - Chain code of a digital line. The digitization of the dark
diagonal line has pixels with lower lefthand vertices (0,0),
(1,0), (2,0), (3,1), (4,1), (5,1). The resulting chain code

indicated by the arrows is 00100.

Next, q 1is defined to be the smallest integer such that there exists an

extension CN4+1s CN422°°°» with C15C25C3,00e periodic with period q. Define p

to be the number of ones in a period. The fourth parameter, s, provides a

e -
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normalization of the chain code for one period. Geometrically, s may be
interpreted as follows. Any chain code corresponds to a line segmeﬁt' with
rational slope. Along all such segments, select the slope p/q with pAg=1
which has the minimum q. This q is the period. The standard . chain code
corresponding to the first period of ths chain code is the chain code of the
digitization of the first q pixels of the line through the origin, y=(p/q)x.
The ith element Cyo of this chain code 1is given by

cy; = W(p/q)) - Ki-1(p/9)}, i=1,2,...,N
The parameter s, of a code string of 1length N, is defined by ghe condition
that the standard code string of p/q started at the (s+l)th element of the
original chain code. Given the paramenters N,q,p,s of a code string, the ith
. element of the original code string can be obtained by

ey = Lgi-s)(p/qu - Ki-s)(p/q)), 1=1,2,...,N
The parameters satisfy the constraints O<pgqgN and Ogs<q-l. A point which
will be particularly important for the registration problem is that there are
contraints on the parameters other than the above inequalities. These
additional contraints are described in [Be et.al.]. Oui interest in these
matters stems from the need to enumerate the digital lines satisfying various
conditions. If it were not for these messy constraints, the enumeration
problems would often be straightforward. Without these additional comnstraints
for fixed N, we would obtain all digital 1line segments of length N by
independently varying s,p,q subject to the constraints O<pgq<N and Oss<q-1l.

We now give an example of the computation of the parameters for a ‘chain

code.



EXAMPLE: Chain Code 10010100

N = 8: there are 8 digits in the code

q = 5: the above code is part of the infinite code

. . . 100101001010010 . . .

p = 2: the number of 1's in the period 10010 is 2
s 1: The standard codestring of 2/5 is 00101. The standard
codestring starts at the 2nd elements of the chain
code. Hence s = 1.

Since the smallest period plays an important role, let us point out two
ways of computing it. The first one might be easier to use for long strings
with the help of the FFT, the second one is very convenient for direct
computation in short strings.

For the first algorithm extend the chain code to the right, with period,

Ni.e., cyun = cy- Then .

(1) q = inf §j: 1<j<N such that 1/N 1 (-1 * eiyg =13,

n

1=
Notice that the wmaximum value of the average 1in the definition of q is

precisely 1. In the second algorithm, we extend the <code chain in both
directions by zeroes and comnsider
q = inf ?tj: 1<jsN such that 1/N 'gl(—l)Ci + ci+j' =1}.
h i=

with the understanding that if the set of j's is empty we take q=N. What this
really means is that we slide successively to the right of the chain code and
compare the tail end of the original chain cbde with the first portion of the
shifted chain code, the value q corresponds to the first perfect match, if
there are no matches then g=N.

The primary result of [Do-Sm] is a description of the set of all lines
whose digitization over the interval [O,N]} is a set of pixels specified by a
chain code. This result is of great importance for our registration accuracy
results since it provides a hold on the errors which may arise by aproximating

the true edge by a feasible edge. The set of lines 1is described by a

quadrilateral in the (e,u)-plane where e is the y—intercept of a line and o is
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the slope. We will call this plane the dual plane. The proof of the
following formulas can be found in [Be et. al.].

Define functions F and L by:

(2) F(s) = s[s/q]q

and

(3) L(s) = s+|(N-s)/q]q

Let & be defined by the equationm:

(4) 1+{p(p/q))-2(p/q) = 1/q and Oskxq,

or what is the same, by the fact that fp= -1 (mod q). The set of feasible‘

lines is a convex quadril t ral in (e,%)-space with vertices A, B, C, D given

by

(5) A& = (|F(s)p/al = F(s)p*/q¥pt/q+)

(6) B = ([F(s)p/q) = P(s)p/q,p/q)

(7) € = (H#|F(st L)p/q) - F(stl)p/q,p/q)

(8) D = (1+|F(s+L)p/q] - F(stDp™/q7,p7/q")
where

(9) qF = L(stD) - F(s), ot = (pa*+1)/q
(10) q= = L(s) = F(s+), p~ =-(pq"-1)/q

The above expressions for the vertices of the feasible quadrilateral will
be discussed in greate# detail in later sections. We note here that none
of the vertices A, C, D nor the points in the two sides of the quadrilateral
determined by them correspond to lines that have the chain code (N,q,p,s)
after digitization. It 1is also very important to note that (since we are
working with lines of non-negative slope < 1 and non—-negative ordinate to the
origin { 1) the quantities pt*, qt, q~ are strictly positive, while p”2> 0 (in
fact, from (10) it follows that p~=0 only if p=q"=1). This remark, which is
omitted in [Do-Sm], is crucial to provide a correct count of all distinct

digitial lines of lehgth N.



Figure }~2 Feasible region for a digital line.

The digital line consisting of those pixels with

darkened Dboundaries has the shaded area as its
feasible region.

Figure B Intersections for the feasible region.

The four boundary 1lines A, B, C, and D of a
feasible region are shown. The intersection
of A and D always lies between the parallel
lines B and C. These lines in the x,y space
correspond to the vertices A,B,C,D of the

feasible quadrilateral in the (e,*) parameter
space.
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Section 3.
PROBABILISTIC EDGE ANALYSIS

This section présents analytical results on.the error analysis of the
digital liﬁe approach to edge detection. Previous results on error bounds for
offset estimation accuracy are reviewed. An asymﬁtotic formula for the number
of dig;tal lines of a given length, which was conjecturéd previously, 1is
proved and corresponding asymptotic error analysis is given.

A worst case bound on registration accuracy using digital edge was
described in [Be et.al.]. More realistic error information can be obtained
using probability. In this section we consider the question of obtaining
probabilistic information on the registration error assuming the real world
edge giving rise to the digital edge is generated by a nagural distribution on
edges. We have procedures for estimating these probabilities, but due to the
considerable computational cost involved in evaluating these in special cases,
we prefer to first seek analytical simplificatioms.

Many probabilitic questioms pertinent to the geometric accuracy question
can bd formulated. In this section we consider the problem of determining the
probability, that the actual registration error will not exceed a specified
level. We wish to determine, for any acceptable error level in the estimated
offset between sensed and reference image, what is the probability that a
random edge will result in a digitization which permits estimation to better
than that error level. Though a simple formula for these probabilities as a
function of digital line length is not available, a procedure for calculating
these probabilities for any given line length, N, is described and results for
the case N=10 are presented. 1In addition we present an asymptotic expression

for the error.



The basic approééh to computing the error probabilities is quite simple.
A probability density function 1s given on the set, A, of all lines with slope
between O and 1, going through the pixel with lower left vertex (0,0). Since
a line has only one chain code, the sets of lines with different chain codes
gives a partition of the set A. Hence the density on lines induces a density
on chain codes. For a chain code with period q, the maximum error is 1/2q as
was shqwn in [Be et. al.]. Thus for any specified error h, we must calculate
the probability of the following set, B, of line chain codes.
(1) B = {(N,q,p,8): 1/2a¢h}
The set of all linear chain codes of length N can be enumerated. For each
chain code in B, the corresponding feasible quadrilateral can be calculated as

in Section 2. The density function on lines can then be integrated over the

quadrilateral and the sum of these integrals over all members in B computed.

This sum yields the desired probability.

The problem of enumerating linear chain codes of lines through the origin
was discussed in [R-W] where also an algorithm for generating the set of
linear chain codes was presented. We have not found any estimates in tﬁe
litérature of the number of chain codes of a given length. The problem is
that the shortest period of the digital line of length N corresponding to a
line
(2) y = (p/q)x+m/q
might be strictly smaller than gq. Since such lines generate all the possible
digital 1lines and we can associate to each a code (N,q,p,s), the prpblem
reduces to characterize those values of s for which this code does not

coincide with (N,q,p,S) with < q. The answer lies in the following.
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Proposi{:ion 1l: Given a code (N,q,p,s), the necessary and sufficient condition
that it does not coincide with a code of strictly smaller period is that ¢ 0

and q">0, where qt,q~ are defined by (2.9) and (2.10).
q

Proposition 1 and its proof give us a way to compute the number L(n,q)
of dig;tial lines of length N and smailest period q. 1In fact L(N,1)=1 so we
can consider gq>1l, then the situation N-s<q can only arise if N £qt+s-1%2q-2,
that 1is, (N4+2)/2¢q. Hence, if q<(N+2)/2, s can take arbitrary values and it
follows that
(3) L(N,q)=q@(q) for 24q&(N+2)/2
where ¢(q) is the Euler function that counts the number of values p, lep4q,
(p,q)=1. This formula is clearly walid for q=1 since ¢(1)=1. Intlie remaining
range of q we can use the fact that when p runs over all the values considered

in ¢(q), so does {, where we remind the reader ! is defined by (2.4). We fixQ

and divide the range of s into two classes

(4) 04s¢N-q,N-q+ltssq-1

The second class 1s not empty since we are assuming M+242q. In the first
class every line has smallest period q, this accounts for N-q+l lines. 1In the
second classv we have two subclasses, s+f<q and qes+i. The first one cannot
introduce any lines of period q due to the condition q >0. In the second one
we have to consider whéther

(5) N~(s+{-q)2q

or not. Only 1if this inequality is true we get new 1lines (due to the
condition ¢*30). Hence we must have

(6) max{q—l, N-q+]3& s&nin {q-l,N-l}

which gives us 1+min§1—1, N-q, 2q-N-2, q-l-l} lines (notice that this minimum
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ls non~negative). Therefore, in this range of values of q we have
(7) L(N,@) = (N~q+2)¢(q) +§m1n{2q-u-z, qf-1, I-1, N-q}

vhere the sum takes place over all values £, ¥liq-1, fAq=l.

Proposition 2: Let L(N) be the number of digital lines of length N with both

slope and y~intercept between O and 1. Then

0

" _ N
& L -El aplg) + X (N-q+2)¢(q)
q= :
q 3 +1
N gq-1 -
+ §r~ ‘ 12 min{Zq-—N'-»Z, q-1-1, -1, N-—qg
“’"‘['23*1‘ <2Té>==1

Since this expression is a little bit hard to work with, we can use upper and
lower estimates, L** (N,q) = q {q), L&(N,q) = (N~q+2) (g) forqiin this range,

Finally, setting L(N) = total number of digital lines of length N, we get the

estimates

(9) v/l N ‘
L(N) = I q¢f(q) + I (N~q42)%(q)
* a=1 (N/2)+1=aq

¥

N
<= L(N) <= Lu(N) = I qé(q)
q=1



164

Using the above formulas we can produce the follbwing table for N=10.

q ¢Ca) Ly(N,a) L(N,q) L ¥(N, q)

1 1 1 1 1

2 1 2 2 2

3 2 6 6 6

4 2 8 8 8

5 4 20 20 20

6 2 12 12 12

7 6 30 36 42

8 4 16 20 32

9 6 18 22 54

10 4 8 8 40
TOTAL: 21 135 217

We notice that L(N) is fairly close to L*(N) and very different from L*“F(N).
L*H*(N) would have been the count if no digital lines drop their period when

considered to have finite length. A better upper bound function L*%N,q) can

be defined as follows:

E 4
L (N,q) = L(N,q) 1 <= q <=T(n/2)]

L (N,q) = L,(N,q) + (2q-N-2)(0(q)-2), (N/2)+1 <=
(10) . <= (2/3)N + 2/3 )
L (NQQ) = L*(N7Q) + (N'Q)(‘P(Q)-Z)

sy (2/3)N+2/3 < ¢
<= N

The choice is motivated by choosing the smallest of the two terms independent
of I in the minimum that appears in (7). Since the values £=1, f=q~1 make
this minimum zero we only have (¢(q)-2) terms in the sum. We also note that

L*(N,q)=Lx(N,q) for q=(N/2)+1 (if this value is an integer) and for q=N. For
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N=10, we have only three values to compute
(11) L¥(N,7) = 38, L*(N,8) = 20, IK(N,9) = 22
which gives L*(10) = 137 in this case, a very good approximation (We have

N
used L*(N) = EIL*(N,q).
q=

Proposition 3:
The following asymptotic development for L(N) holds:

(12) L) =%§' + O(N2 logN).

We can compare this proposition with the asymptotic behavior of the asymptotic
behavior of the upper and lower bounds thaE were proven in [Be et. al.]:

(13) L (N) = (3/4wdN + O(NIzl‘ogN) 0.076n8°>

(14) L (N) = (10/972)N + 0(N2logN)  0.112N°

We have computed L(N) and L'(N) (the leading term of the asymptotic formula
12) for N=100 and found the following values

(15) L(N) = 104,359

(16) L'(N) = 104,949

The relative error between these two values 1s only 0.5Z. In order to prove

Proposition 3, we need to introduce some preliminary lemmas.

Lemma 1

> |wa] = o(loglogn)
d'n d

>, 1= 0(loglogn)
d‘n d
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Proof: The first sum is over the divisors that are square-free;
it coincides with [] (1 + i) This is clearly as large as
p|n P
P prime

possible if n is itself the product of the first r primes,
D= DPy..ePpe We now estimate r and p,. We have
logn = X logp;j2 Cop_ ,

by [iia-Wr, Theorem 414]

Also p,. =z rlogr, by the Prime Number Theorem
logn 2 Crlogr
“r<C logn
loglogn

Now 1log I (1 + i)s Y 1 =loglogpy
pln P PSP, P

Thus [I (1 + _‘._L_) = 0(loglogn)
pln P

To prove the second estimate, one needs to show that:

T 1 > ludl s ¢
d‘nd d|n d

We have 3 1 ? ()] < P p2
dlnd/dn d —J;In T+1
P
1+1+1 + -
P pz
< 11
- 1+

e
9
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ler Flx) (IELI = x- 3 [§]+ p‘Fn '"[?’:_]*_ > {;:_r]+

pin
2sx (pgx) qin
P¥q
PgsSX

p|n P plnpq
q|n
W
n(l- l) = ¢(n)
P n
error € X L, > S < 2 @] < z -I-Ec(ld—)]- = 0O(loglogn)
pin P pln PH d|n d d|n
pE<x q|n d<x
p#q
Pq X
By Lemma 1

The distribution function F(x) of the number of f's relatively prime

to n, for x<n is given by

F(x) = _(I%(ﬂ x + 0(loglogn)

We obtain the following corollary:

f<n

P = F) - Fla) = (o-a) EBL 4 o(logloga)
ag f sb <n .
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b b

21! .}:’xdF = xF(x) [ - f F(x)dx
Lln a a a

ag f<b

b,
- x2@(n) Ib + 0(loglogn) (b-a) = Spr(!L) f xdx + (b-a) O(loglogn)
n a .
a

2

b
- % x° ¢(n) | + (b-a) 0(loglogn)

n a

b2 - a2 (o) + (b-a) O(loglogn)
2 n

Proof of Proposition 3:

First we want to deal with the term

Z min (2q-N-2, q-‘e_lp z’l’ N=q

1
Where g has been fixed in the range gl + 1 <q<gN, and the summation
takes place over !, 1<£<q, (f,q)0 = 1. Clearly we can assume 1<j <gq

otherwise the corresponding term is zero. First we divide the range of

q according to whether N-q <2q-N-2 or not.

In the first case 2N + 2 <3q so q){ll;al

If [—g—] +1lsq4 2}?2 , and we graph the minimum as a function of £ we

have a trapezoid. That is, for small 1 the minimum is 1-1,

for { near q the minimum is clearly q -{- 1 and in the middle range we

have 2q-N-2, and we only have to find the cut off points:

-1 = 2q=-N-2 = 1< &2q-N-1

2q-N-2 2 q-£-1 => q>4 = N-q+1
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The middle range is compatible because of the assumption on q that

2q-N-2 < N-q.
The sum
2q-N-1 ' Nz -1
WD+ LI Q) 4 B (@D

can be written using the corollary to Lemma l-. -

%91 (2q-N) (N-q) + O(N. loglogN)

Over the remaining range of q we get exactly the same expression. Hence

N ,
> N N
L) = %: qp(q) + (N-q+2)¢(q) + Z (qu_)_ (N-q)(Zq-N)) + 0(NloglogN)
1 fi:’lu '
2

a= [%4-1 !

Now recall that the distribution function@® of (q) is known to have

the asymptotic behavior [Ha-Wr, Theorem.330]

2
dx) = I ¢(_q) = J + O0(xlogx)

and hence the asymptotic behavior of L(N) can be computer from the above

expression using Stieltjes integrals and integration by parts as we did with the

Corollary of Lemma 1

N
A 3
1 N
j; xd P(x) = Z i + 0(N210gN)

11 3 2
(N+2-x) d(b(X):Z—;z N° + 0(N¢logN)

P R )
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N .
3
[ -0 QxN) 440, = 2 [3 N3 - (§)3 - X1+ o?1logm)
x ™ {3 2 2
N
2
3 ,
= W + O(N lOgN)

Using these three integrals together and noting the discarded term is
only O(NzloglogN), we have

,\]3 2
L(N) = -;-r-z- + O0(N<logN).

We are now ready to study the asypptot;c behavior of the error 1im the
offset estimate. Let us recall that for a given period q, the minimum width
of the channel parallel to the line B (Section 2) is l/q. We set
(17) S(N) = qgl (1/q)L(N,q)

Then the average offset error incurred by using the line parallel to B passing
through the middle of the channel is given by
(16) E(N) = ((1/2)S(N))/LN)

when we use the uniform distribution on digital lines.
Proposition 4: The asymptotic behavior of S(N) and E(N) is given by
(17) S(N) = (6(1-1og2)N2)/m2 + O(NlogN)

(18) E(N) = (3(1-10g2)){1/N + 0(lagN/N2)

Hence on the average we expect an offset error of approximately 0.92/N.
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Proof

We have from (7)

ol

=1 1
[E

_ 2 I N

"I g+ z Tog+ 0 B oeg@em,
=1 51+ 1 1; +1

+ O(N logN loglogN)

Now we can show as before

N
J 322 a0 o3 2L o 1ogw)
. X X =72 4 °g
2
and
N
J @—'—"—)5&"—'—“1 d¢(x)=;3_7-N2(§--210g2) + O(N logN)
N X 2
2
Hence
s(N) = %%-NZ P'- 2 log4 + O(N logN loglogN)
and

_ 1 S(N) _ 3(1-log2) logN loglogN
EM =3 Tm N + °( N2 )
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Section 4.
EDGE DETECTION

One approach taken to edge detection in an earlier phase of our study on
subpixel accuracy was to search for the edge using a hypothesize and test
procedure. This procedure, which is described in [Be et.al.], proved accurate
in experiments. Unfortunately, it 1is difficult to evaluate the process
analytically, since the effect of noise on the search is 'difficult to
quantify.

A simple approach to the subpixel detection of edges which‘is efficient
and can be easily analyzed is described in this section. This technique 1is
based on the idea of matching the moments of a digital image window with those
of a continuous scene with an ideal edge in order to estimate the edge
position. This approach of matching moments for edge detection firét appeared
in a paper of Tabatabai and Mitchell [1984]. Our assumptions that the edge
location 1is approximately known and that the edge orientation is known
provides simplifications which permit more complete analysis of the algorithm
performance. In addition, the assumptions enable us to make additiomal
adjustments for digitizationm error.

The basic approach to edge detection taken by Tabatabai and Mitchell 1is
. to set the first three observed moments of the image equal to the first three
moments of a continuous image with an ideal step edge. In-their case, the
slope and y-intercept of the edge are unknown as are the grey levels on the
two sides of the edge. They use a digital disk for a window and write the
first three moments of the real edge in terms of three parameters: the grey
levels, hl and h2, on the two sides of the edge and the area, A, on one side
of the edge. They then set these three moments to be equal to the first three

moments of the observed image amd solve for hl, h2, and A.



One desirable feature of the Tabatabai-Mitchell approach is that it 1is
unnecessary to know the average grey levels on the two sides of the edge
before estimating the edge location to subpixel accuracy. For the purposes of
the present study, we assume the edge position is known to within a pixel, so
unless the areas on the two sides are small, this additional flexibility may
not be very useful. On the other hand, if the regions abutting the edge have
relatively few pixels, it may be desirable to use the mixed edge pixels in
estimaging the region grey levels for use in edge detection. In the procedure
described in this section, we assume that the grey levels for the region are
estimated without using the mixed pixels.

One problem with ﬁhe Tabatabai-Mitchell approach is that it is based on
the assumption that the digital moments and real moments are equal if no noise
is present. While the first moments are the same, it can be easily seen that
other moments do not agree. We have not yet been able to develop an exact
formula to correct for this discrepancy, but we have been able to derive an
empirical correction formula which works well.

We now describe a procedure for aetecting straight edges to subpixél
accuracy given that the orientation of the edge is known and given that the
mean grey levels on the two sides of the edge have been estimated. This
algorithm draws heavily on the work of Tabatabai and Mitchell [1984], adapting
it to make more effective use of the assumptions on the current problem.:

The Simple Moment Edge Detector (SMED) seeks to find a single edge in an
nxn square window. A window width of ten was selected for the experimental
study. The window has lower left hand coordinates of (0,0) and upper right
hand coordinates (10,10). For simplicity of experimentation, we assumed that
the edge is given by a line y=mx+b where m>0, 0<=b<{=10 and 0<=10mt+b<=10. Let

the grey level above the edge be hl and the grey level below the edge be h2.

173



174

Let Al denote the area above the edge and let A2=100-A1 be the area below the
edge. The ith moment, mi, of the real edge is defined by
(1) mi=Al*h1i+a2%n2 1,

The digital moments afe computed in a similar-fashion. Let #ij denote the
pixel whose 1lower 1left hand corner ﬁas coordinates (1,j). Then the kth
moment, mek, is defined by
(2) mek= X (xij)k. r
The digital edge is formed by assigning, to each pixel not intersected ﬁy the
line, the corresponding grey level from the continuous image and by, assigning
to each pixel the line goes through, a weighted average of the grey levels hl
and h2. The weights are the fractions of the area of the pixel above and
below the line.

The .slope of the line, m, is assumed known and the grey levels hl and h2
are assumed to be estimated from the data prior to the calling of the
procedure SMED. For the present analysis, we assume the estimates of hl. and
h2 are exact. Thus the only parameter to be estimated is the y-intercept of .
the 1line. In the noise free case, the y—intercept can " be writtem as a
function of m, hl, h2, and any one of the moments. Let yi \denote_ the
y-intercept. Then‘

3) A2=h2*yi+nZm.

The kth moment of the real image is given by

(4) ml=hi1k*A1+h2K*A2.

Equating the real and observed kth moments we get:
(5) hikAl+h2ka2= T xijk,

Since the sum of the areas 1is nz, we have

(6) Al+A2=n2.

Substituting (6) in (5) and simplifying, we get



(7) A2 = Tl'k'— (Zx1j%- n1%?)
h2¥on1 ¥

From (3) and (7), we get

% % (Exijk - hlknz) - an

n2* - nik

This ﬁrovides us with an estimate of y in terms of the known parameters and
the kth moment of the observed data.

An expression for the y intercept of an edge in terms of the first or
sécond moment of the observed window has been developed. Unfortunately, as
indicated above, the higher digital moments do not agree with the higher
continuous moments. This discrepancy will result in errors in the estimation
of. a y-intercept, even in the absence of noise. This problem is explored in
the next section and an analysis of the error in the y—intercept estimate is
given in the following section.

A variation of the SMED will be described in Section 6. In this
variation, only pixels near the edge will enter into the moment calculation.
This has the advantage of using information only from those pixels we suspect
of being mixed pixels contaiﬁing the edge. This approach is moré reasonable
from a statistical point of view than using the entire square, but it is more

difficult to compute.
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Section 5.
DIGITAL MOMENTS

One problem in using the moment matching technique for subpixel accuracy
in edge detection is the faét that even for noise-free images, the digital and
continuous moments are not equal. Since the experimental investigation of
many choices of moment exponent (includingvfractional exponents), line slopes,
y-intercepts, and noise 1levels 1is costly, it 1is desiraﬁle to have a
theoretical analysis of the effect of this error. IE is also desirable to
have some means for compensating for the discrepancy. We have not yet been
able to develop a general theoretical amalysis of the problem. In this
section we introduce some empirical results and initial theoretical results.

The difference betweeﬁ digital and continuous moments can best be seen in
the case of a single pixel. Let L be a line going through a pixel. ‘Let the
two regions into which the line divides the pixel have areas Al and A2. Leé
the region with'area Al have constant grey level hl and let the other region
have grey level  h2. We now assume the grey levels are fixed and first
determine that wvalue of Al which results in the maximum discrepancy between
real and computed moments and second determine that maximum resulting
discrepancy. Note that there is no error if Al or A2 is zero.

We define the computed second moment, c(Al), and the real second moment,
r(Al) and define the error, e(Al) by
(1) e(Al)=r(Al)-c(Al).
The fuﬁctions ¢ and r and given by:
(2) c(Al)=(hlAl+h242)?,
(3) r(Al)=h12A1+h22A7 .

Substituting A2=n2-Al into (2) and (3) and substituting these expressipns into



(1), we get

2_12242h1h2)

(4). e(Al)=A; (h12+h22-2h1h2) + A12(-hl
Differentiating e, setting the derivative to zero and solving, we see that the
error e is maximized when Al=1/2. The resulting error is

2_2h1h2)

(5) e(1/2)=1/4 (h1%+h2
For n=10, hl=20, and h2=10, and a horizontal edge bisecting the window, the
second digital moment is off by 122 from the second real moment. The
resulting error in the y-intercept estimate can be mucg greater, depending on
the parameters of the edge. Analytical calculations for higher order_ moments
and for real exfonents rather than integer expoments in the moment definition
are harder to calculate, but we believe that the moment error effect grows
with the size of the exponent.

Since the theoretical analysis of the digitization error in the second
moment 1is difficult for lines with arbitrary orientation and y-intercept, we
took an empirical approach to determining a correction term. Real edges with
intercepts ranging from 0.l to 0.9 in steps of 0.1 and slopes from 0.1 to 0.9
in steps of 0.1 were digitized. Grey levels of 10 and 20 were used on the tﬁo
sides of the real edge. The window size was 10x10. For each slope the
average error in the second moment was computed. This average was taken over
all intercepts with that slope. The moment errors ranged from 167 at a slope
of 0.1 to 220 .at a slope of 0.9. The average error was monotonically
increasing as a function of the slope. A lineaf function agreeing with the
observed values at the extreme slopes was used to represent the moment error.
The maximum difference between the value of the linear function evaluated at a
given slope and the corresponding error in the second moment was about 5.
Thus the linear approximation to the second moment provided a correction which

yielded a second moment which was within approximately 3% of the correct
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value. This contrasts with the uncorrected error of approximately 127 in the
horizontal line case.

While the above empirical correction scheme was adequate for the
. experiments, a theoretical analysis of the error would be highly useful.
Under our assumptions, the y-intercept can be estimated using the sum of the
pixel values raised to any positive real power, not just the positive integers
" as one encounters in using the moments. Based on limited experimentatiom, it
appears that the choice of exponent should vary with the slope of the 1line.
To determine the optimal exponent, it would be useful to be able determine the
exponent which results in the best y-intercept estimate for a given slope.
This optimization, which will be discuésed later, depends heavily on a
knowledge of the dependence of the moment error as a function of the slope.

One aspect of the moment error analysis which may be approachable using
the digital geometry techniques of the previous report [Be et. al.] 1is the
estimation of the dependence of the moment error on the y-intercept for a
fixed slope. Consider the behavior of the digitizations obtained by
translating a line parallel to itself. The effect of this tramslation is to
cause the chain code describing the digitization to change by rotating the
portions of the chain code within each period. Thus the digitizations of the
various lines tend to exhibit considerable similarity. Since the moment error
is only dependent wupon the relative areas above and below the edge in the
mixed pixels, one might hope thgt translating the edge results in a set of
pixels with approximately the same relative areas with the areas Qccuring in a
possibly different order. The rotation of the chain codes suggests that it
may be possible to derive bounds on the effect of line tramslation on the
sequence of relative pixel areas. This topic appears a promising direction

for future work. If the effect of tramslation on the moments can be bounded,
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then the determination of the variation in moment error as a function of line

slope and intercept may be simplified.
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Section 6.
THEORETICAL INTERCEPT ESTIMATION ERRORS

We now compute the error distribution for the estimate of the y-intercept
of an edge given its slope, the average grey levels above and below, and the
oBservedA grey levels. We consider a modification of the procedure outlined
previoqsly in which observations from the entire nxn window were used. The
modified procedure is more realistic than the corresponding analysis based on
the full window.

The new intercept estimation pfocedure uses a parallelogram instead of a
rectangle where two sides of the parallelogram are parallel to the edge and
the others are vertical. Assuming a prior registration which is accurate to
within a pixel is available, many s#ch parallelograms containing the edge can
be constructed. The following analysis contains parameters which are a
functibn of whichéver parallelogram is selected.

The geometry of our parallelogram window is shown in Figure 1. The area
below the edge L and above the bottom of the parallelogram is Al. The area A,
of the parallelogram is equal to Al + A2. The bottom of the parallelogram has
height h and L has y-intercept yl. The area A can be easily computed:

(1) Al = n(yl-h)

which can be rewritten as

( 2) vyl =Al/n+ h

We would 1like to set the real first moment of pixels in the parallelogram
equal to the digital first moment. If hl and h2 are the mean grey levels
corresponding to Al and A2, then the moment is hlAl + h2A2. For pixels
entirely 1inside the parallelogram, the contribution of these pixels to the

first digital moment is just the sum of their grey levels. For pixels which



lie part inside and part outside the parallelogram, we take the contribution
to be the area of the part éf the pizel inside the parallelograﬁ times the
pixel grey level. Assume we have r pixels at least partially contained in the
parallelogram and let w(i), i=l,...,r denote the area of the part of the ith
pixel which lies inside the parallelogram. Then the first digital moment is
defined to be 2 w(1)xi where xi 1is the observed value of pixel 1. (All
summations iﬂ this section are for i=1l,...,r.) Setting the real and computed
first moments equal,

we get

( 3 hlAl + h2A2 = Zw(i)xi.

Solving for Al, we get

=ZLw(i)xi - Ah2
hl-h2

Substituting into (2 ), we get

_Zw(i)xi - Ah2
n(hl - h2)

We now consider the modelling of noise in the above formulation. We

¢ 4) Al

(5 yl +h

assume the observed value of each pixel can be written as

(6) xi = yi + zi

where yi represents- the noise free value and the {?#} are identically
distributed independent normal random variables with mean zero and variance
o2.

The estimated value ;1 of yl, can be written, using (5) and (6 ) as

. A Fw(i)(yit+zi) - Ahl
(7) yl = n(hl - h2)

A
It 1is easily seen from ( 7) that yl is an unbiased estimator of yl. The

+h

expression for yl can be rewritten as

A .
(8) yl = Yl*-g%%éiéiﬁg)

The second term in ( 8) is a weighted sum of normally distributed random

variables and 1is normal. Thus to completely characterize the error
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A .
distribution of yl, we need only compute the variance of the second term.

This variance can be easily computed yielding

A (w(1)2 +...+ w(r)®)g?
Defining the signal-to-noise ration § by
2
hl-
(10) sy = l0logBLE2

we see that a constant signal-to-noise ratio implies

2 = o(nl - n2)?,

(11 o
where ¢ is a constant.

For a constant signal-to-noise ratio, we have

- (12) 5(‘1~N(y1’ (w(l)? 4;;‘..+ w_(r)z)c)

Note that if one edge is ﬁorizontal, the parallelogram is a rectangle. If we
fatten the rectangle to be the nxn square, then r=nZ  and w(i)=1 for all i. 1In
this case

(13) ;ia-N(yl, c).

For fixed Sy, the variance of ;& is minimized by minimizing w(1)2+;..+w(r)2 .
For a fixed edge locétion, reducing the width of the parallelogram reduces the
variance. Intuitively this merely says we should take the narrowest
parallelogram that we are certain contains the edge.

Ihe variation in the variance of 5}, for fixed parallelogram width and
changing edge slope is difficult to determine analytically. 1If we assigned
the area within the parallelogram a grey level of one, and the area outside a
grey level of zero, then the second moment of the corresponding digitized
image 1is w(l)2 +...4w(r)2 . The second moment of the continuous image is
trivial to calculate. Thus the determination of the variation of
w(1)2+...+w(r)2 with slope is equivalent to the determination of the digi;al
moment discrepancy in the previous section and remarks there about methods

attacking the problem apply.
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Section 7.
EXPERIMENTATION USING THE MOMENTS

Two sets of experiments were performed. One set used a square window of
size 10X10. The second set used a parallelogram window of width 10 as
described in Section 6 . Three moments were considered: the first moment,
second moment and a "square root” moment. The square root moment is calculated
as follows: 1 1 1
M%= Al*h1Z + A2%h22.

The first step of each set of.experiments was to determine the dependence
of the error in the estimated y-intercept on the true y-intercept and the
slope. In both sets of experiments there was no appreciable dependence on the
y—intercept. There was no appreciable dependencé on slope in the square window
set of experiments. There was a‘slight dependence on the slopE in the
parallelogram window set of experiments (see Figurel’) for the second and
square root moments. Although the dependence is slight, it can lead to much
larger errors in the estimate of the y-intercept which is also shown in Figurg
1. Since the dependence appeared to be linear, a linear least squares fif was
made to get a correction term for the digital moments. The second and square
root moments were then corrected as follows:

M2T<- M2 + 328*glope + 958

ML/2¢—— M1/2- 7,27%slope - 12.4.
The 1linear corrections reduced the error between the real and digital moments
to less than one percent of the real moment.

Experiments were then run to determine the error in the y-intercept
estimate for the three types of moments using both types of windows. The slope
was varied from O to 1 and three signal-to-noise ratios were used (6, 9 and

13). Forty iterations for each slope were performed and the average and



standard deviation for the error in the y~intercept estimation were found.
Figures 2 through 8 present the results of'the experiments.

The results can be summarized as follows. In both cases (square vs
parallelogram windows), the first moment gave the least error in the
y-intercept and the least standard deviation of the error. For a
signal-to-noise ratio of 13, the average error in the y-intercept was about
1/10 of a pixel. As shown in Figure 3, the two ‘types of windows had
approximately the same average error, but the parallelogram window does lead
to a significant reduction in the standard deviation. Figures 4 and 5 show the
improvement that results through the use of the correction term for the
digital calculation for the second and square root moments.‘ Greater
signal-to-noise ratios affect both the average error and the standard
deviation of the error in the y-intercept estimate, as shown in Figures6é and 7

The results of these experiments are positive and indicate that further
experimentation ‘and analysis could lead to a fruitful, but simple procedure

that would be useful for Landsat registratiom.
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Section 8.
SUMMARY AND CONCLUSIONS

This section summarizes the work done in the three year study ofisubpixel
accuracy. We note which parts of this work were done in the third year of the
project. The fundamental question addressed in this work was that of
understanding the problem of achieving subpixel accuracy in image
registration. At the time we began our study, several algorithms for
achieving subpixel accuracy had been implemented and tested for use with
Landsat imagery. Ground truth of sufficient accuracy to test the claims made
for the algorithms was often not available. Our study was motivated by the
lack of theoretical tools for approaching the analysis of subpixel accuracy.

Two main classes of approaches were pursued in our study, edge~based
techniques and correlation;based techniques. The primary focus in the
edge-based techniques was on achieving subpixel accuracy in edge detection. A

match between edges in a sensed image and a high resolution control chip

-~

representing the scene could then be wused to estimate a registration
transformation. ' , N

* Several classes of subpixel edge detection procedures were explored. The
first problem studied was the estimation of the position of an edge from a set
of pixels forming a digital line. Many edge detection procedures are only
concerning witﬁ extracting the set of pixels which constitute an edge, and not
with the problem of determining a subpixel edge. Since registration
algorithms capable of registering a Landsat image to within approximately one
pixel Qere considered reliable and since rotational uncertainty was a minor
problem, we assumed that the subpixel edge detector would know the position of
the edge to within a pixel and that the slope of the edge was known.

Given the digitization of an edge, we looked for a real edge position



which was, in some sense, most central among the real edges which could give
rise to that digitization. Using work of [Do-Sm] which characterizéd the set
of all 1lines having a given digitization, we were able to derive an
upper bound on the positional error estimate of the edge as a function of the
parameters of the digital line. By using the unique translation and rotation
invariant probability measure on the set of real lines, we were able to
determine upper and lower bounds on the expected worst error in edge location
estimation. The worst error refers to the upper bound for the location
estimate given a single digital line. The expected value is then over the set
of all digital lines.

The tightness of the bounds on the expected worst case error were
. difficult to estimate. For any particular edge length, the full probability
distribution of the worst case errorlcould be computed. In [Be et. al.], this
computation was done for an edge length of ten. In that computation it was
shown that the probability that the maximum error exceeded 0.25 pixels was
only 0.0147.

An asymptotic error formula for the expected worst case error was
conjectured in the second year of the project. The primary difficulty faced
in proving the conjecture was the lack of an asymptotic formula for the number
of digital 1lines of specified length. An exact formula for the number of
digital 1lines of specified length was developed during the second year, but
the formula was unwieldy. In the third year of the project, an asymptotic
formula for the digital line count was developed. This result was then wused
to prove our conjecture on the asymptotic worst case expected error. The
asymptotic expected worst case error was shown to be 0.92/N + 6(1ogN/N2).

In the second year of the study, we explored means of using grey levels

to galn a better edge position estimate than might be feasible with strictly
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geometric information. In particular, we were interested -in exploring the
effect of noise in the estimation problem. A search procedure was developed
to estimate the y-intercept of an edge. The search procedure employeed
hill-climbing" to evaluate the quality of an edge 1location estimate. An
estimated edge position was used to generate a digital image which was then
compared with the observed image. While this approach achieved a high level
of estimation accuracy, it was time consuming and we were unable to develop
any theoretical understanding of its performance.

A paper [Ta-Mi] appeared soon after the completion of the second year
work, which developed a new approach to the extraction of edges to subpixel
accuracy. This approach compares the observed digital moments of a circular
window in an image with the corresponding moments in a continuous image
containing an ideal edge with constant grey levels on the two sides of the
edgg. This 1is used to estimate the relative areas on the two sides of the
edge in the observed image and ultimately to estimate the edge position. The
above approach to edge detection did not make use of the . power of the
particular assumptions we have made in the present study. In particular, we
assume that the edge orientation is known aﬁd the edge position is known to
within a pixel. These assumptions led us to develop an algorithm in which we
assume the grey levels on the two sides of the edge have been estimated prior
to the subpixei edge detection process. This enabled us to estimate the areas
below and above the edge from a single moment.

The effect on edge location accuracy of using different moments was
studied. The first moment produced better results than either the 2nd moment
or the 1/2 moment. It can easily be seen that the digital and the real
moments are wusually different except for the first moment. Empirical

correction terms for this discrepancy were computed and resulted in a dramatic



increase 1in the accuracy of the y-intercept estimate, though the first moment
performed best.

Two types of y-intercept estimation procedures were studied. 1In one, all
pixels in an nxn window were used in estimating the edgeﬁlocation. While this
approach uses pixels which are known not to be relevant to the problem, it is
computationally simpler than the other approach studied. The second approach
used a parallelogram with two sides parallel to the edge of interest. This
approach necessitates computing the pixels which are intersected by the edges
of the parallelogram and finding the areas on the sides of this intersection.
By making the parallelogram narrow, it is possible to avoid using noisy grey
levels from pixels which are not relevant to the edge 1location estimation
problem. The two approaches produced similar mean estimation errors but the
parallelogram approach resulted in a significantly smaller variance.

Since the lst moment approach yields the exact y-intercept in the absence of
noise, it was clear that some level of subpixel accuracy would be attainable
even 1in the presence of noise. With a signal-to—noise ratio of six, the
average error in the y-intercept estimate was less than 0.2 pixels.

The parallelogram and square approaches were analyzed used a Gaussian
noise model. The y-intercept estimator was shown to be unbiased and normally
distributed. The variance was computed in terms of the window width, the
signal-to-noise ratio, and the areas of intersection between the pixels and
the parallelogram.

A correlation approach to subpixel accuracy was analyzed in the study.
An estimate for determining the error in using the peak of the
cross-correlation between sensed and reference images as an estimate of the
offset was developed. Simulations were used to determine the reliability of

the error estimate and to determine the errors resulting from interpolation of
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the correlation function to locate a subpixel peak. The level of subpixgl
accuracy as a function of the signal noise was analyzed using simulatioms.
Several approaches to the analysis of subpixel accuracy in registration
were studied in this project. Theoretical predictions of subpixel accufacy
using various models and simulation results were obtained. New results in
probabilistic and enumerative problems in digital geometry were obtained in

the process of developing error estimates.
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Appendix A

S s - st

by Eric V. Siud
/ Unlversity of Maryland and L.N.K. Corp.

DU ON

Conslder the problem of registering (l.e., inding an appropriate overlay by
relatlve transiation of) a sensed planar image with respect to a larger reference
'lmage supposed to contaln 1t. In typlcal remote—senslng'appllcatlons, both the
'sensed and reference lmages will be given, at the same resolution, as arrays of
gray-level values, one value for each plxel. Both Images will typlcall& be nolsy,
due to minor changes In weather or ground features; to sensor characterlstics; to
preprocessing and detrending; and posslbly also to nonlinear filtering of gray-level

images, for example by edge-enhancers and threshoiding.

.The primary mode! assumptions for our discussion of thls problem are:
(a) there exists underlylng continuous sensed and reference lmages Zs(z) and
Zgr(z) before dlscretlzamon'lnt,o Dlxels, where z =(z,,z,) are planar coqrdlnat,es,
such that ZR(.) and Zg(.) are jolntly strictly statlonary random flelds (i.e., have
translatlon-lnvariant statistles) with rapldly decaying dependence between the
flelds (Zp (z+yj, Zs(z+y)) and (Zr(y), Zg(y)) as a function of

[|z]| =(z2+22)"? (see [2] for precise conditions and definitlons: Z; and Zs

[0 ]
must be ¢ -mixing with 337 ¢'%(r) < oo );

r=1
(b) there exlsts an unknown translation-parameter #=(6,,6,), a known pixel width

h, and a known Kkernel-functlon K (.,.) such that the observed sensed and
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reference gray-level arrays are

kA . .
Xs(j k) =h=2[[K(s,t)Zs(jh+6,+s, kh +8,+1t)dsdt

b h
Xp(j k) =h"2[[K(s,t)Z5 (h+s, kh+t)dsdt
-]

The Interpretation of assumption (a) Is as follows: we think of
ZN(.)=ZS(.)’— Zg () as the random noise-fleld superposed additively on the refer-
ence lmage to give the sensed lmage; to begin with, we assume that Zp and Zg
(or equlvalenély, Zp and Zy ) have jolntly translation-lnvariant statistics, but we
will ind below that this requirement can be relaxed considerably as long as Zy
has t,ranslamon-lnvar!ant statistics; In addlition, It Is lmportant that dependence
in Zy dles off quickly as polnts become widely separated. We interpret (b) as
describing the mechanlsm by which our analog sensed lmages Zg, Zs are discre-
tlzed into plxels. In particular, silnce the coordinate-offset 6 1s ﬁhe same
throughout the reference and sensed images, there is conslderable redundancy in
the observable discretized lmages Xp, X for estimation of §. There Is therefore
some hope of estlmating 6 from large images Xz and Xg to an accuracy better

than 1 pixel. One of the maln objects of thls paper Is to address this possibllity

quantitatively.

The flelds Zp and Zg are of course assumed to be highly correlated images
representing the same ground truth, and for ldentifiabllity of location 1t Is quite
important that the correlation between Zz(z) and Zg(z +y) be small except for y

close to 0. The parameter 6 s then ldentifiable In principle from large Images



(ZR(I))|31|.|z,|5m and (Zg(y+€))|,1|,|y2|5“. To see whe;ther and to what
extent ¢ remalns identiflable from plxel data {Xz(s.k): |7 |,|]k] < M} and
{Xs(Gk) |7l.1k| <L} 1'5 preclsely our problem. Note that the kernel func-
tlon K models the lhnear transformation of a plxel image to a gray level. For
simplicity (although all our results can be extended to general known K ), and 1n
apparent agreement with previous researchers, we assume ln what follows that

K (s,t)=1.

Our model assumptions are lp some respects slmllar to, but substantlally
generallze, those of Mostafavl and Smith [5] (who were, however, interested also
in the effects of afflne distortion). In addition to (a), [5) assumed that Zz(.) and
Zs (. + 6) are directly observable and Jointly Gausslan. This restrictlve assump-
tlon Is not necessary for an understandlng of the asymptotlc distribution theory,
for large sensed lmages, of the maxlmum-correlatlon estimator 6° for 4 (see
below). Moreover, Mostafavl and Smith do not take into account the transforma-
tlon 6f Zg, Zgs which renders only Xjp, Xg directly observable. Thus thelr
analysls, which we extend and improve In Section 1 of this report, only partially
establishes the conslistent maximum-correlation estimation of §. By contrast, we
aerlve bounds for each r on the probabllity of mis-estimating 4 ‘(by the
maximum-correlation method) by as much as 7 plxels. We thereby Justify what
we call "nelghborhood consistency™ of reglstration for large sensed and reference
Images. In Sectlon 2 we test the validlty and stringency of our theoretical
bounds via slmulations of nolse flelds superimposed on real and on artificlal refer-

ence lmages. Flnally, we summarlze and interpret our results In Section 3.
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The reason that we do not need to assume Gausslan dlstributlons for gray-

/levels Is slmply that the fixed-offset “correlation™ statistlc for Zgr(.), Zs(. + 0)

glven by
TT
(*) Cc@)=@T)y?[[Zz(z +t)Zs(z +O)dz, T=Lh,
~-I-T '

Is asymptotically weakly convergent as a random process In ¢t = (s,f) as L —co
to a Gausslan random fleld, under the preclse conditlon of [De] on decay of
dependence mentioned in (a). If Zp(.) and Zg(. + 8) are dlrectly observable, then

a natural statistic to estimate 6 is

6* = mazimizer of C(.) on [-T,T)?

The most easlly Interpreted figures of merit for this (and any other) estimator are

of the form

Q(n=~P{|¢" -0| <7}

or
Qr (N =Plsup {C(z): | |2 -0] |<7} = sup{C(z): | |2 | ]|<To}]

where ||z | |=max(|z,|.]lz,]) and T, Is a fixed slze of window lnside

which we may assume 6 lles. We note that since Mostafavi and Smith [5] did not
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treat C(.) as a random fleld, they _dld not propose to evaluate quantltles QTO(T)
but rather to compare the asymptotically (In T ) normal single-offset correlations
C(t) with elther specified or “sidelobe” thresholds. That s, thelr probabllistic
consideration of estimatlon-error depended solely on the (marglnal) distributions
of C(t) values. On the other hand, evaluation of Qro(r) Is clearly a problem
* about random processes - nov simply finlte-dimensional distributions - for which

we now formulate an asymptotic solution, assuming (a).
Let D(t) denote the expectation EC(¢). Jolnt stationarity of Zp(.) and
Zs(. + 6) \mplies

D(t)=E{C(t)} = E{Zx(t)Z5(6)}

which would be consistently estimated when T Is large by the expression C(¢) in
(*¥). (In other words, [De]'s conditions Imply a law of large numbers for C(¢) for

each ¢). The statlonary covarlance function
V(z —y)= Cov(C(2),C(y)) ~ T %(z -y) as T—co

(which deflnes the asymptotic covariance o(.)) can llkewise be consistently
estimated by a fourfold integral expression (cf. [5], where some simplifications
occur If Zp and Zg are jJolntly Gausslan). The followlng result, the proof of

which Is sketched 1n the Appendlx, bounds 1-QT°(1') theoretically In terms of

quantities derived from the jolnt distributions of Z, and Zs which we can hope

to estlmate consistently from data when T is large and (a) holds approximately.

) 4' \
Bound on Probabilitv of Reglstration Error, Assume (a), (+) and fix r>0. For

»
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simplicity, ix the unlts of measurement so that the plxel width h 1s 1. Assume

T,and T are Integers, and let

(1.1) H,=inf{D@O)-D(t) [|t-8] |27 ||t]]|<To}

oo

Let I'>0, and jet W¥(.) be a positive functlon such that _[ \P(e"‘a)du <oo and
1

" ¥%(u)log(1/u) decreases as u |0, and assume

(1.2) | C@)»C@-D)+D©O)|/T and |C(s»C(t}-D(s)+D(t)]|/%(| |t-s||)

2z

each have distribution [unctions S(2/1r)1/2fe""2du for | |8 ]| o] |t ] |e<T,
0

Then
[+ <}
(B) 1-QT°(T)§(%)‘/2{(8 To+1)? + 379.2T¢ } | e™"/2dy
z
whenever

2

v2-1

o |
z=H,/| fw@du +T] is > 2.36
1

In this result, (1.2) hoids automatically If C(.) Is Gausslan and

‘ {r’=sup{Var(0(t)-0(6)):lltHSTo. e -4]=27}
@37 \au) = sup(Var (C(1) - CloN) 110 ~ 2] S |[o @] 27, |1 ¢ -] 21a]]}

The approximate Jolnt Gaussian distrlbutions of C(.) for large T followed rromA
the ¢-mixing Central Limlt Theorem of {2], and some varlants of that Theorem
do not require strict stationarity (of Zg,Zs) but only rapidly decaylng dependence
with marginal distributions (of Zg(t),Zs(t)) not varylng too rapldly with ¢.

Therefore we can expect, for moderately large T and realistic reference lmages
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Zr with only‘ approximately translation-invarlant statistics, and for Zy(.) station-
ary and approximately Independent of Zg(.), that the foregolng bounds on error- -
probabllities should remaln approximately valid. It will be the task of our next
Sectlon to test the stringency and valldity of (B) for reallstic and artificlal exam-

ples by Monte Carlo simulation.

2. Slmulation Studv of Registration Error-Probablllties

In this Sectlon, we describe the purpose, design, and numerlcal results of a
Monte Carlo simulation study of maximum-correiation translation-registration of
some reallstic and some artificlal random flelds sensed with a flxed offset and
independent stationary nolse. The general obj)ectives of the study were
(a) to complle empirical distributions for Euclidean distances and | |8-8| | and
| [0"5 -6| | under various ' condltlons, where 9 denotes the plxel-vertex where
C(.) Is largest, and where #L5 denotes the locatlon ¢ of the maximum for the
least-squares quadric surface approximating C(z) at the nine polnts (j,k) with

7 and k= -1,0,1;

(b) to compare the performance of § and 65 with a view to examinlng the feasi-
bility of subplxel registration;
(¢) to galn !nformation on how large the standard deviation of addltlve nolse
must be compared to gray-level standard deviation In varlous reference lmages
before pixel-level and subpixel registration (estimation of 8) Is serlously degraded;
(d) to check the valldity and usefulness of the theoretical results of Sectlon 1 for

35 by 35 reference Images, window slze T =L =10, and T,= 5, where the plxel
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size h s 1.

Design of the Study

We specify now éxactly what was computed In our study. To begin, we
fixed six reference lmages Zp, each on the 35 by 35 grid of pixel vertices

{(3,k) : max (3|,]k]) < 17}. The first three were artificlally constructed:
for image 1, Zp(j.k)=550-15+ (|j|+|k]|) j.k=-17,-16,..,4+17;

for image 2, ZR(j,k)={4%- 15 2:-’;%““:_ H%g :

20. if max(y,k) <O
)> 0

for tmage 3, Zg(j,k)={10_ it max (7 k

The remalning three (numbered 4, 5, and 8) were real 35 by 35 gray-level arrays
chosen more or less arbltrarlly from an 80 by 125 LANDSAT image of a rural
(Unlted States) scene Including cultivated flelds, some wooded areas, and some

roads. Before further processing, each of the six reference arrays was centered

17 17
and scaled to have average value 0 and 3 3 Z#F&(5.k)=1.
j==17 k=-17

Some further assumption was .orl course required to define the continuous
variation of Zp (and simllarly, of Zg or Zy=2g-Zp ) within pixels. For a polnt
t=(t,t,) In the plane, we define [t])=([t,].[t,)) and {t}=t-[t] where [z] Is the

greatest-integer functlon of z. Also let e;=(1,0), e,—(0,1), and e==(1,1). Con-

sider the following two model-assumptions for a random fleld Z: for

t=(t,,t,)ER?,

(M1) - Z(t) = -{t,Na-{tHZ ([t D+~{t {2} Z ([t ]+e )+




{t 3a-{t NZ ([t 1H+e)+{t }{t.}Z ([t )+e)

or
M2)  Z(t)= Z([t].

Assumption (M1) would mean that Z at a polint { Interlor to a given pixel J
takes a value which Is a welghted average of the values at the corners of J with
welghts proportional to the area of overlap of a unlt square with lower-left corner
t with squares whose lower-left corners are the four corners of J. Assumption
(M2) would mean that the fleld Z Is homogeneous within each plxel
7,7 +1)x[k ,k+1). For the purpose of our study, we took Zy = Zs - Zp always
to satlsfy (M 1), with Zp satlsfying (M 1) In Study 1 described below and satisfy-

ing (M 2) In Study 2.

It remalns to tell how the offset § and the nolse-process Zy at lattice polnts
were generated. On each Iteratlon of each simulatlon, Zy(¢{) was deflned for

lattice-polnts ¢ with | | ¢t | | <17 by

1 1
(21)  Zn(t)= 3 B a4t W(ILE)

F=-1 b=-1

where {§ ,,} was a slmulated array of Independent ldentlcally normally distri-
buted random deviates with mean 0 and varlance o* (another deslgn-parameter In

the study), and the W (j,k) were fixed welghts which took the form

1/36 1/9 1/38
W, = [ 1/9 1/4 1/9 J tn Study 1 where (M. 1) was assumed for Zg
1/36 1/9 1/36
0 1/4 1/4
W, = [O 1/4 1/4 ] in Study 2 where Zp satisfied (M. 2)
0O 0 0

The oflset-vector 8 for each simulation-lteration was generated uniformly 1n [0,1]%
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The correlatlon-statistlc C(.) was computed, for each lattice-point In the
square [-5,5)% as follows. First, the expectation-term D (¢) was calculated as a

sum rather than the integral In its definltion from Sectlon 1:

10 10
(22) D()=-—o 5 T Zr(jk)Zp((j k)+6-t)
. (21)° j=—10 k=-10

: This modification was made for two reasons: (1) although the lntegral could,
under elther assumption (M 1) or (M2), be expressed as a welghted sum of terms
Zg(z).Z5 (y), the welghts would depend on §, and 1t was computationally much
easler to make use of the equally plausible definltion (2.2); (2) in actual practice,
In the absence of a validated model assumptlon llke (M 1) or (M2), (2.2) Is the
definltion one would use, with sums slmilarly replacing Integrals in the deflnition

of C(.). Then C(t)- D (t) was calculated as

10 10
(23) C()-D(t)=—== 3 X Zp(i.k)Zn((j.k)-t).

(21)* jli0 k=10

In this definltion we have replaced (4T%)! for T =10 by (21)"? and modified some
boundary terms, but (2.3) s otherwise the same as In Its double-lntegral
definition If Zy(.) had been made up of 1ndependent N(0,0%) varlables at lattice

polnts and had been Interpolated according to (M.1) while Zp was interpolated

according to (M1) or (M2). [For example, under (M. 1) for both Z, and Zy,

1

4T2ffZR(z)ZN(z—t)dz ~

1 4 .
— N Z, ()= Zn (i~
GLT Ay o OAgan =t
-;-(ZN (1-t+e ) +Zy(i~t—e )+ 2y (i -t +e )+ 2y (i -t e )+

EIE(ZN(i-t +e)+Zy(i-t-e )+ZN(i—t +e—e, )+ 2N (1 -t +e-e )}



Results of the Study

Two slmulatlon experlments were performed on the DEC 2080 at Cornell
Unlversity, Study 1 with 450 lterations using weight-matrix W, and Study 2 with
250 lterations using welghts W,  For each lteratlon, one offset # and one array
3 J-,,} was generated for each of six reference Images, and D (¢) and C(t)~D(¢)
were calculated accordlng to (2.2) and (2.3) with o=1. Then for each of a

number of different values of o, the arrays {D(¢)+o (C(t) =D (tEN}t .4 t)=m5...+5

(éorrelatlon—statlstlc arrays corresponding to the nolse-flelds o Zy(.) generated
from the same random numbers ) were used to calculate estimators & (the
lattice-polnt ¢ corresponding to the largest array element) and gLs (the
maximum-polnt (z,y) for the least-squares quadric surface for the nlne
correlation-array values at 8-+ 7.k), 7.k = _1,0,'1)-. In addlition, a third estimator

was deflned as
B =0+ .5#(sign (OL5-0,), sign (8° - 8y,)),

in order to check whether any possible lncrease in accuracy of 65 over d might
simply be ascribed to allowing 6° to take values In the Interlors of plxels. For
each reference Image and each of seven values of ¢, the empirical distribution
functlons F of | |8-6| |, F¥5 ot | |6 -6| |, and F of | |0-6] | were
tabulated, at lntervals of 0.1 In Study 1 and of 0.125 In Study 2. (The empirlcal
distributlon function of a simulated quantlty @ at the polnt z 1s slmply the rela-
tive frequency with which the value @ s <z). For selected values of o, the

emplrical distributlon functions £ and F45 are displayed In Figure 1. In Table I
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are exhlblted, for selected o and all six reference lmages in Study 1, the empilrical
upper-quartlle values for the distances | [#-6] |, | |6° -6] |, and | |9-6] |

(that is, the smaliest. values z for which the respective empirical distribution
function values exceeded 0.75), obtalned by llnearly Interpolating the emplrical
distributlon functlons from Study 1. Further tabulation of the empirical distribu-
‘tlons In Studles 1 and 2 is omltted because of the simllarity of the results to Flg-

ure 1 and Table I.

3. Iscussion a. Le tatlo tS.

The results of our simulation experiments are summarized roughly in Table
I, in which we remark:
(1) for all six refere.nce Images (but especlally for the real lmages, numbers 4-6,
and the smaller values of ¢ ), the least-squares estimator 65 givesA a notlceable
improvement In accuracy over & In estlmating 0;Afor all the images except number
1, the artifictal estlmator 8 (which is an attempt to bridge thg gap between & and
645 by shifting d to the center nearest 85 of a plxe} with vertex ) s markedly
worse than both >9 and 6-°; thus, for the types of moving-average Gausslan nolse
flelds studled, the subpixel lmprovemént, of # by #° makes ¢£5 the estimator of
cholce for 6 (In the absence of more detalled geometric Information about Zp );
(2) Images 1 and 3 (both artificlal, with strong geometric structure, and qulte
nonstationary) show very little advantage for 65 over 8, except for the smallest
value of o, and show very rapld loss of aécuracy as ¢ Increases (e.g., the upper-

quartiles In Table I for | |85 - 8| | are larger for Images 1 and 3 than for the
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other

lmages,‘wlth o only half as large or less );

(3) the accuracy of 8 is relatively insensitlve to the nolse-level parameter o for
the real reference-images (4-8), and | |#-6] |, 1s less than 0.5 pixel, for o
between 0.4 and 1.2, roughly 75% of the tlme; for these images, | |65 - 6] |,
has ﬁpper—quanlle ranging from .2 to .5 pixels as # ranges from .4 to 1.2, and the

advantage of 8-° over @ deterlorates as ¢ gets longer than 1.0.
/

Indeed, Figure 1 and the tabulated empirical distribution functions In Stu-
dles 1 and 2 (not presented here) strongly support conclusions (1)}-(3) as well as
the following generallzation: for lmages 2 and 4-8, when | |8-6] | Is less than
about 0.8 pixel, | | #*° - 8| | 1s (stochastically) smaller than | |#~6| | by 0.1
pixel or more for small ¢ (but thls advantage s dlluted by larger o). Quite gen-
erally, for all six Images, there seems to be Do advantage of ¢/° over # when

| |18-6] | 1s 0.9 pixel or more.

We next discuss the accuracy of the empirically estimated numbers in Fligure

1 and Table I. All the distributlon functlon values p are with approximate pro-
babllity 1-a contalned In the symmetric interval of length p(1-p )@‘1(1—%)/\/17
around the emplrically estimated values, where ¢ 1s the standard normal distribu-

tion function and n is the number of lterations In the slmulation. Wlith n =450,

substituting 1/2 for p, we find the conservatlve (1-a) quantlles for each t:
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019 if a=.10
percentage points for | F,, (t)-F(t)| = {.023 if a=.05
028 if a=.02
In order to take account of our having estlmated values F (¢) by empirical estl-
mates F,, (t) for many ¢ slmultaneously, the Kolmogoroff- Smirnoff approximate

percentage polnts for n =450 are relevant:

.058 a=.10

. percentage points for sup {F.u(t)-F(t): 0<t<oo} = {.064 a==.05.

' 077 a=.01
Finally, In Table I we have emplrically estimated upper quartiles for random
Varlables llke | |- 6] |. Although 1t Is hard to assess the accuracy of the linear
Interpolation we have used, the ordinary binomlal-normal confidence interval
(with n=450 ) for any ¢ near the upper quartlle of F(.) (with F(¢) near 3/4)
vields F(t) with 98% probabllity in the range F,, (t) & .02. Therefore, we can
ascribe extremely high confidence to the first declmal place of the upper-quartlle
estimates, and If F(.) (e.g. the df. of | |[#-8]| |,) were approximately llnear

withln lncremehns of .1 for z between O and 1.7, we could have approximately

98% confldence that the error in upper-quartile estimates would be at most .02.

It 1s striking that, when the standard deviatlon of superposed Gaussian nolse

Is a fixed proportlon of the "sample standard deviation” (27T +1) (2247 .k )2,
Jk

the estimation of 6 Is actually more accurate for the real reference images (4-6)
than for the hilghly structured artificlal images (1-3). Clearly the varlablllity
within the reference Image and the sharpnéss of the peak In D (¢) at 6 Interact In
a nontrlvial way In determining the feasible subpixel accuracy of estimatlon of
the offset §. We can productlvely unify the theoretical results of Section 1 with

the simulation results of Section 2 by describlng the features of the reference



image which seem to govern subplxel registration accuracy. An lmportant aspect
of this unlfication s the comparison of the theoretlcal bounds (B) of Sectlon 1

with the simulated emplrical distributlon functlon for | |8 -6 |.

Inequality (B) of Sectlon 1 says that the (upper bound for the) probablility

that | |8 -6| | >r depends on the statistics of the reference lmage only through

o0
2 2
z, = z,(r) = H. /T + (27 )du
(7) /(0 + —=— { (27)du)
-where H, T', and ¥ are given by (1.1) and (1.2). In our simulation studles, where
T =10 and T,=5, for each of slx reference !mages the quantities H, I', ¥, and

W(1.414) are glven Iln Tables II and III. Oanly the values of ¥(u) for 0<u <1/2 are

relevant in calculatlng z,(7), and for purposes of approximate calculation we
[ o]

treat W(.) as belng llnear on [0,1], In which case 2(v2-1)" [ W(27**)du =1.22 ¥(1). In
1

further calculations, we therefore estlmate z,(r) by H,/(I'+1.22 ¥(1)). Now

oo

according to (B), with T,=>5 and T =10, and the lnequallty fc"z/’dt 53"2/’/2 ,
F1

(81)  P{||8-0]]>r} < 8000 (¢ =2z, ).

The right-hand slde of (3.1) Is approximately .75 for z,=4 and .01 for z,=4.5.
We show in Table IV, for all s1x reference lmages, 'nhe smallest 7 (Interpolated
between multiples of .7 plxels) for which z,(r)>4 when o=1. [Note that reduclng
o by the factor 1/2 does not change H, but multiplles both T and ¥ by 1/2, so
that z, 1s Inversely proportlonal to ¢ ]. Table fV already Indlcates why @ 1Is

harder to estimate for reference lmages 1 and 3 than for the others. A com-
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parison between Tables I and IV indlcates that whlle upper quartiles for
| |#-6] ] can of course not be reasonably predicted via the bound (B),
nevertheless there s some value In the fgure-of-merit z,(7) (estimated by
H./[P+1.22 ¥(1)]) for discrimlnating those reference images for which € is easler to
estlmate (2 and 4-6 In our cases).

Summary:

According both to theoretical inequalities and the simulation study reported
'here, automatic subpixel registratlon with respect to real gray-level reference
lmages (assumed to be observed translated, with a stationary nolse fleld added to
the pixel gray-levels) seems quite feaslble. The present slmulation study —- one
of the first systematlc performance evaluations of the maximum-correlation
method of image-registration and of a known effectlve varlant based on max!mlz-
Ing a least-squares quadric surface locally approximating the (discrete)
correlation-statistic near 1ts (discrete) maximum —— shows that even If the addl-
tive nolse has standard deﬂatlon as large as that of the 35 by 35 reference Image,
the upper quartlle of the error ln reglstration need be no more (and may be much

less) than .25 to .5 pixel.



(1]
(2]

(3]

[4]

[5]
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0 v b

Let Y (¢) be a real-valued separable random fleld on (0,2 TO]" where d >2 and
2T, are Integers, and let S be the complement In [0,2T,¢ of a convex set.

Assume also that for s, t€S, fixed I', and a non-decreasing continuous function ¥

o0
satisfylng [W(e *")dz <co and W*u)log(1/u) decreasing In u, that
-1

(A. 1) | Y()|/Tand |Y(t)-Y(s)|/¥(] |t-s | |,) each have distribution

z
functions (at z) < (2/7?)1/2f6'"2/2du.
0

Lemma A,l. Under the foregolng assumptions, whenever z >(4dlogn)?, where

n >2 Is a fixed Integer,

P {sup {| Y (t)|: t€S} 2z (P+—m=[W(n™)du) } SC(d.n)f e du
=y, ,

where

C(d,n)=(2/m)?{(2Ton*+1)* + |

¢ 402 adlogn . 2, 1
3 4dlogn-1 ) B2

T
(2Ton) p =1 (1-27?"Y(logd )/(logn ))*/2 )

The proof, which we omlt, Is a direct Imitation of the method of [4], using
for each t€S a sequence &k(p)/c(p) of polnts In S such that
| le(p)t —k(p)]| | «<1, where k(p) has Integer coordlnates and c(p y=2T,n?%
for p >1. We must remark that Marcus assumed hls random process Gausslan
although he used only the property (A.1) (In the one-dlmenslonal case). Lemma

A.l Is a simple generallzation of the maln results of [4] to the d-dimenslonal case.
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Now speclalize to the case d =2 and n =2, replace [0,2To]® by [T, Tol? and
Ax 0€[-T,To? and r>0. Let S = {t €-To.To)*: | |t-#| | >7}, and put

Y(t)= C(t)-C(6)-D(t)+D(6), where C and D are as in Section 1. Then

Psup{C(t): | |t | |\STo | |t-8] [:27}2C00) £
Pup{Y(t): | |t ]| |,<To | |t-0] |27} 2
o inf {D@-D(t): | |¢]1,STo | |2-6] 527
and puttlng H,=mf{D@-D(t): | |t] |, <To | |t-0] |2>7} and applylng:

Lemma A.1 ylelds the bound (B) of Sectlon 1.



Fleyre 1 |

These graphs display the slmulated emplrical distribution functions for
| |[8-6] |, (lower curves) and | |85 - 8| |, (upper curves) from Study 1
(n=450). For reference image 1, the graph corresponds to ¢ = .2; for lmage 2,

to o = .4; for lmage 4, to 0 = .4; for Image 5, to ¢ = .8; and for lmage 8, to

o = 1.2.



Table [
Triples of empirical 75th percentlle values for
(] 10-6] ]2 |16 -6 s | |6-6]],) trom Study 1 (450 lterations), for

each reference Image and each of three values of o.

4 Image 1 c Image 2

.10- (.83, .84, .80) 2 (.50, .24, .58)

.20 (1.45, 1.32, 1.31) 4 (.58, .48, .73)

.30 (2.1, 1.86, 1.94) .8 (.88, .8, 1.02)

log Image 3

.12 (.82, .55, .90)

24 (.87, .84, .87)

.36 (.8, .82, 1.1)

o Image 4 Image 5 Image 6

4 (.49, .26, .59) (.48, .19, .55) (.49, .19, .53)
.8 (.51, .36, .68) (.50, .44, .64) (.51, .28, .60)

1.2 (.57, .50, .75) (.57, .52, .80) (.55, .41, .88)



==

Table II 7 vs. H, for six reference lmages

Image 1 2 3 4 5
T H,
.7 .014 .212 .034 .187 244
1.4 027 .382 .069 .401 .434
2.1 .062 .551 .103 .518 530
2.8 098 .838 103 518 .608
3.5 150 .808 137 580 .843
4.2 202 .8680 72 590 0678
4.9 .235 875 172 .580 .878
5.6 320 1.0 .322 1.0 .734
/8.3 399 1.0 372 1.0 770
7.0 .489 1.0 422 1.0 .866
Table III
T, ¥(1), and \II(\/‘.'.;) values (for ¢ =1)
r ¥(1) w(1.414)
Image
1 0453 .0075 .0105
2 .0615 .0207 0284
3 0536 018 022
4 .0603 .030 035
5 0581 025 029
8 .0568 .028 034

187
461
662
662
.869
869
.660
720
.850
.805



Iable IV

Smallest 7 (linearly interpolated from H, between multiples of .7 pixel) for

whlch z,(7)>4, for six reference images and four values of o.

Image 1 2 3 4 5 8
o=
1 70 1.3 55 14 1.1 1.1
5 5.2 8 37 7 5 7
{25 34 3 15 .35 .3 .3
125 22 . 7 2 1 2
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Recovery of Surface Shape from Multiple Images
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Abstract

The conventional approach to the recovery of scene topography from multiple
images i1s based both on the identification of distinctive scene features and.on
the application of constraints imposed by the viewing geometry. We offer a new
prescription for recovering a relative-depth map. We integrate image irradiance
profiles to find dense relative-depth profiles. Our procedure neither matches image
points (at least, not in the conventional sense) nor “fills in” data to obtain the
dense depth map. Although there are outstanding problems associated with depth

discontinuities and image noise, the technique is effective.
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1. Introduction

The obj;ective of classifying areas of the earth’s surface according to attributes
of that surface is central to the science of remote §ensing. These attributes can
be divided into two classes: those associated with the topological and geometrical
nature of the surface, and those related to material composition, surface coverage
and usage. A substantially different approach has been taken to ascertain the
attributes of these two classes. While remotely sensed measurements must recover
surface shape if they are to determine topological and geometrical properties of
the surface, measurements designed to elicit data regarding material composition,
surface coverage and usage have not usually sought to “understand” the shape of the
surface. Such an understanding, however, may be vital for successful determination
of those properties. We therefore address the problem of recovery of surface shape
not only to establish the topological and geometric properties, but also to provide
an underlying three-dimensional mode] to assist in recovering those other attributes

of material composition, surface coverage and usage.

What information is needed to determine surface shape uniquely? Previously [1]
we examined the shading information available in a single image. We concluded that
there is not enough information in the shading to determine surface shape, although
that information does constrain the possible shapes. Is there enough information
in two or more images of the surface! Certainly the human visual system can fuse

a stereo pair of images, but conventional approaches to stereo processing have not

The research reported herein was supported by the Defense Advanced Research Projects Agency
under Contract MDAS03-83-C-0027 and by the National Aeronautics and Space Administration
under Contract NASA 9-16664. These contracts are monitored by the U.S. Army Engineer
Topographic Laboratory and by the Texas A&M Research Foundation for the Lyndon B. Johnson
Space Center. . :
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provided a completely automatic procedure for doing so. Most conventional stereo
processing systems require corrective human intervention when a deviant surface
shape is produced. This paper takes an alternative approach to processing two or

more images in an effort to understand the nature of multi-image interpretation.

First we shall examine conventional stereo methods to determine where different
procedures might be warranted. Then we present an alternative for the more
demanding aspects of the conventional approach. Finally we present the results

we have obtained and discuss their implications.

2. Conventional Stereo Processing

The conventional approach to recovering scene topography from a stereo pair
of images (or from a motion séquence) is based on the identification and matching
of distinctive scene features and on the satisfaction of constraints imposed by the
viewing geometry. Typically, three steps are required: determination of the relative
orientation of the two images, computation of a sparse depth map, and derivation

of a dense depth map for that scene.

In the first step, points corresponding to unmistakable scene features are
identified in each of the images. The relative orientation of the two images is then
calculated from these points. This is, in part, an unconstrained matching task.
Corresponding image features must be found. Without a priori knowledge, such a
matching procedure knows neither the approximate location (in the second image)
of a feature found in the first image, nor the appearance of that feature. We may

often assume that appearance will vary little between images and-that they were



taken from similar positions relative to the scene, but this assumption is based on

a priori knowledge of the acquisition process.

Recovery of the relative orientation of the images reduces the computation of
a sparse depth map from unconstrained two-dimensional matching to constrained
one-dimensional matching. The quest for a scene feature identified in the first
imége is reduced to a one-dimensional search along a line in the second image.
Identification of this feature in the second image makes it possible to calculate the

feature's disparity, and hence its relative scene depth.

Identification of corresponding points in the two images is based primarily on
correlation techniques. Area-based correlation processes may be applied directly
to the raw image irradiances or to images that have been preprocessed in some
manner. For example, edges (identified by the zero crossings of the Laplacian of

their image irradiances) have been used in obtaining correspondences.

The outcome of this second step is a sparse map of the scene's relative depth

at those points that were identified in both images of the stereo pair.

A sparse depth map does not define the scene topography. The third and final
step in recovering the topography of the scene is “filling in” this sparse map to obtain
a dense depth map of the scene. Typically, a surface interpolation or approximation
method is used as a means of calculating the dense depth map from its sparse
counterpart. A surface approximation model may be formulated to provide desirable
image properties (such as the lack .Of additional zero crossings - in the Laplacian
of the image irradiances ~ that are artifacts of the surface approximation model),
but often the surface model is based on a priori requirements for the fitted surface,

such as smoothness.
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The problems encountered in the first two steps - recovery of the relative orien-
tation of the images and computation of the sparse depth map - are dominated by
the problems of image matching. False maiches fhai arise from repetitive scene
structures, such as windows of a building, or from image features that are not dis-
tinctive (at least, on the basis of local evidence) occur more frequently in the uncon-
strained matching environment than in the constrained environment. Fortunately,
in recovering the relative orientation of the images, we can use redundant informa-
tion in an effort to reduce the influence of false matches. This is not the case when
the sparse depth map is computed. While constrained matching is less susceptible
to false matches than is unconstrained matching, there is no redundant informa-
iion that can be used to identify problems. Furthermore, we have little choice as
to which features we may use for sparse depth mapping; if we choose not to use a

feature, we cannot recover the relative depth at that scene point.

The selection of suitable features for determining image correspondence is
difficult in itself. Correlation techniques embed assumptions that are often violated
by the best image features. Area-based correlation techmniques usually reflect the
premise that image patcheé are of a scene structure that is all at one distinct depth,
whereas edges that arise at an object’s boundaries are surrounded by surfaces at
diflerent scene depths. Edge-based techniques are based on the assumption that an
edge found in one image is not “moved” by the change in viewing position of the
second image, whereas zero crossings found at boundaries of objects whose gradients
are tangential to the line of sight contradict this assumption. These would seem
minor problems, were it not for the accuracy required of the matching process.

Typically, the spatial resolution of disparity measurements must ‘be an order of



magnitude better than the image's spatial resolution. Matching appears to require

distinct features whose properties are incompatible with the assumptions needed to

implement the matching process.

The third step, derivation of a dense depth map from a sparse one, is barely
adequate. While stereo pairs of images are used to compute the sparse depth map,
they have generally been ignored when the dense surface is being filled in. The
dense depth map should, in principle, serve as a potential basis for reproducing
the stereo pair of images. The computation of the dense depth map should make

explicit use of the stereo irradiance data.

While the first step, recovery of the relative orientation of the images, is not an
easy problem it does have the advantage of redundancy. We assume in this paper
that the relative orientation of the images has been computed. The most demanding
steps are the final two: computation of a sparse depth map, and derivation of its
dense counterpart. We offer a new prescription for th'ese steps by combining them
to recover a dense relative-depth map of the scene directly from the image pair.
We use image irradiance profiles as input to an integration routine that returns the
corresponding dense relative-depth profile. Our procedure neither matches image
points (at least, ﬁot in the conventional sense), nor does it “fill in” data to obtain

the dense depth map.

First, we extract “corresponding” irradiance profiles from a stereo pair of
images. This is the epipolar mapping that allows stereo reconstruction to be treated
as a set of one-dimensional problems. Then we formulate the one-dimensional
integration procedure that returns relative depth. This is the main result presented

in this paper.
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Figure 1 Geometrical Arrangement. The two-dimensional arrangement in the
epipolar plane that contains the optical axes of the imaging systems.

While we phrase this presentation in terms of stereo reconstruction, it should
be noted that there is no restriction on the positions from which acquisition of the

two images occurs; they may equally well be frames from a motion sequence.



3. “Corresponding” Image Irradiance Profiles

The integration procedure takes two image irradiance profiles - one from the
left imége, one from the right - and computes the corresponding relative-depth
profile of the scene. In this section we define “corresponding” irradiance profiles.
These are basically the epipolar-mapping considerations, but they provide a means
of introducing our notation and establishing the one-dimensional situation analyzed
in the next section.

We could select any coordinate frame to describe scene depth, provided that
we know the position and orientation of the optical systems relative to that frame.
Without loss of generality, we shall select a particular frame based on the optical
arrangement of the left imaging system. Scene depth recovered in this frame may
be transformed into any desired frame of reference.

If two optical systems are pointed in arbitary directions this adds a level of
complication that we wish to avoid in this presentation. We shall assume that the
left and right optical S)’SLC;IIS are such that their optical axes intersect and that,
consequently, these axes are coplanar. This restriction can be removed with minimal
modification of the model presented [2]. However, clarity of explanation is gained
by adding this restriction.

We comsider a scene depth profile that is the intersection of an epipolar plane
thrc;ugh the two optical centers and a ppint in the scene. Figure 1 illustrates the
two-dimensional situation. The optical (lens) centers are points Oy and Or. Two
rays emanate from the scene point D and intersect the image planes of the left and
right optical systems at points A and G respectively. The image plane coordinates

are z; and zr. The world coordinate system we adopt is based_on the optical
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arrangement of the left imaging system. The optical axis of the left system defines
the z axis. The positive z direction is from world to image, with the optical center
of the left system, O, as the origin. The z coordinate axis lies in the plane and is

parallel to the z; axis.

The two irradiance profiles, one from the left and one from the right
image, viewed as functions of the particular coordinates z; and zg, are our
“corresponding” image irradiance profiles. We use these irradiance profiles to com-

pute the scene depth profile associated with these irradiance profiles.

By rotating the epipolar plane about the axis through the two optical centers,
we can build up the two-dimensional scene depth map by recovering the one-
dimensional depth profiles.The circumstances depicped in Figure 1 are the same for
any “corresponding” image irradiance profiles when these are described as functions
of z; and zr. Consequently, the following analysis of the situation shown in Figure
1 is independent of the epipolar plane used. Once a depth profile of the scene has
been recovered (by using the algorithm presented below), this profile can be related
to others simply as a function of the angle between the epipolar plane and the

optical axes of the imaging systems.

4. Recovery of Relative Depth

The geometrical arrangement presented in Figure 1 allows us to derive expres-
sions relating the world coordinates of the scene to the image coordinates of its
projection. The similar triangles ABOy and CDOy, along with those of GHOg

and FDOR, allow us to write 45 = £2-, and hence



o (1)

GH _ FD - FD __ LN-MN __ OgNsin¢—DN cos¢ —_ _
Also OrA = FOg’ but, FOr ~ LOR+MD = ORNcos¢+DNsin ¢’ DN = (s - z),

and Og N = (h — z), yielding

zp _ (h—2)sing — (s~ z)cos ¢
fr (h—2)cos¢+ (s~ 2)siné

(2)

Solving Equations (1) and (2) for z and z, we obtain expressions for the world
coordinates of a scene point in terms of image-measurable quantities and the imaging
parameters that specify the relative orientation of the two images. The equations
are the usual ones obtained from the stereo geometry:

(zre— frh)tan ¢ + zrh + sfr
“(zrzL + frfL)tan 6 — 2R fL + 2L /R

(3)

=12

and
(zRe— th)tan¢ + zph+ 8fr
(zrzrcosY+ frfL)tand —2pfL + 2LfR

z=-fL (4)

.Equations (3) and (4) form part of the algorithm we present. Equations (1) and (2)
are used as part of our analysis of the image irradiance information available to us
in the two images.

We now turn our attention to scene radiance. Rays of light emanate from
a scene point and travel to their image projections. What is the relationship
between the scene radiances of the rays that project into the left and right images
respectively? Let us suppose that the angle between the two rays is small. The
bidirectional reflectance function of the scene's surface will vary little, even when
it 1s a complex function of the lighting and viewing geometry. Alternatively, let

us suppose that the surface exhibits Lambertian reflectance. The scene radiance

227



228"

is independent of the viewing angle; hence the two ray will have identical scene
radiances, irrespective of the size of the angle between them. For the model
presented here, we assume that the scene radiances of the two rays emanating
from a single scene point are equal. This assumption is a reasonable one when
the scene depth is large compared with the separation between the two optical
systems, or when the surface exhibits approximate Lambertian reflectance. For
temporally separated images this assumption is not §alid. Such images will need to
be- recalibrated to remove the irradiance changes due to contrast and the like. For
images in which the scene content has changed, such recalibration is not possible.
We will consider recalibration further during the discussion. It should be noted that
there are no assumptions about albedo (e.g., it is not assumed to be constant across
the surface) and, in fact, it is not even necessary to know or calculate it. Since
image irradiance is proportional to scene radiance, for corresponding image points

we can write

I(2'L) = Ir(z'R)

I} and Ig are the image irradiance measurements for the left and right images.
It should be understood that these measurements at positions z’; and z’g are at
image points that correspond to a single scene point.

Differentiating the above equation gives

dip dl
'Z;(ZIL) = d—:( 'R},

and hence
i
dzp

dzL _ dIR
dz ~ dzg

dzgp
(o
(z'r) dz

(2'L)



Expressions for %k and %’f are obtained by differentiating Equations (1) and (2),

as follows:
dz
dzy fo+zL
dy _ Tras %)
dzr _ zrtané + fr+(zr — frtan ¢)§—i (6)
dz (h—2)+(s—z)tang '

Substituting these into the preceding equation and rearranging terms, we obtain an

expression for %, namely,

é_z___(%th(h,—z+(s—z)tan¢)+ %ﬁz(zgtan¢+f;z)) )
dz (%L,:"‘L(h — z+(s8—z)tang) + %%z(zn — frtan¢)) '

Note that, for clarity of expression, we have dropped the notation (z’;) and (2/g)
that shows the v\'a‘lue of the independent variable at which the image irradiance
gradients are to be evaluated. All terms that involve the image irradiance are
understood to be evaluated at corresponding image points.
We are now ready to outline an algorithm to recover scene depth:
1. Suppose we have a pair of corresponding image points, z; and zpg.
We use Equations (3) and (4) to calculate z and z for the scene point.
2. Equation (7} is used to calculate ﬁ—; for this scene point.
3. Equations (5) and (6) are used to calculate a dzg for a chosen dzj.
4. The pair of points z; + dz; and zg + dzg are corresponding image points;
Steps 1 to 3 may be repeated.
This, then, is an integration procedure that, given an initial pair of correspond-
ing image points, proceeds along the two image irradiance profiles, maintaining the

correspondence. As in other numerical integration procedures, we can adjust the
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step size dzz so that the scene's profile gradient, ¢ gz, varies slowly between succes-
sive steps. In the following section we shall discuss the application of this algorithm
to scene profiles that have discontinuities.

An obvious difficulty with the algorithm, as outlined, occurs when both i{t
and ﬂ are zero; g—j is indeterminate. ~ A solution is still possible if the second

derivatives of image irradiance are not zero as well. Differentiating I} = Ir twice

gives us

d2IL(d:'cL)2 dIL JQIL JZIR(dIR)z dIR d2:l:R
+ — +
dz dzp Jd22 dzg?\ dz dzr dz2

d21L dIL dzln dIR
dz;* d::R ’
dl/

ar, :14:3
when ar and gz~ are zero. Hence

dz;*

which reduces to

( S filh~z+ (s = z)tang)+ \ [ £ B 2(zptan g + fR))
_ . (8)

(\/?T;,L(h_z-i»(s—x tan @) +\/_ zn-fntan¢))

When E.-rJ‘ and %ﬁ are both zero, we adjust Step 2 of the algorithm to use

Sis
NN

Equation (8) rather than Equation (7). This allows integration through the peaks
and troughs of image irradiance.

It should be noted that scene depth profiles of planar objects have zero image
irradiance gradients and zero second dgrivatives. These situations must be detected
and treated separately, for, except at the object’s boundaries, there is no informa-

tion available from which to assess orientation.
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Figure 2 Depth Recovery: Ideal Case. At the upper left is shown the recovered depth
from the two irradiance profiles depicted in the lower half of the figure. For comparison, the
actual depth is shown at the upper right.

The integration routine uses the information available in the geometric distor-
tion of perspective projection. It does not use the reflectance characteristics of the
scene, nor does it need to know them. The method is based on the assumption that
the scene radiances of two rays emanating from a single scene point (and entering
the two optical S)'st,emg) are identical. Spatial variations in albedo and light,ing. are

inconsequentia) for this procedure.

5. Experimental Results and Discussion

The presented algorithm requires spatially continuous image irradiance profiles
as input. To apply it to digital images, we must first construct spatially continuous
profiles from their sampled counterparts. We employ simple modeling techniques,

such as linear interpolation, for this purpose.
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The result of applying the above algorithm to two synthetic, corresponding
Lambertian image irradiance profiles is shown in Figure 2. The .ac'tual depth profile
corresponding to the irradiance profiles is shown in the upper right portion of Figure
2. For this example, initial starting positions for the in£egration were selected near
the center of each profile. These initial positions were corresponding points, with
no error in the determination of their location. The integration process was applied
in both directions from the initial point. The recovered depth is shown in the upper

left corner of Figure 2.

A second example is shown in Figure 3. The image irradiance profiles were
obtained by “painting” the previous surface with “pigment” of continuously varying
albedo. In addition, three strips of different albedos were painted on the surface.
The effect can be seen by examining the image irradiance profiles shown in the
bottom half of Figure 3. The processes we applied to recover depth were twofold.
First, we used a simple smoothing routine, based on moving average, to produce
intermediate profiles. This rounded the step edges associated with the albedo strips.
Next the integration procedure was performed. The result is shown in the upper

left part of Figure 3.

You will notice small errors near the peaks and troughs of irradiance, where
second-derivative information is being used. Furthermore, there are small errors as-
sociated with albedo edges. What is happening here is that the tracking mechanism
that maintains point correspondence as it moves along the profiles is getting out of
sync. The process is “self-correcting,” however, a feature that we will exploit in the
next example. Note that the continuously variable albedo change across the profiles

has no influence on the resulting recovered depth.
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Figure 3 Depth Recoverys Painted Surface.

What would be the effect if the initial matched points were in error? We
repeat the above procedure but select imitial starting points that are mismatched
by two pixels (the horizontal units in Figures 2, 3, 4 and 5). The left half of Figure
4 dcmonstrates the result achieved. The effect of the starting point error shows
up as depth error at positions 120 to 130 on the horizontal axis. Note the swift
correcting action, which suggests that the initial points are not critical for recovering
depth. Clearly, this algorithm has a very special feature whose implication for
stereo processing is far-reaching: approximate matches are all that is necessary for

the recovery of scene depth.

The above examples have been based on synthetic images. We now turn our
attention to real scenes that are full of discontinuities in the depth profile, as well

as to real images that are not free of noise.

In the synthetic scene profile used in the preceding examples, we have used
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continuous-depth profiles. For real scenes this is unrealistic. At an object’s bound-
aries, discontinuities in depth are likely. Because the presented algorithm cannot
integrate across these discontinuities, we need to be able to identify them. Let us
suppose that we use zero crossings of the Laplacian of imaée irradiance as places at
which depth discontinuities may occur. We shall apply our integration procedure,
tracking along the image irradiance profiles until we come to a zero crossing in one
of the image irradiance profiles.

If continuation implies that the scene depth gradient, 42, varies slowly, we
continue. A sudden change in gradient signals a depth discontinuity and the
integration procedure is terminated. Note that the integration routine itself signals
depth discontinuity if g—;— exhibits rapid change for arbitrarily small step sizes.
This procedure also handles occlusion problems in which one view (hence its image
irradiance profile) “sees” around an object that is occluded from the other view.
Again we stop at the first zero crossing encountered in either of the image irradiance
profiles, or when 4 changes too rapidly. It should be noted that the above
procedure does not require that the zero crossing from both image irradiance profiles

be matched; rather, it simply requires their detection.

Of course, there is a price that must be paid: we now need to be able to



detect initial starting points for the integration procedure between adjacent zero
crossings. The peaks and troughs of irradiance would seem appropriate, being
invariant through most realistic image irradiance transformations that may occur
during image acquisition. Furthermore, as these peaks and troughs of the two
irradiance profiles match (considering that the value of irradiance should be identical
at matched points), the opportunity exists for correcting the image irradiances for
linear transformations in contrast. This allows for local contrast correction - an
especially important recourse for image pairs that are temporally separated. A
suggested procedure is to (1) detect the peaks and troughs in image irradiance, and
also the zero crossings of the Laplacian of image irradiance; (2) match the peaks and
troughs across the two images to provide initial points for integration;! (3) correct
the image irradiance profiles for each profile section between peaks and troughs
for a linear transformation in contrast; (4) then apply the integration procedure,
terminating at .rapid changes in % or at zero -crossings, if necessary. We are

current]ly giving our attention to these matters.

A serious deficiency of the present algorithm is its sensitivity to noise — a dis-
advantage inherent in any procedure that makes use of image irradiance gradients.
This sensitivity can be easily demonstrated with quantization noise alope. If the
image irradiances shown in Figure 3 are quantized to 256 different levels, the results
of applying the algorithm can be seen in the right half of Figure 4. This result
should be compared with the one shown at the upper left of Figure 3. Noise is

an undeniable problem. We have difficulty in recovering reliable depth estimates if

1We do not underestimate the difficulty of this step, but the basic assumptions implicit in cor-
relation techniques are likely to be satisfied near peaks and troughs. Some mismatch error can be
tolerated and as we can integrate through peaks and troughs of image irradiance, we have only to
detect and match the “obvious” ones.
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Figure 5§ Depth Recovery: Alternative Expression for the Depth Profile
Gradient.

the signal-to-noise ratio is less than a few hundred. This sensitivity is particularly
apparent when the image irradiance gradient is small. Smoothing of the image
irradiance profiles is at best inadequate. |

An approach that is competent to deal with noise (although it has other
deficiencies) is to replace Equation (7), which determines the dep£h profile gradient
4z from image -irradiance gradients, with an expression that involves irradiance
integrals rather than derivatives. This expression is obtained by integrating the
earlier expression

I(z')=Ir(e'R)

with respect to the scene coordinate dz.

/:, Ip(zp)dz = f:, Ir(zr)dz

Changing the integration variable to image coordinates gives



L dz /z R dz
LL IL(zL)EdzL = en IR(ZR)EdZR ’

where a;, ag, and z’f, 2’ are corresponding points in the left and right images. We
p g g

replace = and #£% with Equations (5) and (6), then use this expression to compute

dz
dz *

For computation we replace the integral with finite sums. To calculate these
finite sums we use an irregular grid that is positioned at the 2’y and z’g points
previously determined to be in “correspondence” as we integrated the profiles from
the starting points, a; and ag.

Figure 5 shows the results obtained when we integrated from the center' of
the left irradiance profile (and from the corresponding point in the right image)
to the right. In this example the surface reflectance is Lambertian and the albedo
constant. Random noise has been added independently to each of the irradiance
profiles. While the recovered depth profile in Figure 5 is reasonable, the integration
procedure does not maintain good “correspondence” between its position in the left
image and that in the right. Consequently, we cannot handle albedo boundaries
with the competence of the previous technique. Some combination of these two
approaches may have the desirable properties of maintaining good “correspondence”
- thus, while insensitive to noise, be effective across albedo changes. We are actively
exploring this problem in our current research. A solution is necessary if the

presented algorithm is to become a viable technique for recovering scene depth from

pairs of real images that cannot be preprocessed to remove noise.

6. Summary

We have presented a new approach to reconstruction of scene depth from a
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pair of images. The technique does not depend upon matching of image features, at
least not in the usual sense, nor does the necessary matching require great spatial
accuracy. Furthermore, the features to be matched are more compatible than their
traditional counterparts with the assumptions implicit in correlation techniques.

The results point to a technique that is capable of handling changes in both
albedo and illumination. Furthermore, the technique directly yields a dense depth
map of the scene. |

We are exploring several related outstanding issues. Among these are the
exploitation of depth discontinuities and the problem of reducing semsitivity to
image notse.

Besides its direct use in remote-sensing applications, the recovery of scene
geometry provides an underlying three dimensional model to assist in the reliable
recovery of attributés of the earth’s surface. Competent recovery of such surface
attributes as material composition has not yet been achieved. Moreover, it is
unlikely to be until the techniques we use are able to truly “understand” the shape

of the earth’s surface.
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ABSTRACT

The goal of this research is to develop a robust control strategy for
constructing image understanding systems (IUS). This paper proposes a
general framework based on the integration of "related" hypotheses.
Hypotheses are regarded as predictions of the occurrences of objects in the
image. Related hypotheses are clustered together. A "composite hypothesis"
is computed for each cluster. The goal of the IUS is to verify the
hypotheses. We constructed an image understanding system, SIGMA, based

on this framework and demonstrated its performance on an aerial image of

a suburban housing development.



1. Introduction

A primary objective in computer vision research is to construct image
understanding systems (IUS’s) which can analyze images based on object
models. Usually, an IUS analyzes images by constructing interpretations in
terms of the object models given to the IUS. Interpretation refers to the map-
ping between objects (e.g., houses, roads) in the object model and image
structures (e.g., regions, lines, points) in the iniage. During the analysis, an

TUS needs to perform the following two types of tasks:

- segmentation : the task of grouping pixels together to construct
image structures that can be associated with objects in the given
model.

- interpretation : the task of constructing mappings between image
structures and objects.

Segmentation is practical when sufficient knowledge is available about the
image to be processed and the image structures to be computed. The base of
knowledge increases as the interpretation process develops, leading to more

constrained and therefore more reliable segmentation.
Many IUS's were constructed in the late 1970’s ( [Barr81], [Ball82],
[Binfg82] [Ball82].) Most systems integrate segmentation and interpretation

using .one of the following types of analysis.
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1) Bottom-up analysis: the image structures are extracted from the

image, and are interpreted as instances of the objects in the model.
- For example, when a large rectangular region is extracted, inter-

pret it as a house.

2) Top-down analysis: the appearance of the object is first deter-

mined, and the associated image structures are extracted. For ex-

ample, suppose an IUS wants to find a house; the IUS invokes the

house model and establishes the descriptions of the specific image
structures to be extracted from the image.

It is generally accepted that image understanding systems shéuld incorporate
both bottom-up and top-down analyses. Some systems use only one type of
analysis. MSYS [Barr76] developed by Barrow and Tenenbaum used bottom-
up analysis. Image structures are first segmented from the image. A set of
initial labels are assigned to these image structures (based on height, homo-
geneity, etc.) Then, geometric constraints between labels are used to filter out
inconsistent labelings. Bolles [Boll76], on the other hand, used top-down
analysis. In his system , a goal is first constructed. The system then matches
the goal, which is represented as a template, with ’the image. A similar
approach is used in Garvey's [Garv76] system. Other systems (Hansoﬁ, Rise-
man [Hans78]; Matsuyama [Naga80]) incorporate both types of analysis but
use ad hoc rules to determine which type of analysis is to be used at what
stage duﬁng the analysis. Such systems often require a large set of domain

dependent control knowledge to direct the analysis of the TUS.



It is the goal of this research to develop a robust control strategy for coﬁ-
structing image understanding systems, thus eliminating the need to use large
amounts of domain specific control knowledge in specific applications. In this
paper, we propose a general framework which enables l'US’sl to integrate both
bottom-up and top-down analyses into a single flexible reasoning process. We
construct an image understanding system, SIGMA, based on this framework
and provide demonstrations of its performance on images of a suburban hous-

ing development.

1.1. Integration of hypotheses

Considering the following proposition:

If a structure of type x is present in the scene having certain spa-
tial properties, then there should exist a structure of type y having
certain properties in the image. )

It is often the case that what is known about x is not sufficient to completely
characterize y (i.e., we might be able to predict its size and color, but perhaps
not its orientation). In addition, there might be many x’s, each predicting the
occurrence of y, but each contributing different constraints on the properties

of y.

For example, by locating a house in the image, one may predict the
occurrences of other objects, e.g., neighboring houses. Furthermore, the

discovery of a rectangular homogeneous region in the image may also generate
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a prediction of a house. It is usually the case (depending on the object model)
that each of these predictions provides some ‘‘cues’ about the occurrence of a
house and it is the integration of all these cues that may characterizes the

occurrence of a house adequately enough to easily recognize it.

Let us call the predictions about the occurrences of objects in the image
hypotheses. Suppose several hypotheses, wvhich may be independently gen-
erated, are predictions about objects at the same location in the image. It is
reasonable to assume that these hypotheses are predictions about the “same"’
object, although each may only constrain some subset of the properties of the
object. By integrating these hypotheses, an IUS could construct 2 more com-
plete description of the object and use it to direct a more éﬁective and

informed analysis.

1.2. An overview of the SIGMA image understanding system

Figure 1-2 shows the system architecture of the SIGMA image under-
standing system. The user provides object models to SIGMA, and the results

of the analysis are available to the user through a query-answering module.

The image is first segmented by a general purpose low level vision éystem
(LLVS). The segmentation results are recorded in the iconic/symbolic data-
base. The high level vision system (HLVS) uses the object model either to
interpret image structures already extracted or to direct the low level

processes to search for image structures not yet discovered. During the



analysis, the HLVS incrementally constructs an inter}.)ret,a.t'xbn network for th.e
input image. A ‘‘goal” is given to the query-answering module (QAM). At
the end of each analysis iteration, the QAM is activated and ‘‘matches’ the
current status of the analysis with the goal. This construction process contin-
ues until the ‘‘goal” is accomplished (i.e., a' successful match between the
cﬁrrent status of the analysis and the goal) or no more interpretations can be
constructed. At this stage, the QAM provides the current status of the
analysis. In the following subsections, we present each module of SIGMA iﬁ

more detail,

1.2.1. The low level vision system

In SIGMA, the LLVS is formulated as a domain-independent goal-
directed segmentation system. A goal, which is described by a list of con-
straints on the image structures to be computed, is given to the LLVS. The
LLVS uses general segmentation techniques to extract such image structures.

Other systems have been constructed to perform goal-directed segmentation -

e.g., Selfridge [Self82] and Nazif & Levine [Nazi84].

Our approach differs from the approaches taken in these systems. We
assume that many specialized methods are needed to extract image features
from the image. An LLVS needs to select, from a pool, methods that best suit
the task. Furthermore, new methods are frequently developed that can aug-

ment or replace the methods currently used by the LLVS. It is important to
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design an LLVS so that adding methods to it is easy.

Our LLVS is based on a select-and-schedule strategy. When the LLVS is
asked to verify some hypothe'sis, it first selects those methods which are appli-
cable by matching the hypothesis against a decision table. Then, the LLVS
schedules the selected methods according to their potential. If one method
fails to verify the hypothesis, the next method will be tried until the
hypothesis is verified or until all methods have been tried and have failed.
This approach is similar to the “blackboard” method {Davi77] and the “con-
tract net” idea [Smit78]; but the implementation here is simpler. For a

detailed discussion of the LLVS, see [Hwan84].

1.2.2. The high level vision system

The high level vision system (HLVS) uses object models to interpret data
recorded in the iconic/symbolic database and construct an interpretation ﬂet-
work. The HLVS uses the integrat.ion of hypotheses principle to direct
analysis. This is implemented by the following reasoning steps.

1) Hypothesis generation: the HLVS generates hypotheses about
occurrences of objects in the image.

2) Hypothesis integration: the HLVS clusters ‘‘related” hypotheses
together.

3) Hypothesis abstraction: the HLVS computes a ‘‘composite hypothesis”
for each cluster.

4) Hypothesis verification: the HLVS selects hypotheses and verifies them
by computing values for those attributes which are not completely



constrained.

The HLVS performs the reasoning iteratively. At the end of each itera-
tion, the HLVS checks whether the ‘‘goal’ is accomplished by activating the
QAM. If the goal is accomplished or no more interpretations can be con-
structed, the construction process terminates and the status of the analysis is

available through the QAM.

1.2.3. Query-answering module

Potentially, SIGMA constructs all possible interpretations for an image.
However, SIGMA needs to select, among many interpretations, a good one as
its conclusion. Instead of finding a ‘‘best interpretation’, we modei this selec-
tion process as a database query answering process. A program (QAM) was
developed to answer simple queries about the interp'retation network and to

display the associated image structures.

The goal of the analysis is provided to the QAM as a query. Whenever
the QAM is activated (by the HLVS), it matches the goal with the interpreta-

tions already constructed. If any interpretation that satisfies the goal is

found, the QAM enters into an answer mode and provides a query-answering

capability for selecting ‘‘good interpretations’ and displaying the explanations

for these interpretations.
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1.3. Outline of the paper

We first present the knowledge representation paradigm used in SIGMA.
In Section 3, we discuss a framework for perform.ing hypothésis integration
and abstraction. This is followed by a detailed description of the system con-
structed based on this framework. Conclusions are presented in the final sec-

tion.



2. Representation of object models

2.1. What to represent?

The knowledge representation formalism determines a general framework
for organizing the necessary knowledge into a knowledge base and supports a
powerful inference mechanism for guiding t-he recognition of a specific scene.
An appropriate knowledge representation tool can often simplify the task of
transferring problem domain expert knowledge into knowledge baées in com-

puter systems.

Consider the following house model:

A house is ‘“‘rectangular” or “L-shaped’; its area is larger than
1000 square feet but no larger than 2500 square feet. A house usu-
ally belongs to a group of houses which are on the same side of a
road. Roads can be found near the house. Usually, the road is
parallel or perpendicular to the house and a driveway connects the
road to the house.

Based on how an TUS uses such a model to locate houses in a given image, one
can categorize this scene knowledge into the following classes.

1) What to look for. This class of knowledge describes the appearances of
objects (e.g., the type of image structures associated with objects.) In the
house example, the appearance of the house is a homogeneous compact rec-
tangular region. To locate houses, an IUS segments the input image and
identifies as houses those regions which are rectangular and compact and
whose sizes are between 1000 and 2500 square feet.

2) Where to look. This class of knowledge includes the geometric and topolog-
ical relations between objects. The knowledge base might, for example,
specify (based on connectivity, relative orientation, etc.) relations between
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driveways, houses, and roads. An IUS might, if one of these objects is
discovered (say a driveway), use this relation to initiate and constrain the
search for other objects (e.g., a connected house and road) not yet discovered.
An TUS might also use such relations to examine whether a house, a driveway,
or a road already discovered satisfy the required relations.

3) When to look. This class of knowledge describes strategies regarding the
application and confirmation of relations. One the one hand, we often want to
postpone applying a specific piece of relational knowledge until sufficient
information has been obtained to strongly suggest that the relation may be
applicable. On the other hand, since the confirmation process often involves
the searching of image structures associated with other objects, we might also
want to postpone the confirmation of a specific relation until a sufficient
description of the object to be searched is collected. For example, when the
IUS generates a house hypothesis, instead of searching for an image structure
associated with it immediately, the TUS might postpone the search until a
sufficient description of the house (e.g., shape, intensity, etc.) is available.

A principal objective of this research is to develop a representation
scheme which simplifies the task of capturing domain knowledge as a
knowledge base for IUS’s. This section presents the knowledge representation
scheme used in the SIGMA system. Note that the scene model is used mainly

by the HLVS (High Level Vision System) module in SIGMA.

2.2. Basic representation primitives

Our representation formalism is based on frame system theory [Mins75],
semantic networks [Wino75] [Hend79], and an object oriented problem solving
style [Stee79] [Wein80] {Gold83]. In SIGMA, object models are represented as
a graph strﬁcture of nodes and arcs. Objects are described by *‘frames” (nodes
in the graph structure) while relations between these objects are described by

“rules” and ‘“links” (arcs in the graph structure). In such a formalism, domain



knowledge is built around a set of objects and a set of operations that can be

applied to them.

The basic entities of the representation are called frames and are used to
model abstract objegts in the problem domain such as “‘house” or ‘“road”.
Each frame may have many associated descriptions that are defined by slots.
Siots are similar to ‘‘property lists” in LISP. Each slot is a list which contains

an indicator (i.e., name) and a value.

In addition to slots where values are recorded, we can also associate with
frames all the knowledge which is used to compute values of slots. We

represent this type of knowledge as rules.

Rules used in this context are procedural—i.e., the knowledge about how
to compute values of slots is encoded in programs. As mentioned above, these

‘““programs’’ are written using an object-oriented programming style.

Objects in the scene domain are often structured into hierarchies. It is
often natural and convenient to preserve these hierarchies when we construct
the scene model. Links are used to describe the hierarchical relations between

objects.

One object hierarchy often used is the generalization/specialization
hierarchy; CAN-BE and AIKO links are employed to describe it. Link CAN-
BE describes a frame and its specializations while link AIKO describes a

frame and its generalizations.
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Properties are inherited through the AKO link. This usage is similar to
ghe “‘property inheritance’ in semantic networks ( [Moor79}, [Nils80].) All the
knowledge recorded in frames that are linked to a father frame by the AKO
link is inherited by that frame. For example, both the RECTANGULAR-
HOUSE and the L-SHAPED-HOUSE have centroid, shape-description, front-
of-house, and connecting-driveway slots. Also, both the RECTANGULAR-

HOUSE and the L-SHAPED-HOUSE can use rule Fy.y,yq to compute the

connecting driveway.

Often, the HLVS needs to reason across the CAN-BE link. For examiple,
suppose the HLVS needs to compute the shape of a house. The HLVS is not
able to do the computation since there is no such rule recordéd in the HOUSE
frame. Instead, the HLVS needs to reason about what specialization to choose,
i.e., RECTANGULAR-HOUSE or L-SHAPED-HOUSE. The strategies for this
type of reasoning are called specialization sirategies and are encoded as rules
and recorded in frarﬁes. Attéching such search strategies using CAN-BE links

is similar to the process of “plan elaboration” in Garvey's system [Garv76]

As an example, suppose that there are two type of houses, rectangular
and L-shaped, in community A. Every house has a driveway. However; each
type of house has a different appearance. Suppose F, i;n0, is 2 rule which
computes the shape description of a rectangular house, and Firivewsy 18
another rule which finds the driveway connecting to a rectangular house. Rule

F4rivewsy computes the driveway of a house. We can write the house model as



shown in Figure 2-1. In this model, the HOUSE frame is a generalization of
the L-SHAPED-HOUSE frame and the RECTANGULAR-HOUSE frame while
the L-SHAPED-HOUSE frame and RECTANGULAR-HOUSE frame are spe-
cializations of the HOUSE frame. Their hierarchical relations are shown in

Figure 2-2.

2.3. Instantiation of a frame

Frames are the prototypes of objects. The SIGMA system uses frames as
models to construct interpretations of the image by making instances of
frames. An tnstance is a copy of a frame. The process of making instances is
called tnstantiation. At instantiation, vé.lues can be assigned to slots. These
values may be the ‘‘defaults’” (specified in the frame definition) or ‘may be
computed using rules. Since all instances are recorded in the iconic/symbolic
database in the HLVS as basic database entities, we use the term Database
Entities (DE’s) interchangeably with the term ‘‘instances” in the rest of the
paper.

An important property of an object is its appearance. During the
analysis, the HLVS needs to direct the LLVS (Low Level Vision System) to
process the image and locate image structures which are associated with
objects. Some objects’ appearances are defined in terms of image structures
that can be directly computed by the LLVS. Those frames which define such

objects are called primitive frames. Frames which are not primitive are called

P RIS R
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non-primitive frames.

Depending on what is known about the appearance of an instance, an
instance can be in one of the following two states: verified, which indicates
that the apbearance of the instance is some already located image structure or
is a function of the appearances of verified instances; and hypothetical, which

indicates that the appearance of the instance has not been determined.

In addition to the appearances of objects, the HLVS also uses the iconic
description of a frame during its reasoning. The iconic description specifies an
area in the image and its definition is specified by a rule. During the
hypotheses integration, the HLVS uses the iconic descriptions to reason
whether two DE's are related (explained in Section 3). The use of iconic
description in SIGMA is similar to the use of ‘‘functional areas’ in Mckeown'’s

SPAM aerial interpretation system [McKe84].

The values recorded in instances may be updated during the analysis.
Ever'y instance has a special numerical value which is called the strength of
the instance. The method used to compute strength is described as a pro-
cedure, say Pyirengens in the frame’s deﬁnition; Upon instantiation, a strength
is computed for each instance. Whenever the values recorded in an instance
are updated, the strength of the instance is also recomputed. by reevaluating
Potrength- The HLVS uses such values to control its focus of attention mechan-

ism.
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Suppose one defines the appearance of a house (house frame) as a rec-
tangular compact region and a row of houses (house-group frame) as the
union of the appearances of all the houses in a house-group. Then the house
frame is primitive while the house-group frame is non-primitive. In SIGMA,
in order to locate a house-group, the HLVS first generates hypotheses about
the location of meinber houses and then direct the LLVS to locate each house

individually.

Now, suppose that the LLVS located a rectangular compact region, R,.
The HLVS will generate a house instance, H,, whose appearance is K, and
mark it as a verified instance. However, suppose the HLVS further generates
neighboring house predictions for H,, say H, and H;. Both H, and H; are
hypothetical instances since the appearances of these instances have not yet

been determined from the image.

2.4. Representing relations between objects

A major portion of the scene domain knowledge involves relations
between objects. However, these relations must be represented in forms that
can be directly used by the HLVS. Our approach is influenced by production
rules [Davi77] and the planning paradigm used in Garvey’s vision system

[Garv76].

Suppose we have the following house-road relation:
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A road road, is along a house house, if the predicate along
(roady,housey) is true. ‘

There are at least two potential uses of this relation by the HLVS:

- HLVS uses the relation to check whether road road, is along
house house,.

- HLVS uses the relation to direct a search for a road along house
house,.

In order to support multiple uses of a relation by the HLVS, we use a
test-hypothesize-and-act strategy to describe relations. A binary relation
REL(O,,0,) between objects O, and O, is represented using two functional

descriptions:
0, = F(0,) and O, = G(0O,).

Program F computes the object expected by object O, and is recorded in
object frame O, as a rule. Program G computes the object expected by object

O, and is recorded in object frame O, as a rule also.

As noted earlier, control knowledge for the use of relations and control
knowledge for directing search are both required by the HLVS. We represent

such knowledge as predicates associated with rules.

We present our rule representation scheme as follows:

e i 3 mnen e Lt e e 7 ¢



A rule is composed of three parts:

< control-condition>
< hypothesis>
<action>.

< Control-condition> is a predicate. It indicates when a rule can potentially
be applied. <Hypothesi§> specifies the d'escription of a desired object that is
created when the <control-condition> evaluates to true. <Action>
describes‘ the code to be evaluated if <hypothesis> is verified. In general,
<action> can add facts to or delete facts from the iconic/symbolic database

of the HLVS.

The house-road relation can be written as a rule in the HOUSE frame as

follows (Figure 2-3):

To compute a road along house house;,, we always generate a hy-
pothesis road, with the following slot values:

road.orientation:
greater than (housegy.front-of-house + 80 degrees) but less than
(housey.front-of-house 100 degrees).

road.width:
greater than (houseyp.width * 0.3) but less than (housey.width *
0.5).

road.centroid:
resides within REGION(housey.centroid + T(housey.front-of-
house)).

T(.) is a function. If the hypothesis road, is verified by some road
roady, then road road, is along house house,.
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Figure 2-4 shows a model for suburban housing developments. Objects
are described by nodes (square) and relations are described by ares. In this

model, Rectangle and Picture-Boundary are the “primitive frames’.

- The HLVS makes use of the different parts of a rule to perform its rea-

soning. We discuss this in Section 4.



3. Integration of hypotheses

3.1. Introduction

Consider a binary relation REL(0O;,0,) between two c_lasses of objects,
Ol and O,. This relation can be used as a constraint to recognize objects from
these two classes by first extracting image structures which satisfy the
specified appearances of O, and O,, and then checking that the relation is
satisfied by thesé candidate objects (Figure 3-1). In this bottom-up recognition
scheme, analysis based on relations cannot be performed until image struc-

tures corresponding to objects are extracted.

In general, however, some of the cérrect image structures fail to be
extracteci by the initial image segmentation. So one must, additioné.lly, incor-
porate top-down control to find image structures missed by the initial segmen-
tation. Such top-down processes use relations to predict the locations of
missing objects, as in the system described by (Garvey [Garv76), Selfridge

[Selfs2])

As noted above, the use of relations is very different in the two analysis
processes : consistency verification in bottom-up analysis and hypothesis gen-
eration in top-down analysis. An important characteristic of our hypothesis
integration method is that it enables the system to integrate both bottom-up

and top-down processes into a single flexible spatial reasoning process.
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As will be described in Section 4, the HLVS first establishes lodal environ-
ments. Then, either bottom-up or top-down processes are activated depending
on the nature of the local environment. The following sections describe the

concepts and characteristics of this process.

3.2. The representation of database entities

All instances, hypothetical or verified, generated by the HLVS are
recorded in a database. In the rest of this section, we use the term database
entity (DE) to refer to instances recorded in the database. In addition, we use

the term hypothesis to refer to instances in the hypothetical state.

The description of each DE consists of two parts. One part is the iconic
description. This description is a region in the image which indicates where
the DE may be located. It is generated by the rule which specifies the iconic

description of the frame used to generate the DE.

The second part is the symbolic description, which includes the values
filled into the slots of the DE, and the set of constraints imposed on these
values. These constraints are represented by a set of linear inequalities in one

variable (the slot name).

3.3. Consistency between a pair of DE’s

“Related” DE’s are integrated and analyzed together. In SIGMA, *‘relat-
edness” between DE's is defined in terms of ‘“‘consistency’ between pairs of

DE’s. A pair of DE’s, DE| and DE,, are said to be conststent if the following



conditions hold:
1) The iconic descriptions of the DE’s must intersect. It is also possible to

impose some requirements on the size and shape of the area of intersection.

2) The DE’s are compatible. Let OP be the intersection arising from two
DE’s, and let F, and F, denote the frames from which DE, and DE, were
copied. DE, and DFE, are said to be compatible if F| and F, are linked by

CAN-BE or AKO links. Otherwise, DE| and DE, are said to be tncompatible.
This will be explained in more detail in Section 3.5.

3) The constraints imposed on the attributes of the DE’s must be satisfiable.
Every DE has associated with it a set of linear inequalities in one variable
that constrain the permissible values of the DE’s attributes. A simple con-
straint manipulation system is used to check the consistency between the sets
of inequalities by generating the solution space (also represented by inequali-
ties) to the intersection of those sets. If this solution space is non-empty, then
the constraints are consistent. :

3.4. Formation of maximum consistent situations

Consistent DE’s are combined into situations. These DE’s are said to
participate in the formation of a situation. The P-set of a situation is its set
of participating .DE’s. Situation S, is less than situation S if the P-set of Sa
is a subset of the P-set of S,. This ordering is used to structure all the situa-
tions into a situation lattice. Note that a single DE is also a situation. The

rest of this section presents the algorithm used to form situations.

Two DE’s are said to be 2-consistent if they are consistent. In general, a
set of DE’s is said to be n-consistent if every possible subset of (n-1) of the
DE's is (n-1)-consistent. Clearly, a set of DE’s is n-consistent if and only if

all possible pairs of DE’s in the set are 2-consistent.
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When a DE, say DE,,,, is inserted into the iconic/symbolic database, the

current situation-lattice is updated by first computing the set, U, that con-

tains all DE’s whose iconic descriptions intersect with the iconic description of

DE,..,.- Then, we iteratively compute all lists of n-consistent DE’s for those

DE'’s in the set U. Each such lisﬁ of n-consistent DE's forms the P-set of some

situation. Algorithm 3-1 describes this process.

The mazimum consistent situations are those situations which are the

roots of the situation lattice.

Step 1:

Step 2:

Step 3:

Step 4:

Step o

Algorithm 3-1 : Updating the Situation Lattice

Suppose the newly inserted entity is DE,,,. Compute the set U.
N=2.

Compute the set, R, of all the N-consistent DE’s for the DE’s in
U. Remove any which do not contain DE,,,,.

If R is empty, then exit. Otherwise, insert all the elements of R
into the situation-lattice.

Increment N by 1. Construct all the pairs for elements in R.
Represent each pair by the union of the members in each ele-
ment. Remove any which is not N-consistent or does not contain
DE,,,. Set R to be the set of resulting N-consistent DE's.

Go to step 3.




Figure 3-2 shows an example of how the situation lattice is updated when
a DE is inserted. Each DE is represented by a letter. A situation is
represented by all the DE’s in its P-set. Figure 3-2(a) shows the situation lat-

tice before the insertion of DEE and the iconic descriptions of the DE’s. Sup-

'pose that the new DE, DEY, is consistent with DE4, DEg and DEp. The set

U would then include
| DE,, DEg, DE,, DEp, DEp.
The first time that step 3 is evaluated, set R contains the following situations:
DEAE,iDEBE, DEpg.

The second time that step 3 is evaluated, set R contains the following situa-

tion:
DE, DE

The updating stops at the third iteration. Figure 3-2(b) shows the situation

lattice after the updating process.

When a DE, say DE,,,,,., is being removed from the iconic/symbolic
database, the current situation lattice must also be updated. This can be done

simply by removing all the situations in the situation lattice which are larger

than DE

remove*

J——— s e s =
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Suppose, for eicample, that DE, is removed from the situation described

in Figure 3-2(b). Figure 3-3 shows the resulting situation lattice.

It is possible that the number of situations in the situation lattice may
grow exponentially. In practice, this does not happen since the number of

participants in a situation is usually quite small, e.g., two or three.

3.5. Constructing the composite hypothesis

A situation is a collection of consistent DE’s. The HLVS selects a situa-
tion and proposes a composite hypothesis which “summarizes’’ the constraints
imposed on the attributes of all the ;;articipating DE’s. The strategy for com-
puting the composite hypothesis is specified by a procedure recorded in the
frame’s definition. (Note that two DE’s are consistent only if they are
instances of the same frame or instances of frames in the same
generalization/specialization hier;irchy. Therefore, all the participants in a
situation must be instances of frames in the same generalization/specialization
hierarchy. The procedure for computing the composite hypothesis is recorded
in the most general frame.) This section presents some strategies for comput-

ing the composite hypothesis.

One simple strategy is to use the solution sets of all the constraints
imposed on the attributes of all the participating DE's (explained in Section
3.4) as the constraint set of the composite hypothesis. The target object of

the composite hypothesis is the most specialized object expected by all the



DE's.

Suppose that the constraint set of DE, is

target object = HOUSE,
house.centroid = (100,130),
230 < house.area < 300

while the constraint set of DE, is

target object = RECTANGULAR-HOUSE,
house.centroid = (100,130),

250 < house.area < 320,
house.region-contrast > 3.

Using this method,A we gerierate the composite hypothesis for DE, and DE, as

follows:

target object = RECTANGULAR-HOUSE,
house.centroid = (100,130),

250 < house.area < 300,
house.region-contrast > 3.

Another strategy is to take the union of all the solution sets of the constraints
imposed on the attributes of all the participating DE’s. Suppose, for example,
that two hypotheses, DE) and DE,, about a road have constraints on their

starting and ending points as follows:
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hypothesis DE|,
target object = road,

road.end-points == {(100,100),(100,150)} .

hypothesis DE,,
target object == road,

road.end-points = { (100,1‘25),(100,180)} .

We may want to construct a road hypothesis whose constraint set is the union

of these constraints on DE, and DE,:

" target object = road,

road.end-points = { (100,100},( 100,180)} .



4. An implementation of SIGMA

4.1. Overview

The goal of SIGMA is to segment the image into image structures which
correspond to the objects specified in the object model. Section 1.3 outlined
the architecture of the SIGMA image understanding system. This section

describes its implementation.

Figure 4-1A illustrates the d.iﬁ”erent stages of the control of SIGMA.
SIGMA first directs the LLVS to perform an initial segmentation of the
image. A set of image structures are computed at this stage. At the second
stage, the HLVS constr;ucts partial interpretations based on the results of the
initial segmentation. However, during the construction, the HLVS may direct
the LLVS to compute more image structures. When all construction activities
finish, SIGMA provides a query-answering module for selecting ‘‘good
interpretations’” and displaying the reasoning paths used to derive these
interpretations. During the entire analysis, SIGMA maintains a database
(the iconic/symbolic database) to record all the intermediate results gen-

erated at each stage.

The rest of this section discusses the implementation of SIGMA.

4.2. Description of goals

The Query-Answering Module (QAM) is activated by the HLVS at the

end of each reasoning iteration. The goal of SIGMA is described as a query to
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QAM. QAM matches the query with the interpretations already constructed.
If any interpretation matches the goal, QAM enters into an answer mode and

provides an interactive query-answering capability.

Suppose, for example, that the goal is to locate any road whose length is
longer than 300 feet in the image and has at least two houses along it. This

-goal can be represented by the following query:
road(x) and (x.length > 300 feet) and (x.number-of-houses >2).

During the interpretation stage, whenever a road instance is constructed
whose length is longer than éOO feet and has at least two houses along it (i.e.,
x is bound to some interpretation constructed by the HLVS), QAM will enter
an answer mode and make the specific road instance that satisfies the goal
available to an interactive program. One can use this program to traverse the
interpretation network (the network which is constructed by the HLVS during
the interpretation process), and display symbolic and iconic descriptions of the

interpretations constructed.

4.3. The initial segmentation

SIGMA starts its processing by directing the LLVS to extract image
structures. The schematic diagram of the initial segmentation process is
shown in Figure 4-2. The set, I, which contains a list of hypotheses about

primitive objects, is used to describe the goal of the initial segmentation pro-



cess.

The Initial Segmentation Controller (ISC) sequentially selects hypotheses
from the set I and directs the LLVS to extract image primitives which satisfy
these hypotheses. For each image primitive extracted, the ISC makes an
instémce of the frame of which the hypothesis is a copy, and then inserts the

instance created into the iconic/symbolic database.

Suppose, for example, that we want to first extract all regions which
might correspond to house groups and roads in the image. A set which con-

tains the following hypotheses can be used as the set I:

hypothesis 1: /* extract compact and bright rectangles */
target object = rectangle,
in-window = whole image,
rectangle.elongatedness < 10,
rectangle.compactness < 18,
rectangle.region-contrast > 3,
180 < rectangle.area-of < 400.

hypothesis 2: /* extract elongated rectangles */
target object = rectangle,
in-window = whole image,
7 < rectangle.width < 20, .
rectangle.elongatedness > 10,
rectangle.length > 10,
rectangle.compactness > 18,
rectangle.region-contrast > 3.

The set I for the initial segmentation could, in principle, be computed
from the scene model, since the appearances of objects are described in terms

of the appearances of ‘‘primitive frames’. The ISC could choose those primi-
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tive frames whose appearances are salient (i.e., they can be located ‘‘easily”
by the LLVS) as the I-set. However, this was not implemented in SIGMA; the

I-set is simply given as part of the scene model.

4.4. Construction of partial interpretations

The schematic diagram of the processing involved in constructing partial
interpretations is shown in Figure 4-3. The HLVS iterates the following steps

in this stage:

(1) hypothesis generation,

(2) focus of attention,

(3) composite hypothesis construction,
(4) solution generation,

(5) action scheduling.

Detailed discussions of each step are presented in the following subsections.

4.4.1. Hypothesis generation

For each DE (hypothetical or verified) recorded in the iconic/symbolic
database, the Iconic/Symbolic Database Manager (ISDM) evaluates all the

rules that are ‘“‘applicable’.

Suppose I is an instance of frame F. For each rule, say R,, defined in
frame F, the ISDM evaluates the <control-condition> part of rule R,. If the

evaluation result is true, the ISDM performs the following tasks:



(1) Compute the <hypothesis> part of rule R,, and insert the
computed hypothesis into the iconic/symbolic database.

(2) Insert the <action> part of rule R, into the Action List which
records all the actions waiting to be evaluated.

The actions in the action list are called delayed actions. For each
delayed action, there is an associated hypothesis (computed at step 1)
recorded in the iconic/symbolic database. Such a hypothesis is called the

cause of delay of the action.

Note that for rules whose <hypothesis> part is nil, the <action> part
is not put into the action list. Instead, the <action> is evaluated immedi-

ately. At the hypothesis generation stage, the ISDM evaluates, for each

instance in the iconic/symbolic database, the <control condition> of every

rule in the associated frame definition. (This strategy is not efficient. A more
efficient strategy would evaluate only those <control condition> s whose
values are affected by changes made to the attributes of the instance since the

last time the <control condition>s were evaluated.)

The DE’s in the iconic/symbolic da.t,abase are combined into situations.
All the situations are structured into the situation lattice. The Situation Lat-
tice Database Manager (SLDM) updates the situation lattice whenever DE’s
are inserted into or removed from the iconic/symbolic database. The algo-

rithm (8-1) for updating the situation lattice was presented in Section 3.4.
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“Identical instances” may be created during the construction process of
the HLVS. Two instances are identical if all the values filled in the slots of
those instances are identical. It is necessary to detect identical instances and
replace them by a single instance. This process is called unification of

instances, and is performed during construction of composite hypotheses.

For example, a house group instance containing héuse ';nstances H, and
H, can be constructed from instance H, by first constructing a house group
instance, say HG,, which contains H, , and then expanding HG, to include
house instance H, (see Figure 4-4(a)). An identical house group instance HG,

can also be constructed from house instance H; (see Figure 4-4(b)).

One natural way to detect identical instances is to examine the P-set of a
situation. For each situation selected by the focus of attention mechanism, the
HLVS examines the instances in the P-set of the situation to find sets of

identical instances.

The HLVS unifies identical instances as follows. All identical instances
are first collected in a set, L. Then the HLVS selects one instance from the set
L, say I,. For each instance I, € L, the HLVS replaces every reference to I, in

the iconic/symbolic database by a reference to instance I

Figure 4-5 illustrates the result of unifying HG, and HG, (assuming the

HLVS chooses HG as ).



4.4.2. Focus of attention

The focus of attention mechanism selects a situation with greatest
strength from the situation lattice. If there are several situations with equal

strength, the HLVS selects one arbitrarily.

For example, Figure 4-8 shows a situation lattice. There are two maximal
consistent situations that can be selected (both situations have strength = 3).

The HLVS can select either one (i.e., Vg, or Ny).

The situation selected by the focus of attention mechanism is given to
the Composite Hypothesis Constructor to construct the composite hypothesis.

The construction of composite hypotheses was discussed in Section 3.5.

4.4.3. Solution generation

The Solution Generator (SG) computes solutions for the composite
hypothesis. The SG obtains/constructs instances to satisfy the composite

hypothesis by one of the methods discussed in the following paragraphs.

First, the SG may discover an existing instance in the iconic/symbolic
database that satisfies the composite hypothesis. In this case, the SG returns
the instance found as the solution. In general, it may be necessary to search
the iconic/symbolic database to find some instance which satisfies the compo-
site hypothesis. However, since the composite hypothesis is constructed by
taking the solution space of all the constraints imposed -on the DE's partici-

pating in the situation (see Section 3.5), to find an existing instance which
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satisfies the composite hypothesis, the SG needs only examine the P-set of the

selected situation and use any instance in the P-set as the solution.

Suppose the SG cannot find any instance in the iconic/symbolic database

that satisfies the composite hypothesis. There are two possibilities:

(1) the target object of the composite hypothesis is a primitive ob-
ject (such hypotheses are called primitive hypotheses),

(2) the target object of the composite hypothesis is not a primitive
object (such hypotheses are called non-primitive hypotheses).

In the first case, the SG first directs a top-down segmentation by provid-
ing to the LLVS the descriptions of the composite hypothesis. Then the SG
creates instances based on the results of the LLVS. Finally, the instances

created (if any) are returned as a solution.

In the second case, no top-down segmentation is performed. The SG

simply returns the composite hypothesis as the solution.

4.4.4. Action scheduling

The Action Scheduler (AS) schedules the actions in the action list using
the solution provided by the SG. Three possible types of solutions may be

provided:



(1) nil,i.e., the hypothesis cannot be verified,
(2) an instance,
(3) a composite hypothesis.

In both the first and the second cases, the AS selects those <action>s in

the action list whose ‘““causes of delay” are in the P-set of the selected situa-
( .

tion. Let the solution be I, the actions selected be A,, ... ,A,, and their

causes of delay be H,, ... H,, respectively. The AS performs the selected

actions sequentially:

(a) replace all the references to H, in action A; by I,
(b) evaluate A,

(c) remove H; from the iconic/symbolic database, or update the
attributes of H; (we will discuss this in more detail in Section 4.5).

In the third case, the AS marks the composite hypothesis, say CH,, as
partially processed and inserts it into the iconic/symbolic database. The AS
also marks the currently selected situation, say S, as unconcluded. The
hypothesis CH, is said to be derived from the situation S, We will present a
more detailed discussion of the effects of such processing in Section 4.4.4.1.

Table 4-1 summarizes the terms defined in the previous paragraphs.

The removal of hypotheses from the iconic/symbolic database has the
following side effects:

(1) If a hypothesis, say H,, is removed from the database, then all the
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Table 4-1. Glossary.

Primitive hypothesis:
A hypothesis whose target object is a primitive object.

Non-primitive hypothesis:
A hypothesis whose target object is a non-primitive object.

Unconcluded situation:
A situation which was selected by the focus of attention mechanism,
but for which the Solution Generator cannot yet compute a solution.

Partially processed hypothesis:
A composite hypothesis, recorded in the 1con1c/symbollc database,
which is computed for some unconcluded situation.

situations in the situation lattice whose P-sets contain H are also removed
from the situation lattice.

(2) If an unconcluded situation is removed from the situation lattice in (1),

then the hypotheses which were derived from the situation are also removed
from the iconic/symbolic database.

The updating of attributes of hypotheses is implemented by removing the

original hypéthesis and inserting a new hypothesis.

When all the actions selected are evaluated, the action scheduler ter-

minates, and the next cycle of hypothesis construction begins.



4.4.4.1. Computing solutions for a non-primitive composite

hypothesis

The SG does not directly propose solutions for a non-primitive composite
hypothesis. Instead, a top-down parsing approach is used to compute the
golution. Suppose the composite hypothesis constructed for a situation , say
So, is CH,. To compute the solution for CH,, we first generate a set of
hypotheses H;,1<:<n and compute the solution for each H; The solution for

CH, can be computed from the solutions for H;,1<:1<n.

To support such an-approach, we associate with each non-primitive
frame a decomposition strategy (represented as a rule) which describes how to
generate a new set of hypotheses to be verified, and how to compute a solu-
tion for the non-primitive frame using the solutions for the generated

hypotheses.

For example,” the rule for the decomposition strategy of a

RECTANGULAR-HOUSE frame is

Rule Rﬁrst—order—propertiea'
< control-condition> : true,

< hypothesis> :
H = Fy(RECTANGLE,self),
<action> :
if H=nil then conclude(nil)
else conclude(make-instance(RECTANGULAR-HOUSE, H)).

This rule indicates that a RECTANGULAR-HOUSE instance can be created
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if a RECTANGLE instance which satisfies the attributes specified by Fy is

created.

As discussed in Section 4.4.4, the Action Scheduler (AS) marks the non-
primitive composite hypothesis as partially processed and inserts it into the
iconic/symbolic database. The AS also marks the situation selected as uncon-
cluded. Partially processed hypotheses and unconcluded situations are pro-

cessed by other modules of the HLVS in the following ways:

(1) If a situation, say S, is marked as ‘‘unconcluded"’, then all the situations in
the situation lattice which are less than S are also marked as unconcluded.
The focus of attention mechanism does not select any unconcluded situation.
This strategy is based on the observation that if no conclusion can be drawn
from the analysis of a situation, say S, then the analysis of all the situations
which are “less than” S (i.e., composed of a subset of the instances of S) can
be postponed.

For example, by marking situation N,y in Figure 4-6 as unconcluded, all
the situations that are less than Ny, are also marked as unconcluded (i.e.,
N;,H,;,1<1<3). ‘

(2) The function ‘‘conclude’ indicates that a solution, say I,,, has been com-
puted for an unconcluded situation, say S. Whenever this function is
evaluated, the HLVS schedules S as the situation to be selected in the next
iteration cycle and the solution proposed for the composite hypothesis of this
situation is [ .

(3) Since a partially processed hypothesis, say H, is the composite hypothesis
constructed for some unconcluded situation, S, H should not participate in the
formation of new situations with any DE’s in the P-set of S. HLVS uses the
more efficient strategy of not allowing a partially processed hypotheses to par-
ticipate in the formation of any situations. J

(4) In the hypothesis generation process, only the rules which describe the
decomposition strategy can be evaluated for partially processed hypotheses.



All the hypotheses generated are inserted into the iconic/symbolic database.

(5) The removal of a partially processed hypothesis from the iconic/symbolic
database causes the removal of all the hypotheses in the database which are
generated by the decomposition strategy.

Suppose, for example, that the situation N;; shown in Figure 4-6 is
selected by the focus of attention mechanism and the composite hypothesis

constructed, say CH,, is:

target object : RECTANGULAR-HOUSE;

Since RECTANGULAR-HOUSE is not a primitive frame, the SG returns CH,

as the solution to the situation N,;5. The AS marks N,y as unconcluded and

inserts CH, into the iconic/symbolic database.

At the subsequent hypothesis generation process, CH, activates the rule
Rgrst-order-propertics 1D the RECTANGULAR-HOUSE frame and creates

hypothesis Hy:

target object : RECTANGLE;

Figure 4-7 shows the relation between CH, and Hy and the action which is

delayed by Hy. The resulting situation lattice is shown in Figure 4-8.

Suppose a RECTANGLE instance, say I, is proposed to Hy by the SG.

The AS evaluates the action whose cause of delay is Hy and:

<-4
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(1) creates a RECTANGULAR-HOUSE instance, say Igp,
(2) evaluates the function “conclude’.

The evaluation of the function “‘conclude’ indicates to the HLVS that situa-
tion Ny is to be scheduled in the next iteration cycle and the solution pro-

posed for CH, is Ipy.

At the next iteration, the SG proposes Ipy to the hypotheses in the P-set
of Ny (i.e., H,, Hy, H3). Those actions whose causes of delay are H,, H,, and
H; are now evaluated by the Action Scheduler. ‘Suppose H,, H,, and H; are
removed after the evaluation of these actions. Figure 4-9 shows the resulting
situation lattice. Note that this is usually the case when an appropriate solu;

tion is proposed to the hypotheses.

The processing of partially processed hypotheses and unconcluded situa-

tions are summarized in Table 4-2.

4.5. A taxonomy of actions

In this section, we discuss a taxonomy of the actions that are often used
to specify the scene domain knowledge. The term action in this section refers

to the activities described in the <action> part of a rule.

One type of action is the filling in of attributes of an instance. For,

example, a rule in the HOUSE-GROUP f{rame is:



Table 4-2. Summary.

Unconcluded situation:
- Will not be selected by the focus of attention mechanism.
- If a solution is proposed by the SG for some unconcluded situation,
the HLVS schedules that situation in the next iteration cycle.

Partially processed hypothesis:
- A composite hypothesis for some unconciuded situation.
- Recorded in the iconic/symbolic database.
- Does not participate in the formation of any situations.
- Removal of a partially processed hypothesis, H, causes the removal of
all the hypotheses generated by H.

< control-condition> : true
< hypothesis> : H = AR(sel{,ROAD),
<action> : self.along-road = H.

This rule specifies that if a ROAD instance which satisfies H is found, fill it in

the slot ‘‘along-road’ of the HOUSE-GROUP instance.

In addition to filling in attributes, actions often create new instances or
unify several instances (as described in Section 4.4.1). Such actions are
described by two functions:

- “make-instance” : create an instance and imsert it into the iconic/symbolic
database;
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- “unify-instance” : unify a list of instances in the iconic/symbolic database
into a single instance.

For example, a rule in the RECTANGLE frame is:

< control-condition> : IS-RECT-HOUSE(self)

< hypothesis> : nil,

<action> :
make-instance(RECTANGULAR-HOUSE,F(self)).

This rule describes the following piece of knowledge:

~“If a RECTANGLE instance which satisfies the ISSRECT-HOUSE criteria is
created, then create a RECTANGULAR-HOUSE instance using function F
and insert it into the iconic/symbolic database.”

Similarly, the following piece of knowledge:

“If more than one HOUSE-GROUP instance is filled in the ‘“‘belongs-to’ slot
of a HOUSE instance, replace it by another HOUSE-GROUP instance which
is created by the function COMBINE-H."”

can be described by the following rule in the HOUSE frame:

< control-condition>
if number-of-elements(self.belongs-to) > 1,
< hypothesis> : nil,
<action> :
unify-instance(self.belongs-to, COMBINE-H(self.belongs-

to)).



Another class of actions deals with the removal of hypotheses and the
updating of the attributes of hypotheses. Usually, hypotheses are rem;)ved by
the Action Scheduler after the Solution Generator propoées solutions to them.
However, instead of always removing hypotheses when no acceptable solution
is found, we may want to update the attributes of the original hypotheses
when more information is available. The function ‘‘update’ is used to describe

the updating of the attributes of a hypothesis.

For example, consider the following rule:

< control-condition> : ...
< hypothesis> : H = F(self)
<action> :

if H = nil then update(H,CS,)

else ...

The action specifies that if the solution proposed for H is nil, then the AS
replaces some attributes of hypothesis H by CS,. However, H is not removed
from the iconic/symbolic database. The <action> part is inserted again into
the action list (its cause of delay is H.)

There is yet another category of actions which specifies the constraints
on the evaluation of multiple rules. We describe this type by an example.

Any instance of a HOUSE-GROUP frame can be ‘‘along’ at most one
ROAD instance. Given a HOUSE-GROUP instance, say Iyg, we may not yet
kno.w the location of the road along Iyg ,i.e., at location F) or at location F,

(see Figure 4-10). One strategy is to create hypotheses about a ROAD at
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both locations. However, once one hypothesis is verified, the other hypothesis

must be removed.

The above knowledge is represented as follows:

Rule R,.

< control-condition> : true,
<hypothesis> : H, = F(self),
<action> : self.along-road = H,,

Rule RQ.A

< control-condition> : true

< hypothesis> : Hy = F(self),
<action> : self.along-road = H,.

In addition, the following rule for the HOUSE-GROUP frame constrains the

simultaneous evaluation of R,,R,:

Rule Rcontrol'

< control-condition> :
not-null(anyone(R,,R,)),

< hypothesis> : nil,

<action> :
remove-all(anyone(R,,R,)).

where anyone(R;,R,)=
if is-evaluated(R,;) then R,
else if is-evaluated(R,) then R,

~else nil
The above rule specifies that whenever one of the <action> parts of the
rules R, or R, is evaluated, rule R, ;.. is evaluated which causes the removal

of all the hypotheses that are created by the evaluation of R,.<hypothesis>
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or R, <hypothesis>.

Suppose a HOUSE-GROUP instance is created. The instance activates
rules R, and R, and generates two hypotheses about the ROAD object.
Whenever the SG prop;)ses a ROAD instance to one of the hypotheses, the AS
evaluates one of the delayed actions, and causes the removal of the other

hypothesis.

We summarize the actions discussed in this section in Table 4-3.

4.6. Pursuing alternative hypotheses

It is possible that several hypotheses may be generated at the same time.

This can be represented as the following rule:

Table 4-3. A taxonomy of actions

Action Tvpe | Example

Attributes Filling in of attributes in an instance.
Instances Create instances.

Unify instances.

Hypotheses Remove hypotheses.

Update hypotheses.

Rules Constrain the simultaneous evaluation
of several rules.
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if <control-condition> then

< hypothesis 1> <action 1>
or

< hypothesis 2> <action 2>
or

< hypothesis n> <action n>

Whenever <control-condition> evaluates to true, all of the <hypothesis>s
can be generated. These hypotheses are called alternative hypotheses and we
assume that at most one of the hypotheses is in fact true. However, it is
difficult to decide which one should be pursued first, since a promising selec-
tion may turned out to be incorrect as new facts (generated by resegmenta-

tion) are obtained.

In SIGMA, all the alternative hypotheses are generated and participate in
the hypothesis integration process. However, the associated actions of these
alternative hypotheses are not evaluated (put in the delayed-action queue).
When any éne of the alternative hypotheses is verified, it is left to the associ-
ated action to decide whether other alternative hypotheses should be pruned.
On the one hand, this strategy allows multiple alternative hypotheses to be
pursued simultaneously. On the other hand, expert. domain knowledge, which
can be described in a rule, can be used to prune unpromising hypotheses when

enough facts are known.



4.7. The selection of good interpretations

Potentially, SIGMA could construct all possible interpretations for the
image. It is natural to require that no region be interpreted as two different
objects in the scene model. However, in SIGMA, a region may be interpreted
as several objects (e.g., an elongated region might be interpreted both as a
road or a driveway). Intersecting image structures may be used to construct
DE's whose iconic descriptions should never intersect. A pair of DE’s whose
iconic descriptions intersect while the. scene model specifies otherwise are
called conflicting DE’s. The associated interpretations are called alternative

interpretations.

For a set of conflicting DE'’s, er need to select a DE which “‘best” inter-
prets the image. It is possible to design an algorithm to select such “best”
interpretations. However, we did not investigate this issue in SIGMA.
Instead, we model the final selection process as' a database query answering
process. A program (QAM) was developed to answer simple queries about
DE’s in the interpretation network and to display the iconic descriptions of

the DE’s selected.
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5. Examples

5.1. Introduction

This section presents detailed examples of the application of SIGMA to
the analysis of a high resolution aerial image to locate houses, roads, and

driveways in a suburban scene.

We first present an example of the initial segmentation process. Then we
‘discuss how the HLVS analyzes the image in several typical situations.

Finally, we show the results of anaiysis by SIGMA on an aerial image.

5.2. Initial segmentation

The image used in the example is a 250 * 140 window of an aerial image
(Figure 5-1) with intensities in the range of O to 83. The scene contains

houses, roads, and driveways.

5.2.1. Initial segmentation goals

We want to locate houses and roads in the image. Since their appear-
ances are either compact rectangles or elongated rectangles, and they are usu-
ally brighter than the background, the following hypotheses are used as the I-

set of the initial segmentation process:



/* extract compact and bright rectangles */
hypothesis Hyj,y:
target object = rectangle,
in-window = whole image,
rectangle.elongatedness < 10,
rectangle.compactness < 18,
rectangle.region-contrast > 3,
180 < rectangle.area-of < 360.

/* extract bright and elongated rectangles */
hypothesis H, ;500
target object = rectangle,
in-window = whole image,
8 < rectangle.width < 20
rectangle.elongatedness > 10,
rectangle.length > 10,
rectangle.compactness > 18,
rectangle.region-contrast > 3.

5.2.2. Verifying hypothesis H;,;,,

The Initial Segmentation Controller (ISC) first selects hypothesis Hy,,;.
The ISC activates the LLVS to compute image primitives that satisfy
hypothesis H,,;. The LLVS selects the following segmentation operators

arranged in descending order of their priorities as follows:

Blob finder
Upper threshold method

The Ribbon finder and the Lower threshold method are not selected since

their selection criteria evaluate to false.
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The LLVS activates the Blob finder ﬁrst._ The Blob finder first convolves
the original image with a Laplaciah operator. Then it computes the positive
connected regions in the convolved image (Figure 5-2). The regions computed
by the Blob finder which satisfy the constraints of Hy,, are shown in Figure
5-3.

Since the set of results computed by the Bloi) finder is not empty, the
LLVS returns the computed regions to the HLVS. The Upper threshold

method is not evaluated.

5.2.3. Verifying hypothesis H,;,,,

The ISC then selects hypothesis H,;;,,,. The ISC activates the LLVS to
compute regions which satisfy hypothesis H,,;,,,- The segmentation operators
selected by the LLVS for this task arranged in descending order of their prior-

ities are as follows:

Ribbon finder
Upper threshold method
The Blob finder and the Lower threshold method are not selected since their
selection criteria evaluate to false.
The LLVS activates the Ribbon finder first. The Ribbon finder first com-

putes the skeletons of the positive regions shown in Figure 5-2. The resulting

skeletons are shown in Figure 5-4.



Finally, the Ribbon finder decomposes these skeletons and computes the
skeletons for the ribbons. Figure 5-5 shows the skeletons of the ribbons com-

puted by the Ribbon finder which satisfy the constraints of hypothesis H

ribbon*

Since the set of results computed by the Ribbon finder is not empty, the
LLVS returns the computed regions to the HLVS. The Upper threshold

method is not evaluated.

5.2.4. Generafing instances

The ISC collects the results computed by the LLVS, creates RECTAN-

GLE instances, and inserts them into the iconic/symbolic database.

There are 268 RECTANGLE instances created at this stage. Figure 5-6
shows the iconic descriptions of these instances. Note that some of the

instances intersect.

5.3. Constructing partial interpretations

A situation is classified into one of the following classes based on how the

Solution Generator computes its proposed solution:

Case 1: The SG discovers an existing instance in the iconic/symbolic database

which satisfies the given composite hypothesis.

Case 2: The SG cannot find any instance in the iconic/symbolic database
which satisfies the given compdsite hypotheses. The composite hypothesis is

non-primitive.
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Case 3: The SG cannot find any instance in the iconic/symbolic database
which satisfies the given composite hypothesis. The composite hypothesis is

primitive.

Case 4: The SG obtains the solution from the previous iteration (i.e., the solu-

tion for an unconcluded situation is now computed.)

5.3.1. Case 1--Discovering an existing instance

Consider the situation shown in Figure 5-7. The relations between the

DE's shown in this figure are described in Table 5-1.

Figure 5-8 shows the portion of the interpretation-network which is

related to this situation.

Assume the focus of attention mechanism selects situation S; whose P-

set is as follows:

{ DEI,DEs,DE} .

Suppose the composite hypothesis, say CH,, computed for S| is :

target object = ROAD,

Since the P-set of the situation S; contains an instance, DE,, the SG proposes

it as the solution to the composite hypothesis constructed for this situation.



The AS activates those actions whose causes of delay are DE, and DE; respec-
tively. Figure 5-9 shows the resulting interpretation network. Note that
hypotheses DE, and DE, are removed. This is caused by a control rule in the

HOUSE-GROUP frame which specifies that each HOUSE-GROUP instance

can be along at most one road.

5.3.2. Case 2--Decomposing a hypothesis

Consider the situation shown in Figure 5-10. The relations between the

DE's shown in this figure are described in Table 5-2.

Figure 5-11 shows a portion of the interpretation network related to this

situation.

Assume the focus of attention mechanism selects the situation S; whose

P-set is
{ DE,’,DEQ} .

Assume the composite hypothesis, say CH,, computed for 5, is

target object = DRIVEWAY,

The SG cannot find any existing instance that s_atisﬁes CH, Since CH, is

non-primitive, the AS marks it as partially processed and inserts it into the
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icdnic/symbolic’ database.

At the subsequent iterations, CH, activates the rule Rp,, orderproperties Of

frame DRIVEWAY to generate hypothesis DEy:

databaseentity DEjy:
target object : RECTANGLE,

end-database—entity.

Suppose the action which is delayed by DEj is Afry order—propertiesr We Will
revisit this example in Section 5.3.4. Note that DE, can participate in the
formation of situations with other DE's in the iconic/symbolic database. Fig-
ure 5-12 shows the resulting interpretation network after DE; and CH, are
inserted into the iconic/symbolic database. Note that CH, is marked as par-
tially processed hypothesis. Tabie 5-3 summarizes the relations between the

[ .
DE S, action Aﬁrst—arder—propertiew and Sl'

5.3.3. Case 3--Directing the segmentation

Suppose the composite hypothesis, say CH,, given to the SG is primitive.
The SG activates the LLVS to compute regions which satisfy the constraints
provided by the SG. The regions computed by the LLVS are used by the SG
to create RECTANGLE instances. The SG then proposes those created
instances which satisfy the constraints of CH, as solutions. If no instance is

computed, the SG proposes nil as the solution. We illustrate the process used
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by our system in the following two examples.

Suppose the composite hypothesis, say CH,, given to the SG is:

target object = RECTANGLE,
in window : W,
rectangle.elongatedness < 10,
rectangle.compactness < 18,
275 < rectangle.area-of < 325.

The window W, is shown in Figure 5-13.

The LLVS first activates the Blob finder and fails to compute any region.
Then the LLVS activates the Upper threshold method to compute regions. A
region is successfully computed by setting the threshold value at 24. Figure
5-14 shows some of the intermediate results of the segmentation process. The'
measurements (the area and the compactness of a region) are shown for the

largest region extracted at each specified threshold value.

The LLVS returns the computed region to the SG. The SG checks the
features of the region and creates a RECTANGLE instance DEgpcr and pro-
pose it as the solution. Figure 5-15 shows the RECTANGLE instance created
by the SG. |

Suppose the composite hypothesis CH, is again given to the SG. How-

ever, the window W, is as shown in Figure 5-16.

The LLVS activates the Blob finder, the Upper threshold method, and

the Lower threshold method and cannot compute any region which satisfies
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the given constraints. The LLVS returns “nil”’ to the SG. The SG then pro-

poses nil as the solution. A

5.3.4. Case 4--Analyzing an unconcluded situation

Consider the interpretation network shown in Figure 5-12. Suppose that
at some other iteration the SG computes a solution, say I, for DE;. Action

Afirst-order-properties 1S NOW evaluated by the AS.

Two possible outcomes can be produced by the evaluation of
A first-order-propertics: Fir;t, the evaluation of actibn A first-order-propertics BENETALES
a solution, say I}, for CH,. This causes the HLVS to analyze the unconcluded
situation S| in the next iteration. The SG will propose I; as the solution to

CH,, the composite hypothesis of S,.

Figure 5-17 shows the resulting interpretation network in this case. The
unconcluded situation S,, the partially processed hypothesis CH, and the

- hypothesis DE; generated by the ‘“decomposition method™ are all removed.

Second, suppose no solution is generated by the evaluation of
Afirst-order—propertics- 10Stead, the evaluation cause changes to be made to the
attributes of DE;. In this case, situation S; is removed from the situation lat-
tice and new situations are constructed. Suppose DEj, is the updaﬁed
hypothesis. Figure 5-18 shows the resulting interpretation network in this

case.



5.4. A complete example

In this section, we present the result of applying our image interpretation
program to the image shown in Figure 5-1. No explicit goal is given to the
system. The analysis terminates when all the hypotheses created are verified

or refuted.

Figure 5-6 shows the RECTANGLE instances generated by the initial
segmentation process. Figure 5-19 shows those RECTANGLE instances
which are interpreted as RECTANGULAR-HOUSE instances (requiring that
200<rectangle.area-of <400) , and Figure 5-20 shows those RECTANGLE
instance which are interpreted as VISIBLE-ROAD-PIECE instances (requiring
that 6<rectangle.width<12). No RECTANGLE instances are interpreted as

DRIVEWAY instances.

Instead of showing t,he. processing of each situation by the program, we
show only the précessing of several interesting situations.

In the scene model, two HOUSE-GROUP instances are identical if they
both share a common HOUSE instance and should be unified to a single
instance. Figure 5-21(a) shows such an example. Let P, and P, denote two
HOUSE instances, R, and R, two HOUSE-GROUP instances, and DE; a

HOUSE hypothesis.

Each HOUSE-GROUP instance creates hypotheses about more houses

that belong to it. The process to unify the house groups is as follows:

297



298

' (1) The situation whose P-set is
{DEI,PQ}
is selected by the focus of attention mechanism.

(2) SG proposes HOUSE instance P, as the solution to the composite
hypothesis of situation S;. The evaluation of the action which is delayed by
DE, fills P, in the “contains’ slot of HOUSE-GROUP instance R,.

(3) Since P, “bélongs to"” two HOUSE-GROUP instances at the subsequent
iteration, the evaluation of a rule in HOUSE frame unifies R, and R,.
Let us denote the resulting HOUSE-GROUP instance by R,. Figure 5-22

shows the result of the analysis.

Figure 5-23 shows another example. Resegmentation of the image is
required in this example. Let R; denote a HOUSE-GROUP instance, P; a
HOUSE instance, DE; a HOUSE hypothesis. Also let CH; denote a partially
processed hypothesis, and 7}, a RECTANGLE instance. These DE’s are not

shown in Figure 5-23. They are used later in this example.

The processes to activates the LLVS to process the image are as follows:

(1) Situation S, whose P-set is
{DEI,DEs}

is selected. Since the composite hypothesis (target object is HOUSE object) is
non-primitive, a partially processed hypothesis, say CH,, is generated.
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(2) At the next iteration, the evaluation of the rule R,,.cisization-strateqy O the
HOUSE frame generates a hypothesis DE; whose target object is
RECTANGULAR-HOUSE (Figure 5-24(a)).

(3) Situation S, whose P-set contains DEg is selected. Again, a partially-
processed hypothesis, say CH,, about RECTANGULAR-HOUSE is generated.

(4) At the following iteration, the evaluation of the rule Rg.y order-properties Of
RECTANGULAR-HOUSE frame generates a hypothesis DEgs whose target
object is RECTANGLE (Figure 5-24(b)).

(5) The SG activates the LLVS to segment the image. A region is computed
by the LLVS (see Figures 5-13, 14, 15). The SG creates a RECTANGLE
instance T).

(8) The evaluation of ‘the <action> of Ry orderproperties CTeates a
RECTANGULAR-HOUSE instance P,. Since a solution is now ready for the
unconcluded situation S,, the HLVS schedules it to be processed next. After-
wards, since a solution is now ready for the unconcluded situation S, the
HLVS schedules it to be processed next. Now, the actions delayed by DE,
and DEj3 can be evaluated. The resulting interpretation network is shown in
Figure 5-24(c).

(7) P, “‘belongs to” two HOUSE-GROUP instances. At the subsequent itera-
tion, the evaluation of a rule in the HOUSE frame unifies R} and R,.

Figure 5-25 shows the resulting HOUSE-GROUP instance.

In the scene model, every ROAD instance is smoothly extended from one
ROAD-TERMINATOR instance to another ROAD-TERMINATOR instance.

A ROAD-TERMINATOR is defined to be the boundary of the image. We

present an example in the following paragraphs.

s et St e e s
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The extension of ROAD instances is similar to‘the merging of two
HOUSE-GROUP instances discussed above. Figure 5-26 shows two ROAD
instances R, and R,. P, and P, are two ROAD-PIECE instances. DFE; denotes
a ROAD-PIECE hypothesis. The extending of ROAD instance R, activates

the merging of R, and R, into one ROAD instance (Figure 5-27).

Figure 5-28 shows another case. R| and R, are two ROAD instances. DE,
is 2 ROAD-PIECE hypothesis generated by R,. Since R, is not ‘‘connected”

to R,, hypothesis DE,; is modified as shown in Figure 5-29.

Figure 5-30 shows yet another case. Road instance R, cannot be extended
any longer. When this is detected, the original ROAD-PIECE hypothesis is

removed and a ROAD-TERMINATOR hypothesis is generated.

Figure 5-31 shows another example. Let DE, denote a ROAD instance,
DE, a HOUSE instance, DE,, a RECTANGLE instance, and DE; a DRIVE-
WAY hypothesis. House instance DE, and ROAD instance DE, create
hypotheses DE; and DE, about the vDRIVEWAY object Eespectively. There is
no DRIVEWAY instance in the iconic/symbolic database which satisfies these
hypotheses. However, there is a RECTANGLE instance, DE,,, which, if inter-
preted as a DRIVEWAY object, would satisfy these hypbtheses. Note that
DE,, is not interpreted as a DRIVEWAY object, a VISIBLE-ROAD-PIECE,
or a RECTANGULAR-HOUSE since there are not enough distinguishing

features-of DE,, to make these interpretations.
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The HLVS performs the analysis as follows:

(1) A composite hypothesis, CH,, is first constructed for the situation whose
P-set is

{ DE, ,DEQ} .

(2) A hypothesis, DE;, about the RECTANGLE object is created by the com-
posite hypothesis CH,.

(3) DE,, satisfies DE;. A DRIVEWAY instance DE,, is created by the
<action> part of the rule Rg. srder—properties Of the DRIVEWAY frame. The
DRIVEWAY instance DE,, satisfies both DE, and DE,. Figure 5-32 shows the

resulting interpretation network after DE, and DE, are removed.

The reslulting interpretation network is shown in Figure 5-33. The iconic
descriptions of the instances created during the analysis are shown in Figures
8-34 and 5-35.

Finally, we present two examples of the final selection stage of the pro-
gram. Figure 5-36(a) shows a ROAD instance whose length is longer than 100.

Instances of related objects are shown in Figure 5-36(b),(c), and(d).

Figure 5-37(a) shows a HOUSE-GROUP instance with more than four

houses. Instances of related objects are shown in Figure 5-37(b) and (c).

A LA B e
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8. Conclusions

This paper has described a model for the development of image under-
standing systems that involves representing scene domain knowledge using
frames and controlling the actions of the system by hypothesis integration.
Using such a framework, we developed a flexible image understanding system
called SIGMA which performs both top-down(goal-oriented) image analysis
and bottom-up construction of composite image structures, and Aemonstrated

the system’s performance on an aerial image of a suburban scene.

Developing computer systems for visual applications is one way to inves-
tigate how humans see, and also to make computers more useful. As pointed
out by many researchers [Hall79], [Binf82], image analysis systems usually
consist of several types of modules: low level vision modules(e.g., segmenta-
tion) and high level vision modules(e.g., matching, 'mferencé). This research
leads to the conclusion that a powerful vision system should rely on a balance
of performance between these two types of modules. The low level modules
should provide descriptive information about the imagé to the high level
modules and the high level modules should provide ‘“hints” about image
structures to the low level modules. This research is only a small step toward

the construction of general vision systems.
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frame. RECTANGULAR-HOUSE;
rules: . .

F, rectesgle ’

links : - '
AKO : HOUSE;

end -frame

frame L-SHAPED-HOUSE;
rules : ,
FL —shape )
links :
AKO : HOUSE;
. end-frame

frame HOUSE;

slots :
centroid;
shape-description;
front-of-house;
connecting-driveway;
rules :
F, driveway s
links :_
CAN-BE :° RECTANGULAR-HOUSE, L-
SHAPED-HOUSE;
end —frame

- Figure 2-1 Frame definitions for HOUSE, RECTANGULAR-HOUSE,
and L-SHAPED-HOUSE.

Figure 2-2 Links between HOUSE, RECTANGULAR-HOUSE
and L-SHAPED-HQUSE frames.

P
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Figure 2-3 A model of a suburban housing development.
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ROAD

HOUSE

Figure 2-4. Pictorial description of house-road relation.

RELLO,0,)

pictorial entity-1 pictorial entity-2

extract

image

Figure 3-1. Using a relation as a constraint.
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iconic descriptions situation lattice

Figure 3-2(a). The situation lattice before the insertion.

iconic descriptions : situation lattice

Figure 3-2(b). The situation lattice after the insertion.
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Figure 3-3. The situation iattice after the removal of A.
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Iconic/Symbolic

T
|

Y

Stage 3:
Selection of Good
Interpretation

Y

Database

Legend
control flow:——2>

data flow:

— ’

Figure 4-1. The stages of the control of SIGMA.

Iconic/Symbolic| -
Database

Image r

Initial Segmentation

I-set

Controller (ISC)

Legend
control flow:——>

data flow: —_—
data: -
programs : -

Figure 4-2. The schematic diagram of the initiai segmentation

process.
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Database .
Situation Situation
Lattice Database | Lattice
Manager (SLDM)
N
Y
Iconic/Symbolic Focus of Attention
Database Manager Mechanism
' (ISDM)
| l
\'4
\'%
A\ Action List Y :
l Composite Hypothesis
! Constructor
i
{ |
| .
I
' N2 A\
‘ “-{ Action Scheduler Solution Generator
(AS) (SG) '
Legend

control flow:——>" /
data flow: —_—
datas - Image LLVS

programs: C

Figure 4-3. The schematic diagram of the interpretation stage.
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a bouse group instance generate hypothesis fill H, in instance HG,,
containing Hg is created  about possible house in
HG,

Figure 4-4(a). Reasoning steps for constructing HG.-

7
»H @ ®E
a house group instance generate hypothesis fill H, in instance HG
containing H, is created  about possible house in
HG,

Figure 4-4(b). Reasoning steps for constructing HG].
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HGO HG1 HGO
HO Hl HO

before unification after unification

Figure 4-5. Unification of identical instances.

Figure 4-6. A situation lattice.
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decomposition
{CH @
a 9

Target object of CH,:
RECTANGULAR-HOUSE

Target object of Hy:
RECTANGLE

" Delayed-action:
if H=nil then conclude{nil)
else conclude{make-instance{RECTANGLE-HOUSE, H)).

Figure 4-7. Deccmposition of CH .
*

(o
“@@@@@@@
e

@@@@@/g@‘@

Legend: 3

unconcluded situation: Q

partially processed hypot esisg :
Figure 4-8. The resulting situation lattice. '
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Legend:
unconcluded situation: <;;5
partially processed hypo esis(

Figure 4-9. The situation lattice after actions are evaluated.

@
=

Figure 4-10. Possible road Tocations along IHG'
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Figure 5-1. An aecrial iwmage.

Figure 5-2. Positive connected (i
regions. Blob-finder.

yurc L-3. Blobs extracted by
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Figure 5-4. Skeletons of the Figure 5-5. Skeletons of the ribbons
connected components. extracted by Ribbon-finder.

Figure 5-6. Iconic descriptions of the RECTANGLE instances generated
based on the initial segmentation process.
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OF POOR QUALITY [\ - < _
5
LPEz !

DE, _
DEr 1 ' ’7: DE
ki\‘_ - ~l:'—_ l
~
PEps
r—====
| DE,_ ]
~ Figure 5-7(b). A depiction of th
Figure 5-7(a). An example (s : . e
Section 5.3.1.) (see situation.
DE's Type Generated-b;
DE. | ROAD instance
DE; , | HOUSE-GROUP instance
DE, , | HOUSE-GROUP instance
DE, ROAD hypothesis DE, ,
DE, ROAD hypothesis DEy
DE , ROAD hypothesis DE,,
DE ; ROAD hypothesis DE; ,

‘Table 5-1. The descriptions of the DE's.
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DE

Figure 5-3. Portion of the interpretation network related to the situation.

Figure 5-9. Resulting interpretation network.
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] _ M l
e = T _
DE
h

Figure 5-10(b).
situation.

DE's | Type Generated-by
DE, | ROAD instance

DE, | HOUSE instance

DE, | DRIVEWAY hypothesis | DE;

DE, | DRIVEWAY hypothesis | DE,

Table 5-2. The descriptions of the DE's.

A depiction of the
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e

Figure 5-11. Portion of the
interpretation related to the

situation.

Figure 5-12. Resulting interpretation
network.

Action Cause-of-dela

Aﬁm —order ~properiice

Unconcluded-situation | Composite hypothesis

Sy

CH

Table 5-3. Relations between the DE's, action Afirst-order-properties’

and S].
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Figure 5-13. A window generated by the HLVS.

Figure 5-14. Intermediate results of the LLVS.
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Figure 5-15. The RECTANGLE instance generated by the HLVS (based on
the resuits computed by the LLVS).

Figure 5-16. Another window generated by the HLVS.
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AV,

l V
L
Figure 5-17. Resulting interpretation Figure 5-18. Resulting interpretation
network (when a solution has been network (when no solution has been

generated). computed).

Figure 5-19. Initial set of RECTANGULAR-HOUSE instances.
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Figure 5-20. Initial set of VISIBLE-ROAD-PIECE instances.

Pd \ -

{
bE_ ! P. {)pE! E.(p ]
<2/ -3 P\_l 2 \

Figure 5-2

1(a). Two HOUSE-GROUP , Figure 5-21(b). Portion of the interpret
instances (s

ee Section 5-4). network related to the situation.
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Figure 5-22{(a) Resulting HOUSE-GROUP  Figure 5-22(b). Hypotneses generated

instance R]. by R].
(DE.) ;DE— ﬁ)E‘ . D;’
\ _Z - }\)\'_3' \‘_’A
Figure 5-23(a). Two HOUSE-GROUP Figure 5-23(b). Portion of the interpretatio

instances (see Section 5-4). network reiated to the situation.
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Figure 5-24. Snapshots of the interpretation network reiated to R] and R2

(see Figure 5-23) at various stages of the processing.
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Figure 5-25(a). Resulting HOUSE-GROUP Figure 5-25(b) Resulting interpretation
instance. network.

Figure 5-26(a). Two ROAD instances Figure 5-26(b). Portion of the inter-
(see Section 5-4). pretation network related to the situation
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Figure 5-27(a). Resulting ROAD Figure 5-27(b). Resulting interpreta
instance. network.
DE
— —
‘R
Ry Ry
R —
Figure 5-28(a). Two ROAD instances Figure 5-28(b). A depiction of the

(see Section 5-4). situation.
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-29. Hypothesis DE] has been modi

igure 5

F

Figure 5-30. A ROAD-TERMINATOR hypothesis has been generated
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Figure 5-31. Iconic description of a situation and its interpretation
network (see Section 5-4).

)
6 n)
":E’ :

Figure 5-32. Resulting interpretation network.
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Figure 5-34. Final results.

Figure 5-35. Final results (cont.).
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Figure 5-37. Explanation of a HOUSE GROUP instance.
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ABSTRACT

An extensive mathematical model for.rectification of satel-
lite scanner data was developed. Using this model, factors
affecting rectification accuracy were studied. Previous results
included the <effects of the following: (1) error in parameters
singly and combined; (2) different mathematical models; (3)
density of control points; (4) error in image coordinates; (5)
error in ground coordinates of control points; (6) wuse of edge
control 1in single image rectification; and (7) application of
block gdjustmént. Current results include: (1) effect of
errors in internal sensor geometry; (2) effect of error in
weights of image and ground coordinates; (3) effect of dif-
ferent combinations of parameterswdefining the satellite position
perturbations and the sensor orientatiﬁn; (4) use of edge con-
trol in block adjﬁstment; (5) study of
rectification/registration sequence; (6) detection and identif-
ication of ©blunders; and (7) analysis of the potential for
merging satellite scanner imagery and digital terrain model (DTM)

data.



1. INTRODUCTIORN

The need for rapid and up to date acquisition of information
pertaining to the earth and its atmosphere is increasing. One
technology that shows promise in éatisfying this need is the use
of satellites to acquire remotely sensed data of the earth sur-
face. Present day sensors on board satellites are capable of
gathering enormous amounts of data in a timely fashion. Because
of this, one pressing problem is the <conversion of these data

into useful information in an up-to-date and accurate manner.

Data from satellite sensors have found applications in many

disciplines for identification, classification, and monitoring of

341

earth features of interest, In all these applications, often

there 1s need to integrate data from different sources including
satellite data. This implies that all these data must be reduced

into a common reference system which most often is earth based.

One type of sensor data which needs réduction to the earth
surface in order to fully exploit its information content is the
scanner type data. The process of defining the transformation
required to relate ~scanner data arrays to the earth surface 1is
called rectification. This process is an end in 1itself in the
production and wupdate of maps. In other applications, it is a

necessary preprocessing step in order to obtain accurate results.
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2. REVIEW OF LITERATURE

The earliest attempt at rectifying scanner data is through
the use o0f polynomials to t;ansform these data to the ground.
With enpugh points of known image and ground ©positions ﬁalled
control points, this approach produces reasonable results with
accuracy of up to a pixel in the image. Its main drawback 1is
that - positional accuracies are not uniform (Forrest, 1974;
Trinder, 1976; 'Bahr, 1978; Dowman, 1981). An alternative
approach called parametric, attempts to model the geometry of the
scanning process itself. The simplest parametric model assumes
that, within the image extent, the earth is flat and the satel-
lite path is straight, which is often the <case in <conventional
photogrammetric mapping (Kratky: 1972; Konecny, 1976; Dowman,
1981). The most comprehensive model considers the earth as an
ellipsoid of revolution andl the satellite path an ellipse
(Mikhail, 1983; Paderes, 1983). 1In between, the earth can be
assumed to be a sphere (Caron, 1975; Bahr, 1976; Sawada, 1981)
and the satellite orbit a circle (Forrest, 1981; Levine, _1981;
Synder, 1982). Deviation of the satellite position from the
ideal can be assumed to'be deterministic or random :and modeled
accordingly. The same 1s true for the attitude and azimuth of
the sensé; which ideally should be along th%; vertical and vthe

flight path, respectively (Wiesel, 1984).

All the above-mentioned methods are solely based on ground

control points. If "the satellite position and semsor attitude



are known a-prio?i frqm other sources, i.e., satellite tracking
dat;, then the t;ansformation necessary for rectification can, in
principle, be completely defined. Currently available tracking
information cannot supply the required data with sufficient accu-
racy. Instead, these and other ancillary data are used in con-

junction with control points to define the rectification process

(Friedman, 1983).
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3. MATHEMATICAL MODELING

.We have developed a comprehensive parametric model which is
based on the geometry of the scanner imaging process. This model
assumes that the earth is an éllipsoid of revolution and that the
path of the satellite is an ellipse. Deviation of the satellite
position, sensor attitude, and sensor azimuth from the - nominal
are modeled as polynomial ‘functions of time and any a-priori
information regarding these deviationms can be incorporéted in
this model. The . model which is based on the premise that the
ground point, the image point aﬁd the position of the satellite

at the moment of sampling are collinear, is given by:

(xj _X - X ]

kM |Y - ¥

y

z Z - 2
L | s

where

[x vy z]t is a vector defining the position of a point
in the image coordinate system and is a
function of the pixel row and column
numbers, and the interior scanner
geometry;

[X Y Z]t is the position of the corresponding ground
point in a geocentric coordinate system;

[X Y Z ]}  is the satellite position, in a geocentric
coordinate system at the moment of sampling
and is a function of orbital parameters,
deviation of the satellite position from
the ideal and time;

M is a 3x3 matrix which brings the ground
coordinate system parallel to the image
coordinate system and is a function of
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parameters defining the satellite orbit,
the geometry of the earth, deviation of
the satellite position from the ideal,
the sensor attitude and azimuth and time;

k is a proportionality constant which varies
from point to point.

This model can be used both for rectification and for creating
simulated data which are very useful in the analysis of the rec-

tification process.
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4. MODEL VALIDATION

In order to study, analyze, and draw significant conclusions
regarding the rectification process, an extensive set of image
frames with suitable control data must be available. Further-
more, the control data must have known accuracy. To satisfy this
requirement is time consuming and costly. An alternative which
is both flexible “and less expensive is to_use simulated data.
Assuming that the same model is used for both simulation and rec-
tification, the main drawback of this approach is that rectifica-
tion results are more accurate than they really are if the model
used 1is not valid. This 1s because systematic errors introduced
by the inadequacy of the model during simulation is canceled out
in the rectification process. So: before uéing simulated data to

study rectification, the relevant model must be validated.

Model validation requires at least a few real image frames
with control data of known accuracy. These frames are rectified
using only a part of the control data set. The remaining control
can then be wused as check points to independently verify the
accuracy of rectification. The next step in validating a model
is to produce simulated image frames similar in characteristics
to the real ones. The given image coordinates from the real
image frame, elevations of the corresponding object points, all
exterior orientation parameters and constants of that frame are
used in the model to calculate the horizontal coordinates of

these object points. This consistent set of image and



corresponding ground coordinates are subsequently perturbed to
realistically reflect the accuracy of the real control data set.,
The simulated frames are then rectified using the simulated con-
trol data set in exactly the same manner as the real frames. The
last step in model validation is to compare the accuracy of rec-
tification for thé real image frames with the accuracy for the
corresponding simulated <frames. If there are no significant
differences in accuracy between the real and, its corresponding

simulated frame, then the model is considered adequate.

We used two real image frames taken by-LANDSAT 2 to validate
our model. Precise estimates of the quality of the control data
is not available but on the basis of the procedure wused in
obtaining the data, a reasonable estimate of the ;tandard devia-
tions of coordina;es is as follows: 0.5 pixel in row, 0.5 pixel
in column, 15 meters in Northing, 15 meters in Easting, and 15
meters in elevation. For manual methods of control - point iden-
tification, which is the one we used, the best accuracy that can
be expected is 1/3 pixel in row and 1/3 pixel 1in column (Bahr,
1976). For the first frame which covers Kansas, the standard
deviations applied in simulation are 0.44 pixel Ain row, 0.40
pixel 1in column, and 15 meters for each ground position coordi-
nates. The RMS planimetric error in rectification for the real
frame is 64 meters and for the simulated frame is 62 meters using
81 control and 72 check points. The second frame covers Louisi-
ana and the standard deviations applied in simulation. are 0.40

pixel, 0.64 pixel, and 15 meters for row, column, and each ground
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coordinate, respectively. Using.70 control and 122 check points,
the RMS rectification errors are.68 and 61 meters for the real
and simulated frames, respectively. A detailed discussion of the
above experiment can be found in Paderes and Mikhail (1984).
From these, 1t can be concluded that our model is adequate and
that it may produce only a very émall’ systematic error, 1if at

all, when used for rectification.



5. EXPERIMENTAL RESULTS

We have carried out an exhaustive series of experiments
using simulated data to understand and clarify problems regarding
rectification. Simulation is a very powefful and flexible tool
whenever 1t <can be appropriately applied as is the case here.
Previous results include the study of the effects of the follow-
ing on rectification accuracy: (1) error in parameters singly
and combined; (2) different mathematical models; (3) density
Qf coﬂtrol points; (4) error in image coordinates; (5) error
in ground coordinates of control points; (6) wuse of edge con-
trol 1in single 1image rectification; and (7) application of
block adjustment. These results are discussed in detail in
Mikhail 4and Paderes (1983), Paderes and Mikhail (1983), Paderes,
Mikhail, and Forstner (1984), and Paderes and Mikhail (1984).
New results which are repofted in this paper include: (1)
effect of errors in the internal sensor geometry; (2) effect of
error in weights of image and ground coordinates; (3) effect of
differént combinations of parameters defining the s;tellite posi-
tion perturbations and the sensor orientation; (4) wuse of edge
control inm block adjustment; -(5) . study of rectification-
registration sequence; (6) detection aqd identification of
blunders; and (7) analysis of the potential for merging satellite

scanner imagery and digital terrain model (DTM) data.
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5.1 Effect gg.Errors in Internal Sensor Geometry

Errors in sensor geometry are primarily due to variations in
scanning speed which should be constant during pixel sampling.
This error plus other sensor instabilities cause errors in pixel
row and column numbers. Since one scan consists of very few rows
relative to the number of columns, and the scanning action pri-
marily affects the columns only, then row errors are vefy small
csmpéred to column errors. Assuming that errors in internal sen-
sor geometry consgitute'the factor that limits observation accu-
raéy, an experiment was designed to determine the rectification
accuracies that can be expected. For this purpose, an image
frame was simulated with 100 uniformly distributed control points
and the same number of well-distributed check points. The ground
positions of the control points were perturbed using thg normal
distribution with only a one meter standard deviation in each of
the three coordinate directions. The pixel row numbers were per-
turbed using the normal distribution with standard deviation of
0.01 pixel. The pixel column numbers were also normally . per-
turbed with a series of standard deviation as seen in Table 1.
The image 1s then rectifiéd and the accuracy computed wusing the
check points. The experiment was repeated three times with a
different “"seed" for the random number generator used for deriv-
ing the ‘errors applied to the observations. The average RMS
planimetric error of rectification corresponding to the diffé;ent

image column standard deviations are shown in Table 1. It can be



seen that sub-pixel accuracy 1is possidle only 1if the scanning

speed can be controlled to a very high degree of accuracy.

5.2 Effect of Errors in Variances of Image and Ground Positions

Ideally, only the érue variances of observations should be
applied in an adjustment problem. In reality, difficulties in
determining the true accuracy of observations prevent us from
doing so, especially if more than one type of oBservation is
involved. Rectification of scanner data is largely an adjustment
probleﬁ, and at least two different types of observations are
involved (i.e. image positions and ground coordihates). To
study the effect of errors in variances, a nine frame block in
three adjacent orbits with three frames per orbit was simulated.
The center of the block 1is épprdximately at 60°N latitude result-
ing in about 60% sidelap between frames belonging to different
overlap. ThereAare 506 control points uniformly distributed over
the whole block. The grouﬁd positions were normally perturbed
with a standard deviation of 15 meters in each of the three coor-
dinate directions. The 1image positions were perturbed using a
combination of uniform and normal distribution. The uniform dis-
tribution had a range of +0.5 to -0.5 pigel and the normal one.
had a standard deviation of 0.5 pixel, Each frame <contains 100
check points, Different caées, where either the image or ground
position variances but not both were multiplied by a different
factor, were run. The RMS planimetric error for each frame was

computed using the check points and averaged over all nine frames.
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The results are shown in Table 2. The image position vafiances
can be in error by a factor of 0.1 or greater while the ground
position variances can be in error by a factor of 10 or smaller.
This means that the image position can be assumed to be 1less
accurate than they reaily are and the ground coordinates to be
more accurate than they really are or even assﬁmed fixed without

affecting rectification accuracy.

5.3 Effect of Different Parameter Combinati&hs

One major problem in the rectificatioh of satellite scanner
imagery using a model elaborate enough to adequately describe the
scanning process is caused by the very weak geometry of the
image. Because of this, the parameters in the model are corre-
lated with each othef. In practiEe, therefore, only a subset of
the total parameter set can be recovered in the adjustment. The
modeling approach we used, which aileviates this problem, 1is to
divide the satellite position and sensor attitude and azimuth
into two‘components, i.e., ideal and pertufbed. The ideal satel-
lite position <can be derived from sateilite tracking data, the
ideal sensor attitude can be assumed to be always in the direc-
tion of the vertical and,the sensor azimuth to be parallel to the
orbital plane. If no tracking data are availabie, those ideal
satellite. position parameters which vary from orbit to orbit can
be derived using the control data set 1itself, assuming no pertur-
bations. Errors 1in ideal satellite position, sensor attitude,
and sensor azimuth, from whatever source, can be compensated for

by the perturbation parameters. Therefore, only phose parameters

e T
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describing the perturbation components need be considered as unk-
nowns 1in the rectification process. The deviation of the satel-
lite position from the ideal has threé components, the sensor
attitude with ‘respect to the vertical has two and the sensor
azimuih has one. O0f these six compdnents, only four are indepen-
dent because the sensor attitude is highly correlated with the
along and across track components of the satellite position devi-
ation. Nevertheless, for hiéh accuracy applications, the parame-
ters defining all six components should be recovered. This
experiﬁent is designed to determine when all six components can
be recovered and compare the accuracy of this approéch to the

case when only four components are used in rectification.

A block similar to that used_ in section 5.2 was simulated.
The initial aéprpximations used in the adjustment for the paraﬁef
ters defining the six perturbation components are their true
values plus a given error as shown in Table 3., Since a given
component is modeled as a third degree polynomial function of
time (having four parameters), the component standard deviation
is actually twice the individual parameter standard deviation.
For «case ], all the six components were exercised in the adjust-
ment. For parameter we;ghts smallef than their true weights
times 125, the solution did not converge except when the error of
the parameters are equivalent to 0.l pixel or smaller. In the
latter case, the solution did converge using the true parameter
wgights._ For case 2, the along and across track satellite posi-

tion deviation components were held fixed and the remaining four

.

EN

5.
ke
X

353



354

components were given very small weights in the adjustment. The
along and across track components were selected because among the
six perturbation components, these two - contribute the smallest
error in rectification. All 506 points in the block were used as
control for both cases. For computing the rectification" accu-
racy, each frame had 100 check points. The RMS planimetric
errors were averaged over all frames. The results are sﬁown in
Table 3. Case 1 is superior to case 2 when the error for each
parameter is smaller than 0.1 pixel and tﬁe opposite is true when
the erfor is greater than 1 pixel. This experiment shows that if
the solution to the adjustment converges using the true parameter
wveights, exercising all the six components is superior to using

only four.

5.4 Use of Edge Control In Block Adjustment

A block of nine frames in‘three adjacent orbits with three
frames per orbit similar to that in Section 5.2'was simulated.
There are 360 control and 140 tie ©points wuniformly distributed
over the whole block; The ground coordinates of the control
points were perturbed by a 15 meter standard deviation in each of
the three <coordinate directions using the normal distribution.
The tie points ground coordinates were similarly perturbed except
that the horizontal positions have standard deviation of 1000
meters. The image position of both the control and tie points
were perturbed using a combination of uniform and ﬁormal distri-
bution. The uniform distribution, which takes care of truncation

errors, had a range of +0.5 to =-0.5 9pixel. The normal



distribution had a standard deviation of 0.5 pixel both in row
and column direction. A second set of control data representing
control and tie edges were simulated in exactly the same manner
as the control point sef except that the image coordinates were
perturbed in a different way. Instead of perturbing the image
position along the row and column directions, they were perturbed
along a randomly directed line. The standard deviationm along the
line - was 10 pixels and that perpendicular. to the line was 0.5
pixel. The pérturbations along the row and column direction were
then derived by 'rotation given the direction of the line. A
third set of data consisting of check points were simulated. The
image and ground coordinates of these points were self consistent
and they were used for computing the accuracy of the rectifica-
tion procedure. Each frame had a set of 100 check points which

were independent of other frames.

By varying the number of control and tie ©points/edges a
total .of 12 cases of block adjustment were run; 7 using points
and 5 using edges as control. The whole experiment was repeated
three times with a different "seed" for the random number genera-
tor which computed the perturbations. For each «case, by wusing
the check ©points, the RMS planimetric error for each frame is
computed. The RMS planimetric error is averaged over nine frames
and three replications. The results are plotted in Figure 1.
From the figure, it can be seen that aﬁproximately a pair of edge
control 1is equivalent to a single point control. This is the

theoretical limit because a point is the same as a pair of per-
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pendicular edges. This conclusion seems to be in conflict with
previous results for edges with random directions which indicated
that about three pairs éf edges 1s equivalent to a single control
point (see Paderes, Mikhail, and Forstner 1984). The more accu-
rate results of the present experimen£ can be explained by the
fact that the error along the edges was only 10 pixels instead of
being 4infinitely 1large as was previously assumed. A 10 pixel
error in measuring edge position (taken as the mid-point of the
edge of finite 1length), &especially if it is short enough, is
quite échievable. A practical means to locate the edge-points on
the map is to first gét their approximate locations in the image
using a simple transformation with a few control points for the
whole frame. After that, each -edge-point 1is then manually

shifted to lie on the edge.

5.5 Study of Rectification/Registration Sequence

Réctification has been defihed as the transformation of the
scanner images into the g?ound reference system or into a scaled
représentation of the terrain such as a map. Régistration, on
the other hand, 1s the transformation of one or more images into
another image covering the same segment of the earth, The images
to be registered «can be taken by similar or entirely different
sensors (multi-sensor) at approximately the same or vastly dif-
ferent times (multi-temporal). For proper registration, the
relevant images should preferably be taken from approximately the
same sensor locations although those that are not can in princi-

ple be taken care of if the terrain shape is known.



In theory, if images covering the same segment of the earth
are rTectified, they should then also be registered with respect
to each bther. Conversely, if these images are registered with
respect to each other ana if one of these is rectified, then the

rest should also be rectified. At first glance, the process of

registration is superfluous because rectification alone can pro-

duce both rectified and registered images. In practice, regis-
tration stands on its own since 1t is considered to be more accu-
rate because it is easier to find common features between images,
than between an 1image and the corresponding terrain segment or

its representation. This is especially true if the images were

taken by similar semnsors under approximately the same conditions,

Furthermore, if matching images is the sole object, registration

is more efficient than rectification.

Like rectification, the first step in registration i1is the
finding of common features between images to serve as control.
Then the rest of the images are transformed into the arbitrarily
selected reference image using a mathematical model. Ordinarily
the resulting syste§.§£ equations is over-determined, therefore a
method of adjustmé&é?,is necessary (e.g. least squares). Since
registration involves a minimum of two images the resulting
geometric model will be very complex. For cases similar to this,
the usual approach is to use polynomials or other mathematical
_series. This approach to registratioﬁ, which is the approach we

used, is feasible because of the relative ease of finding common

features between similar images.
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We performed a series of five experiments to study the util-
ity of rectification for registration purposes and the usefulness
of regist}ation for rectification. This study 1is feasible

because of our extensive set of simulation programs.

Experiment I: Registration (Transformation) of Frame A to Frame B

Experiment I was designed to measure the accuracy of registering
one image to another. The following are the steps in this exper-

iment:

(1) Select a suitable set of nominal orbit, sensor and earth
parameters and constants such that the resulting simulated images

are located at approximately 60° N latitude.

(2) Add a positive error equiValeﬁt to one pixel in the image to

each of the nominal parameters and assign them to frame A.

(3) Select, on frame A, 16 control and 225 check points that are

uniformly distributed throughout the whole frame.

(4) Compute in a forward simulation procedure the planimetric
ground coordinates of the above image points, using the parame-
ters of frame A, and assuming that their ground elevations are

2ero.

(5) Add a negative error equivalent to one pixel in the image to
each of the nominal parameters and assign them to frame B. This
step together with step (2) assures us that the two frames are

overlapping each other, with only a few pixels difference,



(6) Using the ground coordinates from step (4) and the parameters
of frame B, compute the image coordinates of the control and
check points in frame B in a reverse simulation procedure. This
step results 1in a conéistent set of control and check points

between frames A and B.

(7) Perturb the image coordinates of control points only in frame
A selected in step (3) using a normal distribution with standard

deviation of 0.1 pixel.

(8) Repeat step (7) for image coordinates of control points in

frame B, which were computed in step (6).

(9) Compute the registration parameters needed to transform frame
A to frame B wusing the simulated control points and a second

degree polynomial model.

(10) Transform the image coordinates of the check points in frame

A, computed in step (3), into frame B.

(11) Compute the rms of the position errors of check points in
pixels from the differences between the computed check point
position in step (10) and the ideal check point position from

step (6).

(12) Repeat steps (1)-(11) five times with different perturba-

tions applied to control data and compute the average rms error.,
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(13) Repeat steps (1)-(12) for 25, 49, 81 and 144 control points.
A plot of the average rms check point position errors vs. the

number of control points is shown as curve (1) in Figure 2.

Experiment II: Rectification of Frame A

Experiment II was done to determine the accuracy of single frame

rectification. This experiment consists of the following steps:

(1) Repeat steps (1)-(4) in experiment I re;ulting in a con-
sistent set of image and ground coordinates for 16 control points

and 225 check points in frame A.

(2) Perturb the image coordinates of the control points only 1in
frame A using a normal distribution with a standard deviation of

0.1 pixel in the row and column directions.

(3) Perturd the corresponding control point ground coordinates in
each of the three coordinate directions using a normal distribu-

tion with 5m standard deviation.,

(4) Compute the rectification parameters needed to transform
frame A into the ground system using the perturbed control points
and our rectification model via a least squares adjustment pro-

cedure.

(5) Transform the image coordinates of check points from step (1)
into the ground in a forward simulation procedure using the com-

~puted rectification parameters in step (4).



(6) Compute the rms of the planimetric position errors in metefs
of check points from the differences between the computed check
point position in step (5) and the 1ideal check ©point position

resulting from step (1).

(7) Repeat steps (l1)-(6) five times with different perturbations
applied to <control data and compute the average rms position

error of check points.

(8) Repeat steps (1)-(7) for 25, 49, 81 and 144 control points.

The results are plotted as curve (2a) in Figure 3.

(9) Repeat steps (1)-(8) using 0.5 pixel and 15m standard devia-
tions in steps (2) and (3), respectively. Curve (2b) in Figure 3

is the plot of these results.

Experiment III: Independent Rectification of Frames A and B.

In experiment I frame A was registered to frame B, In experiment
I1 frame A was rectified to the ground; If experiment II is
repeated for frame B, then the two frames should be registered
with respect to each other, These two rectifications, which
result from experiment III, should be compared to the result from

experiment I. The steps in this experiment III are as follows:

(1) Repeat steps (1)-(6) in experiment I which results in a con-
sistent set of 1image and ground coordinates for 16 control and

225 check points in frames A and B.
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(2) Repeat steps (2)-(4) in experiment II resulting in rectifica-

tion parameters for frame A.

(3) Transform the image coordinates of check points in frame A
into the ground wusing the computed rectification parameters in

step (2) via a forward simulation procedure.
(4) Repeat step (2) for the rectification of frame B.

(5) Compute the image coordinates of check }oints in frame B
using the computed ground coordinates in step (3) and the rectif-
ication parameters in step (4) via a reverse simulation pro-

cedure.

(6) Compute the rms of the check point image position errors in
pixels from the differences between the image coordinates of
check points computed in step (5) and the corresponding true

positions in frame B computed in step (1l).

(7) Repeat steps (1)-(6) five times with different perturbations
applied to control data and compute the average rms position

error of check points,

(8) Repeat steps (1)-(7) for 25, 49, 81 and 144 control points,
The average rms errors vs. the number of control points are plot-

ted as curve (3a) in Figure 2,



(9) Repeat steps (1)-(8), in this experiment, using 0.5 pixel and
15m standard deviations in step (2) for image and ground coordi-
nate perturbations;, -respectively. The results are plotted as

curve (3b) in Figure 2.

" Experiment IV: Registration of Frame A t

B, Followed by Rectifi-

cation 2£ g.

In experiment I frame A was registered and transformed to frame
B. If experiment I is followed ﬁy rectification of frame B to
the ground, then frame A is also rectified. The sequence of
registration followed by rectification is then equivalent to a
simple rectification of frame A. Experiment IV was performed to
measure the accuracy of this sequence. The following steps were

done in this experiment:

(1) Repeat steps (1)-(4) in experiment I resulting in a con-
sistent set of image and ground coordinates for 16 control and

225 check points in frame A.

(2) Repeat steps (5)-(6) in experiment I which produces image
coordinates in frame B for control and check points which are

consistent with those ih frame A,

(3) Repeat steps (7)-(10) 1in experiment I which results in
transformed check point image coordinates from frame A to frame

B.

(4) Repeat steps (2)-(4) in experiment II for frame B instead of

frame A which results in rectification parameters for frame B.
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(5) Transform the image coordinates of check points produced by
step (3) into the ground using the rectification parameters com-

-

puted in step (4) in a forward simulation procedure.

_(6) Compute the rms of the planimetric position errors in meters
of check points from the differences between the computed check
point position in step (5) and the true check point planimetric

ground position in step (1).

(7) Repeat steps (1)=-(6) five times with different perturbations
applied' to control data and compute the average rms check point

error.

(8) Repeat steps (1)-(7) for 25, 49, 81, and 144 points. The
average rms check point position errors vs. the number of control

points are plotted in Figures 3 and 4 as curve (4a).

(9) Repeat steps (1)-(8) using 0.5 pixel and 15m standard devia-
tions 1in step (4) for image and ground coordinate perturbations,
respectively. A plot of the results similar to those in step (8)

is shown in Figures 3 and 4 as curve (4b).

Experiment V,

Experiment V is essentially experiment III except that the regis-
tration errors between frames are computed on the ground instead
of in the plane of frame B, This was done to facilitate com-

parison between the results of this experiment and experiment IV.



This comparison is interesﬁing because both experiments deal with
a sequence of two processes. For completeness the steps in

experiment V are as follows:
(1) Repeat step (l) in experiment III.

(2) Repeat steps (2)-(3) in experiment III for frame A resulting

in transformed ground coordinates of check points.
(3) Repeat step (2) for frame B,

(4) Compute the rms of the differences between the computed check

point planimetric ground position in step (2) and in step (3).

(5) Repeat steps (1)-(4) five times with different perturbations
applied to control data and compute the average rms position

difference.

(6) Repeat steps (1)-(5) for 25, 149, 81 and 144 control points.
The results of this experiment are shown as curve (5a) in Figure

4.

(7) Repeat steps (1)=-(6) using 0.5 pixel and 15m standard devia-
tions 1in step (2) for image and ground coordinate perturbations,
respectively., The results are also shown in Figure 4, as curve

(5b).

The above series of five experiments essentially covered two
major cases. Case (a) assumed that the image coordinates of com-
mon points for both rectification and registration have the .same

standard deviation of 0.1 pixel. This  implies that
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correspondence for both registration and rectification can be
accomplished at the same 1level of accuracy. éase {(b), on the
other hand, assumed that the image coordinates of <common points
for registration have 0;1 pixel standard deviation, while those
for rectification have 0.5 pixel standard deviation. ~This case
stems from current practical comnsiderations where correspondence
between like images (thus registration) is determined to & higher

degree of accuracy than for rectification.

From the results of these experiments, if the common points for
rectification have the same accuracy and number as those for
registration (case (a)), it can be concluded that rectification
is superior to registration. Under the more realistic assump-
tions in case (b), it can be concluded that if the sole purpose
is to register two similar images taken from nearly the same sen-
sor location, then direct registration 1is better than the
indirect approach of rectifying both images. On the other hand,
.if rectified images are the desired results, then rectification
should be the only procedure used. If both rectified and
registered images are desired, the pure rectification approach 1is
as accurate as the combined registration-rectification approach,

still under the assumptions of case (b).

5.6 Blunder Detection and Identification

In any system involving observed data like rectification and
registration of satellite scanner imageries, the elimiﬁatipn of

blunders in the observations is of utmost importance for reliable



and accurate results.' Ideally, if the true errors of observation
are known or can be computed, they can readily be tested for
blunders. Unforgunately, this is not possible so, a traditional
approach has been 'to attempt minimizing blunders ©before the
adjugtment and reduction of data. This usually involves a care-
fully designed observation scheme with repetitive measurements to
assure that as few blunders as possible are left undetected. A
limited version of this approach should always be applied but
full vimplementation is seldom done becaus; of cost considera-
tions. Hence, blunders remain in many instances which can con-

siderably degrade the quality of the resulting products.

An alternative approach is to do statistical testing on
functions of true errors after data adjustment and reduction. It
‘had been shown (see Mikhail, 1979), that the residuals, v,
resulting from a least squares adjustment are related to the true

errors, e, hence to blunders, by the following equation:

vV = - W e

vi
where vi is the cofactor matrix of residuals, v, and W 1is the
inverse of the cofactor matrix of observations, Q. The cofactor

matrix, Q, is related to the covariance matrix of observations,

E, by the following relation:

where og is the a-priori reference variance. This equation can-

not be solved for e, although all the other quantities are known

after a least squares adjustment, because vi is singular. Since
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v is a linear function of e, then v or functions of v can be
tested for blunders. This post adjustment approach is the tech-

nique which we applied for blunder detection and identification.

Blunder detection only requires that we determine whether
the "vector of observations has blunder(s) in it. In order to
eliminate blunder(s) we have to go one step further and identify
the specific elements of the vector of observations which have
blundérs. In this context, multivariate st;tistics which are
functions of v are only useful for blunder detection but not for
identification. Parédoxically, univariate sﬁatistiés. which are

functions of individual elements of v has the best chance of

identifying individual blunders.

One commonly used statistic for blunder identification is

the normalized residual

- )
Vi T Vi/\l°o Qvivi

where vi is a specific element of the vector of residuals, v, and
954 vi is the ith diagonal element of the cofactor matrix of resi-

duals, vi. If the original vector of observations, 1, 1is nor-

-

mally distributed, \ is also distributed normally with zero mean
and unit variance. The method based on this statistic is known

as data snooping (Baarda, 1968; Mikhail, 1979).

If 05 is not known, we can use the a—-posteriori estimate of

2 . . .
the reference variance, 60, in its place resulting in

i i % Yyivi
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the a-posteriori reference variance, 60, can be computed using

the equation

2 = vP W v/
0
where r is the redundancy of the adjustment. This statistic v s

i

assuming normally distributed observations, has a tau distribu-
tion.  The .tau distribution can be derived ftom the Student t

distribution using the following relationship:

T = \Jr t(r-l)/\Jr—l + t(r-l)f

where T is the tau distribution, t is the Student t distribution,

and r designates the degree of freedom or redundancy of the

adjustment (Pope, 1975).

Another useful statistic is the partial quadratic

ot -1 2

9= Vy Qayz V2/%
where v, is a sub-vector of residual vector, v, and Qv2v2 is the
corresponding submatrix of cofactor, vi. The statistic q 1is

distributed as a xz(p), where p is the number of elements in v,
which can never exceed f, the redundancy of the adjustment. If p
= 1,'the partial quadratic approach is equivalent to the data

snooping approach (Stefanovich, 1978).

4 -,

The \ and ] statistics are idéally suited for Dblunder
identification when. the vector of observations, 1, has only one
blunder, because they essentially are univariate statistics. For

more than one blunder in the observations, these statistics do

not perform as well. To alleviate this problem, we developed a
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sequential ylunder identification stratégy based on‘these two
statistics where the blunders are identified and eliminated one
at a time. A shortcoming of the present implementation of the
strategy is that once an bbservation is eliminated, even if it
has no blunder, it <can not be returned into the adjustment.
Since the statistic is most sensitive when there 1is only one
blunder 1in the set of observations, the eliminated observations

should be returned one by one into the adjustment and retested,

The statistic q is multivariate, hence it can usually detect
but can not 1dentify blunders in a suSset of observations.
Stefanovich (1978) developed a search strategy wusing the ¢
statistic which can identify the subset of observations that con-
tains only blunders. The strategy is based on the fact that the
statistiec q for ;he subset of obsefvations with no blunders will
pass the <chi-squared test ‘while the subset containing only
blunders will fail the test. Any other subdivision of the set of
obser&ations will fail ﬁo satisfy the above conditions. A major
drawback -of this strategy is that the chi-squared test becomes

insensitive when the redundancy is large.

Stefanovich“s strategy and the sequential strategy we
developed to identify blunders require the repetitive elimination
of one or more observations from the adjustment. At first
glance, this would require repetitive readjustments which would
be costly. A closer look will show that the only quantities we
use 1in the tests which varies with the number of observations in

the adjustment are the residuals, v, and the cofactor of



. . 2
residuals, vi. The estimated reference variance, 30, also

varies, but this is essentially a function of v. The cofactor of

observations, Q, which 1is wused in computing for the estimated

2 . . 2
reference variance, 80, and the a-priori reference variance, oo,
2
0

can easily be updated after eliminating some observations without

are constants. It turns out that the quantities v, QVQ and 0

readjustment (Stefanovich, 1978). Also, only a subset of v which
contains the observations that are most likely to have blunders

and the corresponding subset of vi need be stored and updated.

To test the effectiveness éf the strategies outlined above
for identifying blunders in control points used in rectification
of satellite scanner imageries, two simulated MSS image frames
were created. Frame A has 25 control points frame B has 49, both
control point sets being uniformly distributed. The coordinates
of 1image ©points for ©both frames were perturbed using a normal
distribution with standard deviation of 0.5 pixel and a uniform
distribution with a range of +0.5 to -0.5 pixel to take care of
truncation errors. The <corresponding ground coordinates were
assumed fixed without loss of generality because whatever errors
the ground coordinates have, these can be compensated for at the
image positions. The two frames are at approximately 60° N lati-

tude,

The level of significance for the tests were: 0.0005,
0.0005, and 0.005 for data snooping, tau test,,and chi-squared

test, respectively. The first two are two-sided tests while the
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last is one-sided. These values were selected such that there is
no'misidentification when the control data sets have né blunders.
Three different numbers -of blunders (1, 2 and 4) were tested for
both frames. The blunders were introduced on the row coordinates
of image points only. If a coordinate is identified as having a
blunder, the whole point is eliminated. The single blunder was
introduced mnear the middle. The two blunders were introduced
along a diagonal an& one quarter of the diagopal length from the
corners, The four blunders were introduced along both diagonals

in a manner similar to the two blunders.,

Results of the experiment are shown in Table 4. Methods 1,
2 and 3 correspond to data snooping, tau test and chi-squared (or
partial qﬁadratic) test, respectively. Entries in the table are.
the smallest 1blunder for which a given strategy identified all
blunders correctly without misidentification at the selected lev-
els of significance. This ‘implies that whenever blunders are
largef than those shown, they are always detected. If smaller,
they may or may not be detected. The upper entry corresponds to
25 control points while the lower entry corresponds to 49. The
row entries vary with the number of blunders and the column

entries vary with the methods.

The results show that post adjustment blunder identification
is feasible especially for large blunders with magnitudes of 10
or more. The procedure is expected to work quite well if the
number of control points, hence the redundancy, is high and vice

versa. It worked quite well for 25 control points, where the



redundancy is 34 even when there are four blunders. Further
tests are necessar§ to determine the lower limit in the number of
control ©points for the procedure to work well. As expected the
data snooping and the chi-squared test performed a little better

than the tau test Dbecause the og is perfectly known. In this

context, the performance of the tau which uses bg instead of cg

is very good.

5.7 Analysis of the Potential for Merging Satellite Scanner

Imagery and DTM Data

Digital terrain models or DTMs are becoming more and more
common., .A DTM is a digital representation of the topography or
shape of the terrain as opposed to the <conventional graphical
representation in terms of lines of equal elevation called con-
tour lines. DTMs essentially consist of a collection of three-
dimensional vectors representing the horizontal position and
elevation of points. These points might be arranged in a regular
grid which is more common, or they might be arranged in an arbi-
trary manner. The density of these points depends on the charac-
ter of the terrain and the ultimate application of the resulting
data. Sometimes, other planimetric features such as roads may

also be incorporated into the DTMs.,

Since the terrain is continuous, representing it as a col-
lection of discrete points may not be sufficient to completely
describe the terrain. This inadequacy becomes very apparent when

terrain points other than those available in a DTM are required.
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Because of this, the definition of DTMs is sometimes extended to
include the procedure used for~1n£erpolating the elevations of
these otﬁer points. As a further consequence of this discrete-
ness,'DTMs can be stored in a more compressed form using suitable

interpolation models.

Relatively speaking, the shape of the terrain ddes not
change compared to the planimetric features on its surface. Once
collécted, the elevation component of DTMs ne;d not be updated
for a relatively long period of time except in cases where more
accurate terrain models are required. This felative stability of
DTMs 1is a blessiné because the shape of the terrain is often more
difficult and time consuming to observe and measure. If the ter-
rain shape were to change as much as its planimetric features,
the resulting DTMs might become obsolete by the time their compi~
lation 1is finished. Furthermore, only one type of sensor, the
photogrammetric camera, is suitable for securing images useful

for compiling DTMs.

With the availability of satellite-borne sensors, ub—to-date
images wuseful for mapping the surface of the earth became avail-
able. It seems that the problem of up-to-date maps may £finally
be nearing solution, As it turms out, beqause these images are
taken from very high altitudes and the angular coverage 1is usu-
ally small, the resulting image geometry is such that the shape
of the earth surface cannot be readily recovered from them. So,
the primary information that is recovered from these images con-

sists of the planimetric features of the earth”s surface. Even



the proper positioning of these features in the ground system,
i.e. rectification, requires some knowledge of the shape of the

terrain.

A complete description of the terrain requires both 1its
shape and the planimetric features on it. The shape of the ter-
rain can be supplied by DTMs which are compiled through a photo-
grammetric process which 1is relatively tedious and time inten-
sive; Since the terrain shape does not cﬁanéé much with time,
the resulting DTMs areluseful for a variety of applications and
fof a relatively long time. The planimetric features can be sup-
plied by more modern sensors on-board satellites. Even though
planimetric features change rapidly, these sensors are able to

provide us with timely images.

The above discussion leads to the necessity of merging or
regisfering DTMs and satellite images in order to produce com-
plete and up-to-~date terrain data. In general, two different
entities can be merged only if they describe the same phenomenon.
This 1s true for satellite imagery and the DTM covering the same
segment of the earth surface. The first step in merging, which
is very similar to rectification, is to find the sensor position
and angular orientation as a function of time. Presently, these
can be provided by satellite tracking observations and by auxili-
ary sensors on-board the satellite. . Unfortunately the accuracy

of these observations are not sufficient for merging DTM and
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satellite imagery. In the design of the next generation of sen-
sors, effort should be expended to accurately measure the sensor

position and its angular orientation.

An alternative is to ﬁse common features between the DTM and
the imagery to solve for the sensor position and angular orienta-
tion. This 1s quite siﬁilar to rectification., At first glance,
satellite imagery and DTM cannot be merged because they do not
descfibe the same property of the terrain. The former describes
the planimetry of the terrain while the latter describes the
shape of the terrain. Fortunately, DTMs may also contain some
planimetric features such as roads which do not change as rapidly
as other features such as vegetation. The problem of efficiently
and accurately finding these common features has to be resolved

before any viable merging procedure can be implemented.

Once the sensor exterior érientation parameters are known,
the image <coordinate of any ground point, hence any DTM point,
can be solved for. This procedure is very similar to reverse
simulation of satellite image point. The solution is iterative
because the sensor angular orientation and position are functions
of time. Time, in turn, is a function of image position, which
is. the unknown quantity. The resulting gquations are highly
non-linear 1in terms of the image coordinates., "'This approach of
solving for the image coordinates for DTM points 1s appropriate-

if we wish to maintain the point density of DTMs.



The next step in ﬁerging is to assign densities to image
points corresponding to DTM points. 1In general, these points
will not coincide with pixel centers, hence an 1interpolation
method 1s needed to asgign the proper density to these points.
The simplest method is the zero order interpolation also known as
the nearest neighbor interpolation. As the name implies, the
computed image point is assigned a density equal to that 'of the
nearest pixel center, Higher order interpolation such as bi-
linear, bi-cubiec, etc. can also be applied. Questions regarding

the resampling of satellite imagery need to be addressed.

Instead of solving for the image coordinates of DTM points,
we can solve for the ground <coordinates of the image pixel
centers. The spectral densities of these points will automati-
cally be the densities of the corresponding 'pixels. This
approach makes sense if we want to maintain the point density of
the 1image which <corresponds to pixels. This approach is very
similar to rectification whereby we are only interested eventu-
ally 1in the horizontal ground position of pixels. The solution
for the three ground coordinates of image points given the sensor
angular orientation and position is not possible without some
knowledge of the shape of the terrain. This 1is Dbecause we are
trying to transform a 2-dimensional image into the corresponding

ground ségment which is 3-dimensional.

The above-mentioned problem can be visualized as that of

finding the intersection of a vector and a complex surface in 3-

dimension, the surface being represented in digital form. This

-9
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problem 1is complicated because we are interpolating at the same
time that we are solving the 1intersection problém ‘for the
discrete(surface. "We might simplify this problem by representing
the terrain as a continuoﬁs surface wusing models such as B-
splines. 1In rectification, if we do not have a DTM, a way around
this problem is to assume that the terrain is flat but not neces-
sarily horizontal. For MSS imagery the horizontal error im this
assumption is negligible compared to the pixel size except for
very mountainous regions where the angular coverage is very small

(less than 11 degrees).

Whether we maintain the integrity of the points in the DTM
or the pixels 1in the image depends on the eventual application
and on the relative density of the two data sets. If the final
end product 1is a rectified image and if DTM points are denser
than the pixel density, then the ground coordinates of pixel
centers should be solved for. If the fimal product is still a
DTM and pixels are denser than DTM points, then the image coordi-
nates of DTM points must be solved for. The critical point to
conside: is the accuracy of interpolation, whether implicit or
explicit. The 1interpolation should preferably be from dense to

less dense point distribution.

The possibility of merging DTM data and satellite scanner
imagery 1is based on the premise that the sensor angular orienta-
tion and position is available and/or <can be computed wusing
features common to both data sets. These common features are

usually called control. Therefore, any approach that will make

.
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control selection and measurement faster, more accurate, and will
decrease the required number of control features should be inves-
tigated.' Identifying common features between the DTM and satel-
lite 1imagery 1is difficﬁlt because these two sets describe
inherently different aspects of the terrain. . DTM primarily
describes the terrain shape with a few selected planimetric
features added while satellite imagery describes its planimetric
features. These few planimetric features incorporated into DTMs
are the only features that the DTMs have in.common with the
satellite imagery.” The situation 1is worsened by the fact that
any planimetric feature in a DTM is represented by lines whereas

those in an imagery is continuous.

The problem of dissimilar representation of available common
features can be soived by filtering the imagery using differen-~
'tial filters to produce binary. images <consisting of 1lines and
edges. This binary image 1s more similar to planimetric features
in DTMs than the original continuous image. If the original pho-
tographs used in compiling the DTMs are available, these might be
digitized and correlated with satellite 1iwmages to find common
points. These photographs are more similar to satellite images,
hence more common features can be found. Common features between
DTM source photographs and satellite imagery can be used for
merging DTM and satellite imagery because these photographs are

registered with the DTM.

With the advent of space photography (such as the Large For-

mat Camera on-board the Space Shuttle) merging of DTMs with
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satellite imagery is, at least theoretically, made easier. The
first step in merging DTMs with satellife imagery using space
photographs is to first‘merge DTMs and the corresponding space
photos, The required nﬁmﬁer of common features in this case is
very few (minimum of three control points) Secause the geometry
of space photographs 1is much stronger compared to satellite
scanner imageries. Then the space photo is merged - with the
corresponding satellite image. Conmmon features between space
photos and satellite imagery is much easier to find because both
are conﬁinuous images of the terrain. Space photographs are more
efficient than the DTM source photographs as tools for merging
DTM with satellite imagery because of scale. A single space
photo, for example, covers almost the same area as a single frame
of MSS image;y whereas a large number of DTM source photographs

is needed to cover the same area.

In selecting common features between images, the primary
tool 1in matching these features is the use of correlation algo-
rithms. Advanced correlation algorithms are cabable of compen-
sating for scale differences, differences in direction of digiti-
zation and higher order distortion. Procedures are available
also for correlating images with different pixel sizes.
Nevertheless, because correlation is central to the measurement
of common features, more study and experimentation are needed in

this area for our specific application,

Theoretically, the number of common features needed as con-

trol for merging or registering DTMs and satellite imageries will



be reduced if overlapping frames of 1imageries ‘taken from dif-
-ferent perspective ©positions are available. This is because
features common to overlapping imageries but not found in the DTM
can be used to strengfhen the geometry of each individual
imagery. These are commonly called pass features. The procedure
of wusing overlapping imageries is called block adjustment. For
imageries taken by Landsat MS8S or other similar scanners, where
the Dbase~height ratio 1is very small (for overlapping strips if
there is any overlap at all), the promise of block adjustment can
not be fulfilled. However, this proceduré might be advantageous
for 1imageries produced by scanners whose direction can be
remotely controlled 1like those on-board the Spot satellite for

example.
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6. CONCLUSIONS:

Error in the reconstruction of the scanner iunterior geometry
results in image position errors primarily along the column
direction which severely limit the obtainable accuracy througﬂ
rectification. Unless this problem is corrected, highly precise
control data sets, even if available, will not be effective. The
question of proper weights for image and ground position of con-
trol features is easily resolved because we can assume that the
image Apositions are less accurate and the grpund positions are
more accurate than they really are without adversely affecting
rectification accuracy. Regarding the proper parameter combina-
tion that should be recovered during rectification, ideally, all
six perturbation component paraﬁeters should be used. However,
unless these parameters are known to within 0.l pixel equivalent
error, fixing the along and aéross track perturbation components
produces more accurate results, Edges are very effective substi-
tutes and/or complements for points as control. Our results show
that a pair of edges is equivalent to a point under certain con-
ditions. When correspondence for rectification is established at
the same level of accuracy as for registration, then image rec-
tification, for whatever purpose, will always be superior. Given
the present capabilities for measuring the positions of common
points, single rectification should be wused when rectified
imageries are primarily the desired results, Direct registration
should be wused when the registered 1imageries are of primary

interest. Double rectification in general is as accurate as the



registration/rectification sequence. With respect to blunders,

post adjustment identification 1s feasible 1in rectification of

single
Terrain
sensed

rapidly

image, especially for relatively large blunders. Digital
Models (DTMs) can effectively be combined with remotely
imagery. This procedure may provide suitable means for

updating maps.
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Table 1.

Table 2.

Table 3.

Case 1:

Case 2:

Effect of Error in Internal Sensor Geometry

COLUMN STANDARD
DEVIATION (pixel)

AVERAGE RMS ERROR
IN PLANIMETRY (meters)

0.01 3.55
0.0 3.90
0.1 4.73
0.5 14.70
1.0 28.16
2.0 53.70

Effect of Errors in Variances of'Image,and Ground Coordinates

VARIANCE | AVERAGE RMS PLANIMETRIC ERROR IN METERS
FACTOR IMAGE GROUND
0.0001 X 29.94
0.01 * 29.34
0.1 59.06 29.34
1. 29.34 29.34
10. 29.34 59.06
~100. 29.34 *
10000. 29.34 *

* Solution did not converge.

Effect of Different Parameter Combinations
PARAMETER AVERAGE RMS PLANIMETRIC ERRORS IN METERS
ERRORS 1IN CASE 1 ‘ CASE 2
PIXEL
0.1 11.19 15.36
1 24 .83 16.00
2 71.44 16.13
5 170.81 29.34
10 53.21
20 - 105.53

True weights for all satellite position deviation, sensor
attitude and sensor azimuth component parameters are
multiplied by a factor of 125 except the first entry.

Along orbit and across orbital plane satellite position
deviation components are fixed; radial or elevation
component, sensor attitude and sensor azimuth parameters
are free.



388

Table 4. Results of Blunder Identification

NUMBER METHODS
OF BLUNDERS 1 2 3

1 4ag/bo 4o/60 | 4a/4o
2 60/80 80/80 | 60/80
4 60/80 10c/80 | 60/80

Method 1. Data snooping (normal test)
Method 2., Tau test
Method 3. Partial quadratic (chi-squared test)
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Abstract

Variograms are used as a tool to study spatial variation in remotely sensed
images from both theoretical and empirical perspectives. The theoretical analysis
involves deriving variograms that incorporate the effects of regularization for sim-
ple scene models. In addition, variograms are calculated from remotely sensed
images from scenes with known characteristics in an empirical portion of the
study. The two diverse approachés are linked through the use of simulated
images. Several kinds of information about 'ground scenes can be recovered from
analysis of variograms derived from images of the scenes. Also, the effects of
changing spatial resolution on the spatial structure of images can be determine

through understanding the effects of regularization.
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1. Introduction

The long term goal motivating the research presented in this paper is the
development of scene inference methods that exploit spatial relationships in
remotely sénsed imagery. For many years the spatial variation present in images
has been a primary information source used in manual interpretation of remotely
" sensed imagery. However, it has proven a difficult task to quantify the spatial
structures that humans recognize in images and incorporate them in computer-
assisted scene inference methodologies. Thus, as an intermediate goal an attempt
has been made to understand the nature and causes of spatial variation in images
as they relate to the characteristics of the ground scene and the spatial resolution

of the imagery.

In order to incorporate the characteristics of ground scenes in this investiga-
tion, an organized method of describing scenes is necessary. Thus, a scene model
is defined which specifies the form and nature of the energy and matter in the
scene. One characteristic of the scene models used in this research is tha_t they
are discrete in nature, assuming there are boundaries or discontinuities where the
properties of matter change abruptly over space. In this model setting, the scene
is perceived as consisting of objects on a background. A scene-model element is
an abstraction of a real object in the scene which can be regarded as having uni-

form properties or parameters.

The elements in a scene model can vary widely according to the interests of
the interpreter and the scale of the observations, or the spatial resolution. Exam-
ples of elements in an agricultural scene could include: leaf, branch, plant, crop
row, field. In addition to these discrete elements, a particular type of element,

the background, should be recognized. The background is usually assumed to be
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spatially continuous and is typically partially obscured by other elements in the
scene. Soil, snow, rock, and vegetative understory are examples of backgrounds.
It is also important to recognize.tha'xt scene models may be complez, or include
more than one type of element as well as the background. Nested models are also

possible in which the propérties of larger elements are derived from smaller ones.

In this investigation it is necessary measure spatial variation in images in
order to compare them. Variografns were selected for this role in the investiga-
tion becéuse they are mathematically quite tractable and are easy to understand.
Other choices such as autocorrelation functions or power spectrum density func-
tions are also available. Variograms are approached from both a theoretical and
empirical perspective in this investigation. The theoretical phase involves deriv-
ing explicit variograms for scene models. The empirical use of variograms con-
sists of calculating observed variograms from images of scenes with known
characteristics. These two divergent approaches are linked through the use of
simulated images. The variogram, then, becomes the tool linking scene models,
simulated images, and real images.

2. Variograms

Variograms measure spatial variation in a regionalized variable. Any ran-
dom variable whose position in space or time is known is a regionalized variable.
In this formulation, variables are indexed by their location. Thus, assume Y (z)
is a regionalized variable associated with location z. For numerous realizations of
the variable Y at different locations, it becomes necessary to index the locations
as z;, where i =1,..n correspond to n observations. If the Y (z;) are uncorrelated,
then the image will consist of random noise. If however, the Y (z;) are in some
way related, then the data will exhibit spatial structure. Perhaps the weakest

assumption one can make about this structure is what Matheron [5] refers to as
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the "intrinsic" hypothesis, that the. increments Y (z; +h)- Y (z;) associated with a
small distance h are weakly stationary. Under this assumption, the first moment
of the increment. its expected value, is constant or at least only slowly varying
with spatial position z; and the second moment is also invariant with spatial posi-

tion. The second moment is called the variogram:
29(h) = E|Y (z+h) - ¥ ()]’

Just as the variance characterizes the distribution of a nonspatial random
variable, so the variogram characterizes the distribution of a regionalized vari-
able. The distance at which samples become independent is often called the

range of influence and is denoted as a. The value at which the variogram levels

off is denoted ¢ and is called the sill (Clark [1]).

Geostatisticians have used the variogram as a primary tool in many spatial
studies. In particular, variograms are used as part.of a process called kriging.
Kriging is a method of estimating local values from surrounding point samples, a
process generically referred to as interpolation. Kriging uses the relationships
between point samples established by the variogram to produce the best linear
unbiased estimator (Clark [1]). For kriging, a model describing the shape of the

variogram is necessary.

One commonly used model for the shape of a variogram is the spherical

model:
y(h) = ¢[3h ]/ 2a — h®] 2a3| when h<a
and

v(h) = ¢ when h>a
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Figure 1 shows an example of a spherical model of a variogram. As expected, the
variogram passes through the origin. If samples are taken exactly zero distance
apart then they are the same sample and their variation will also be zero. As h
increases within the range of influence, the difference between measurements
increases and the variogram rises. Past the distance a, samples from the data are
independent and the variogram reaches a stable peak at the value ¢, the sill.

Just as a sample variance is an estimate of the true variance of a variable, the sill
is an estimate of the true variance of a regionalized variable. Thus, one can esti-

mate the sill via a sample variance.

The spherical model is often referred to as the "ideal" model for a
variogram because there is a well defined sill and the méaning of the range of
influence is easily interpreted. Not all rﬁodels for the shape of a variogram share
these characteristics. Figure 2 shows the shape of an exponential model for a
variogram compared with a spherical model with the same sill and range of influ-

ence. The exponential mode] is calculated as follows:

\

Wh) = cli-eap(~h/ o)

o

8

© DISTANCE (h)

Figure 1. The spherical model of a variogram (modified from Clark [1}).
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Figure 2. The spherical and exponential models for the same values of a and
¢ (modified from Clark [1]).

The exponential model never reaches its sill, but asymptotically approaches
it. In addition, the meaning of a, the range of influence, is not clear. In the
spherical model there was a direct physical interpretation of a, but in the
exponential model it is a parameter necessary to describe the shape of the model,.

but has limited interpretive value.

There are models for the shape of variograms which do not have a sill. The

simplest form of these is the lfnear model:

where p is the slope of the line. An extension of this model is the generalized

linear model:
v(h) = ph*

where 0€A<2. Figure 3 shows the effect of the exponent, A. on the shape of the

generalized linear model.

While the above models are commonly used in geostatistics, other models

could be used. For example, all the above models are monotonic, assuming that
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DISTANCE

Figure 3. The linear model and generalized linear models of variograms
(modified from Clark [1]).

variation will only increase as a function of distance. However, if the data exhi-
bit periodicity models based on trigonometric functions might be appropriate.
Also, variograms can be multidimensional. All the examples have shown one-
dimensional variograms, but two and three-dimensional variograms are possible.
In this situation h becomes a vector and measures both distance and direction
(and possibly height). One-dimensional variograms have the advantage of being
easy to display and interpret. Two-dimensional variograms are usually displayed
as contour plots and can be useful for revealing anisotropy in the data. However,
displays using contours can make evaluation of shapes of variograms difficult. As
a third dimension is added there is again potential for information on variation in
another dimension, but the problems of display and analysis of shape increase. In
this paper. one-dimensional variograms are used because of the emphasis on the
shape of variograms as influenced by the characteristics of scenes. In a previous
paper, two-dimensional variograms of remotely sensed images were presented and
interpreted with respect to the degree and causes of anisotropy (Woodcock and
Strahler {8]). However, the analysis of shape and determination of the range of

influence proved difficult using two-dimensional variograms.
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In geostatistics, the models used to describe variograms tend to be combina-
tions of several models. These combinations can include several models of the
same type with different parameters or different types of models. The use of
combinations of models is reminiscent of fourier analysis where sinusoidal curves
with different amplitudes, frequencies and phases are combined to model a func-
tion. One difference from fourier analysis is the subjective nature of the methods
used 'to determine the type of models to be combined and their coefficients.

Often the nature of the model selected is guided by the specific interests of an
application. Criteria which affect model selection are the behavior near the ori-

gin, the fit near the sill, and the determination of the range of influence.

2.1 Scene Models and Variograms

The previously described models for the shapes of variograms are necessary
for kriging, and as a result have played a significant role in studies involving
variograms. However, for the purpose of understanding spatial variation in
remotely sensed images, their value is limited. The reason is that there is no
abparent way to link these models for the shapes of variograms to scene models.
A more useful tool is a variogram whose characteristics can be determined as a
function of the parameters describing a scene model. Serra [6] provides a method
for calculating explicit variograms for some simple scenes. (The use of Serra’s

work was made possible by the help of Dr. David L. B. Jupp.)

The derivation of explicit variograms is based on an extension of the bino-
mial. This approach is well suited for a discrete scene model, in which the ele-
ments in the scene and the background are considered homogeneous, thus allow-
ing only two states in the image. By approximating the binomial using an

exponential, it is possible to determine ¢, the proportion of the area not covered
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by n randomly-distributed objects of area a within a larger area A as:
g = exp(—na/ A)

The proportion of the area covered by objects is simply 1-q. The variogram for

the distance between two points h distance apart is:

v(h) = qZ[% ~ exp|0 (k)n/ A]]

where O (h ) is the overlap function. The overlap function for the case of

randomly-located, overlapping discs of radius r, when h <2r is:
O(h) = 2cos'l(2i]r2—\/ ri—h?/ 4
r

If h 22r then no overlap occurs and y(h )=¢ (1— ¢ )= gp , which is the binomial

variance.

This formulation of a variogram is slightly different than originally
described. In the original description, the variable Y(x) is continuously meas-
ured. For this explicit variogram, the variogram is defined as the probability
that Y (z) and Y (z +h ) will be different, i.e., z is located within the object and |
z+h is located on the background, or vice-versa. This is equivalent to the proba-

bility of crossing a boundary between an object and the background.

Figure 4 shows explicit variograms for scenes of overlapping disks. The
variogram is calculated for n=1, 10, 25, 50, 100, and 200 objects of unit radius on
an area of size 100 72 units. The variogram starts with zero variance and rises to
the sill, or maximum variance. The distance to the sill reflects the size of the
objects, and the height of the sill is determined by the number of objects. At low

values of n variance is low because most of the area is background. As n
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Distance (h)

Figure 4. Variograms for scenes with different numbers (n) of randomly-
located, overlapping discs.

increases, the curves become steeper and the sill successively higher until half the
area is covered (p=q=.5, n=69.3). As more than half of the area is covered, the
height of the sill decreases because more and more of the area becomes covered
by disks. Thus, there will be two different scenes with the same sill, one in which
the discs occupy area p, and one in which the background occupies area p. Dis-
tinguishing between these fwo alternatives should not normally present a problem
because the general brightness of the scene will be different. The two cases may
also be distinguished by their shape. Note that in Figure 4 the variograms for

n >69.3 have a more rounded shape than that those for n <69.3. The reason for
this may be resolved by studying another of the useful measures of variograms,
the slope at the origin. Serra [6] shows that the slope at the origin depends on
the amount of boundary between discs and background. This reduces for both
high and low n, but in different ways. For higher values of n, the background
becomes dissected into a large number of small areas, or slivers between the
disks. In this situation the amount of boundary becomes large, and ~(h ).

becomes large at short distances, leading to the more rounded, faster rising shape
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of the variogram for large n.

2.2 Variograms and Remotely Sensed Images

Whenever remotely sensed data consist of images, an important new infor-
mation component is added to the measurement output by the sensor: its spatial
position. Since the position of the measurement in the image is usually a quanti-
fiable function of the position in the scene of the resolution cell from which it is
derived, each measurement can be associated with a ground location and be posi-
tioned relative to other measurements. The sensor’s response then becomes a
regionalized variable, because its position in space is known. Thus, variograms

can be used to characterize the spatial structure in remotely sensed images.

There is an important facvtor that must be considered when using
variograms in conjunction with remotely sensed images. The models presented
for the shapes of variograms (spherical, exponential etc.) are for punctual
variograms, or variograms derived from point measurements. Measurements in
remotely sensed images are integrated over areas, and this difference is impor-
tant. In this instance, when measurements are taken over some length or area,
the resulting variogram is referred to as regularized. Regionalized variables can
be thought of as having a true or underlying punctual variogram based on point
measurements, and regularized variograms which are an estimate of the underly-

ing variogram based on measurements taken over an area.

'In remotely sensed images, the regularizing area is the instantaneous field of
view of the sensor, with the point spread function describing the form of the reg-
ularization. For this study, the resolution-cell size of the image is taken as the

units of regularization. The effects of regularization are similar to those typically
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associated with measurements that represent some form of aggregation. The
overall variance of the data is reduced and fine scale variations are blurred. Cer-
tainly variation at a scale finer than the scale of regularization can not be
detected and variations less than two to three times the scale of regularization

can not be reliably characterized.

The effect of regularization on punctual variograms can be determined
analytically, but is considerably more straightforward for some models. Geosta-
tisticians have determined the expected results of one-dimensional regularization
for several models of variograms for use with core samples. The exponential

model for samples of length [ is:

v (k)= C {Za/l + a?/ lz[l—ezp(—l/ a)] [c:c?(—h/ a)] [1—e:cp 1/ a)]}

where h 2.

Determination of v, when h <! is considerably more complex. The linear model

is straightforward for all distances:

ph?
'71(}1) = -3—12—(31—17.) when hgl

and
v (h)=p(h —1]3) when h<l

The calculation of a regularized spherical model is very complex and tables
have been produced to aid in its estimation. The sill for the regularized

variogram will be lower than the punctual variogram, as can be seen in Figure 5.

The effect of regularization of disc model variograms can be seen in Figures

6 A-H and Figure 7. These figures show the punctual variogram and the regular-
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Figure 5. The effect of regularization from samples of length [ on the spheri-
cal model of a variogram (modified from Clark [1]).

ized variogram for several different units of regularization for the same scene
model. The punctual variogram is the same for these Figures, but the units of
regularization are increased in size. In essence, increasing the units of regulariza-
tion is analogous to increasing spatial resolution in remotly sensed data. The
scene model] used in these tests is randomly distributed discs of radius 3.5 m that

7

cover 10% of the area.

Figures 6 B-H show variograms as they would look if calculated from
remotely sensed imagery at various spatial resolutions. In other words, the x axis
is in integer multiples of the units of regularization. As a result, the scale of the
x axis changes in these graphs. At small units of regularization, the variograms
resemble the punctual variogram, with a well developed drop from the sill in the
range of influence. At larger units of regularization, the shape of the variogram
becomes- very simple. In fact, for Figures 6 D-F, or 4, 6, and 8 m, the variogram
is essentially one point below the_sill. By 12 m and beyond the variogram is
essentially flat. Figure 7 is a composite of the graphs in Figure 6 A-F that holds
the z axis constant. This composite illustrates several important points about the

effect of regularization. As the size of the regularizing units increase, three things
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Figure 7. The effect of regularization on a disc model variogram. This
graph is a composite of Figures 6 A-F that holds the z axis constant.

should be noted. First, the height of the sill (or the variance of the variable)
decreases. Second, the range of influence, or the distance to the sill increases.
Third, the height of the variogram at the first measured interval of 4 increases
relative to the sill until they match. While one can determine the regularized
variogram from the punctual variogram, in practice, the more common situation
is the observed variogram is a regularized variogram and one is interested in the
punctual variogram. In this situation, the equation for the regularized variogram
is used to estimate a and ¢, which are then used in the equation for the punctual

variogram.

Variograms can be calculated from remotely sensed images as follows:
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S (riw) - Vi)
2’7(h)= 1 =1

k

where k is the number of observations used to estimate v. A program that esti-
mates both the one-dimensional and two-dimensional variograms of remotely
sensed images has been written. Ideally, a variogram should be computed by
comparing each point with all others. In a normal application in geostatistics,
the number of available samples is limited and an estimate of the variogram is
produced in this way. In the remote sensing case, generally the area of interest is
entirely sampled, but due to the large sizes of images the comparison of each
measurement with all other measurements is computationally unrealistic and con-
straints need to be imposed. One constraint concerns the distance h over which
the variogram is to be measured. This distance can be thought of as a "window
size" when using image data and needs to be larger than the range of influence

and large enough for any periodicitiés in the data to be revealed.

A second constraint concerns the number of points in the image to be used
as centers of windows. The use of a sample results in an estimate of the true reg-
ularized variogram. The actual locations of points to be used are determined ran-
domly from the set of points inside a band of width h around the outside of the
image. This restriction is to avoid boundary conditions to assure a constant
number of points contributing to the two-dimensional variogram for each vector
h. For the one-dimensional variogram, there are not the same number of pixels
for each distance h. In fact, the possible combinations of distances between
centers of pixels grows large as their distance apart increases. To simplify the
resulting variogram, all distances between successive integer multiples of the
number of resolution cells are combined to produce a single estimate of ~ over

that interval. The distance used to index this estimate is the average of the
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contributing distances weighted by their frequency of occurrence. For example,
there are four pixels one resolution-cell distant from any center point (its nearest
neighbors), and four pixels 1.414 resolution cells away (at the diagonals). Thus,
for the one-dimensional variogram, the contributions of these eight pixels is used
at each center point to estimate the value of v between 1 and 2 units of distance.
The distance use.d to index their result is 1.212, or the average of the distances of
the contributing pixels. As A increases, the combinations become more compli-
cated, and the number of pixels contributing to the estimate of any given interval
increases.

3. Image Simulation

In the last section, two diverse approaches to variograms were presented.
One approach is empirical, in which the variogram is calculated from observed
images. The other is theoretical, with the expected nature of variograms being
explicitly defined on the basis of a simple scene model. In an effort to bridge the
gap between these two approaches, images were simulated on the basis of known
scene models. Thesé simulations served several purposes. First, they confirmed
the validity of the explicit variograms through empirical testing. Second, they
allowed for testing of the extension of the simple disk model to more complicated
scenes. And third, the variograms of simulated images helped lead to a better
understanding of the empirically calculated variograms from observed remotely

sensed images.

3.1 Simulation Methods

The simulated images are based on a coniferous forest scene model. The
basic approach is a modification of a Monte Carlo computer model used by Li

and Strahler [4] in their studies of forest canopy reflectance. Monte Carlo
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methods are used to locate trees on a plane which are illuminated from a spéci-
fied angle and azimuth. This approach leads to four. elements in the scene:
illuminated tree crown and background, and shadowed tree crown and back- .
ground. The forest simulation represents a general model with several parame-
ters. For this project, these parameters are calibrated primarily by field data col-

lected in the Klamath National Forest in northern California (Li and Strahler

[4]).

In the original model of Li and Strahler, many realizations of individual
resolution cells were simulated. Their approach specifies two levels of resolution:
(1) the scale at which scene elements are differentiated, and (2) the size of the
resolution cells. For this project, the simulation program was altered to simulate
one larger scene in which the scale at which scene elements are differentiated
matches the size of the resolution cells. The size used ih the simulations
presented is one meter. The distinction between a simulated scene and simulated
image is minor in this case. A scene implies differ;ent elements and an image
implies reflectances (or emittances). The simulation assumes no atmospheric
effects and a square wave response on the part of the sensor. As a result, there
are only four values for reflectances in the image, one for each type of scene ele-

ment.

The primary parameters of the simulation concern the characteristics of
trees, their number, location, size, and shape. In the Li and Strahler model, the
number of trees in a single realization of a resolution cell varies according to a
Poisson or Neyman Type A distribution. However, for the single realization of a
larger area, a single value, or the mean of a Poisson distribution is used to deter-

mine the number of trees for the entire area.
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Of more interest is the manner in which the trees are located within the
scene. Considerable effort has been devoted to this question, and several alterna-
tives considered. Li [3] measured the spatial patterns of trees using point-pattern
techniques based on locations derived from aerial photography and found that a
Neyman Type A model fit better than the random mode!. In a lafer study in a
neighboring area, Franklin et. al. [2] again used locations of trees taken from
aerial photography and found that the random model was appropriate except at
spacings of about 10-60 m. Evidence for repulsion between trees, or a more regu-
lar distribution was found at short distances. Such a result could be easily sup-
ported by a competition model of tree growth, in which the likelihood of a tree
surviving is reduced if it is very close to an established tree due to competition
for resources such as light, water and nutrients. As a result, initial simulations
used a "hard-core" model for the location 6f. trees in which trees were randomly
located except that a new tree could not be located within the area covered by
the crown of a previously located tree. This approach was designed to modify
the random assumptio‘n to take into consideration competition at short distances.
However, it was later realized that Franklin’s results may have been due to sam-

pling artifacts resulting from the use of aerial photography to determine the loca-

tions of trees.

In an attempt to determine an appropriate model for the location of trees as
well as calibrate other parameters for the model, field data was collected in the
Goosenest District of the Klamath National Forest. An account of the methods
used to collect and process the data is given in Woodcock [7]. The results of the
field data indicate that the random model is a reasonable approximation. Thus
in the simulations presénted, the locations of the center of trees are determined

through random coordinates.
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The model is based on the use of inverted cones as the shapes of trees.
Thus, the model is really limited to coniferous forests. Trees are assumed to have
a constant apex angle of 10 degrees, which is based on the field data previously
mentioned. A lognormal distribution of the sizes of trees is used. This decision is
based on the results of other published studies, and the parameters of the distri-
bution were calibrated from the field data collected in the Klamath. For a more

complete description of the model and its parameters see Li and Strahler [4].

3.2 Validation of the Explicit Variograms

One use of the simulated images was to validate the explicit variograms.
Due to the nature of the forest simulation model it was easily generalized to
correspond to the disc model used for explicit variograms. By reducing the vari-

ance of the heights of trees to a number close to zero, and eliminating shadows

Figure 8. A portion of the simulated disc image (A), and an enlargement

(B)-



through the use of a solar zenith z—..mgle of zero, an image corresponding to discs
on a background at one meter regul&ization was simulated. Figure 8 shows the
simulated disc image, which has discs of 7-m diameter covering 9.92% of the
background. In order to test the validity of the explicit variograms, an empirical
variogram was calculated from the simulated disc image, and an explicit
variogram for the corresponding scene model was calculated at one-meter regular-
ization. Figure 9 shows these two variégrams plotted together for comparison.

These two variograms do not match exactly, but are very close.

There are several possible reasons why the observed and expected
variograms do not match exactly. The empirical variogram is derived frofn one
realization of a simulation process based on randomization. Thus, it is likely that
this one realization will depart from the model to some extent. Also, the empiri-

cal variogram is estimated, in this case from a sample of 600 points in the image.
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Figure 9. Comparison of an explicit variogram and an empirically calculated
variogram for the same scene model. The empirical variogram was
calculated from the simulated image in Figure 8.
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Figure 10. The effect of sampling density on empirically-estimated
variograms. ‘

As the number of points is changed, the variogram changes slightly. Clearly, the
more points that are used, the more stable and accurate the estimate is likely to
be. Figure 10 shows four estimates of the variogram for the simulated disc image
using four different sampling densities. Their variation is large relative to the

difference between the explicit and empirical variograms shown in Figure 9.

The ability to reproduce empirically through image simulation the results
for a disc model expected by theoretical formulation is a significant step in the
use of variograms to study spatial structure in images. This "closing of the loop"
validated the theory as well as the software used to estimate variograms from

observed images and the image simulation procedures.
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3.3 Extension of the Disc Model

Having demonstrated the connection between observed variograms and
theoretical variograms using a simple disc model, it is possible to test the effect of
variations in that model on variograms. Obviously, real scenes are not composed
of randomly located discs of the same size on a uniform background. However, it
may be possible to use the characteristics of explicit variograms from this simple

model to help explain the nature of variograms derived from real images.

3.3.1 Shape. To test the effect on observed variograms of the shape of*
objects, a forest image was simulated using the previously described methods.
The same parameter settings that were used for the simulated disc image (Figure .
8) were used with one exception; the angle of illumination was changed from zero
to 20 degrees in order to produce shadows. The resulting image (Figure 11) exhi-
bits all four components of the forest model: illuminated canopy, shadowed
canopy, illuminated background, and shadowed background. In order to compare:
the observed variogram from this image with the disc model, it was necessary to
convert the image to only two values, or tones. In this instance, trees and sha-
dows were stretched to black and the background was left white. The resulting
image (Figure 12) looks like cones on their sides. These cones do not strictly
match the disc model due to their shape, but the ability to extend the disc model

to this case is inferesting. -

A variogram was calculated from the observed black and white image for
comparison with the result of the explicit variograms for the disc model. How-
ever, it was not clear what values should be used for the disc model in the calcu-
lation of the explicit variogram. In particular, it was not obvious what should be

used as the size parameter. For the forest cone image, the radius changes as a

)
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Figure 12. A portion of the simulated forest image stretched to two tones
(A) for comparison with the disc model, and an enlargement (B).

function of orientation from 3.5 meters across the tree to 5.5 meters from the far
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edge of the .tree to the tip of the shadow. Figure 13 shows the observed
variogram calculated from the image in Figure 12 compared with three explicit
variograms for the disc model using 3.5, 4.5, and 5.5 meters for the radii of the
discs. Interestingly. the 3.5 meter radius is the best approximation of the forést-
model, which is the same size as the trees before the addition of their shadows.
The shadows markedly affect their shape but do not significantly influence their
effective size. Figure 14 presents a comparison of the observed variogram with a
variogram for discs with area equal to the area of the forest cone. While these
two variograms are not a perfect match, they demonstrate that shape is a rela-
tively minor factor in this case. Using just the area covered by individual objects

it was possible to produce a reasonable fit with the disc model. This result is
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Figure 13. Comparison of the observed variogram from the simulated forest
image with three disc model variograms for different size discs.
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Figure 14. Comparison of the observed variogram from the simulated forest
/ image and the disc model. The size of the discs used in calculation of
the explicit variogram match the area of the cones in the image.

important because it indicates that the disc model might be used as a reasonable

approximation of scenes with elements of other shapes.

3.8.2 Size Variance. The derivation of the explicit variograms assumes
that all the discs.are the same size, which is unlikely for real scenes. To test the
influence of variance in the size of discs, an image was simulated using the same
parameters of the initial simulation of the disc image (Figure 8) with the excep-
tion of the variance in disc size. As mentioned earlier, a lognormal distribution is
used to describe the size distribution and its standard deviation was set inten-
tionally high at 3.168. The resulting image is shown in Figure 15. To calculate
an explicit variogram for comparison it was again necessary to determine the
appropriate size to be u_sed for the discs. The mean radius is not a good approxi-
mation as the area covered is related to the square of the radius, not the radius.

Instead, a value for the radius that produces the same area covered by discs as
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Figure 15. A portion of the simulated image in which the sizes of the discs
are lognormally distributed (A), and an enlargement (B).

the lognormally distributed discs would be-appropriate. This radius can be calcu-

lated using the mean (m) and variance (s?) of the lognormal distribution:
r = mits?

For the simulated image shown in Figure 8, the appropriate radius for use in the

disc mode] is 4.72 meters.

Figure 16 is a comparison of the observed variogram from the simulated
image with a lognormal distribution of disc sizes and the equivalent explicit
variogram for fixed size discs. The two variograms agree closely with one
interesting difference. The observed variogram exhibits a more rounded shape
than the explicit va.ri(;gram for fixed disc size. This rounded shape can be under-
stood by examining the effect of the distribution of sizes on the variogram. At

small distances, the variogram is a little higher than expected and at distances

near the range of influence it is lower than expected. At short distances the
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Figure 16. Comparison of the observed variogram from the simulated image
with lognormal variance of disc sizes with an explicit variogram for a
fixed size disc model. ' '

existence of small discs causes an increased amount of perimeter for the same
area covered, increasing the likelihood that movements of short distances will
result in crossing a boundary. At distances near the range of influence, an oppo-
site effect occurs. One result of the lognormal distribution is discs larger than the
size of the fixed discs of the the explicit variogram. These discs reduce the likeli-
hood of crossing a boundary at distances smaller than their diameter, which can
still be larger than the zone of influence of the fixed disc model. This accounts
for the difference between the two graphs in the 7- to 11-m range.

4. Remotely Sensed Images

The long range goal of this research is to be able to determine directly the
characteristics of a scene using variograms derived from images of the scene. It
has become apparent that extracting information from images is dependent on

having a model for the scene and being able to determine explicit regularized



variograms for those scene models. To date, the ability to move directly Between
a scene model and an observed variogram has been demonstrated only for & sim-
ple disc model of scenes. This limited model is not sufficient to directly recover
scene characteristics. However, through the use of the disc model and simulated
images a considerable amount has been learned about the behavior of variograms
in response to scene parameters. In this section, variograms from real images will
be interpreted on the basis of the experience of the last sections. A brief sum-
mary of the major points learned through the disc 'model, explicit variograms,
and image simulations that relate to interpretation of variograms from real

images would emphasize the following:

- The height of the variogram, the sill, is related to the proportion
of the area covered by objects, which is a function of their number
or density.

- The distance to the sill, or the range of influence is related to
the size of the objects in the scene. The shape of the variogram
and the range of influence are more closely related to the area of
objects than to their shape, at least for shapes not highly dissimilar
from discs.

- The shape of variograms is related to the variance of the size of
objects in the scene. A more rounded or gradual shape is char-
acteristic of higher variance in the size of objects.

- Increasing the size of the units of regularization (which is analogous
to increasing the spatial resolution of remotely sensed imagery) has
the following effects on variograms: (1) the height of the sill is
reduced, (2) the range of influence is increased, and (3) the height
of the variogram at the distance equal to one unit of regularization
increases relative to the sill.

In evaluating the variograms derived from real images, there are three
things to be determined. The first has been mentioned and concerns the charac-
teristics of the scene that can be determined on the basis of the variograms

derived from images of the scene. The second issue to be addressed concerns the

423
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applicability of the disc model to individual scenes at the resolution of the
images. The third issue is to assess if another model for the shape. of a variogram
is more appropriate than the disc model. In particular, the exponential model
holds interest because of its resemblance to the shape of the variogram from the

simulated image with variance in the size of discs.

The approach used to compare variograxﬁs from observed images with the
disc model requires calculation of an explicit variogram for a disc model with
characteristics derived from the observed images. If the explicit variogram
matches the observed variogram for the image, then the disc model can be
assumed an appropriate scene model. To determine the necessary parameters for
the disc model several steps are required. Objects in the image that represent
"dises" must be identified. In order to match the assumptions of the disc model,
the image must be stretched so that the "discs" are assigned one value (black for
example), and the rest of the image to a different value (white). This black and
white image will be used in the comparison with the disc model.. From this
image the percent cover of "discs," their approximate size, and the brightness of
the discs and background are determined. These parameters are used to calcu-
late an explicit variogram corresponding to the observed image. For comparison,
an observed variogram is calculated from the black and White image. The quality
of the match, and thus the appropriateness of the disc model fdr the image in
question is evaluated visually. It is worth noting that this procedure can not be
done or is not appropriate for all images. For example, objects occurring in the
scene man not be well represented by discs. Also, it is critical that the objects
can be separated spectrally from the backgréund when converting the images to

two tones.
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The comparison of observed variograms with fitted exponential variograms
1s only a comparison of shape, as there 1s not a known scene model that is tied to
the exponential model for the shape of a variogram. As such, the value of this
comparison is limited and is done as an exploratory exercise. The actual com-
parison involves an empirical fit of the exponential model to the observed
vériogram; Ideally the form of the exponential model that should be fit is the
regularized form given earlier. However, this form is considerably more compli-
cated than the equation for the punctual variogram and would prove tedious to
use. Instead a simple approach is used that is based on the model for the punc-

tual variogram:
v =c(l-exp(h/ a))

In this equation ¢ and a are the unknown variables. In order to fit this model,
the variance of the image is used as an estimate of ¢, the sill, and a is estimated

using linear least squares of a natural logarithm transform:
v=-h/a

where

¢ =1
—)

v = In(

This approach forces the variogram through the origin, which is a requirement of
all variograms. However, this form does not take into account regularization
which can affect the behavior of the model near the origin. Figure 17 shows the
effect of regularization on the exponential variogram, which is to reduce ~
slightly at each h, resulting in a graph that is shifted to the right near the origin.
Thus, an exponential model forced through the origin might be expected to be
shifted to the left of the observed regularized variogram at short distances. This

inconvenience is considered minor compared to the problems involved in fitting
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Figure 17. The effect of regularization on the exponential model.
the equation for the regularized variogram.

The examination of variograms from remotely sensed images involves three
kinds of environments: forested, agricultural, and urban/suburban. For each
environment there are images at two resolutions; very fine resolution (between
0.15 m and 2.5 m) designed to reveal the inherent structure of the scene, and 30-
m resolution from the Thematic Mapper (TM) or Thematic Mapper Simulator

(TMS).
4.1 Canoga Park Residential Image

An image of a residential portion of Canoga Park, California was obtained
through NASA Ames Research Center (Figure 18). The image is from the red
portion of the spectrum and has approximately 2.5-m resolution. This scene is
complex in nature, having several kinds of elements arranged in a mosaic. The -
most obvious elements are houses (or roofs from the aerial perspective), trees,

streets, lawns, cars, and a vegetated canyon that runs through the area. Close
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Figure 18. The Canoga Park residential image (A) at 2.5-m resolution, with
an enlargement of a portion of the image shown in B.

examination of an enlargement of a portion of the image indicates that there are
three distinctive tones in the image: bright tones which are houses, intermediate
tones which are mostly streets, and dark areas which incilude vegetation of all
kinds and shadows (Figure 18B). Vegetation covers most of the spaces between
the houses and streets and is undoubtably composed of many types of plants, but
in the observed ifnage they all appear dark and can not be differentiated. In
addition, these areas are sufficiently dark that they can not be differentiated from

shadows.

The variogram calculated from this image is shown in Figure 19 and exhi-
bits similar structure to the theoretical and observed variogfams previously dis-
cussed. The variogram begins at a relatively low value and gradually rises to a
level plateau. The distance at which the variogram levels is approximately

twelve pixels, about equal to the diameter of the larger houses in the scene. The
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Figure 19. Observed variogram from the Canoga Park image.

strong influence of houses on the shape of the variogram is not surprising as they

are the most distinctive and common elements in the scene.

The dashed line on the graph is the standard deviation of the image and
serves as an estimate of the sill against which the observed variogram can be
compared. This variograxﬁ approaches but does not reach the estimate of the sill
over the 20-pixel distance for which the variogram was calculated. One reason
may be that there are homogeneous areas in the image, such as the canyon, that
are wider than 20 pixels. Because of these large, homogeneous areas, the differ-
ence between measurements for pixels a distance less than 20 pixels‘apart on .
average will be less than if they were selected at random. Under these cir-
cumstances the variogram would not quite reach the sill. The existence -of these
large areas in the image illustrates a point that will be important throughout this
discussion, that remotely sensed images commonly exhibit several scales of varia-
tion. The ability to detect and understand multiple scales of variation in images

will be important for interpreting variograms. In the long run, the ability to
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derive information about multiple scales.of variation in images from variograms

may prove to be one of the attractive features of variograms.

To compare the disc model with the Canoga Park image, houses were used
as "discs" and stretched to white, and everything else became background and
was stretched to black. The resulting image (Figure 20) was compared to the
disc model using several different fixed sizes of discs. The shape of the obsérved
variogram f¥'om the black and white image generally resembles the disc model but
does not match any of the sizes ;:hat were used (Figure 21). In general, the
observed variogram is more rounded‘ or gradual, not rising as sharply to the sill.
This deviation from the disc model recalls the effect of variance in the size of
discs, which may explain the observed situation because there is substantial vari-
ance in the size of houses in this scene. In addition, the observed image does not
match two of the assumptions of the disc model. First, the houses are clearly not
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Figure 20. The two-toned version of the Canoga Park image used for com-
parison with the disc model.
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Figure 21. Comparison of the observed variogram from Figure 20 with three
explicit variograms of the disc model for different size discs.

shaped like discs. The significance éf this difference, however, may not be great
since the forest simulations using elongated shapes showed a good fit to the disc
model. A second factor that may be important is the regular location pattern of
the houses, which violates the random assumption of the disc model. In particu-

lar, houses do not overlap, which was an important feature of the disc model.

The exponential shape fit to the Canoga Park variogram is compared with
the original in Figure 22. Initially, thé shape of the fitted model aﬁpeﬁrs promis-
ing, but the quality of the fit is adversely affected by being forced through the
origin. However, it is interesting to note that the direction of the deviation from
the exponential model of the observed variogram is opposite of the expected
influence of regularization. As mentioned earlier, the form of the exponential

model that is fit to the observed does not take into account regularization, which
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Figure 22. Comparison of the observed variogram with the exponential
model.

would cause the exponential model to overestimate v at short distances. The
exponential model fit to the observed variogram underestimates v at short dis-
tances. In additioﬁ, the Canoga Park variogram has a well-developed sill that is
not present in the exponential shape. These factors combine to indicate that the

exponential model is probably not a good approximation for this variogram.

4.2 Washington D.C. Thematic Mapper Image

A TM image of Washington D.C. was used as an example of an
urban/suburban environment. The image is the red band (Band 3, .63 - .69 um )
on November 2, 1982 (Figure 23). Due to the diversity of the scene, variograms
were calculated from two subareas of the image. One area includes the area
around the Capitol, including numerous government buildings, the Mall, the
Smithsonian, and several memorials and museums (Figure 24A). In this small

area there are several types of elements: large buildings, lawns, roads, trees, and
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Figure 24. Enlargements of portions of the subareas of the Washington D.C.
image used to calculate variograms. (A) is the "Capitol" area and
(B) is the "city" area. The general contrast of these two subareas ap-
pear similar in this Figure, but this is an artifact of the preparation of
the photographs. See Figure 23.

ponds. The variogram from this subimage looks considerably different from those
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previously described. The variogram sta.fts relatively high and rises abruptly in
Just 2 to 3 pixels to a gentfy sloping plateau (Figure 25). There are multipixel
elements in the image but on average there is a high degree of difference associ-
ated with short movements in the image. The gently sloping plateau that does
not reach the estimate of the sill indicates that there are homogeneous objects in

the image of a wide variety of sizes.

The second subarea is a portion of the city that is directly east of the Capi-
tol area and extends to Kennedy Stadium and the Anascotia River. This area of
the city is primarily residential and commercial, with considerably smaller build-
ings and narrower streets. On the image of the entire Washington area (Figure
23) it appears as a fairly homogeneous region, medium grey in tone. However,
considerable variation is visible within the area in the enlargement shown in Fig-
ure 24B. The variogram for this area is essentially flat, exhibiting behavior simi-

lar to the expectation for random data (Figure 26). There is a small drop from
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Figure 25. Variogram of the Capitol area in the Washington D.C. image.
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Figure 26. Variogram of the city subarea of the Washington D.C. image.

the random expectation at the distance of one pixel, but for greater distances the
variogram has only minor fluctuations around the expected sill. This result is
dramatic, as the relationship between neighboring pixels would be expected to be
stronger solely on the basis of the overlap in the IFOV of the sensor. Close
examination of the enlargement does show a general lack of multipixel elements

in the area and a random appearance.

Figure 27 shows the variograms from both subareas of the Washington D.C.
image plotted together for comparison. The variogram from the Capitol area is
higher than the neighboring city area ﬂue to the higher overall variance or covn-
trast between elements in that portion of the image. This graph also highlights
the flat nature of both graphs indicating little spatial structure in this scene at

the observed resolution.
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Figure 27. Composite of the variograms from both subareas of the TM im-
age of Washington D.C.. ‘

Comparisons of these variograms with disc and exponential models were not
done as they seemed inappropriate. There were not a.nyideﬁna.ble groups of
objects to serve as "discs" in either image. Also, the shape of the exponential

model did not hold much promise for these variograms.

4.3 Agricﬁltural Fields Image

To produce an image of an agricultural environment at very fine resolution
(0.15 m), an aerial photograph of agricultural fields in Oklahoma was scanned
using a microdensitometer at the Johnson Space Center. The image reveals the
structure within fields (Figure 28). The crops, corn and soybeans, exhibit a dis-
tinct row structure and are near maturity as the canopy is almost closed. This
image is relatively simple in structure, with crop rows, shadows, and an almost

entirely obscured soil background as the only elements.
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Figure 28. A portion of the ixﬁage of agricultural fields (A) and an enlarge-

ment (B).

The shape of the variogram calculated from this image is wavelike, with

The shape indicates the periodicity in

repeating crests and troughs (Figure 29).
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Figure 29. Variogram for the agricultural fields image.
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the image, as the spacing of tl;e rows remains constant throughout the image.
The fact that the one-dimensional variograms are integrated over all directions
has a profound impact on this variogram due to the strong anisotropy in the
image. The variogram calculated over a single direction would look significantly
different, and the observed variogram is best interpreted as the averagé of many
variograms. First, consider the variogram calculated only in the direction along
the rows. This variogram would be essentially flat and low relative to the
estimated sill, as low variation is associated with movements of even large dis-
tances as long as the measurements are in the same position relative to the crop

row,

A variogram calculated normal to the crop rows would look very different,
with high peaks and low troughs. The troughs would be well below the
estimated sill and would correspond to movements to the same relative position
on a different row. The peaks would be well above the sill and correspond to
movements to different parts of the rows, for example from the illuminated side
to the shadow between rows. In addition, the variograms from all diagonal direc-.
tions would contribute to the final observed result. The combined result still
illustrates the periodicity of the rows, but the integration over all directions
suppresses the magnitude of the effect. An interesting effect of this integration is
the relatively high value of v at a distance of one pixel, which is caused by the

large amount of boundary associated with the rows.

No attempt was made to compare this variogram with either the disc or
exponential models due to their obvious inappropriateness. If an attempt were
made to fit a model, sinusoidal functions such as the sine or cosine would be more

appropriate.
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Figure 31. Variogram of the Thematic Mapper image of agricultural fields.

indicates that the fields in the image are relatively large. The most common field
size in this scene is a quarter-section, which at 30-m resolution is 14 pixels in
diameter. The variogram exhibits a break in slope at the 14 pixel distance,
becoming considerably flatter. Although the variogram approaches the estimate
of the sill, it does not quite reach it. This difference may be attributed to the

fields that are two or more quarter-sections in size.

Due to the existence of only one kind of element in the image, fields, the
comparison with the disc model is a little unusual. Instead of elements on a con-
trasting background, the image was stretched into bright fields and dark fields
(Figure 32). Figure 33 shows the comparison of the variogram calculated from
the black and white image with disc models using three different sizes of discs.
The disc model does not seem appropriate for this image as the shapes are dis-
similar. The disc model produces variograms that rise too sharply to a well-

developed sill, where the observed variogram is more gradual and still gently
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4.4 Thematic Mapper Agricultural Image

A TM Band 3 image was obtained from an area near Dyersburg Tennessee,
which also includes the corners of Kentucky, Missouri, and Arkansas. The
subimage used in this project covers an agricultural area west of the Mississippi
River (Figure 30). The area looks like a patchwork of homogeneous blocks.
With a change in resolution there is a change is the elements that describe the
scené. The elements are now entire fields rather than the crop rows that

comprise the fields.

The variogram calculated from this image begins at a low value and rises
gradually to a value very close to the estimate of the sill at a distance of 18 pixels
(Figure 31). The low values of 4 at short distances indicate two features of the
image: the relatively small amount of boundary in the image, and the homo-

geneity within the fields (Figure 30B). The gradual rise in the variogram

Figure 30. The TM image of agricultural fields (A) and an enlargement (B).
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Figure 32. Stretched version of the Thematic Mapper agricultural image for
comparison with the disc model.

125~

100
75
2

50 Legend
a OQObserved
x Disc Model rf_:l_

25 a ] :Disc Mogg_l_r‘:‘i
® Disc Mode]_r_:ﬂ

0 T T N

L] I
o 5 10 15 20 25
Distance in pixels

Figure 33. Comparison of the disc model with the observed variogram from
the TM agricultural image.
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Figure 34. Comparison of the exponential model with the observed
variogram for the TM agricpltural image.

sloping at large distances. The inappropriateness of the disc model is not surpris-
ing as the elements in the scene dramatically violate the assumption of random,

overlapping discs.

The fit of the exponential model to the observed variogram is close except
at short distances (Figure 34). The poor fit near the origin is caused by the res-
triction forcing it through the origin, not by the shape of the exponential model
which seems to match this variogram well. Again, the direction of deviation near
the origin is opposite of the expected due to the lack of consideration for regulari-

zation.
4.5 South Dakota Forest Image

This image of a forest area in South Dakota (Figure 35) was created by
scanning an aerial photograph using a microdensitometer at Johnson Space
Center. The exact location of the area covered in South Dakota is unknown, but

it serves as a good example of a simple forest environment composed of trees on a
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Figure 35. The two subareas of the South Dakota forest image: Dense (A),
and Sparse (B).

relatively smooth background. The spatial resolution is approximately 0.75 m

and a red filter was used in scanning the image.

Variograms were calculated from two subareas of this image due to the vari-
ation in the density and size of trees in the image. One subarea is more densely
stocked and the trees are somewhat smaller (Figure 35A). The variogram from
this area rises gr:adually but does not quite reach the sill (Figure 36). It is diffi-
cult to determine the distance to the sill, which should correspond to the tree
diameter. By counting pixels in the image, an estimate for the diameters of trees
of 8 m (10 or 11 pixels) is obtained. By this point ~ is close to the estimated sill,

but it still continues to rise slightly at distances past that point.

The second subarea (Figure 35B) is more sparse than the last site and the
trees are a little larger. The variogram has a very similar shape but does not

come as close to the estimate of the sill (Figure 37). As can be seen in Figure
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Figure 36. Variogram of the densely stocked subarea of the South Dakota
forest image.
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Figure 37. Variogram of the more sparsely stocked subarea of the South
Dakota forest image.

35B, there are larger areas of background in the sparse subarea, explaining the
difference between the estimate of the sill and the variogram at distances larger

than the size of trees. In this variogram it is also difficult to determine a well-
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defined break in the variogram that might reflect the size of trees. Counting pro-
duces an estimate of 10m or approximately 13 pixels for the diameter. Again, v

at this value has risen to a high level and is increasing at a very slow rate.

The composite of both forest variograms (Figure 38) illustrates the effect of
density, or percent cover on variograms. The variogram from the more dense
area is higher than the variogram from the sparse area, empirically demonstrating

the effect shown in Figure 4.

A comparison of the South Dakota forest image with the disc model was
attempted. but proved impossible because the trees and shadows could not be
reliably separated from the background on the basis of the one spectral band
available. The problem was that the well-illuminated portions of many of the

tree crowns were of the same tone as the background.
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Figure 38. Composite of the variograms from both subareas of the South
Dakota forest image.
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Figure 39. Comparison of the exponential model with the observed
variogram from the densely stocked subarea of the South Dakota
forest image.

An exponential model was fitted to the variogram from the dense subarea
with results similar to those for the Canoga Park image and the TM agricultural
image. The shape seems promising, but the deviation from the observed near the

origin is opposite of that expected (Figure 39).

4.6 Thematic Mapper Simulator Forest Image

This Band 3 (.63 to .69 pm) image (Figure 40) from the TMS was obtained
from NASA Ames Research Center and serves as an example of a forest environ-
ment at 30-m resolution. The image is from an area in northern California near
Mt. Shasta that is close to the area where the field data were collected to cali-
brate the simulations. The area is reasonably flat and is primarily eastside pine,
a vegetation association that runs along the east slopes of the Sierra Nevada and
continues in extensive stands on many dry, flat areas of northeastern California.

Pinus Jeffreyi and P. ponderosa are the dominant tree species in stands that tend

445
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Figure 40. A portion of the TMS image (A) of a forested area in northern
California, and an enlargement (B).

to be sparse with a broken understory of shrubs and grasses.

The elemenfs in this scene model have different characteristics than those
previously discussed. At 30-m resolution in a forest environment the trees are
considerably smaller than the resolution cells, and thus are not useful as elements
in the scene model. Insiead, stands of trees, or areas within which the charac-
teristics of the trees are similar, become the elements. The use of stands as
scene-model elements is different from those previously discussed because of the
high internal variance of the forest stands (Figure 40B). In all other cases the
elements have corresponded to objects that were spatially homogeneous, with low
internal variance. The result of the high internal variance associated with forest
stands is the relatively high level of v at short distances (Figure 41). In general,
the variogram exhibits a gently sloping, almost linear shape. This shape is attri-

butable to the wide variety of sizes and shapes of the forest stands in the scene.
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Figure 41. Variogram of the TMS forest image.

It is difficult to find anything approaching a common size for forest stands (Fig-
ure 40A). The variogram does not reach the estimated sill. at a distance of 20
pixels which is attributable to the large stands inthe scene. This image serves as
a good example of the importance of scale, as variance can occur both within ele-
ments in the scene and between elements and both factors will influence the
shape of the variogram.

5. Conclusions

Variograms are a useful tool for studying spatial variation in remotely
sensed images. Theoretically derived variograms for simple scene models illus-
trated two features of the relationship between the characteristics of scenes and
variograms. First, the range of influence in a variogram is related to the size of
the objects in the scene. Second, the height of the sill is determined by the per-
cent cover of the objects. In addition, the theoretically derived variograms were
used to investigate the effect of regularization on variograms. The concept of

regularization is critical in the use of regionalized variables in conjunction with
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remotely sensed images as individual measurements are integrated over areas and
are not point measurements. The units of regularization in a regionalized vari-
able are analogous to the spatial resolution of a sensor in remote sensing. The
effects of increasing the size of the regularizing units were shown to be: (1)
decreasing the height of the sill, (2) increasing the range of influence, and (3)
increasing the height of the first observed value of the variogram relative to the

sill.

The simulated images sérved as a bridge between theoretical variograms for
simple scene models and observed variograms calculated from remotely sensed
imagery. The image simulations were done using a modification of a computer
model of a coniferous forest. One result of the images simulations was the
demonstration of the link between theoretical and observed variograms via a
matching of these two types of variograms for a "disc model" of a scene. In addi-
tion, the area covered by objects was found to have more effect on one-
dimensional variograms than their shape, at least for shapes not highly dissimilar
from discs. Also, variance in the size of objects .produces a more rounded shape

in variograms than the fixed-size disc model.

The analysis of variograms calculated from remotely sensed images proved
informative and served to: (1) empirically demonstrate many of the effects
observed through the use of theoretical variograms and image simulation, (2) sug-
gest that information about a ground scene can be recovered from variograms of
images of the scene, and (3) show the importance of understanding multiple

scales of effects in the interpretation of variograms derived from real images.
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Abstract

An investigation of the influence of ground control point se1ectfon on the
rectification accuracy of Landsat MSS was conducted on data from southeastern
Louisiana/coastal Mississippi and eastern Kansas. The analysis investigated
areas ranging from a full Landsat scene to a quarter of a scene in area. The
optimum nmber of ground control points required to rectify a full or partial
Landsat MSS scene is 24, An investigation of the spatial arrangement of
grqund control points showed thatna random and regular pattefn gave comparable
rectification accuracy which was much better than that obtained when the
ground control points were clustered., Excellent rectification accuracy for
_the random and regular spatial distribution cases was indicated by a row bias
of 0.11 pixels and a column bias of 0.26 pixels.for the Louisiana scene, while
for the Kansas data the row bias was 0.15 pixels and the column bias was 0.27
pixels. A quarter of a TM scene from Louisiana with a random and a regular
spatial distribution of ground control points was analyzed with a row bias
0.07 pixels and a column bias of 0.08'pixe1s. These results are discussed in

1ight of other data from the scientific 1iterature.
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Introduction

This investigation focuses on the influence of ground control point (GCP)
selection on the scene-to-map registration accuracy of Landsat Multispectral
Scanner (MSS) and Thematic Maper (TM) data. The rectification of Landsat MSS
data to a Universal Transverse Mercator (UTM) or other map base is an impor-
tant pre-processing step in the analysis of earth resources science data.
This study will investigate the influence of the number and spatial distri-
bution of GCPs on the rectificatfon accuracy.

The accuracy with which GCPs can be selected is an important source of
error in the rectificatioh of Landsat MSS and TM data. The construction of a
mapping equation relates the Landsat scene coordinates of a GCP (element and
scan line) to the map coordinates of the GCP (eastings and northings .in the
UTM system). Investigations of GCP selection accuracy revealed the fo11owing
(Mikhail and Paderes [9]; Steiner and Kirby [13], and Welch and Usery [17]):

1. GCPs can be selected more accurately on maps than on Landsat images
(GCPs on images can be determined to an accuracy of +0.5 data pixels
if refinements are employed in choosing the GCPs).

2. GCPs can be measured more accurately on man-made features (road inter-
section) than on natural features (land-water interface).

3. Better rectification accuracy in the mapping equation is obtained if
higher degree polynomials are employed as well as more GCPs are used.

4, The rectification process compensates better for errors in the ground
position of control points than it does for errors in the image
position. |

5. Sub-pixel rectification accuracy can be accomplished only if points on

the image can be identified to a sub-pixel Tevel.
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The affine transformation and higher degree po]ynohia]s are an example of
interpolative or surface fitting models in whiﬁh a least squares approach is
used to generate residuals which measures how well the data (GCPs location in'
the map and Landsat image) fits the mapping equation. The root mean square
(RMS) value is a measure oflthe degreé of fit. The residuals stem from non-
linear distortions in satellite orbit and attitude, errors attributable to the
curvature of lines resulting from earth rotation and map projection, scannef
mirror velocity nonlinearity, and random variation. Wong [18] reported an RMS
value of +57 meters for a 20 term po1yn6mia1, while the RMS value for a first
degree polynomial applied to the same Landsat data was +115 meters. There is
a trade off involved, ﬁowever, in that up to 30 GCPs must be used per Landsat
frame to provide a least squares solution to a 20 term polynomial, which is
many more GCPs than is required for the least squares solution of a lower
degree polynomial. Also, a higher degree polynomial requires that the GCPs
must be well distributed near the edge and corners of the frame (Van Wie and
Stein [15]; Walker et al. [16]).

The P-format Landsat MSS tapes (spatially and radiometrically corrected)
have associated with them a quality assessment number, which is truncated
integer of the form (N+7)/8 (where "N" 1is the number of GCPs employed to
rectify a scene of Landsat MSS data). The quality assessment numbers range
from zero (machine corrected without utilizing GCPs) to 5 (33-40 GCPs employed
by Master Data Processor). 1In pfactice there is not a straight forward rela-
tionship between increasing quality assessment number and better rectification
accuracy (Graham and Luebbe [6]). In theory if 25 to 50 GCPs are used the
rectification accuracy should be within 1 pixel more than 99% of the time

(Nelson and Grebowsky [10]). A number of investigators (USGS [14]; Colwell et
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al. [2]; Graham and Luebbe [6]; Dow [4]) have reported multiple pixe{ recti-
fication inaccuracies in P-format Landsat MSS data.

The other type of model used in rectification is the parametric model
which incorporates information on satellite position and sensor attitude.(Horn
and Woodham [8]; Sawada et al. [12], Mikhail and Paderes [9]; Paderes,
Mikhail, and Forstner [11]). Mikhail and Paderes [9] developed a satellite
collinearity equation to combine the sensor and platform parametric models.
In this case the GCPs were emp]o}ed to estimate the unknown parameters in the
collinearity equations (there were 19 unknown parameters in the 1983 version
of the parametric model of Mikhail and Paderes [9]). Some of the conclusions
of the research by the Purdue group are (Mikhail and Paderes [9]; Paderes,
Mikhail, and Forstner [11]):

1. The maximum rectification accuracy for a polynomial model is about

half a pixel.

2. Rectification accuracy is not significantly improved when the number

of GCPs utilized exceeds 25.

3. Rectification accuracy is better if the GCPs are regularly distributed

in space, rather than being randomly distributed.

4, The collinearity model gives a lower RMS value for the same number of

GCPs than does the polynomial model. (the difference being more

pronounced for 10 GCPs than for greater than 40 GCPs).

Methods
The Landsat 2 MSS frames used in this study were acduired over path: 23
and row: 39 of the world wide reference system (southeastern Louisiana-coastal
Mississippi) and over path:.29 and row: 33 (western Missouri-eastern Kansas).

The Kansas data was collected on November 11, 1981, while the Louisiana data
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was—co11ected on November 21, 198i. Both Landsat M$S scenes had 10% cloud
cover. The Landsat 5 TM frame employed in this investigation was -acquired
over path: 22 and row: 39 of the world widé reference system. The TM quadrant
utilized covered pafts of southeastern Louisiana and south-central Mississippi.
The TM quadrant utilized was basically cloud free and was collected on
September 13, 1984,

Figure 1 illustrates the differences between the Kansas and Louisiana MSS
data sets. The pictures represeﬁt a band 7 density slice, to separate the
water in black from the gray-toned land. In order to display the whole
Landsat MSS scene on the image display device, only every sixth 1ine and every
sixth element is displayed. The Louisiéna data set features the New Orleans
metropolitan area with Lake Pontchartrain in the left center of the frame and
has the Gulf of Mexico at the right of the scene. The Kansas scene features
the Kansas City metropolitan area in the upper right hand corner of the photo-
graph with fhe Topeka metropolitan area a little bit left and north of center.
The Kansas scene was hilly (elevation 730 to 1450 feet above sea level) with
only small amounts of open Qater (mostly as reservoirs). The Louisiana scene
was relatively flat (elevation: 0 to 362 feet above sea level) and contained
up to 35% open water. The extensive amount of open water ahd wetlands in the
Louisfana scene present a significant challenge for accurate scene-to-map
registration when compared to the Kansas Landsat frame.

The points to be utilized as ground control points (GCPs) and ground
reference points (GRPs) were cho;en on 1:24,000 scale, 7.5 minute quadrangle
sheets produced by the U.S. Geological Survey (USGS). The GCPs are used to
generate the mapping equations used in the rectification procedure, while the

GRPs were employed as test points to independently evaluate the accuracy of
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the georegistration procedure. The ground point map cdordinates were reco?ded
in the UTM system as northings and eastings, while the Landsét scene coordin-
ates were recorded as scan lines and elements. The same points were identi-
fied on the 7.5 minute USGS quadrangle sheet and the Landsat A-format MSS
frame. Man made (road intersections) and natural (river intersections) fea-
tures were used as ground points. For the whole scene analysis 356 ground
points were selected for the Louisiana data set and 359 ground points were
used in the Kansas data set. Tﬁe TM quadrant utilized 361 ground points in
the rectification accuracy experiment. The ground points available were
divided into GCPs and GRPs.

The Earth Resources Laboratory Applications Software (ELAS) package
developed at the National Space Technology Laboratories was used in all the
subsequently described analysis (Graham et al. [7]). The mapping equation
utilized was a linear polynomial and the fit of the GCPs to the_mapping equa-
tion was quantified by the computation éf the RMS value through the ELAS
module BMGC. To eva]uatg the rectificatioﬁ accuracy of the Landsat MSS and TM
products, the procedure of Graham and Luebbe [6] was utilized. This procedure
quantifies the rectification accuracy in terms of RBIAS (row offset), CBIAS
(cotumn offset), RSD (row standard deviation) and CSD (column standard devia-
tion). Good georegistration accuracy would be characterized by sub-pixel
offsets and standard deviation values.

The equations for computing bias and standard deviation are:

NP

(1) D (ROWTi - ROW2i)
‘RBIAS = =]

NP
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NP

. 2 . 2
(2) (ROW1i - ROW2i - RBIAS)
i=1

NP-1

where NP is the number of GRPs utilized, Row 1 is the Landsat row predicted
from the mappiné equation, and ROW 2 is the Landsat row read from the MSS or
TM imagery. The units of RBIAS ‘and RSD are in pixels. The ELAS module BMGC
is used to compute the bias and standard deviation values.

The module SSPA was utilized to compute "R" values which give a measure of
the spatial distribution of ground control point (Dow [4]). The "R" value
compares the mean observed nearest neighbor distance (irrespective of direc-
tion) to the mean nearest neighbor distance if the population was distributed
at random (Clark and Evans [1]). The "R" values can range from 0 (maximum
»aggregation or a clustering of points) to 2.15 (maximum spacing or a regular/
uniform distribution of points); For the purposes of this paper "R" values of
between 0.7 and 1.3 are indicative of a random spatial distribution, while
values less than 0.7 indicate a clustered distribution and values greater than
1.3 denote a regular distribution. Another feature of the module SSPA is that
given a file of ground points, it allows the operator to choose a subset of
GCPs that are distributed randomly, regularly, or in a clustered format. The
clustered distribution of GCPs was conducted around four independent locii
spread throughout the scene for whole frame analysis. For the half scene
analysis for a clustered distribution three independent 1ocif were utilized,

while two independent locii were used in the quarter frame analysis.
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The GCPs were chosen in intervals of eight in ordéf to coincide with the
quality assessment numbering system used to indicate how many GCPs were
utilized to rectify a scene of Landsat P-format MSS and TM data. The number
of GCPs used in the MSS daté analysis is 8, 16, 24, 32, and 40 (Tables 1
through 9, while the number of GCPs utilized in the TM data analysis is 8, 16,
24, 32, 40, 48, and 56 (Table 10, 11, and 12). In this paper the first 8
points are used in common witH all other other combinations (16, 24, 32, and
40) and ﬁhe 16 and 24 combinatibn numbers share 16 points in common. This
process extends to 32 and 40 GCPs used which share 32 ground points in common.
Most of the statistical analysis utilized in this report was generated
using the BMDP Statistical Package (Dixon et al. [3]). The descriptive statis-
tics (mean, standard deviation, standard error of mean) and analysis of vari-
ance were run using program BMDP7D. The analysis of variance model was tested
for equality of variances using Levene's test and if the Levene's test results
were statistically significant at the 5% level, then the Brown-Forsythe pro-

cedure was used for the analysis of variance computations (Dixon et al. [3]).

Results and Discussion

Tables 1, 4, and 7 present the results of the analysis of a whole, half
and quarter of a Landsat MSS scene with randomly distributed GCP; and the
evaluation of the rectification accuracy using GRPs analyzed by the procedure
of Graham and Luebbe [6]. Dow [5] pointed out that 24 GCPs appears to be more
than adequate to rectify a whole or partia1‘scene of Landsat MSS data with
randomly distributed GCPs. The RBIAS and CBIAS values, in conjunction with
the RSD and CSD values, of the randomly distributed GCPs will be used as a

baseline to evaluate the rectification accuracy of the regular (Tables 2, 5,



462

and 8) and clustered (Tables 3 6, and 9) GCP‘distribufion cases. The random
and regular GCP distribution experiments with a quadrant TM data are presented
in Tables 10 and 11, while the clustered data is shown in Table 12.

The columns represent the same parameters in all of the tables. The "N"
column gives the number of GCPs used to develop the mapping equation. The "R"
column gives an indication of the type of spatial distribution that the GCPs
exhibit across the Landsat scene. The "RMS" column is a measure of how well
the GCPs utilized fit the mappinglequation (measured in meters). The accuracy
of the georegistration procedure is measured by the RBIAS, RSD, CBIAS, and CSD
values (measured as fractions of a pixel). The bias and standard deviation
values are computed from the GRPs. The row and column bias values were aver-
aged as absolute numbers, so that the sign of the bias values was ignored
between replicates and the magnitude of the bias number was exphasized. Some
authors have used the root mean square error values in place of the bias com-
putations as an independent measure of rectification accuracy (Welch and Usery
[17]. The individual bias value within a replicate will be lower in magnitude
than the root mean square error number because of the fact that positive'and
negative values cancel one another in the bias computation.

The significance row indicates whéther the analysis of variance (ANOVA) is
statiséica1]y significant at the 5 percent level. The values in the last row
of each column represents the mean and 95 percent confidence interval about
the mean. This row is presented as a general descriptive overview of the
results, but should not be interpreted literally in those cases where the
ANOVA results are statistically significant (indicated by *). The results
presented represent the outcome of 40 replicates for each of the "N" equals 8

thorugh 40 (MSS) or 56 (TM).
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In Table 1 through 9 the RMS column shows what appears to be a counter-
intuitive result in that the RMS value goes up as the number of GCPs utilized
increases from 8 to 40. The reason for this appears to be that as the number
of GCPs fncreases, it is more likely to encounter outlier GCPs which distort
the overall RMS value. The RBIAS and CBIAS values decrease in magnitude as
the number of GCPs used increases from 8 to 40. In this case outliers do not
distort the results because there are many more GRPs used to check the recti-
fication accuracy than the GCPs- employed to generate the mapping equation
(GRPs = ground point file - GCPs). The RSD and CSD values are fairly constant
in magnitude with increasing N values. This being the case it was decided to
concentrate on the RBIAS and CBIAS values in order to decide what the optimum
number of GCPs required to register a who]e scene of Landsat MSS data was.
The rationale for choosing the optimum number of GCPs required fo rectify a
full or partial scene of Landsat MSS data for a random spatial distribution of
.GCPs is described in Dow [5]. This work (Dow [5]) agreed with the results of
Mikhail and Paderes [9] that 24 GCPs is more than adequate to rectify a whole.
scene of Landsat MSS data. Mikhail and Paderes [9] analyzed a parametric
model, while Dow [5] utilized an émpirica1 appraoch with a polynomial model.
It can be seen in Table 2 that 24 GCPs is all that is necessary to rectify a
whole scene of regularly distributed GCFs data (it was not possible to produce
a regular distribution for the Louisiana scene because of the large amount of
water in this frame), while the clustered distribution case has much larger
variation between replicates which results in a non-significant between
replicate effect in three out of four cases for the RBIAS and CBIAS results.
For a whole scene of clustered data, four independent locii were chosen to

cluster around throughout the frame. This gave lower R values than the half



464

scene (3 locii) or quarfer scene (2 105%1) cases, as éan be seen by comparing
the R values in Tables 3, 6, and 9.

There appears to be no consistent differences between the Louisiana and
Kansas frames regarding the maghitude of the RBIAS, CBIAS, RSD, or CSD values,
so that both data sets yield the same conclusions. In bqth data sets the
RBIAS and RSD numbers were less than the CBIAS and CSD values; as can be seen
by comparing Tables 1 through 9. Thus, registration accuracy is more accurate
in thé row direction than in thé column direction. A similar result was re-
ported by Colwell et al. [2], when evaluating the georegistration accuracy of
a P-format Landsat MSS tape. One would expect this result from the Variation
in MSS sensor attitude between scans as the satellite moves along its track.
However, the TM data (Tables 10, 11, and 12) does not exhibit a consistent
difference between RBIAS and RSD numbers and CBIAS and CSD values. This can
be attributed to the backward and forward scanning mode of the TM sensor.

In the Graham and Luebbe [6] method of assessing rectification accuracy,
our results indicate excellent géoregistration as evidenced by sub-pixel bias
and standard deviation values for both Kansas and Louisiana. However, the TM
data (Tables 10, 11, and 12) appears to have achieved better rectification
accuracy than the MSS data has (Tables 7, 8, and 9). In addition, the RMS
values of the TM data (less than 24 meters) is much better than the RMS
numbers for the MSS data (greater than 69 meters). This suggests that GCPs
can be picked with greater precision for TM data than it can with MSS data.
Thé RMS value is a measure of how well the GCPs fit the mapping equation and

is not a measure of rectification accuracy (Dow [5]).
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Tab]es'1, 4, and 7 show the results obtained with é random distribution of
GCPs, while Tables 2, 5, and 8 exhibit the rectification accuracy (as measured
by the bias and standard deviation values) of a regular distribution of GCPs.
It can be seen that the RBIAS, CBIAS, RSD, and CSD numbers are of comparable
magnitude for the random and regular spatial distribution of GCPs cases,
whether one is dealing with a whole or partial frame of Landsat MSS data.
Tables 10 and 11 show that similar results are obtained with the TM data for a
quarter of a Landsat frame. Thi§ finding is at odds with the results reported
by Paderes et al. [11] which found better rectification accuracy with a
regular distribution of GCPs than with a random distribution of GCPs. Part of
the reason for this difference between the results of the present study and
that of Paderes et al. [11] is that our study used the distribution of actual
GCPs with a maximum "R" value of 1.56, while the investigation of Paderes et
al. [11] employed simulated data where the "R" value would be 2.15 (maximum
spacing case).

An examination of the clustered spatial distribution of GéPs (Tables 3, 6,
and 9) shows much poorer rectification accuracy (higher bias and standard
deviation values) for both a whole and a partial frame of Landsat MSS data. A
similar result is found with the clustered case for TM data (Table 12). 1In
many undeveloped regions of the world it will only be possible to choose GCPs
(around regional centers of anthropogenic activities or visible regions of
natural features) in a clustered fashion.. These results should be borne in
mind when choosing the number and spatial distribution of GCPs required to

georegister a whole or partial frame of Landsat MSS or TM data.
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Conclusions

For the regular and random distribution of GCPs it appears that 24 Géﬁs is
more than adequate to rectify a whole or portion of a Landsat MSS frame.
Analysis of a quadrant of TM data supports this conclusion. TM data can be
rectified with greater accuracy than MSS data, especially in the column direc-
tion. The RBIAS and RSD number§ are less for Landsat MSS data than are the
CBIAS and CSD values, while they are all roughly equal in Landsat TM data. A
clustered distribution of GCPs ines much poorer rectification accuracy than
does the random or regular spatial distribution of GCP cases. A clustered
distribution of GCPs, though less costly to implement, should be avoided where
possibie, when good scene-to-map registration accuracy is desired. A compari-
son of the Louisiana and Kansas Landsat MSS frame results suggests that these

- conclusions are not data set specific.



TABLE 1

Louisiana - Whole Scene: Random Distribution of Ground Control Points

N R RMS RBIAS  RSD CBIAS  (SD

8 0.77 94,58 0.38 0.06 0.82 0.14
16 0.77 119.18 0.20 0.06 0.39 .12
24 0.73 129.02 0.17 0.06 0.42  0.12
32 0.71 132.72 0.16 0.06 0.36 0.12
40 0.71 133.95 0.14 0.06 0.37 0.12
Signif: * * * * * *

ATl 0.74+0.02 121.89+3.94 0.21+0.03 0.06 0.47+0.06  0.12+0.002

Kansas - Whole Scene: Random Distribution of Ground Control Points

N R RMS RBIAS RSD CBIAS csb

8 0.86  112.60 0.27 0.07 0.70 0.16
16 0.85  140.80 -  0.21 0.06 0.44 0.14
24 0.83  144.88 0.17 0.06 0.39 0.14
32 0.82  148.72 0.16 0.06 0.30 0.14
40 0.83  146.30 0.15  0.06 0.27 0.14
Signif: N.S. * * * * *

All 0.84+40.02 138.66+5.59 0.19#0.02 0.06+0.002 0.42+0.06 0.14+0.002

N.S.: ANOVA not significant at the 5% level
* . ANOVA significant at 5% level

Mean + 95% Confidence Interval

No. Replicates: 40
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TABLE 2

Kansas Whole Scene: Regular Distribution of Ground Control Points

N R
8 1.51
16 1.38
24 1.35
32 1.34
40 1,33
Signif: *

A1l 1.38+0.014 144,50+5.32 0,20+0.03 0.06+0.001 0.41+0.05

N.S.: ANOVA not significant at 5% level

RS
117.90

147.10

151.25
152,02
154,25

*

RBIAS
0.24
0.23
.21
0.18
0.15
N.S.

* : ANOVA significant at 5% level

‘Means + 95% Confidence Interval

No. Replicates: 40

RSD
0.06
0.06
0.06
0.06
0.06
N.S.

CBIAS
0.64
0.40
0.34
0.34

0.30

*

csD
0.14
0.14
0.13
0.13
0.14

*

0.14+0,001



TABLE 3

Louisiana Whole Scene: Clustered Distibution of Ground Control. Points

1 R RIS RBIAS  RSD  CBIAS (SO

8 0.14 86.48 1.85 0.14 3.18 0.25
16 0.22 95.40 1.15 0.10 2.38 0.22
24 0.27 104,25 0.76 0.08 1.98 0.20
32 0.30 106. 22 0.58 0.08 1.89 0.20
40 0.33 108.80 0.56 0.08 1.75 0.19
Signif: N.S. N.S. N.S. N.S. N.S. N.S.

A1l 0.25+0,01 100.23+6.71 0.98+0.41 0.10+0.02 2.23+0.57 0.21%0.02

Kansas Whole Scene: Clustered Distribution of Ground Control Points

N R RMS  RBIAS  RSD  CBIAS  CSD

8 0.11 85.20 0.61 0.12 1.15 0.20
16 0.17 95.08 0.53 0.11 1.05 0.19
24 0.20 100.45 0.46 0.09 1.00 0.19
32 0.23 105.92 0.38 0.08 0.97 0.19
40 0.25 . 106.28 0.30 0.08 0.94 0.19
Signif: * * * * N.S. N.S.

Al 0.19+0.01 98.58+3.78 0.46+0.06 0.10+0.01 1.02+0.08 0.19+0.01

N.S. : ANOVA not significant at 5% level
* : ANOVA significant at 5% level
Mean + 95% Confidence Interval

No. Replicates: 40

469
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TABLE 4

Louisiana - Half Scene: Random Distribution of Ground Control Points

xR

8 0.75
16 0.70
24 0.67
32 0.66
40 0.66
Signif. N.S.
Al1l:

Kansas - Half Scene:

RMS

84.18
100.55
108.65
110.45
111.50

%

RBIAS
0.19
0.14
0.12
0.10
0.10

*

RSD

0.06
0.05

0.05

0.05
0.05

*

CBIAS
0.54
0.34
0.31
0.28
0.27

*

cs

0.14
0.13
0.12
0.12
0.13

*

0.69+0.02 103.07+2.64 0.13+0.02 0,05+0.001 0.35+0.04 0.13+0.002

0.82+0.02 135.17+6.59 0.25+0.05 0.08+0.002 0.48+0.05

N R

8 0.90
16 0.81
24 0.79
32 0.80
40 0.79
Signif. *
A1l
N.S.:

*:

Mean :_95% confidence interval
No. Replicates:

Random Distribution of Ground Control Points

RS

111.55
133.88
140.38
143.75
146.30

*

RBIAS
0.43
0.26
0.22
0.19

- 0.16

*

ANOYA not significant at 5% level

Significant at 5% level in ANOVA

40

RSD

0.08
0.08
0.08
0.08
0.08
N.S.

CBIAS

0.70
0.58
0.44
0.38
0.33

*

)

0.16

- 0.16

0.16
0.16

0.16

N.S.
0.16+0.002



Louisiana Half Scene:

TABLE 5

Regular Distribution of Ground Control Points

N

8
16
24
- 32
40
" Signif.

A11: 1.38+0.02 113.73+1.95 0.17+0.02 0.06+0.001 0.33+0.03 0.15+0.001

Kansas Half Scene:

R

1.54
1.37
1.34
1.32
1.32

*

RS

99.20
111.85
118.25
119,55

119.80
*

RBIAS

0.26
0.21
0.16
0.12
0.10

*

RSD

0.06
0.06
0.06
0.06
0.06
N.S.~

CBIAS
0.46
0.32
0.32
0.29
0.25

*

cs

0.15
0.15
0.14
0.15
0.15

*

Regular Distribution of Ground Control Points

N

8
16
24
32
40
Signif.

A1l 1.39+0,02 128.92+5.98 0.24+0.03 0.05:9.001 0.48+0.06 0.19+0.002

N.S.:

*.

No. Replicates:

1.56
1.36
1.34
1.34
1.33

%*

ANOVA not significant at 5% level
ANOVA significant at 5% level
Means + 95% confidence interval

RMS

98.08
124,98
134.90
140.48
146,20

*

‘RBIAS

0.30
0.28
0.21
0.20
0.23
N.S.

RSD

0.09
0.09
0.09
0.10
0.09
N.S.

CBIAS

0.64
0.52
0.42
0.45
0.35

*

csd

0.19
0.18
0.18
0.19
0.19

*

471



472

TABLE 6

Louisiana Half Scene: Clustered Distribution of Ground Control Points

N R RMS RBIAS RSD CBIAS CsD
8 0.16 54,78 0.38 0.06 1.18 0.18
16 0.25 72.68 0.33 0.06 1.05 0.17
24 0.30 77.22 0.28 0.06 1,05 0.16
32 0.33 83.10 0.27 0.05 1.05 0.16
40 0.37 88.32 0.27 0.05 0.98 0.16
Signif. * * N.S. * N.S. *

A11: 0.28%0.01 75.22+2.27 0.31+0.04 0.06+0.002 1.06+0.10 0.16+0.004

Kansas Half Scene: Clustered Distribution of Ground Control Points

N R RMS RBIAS  RSD CBIAS CSD
8 0.20 97.95 1.19 0.13 1.56 0.23
16 0.30 119.15 0.60 0.10 1.10 0.18
24 0.36 118.12 0.46 0.09 1.07 0.18
32 0.41 121.18 0.42 0.09 0.96 0.18
40 0.45 125,98 0.46 0.09 0.84 0.17
Signif.  * N.S. * * * *

A11: 0.34+0.01 116.48+8.42 0.62+0.14 0.10+0.008 1.11+0.15 0.19+0.010

N.S. : ANOVA not significant at the 5% level
* : ANOVA significant at the 5% level
Mean + 95% confidence interval

No. Replicates: 40



Louisiana Quarter Scene - Area B:

TABLE 7

473

Random Distribution of Ground Control Points

N

8
16
24
32
40
Signif.

AT11: 1.03+0.02 72.06+2.01 0.15+0.02 0.06+0.001 0.24+0.02

Kansas Quarter Scene - Area B:

R

1.06
1,07
1,05
1.00

-1.00

N.S.

RS

60.68
71.70
75.35
76.00
76.58

*

‘RBIAS

0.26
0.17
0.10
0.12
0.11

*

RSD

0.06
0.06

0.06 .

0.06

0.06
*

cBIAS
0.36
0.22
0.21
0.21
0.17

*

cs

0.08
0.07
0.07
0.07
0.07

*

0.07+0.002

Random Distribution of Ground Control Points

L

8
16
24
32
40
Signif.

A11: 1,15+0,02 78.58+5.21 0.16+0.02 0.07+0.002 O.

N.S.:

*

R

1.20
1.15
1.14
1.14
1.12
N.S.

RS

53.78
78.48
85.38
87.23
88.08

*

RBIAS
0.26
0.15
0.13
0.12
0.12

*

ANOVA not significant at 5% level
ANOVA Significant at 5% Level
Mean + 95% Confidence Interval

No. Replicates:

RSD

0.08
0.07
0.07
0.07
0.07
N.S.

CBIAS
0.27
0.25
0.27
0.24
0.21
N.S.

25+0.03

s

0.13
0.13
0.13
0.13
0.14
N.S.
0.13+0.002
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" TABLE 8

Louisiana Quarter Scene: Reqular Distribution of Ground Control Points

N
8
16
24
32
40
Signif:
All:

R
1.49
1.38
1.34
1.32
1.32

*

RMS

81.35
102.50
106,25
105,55
105.88

*

RBIAS
0.18
0.14
0.11
0.09
0.08

*

RSD

0.06
0.06
0.06
0.07
0.07

*

CBIAS
0.43
0.33
0.25
0.25

0.23

*

csD
0.17
0.16
0.16
0.17
0.17

*

1.3740.01 100.30+2.23 0.12+0.02 0.06+0.002 0,30+0.03 0,17+0.002

Kansas Quarter Scene: Regular Distribution of Ground Control Points

N
8

16

24

32

40

Signif:

R
1.56
1.39
1.35
1.34
1.34

*

RMS
57.70
68.25
70.68
73.40
78.10

*

RBIAS
0.19
0.14
0.14
0.12

0.11

*

RSD
0.07
0.07
0.07
0.07
0.07

*

CBIAS
0.28
0.22
0.16
0.16
0.17
N.S.

A11: 1.40+0.02 69.62+2.43 0.14+0.02 0.07+0.001 0.20+0.03

N.S.

*

No. Replicates:

: ANOVA not significant at 5% level
: ANOVA significant at 5% level
Mean + 95% Confidence Interval

csp
0.13
0.13
0.13
0.14
0.15

*

0.14+0.002
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TABLE 9

Louisiana Quarter Scene: Clustered Distribution of Ground Control Points

N R RMS RBIAS  RSD CBIAS  CSD
8 0.24 48.92 0.94 0.13 1.11 0.16
16 0.33 58.65 0.58 0.09 0.59 0.10
24 0.40 63.70 0.41 0.08 0.52 0.08
32 0.45 67.35 0.32 0.07 0.46 0.08
40 0.50 68.52 0;34 0.07 0.48 0.08
Signif: * * * * * *

A11: 0.38+0.02 61.43+1.62 0.52+0.09 0.09+0.006 0.63+0.09 0.10+0.010

Kansas Quarter Scene: Clustered Distribution of Ground Control Points

N R ~RMS RBIAS RSD CBIAS csb
8 0.30 68.15 1.10 0.16 1.72 0.31
16 0.42 90.32 0.39 0.09 0.83 0.18
24 0.49 94,15 0.35 0.08 0.52 0.15
32 0.57  95.32 0.31 0.08 0.55 0.16
40 0.63 92,82 0.28 0.08 0.48 0.15
Signif: * N.S. * * N.S. *

A11: 0.48+0.02 88.16+7.79 0.49+40.11 0.10+0.008 0.82:9.31 0.19+0.027

N.S. : ANOVA not significant at 5% level
* : ANOVA significant at 5% level
Mean + 95% Confidence Interval

No. Replicates: 40
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TABLE 10

Louisiana Quarter TM Scene: Random Distribution of Ground Control Points

N R “RMS RBIAS RSD CBIAS csb
8 0.86 19.38 0.24 0.04 0.21 0.04
16 0.82 22.80 0.14 0.04 0.13 0.03
24 0.80 24.00 0.10 0.03 0.11 0.03
32 0.78 23.90 0.09 0.04 0.09 0.03
40 0.78 23.75 0.09 0.04 0.09 0.03
48 0.77 24.05 0.08 0.04 0.08 0.03
56 0.76 23.85 0.07 0.04 0.08 0.03
Signif. * * * * . * *
AT 0.79+0.01 23.10+0.41 0,11+0.01 0.04+0.001 0.11+0.01 0,03+0.001

N.S.: ANOVA not significant at 5% level
*: ANOVA significant at 5% level

Mean + 95% Confidence Interval

No. Replicates: 40



Louisiana Quarter TM Scene:

TABLE 1

|=

16

24

32

40

48

56
Signif.
AN

N.S.:

*;

No. Replicates:

|

.54
.39
.36
.34
.32
.32
.32

*

— - = et b

1.37+0.01 22.11+0.42 0.09+0.01 0.04+0.000

RS

18

21.
.30

22

22.
23.
.10

23

23.

.32

85

73
25

23

Regular Distribution of Ground Control Points

RBIAS RSD
0.15 .0.04
0.10 0.03
0.09 0.03
0.07 0.04
0.07 0.04
0.07 0.04
0.07 0.04

*

ANOVA not significant at 5% level
ANOVA significant at 5% level
Mean + 95% Confidence Interval

cBIAS
0.18
0.11
0.10
0.08
0.09
0.08
0.08

*

0.10+0.01

0.
0.
0.
0.
0.
0.
0.
N.
0.

cs

03
03
03
03

03
03

03
s.
03+0.000
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TABLE 12

Louisiana Quarter TM Scene: Clustered Distribution of Ground Control Points

N R RHS RBIAS  RSD CBIAS  CSD
8 0.22 19.28 1.07 0.09 1.23 0.09
16 0.30 21.78 0.79 0.08 0.78 0.06
24 0.36 22.78 0.39 - 0.05 0.38 0.04
32 0.42 22.55 0.32 0.04 0.27 0.04
40 0.46 22.90 0.33 0.04 0.21 0.04
48 0.51 23.30 0.29 0.04 0.21 0.04
56 0.54 23.38 0.24 0.04 0.20 0.04
Signif. * * * * * *

A1l 0.40+0.01 22.28+0.49 0.49+0.08 0.06+0.004 0.47+0.10 0.04+0.004

N.S.: ANOVA not significant at 5% level
*: ANOVA significant at 5% level
Mean + 95% Confidence Interval

No. Replicates: 40
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Abstract

A simple method of assigning values to missing data in a geographic
context is to use an average of adjacent observations. The value thus
obtained is a linear combination of neighboring values with appropriately
chosen weights. The same géneral method can be used when the observations
consist of regular pixels, of irregularly arranged resels, or scattered point
observations. Smooth assignments.are made by this method; iterations are

required when adjacent values are missing.



Our primary interest is in geogr;ib.l:xicalAproblems and the discussion
focuses on éxamples in wﬁich the 'i.nte;:polation estimates are to be made in two
dimensions. We believe that the simp;est and most sensiblé r;letflod of
" geographic interpolation consists of the assignment of an average 'value to the

location or locations for which data are required. The set over which the

average is taken is obviously important, and, as weighted averages are almost
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invariably used, the choice of weights is also critical. For spatial

variables the relevant set usually consists of values in the vicinity of the

locations for which the estimates are desired. Observe here that we
implicitly assume that the variable -of _interest- is numerical, and not
categorical, so that avérages have meaning. Suggestions as to how to proceed
when this is not the case may be found in Guptill (1975), Switzer (1975), aﬁd
Tobler (1979a). We also re‘str.iict our attention to arithmetical averages,

ignoring geometrical and harmonic averages and medians which may be

appropriate in some cases. It should bz recognized that no interpolation

scheme can overcome the problem of insufficient resolution in the original
observations.
We consciously avoid explicit distance weighted averages as being

computationally too cumbersome, but recognize that they are common in the

literature. A rather thorough treatment of this subject is that of Gandin

(1965), which includes coverage of covariance and varigram estimation
approaches more recently popularized as Kriging, optimal interpolation,
objective analysis, collocation, and regionalized variable technigues.
Additional literature is referenced in Akima (1975), Barnhill and Nielson
(1984), ﬁesag (1974), Brady (1982), Brodlie (1980), Duchon (1975), Franke
(1982), Grimson (1982), Harder (1972), Hardy (1971), Bessing (1972), Journel

(1978), KrAéus (1972), Lawson (1978), Matheron (1971), Moritz (1970), Ripley



484

(1981) , Schumaker (1976), Swain (1976), Tobler (1973c¢),and Wahba (1980), to
give only a short selection. It is here assumed that the observations are
without error so that filtering of the values is not included; see the
foregoing references if this is of interest.

We present three simple cases in which spatial averages can be used for
" interpolation. The _first case invoives pixels, or data on a regular mesh; in
the secord and third cases the known daﬁa are irregularly arranged on the
plane either as resels or as point locations.

Consider first data given as square pixels (picture elements) with the
value for one interior pixel missing (Figure One). Then (using an obvious

row-column notation) the value at the missing i,j location is estimated as an

average from its ;iéighbors by

A
2ij =_14 (Zi+413 + 23-13 + 2i3-1 + Zij+1) -

This works equally well when several interior values are missing, as shown in

Figure Two, by an iteration equivalent to solving Laplace”s equation by

finite difference methods (Birkhoff 1972). How the missing values are
initialized for the iterations is not critical but a gobd guess saves
computational effort. In order to terminate the iterations one invokes the
usual stopping rules. This of course is Jjust the classical Dirichlet problem
in two dimensions and the ihteréolated value has the harmoni¢ property
(Courant and Hilbert 1937) by the construction method. Now it is well known

(Kantorovitch and Krylov 1958) that Laplace’s equation arises from the least
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locations for which estimates are desired.
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squares problem: .

min: 5 2322 +;£2 dxdy
R & Y

with, in the present instance, Dirichlet boundary conditions. Thus the
interpolation is spatially smooth, the squared variation of the derivatives,
which is minimized, providing a measure of roughness.

The foregoing simple soluticﬁ has several disadvantages. One of these is
that we have provided only a point estimate, without any statement of the
standard error of the estimate. 2n obvious way around this is to sample from
a distribution having the mean of the n‘eighbors as its expectation with a
variance also estimated from these neighbors. A second shortcoming of the -
harmonic interpolation is that the estimated value can never rise above, nor
fall below, its neighbors' in magnitude. 'his restriction can be oYercome by
enlarging the neighborhood and by requiring that the partiai derivatives of
the estimate be smooth, that is, by solving the biharmonic equation. In
finite difference form this leads to

235 = ot 0823413 + 25-13 + 2434l + 243-1)

=2(2§-13-1 + Zi+1j-1 + Zi-1j+1 + 2i-15-1)

-(23-23 + Zij§-2 + Zij+2 + Zi+23) ),
ard iterative procedures a;te again used when several adjacent values are
missing.

Now suppose that the data are given in the form of irregularly arranged
resels (resolution elements); census tracts or counties in the Uniﬁed States,
yvith one or more values missing. A generalization of the above results, using
first order neighbors, can be written as

~ n

Zj = I Ljj 24
j=1
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where n is the number of neighbors of region i and Lij are normalized neighbor |
weights. First order neighbors are areas having direct contact along borders
of non-zero length, second order neighbore;, are the first order neighbors of
the initial neighbors, and so on. As an example Figure Three shows first and
second order neighbors for Ranszz, witk the mmerical values Giver in Table
One. For the population density'of Ransas, using only firSt order neighbors,
and with normalized boundary lengths as weights we obtain 36.05 persons per
square kilometer, whereas the observed value is 27.50. Taking each individual
state in turn yields an average success rate of 72%, which may be considered

impressive in light of the simplicity of the technique (Figure Four). The

method has been extended to the case in which several interior values are
estimated (Rennedy and Tobler 1983). Table II illustrates the comparable
biharmonic density estimate for Kansas. We believe this method of adjacency
weighting to be far superior to the use of arbitrary points ("centroids") to

represent geographic areas.

As a final example consider the ,problerﬁ of interpoléting a continhous
scalar field from irregularly arranged point observations in two dimensions.
As the first step, to reduce extrapolation, we rota-i:e to- principle éxes. 'Ihgs
observations which for example, £it within an oblique -rectangle are readily
accomodated- We next pass one coordlnate line through each observatlon .
'. (Figure Five). The result is an 1rregular orthogonal mesh, with observatlons '
at N of the nodes and up to N*N-N nodes at which we need to make an estimate.

The obvious procedAur_e. is to let the inesh define the 'adjacencieé and then to
use neighbor averaging as beforg. in this example we solve I.aplacé's equétion

by using
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Figure 3. First and second order neighbors of the state of Kansas.
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Table I

FIRST ORDER DENSITY ESTDATE FOR KANSAS

 length of Border of Kansas with neighboring states,

and their population densities.

' Neighbor km border Density
Colorado 338 21.3
Oklahoma - 667 : 37.2
‘Missouri 433 67.8
Nebraska 572 - 19.4

Sum of border lengths = 2010
Sum of border * population densities = 72466
72466/2010 = 36.05 ‘

which yields the density estimate for Kansas



490

Table II

SECOND ORDER DENSITY ESTTMATE FOR KANSAS

Length of Border of

Nebraska km border Density
with |
South Dakota 641 8.8
Wyoming 222 3.4
Iowa 192 50.5
Colorado
with
Wyoming _ 419 3.4
DOtah 444 12.9
New Mexico 542 8.4
Oklahoﬁa S =
with
New Mexico 58 8.4
Texas 1534 42,7
Arkansas . 319 37.0
Missouri
with
Arkansas 548 37.0
Tennessee - 156 94.9
Kentucky 11 81.2
Illincois 613 199.4
Iowa 378 50.5
6177

- Density estimate from second order neighbors = 291003/6177 = 47.11.
Density estimate for Kansas = density estimate from first order
neighbors plus difference of first order estimate and second order

estimate = 36.05 +'(36.05-47.ll) = 24.99 persons per square kilometer.
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i1

Figure 5. Small boxes denote known values. Remaining intersections

of the mesh indicate Tocations for which estimates are
desired.
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2§y = W1Zj413 + W2Z2j-15 + W3Zjj-1 + WaZij+1

with weighfs.chosen from siméle geometric considefations. - These weights are
essentially normalized inverse distances but only to immediately adjacent
loca{:ions on this mesh. The grid is orthogonal so that onlya(v-)distances
(instead of N(N-1)/2) are required and they can be computed in advance for the
entire mesh. With more neighbors, different weights, and additional boundary
conditions, the method is easily extendable to the biharmonic case to obtain’
an'interpolation with smooth derivatives. &an iteration ié used since most of
the mesh points do not have observations. at the adjacent 'mesh positions.
Points which are neighbors on the mesh may not be spatially nearest points,v

but the influence of all points is felt by each point, through the coupling
via the mesh. Thé iterations start from an initial.guesé and end when an
error tolerance is satisfied. Convergence accelerating techniques are
available to speed the iterations (Giahém 1983). The result is a set of
smoothly varying values at the corners of the rectangles defining the mesh and
the original observations are exactly satisfied. Interpolation within the
rectangles is then easily effected using conventional bilinear or splining
techniques. The method of course bears a resemblance to the "lattice tuning”
described earlier by Tobler (1979L) except that the cbservational values are
everywhere retained which was not the case in that procedure. An advantage of
the rectangular mesh éver a triangulation ié‘that it can be used directly in
other computations or for display purposes. Computational experience with
several extensive sets of data has reirforced our belief in the efficacy of
spatial averaging for interpolation. Any interpolation scheme of course
requires hypotheses about the phenomenq under investigation and cannot be

applied uncritically.



The smooth interpo1ation-by;averaging téchniques described here éan all
be extended rather easily to higher dimensional cases and to the interpolation
of vector or tensor field components. An example.application would be for
non-parametric "rubber sheeting" in order to fit satellite images to
conventional maps. It has also not escaped our notice that the methods may be

reversed, in order to parse large data sets.

493



494

References

H. Akima, 1975, "A Method of Bivariate Interpolation and Smooth Surface fitting
for Values given at Irregularly Distributed Points", Washington DC, Office

of Telecommunications Report No. 75-70.

R. Barnhill, and G. Nielson, eds., 1983, "Suffaces", Rocky Mountain Journal of
Mathematics, 14, 1:1-299.
J. Besag, 1974, "Spatial Interaction and the Statistical Analysis of Lattice

SYStemS," Jo ROY. Stat- SOC., B, 36, 192—236-

Birkhoff, G., 1972, The Numerical Solution of Elliptic Bquations, Philadelphia,

SIAM.
'J. Brady and B. Horn, 1982, "Rotationally Symmetric Operators for Surface
Interpolation”, MIT Artificial Intelligence Lab Memo no. 654.

K. Brodlie, 1980, Mathematical Methods in computer Graphics and Design, London,

Academic Press.

Courant, R., and Hilbert, D., 1937, Methoden der Mathematischen Physik, Berlin,

Springer.

J. Duchon, 1975, "Functions-Spline du type plague mince en dimer}sion 2",
Grenoble, University Technical Report Mo. 231.

R. Franke, 1982, "Scattered Data Interpolation: Tests of Some Methods",

Mathematics of Computation, 38(157) :181-199.

Gandin, L., 1963, Objective Analysis of Meteorological Fields, leningrad, GIMIZ

(US Department of Commerce translation, TT 65-50007).

Graham, N., 1983, A Combined Algorithm for Sample Design and Interpolation,

Discussion Paper #5, Santa Barbara, Department of Geography, UCSB.



495

W. Grimson, 1982, "A Computational Theory of Visuél Surface Interpolation", Phil.

Trans. Roval Soc. of london, B298:395-427.

Guptill, S., 1975, Spatial Filtering of Nominal Data, Ph.D. thesis, Ann Arbor,

University of Michigan.

R. Harder, and R. Desmaris, 1971, "Interpolation Using Surface Splines", J.
Ajrcraft 9,2:189-191; 9,12:869-871.

R. Hardy, 1971, "Multiquadric Equatidns of Topography and Other Irregular

Surfaces", J. Geophysical Research, 76:1905-1915.

R. Hessing, et al., 1972, "Automatic Contouring using Bicubic Functions",

Geophysics, 37,4:669-674.

A. Journel, and C. Buijbregts, 1978, Mining Geostatics, New York, Academic Press.

Kantorovitch, L., and Krylov, V., 1958, Approximate Methods of Higher Analysis,

The Hague, Noordhoff.

Kennedy, S., and Tobler, W., 1983, "Geographic Interpolation", Geographical
Analysis, 15,2:151-156.
K. Kraus, and E. Mikhail, 1972, "Linear Least Squares Interpolation”,

Photogrammetric Engineering, 40:1016-1029.

C. Lawson, 1978, "Software for ¢l Surface interpolation”, Mathematical Software

III, New York, Academic Press.

G. Matheron, 1971, The Theory of Regionalized Variables and its Applications,
Fontainbleau, BEcole Nationale.

H. Moritz, 1970, "Eine Allgemeine Theorie der Verarbeitung von Schwermessungen
mach Kleinsten Quadraten", Heft Nr. 673, Muni;:h, Deutsche Geodaetische
Kommission.

B. Ripley, 1981, Spatial Statistics, New York, J. Wiley.

L. Schumaker, 1976, "Fitting Surfaces to Scattered Data", Approximation Theory

II, New York, Academic Press.



496

C. Swain, 1976, "A Fortran IV Program for Interpolating Irregularly Spaced Data

using the Difference Equations for Minimum Curvature", Computers and

Geosciences, 1:231-240.
Switzer, P., 1975, "Estimation of the Accuracy of Qualitative Maps", pp. 1-13 of

J. Davis and M. McCullagh, Display and Analysis of Spatial Data, New York,

J. Wiley.
Tobler, W., 1979a , "Cellular Geography", pp. 379-386 of S. Gale and G. Olsson,

Philosophy  in Geography, Dordrecht, Reidel.

Tobler, W., 1979, "Lattice Tuning", Geographical Analysis, 11,1:36-44.

W. Tobler, 1979, "Smooth Pycnophlyactic Interpolation for Geographical Regions",

J. Am. Statistical Assn., 74(367) :519-530.

G. Wahba and J. Wendelberger, 1980, "Some New Mathematical "Mei:hods for
Variational Objective Analysis Using Splines and Cross Validation", Monthly

Weather Review, 108(8):1122-1143.




497

An Optimal Frequency Domain
Textural Edge Detection Filter
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ABSTRACT
An optimal frequency domain textural edge detection filter is
developed and its performance evaluated. For the given model and
filter bandwidth, the filter maximizes the amount of output image
energy placed within a specified resolution interval centered on
the textural edge. Filter derivation is based on relating
textural edge detection to tonal edge detection via ‘the complex
lowpass equivalent representation of narrowband bandpass signals
and systems. The filter is specified in terms of the prolate
spheriodal wave functions translated in frequency. Performance is
evaluated using the asymptotic approximation version of the
filter., This evaluation demonstrates satisfactory filter
performance for ideal and non-ideal textures. In addition, the

filter can be adjusted to detect textural edges in noisy images at

the expense of edge resolution.

This work was supported by NASA under Contracts NAS-9-16664 and
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Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

LIST OF FIGURES

Block diagram of the optimum textural edgé détection
filter for two textures.

N
Single sided transfer function of the optimum tex-
tural edge Tdetection filter. The bandwidths of
H,(w) and H,(w are narrow enough that response at w,

and Ws is zero.

(a) Input image consisting of two ideal textures.
(b) Magnitude of the optimum textural edge detector

response (in the spatial domain).

Magnitude of the response of the textural edge
detection filter due to an input image with four
ideal textures and three textural edges. The nor-
malized spatial frequencies of the four textures are

.04nw, .067, .08m, and .1w.

(a) Spectrum of an arbitrary input image.
(b) Spectrum of optimum textural edge detection

filter with bandwidth shown in terms of wy and Q.



-Figure 6.

(a) Input image with both amplitude and frequency
varying in proportion to a bandlimited Gaussian
noise process (horizontal axis magnified ‘two times

around each textural edge).

(b) Magnitude of the optimum textural edge detector

response due to (a).
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I. INTRODUCTION AND OVERVIEW

Edge detection is an important first step in extracting
information from an image. Many edge detection schemes have been
employed to enhance the. boundaries between regions of different
average gray tone, These tonal edge detectors are inadequate when
regions in an image are characterized by similar average gray

tone, but different textural features.

A textural edge detection filter is presented in this paper
which is optimal in the sense that, for the given model, a maximum
amount of output image energy is placed within a given resolution
interval width and a given filter bandwidth. Tﬁe resolution
interval is centered on the textural edge in the input image. The
filter is derived in the freéquency domain, and is easily implemen-
ted on a digital computer using Fast Fourier Transform (FFT) tech-

niques.

The optimum textural edge detection filter is developed by
ltreating the textural edge as a bandpass extension of a tonal
edge. Hence, the optimum tonal edge detector derived by
Shanmugan, Dickey and Green [1] (correspondence by Lunscher [2]),
is related to the textural edge detection case via the complex
lowpass equivalent representation of signals and systems. It
should be pointed out that the development is carried out in one-
dimension. However, symmétries required for extension to two-

dimensions are retained,



Section II presents a brief review of the optimum tonal edge
detector. The textural model used in the development of the
optimum textural edge detector is then introduced in Section
III. The mathematical form of the optimum textural edge detection
filter and some one-dimensional examples are presented in Section

IV. Concluding remarks are given in Section V,
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II. REVIEW OF THE OPTIMUM TONAL EDGE DETECTOR

Ths purpose of this section is to briefly review the optimum
tonal edge detector derived by Shanmugan, et al., [1]l. For a
given filter bandwidth, the optimum tonal edge -detector places a
maximum amount of output image energy within a given resolution
interval length in the vicinity of tonal edges. Thé tonal edge
detector is insensitive t§ textural edges where the average gray

levels of the different textural regions are equal.

The derivation of the optimum tonal edge detector is based on
representing the filter output (for a step edge input) in terms of
prolate spheriodal wave functions (for the derivation, see [1],
[21). The exact one-dimenéional form of the filter transfer

function is given in Shanmugan, et al., [1] as

: B.w ¥, (c, wI/29) lo] <@
Hpoo o) = {1 (1)
! 0 elsewhere
where c¢ =-g§ and w1 is the first order prolate spheriodal wave

function. (The subscript STEP,E in Equation (1) denotes the Exact
form of the STEP edge detector). For any given values of spatial
bandwidth, §, and resolutipn interval length, I, the transfer
function in Equation (1) places the maximum amount of energy in
I. The filter is difficult to implement in this form, because the
values of Y, cannot be easily calculated. Application of approx-

imations by Slepian and Streifer [1], yield an asymptotic approxi~
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mation of the filter which is in closed form, hence easy to imple-

ment, The resulting expression is

sz
—)

202

~

2
= - 2
HSTEP,E(w) HST {w) K1 w” exp( (2)

Combining the constants that appear in the argument of the expo-
nent, and dropping the gain factor, K., vields
2
H (w) = w(we—sz) = m2 _— (3)
STEP
It should be noted that the parameters I and @ can no longer

be independently specified.

Choice of X sets the.bandwidth of the filter, and also the
resolution interval length. As K increases, resolution interval
size increases, and filter bandwidth decreases, Note that even
though the asymptotic approximation to the optimum transfer func-

tion is not strictly bandlimited, H {w) is effectively zero for

STEP
spatial frequencies above a. certain value, depending on the choice

of K. The asymptotic approximation will be used in the remainder

of the development.
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III. TEXTURAL MODEL

One inherent difficuity with textural processing is the fact
that no single "best" model exists for characterizing texture in
images., The model used here in the development of the optimum
textural edge detector capitalizes on the relationship between
texture and spatial frequency by representing each texture as a
sinusoid of different spatial frequency (i.e., fine textures
contain greater concentrations of energy at higher spatial fre-
quencies than coarser textures do) [3), (4], [51, [e}, (7], [8],

[9l.

In general, a class of one-dimensional images with n textures

can be defined as

gl(x) = A(x) coé(wix + 0(x)) i=1, 2, e*+, n (4)
where
A(x) = a(1 + alx))  Jalx)| <1 (5a)
and
x
o(x) =b [ B(M) ax , (5b)

The functions a(x) and B(x) are random processes, w, represents

th

the i texture, a and b are constants, and x is the spatial

variable. Note that g(x) is allowed to be negative. This can be



viewed gs subtracting off the Qean level from an image, thus
allowing negative brightness or gray level., 1In this model, a(x)
represents average gray level, and B8(x) represents the variation
of spatial frequency within a texture. 1In other words, the enve-
lope of q(x) can be thought of as the average gray level varia-
tion, while the gnderlying textu?e is represented by each diffe-
rent wy, where the random change of texture for a given wy is
controlled by B(x)., Note that if time were the independent vari-
able, q(x) would be a double éideband plus large carrier modulated

waveform, with simultaneous frequency modulation.

An ideal texture is represented in this model by a sinusoid
with constant spatial frequency and constant amplitude. Hence, a
transition between two idea} textures can be represented by a pure
sinusoid at one spatial frequency followed by a pure sinusoid at
another spatial frequency. For the ideal two texture-case let

1

a(x)

O(x) 0

- © ¢ x < » (infinite size)
Thus, an image with two ideal textures and a textural edge at x =

0 is represented mathematically as

f(x) = cos(mix), - ¢ X € ® (6)

where

1 for x < 0 and

[o8
fl

2 for x > 0.

-
"
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The optimum textural edge detector is derived using the ideal, two

texture image, f(x).
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IV. OPTIMUM TEXTURAL EDGE DETECTOR RESULTS AND PERFORMANCE

This section presents the mathematical form of the optimum
textural edge detection filter and discusses the performance of
the filter for several different classes of input images. The
derivation is only briefly sketched here, the details are given in

Townsend ([10].

For a two texture input image with one texture represented by
a sinusoid with frequency w,, and the other texture represented by
a sinusoid with frequency Wy, the transfer function of the optimum

tonal edge detector is given by

HOPT(w) = H1(w) + Hz(m) (7)
where
H1(w) = HSTEP(w - w1) + HSTEP(w + w1) (8a)
Hz(w) = HSTEP(w - wz) + HSTEP(w + mz) (8b)
and
_ 2 =Kuw
HSTEP(w) = w e . (3)

It is clear from Equations (7), (8), and (3), that the optimum
textural edge detector is the sum of the responses of two bandpass

"sub" filters, H1(w) and Hz(w). Each "sub"” filter is a trans-
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lated~in-frequency version of ‘the optimum tonal edge detector,
HSTEP(w)' discussed in Section II. Note that HSTEP(w) is trans-

lated to each of the two textural frequencies.:

The optimum textural edge detector is derived by recognizing
that the two-ideal-texture input image, £(x), given in Section III
can be expressed as the sum of two truncated sinusoids, one at
frequency Wy defined for =-» < x < 0 and fhe other at frequency
Wor defined for 0 < x < +, But each of these <two truncated
sinusoids are bandpass at frequencies w, and w, respectively.
Eaéh truncated sinusoid has a step function for its complex low-
pass equivalent [11}. Because HSTEP(N) is optimized for detecting
step type edges, a bandpass version of HSTEP(w) centered on fre-
quency w; is optimum for getecting the discontinuity (modulated
step function), in the truncated sinusoid at frequency uw, [101.

Similarly, a bandpass version of H (w) translated in frequency

STEP
to w, is optimum for detecting the discontinuity in the truncated
sinusoid at frequency Woe The sum of the outputs of these two
bandpass filters produces the optimized output. A block diagram

of the filter structure for the two texture case is shown in

Figure 1.

A qualitative discussion is presented here to gain insight
into how the filter works. Figure 2 presents an example of the
optimum textural edge detector in the frequenc§ domain., Note from
the figure that the response at Wq and Wy (the spatial frequencies
representing the two ideal textures) is zero. Hence, HOPT(w) does

not respond to any input which has spectral energy only at these



two frequencies. Therefore, the response to an input representing
either pure texture (in steady staté) is zero. The textural edge
is characterized by a transition from one texture to the other.
The Fourier transform of this boundary contains spectral energy at
frequencies other than w, and wye In particular, there is energy
in the passband portions of HOPT(w), therefore filter response
near the textural edge is non-zero resulting in a large amount of

output image energy in the vicinity of the textural edge.

The Fourier transform of the entire input image is given by
Flw) = F1(w) + Fz(w) (9)

where F.‘(w) amd Fz(w) are the Fourier transforms of the truncated
textures represented by sinusoids at W, and Wy respectively.
Multiplication of F(w) with Hypp(w) yields the transform of the

output, G(w), i.e.,

G(w) = Flw) HOPT(w) (10)

but this is equivalent to

G(w) [F1(w) + Fz(w)l [H1(w) + Hz(w)l

F1(w) H,I(w) + F1(w) H2(w)

+ Fz(m) H1(w) + Fz(m) Hz(w) (11)

509
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but

(12)

I
o

F1(w) Hz(w)
and

(13)

L]
(@]

Fz(w) H1(w)

Substitution of Equations (12) and (13) into Equation (11)

yields
Glw) = F1(w) H1(w) + Fz(w) Hz(w)
= G1(w) + Gz(m) ) (14)
Hence,
g(x) = g1(x) + gz(x) (15)

Equations (12) and (13) are true because of the .spectral
separation between the two sets of bandpass inputs and systems.
In non-ideal texture cases, there can be considerable spectral
overlap between the Fourier transforms of the textures. The
spectral overlap can caﬁse non-zero response of a system, H1(w),
for example, to a texture not centered at w,, Fz(w) for example.
This could also occur if the bandpass bandwidth of H,(w) is wide

enough to pass a significant amount of energy due to F,(w).



Choosing the exponential parameter, K, such that the bandpass
bandwidths of H,(w) and H,(w) are wider than the spatial frequency
separation between w, and Wy results in non-zero response to the
two textures. There is improved resolution at the expense of an
increase in the "background" 1level in the output image, thus
decreasing edge visibility. The "background“ refers to the out-
of-resolution-interval gray level. Edge visibility describes the
difference in gray level between the in-resolution-interval and
out-of-resolution-interval (background) portions of the output
image. The spatiél frequency separation of the textures affects
the performance of the filter, i.e., the greater the separation,

the better the performance.

It was shown in Shanmugan, et al.,, [1] that the optimum ténal
edge detector could be used to enhance tonal edges in images
corrupted ‘by additive white Gaussian noise, The same theory
applies to the optimum textural edge detector. '~ The exponential
parameter, K, can be chosen to decrease the bandwidth of the "sub"
filters to decrease the effects of the noise, The price paid for
this is an increase in the resolution interval length [10]. The
benefits of increased edge visibility may more than offset the

decrease in resolution.

Figure 3 shows the result of implementing the filter on a
digital computer. Displayed are the input and output images (one-
dimensional) of the optimum textural edge detection filter for an
input with: two ideal textures (one textural edge). The textural

edge is clearly marked in the output image.

-12-
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The transfer function, HOPT(w), can be generalized to n
textures by simply adding more translated-in-frequency versions of

HSTEP(“’)’ Denote the generalized, n texture transfer function as

HdPT,n(w)’ defined as
n
= 16
Hopp, n (@) _Z H, (0) (16)
i=1 .
where
= H - + + 17
Hi(w) STEP(w wi) HSTEP(w wi) (17)

th

and w; represents the frequency of the i texture, Each of the n

filters respond to transient energy where textural transitions

occur but null out response to the ith

texture in steady state.
An example of a one-dimensional output image for an input image
containing four ideal textures with three textural edges is shown
in Figure 4. The normalized frequencies of the four different

textures in the figure are .04w, .06w, .0871, and .1m, with each

texture occurring once in the input image,

It should be pointed out that although each of the "sub”
filters (i.e., Hy(w), Hz(w), ese¢) are narrowband bandpass about
the respective textural frequencies, the overall system bandwidth
and image bandwidth are about equal, as shown in Figure 5. The
tot;l textural edge detector bandwidth, BW, is written in terms of

the tonal edge detector bandwidth as follows:

BW = w + R (11)
n



where w, represents the highest-frequency texture, and 2 is the

bandpass bandwidth of the filter centered on w,.

The most general case of ‘the model used in this development
is one in which each of the spatial frequencies representing the
different textures in the image are allowed to randomly deviate
about some average frequeﬁcy. This complication is introduced to
allow for some of the irregularity of a real texture. A one-
dimensional example in which both the amplitude and spatial fre-
guency vary in proportion to independent random processes is shown
in Figure 6. In this example, the average normalized spatial
frequencies representing the two textures are .0471 and .17 respec-
tively. 1In terms of the general model presented in Section III,
a{x) and B(x) are independent Gaussian noise processes, with unit
variance. The bandwidths of the amplitude noise and frequency
noise processes are .008w and ,006m respectively. Note that the
filter adequately marks the.two textural edges in the image, but
also responds to regions within each texture where the spatial
frequency changes. Decreasing the bandwidth of the noise modula-
ting the frequency causes the spectral separation of the textures
in the input image to increase. This results in improvéd perfor-
mance of the filter at distinguishing textural edges from fre-

quency deviations within a texture.
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V. CONCLUSIONS

A frequency domain textural edge detection filtef has been
developed which, for the given model and filter bandwidth, plaées
a maximum amount of image energy within a specified'resolution
interval near the textural edge., The textural edge detector was
derived by relating textural edge detection to tonal edge detec-
tion via complex lowpass-equivalent transformation. Hence, the
optimum textural edge detector was found to be a sum of trans-
lated-in-frequency versions of the optimum tonal edge detector..
This form allows the filter to be adapted to multitextural ima-
ées. In addition, examples weré presented which show the filter's
insensitivity to tonal features_in an image. The filter is adjus-
table; resolution can be traded for edge visibility in the case

where the input image has been corrupted by noise.

The qualitative and complex nature of texture suggests thét a
totally general approach to modeling and classifying texture may
never be found. It has been an objective in this investigation to
develop a filter which optimizes a certain criteria relating to
textural edge detection. But, as always, simplifications and
assumptions were made indicating the need for further research.
The model used in this development represented texture in ferms of
spatial frequeﬁcy, and gray tone in terms of amplitude,. One
example of further research might be to base the development on a
more complex ﬁodel which incorporates a statistical description of
texture, In addition, further work is needed in extension of the

one-dimensional filter to two-dimensions.



This work has provided an approach to textural edge detection
which can be implemented on digital hardware using the FFT. With
the increased size and availability of digital computing facili-
ties at a decreased cost, digital image processing methods will

become more popular in the future,
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Coffee, tea and kolaches
Program Overview

Dr. Diane Wickland, Program Manager for Terrestrial
Ecosystems, NASA Headquarters, Washington, D.C.
"An Overview of NASA Land Processes Program"

R. P. Heydorn, Science Manager, Fundamental
Research Program: MPRIA, NASA/Johnson Space Center,
Houston, Texas

Math/Stat: Session I

L. F. Guseman, Jr. and L. Schumaker,
Texas A&M University

"Multivariate Spline Methods and Their Use in
Classification Procedures"

Charles Peters, University of Houston
"Methods of Normal Mixture Analysis Applied to Remote
Sensing"

Break

E. Parzen, Texas A&M University
"Quantile Data Analysis Methods and Edge Detection for
Noisy Images"

Lunch
Math/Stat: Session II

C. Morris, D. V. Hinkley, and W. Johnston,
University of Texas at Austin
"Classification in a Spatially Correlated Environment"

R. P. Heydorn, NASA/JSC
"Estimating Parameters in a Mixture of Probability
Densities"

David Scott, Rice University _
"Experiences with Examining Large Multivariate Data
Sets with Graphical Nonparametric Methods"

‘Discussion
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Break
Curtis E. Woodcock, Boston University and
Alan H. Strahler, Hunter College
"Relating Ground Scenes to Spatial Variation in
Remotely Sensed Images" '

Lunch

Pattern Recognition: Session III

David Dow, National Space Technology Labs.

"Influence of Ground Control Point Selection on Landsat
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Santa Barbara
“Smooth Multidimensional Interpolation”
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