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ABSTRACT

This report provides approximations for estimating the capacitance and
the ratio of electric field strength to potential for a certain class of
electrode geometries. The geometry consists of an electrode near a grounded
plane, with the electrode being a surface of revolution about the perpendicular
to the plane. Some examples which show the accuracy of the capacitance
estimate and the accuracy of the estimate of electric field over potential can
be found in the appendix. When it is possible to estimate the potential of
the electrode, knowing the ratio of electric field to potential will help to
determine if an electrostatic discharge is likely to occur. Knowing the
capacitance will help to determine the strength of the discharge (the energy
released by it) if it does occur. A brief discussion of discharge mechanisms
is given. The medium between the electrode and the grounded plane may be a
neutral gas, a vacuum, or an uncharged homogeneous isotropic dielectric.
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INTRODUCTION

Electrostatic discharges (ESD) are a potential hazard to spacecraft
operations and many anomalies have been caused by them (Refs. 1 and 2). The
job of the spacecraft designer will be made easier if a simplified method is
developed to identify potential ESD-related hazards. If a situation is
suspected of being an ESD-related hazard, a detailed analysis is required,
except under conditions where a simplified analysis can confidently show that
the suspected hazard is really not a hazard. Since a detailed analysis is
expensive, it is desirable to narrow the list of suspected hazards as much as
possible using simplified methods.-

This report provides approximations that can help determine, for a '
certain class of electrode geometries, if an electrostatic discharge will
occur, and determine an upper bound on the strength of the discharge (the
energy released by it) if it does occur. The approximations that are provided
are estimates of the electric field strength, as a function of electrode
potential and geometry, and estimates of capacitance.

When using analytical methods to solve for quantities such as electric
field or capacitance, it is typical to simplify the problem by assuming the
geometry to have some kind of symmetry. The two kinds of symmetries that have
enough generality to provide acceptable approximations for a large number of
real situations are (1) translational symmetry in a specified direction, and
(2) rotational symmetry about some axis. An important example of the first
kind of symmetry is a long, straight wire parallel to a plane. It is
relatively easy to obtain approximate solutions for electrostatic problems
having translational symmetry. A lot of simple geometries have already been
solved analytically. For example, the solution for a single wire or even a
grid of wires parallel to a plane has been solved and the solutions can be
found in Ref. 3. If the .geometry does not have a known analytic solution and
if the well-known analytic methods (e.g., conformal transformations) are
difficult to apply, there is a graphical method for obtaining quick estimates
for quantities like capacitance and electric field strength. This graphical
method is described in Ref. 4. The rotational symmetry is more difficult.
Unless the geometry is one of the few that can be solved analytically, the
only general methods.for solving these problems are numerical methods that
require a computer. Most engineers do not have the computer codes and,
therefore, there is a need for simplified methods to obtain approximate
solutions. That is the subject of this report. The geometries that will be
treated in this report consist of an electrode, which is a surface of
revolution, near a grounded plane. The axis of symmetry of the electrode is
perpendicular to the plane.

Most electrostatic characteristics of an electrode and grounded plane are
equivalent to those of two electrodes of equal but opposite potentials, with
one electrode the mirror image of the other. Therefore, the results given in
this report can also be applied to that arrangement. There is a subtle
difference between the two arrangements in terms of- energy released by the
discharge, as discussed in Sect-ion 3. The upper bound on the strength of the
discharge, as estimated in Section 3, will require that the electrode be
everywhere convex. However, this is not a serious limitation. If the actual
electrode surface is not everywhere convex, it can be replaced by an imaginary
surface that completely surrounds the actual surface and that is everywhere
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convex. Applying the analysis to this imaginary electrode will produce an
upper bound on the energy released by it and on the energy released by the
actual electrode as well.

The material in this report is applicable when the medium between the
electrodes is either neutral gas, a vacuum, or an uncharged homogeneous
isotropic dielectric. The admittedly important case of a plasma between the
electrodes is not treated here. If a plasma is present, a. space charge will
be set up, and the potential will not satisfy Laplace's equation. The field
patterns described in this, report do not apply. Furthermore, there are
indications that a discharge is controlled by the local field induced.by an
ion and its image charge, rather than by the macroscopic or average field
(Ref. 5). Therefore, i.t is not clear whether knowledge of the macroscopic
field would even be useful. The subject of a plasma is specialized and
requires a treatment that is beyond the scope of this report.

In an effort to make this report easy for engineers to use, discussions
related to applications have been separated from the theoretical derivations
of the equations. Part I of this report is applications oriented and does not
contain the theoretical justifications of the equations. It is self-contained
in the sense that it explains how the equations are to be used, without
requiring that the reader understand where the equations came from. Part II
gives the theoretical derivations of all of the equations given in Part I.

To predict the occurrence of an electrostatic discharge, depending on the
discharge mechanism, it is sometimes enough to know the strength of the
electric field at the apex of the electrode (it is assumed that the field is
most intense there). This is the subject of Section 1. Under other circum-
stances, the electric field must be known at other locations. This is
discussed in Section 2. Energy and capacitance are treated in Section 3.
Section 4 provides information on what to do about surface deformities, flaws
in the shape of the surface, which cause it to differ from an ideal smooth
shape. The main emphasis is placed on the surface microstructure. At first
glance, an electrode surface may appear to be smooth with a well-defined
radius of curvature, but a closer look under magnification shows tiny
scratches, dents and protrusions. The question arises as to which radius of
curvature (the radius of curvature seen without the magnification or the
radius of curvature of the microscopic protrusions) should be used in the
equations presented in this report, i.e., should an estimate of the electric
field in "the large" be made or should the local electric field near the
protrusions be estimated. This is immaterial to the capacitance estimate but
it is an important question when predicting the occurrence of an electrostatic
discharge. The answer to this question depends on which kind of discharge
mechanism will be in control if a discharge does occur. Section 4, which
attempts to answer this question, combines a discussion of surface deformities
with a brief discussion of some basic concepts related to discharge mechanisms.
The physical processes that control the occurrence of an electrostatic
discharge are complex, and a thorough discussion is beyond the scope of this
report. Section 4 is not intended to be an exhaustive review, and it is not
self-contained in the sense of providing the empirical data necessary to
predict the occurrence of a breakdown. The reader will have to investigate
other references to find that information. The discussion of discharge
mechanisms is only intended to give an idea as to what level of magnification
must be Looked at in order to predict a breakdown. • •
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The appendix contains a list of example electrode geometries. Each
geometry listed is accompanied by the error obtained by using the equations
given in this report. If the reader is fortunate, he may find that his
electrode is almost exactly represented in one of the examples. It is more
probable that he will find it to lie somewhere between two geometries used in
the examples. The error given for the two examples will give the reader an
idea as to what kind of errors he can expect when he applies these equations
to his geometry.

IX



PART I _
APPLICATIONS



SECTION 1

ELECTRIC FIELD AT APEX

It is possible to estimate the potential of various parts of a spacecraft
using the methods found in Refs. 1 and 6. This estimate must be done befpre
any assessment can be made of ESD-related hazards. Therefore,, it will be
assumed that this has already been done. The potential of the electrode is.
then taken as a known quantity. This information is not enough to predict the
occurrence of an electrostatic discharge, because it is the electric field
strength, rather than the potential, that is the controlling influence. The
information that is missing is a relationship between electric field and
potential, and this relationship depends on the geometry of the electrode.
Under some circumstances, to predict a breakdown (at least in a probabilistic
sense), it is enough to know the electric field strength at the location where
the electric field is most intense. That is the subject of this section. It
is assumed, that the electrode is convex near the end closest to the plane
(although in this section it need not.be everywhere convex), so the maximum
electric field is at the apex of the electrode.

Let the apex have a radius of curvature R and be a distance L from the
grounded plane, and let V and E be the potential and electric field,
respectively, at the apex. An approximate relationship between V and E is

E 2 L + R . . . . . >

3 . • . . . . .

We can qualitatively see why Eq. (1.1) might be expected to be a good approx
imation' in the following way. Define K to satisfy

2)
'E KL + R

which can be solved for K giving

_ (LE - V) R (l\}
K - V L ' . . (l'3)

If we change one variable on the right side of Eq. (1.3) by changing the
geometry, another variable tends to make a compensating change, allowing K to
change by only a small amount. For example, if we increase R without changing
L, the electric field will become more uniform and the term (LE-V)/V, which is
the fractional error obtained by approximating the potential with the potential
from a uniform field, gets smaller. So K has one tendency to increase due to
the R on the right side of Eq. (1.3), and another tendency to decrease due to
the decrease in (LE-V)/V. The two tendencies compete with one another and
partially compensate for each other. The result is that K is not very
sensitive to the geometry. This is equivalent to saying that most of the
variation (with geometry) of V/E is accounted for by the L and R on the right
side of Eq. (1.2). Only small changes (with geometry) in K are needed to
balance the remaining variation in V/E. This indicates that if Eq. (1.2) is
applied to an equipotential surface created by the electrode (so that V, E, L,
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R, and K now refer to the equipotential surface instead of the electrode), the
value of K will be nearly the same for each equipotential surface. In other
words, K is a slowly varying function of the equipotential surface with which
it is associated. This means that its value, for any equipotential surface,
and in particular for the electrode surface, can be approximated by the
limiting value as we look at surfaces closer and closer to the plane. It is
shown in Part II that this limiting value is 2/3. This result follows from
very general considerations, requiring only that the potential possess the
assumed symmetry, and that it satisfy Laplace's equation. Replacing K with
2/3 produces Eq. (1.1).

The above discussion explains why Eq. (1.1) provides an approximation for
V/E, but it doesn't quantitatively answer the question of how good the
approximation is. This is best seen by referring to the examples in the
appendix. In these examples the,approximation is usually accurate to within
20 percent.

Although Eq. (1.1) is usually accurate, the accuracy does depend on the
geometry, and the reader may have a geometry that isn't well represented by
any of the examples in the appendix. Therefore, the error may be difficult to
anticipate. It would be nice to have upper and lower bounds on V/E for
situations like this. For a certain class of geometries, described below,
there is a simple upper and lower bound. Assume that the geometry is of such
a nature that the equipotential surfaces are all convex in the immediate
neighborhood of the axis of symmetry. Assume also that the electrode is
sufficiently pointed and elongated in the direction of the axis of symmetry so
that the electric field lines near the axis of symmetry bend towards the axis
as we move from the electrode to the plane. This is illustrated in Fig. 1.1.
It is shown in Part II that when these conditions are satisfied, V/E is
bounded by:

LR < ? * L . (1.4)L + R E

Determining if the geometric conditions required for the validity of
Inequality (1.4) are satisfied requires some ability to visualize the electric
field pattern. For some geometries this is not easy to do. Fortunately, for
many geometries (e.g., cigar-shaped electrodes), it is easy to see that the
field pattern will have the required properties, and Inequality (1.4) can be
used with confidence.

L-2



GROUNDED PLANE

ELECTRIC FIELD LINE

ELECTRODE

B

Fig. 1.1 Two examples of electric field patterns.

In Figure A, the equipotential surfaces are convex (the electric
field lines are spreading apart) and the electric field lines bend
towards the axis as we move towards the plane. In Figure B, the
equipotential surfaces are convex but the electric field lines bend
away from the axis at some locations.
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SECTION 2

FIELD PATTERN BETWEEN ELECTRODE AND PLANE

Depending on the user's needs, it may be useful to know not only the
electric field at the apex but also the way the field varies in space.
Depending on the discharge mechanism, the prediction of a discharge could
require this information. That is the subject of this section.

The field pattern described in this section will be called the "model
field." The model field is defined to be the special field that satisfies
Eq. (1.1) exactly, not only at the electrode, but also at every equipotential.
surface created by the electrode. Equation (1.1) is typically a good
approximation for each equipotential surface, so the model field serves as an
approximation for the actual field.

Throughout this report, the coordinate system is oriented so that the
axis of symmetry is the Z axis, and the grounded plane is at Z = 0 and is the
XY plane. The apex of the electrode is on the Z axis at Z = L. The potential
at a point in space is denoted by <J>, and V is the potential of the
electrode, so that <J> = V when evaluated on the electrode surface.

A. FIELD ON AXIS

It is shown in Part II that on the axis of symmetry, the potential, as a
function of Z, for the model field is given by

(2.1)

where M is defined by

M2 = L2 + | LR . (2.2)

The magnitude of the electric field is given by

V o TM T 1„,,, _ _ M2 I" ~ L J r 2 -nMA; = M _ . ... . U-J;L [M2 - zz]3/2

The right side of Eq. (2.1) is the potential, VZ/L, that would result from a
uniform electric field times a modulating factor [1 - (L/M)2] *•' */ [1 -
(Z/M)2]l/2> At points sufficiently close to the plane, the modulating
factor is nearly constant and the potential is nearly linear in Z.
Furthermore, if R»L, the modulating factor will be nearly equal to 1
everywhere between the plane and electrode so the potential resembles the
potential from a uniform electric field everywhere between the plane and
electrode. For other combinations of Z, L, and R, the modulating factor can
have an important effect on the variation of <|>.

2-1

/*>f 7 ^ 7 -y(£ ) — L [' ' ( '̂

\ - ^T



B. FIELD OFF AXIS-SERIES SOLUTION

Let r be the distance from the origin to a point in space and 0 be the
angle between the position vector (measured from the origin) of the point and
the Z axis. It is shown in Part II that the potential, expressed as a
function of r and 9, can be written as

(f>(r,9) = REL An(r)p2n+1(cos9) r < M (2.4)

n=o

where

(M2 - L2)1/2 V
. EL - M L

with M given by Eq. (2.2). pn(cos9) are the Legendre polynomials and
AJJ is given by .

A0(r) = r/R

A(r) . <2" - 1)! , .
n!(n - l)!22n-V (M/R)2" ~

For the purpose of numerical evaluation of Eq. (2.4), it is most convenient to
evaluate the Legendre polynomials by using

p0(x) = 1 Pi(x) = x

and the recursion formula (see page 541, Ref. 17)

= 2xpn(x) - pn_i(x) - [xpn(x) - pn

Afj is most conveniently evaluated by starting with Ao(r) = r/R and using
the recursion formula

A ,(r) = A (r) n > o
n+1 /,.,2 n —

The reader should be aware that the series in Eq. (2.4) has a finite
radius of convergence. It converges only for r < M. As r approaches M the
convergence becomes very slow, and large numbers of terms are needed for a
numerical evaluation.
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C. FIELD OFF AXIS-INTEGRAL SOLUTION

Unless r is much smaller than M, the series in Eq. (2.4) converges very
slowly, and large numbers of terms are needed for a numerical evaluation. For
numerical evaluation, Eq. (2.4) has Little advantage over an integral
representation of the solution. An integral representation has the advantage
that analytic properties of a function are typically more visible than in a
series representation. r

If the potential is evaluated in the XZ plane, a point of evaluation can
be assigned just the two coordinates X and Z. It is shown in Part II that the
potential (for X2 + Z2 < M2) can be expressed as

' O •
_. V ,M2 T2,l/2 __ - r + iMXcosG d9 ' (2.5)
1) = — (M - L ) ZRe J —^ 1. 2 r-z 2

0 [r - X cos 0 ] VM _ r _ 2iMXcosG

o 9 1/2

where r = [X^ + Y^] , i is the imaginary number and Re denotes "real
part of." The square root in Eq. (2.5) is the principal determination of the
square root of a complex number. As with the series solution (Eq. 2.4), the
integral solution (Eq. 2.5) is valid only for r < M. Steps for obtaining a
solution valid for r > M are suggested in Part II, although it is probably not
worth the effort, because the model field will not be a good approximation of
the actual field (except for a special electrode geometry) if we get too far
away from the axis of symmetry.

A Fortran subroutine that evaluates the potential using Eq. (2.5) is
given in Fig. 2.1. The variables sent to the subroutine are the X and Z
coordinates of the point of evaluation of the potential. These coordinates
have been made dimensionless by dividing by M (Eq. 2.2), i.e., they are
distances measured in units of M. The "potential" returned by the subroutine
is also dimensionless and is actually irL/VVM2 - L2 times the potential
<t> given by Eq. (2.5). j> is obtained by multiplying the value returned by
the subroutine by Vwl - L2/irL.
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SUBROUTINE VOLTKX, Z,V)
USED WHEN R<=1

DOUBLE PRECISION X, Z, V, DTHETA, R, Rl. R2, R3, THETA,
+THETA1, THETA2, PI, CS, SUM, A
R=DSQRT(X#X+Z#Z>
PI=2DO*DATAN2(1DO, ODO)
SUM=ODO
DTHETA=PI/2D3
THETA=-DTHETA/2DO
DO 1O J=l,2000
THETA=THETA-i-DTHETA
CS=DCOS(THETA)
R3=X*X«CS*CS-R*R
R1=DSQRT(R#R#R»R+X#X#CS*CS)
R2=DSQRT«1DO-R»R>»<1DO-R*R>+4DO*X#X*CS*CS>
THETA1=DATAN2(X»CS, R*R)
THETA2=DATAN2(-2DO»X*CS, 1DO-R»R)
A=DCOS(THETA1-THETA2/2DO)
A=A*R1/R3
A=A/DSQRT(R2)
SUM=A+SUM

10 CONTINUE
V=-Z*DTHETA*SUM
RETURN
END

Fig. 2.1 Fortran subroutine using Eq. (2.5),
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SECTION 3

ENERGY AND CAPACITANCE

Once it has been determined that an electrostatic discharge could occur,
the next question is how much of a disturbance can it make, i.e., how much
energy can it force into a system such as a nearby electronic circuit. An
upper bound on this energy is all of the energy stored in the electrostatic
field which is related to the capacitance of the electrode. An upper bound on
the energy stored in the field and the capacitance of the electrode is the
subject of this section.

If an electrode is placed in front of a grounded plane, the field pattern
on the electrode side of the plane is identical to what would be obtained if
the plane were removed and replaced with the familiar "image" electrode. In
this respect, the two arrangements are indistinguishable. But in terms of
capacitance or energy stored in the field, there is a distinction between the
two arrangements. The grounded plane arrangement has only half as much energy
stored in the field as the two electrode arrangement since the field lies in
only one hemisphere of space. It sounds paradoxical that the two electrode
case has twice as much energy available that can potentially be coupled into
an electronic circuit (if the energy were converted to radiation) than the
grounded plane case, even though the fields for the two cases are indistin-
guishable. The reconciliation is that the fields are only indistinguishable
when nothing else is present. If a receiving antenna is introduced, the field
patterns become distinguishable. If the grounded plane is replaced with the
equivalent images, there will be an image antenna absorbing the "image half of
the energy" so the real antenna can only interact with half as much energy as
it could in the two electrode case. The capacitance is also different for the
two arrangements. Capacitance between two objects is defined as charge over
the potential difference between them, with the stipulation that they have
equal but opposite charges. If Q is the charge on the electrode, the
capacitance between the electrode and grounded plane is

C (grounded plane) = ^

while the capacitance between the electrode and a similiar electrode (the
image electrode, which is at potential -V so that 2V is the potential
difference between electrodes) is

C (two electrodes) = ^rr = -C (grounded plane)

The energy stored in the field is one-half the capacitance times the square of
the potential difference so

1 2
E (grounded plane) = rC (grounded plane) V (3.1)
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and

1 ' 2
E (two electrodes) = -C (two electrodes)(2V) = C (grounded plane) V

= 2E (grounded plane) .

When using capacitance to calculate energy stored in the field, the capaci-
tance calculated for the correct physical system should be used or there will
be an error of a factor of 2.

Although capacitance and energy depend on which arrangement we are
looking at, it is trivial to convert these quantities from the grounded plane
arrangement to the two electrode arrangement, and vice-versa, making it
arbitrary as to which case is studied. For consistency, we will select a
convention. Throughout the remainder of this report, the physical system
under study will be the grounded plane arrangement. Also, the plane and
electrode will be taken to be in empty space. If a homogeneous isotropic
dielectric is present, the energy and capacitance can be calculated by first
calculating them for free space and then multiplying by the relative
dielectric constant.

Energy is related to capacitance by Eq. (3.1). It is shown in Part II
that an approximation for the capacitance for an electrode that is everywhere
convex is given by . , .

r
= BD , 2

In

(3.2)

where

L

B

= permittivity constant = 8.85 x farads/meter

= length of the electrode (i.e., distance between
intercepts with the axis of symmetry)

= distance between electrode and grounded plane

= l/x/L2* LD

rL position vector measured from the apex of the
electrode that is closest to the grounded plane

= position vector measured from the apex of the
electrode that is furthest from the plane

= unit vector normal to electrode surface
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The integral in Eq. (3.2) is a line integral. The curve of integration is the
+X half of the intersection of the electrode with the XZ plane. The X in
Eq. (3.2) is the X coordinate of a point on the curve and d& is an element of

•* •*
arc length. The quantities r^, r^, and n are evaluated at the appropriate
point on the curve. The approximation given by Eq. (3.2) will always be an
overestimate of the correct capacitance.

Although Eq. (3.2) has a formidable appearance, it.is not difficult to
evaluate numerically. An algorithm for doing this is: first obtain a graph
of the shape of the electrode (the intersection of the electrode with the +X
half of the XZ plane) and get the X and Z coordinates of N points that lie on
this curve. The first of these N points should be close to (but not at) the
apex of the electrode nearest the plane, and the last should be close to (but
not at) the apex furthest from the plane. Then the integral in Eq. (3.2) can
be approximated with the sum

N-l

Integral =
Xji)

(3.3)

where

Xa(i)
Za(i)
AiX
AjZ

A2(i)

= X and Z coordinates
= 1/2 (X(i) + X(i+l))
= 1/2 (Z(i) + Z(i+l))

of. the ith point

,= (Xa(i)AiZ -
(L+D - Za(i))AiX)/Aia

. For a numerical example in using this .algorithm, consider the electrode .
shown in Fig. 3.1. Capacitance depends on the overall size of .the geometry,
so we have to know how much distance each grid line of the graph represents.
Suppose a major division represents one meter (a large electrode). The left
apex is about 0.43 meters from the grounded plane, and the right is about
5.2 meters. Thus, L = 0.43 meters and the length of the electrode is about
D = 5.2 - 0.43 = 4.. 77 meters. The coordinates (units are meters) of a number
of points representing the curve are shown in the columns labelled Z(i) and
X(i) in Table 3.1. Note that the first entry is not the coordinates of the
left apex, but the coordinates of the representative point next to the apex.
Similarly, the last entry does not refer to the right apex, but to the repre-
sentative point next to it. A division by zero will result if this .procedure
is not followed. The terms in the sum in Eq. (3.3) are shown calculated in
Table 3.1. The value of B used in the calculations is B = I/ \l\2- + LD =
0.6688 meters"*-. The individual terms are then added together to form the
sum in Eq. (3.3). The units are meters. This sum approximates the integral
in Eq. (3.2). It must then be multiplied by
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Sire _ 8ff(8.85 x 10 farads/meter)

In
(0.6688X4.77) 2 /1+(0.6688)(0.43M

= 1.990 x 1(10 .meter

The estimate of the capacitance is

C = /1.990 x 10~10 fa^ads\ x (2.142 meters) = 4.26 x 10~10 farads .
\ meter /

The actual capacitance for this electrode happens to be known (through other
methods); it is 3.56 x 10~1" farads. In this example, the hand calcula-
tion was accurate to within 20 percent of the correct value.

While Eq. (3.2) represents a quantity that is larger than the actual
capacitance, a numerical evaluation of the equation could underestimate the
capacitance if the evaluation does not accurately represent the equation. The
integration that is simulated by the numerical algorithm does not include the
integral on the section of the curve that is between the apex and the first
point (X(l), Z(l)). This is intentional, to avoid dividing by zero. The
first point should be made close enough to the apex that this section of the
curve represents an insignificant contribution to the capacitance. Also, the
coordinates must be entered with enough precision to display the required
convex nature of the curve. If the curve looks very flat, a lot of digits may
have to be entered. Unless the points display some curvature near the apex, a
division by zero will result.

It has been assumed that the curve is everywhere convex. This requirement
is slightly stronger than is really necessary. Being everywhere convex is a
sufficient condition for the calculational method to work, but the method will
sometimes work (as can be seen in a few of the examples in the appendix) even
if the curve is not everywhere convex. However, applying this calculational
method to such a curve is likely to produce mathematically undefined quan-
tities. Furthermore, the examples in the appendix show the largest errors for
such curves. If the actual electrode does not have this convex property, it
is suggested that it be replaced with a slightly larger ficticious electrode
that encloses the actual electrode and that does have the required property.
This may be necessary to avoid mathematically undefined terms. Even if it is
not necessary, it is likely to produce greater accuracy. Applying Eq. (3.2)
to the ficticious surface is likely to produce a smaller capacitance estimate
than would be obtained by applying the equation to the actual electrode.
Since both estimates are upper bounds on the correct capacitance, the smaller
estimate is more accurate.

The capacitance estimates shown in the appendix are accurate to within
50 percent in the examples that are everywhere convex. A few examples show
surfaces that are not everywhere convex but the capacitance estimate could
still be made. In these examples the error is much larger. The examples also
demonstrate the previously stated fact that the predicted capacitance is always
greater than the correct capacitance. If a geometry is not well represented
by any of the examples, the accuracy of Eq. (3.2) will be somewhat uncertain
but it is certain that the estimate will be higher than the correct value.
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The estimates produced by Eq. (3.2) are not highly accurate, the equation
is intended for rough estimates. The purpose of these estimates is to serve
as a preliminary study of potential ESD hazards to help determine if a more
elaborate analysis is warranted. This is done by estimating upper bounds on
the undesirable effects of an ESD, such as the energy coupled into a nearby
circuit. There are a number of uncertainties in the problem, such as
uncertainties in the voltage at which a discharge will occur, uncertainties in
the spectrum of the ESD-induced electromagnetic radiation, and uncertainties
in the coupling between the electromagnetic radiation and.a nearby circuit.
Given all of these uncertainties, an error in the capacitance estimate of even
a factor of two (electrical engineers should read this as 3dB) is not bad for
a preliminary investigation.

A Fortran code, which uses the same algorithm as the hand calculation of
the previous example, is given in Fig. 3.2. The code assumes that an input
data file exists. The first three entries of the data file are, respectively,
L, D, and the number of interior points that will represent the c.urve.
"Interior," in this case, means points between, but not at, the intercepts of
the curve with the Z axis. The remaining entries of the data file are the Z
and X coordinates of the interior points. Following the listing of the
Fortran code is a sample input data file. This data file was constructed for
the same electrode that was used in the hand calculation so the reader can
compare the data file with Table 3.1 if there is any confusion.
The units that are to be used are meters.

If the reader must routinely solve such problems so that a more elaborate
computer code is justified, he should be aware that more accurate methods exist
(e.g., a charge simulation technique where N point charges of unknown charge
are placed on the Z axis inside the electrode and image charges are placed
inside the image electrode. Specifying N points on the electrode surface
produces N linear equations that are used to solve for the unknown charges).
The advantage of the method given here is that it can be done by hand or
quickly typed into a computer.

As an incidental remark, Eq. (3.2) is not the only upper bound on the
capacitance. A systematic procedure for constructing upper bounds is described
in Part II. This author has tried several, Eq. (3.2) being the best compromise
between accuracy and simplicity, of the few that were tried. With trial and
error, a better method may be found.

3-5



Table 3.1 Example hand calculation to estimate capacitance.

L = 0.43 B = 0.6688 ' D = 4.77

i

1

2

3

4

5

6

7

8

9

10

11

12

13

«i>

.5

.6

1.0

1.5

2.0

2.5

3.0

3.5

4.0

. 4.5

5.0

5.1

5.15

i •

1
2
3
4
5
6
7
8
9
10
11
12

X(i) Za(i)

.3 .55

.5 .8

1.0 1.25

1.4 1.75

1.6 2.25

1.72 2.75

1.78 3.25

1.72 3.75

1.57 4.25

1.3 4.75

.7 5.05
*

.45 5.125

.25

X (i)
3.

vVi)A2(i)

7.179C-1) x 2
8.957(-l) x 5
9.978(-l) x 4
9.656(-l) x 2

Xa(i)

.4

.75

1.2

1.5

1.66

1.75

1.75

1.645

1.435

1.5

.575

.35

Tan~L

.573(-l)
•955(-l)
.376(-l)
.475(-l)

1.003 x 1.958(-1) = .
1.016 x 1.646
9.908(-1) x 1
9.606(-1) x I
9.08K-1) x 8
9.250(-1) x 8
9.944(-l) x 9
1.476 x 3.031

(-1) = .
.210(-1)
.004(-1)
.330(-2)
.479(-2)
.943(-3)
(-3) = 4

AiZ AiX Aid Aj^i) A2(i)

.1 .2 .2236 7.156(-2) 4.338

.4 .5 .6403 1.796(-1) 3.904

.5 .4 .6403 4.248(-l) 3.405

.5 .2 .5385 9.025(-1) 2.674

.5 .12 .5142 1.189 2.303

.5 .06 .5036 1.461 2.029

.5 -.06 .5036 2.073 1.505

.5 -.15 .522 2.530 1.159

.5 -.27 .5682 3.078 8.113(-1)

.5 -.6 .781 4.279 6.146(-1)

.1 -.25 .2693 4.502 7.427(-2)

.05 -.2 .2062 4.639 1.212(-2)

/LB /A9(i)\ & I\ vAl(i);
= .1847
= .5334
= .4366
= .2390
1964
1672
= .1199
= .0964
= 7.564(-2)
= 7.843C-2)
= 9.888(-3)
.474(-3)

Total = 2.142 meters
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Fig. 3.1 Electrode used in the numerical example of the evaluation of
Eq. (3.2).
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PROGRAM CAP
DIMENSION Y(100>, ZC1QO)
REAL L. M
OPEN(UNIT=9. FILE="CDATA",STATUS='OLD')
REWIND(9)
READ(9, ») L
READ(9, ») D
READ (9,*) N
DO 10 1=1, N
READ (9,*) Z<I),Y(I>

10 CONTINUE
M=SQRT(L*L+L*D>
M=l. 0/M
S=0. 0
DO 20 1=1, N-l
YI = <Y<I>+Y<I-H>>/2. 0
ZX-(Z(X)+Z<X + 1»/2.0
DELTAZ=Z(H-1)-ZCI>
DELTAY= Y < 1+ 1 > - Y < I )
DELTAL=SQRT<DELTAZ*DELTAZ+DELTAY»DELTAY>
Al = ( YI*DELTAZ- < Z I-L) *DELTAY ) /DELTAL
A2= ( YI #DELTAZ+ ( L+D-Z I ) *DELTAY ) /DELTAL
W1=L*M*SQRT( A2/A1 )
W2=YI/(SQRT(A1»A2) )
SP=W2#ATAN ( Wl ) »DELTAL

20 CONTINUE
0-(1. 0+M*L)/(1. 0-M*L)
Q=ALOG(Q)
Q=1.0/<Q*Q)
Q=<2. 22E-10)*Q/(M*D)
S=Q*S
PRINT*, "CAPACITANCE = ",S, " FARADS"
END

SAMPLE INPUT DATA FILE NAMED CDATA

. 43
4. 77
13
. 5, . 3
. 6, . 5
1.0,
1. 5,
2. 0,
2. 5,
3.0,
3. 5,
4. O,
4. 5,

0
4
6
72
78
72
57
3

5. 0, .7
5. 1, . 45
5. 15, . 25

Figure 3.2 Fortran code for estimating capacitance.

3-8



SECTION 4

SURFACE DEFORMITIES AND DISCHARGE MECHANISMS

Surface deformities can be put into two categories, deformities in the
large (i.e, deformities in the macroscopic contours of the electrode), and
deformities in the small (the sharp protuberances that are associated with the
surface microstructure). This section provides information on how to deal with
such deformities when attempting to predict the occurrence of an electrostatic
discharge. The main emphasis will be placed on deformities in the small,
because these are the most difficult. At first glance, an electrode surface
may appear to be smooth with a well defined radius of curvature, but a closer
look under magnification shows tiny scratches, dents, and protrusions. The
question arises as to which radius of curvature (the radius of curvature seen
without the magnification or the radius of curvature of the microscopic
protrusions) should be used to calculate the electric field, i.e., should the
electric field in the large be estimated or should the local electric field
near the protrusions be estimated. This section attempts to answer that
question. The answer depends on which kind of discharge mechanism will be in
control. Therefore, the discussion of deformities in the small is combined
with a brief discussion of several types of discharge mechanisms. This
discussion is not an exhaustive review of discharge mechanisms and it does not
provide all of the empirical data necessary to predict the occurrence of a
breakdown. The discussion is only intended to give an idea as to what level
of magnification must be looked at in order to predict a breakdown.

Deformities in the large can be treated in a rather simple way. For
example, suppose the radius of curvature of an electrode surface is a smoothly
varying function of position except near the apex where there is a deformity
in the form of a small protrusion. Some examples in the appendix show elec-
trodes with bumps on the end, and these examples indicate that Eq. (1.1) is
still accurate providing that R is the radius of curvature at the end of the
protrusion. To calculate V/E, the protrusion should be treated as part of the
geometry and Eq. (1.1) used. As a second example, suppose the deformity is a ,
dent near the apex. "In this case the location of most intense electric field
will probably be at the rim of the dent rather than at the apex. To calculate
the most intense electric field, it is suggested that a worst case estimate be
obtained by simulating the electrode with a pointed conductor having a radius
of curvature at the apex equal to the maximum radius of curvature of the actual
conductor. For either kind of deformity in the large, if the deformity is
small compared to other dimensions of the geometry (including the spacing
between electrode and grounded plane), it can obviously be neglected for the
capacitance calculation.

As deformities are made smaller, by the time characteristic dimensions
are on the order of tens of microns, they will begin to blend in with the
microstructure of the surface. The effect that the microstructure has on the
breakdown voltage depends on the discharge mechanism which, in turn, depends
on the environment that the electrode is exposed to. Some discharge mechanisms
are not yet well understood and are still an area of active research. A
detailed discussion of what is known is beyond .the scope of this report, but a
few basic concepts are briefly discussed below.



A. BREAKDOWN IN VACUUM

If the electrode is in a vacuum, there are several different mechanisms
that can control the discharge as discussed below. In all cases, the break-
down voltage is very sensitive to the microstructure of the surface. If the
surface is not perfectly clean, the breakdown voltage is also sensitive to
contaminants such as oxides, adsorbed gases, etc. For a clean surface under
ideal conditions, discharges are primarily controlled by the following
mechanisms (see Ref. 5).

1. Field Emission at Cathode

If the gap between electrodes is less than 30 to 100 microns,
and/or if the electric field at the cathode is much stronger than at the
anode, a breakdown is controlled by field emission at the cathode. When the
field emission current density reaches a critical value, joule heating
produces an instability. For some materials the instability is caused by the
softening of a protrusion in the microstructure so that it becomes (due to the
force of the electric field) longer and sharper, producing even stronger
fields and current densities. In other materials the instability is associ-
ated with a brittle fracture of a protrusion in the microstructure. In either
case, the instability typically leads to a sequence of events (depending on
the process, the sequence may begin with vaporization of cathode material,
ejection of a fragment of material, or an emitter explosion which creates a
plasma flare) that ultimately produces a breakdown. The critical current
density (the value of the current density that initiates the breakdown process)
is reproducible for a given material. As the current density increases to
this critical value, the current is due to field emission, so that for a given
material a well-defined electric field strength (given by the Fowler-Nordheim
equation) corresponds to the critical current density. This implies that
breakdown occurs when the electric field at the protrusion reaches a critical
value. These values are known for many materials. Unfortunately, the
relationship between the microscopic electric field at the protrusion and the
macroscopic electric field is very sensitive to the microstructure, which is
not usually known.

2. Breakdown Controlled by Conditions at Cathode and Anode

If the electric field at the anode is comparable to or larger than
that at the cathode, and if the spacing between anode and cathode is more than
30 to 100 microns, breakdown is controlled by an interaction between cathode
and anode. Electrons leaving the cathode due to field emission bombard the
anode, vaporizing anode material. Electron bombardment of anode vapor causes
ionization which produces an enhanced supply of electrons bombarding the anode
to produce more vapor, and a runaway effect occurs. The process is further
accelerated as positive ions approach the cathode and create a space charge
which intensifies the electric field near the cathode and increases the
electron emission current. Ion bombardment of the cathode creates another
increase in the electron emission. When this interaction between cathode and
anode takes place, breakdown will occur when the electric field at the cathode
is lower than would be required if field emission alone (case "1" above) was
controlling the process. But how much lower depends on the macroscopic field
pattern as well as on the microstructure of the electrodes. Consequently,
this case becomes difficult to treat quantitatively.
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Under less ideal conditions, even if the electrodes are perfectly clean,
discharges can be triggered by mechanisms not listed above. For example, a
macroparticle can settle on an electrode, obtain some charge, and be repelled
to the other electrode. If it impacts with enough energy, a discharge can be
induced (Ref. 5). Another very important example is the sudden creation of a
plasma. A discharge can occur at one location, creating a plasma which spreads
to other locations and induces discharges at those locations (Ref. 7).
Discharges through this mechanism can occur at very low voltages;

In summary, when electrodes are in an imperfect vacuum (e.g., the space
environment), microscopic surface defects have a large influence on the break-
down voltage. But the microscopic structure is rarely known, and the dis-
charge process is complicated by so many other variables that the occurrence
of a discharge is difficult, if not impossible, to predict except in extreme
cases. Reference 8 reports blow-off arcing at the several hundred volt level
and explains that this phenomenon occurs, in the space environment as well as
in the laboratory. Reference 9 reports arcing at "greater than several hundred
volts." Unless the reader has sufficient knowledge from his own resources to
rule out the possibility of a discharge, it is suggested that it be assumed
that a discharge is always possible when the medium separating the electrodes
is the space environment and potentials reach several hundred volts.or more.
This is especially true if discharges can occur at other locations because a
plasma can be created that induces a discharge at the location of interes.t
(Ref. 7). The criteria for determining if an ESD hazard exists might be taken
to be the calculated upper bound on the energy that could be released if a
discharge should occur (see Section 3).

B. BREAKDOWN IN SOLID DIELECTRIC

Breakdown through a dielectric due to a voltage applied to an electrode
will always be a concern when high voltages are involved, because the function
of a circuit element usually puts a limitation on how thick a dielectric can
be. This situation is unavoidable. There are two other situations that are
sometimes,, if not most of the. time, avoidable that can produce breakdowns.
One situation occurs if a dielectric leaves too much of an electrode exposed
so that an arc can follow along the surface of the dielectric (flashover). In
order to determine the likelihood of this event, the dielectric cannot be
treated as an infinite medium, and its surface must be included in the analy-
sis. Strong surface charges are set up, which produce intense .electric fields
at the edges of the dielectric near the conductor, and the potential does not
satisfy Laplace's equation at those locations. Consequently, the results of
the previous sections of this report do not apply. The second situation is
internal charging. This occurs when energetic charged particles from the
spacecraft environment penetrate part way into the dielectric and get stuck
there. Over a period of time they accumulate and create very intense electric
fields which can lead to premature breakdown. Because this effect creates a
space charge in the dielectric, the potential does not satisfy Laplace's
equation. Therefore, the results of .the previous sections of this report do
not apply.



One thing that flashover and internal charging have in common is the fact
that it is~well known that these can be the effects that place the limits on a
dielectric's ability to insulate unless precautions are taken to prevent their
occurrence and such precautions should be taken whenever possible. Flashover
can be prevented by covering exposed conducting surfaces with a dielectric.
Internal charging can be reduced to low levels by mass shielding. Assuming
that such precautions have been taken, the next discharge mechanism is a dis-
charge through the dielectric (often call "treeing") due to the field created
by the electrode. It is this process that will be considered here.

Like breakdown in a vacuum, which is described statistically (with the
statistics controlled by the random microprotrusions, impurities, grain
boundaries, etc., of the electrode surface), treeing is also a statistical
phenomenon. However, authors of recent literature typically stress the
importance of dielectric flaws rather than electrode microstructure on the
statistical scatter (see, for example, Ref. 10). Examples of dielectric flaws
are flaws in the crystal structure (if there.is a crystal structure), small
voids or cracks, and contaminants.

Basically, the process works as follows. It is initiated by the inter-
action of charged particles accelerated by the electric field with some weak
point (a flaw) in the dielectric, producing a small region containing
vaporized dielectric material. Since the region is now occupied by a vapor,
the mean free path between collisions of charged particles with vapor molecules
becomes long enough for ionization of the vapor molecules to occur, and an
avalanche, the familiar Townsend discharge, begins. If conditions are right
(the Paschen Limit is reached), the discharge could become an arc, although
this is not necessary in order for the breakdown process to continue. The
bombardment by charged particles on the far end of the vapor-filled region
causes more vaporization, and the region elongates, forming a "tree". By the
time the tree reaches the opposite electrode, arcing between electrodes
becomes possible.

Once the formation of a tree has been initiated, the breakdown process
progresses easily, and the tree grows. The difficult part (although it is not
difficult enough from our point of view) is getting it started. Flaws in the
dielectric play a fundamental role in the process and as already stated, their
importance rather than the importance of the electrode surface microstructure
is typically emphasized in recent literature. This suggests that the elec-
trode surface microstructure may not be an important influence. This idea is
supported by the fact that in high voltage cables, trees often start from par-
ticles or voids that are completely surrounded by insulation material
(Ref. 10). It is also supported by an experimental result described in
Ref. 10. Two needles were embedded in a polyethylene dielectric and the
voltage between them was increased until breakdown occurred. It was found that
breakdown started at a beeswax-polymer interface, which is near the middle of
one of the needles, instead of at the end of the needle where the electric
field is 40 times as strong. Furthermore, the path of the breakdown ended on
the shaft instead of the tip of the other needier This suggests that breakdown
is controlled more strongly by dielectric flaws than by local electric field
enhancements. Still more support for the idea that local electric field
enhancements are not strong controlling factors is provided by experimental
results shown in Ref. 11. In this experiment, pins having various radii of
curvature at the tip are embedded in a dielectric and the breakdown voltage is
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measured. It was found that if the radius of curvature is made less than about
20 microns, further reductions in the radius of curvature did not affect the
breakdown voltage.

The conclusion based on the above observations is that deformities in the
electrode surface having characteristic dimensions of about 20 microns or less
are probably not important and can be ignored. The reader should be aware
that this conclusion is this author's speculation and not an indisputable
fact. Treeing is not a well understood subject. The reader should also be
aware that predictions of a breakdown are still statistical, even if the
statistics are not controlled by the electrode surface microstrueture, and the
statistics depend on the length of time the electric field is applied as well
as on other environmental and fabrication related factors.

C. BREAKDOWN IN NEUTRAL GAS

When the Townsend criteria for breakdown, which is a theoretical deri-
vation of Paschen's law, is applicable, the mechanism of breakdown in a gas is
probably the only breakdown mechanism that is well understood. The basic idea
is the following. An electron is emitted from the cathode due to field
emission, ion bombardment, or other means. The electron collides with gas
molecules creating ions and more free electrons. These free electrons are
accelerated by the electric field and through collisions create still more ions
and free electrons. This is a Townsend discharge. • It is an avalanche effect
with free electron density increasing as we move away from the cathode, but it
can also be a stable (independent of time) discharge. To get the runaway
effect (the arc) something else happens. The positive ions are attracted to-
the cathode and each ion that hits the cathode has some probability of freeing
an electron due to secondary emission. If conditions are right, the ions
resulting from one electron leaving the cathode will be in sufficient quantity
to free more than one (on the average) electron through secondary emission.
Therefore, each electron leaving the cathode will ultimately result in more
than one electron leaving the cathode a short time later, and a runaway effect
occurs. This is the arc, and the process described can be used to deduce
Paschen's law. A quantitative treatment can be found in Ref. 12. When this
process is occurring, the occurrence of breakdown is controlled by the number
of gas ions ultimately produced by a single emitted electron. We would
intuitively expect that an electric field will contribute to the avalanching
of the ionization only if the spatial extent of the field is larger than some
number of mean free paths. The local field enhancements (which have very small
spatial extents) due to the electrode surface microstructure would not be
expected to have an important effect.

The above statements suggest that the electrode surface microstructure is
not important in the breakdown of a gas. This turns out to be true over the
range of gas density where Paschen's law applies. Fortunately, this is a wide
range of density. Unfortunately, it doesn't apply to all densities. At
sufficiently high densities, the high local electric fields due to electrode
imperfections, dust, etc., can lead to streamer-initiated breakdowns which
result in Paschen's law not being satisfied (Ref. 13). Streamers are regions
of low density and they behave similarly to the trees described in the discus-
sion on solid dielectrics (Ref. 14). The effect of the streamer is to lower
the breakdown voltage.
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The conclusion from the above statements is that the, protrusions found in
the electrode surface microstructure are important for some gas densities and
not for others. It would be helpful to know at what densities the transition
occurs and quantitatively just how important the protrusions are when they are
important. This information, applicable to air and SF6, can be found in
Ref. 15. The data found in Figs. 5, 6, and 11 of Ref. 15 gives breakdown
electric field strength in terms of surface protrusion characteristics. The
data shows that the protrusions are only important,' in the case of SF6, when
the gas pressure times protrusion height is greater than about 40 bar-micron.
So for a given pressure, protrusions with height less than 40 bar-micron
divided by that pressure can be neglected under the conditions where the test
data is valid. This only applies to pressures at or above those required for
Paschen's law to be valid. At extremely low pressures, too low for Paschen's
law to be valid, the electrode surface microstructure becomes important again
because the discharge mechanisms applicable to a vacuum will begin to occur.

At pressures sufficiently high for the microstructure to be important,
the data in Figs. 5, 6, and 11 of Ref. 15 can only be used if the maximum
protrusion heights are known. This information is usually not known and
breakdowns may have to be treated statistically. Even if the initial micro-
structure were known, it can be, depending on the initial state, significantly
rougher after a breakdown occurs. If a worst case assumption is made for
protrusion heights that takes into account the effects of arcing on surface
roughening, and if the gas is air or SF6, the data found in Ref. 15 provides a
method of predicting breakdowns if the electric field strength is known. This
information can be calculated from the methods found in Sections 1 and 2 of
this report.
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PART II - DERIVATIONS OF THE EQUATIONS



SECTION 5

PRELIMINARY DISCUSSION

The sections to follow provide mathematical derivations of the statements
made in the first three sections of this report. Since all of the statements
refer in some way or another to geometric properties of conductors or field
patterns, it is best to begin the analysis by establishing a connection between
geometric properties of the field and quantities that analytically represent
the field. This connection is made in Sections 6 and 7, and provides a tool
that will be used in later sections. Sections 8 through 12 each provide a
derivation of a specific equation given in Part I. Section 13 provides a
general description of the specific method, used in this report, of applying
the least action principle to obtain a capacitance estimate. Section 14
derives the relatively simple capacitance estimate given as Eq. (3.2).
Section 15 shows how a more accurate estimate can be obtained (involving a
double integral) but this estimate takes more labor to numerically evaluate
than Eq. (3.2). Algorithms for numerical evaluation are not provided and the
reader will have to invent his own if he wishes to use those-results.

Although it is not essential to the analyses that follow, various
statements can be simplified if we are definite about the orientation of the
coordinate system and the charge state of the conductor. The coordinate system
to which all future discussions will refer is shown in Fig. 5.1. The phrases
"left side" and "right side", which will be used frequently, refer to this
figure. The conductor is assumed to be at a positive potential Vo relative to
the grounded plane, e represents the electric field at an arbitrary point in
ŝ pace while E represents the electric field on the Z axis so that E(Z) =
e(0,0,Z). E or e without an arrow or subscript represents the magnitude of
the electric field. <j> represents the potential at an arbitrary point in space
while V represents the potential on the Z axis so that V(Z) = <j>(0,0,Z). Using
these conventions, we don't use a negative sign when relating E to the deriva-
tive of V and we write

E.g . (5.1)

L represents the distance between grounded plane and conductor. D is the
distance between intercepts of the conductor with the Z axis. R(Z) is the
radius of curvature, at the intersection with the Z axis, of the equipotential
surface that intersects the axis at Z. Ro = R(L) is the radius of curvature
of the left apex of the conductor.
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ELECTRODE

GROUNDED PLANE

Fig. 5.1 Coordinate system orientation.

The Y axis is chosen to make a right-handed system.^ The electrode
is at potential Vo which is taken to be positive, e and $ ar|
the electric field and potential at an arbitrary point while E(Z) =
e(0,0,Z) and V(Z) = <|>(0,0,Z) are the electric field and potential
on the Z axis. R(Z) is the radius of curvature, at the intersection
with the Z axis, of the equipotential surface that intersects the
axis at Z. R0 = R(L) is the radius of curvature of the apex of
the electrode. E0 = E(L) is the magnitude of the electric field
at the apex. D is the distance between intercepts.
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SECTION 6

RADIUS OF CURVATURE OF EQUIPOTENTIAL SURFACE

An arbitrary equipotential surface intersects the XZ plane to define a
curve in the plane. If we look at the portion of the curve that is on one
side of the Z axis, the curve defines X as a function of Z and can be expressed
as X =s f(Z). The equation for the radius of curvature at any given point on
the curve can be found in any calculus text book and is

_!
R

12X

dZ
(6.1)

3/2

1 + ^

The equation of the curve X = f(Z) can also be expressed as <j)(X,0,Z) = constant
where the value of the constant is the potential at the point of interest.
Implicit differentiation yields

9£(X,0,Z) a_t(X,0,Z) dX
az ax dz ~ u

23 ),Z) dX cT£(X,0,Z) /dX \
IdZ + OW2 \ dZ )

at(x,o,z)
3X

QL

The above equations can be solved for dX/dZ and
substituting into Eq. (6.1) gives

Doing so and

1

32<t>

3Z2 (
at\ 2 324>
ax / szax

R ~ 2

( a x ) + (
az

a_t\
3Z y

3X

i ' l
3X2

3/2

( 3£\ 2

3Z j
(6.2)

Letting e^ represent the obvious unit vectors, the two dimensional del operator
is defined by

_ _
20 ~ ei ax

_
3 az • (6.3)
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Eq. (6.2) can be rewritten as

1
R

(6.4)

That the right side of Eq. (6.4) is the same as the right side of Eq. (6.2)
can be verified by a brute force expansion using Eq. (6.3). The chain rule
can be applied to the two dimensional del operator allowing Eq. (6.4) to be
rewritten as

1
R

2D 2D (6.5)

Eqs. (6.4) and (6.5) apply to an arbitrary function <j>. The fact that
it is a potential and satisfies Laplace's equation has never been used. We
now make use of these facts. Letting V represent the three dimensional del
operator, the electric field is given by

Since the electric field in the XZ plane has no Y component, 3<|>/3y = 0 in
the plane so

e = - V <j> (in XZ plane)

and Eq. (6.5) becomes

1
R

?
2D

-» •»
• e e

e

• v e
2DG

2
e

(6.6)

If p denotes radial distance from the Z axis, 3/3X = 9/3p when the derivatives
are evaluated in the XZ plane and Gp = ex in that plane so

. ^ 3e 3e
$ . ? P.+ _*
2D 3p 3Z

(6.7)

In cylindrical coordinates, the equation v • e = 0 becomes

e
-P.

3e 3e

p + 3p + 3Z ~ °*

The above two equations give

. * _ !e.
2D * E ~ p '

v

(6.8)

(6.9)
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Eq. (6.6) becomes

I I
R ~ e -fi- + *• • V2D£

P e
(6.10)

Now let the point of evaluation move along the equipotential surface towards
the Z axis. R becomes the radius of curvature evaluated on the Z axis while

t .
8_£

8Z '

Furthermore, Ep/p becomes an indeterminate form and 1'Hospital's Rule gives

e 8e

p 8p

Eq. (6.10) becomes

(6.11)

I _ lira 1
R p-»0 e

8e ap _ 8_e
8p 8Z

(on axis) . (6.12)

Evaluation at p = 0 commutes with differentiation with respect to Z so

oj: ^ 8e(0,0,Z)
8Z 8Z ~ 8Z

(6.13)

Eqs. (6.8), (6.11), and (6.13) give

8e
_£. .»
8p

1 9cz 1 8e
2 8Z 2 8Z '

The expression for the radius of curvature now becomes

(6.14)

_

R 2s(0,0,Z)
8e(0,O.Z)

8Z

Since the electric field strength increases as we move towards the conductor,
the absolute value sign can be dropped. Using the symbol E(Z) = e(0,0,Z),
the equation finally becomes

1 I dE(Z)
R(Z) 2E(Z) dZ

(6.15)
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SECTION 7

RADIUS OF CURVATURE OF ELECTRIC FIELD LINE

As was done in the previous section, we will look at curves in the XZ
plane. This time the curves will represent electric field lines instead of
equipotential surfaces. •

Any calculus test book provides several expressions for the radius of
curvature of a curve. One is given by Eq. (6.1). Another is (with Q denoting
radius of curvature of an electric field line)

1

Q dS

where dS is an element of arclength and 0 is the angle between the tangent
to the curve and the Z (in our case) axis,. It is customary to use absolute
values on the right side of the above equation but for our applications it
will be useful to allow the radius of curvature to be positive under some
conditions and negative under others.

The sign conventions that will be used are as follows. The radius of
curvature of an electric field line will be positive if the field line bends
towards the Z axis as we move away from the conductor, i.e., Q is positive if
the field line is concave when viewed from the grounded plane. Otherwise Q is
negative if it is finite. The arclength along a curve to a point on the curve
will be taken to be increasing as the point moves away from the conductor.
The unit tangent vector to the curve points in the direction of increasing arc-
length, i.e., it points away from the conductor. The unit tangent vector is
in the direction of the electric field (since the conductor is assumed to be
positively charged). 0 is the angle between the unit tangent vector and
£3. When all of these conventions are followed, it is easily seen that the
correct sign for Q is given by

1
Q

d9
dS (7.1)

To express Q in terms of electric field, note that tan 9 = ex/ez and

d9 d9 d(tan9)
dS ~ d(tan9) dS " COS

dS c

e + e

de . dez 1 x
dS + e dSz

or

d9_
dS

. e de e de1 z x x z
dS dS
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Note that

d _ dX 3_ dZ 3_
dS ~ dS 8X + dS 8Z

But dX/dS and dZ/dS are the components of the unit tangent vector which points
in the direction of increasing arclength. Tĥ s is the direction of the
electric field so the unit tangent vector is e/e and

d _ _x 3_ z 8
dS ~ e 3X + e 8Z '

This gives

.„ , e e 9e e 2 8e e 2 8e e e 8e |do _ !._ x z _ x z _ x _ x _ z _ x z _ z
dS ~ 3 8X + 8Z 8X 8Ze L j

AA brute force expansion of V. • (e e~/e - ez e./e) will verify that it is the
same as the right side of the above equation. We now have

dS

or

.
= . ^L _ _5_ (72)

Q 2D y e e / ^ '

Eq. (7.2) could also have been deduced by making an analogy with Eq. (6.4).
In Eq. (6.4) the operator V2D is operating on the unit vector (the electric
field divided by its magnitude) that is perpendicular to the curve that the
radius of curvature refers to. The same holds for Eq. (7.2). But the sign
convention would have been less obvious if we used this analogy instead of
starting with Eq. (7.1).

The fact that the electric field has a zero divergence and curl has not
yet been used. As in Section 6, p will denote radial distance from the Z
axis. In analogy with Eq. (6.7) we write Eq. (7.2) as

_ - .8p y e j ' '

Expanding and using the fact that the three dimensional curl of e is zero

e o e o_z 8_£. _p_ 3_£ :. ( .
2 3p ~ 2 8Z ' U'J;e r e
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In the applications to follow, the behavior of the radius of curvature Q
will be of concern only in the immediate vicinity of the Z axis. But as the
point of evaluation approaches the Z axis, Q will become infinite (the electric
field line is straight on the Z axis). Therefore, ;the best way to describe the
behavior of Q in this limit is to compare its behavior to p. This motivates
us to define T by

T = lim „ n '
p-K) P Q

Once T has been solved, the behavior of Q is given by

1
Q * Tp.

If the right side of Eq. (7.3) is used to replace 1/Q in Eq. (7.4), the
resulting expression can be written as

!_ /1P_\ 9JL
2 V P I 3Z

(7.4)

(7.5)

T = lim
p-»0

z
2e 0 3e

3p

The quantities in parentheses are indeterminate forms and 1'Hospital's Rule
gives

T = lim
p-»0

I 9A I_ IlfL 3JL
e a 2 2 3p 3Z

or, using Eq. (6.14)

T = lim
p-»0

. ~1 3 c 3_£

2 I 3ZC 3p' 2c' x . _

To get another expression for 32e/3p2, note that

_ =

9p dp
2 I 1/2 _ !p_

so

3e
_f
3p

c 3ez z
3p

(7.6)

, e 3e
I - P _ _
e p 3p

3p2 p 8p

Using Eq. (6.14) this becomes

ife

8P2
I /S.Y + !!4e I 3Z / + e

e ,
^I
e p

32e

3e_

3p

32e
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But rectangular components of the electric field satisfy Laplace's equation
(which is easily verified by writing Laplace's equation for. the potential and
differentiating both sides with respect to an arbitrary rectangular coordinate
and noting that the derivatives commute) and this leads to

o 9 2
9*» f\ nf- *\ £•

e , 3e 9 e 3 e
z l z z * _ 2 z

3Z2 " P 9P 3p2 3P
2

or

2 2
3 e , 9 e

z -> _ I ?
a 2 2
3p

so that

a2 , „ 2 e 32e3 e 1 /3e \ z z

3P2

Eq. (7.6) now becomes

^/9_e\ _ _z z l^/ac\ _1
4e \ 3Z ) 2e a72 4e 13Z / 2

T = lim
p-»0 9Z 2e ,_3Z

or

dE^ -|E ̂ f . (7.7)

Differentiating Eq. (6.15) produces

d2E 2 dE 2E dR 4E 2E dR ,, Ox
9 =F j^~~~o T7 = ~o~~~o 77 • l/.o;

dZ2 R dZ R2 dZ R2 R2 dZ

Using Eq. (6.IS) and (7.8) to substitute into Eq. (7.7) produces

(7.9)

The behavior of the radius of curvature of the electric field line in the
vicinity of the Z axis is related to p and the radius of curvature of the
equipotential surface passing through the same point by Eqs. (7.5) and (7.9)
which give

R
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SECTION 8

DERIVATION OF EQUATION 1.1

t

As explained in Section 1, Eq. (1.1) can be expected, to provide an
approximation for the potential over the electric field at the apex of an
arbitrary equipotential surface (which includes the surface of the conductor)
if it can be shown that K, defined by Eq. (1. 3), . approaches 2/3 as the .
equipotential surface used to define K approaches the grounded plane.

To show that K •* 2/3, we associate the quantities on the right side of
Eq. (1.3) with an equipotential surface that intersects the Z axis at some
arbitrary point Z. To make this association we simply replace L with Z and
show all of the other quantities to be functions of Z so that Eq. (1.3) becomes

(ZE(Z) - V(Z)) R(Z) _-...

The objective is to show that the right side of Eq. (8.1) goes to 2/3 as Z •* 0.

Eq. (6.15) can be used to eliminate R(Z) in Eq. (8.1) to give

2 - E, .

where prime denotes differentiation with respect to Z. For notational brevity,
the Z dependence of the various quantities is not explicitly shown but is
implied. It is assumed that the electric field varies smoothly with Z so all
odd derivatives of E go to zero as Z goes to zero. This means that the right
side of Eq. (8.2) is an indeterminate form. But,. the numerator is the
difference of two terms that each diverge so 1 'Hospital's rule should not be
applied yet (the limit of the difference is not equal to the difference in the
limits). First rewrite the equation as

K _ ZE2 - VE
2 ~ ZVE1

One application of 1' Hospital's rule gives (using Eq. (5.1))

lim K _ 2ZEE' - VE '
Z-»0 2 ~ VE1 + ZEE' + ZVE"

A

This is still an indeterminate form. Two more applications of 1' Hospital's
rule together with Eq. (5.1) is needed to remove the indeterminacy . After
this is done, setting odd derivatives of E equal to zero yields the desired
result

lim K _ 1
Z+0 2 ~ 3

or K -» 2/3.
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As an incidental point, Eq. (1.1) can also be found in Ref. 11. The
author of that reference discovered the equation by curve fitting to computer
generated results and that is exactly how the author of this report made the
same discovery. Reference 11 analytically shows that Eq. (1.1) is an
approximation for needle electrodes by taking a specific analytic solution to
a boundary value problem and noting that Eq. (1.1) is an approximation to that
solution. The derivation is only valid for a special case although the
conclusion is more general. The derivation given in this report applies to
all possible solutions to Laplace's equation having the required symmetry.
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SECTION 9

DERIVATION OF INEQUALITY 1.4

To get one side of Inequality (1.4), note that if the equipotential
surfaces are convex when viewed from the grounded plane, the electric field
strength is an increasing function of Z. Therefore, EQ = E(L) >^ E(Z) for
0 £ Z £ L which implies

L - L
S E dZ _> / E(Z)dZ
0 ° 0

or

or

V

r <-*••
o

To get the other side of the inequality, assume that the electric field
lines that are in a neighborhood of the Z axis bend towards the Z axis as the
point of observation moves from the conductor to the grounded plane. From the
sign convention used in Section 7, this is equivalent to saying that Q is
positive at points sufficiently close to the axis. This implies that the
right side of Eq. (7.10) is positive which implies

0 < Z < L

Which implies

L L
J R'(X) dX < - J dX
Z Z

or

R(L) - R(Z) < - (L - Z)

or

R(Z) > L - Z + R(L) = L - Z + R

But

E'(Z)
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so

E'(Z) 1
2E(Z) L + R - Z

o

This gives

rL E'(X) r
L dx

_J 2E(X) dX < _J L + R - X
Z £ O

or

/ E \ /Z + Ro

or

R 2 E
E(Z)

(Z

Integrating both sides of the above inequality between 0 and L produces the
desired result

V LR
o o
E L + R
o o
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SECTION 1 0 . . .

DERIVATION OF EQUATION 2.1

The model field is defined to satisfy Eq. (1.1) when the quantities in
the equation refer to an arbitrary equipotential surface. Using the present
symbolism that is appropriate for an arbitrary equipotential surface, the
equation is written as

V(Z) _ ZR(Z)
V(7) ~ 9 ' UO.l)E(z) | z + R(Z)

Using Eq. (6.15) to replace R gives

I ZE1 + E

Differentiating the above equation and using E =• dV/dZ and doing some
rearranging of terms yields

f Z 2 ^ + Z f - Z 2 f =0 . (10.2)

Note .

Z dE• d In E \Q
E dZ d In Z . -. ny.j;

and

d2 In E

d(ln Z)2 d

/ Z dE \ dZ d_ / Z dE \
\ E dZ ' ~ d In Z dZ I E dZ /

= Z dE _ Z_2 / dE \ Zf d E _ d In E _ / d In E \ zf. d E
~ E dZ P2 \ dZ / + E Jr72 ~ d In Z \ d In Z / + E 0^2

2 2 2 2 2 '
* d E _ d In E _ / d In E \ Z d I

dZ2 = d in Z - U In Z ) + E ^

or

2 2 2
Z d E d In E d In E

Putting Eqs. (10.3) and (10.M into Eq. (10.2) yields

2 / d In E \2 d In E _ d2 In E _
3 Id In Z; + d l n Z - d ( l n Z ) 2 -
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If we make the change in variables

d In (E/EQ)
u = din (Z/L)

the equation becomes

du 2 2
— = - u + 2u
dv 3

and v = In (Z/L) (10.5)

or

dv =
du

f u2 2u

This equation can be integrated to give

v = In + C (10.6)

for some constant C. To evaluate this constant, let Z •» L. Then v = In
(Z/L) -> 0. Note

u =
d In (E/E )

o Z da
d In (Z/L) E dZ ' (10.7)

From Eq. (6.15) we have u = 2Z/R which implies u •> 2L/RO as Z * L. The
integration constant must satisfy

0 = In
2L
R

-1/2

C.

Substituting for C in Eq. (10.6) gives

1/2

n « u
v = In

But v = In (Z/L) so the equation becomes

Z
L

R + =: L
o 3

1/2
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which can be written as

,2
u = 2Z

2 ? 2
RQL - I (z^ - IT)

Using Eq. (10.7) this becomes

ZdZdE
E /I 1 2\ 12U R0

L + 3 L r 3 z

which can be integrated from Z = L to an arbitrary value to give

3/2

E = E IV-
| R L + L2 - Z2

-2 o

(10.8)

Eq. (10.8) would be more convenient if it were expressed in terms of Vo
instead of Eo. The two can be related by integrating Eq. (10.8) between 0
and L, but a faster way is to use Eq. (10.1) evaluated at Z = L. Doing this
and substituting for Eo in Eq. (10.8) yields

V
E(Z) =

| R ) [ I
2 o/ L 2

LR 1/2

+ 2 RoL -

(10.9)

.or

E ( Z ) =
V M 2 [ M 2 - L 2 ] 1 / 2

o

L [M2 - Z213 / 2
(10.10)

where M is defined by

2 2 3
M = L + ̂  LR .

2. o

The potential is obtained by integrating Eq. (10.10). The result is

„,_. Vo ,M2 r2,l/2 Z
V(Z) = [M - L ]

(10.11)

(10.12)

which is Eq. (2.1). The radius of curvature can also be solved as a function
of Z. Eq. (6.15) together with Eq. (10.10) yield

2 2„,,. 2 M - Z
R(Z) = —— (10.13)
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or, equivalently,

Z2 + ZR(Z) = constant = M2 .

As an incidental point, the electric field strength at the grounded plane
is obtained by letting Z = 0 in Eq. (10.10) to get

2,l/2
E(0) = L M

It can be related to the electric field strength at the apex by first letting
Z = L in Eq. (10.10) to get

E =
o

V Mo
2 2L or - IT)

and then combine equations to get

2 L
E(0) ~ r'..2 ,2,3/2 ~ 3[M2 - L2]372

3/2
(10.14)

Eq. (10.14) provides an estimate of the uniformity of the electric field
strength.
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SECTION 11 -

DERIVATION OF EQUATION 2.4

It was found in the previous section that the potential on the Z axis for
the model field satisfies Eq. (10.12). To evaluate the potential at points
off of the axis, we use the procedure presented on page 91 of Ref. 16. The
potential can be represented, in a suitably restricted domain, by the expansion

00

4> = I A0r P0(cos0) . (11.1)
1=0

9 is the angle between the positive Z axis and the vector from the origin to
the point of evaluation. The distance from the origin to the point of evalu-
ation is r. The Ps are the Legendre polynomials and the As are unknown
constants that have to be determined. Only positive powers of r are used in
Eq. (11.1) because it is intended that the series represent the potential
inside some spherical region centered at the origin (actually, Eq. (11.1) is
only good for the right half of this spherical region if the physical system
consists of an electrode and grounded plane rather than two electrodes). The
radius of this spherical region depends.on.the convergence properties that the
series will have. It will turn out that the solution will be valid only for
r < M. This is not surprising because if r •* M along the Z axis, Eq. (10.12)
shows a singularity in the potential.

On the Z axis, cosG = 1 and Eq. (11.1) becomes

GO CO

4»(0,0,Z) = I A / = I A Za .
a=o a=o

But the potential on the axis is given by Eq. (10.12) so the A's must satisfy

A7 - z m .; •
I A,,Z = — —~ r-j-r̂  . (11.2)
1=0 a L [M

2 ̂  z2]1/2

The next step is to expand the right side of Eq. (11.2) as a power series in Z.
The general form of the binomial expansion can be written as (Ref. 17)

n=0

which gives

CO

/i . «\~l/2 • r
n - - n)! '

n=0
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From page 453 of Ref. 17 we have

(-1/2)! = ir1/2

and from page 457 of Ref. 17 we have

(-1/2 - n)!(n - 1/2)! = (-l)nir

or

(-1/2 - n)! =
/ i \n
(-1) ir

(n - 1/2)!

so Eq. (11.3) becomes

(1

Note that

ff1/2Xn(n - 1/2)! n (n - 1/2)!

n=0 n=l

rn,.^/,^ (2m + 1) /3\ /1\ / 1(m + 1/2). -- - - ...(-) (2) (-z
(2m 3 \ / l \ 1 / 2

1/2 (2m + 2)! ir (2m + 1)!
~^2( ~ =2 (m + 1)!

.2m + 1 ,
2 m!

so

(n - 1/2)! = -
t

and we finally get

(1 + X)

n - 1)!

-1)" (2n - 1)!

n=l 2'" n! (n - 1)!

Applying the above result to the right side of Eq. (11.2) gives

V fM2 T2,l/27o [M — L J Z
L r..2 - z2]172

V
= 7 2 [ M 2 - L 2 ] 1 / 2 ' J (2n - 1)!

M * . 2n - 1 , ,n=l 2 n!(n -

2n + 1
(11.4)
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Replacing the right side of Eq. (11.2) with the right side of Eq. (11.4)
produces an equality between two power series in Z and this is used to solve
for the coefficients Aj (the coefficients with an even subscript will be zero).
After the coefficients have been solved, the potential at an arbitrary point
can be obtained from Eq. (11.1). The result is Eq. (2.4) (note that An in
Eq. (2.4) is not the same as it is in Eq. (11.1)).
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SECTION 12

DERIVATION OF EQUATION 2.5

We will begin this section by temporarily forgetting about the physical
system that we have been working with and investigate an entirely new boundary
value problem that will appear to be totally unrelated to the original problem.
The reason for doing this is that there is a general method, described later
in this section, for constructing solutions to Laplace's equation out of other
solutions. The solution to the boundary value problem that is described below
will be used to construct the solution to our original problem.

In this new problem, the grounded plane is oriented in the coordinate
system as before but not all of the plane is grounded. A circular section of
radius M is electrically isolated from the rest of the plane and held at a
potential Va. The remainder of the plane is grounded. There are no other
boundary surfaces (i.e., no electrode) in this problem except the surface at
infinity which is at zero potential. Let vj» denote the potential, at an
arbitrary point to the right of the plane, created by this system. The first
objective is to solve for f.

Let G(X, X') denote the Green's function for this system (a general
discussion of Green's functions can be found in Ref . 16 or 18). <}» can be
expressed in terms of G by

V r

= - 4? J '̂G(X, X')4 , da"' (12.1)

where the integral is a surface integral and the surface of integration is the
circular region of the plane that is at potential Va. The Green's function
can be thought of as the potential, measured at a point X, that results when a
unit point charge is placed at X' and all boundary surfaces are grounded. G, in
this case, is easily solved using the method of images. Suppose a point charge
q is placed at some location X'. This location is on the right side of the
plane but is otherwise arbitrary. Let X' = X'e^ + Y'e? + Z'e,. An image
charge -q will be located at X'e,+ Y'e_ - Z'e~. The potential at a point X is

J- X -

We are presently using the cgs system of units but the final result, which will
relate potential at a point in space to potential on a boundary surface, will
be independent of the system of units used. The Green's function is given by

G(X, X') = — , . l ., r-vr - , , V~ . . - . . (12.2)
X - X - x' + Y'
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Note that

'̂G(X, X1) • da' = HT (X.X1) dX'dY1. (12.3)

-> ** ** ^ 9 9 91/9
Using |X - (X'e1 + Y'e ± Z'e^) = [(X - X'T + (Y - Y' ). + (Z + Z')̂ ]. ̂  ,
the derivative of Eq. (l2.2) can be calculated directly and the result is

3G
3Z1

Z<~° [(X - X')2 + (Y - Y1)2 + (Z)2J

Using Eqs. (12.1), (12.3), and (12.4) we get

~2Z . (12.4),13/2

. V Z 9 9 ~3/2

H/(X) = ̂ 7- f [(X - X") + (Y - Y'T + (zr] dX'dY' • (12.5)

9 2 2
(X1) +(Y') <M

The usefulness of Eq. (12.5) will begin to become visible if it is
evaluated on the Z axis. The integral can be evaluated directly and the
result is

V Z
Y(0,0,Z) = V - a

 9 1/7 . (12.6)
a [M2 + Z2]172

Notice the similarity between Eq. (12.6) and Eq. (2.1). Aside from an additive
constant and a proportionality constant, they differ only in the sign in front
of the Tr-. If the potentials <J> (the solution to the original boundary value
problem) and Y (given by Eq. (12.5)) were equal on the Z axis (which of course
they are not), they would be equal everywhere inside some sphere with a radius
that depends on the convergence properties of the expression for <|». If we
could simply replace Z with iZ (where i is the imaginary number) in Eq. (12.5)
and adjust additive constants and proportionality constants,"we would have the
solution that we are looking for. It turns out that we can follow a procedure
that is almost that simple by using the following theorems.

Theorem 1

Let f(X,Y,Z) be defined when each argument X, Y, and Z are complex
numbers. Assume that f is analytic in each argument when , .

|X|2 + |Y|2 + |Z|2 < M
2 (12.7)

for some real M > 0. Assume also that f satisfies Laplace's equation when X,
Y, and Z are real and satisfy Eq. (12.7). Then f satisfies Laplace's equation
for all complex X, Y, Z satisfying Eq. (12.7).
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g(X.Y.Z) = Vf(X,Y,Z) =
9X 8Y" az

Since derivatives of analytic functions are analytic (Ref. 19), g is analytic
for all X, Y, Z satisfying Eq. (12.7). By hypothesis, g(X,Y,Z) = 0 when X, Y,
Z are real and satisfy Eq. (12.7). Let Yo and Zo be real and satisfy

Y 2
+ Z

2 < M 2 .
o o

Then g(X,Yo,Zo) is analytic in X when X is complex and satisfies

M2 - Y 2 - Z 2
o o

(12.8)

and it is zero when X is real and satisfies Eq. (12.8). From the fundamental
theorem on analytic continuation (page 152, Ref. 19) it follows that
g(X,Y0,Z0) = 0 for all complex X satisfying Eq. (12.8). If we now regard X as
fixed and repeat this line of reasoning for the remaining coordinates, we get
g(X,Y,Z.) = 0 for all X, Y, Z satisfying Eq. (12.7) which proves the theorem.

Theorem 2

Given the same hypothesis as Theorem 1, then the real part and imaginary
part of f(iX,iY,iZ) each satisfy Laplace's equation when X, Y, and Z are real
and satisfy Eq. (12.7).

Proof

A trivial application of Theorem 1 and the chain rule will show that

V2f(iX,iY,iZ) = 0 (12.9)

for any X, Y, Z satisfying Eq. (12.7) and in particular for real X, Y, Z
satisfying Eq. (12.7). The real part and imaginary part of the left side of
Eq. (12.9) are individually zero. When the coordinates are real the Laplacian
of the real (imaginary) part is the real (imaginary) part of the Laplacian.

The above theorem can be loosely summarized as follows. If f(X,Y,Z)
satisfies Laplace's equation when the coordinates are real and if the function
is mathematically defined and analytic when the coordinates are each regarded
as complex numbers, then the functions Re f(iX,iY,iZ) and Im f(iX,iY,iZ), which
are real functions of the real coordinates X, Y, Z, .also satisfy Laplace's
equation. This interpretation is loose only because the domains haven't been
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properly specified. But this turns out to be an important consideration. Two
functions, fl(X,Y,Z) and f2(X,Y,Z) may be equal when the arguments are real
but not equal when the arguments are complex. One function may be analytic
over the required domain and the other not. Although the two functions are
indistinguishable when the arguments are real, the theorem does not apply to
both functions. It applies only to the one that is analytic over the required
domain.

One systematic procedure for constructing a function that satisfies the
hypothesis of Theorem 2 out of a function that is originally defined only when
the arguments are real is to expand the original function in a Taylor series
that is valid for real arguments. Then let this series define the function for
complex values of the arguments. The function defined by the series will be
analytic on a domain that depends on the radius of convergence of the series.
If necessary, it may be possible to enlarge the domain using analytic con-
tinuation. An alternate approach is trial and error. Find different ways of
expressing the given function, that are equivalent when the arguments are real,
until an expression is obtained that is recognized as being mathematically
defined and analytic when the arguments are complex. If such an expression is
obtained, it will be equal to the function defined by the series just
described.

Fortunately, in the case of Eq. (12.5), it isn't necessary to use the
series method or to find new ways to express it so that the new expression
contains functions that are defined in the complex plane. The quantities
contained in Eq. (12.5) already have a natural interpretation in the complex
plane. The only thing that must be decided is what determination to use for
the square root function. Let us use the principal determination and see if
it produces the solution we want.

One of the integrations in Eq. (12.5) can be performed. It is convenient
to make the following change in variables, where all coordinates are regarded
as real for the time being.

r = (X2 + Y2 + z2)l/2 (12.10)

p = (X2 + Y2)l/2 (12.11)

r' = (X'2 + Y'2)l/2

9 = angle between X' and the projection of X in the X'Y1 plane.

r' and 0 are like the usual polar coordinates corresponding to the rectangular
coordinates X1 and Y' except that instead of 0 being measured from the X' axis,
it is changed by a constant (in the prime coordinates) so that it is measured
from the projection of X in the X'Y1 plane. Therefore dX'dY' is replaced with
r'dr'd© when making a change in variables in Eq. (12.5). Note

(X - X')2 + (Y - Y')2 + (Z)2 = |X - X'|2 = (X - X')«(X - X1)

7 9 -> •» 9 ? ~ ~ +
= r + r ' - 2 X « X ' = r + r ' - 2 (X6l + Ye2) • X'

2 2
= r + r1 -2pr'cos9.
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Eq. (12.5) becomes

V Z 2w M -3/2

2ir X [r2 + r'2 - 2pr'cos0] r 'dr 'd0.

The integration in r1 can be performed using direct methods and the result is

V Z 2ir
a p

2ir J

0

Mpcos0
2 2 2 2

(r - p cos 0) (M^ -

r

2- r

2pMcos0 H, r2)1/2

2 2 2(r - p cos 9)
(12.12)

Eq. (12.12) is one solution to Laplace's equation. Another solution is
obtained by defining $ by

,Y,Z) = - Im f(iX,iY,iZ) . (12.13)

If the square roots in Eqs. (12.10) and (12.11) are regarded as the principal
determinations, multiplying the coordinates by i means replacing p and r with
ip and ir. Eq. (12.13) becomes

<|>(X,Y,Z) = -Im
V iZ 2ff

iMpcos9 + r'
2 2 2 2 2 1 / 2

(p cos 9 - r ) (MZ - 2ipMcos9 - t Y

ir
2 2 2 -

r - p cos 9

or

<t»(X,Y,Z) = Re
V Z ir .„ _ 2
a p iMpcosQ + r
ir oJ

d0

( 2 2 2 \ / 2
r - p cos 01 IM - 2ipMcos9 -

/2
(12.14)

What has been obtained so far is another solution to Laplace's equation,
given by Eq. (12.14), where once again all coordinates are regarded as real.
It remains to be seen if this is the solution we are looking for. It suffices
to show that Eq. (12.14) reduces to Eq. (2.1) when X = Y = 0, i.e., when p = 0
and r = Z. Making the substitutions and evaluating the integral yields

V Z
a

[M2 - Z2]1/2

which is the same as Eq. (2.1) if

and Eq. (2.5) has been verified.
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As an incidental point, if we were looking for a solution to the boundary
value problem that is valid for r > M, we would seek a solution to Laplace's
equation that joins smoothly (continuous potential and electric field) with
Eq. (12.14). Requiring a smooth connection is how the specification of the
potential on the Z axis (Eq. 2.1)) "propagates" from the region with r < M to
the region with r > M. The reader is left to his own resources to find this
solution.
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SECTION 13 .

PRELIMINARY DISCUSSION ON THE APPLICATION OF THE LEAST ACTION PRINCIPLE

A. INTRODUCTION

Let factual represent the potential at an arbitrary point in space between
the electrode and grounded plane. Let <J> denote some other function that is
arbitrary except for two restrictions. The first restriction is that <f> be
smooth (twice dif ferentiable with respect to the coordinates X,Y,Z). The
second restriction is that <j> satisfy the boundary conditions imposed on the
potential. Therefore, <(> is to be zero on the XY plane, zero at infinity,
and equal to Vo on the electrode surface. It is well known (see, for
example, Chapter 19 of Ref. 20) that any <|> satisfying the above conditions
will also satisfy

'̂

actual . (13.1)

The volume integrals are over all space outside of the electrode and to the
right of the grounded plane. The left side of Eq. (13.1) can be recognized as
the energy stored in the field (to. within proportionality constants). <J> might
be thought of as an imagined or fictitious potential and the right side of
Eq. (13.1) would .be regarded as the energy (to within proportionality
constants) stored in the fictitious field. For example, <J> might be a function
that is intended to serve as an approximation for the actual potential. -v<J>
would then provide the approximation for the electric field and the right side
of Eq. (1.3.1) is the approximation for the energy stored in the field. This
approximation of the energy stored in the field will, according to Eq. (13.1),
always be greater than (or equal to if <j> = factual ) tne correct energy
stored in the field. It should be emphasized that, in order to qualify for
this discussion, $ must satisfy the same boundary conditions that the actual
potential satisfies.

Since 4> will be referred to much more frequently than the actual
potential, the word "potential" will refer to <{> and "electric field" will
refer to the negative gradient of <{>. If reference to the actual potential
or actual electric field are intended, the phrases "actual potential" or
"actual electric field" will be used. Similarly, "energy" refers to the right
side of Eq. (13.1.). If reference to the left side is intended, the phrase
"actual energy" will be used. To avoid the need of frequently writing eo/2,
"energy" or "actual energy" is used loosely and refers to the terms in
Eq. (13.1). The only exception is at the end of Section 14 where capacitance
in MKS units is calculated from energy and the correct proportionality
constants are used.

The objective of the sections to follow is to obtain an estimate of the
energy stored in the field. From this, capacitance can be calculated. .The
basic strategy is to use some kind of scheme to construct a function <|> that is
intended to be a rough approximation of the actual potential. The energy
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calculated from the right side of Eq. (13.1) will serve as an approximation
for the actual energy stored in the field. Most of the analysis to follow is
dedicated to finding schemes for constructing 4>. Since any estimate of the
energy (that is not exactly correct) will be too large, the most accurate
estimate is the smallest estimate, and this makes it possible to compare
different estimates to see which estimate (and which <|>) is the best without
knowing what the actual potential is.

The remainder of this section will discuss some general properties that
<j> will be constructed to have. These properties alone will not uniquely
determine 4». There will still be some "adjustability" left in 4>, i.e., some
characteristics will be left unspecified. The remaining sections consider
different ways of specifying the remaining characteristics.

B. THE EQUIPOTENTIAL SURFACES

One way to specify a function is to specify two independent properties:
the geometric shape of the equipotential surfaces (the function is being
called a potential here) and the value of the potential associated with each
equipotential surface. The shapes of the equipotential surfaces are taken to
be geometrically similar to the electrode surface. They differ from the
electrode surface only by a translation, which can be described in terms of
where the left side of the surface intersects the Z axis, and a scale factor.
The way the scale factor varies with the intercept will be left unspecified in
this section. It probably seems that no matter how the scale factor varies
with the intercept, this is a crude representation of the actual equipotential
surfaces, especially since at large distances the actual equipotential
surfaces resemble those from a dipole. The equipotential surfaces produced
by <1> will probably not have a close resemblance at large distances to those
of a dipole. But at large distances, large enough that the actual field
resembles a dipole, there is not much energy stored in the field. If this is
also true for the field produced by <J>, accuracy at large distances will not
be needed to estimate the stored energy. Of course even at close distances,
the agreement between the equipotential surfaces of <|> and the actual
equipotential surfaces may be (depending on the electrode shape) crude no
matter how the scale factor of the surface is made to vary with the
intercept. Fortunately, it often happens that even crude approximations of
the field lead to accurate estimates of the stored energy or capacitance. The
big advantage in stipulating the geometry of the equipotential surfaces to be
as stated is that the problem is mathematically manageable.

Let the surface that is obtained by translating the electrode, so that
its left intercept (the word "intercept" will refer to the Z coordinate of the
intersection of a given surface with the Z axis. "Left" or "right" refers to
Fig. 5.1) is at the origin, be given by the equation

G(X,Y,Z) = 0 . (13.2)
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This implies that a solution to

G(0,0,Z) = 0 (13.3)

is

Z = 0 . (13.4)

The equation of the electrode at its original location is obtained by
translating Eq. (13.2) a distance L in the +Z direction so that the left
intercept is at Z = L. The equation is

Equation of electrode surface: G(X,Y,Z - L) = 0. (13.5)

A surface that is similar to the electrode surface, differing only by the
intercept and a scale factor, has the equation

G(KX,KY,KZ) = 0 .

The surface given by the above equation has its left intercept at Z = 0
because Eq. (13.4) is a solution to Eq. (13.3) and therefore Z = 0 is a
solution to G(0,0,KZ) =0. A surface with a scale factor given by K and left
intercept at some Z = Zo is obtained by translating the above equation in Z
to the point Zo. The result is

Surface with scale factor 1/K and intercept Zo:

G(KX,KY,K(Z - Z0)) = 0 . (13.6)

K is the inverse scale factor. As K increases, the surface gets smaller. As
K -» 0, the surface becomes infinitely large.

The fictitious potential will be constructed so that each equipotential
surface can be expressed by Eq. (13.6) for some K and ZQ. Different equi-
potential surfaces will have different scale factors and different intercepts.
If K is changed, the equipotential surface is changed and therefore Zo is
changed, i.e., there is a one-to-one correspondence between K and Zo.
Therefore, to specify the family of equipotential surfaces, we can either
specify K as a function of Zo or we can specify Z0 as a function of K.
The first convention will be used and we write

Equipotential surface with left intercept at Zo:

G(K(Z0)X, K(Z0)Y, K(Z0)(Z - ZQ)) =0. (13.7)

The function G is determine by the electrode surface. Once the function K has
been specified, the family of equipotential surfaces will be completely
determined.
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C. INTERPRETING ZQ AS A FUNCTION OF COORDINATES

K is to be regarded as a fixed function of Zo, although it has not yet
been decided which function it is, so the family of equipotential surfaces,
given by Eq. (13.7), has been defined. For any given point in space, there
will be one equipotential surface that this point lies on. The surface has a
left intercept at some ZQ. This allows us to geometrically define Zo as a
function of the coordinates. At any given (X,Y,Z), we define ZO(X,Y,Z) to
be the left intercept of the equipotential surface that passes through
(X,Y,Z). An analytical statement of this definition is provided by
Eq. (13.7). For any given (X,Y,Z), Eq. (13.7) can be used, in principle at
least, to solve for Zo and this defines it as a function of the
coordinates. Eq. (13.7) can be used for either of two purposes. If Zo is
specified, Eq. (13.7) can be used to find the set of points that lie on the
surface having left intercept ZQ. Or, if a point is specified, Eq. (13.7)
can be used to solve for Zo.

4> and Zo can both be expressed as a function of the coordinates
(X,Y,Z) and there is a connection between them. Each can be expressed as a
function of the other. <j>(X,Y,Z) is the potential of the equipotential
surface that passes through X,Y,Z while Z0(X,Y,Z) is the left intercept of
that very same surface. Since there is an invertible mapping between the
potential of a surface and the intercept of a surface, there is an invertible
mapping between <j» and Zo. This implies that there exists a function F
satisfying

$(X,Y,Z) = F(Z0(X,Y,Z)) . (13.8)

The function F can easily be related to <(>. Since (X,Y,Z) and
(0,0,Z(J(X,Y,Z)) are two points that lie on the same equipotential surface,
the potentials at those two points are equal and we have

4>(X,Y,Z) = F(Z0(X,Y,Z)) = 4>(0,0,Z0(X,Y,Z)) = V(ZQ(X,Y,Z)) . (13.9)

The function that <J> is of Zo is the function that (j> is of its third argument
when the first two arguments are zero, i.e., F is V.

D. ELECTRIC FIELD

After K has been specified, the family of equipotential surfaces, given
by Eq. (13.7), is completely determined. But this does not yet specify the
function <|>(X,Y,Z) because an association between the equipotential surfaces
and the values of the potential on the surfaces has not yet been specified.
One way to specify this is to specify the electric field strength, .E(Z) on the
Z axis. Once functions have been chosen for E and K, the potential <j> is
completely determined.

The electric field vector at an arbitrary point in space can be expressed
in terms of E times a quantity that depends only on the geometry of the
equipotential surfaces by a simple application of the chain rule. As was
stated above, Zo can be regarded as a function of the coordinates and the
potential can be expressed as a function of the single variable Zo. The
chain rule gives
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But from Eq. (13.9) we have

d*_ _ dV_
Arj — ,rf \L ) .dZ dZ o
o o

The expression on the right of the above equation is the magnitude of the
electric field strength on the Z axis evaluated at Z = Zo. Therefore

) (13.10)
U£4 \J

O

and we get

e = -E(Z0) vZ0 . (13.11)

E. CONSTRAINTS

The potential is specified when the functions E(ZO) and K(ZQ) have
been specified. These functions are not completely arbitrary because some
constraints must be satisfied. An obvious constraint on E required to satisfy
the boundary condition is

, L
/ E(Z )dZ = V . (13.12)

0 o o o

One constraint on K is obtained by noting that the equipotential surface
is required to approach the electrode surface as the intercept approaches L.
Therefore

K(Z0) -> 1 as Z0 -» L . (13.13)

Also, as the intercept of the equipotential surface gets closer to the
grounded plane, the size of the surface increases without bound which implies

K(Z0) -» 0 as Z0.-» 0 . (13.14)

Another constraint comes from the requirement that equipotential surfaces
don't intersect. One surface must be completely contained inside another.
From this point on, it will be assumed that the surfaces are everywhere
convex. Then a necessary and sufficient condition for one surface, 82, to
enclose another surface, S]_, without intersection is that.the left intercept
of 82 be less than the left intercept of S^ and the right intercept of
82 be greater than the right intercept of S^. Stated another way, if we
move from one equipotential surface to another in such a way that the left
intercept is decreasing, it is required that the right intercept be
increasing, i.e., the right intercept must be a strictly decreasing function
of the left intercept. Consider a surface with left intercept Zo and scale
factor 1/K(ZQ). Let D be the distance between the intercepts of the
electrode.
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The distance between intercepts for the given surface must be D/K(ZO). The
right intercept for the given surface is at

Right Intercept = Z + ,.,!? > . (13.15)o

The requirement is that this expression be a decreasing function of Zo,
i.e., the derivative with respect to Zo is negative. This gives

> I . (13.16)
K

But it is also required that Eq. (13.14) be satisfied. This can be assured if
Eq. (13.16) is replaced with a stronger statement. A requirement that is
stronger than the requirement that the derivative of Eq. (13.15) be negative
is to require not only that the derivative be negative but that it also becomes
negatively infinite as ZQ •» 0. Physically, this is saying that if the
left intercept is very close to the grounded plane, a tiny decrease in the
left intercept produces a large increase in the right intercept. The right
intercept goes to infinity as the left intercept goes to zero. This statement
is equivalent to Eq. (13.14). The stronger condition that will replace
Eq. (13.16) is

DK '
— r— > 1 for all Z and becomes positively infinite as Z -» 0 . (13.17)
K

F. ENERGY STORED IN THE FIELD IN TERMS OF E AND K

To within proportionality constants, the energy stored in the field is

Energy = J |v<|>|2d3X = J |e|2d3X (13.18)

where the volume integral is over all space outside of the electrode and to
the right of the grounded plane. From Eq. (13.11) this becomes

Energy = / E2(Z )|$Z |2d3X . (13.19)
o o

Let QI and 92 be two surface coordinates on a constant Zo surface and let
the coordinates be chosen so that 9]_, 92» Zo forms an orthogonal system of
generalized coordinates. Let h]_, h2, and 113 be the scale factors associated
with the coordinates 9^, 92, Zo (the scale factors associated with the
coordinates, which are explained on page 24 of Ref. 18, are not to be confused
with the scale factor 1/K which is associated with the surface). The volume
integral can be expressed as

Energy = J E2(Z)|vZ|
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But h3 is given by (see page 2U of Ref. 18)

-1/2

so that

Energy = / E ^ Z j f o

The double integral

is a surface integral on a Zo = constant surface. Since E^(Z0) is
constant on that surface, it factors out of the double integral and the result
is

Energy = E2(ZQ){j ifojdSJ dZ (13.20)

The inside integral represents a surface integral on a Zo = constant surface.

The next step is to find another expression for the gradient of Zo.
ZQ is defined as a function of the coordinates through Eq. (13.7) and its
gradient can be calculated by implicit differentiation. It will be convenient
to have different symbols that represent different interpretations of the
partial derivative. Due to a scarcity of good symbols, the symbol that
usually represents total derivative will be used as one of them. Letting Xj
represent any of the coordinates X, Y, or Z, the symbol d/dX^ will denote
partial derivative with respect to the X^ coordinate with Zo treated as a
function of the coordinates. 8/8X^ will denote partial derivative with
respect to the X^ coordinate with ZQ treated as constant. Subscripts to G
represent derivatives with respect to the indicated arguments. Eq. (13.7) is
satisfied identically in the coordinates when it defines Zo as a function of
the coordinates (i.e., when Z0 is treated as a variable) so

-̂•(K(Zo)X,K(Zo)YfK(Zo)(Z - ZQ)) = 0.
i

(13.21)

On the other hand, if Zo is treated as constant, Eq. (13.7) is satisfied
only when the coordinates lie on the appropriate surface. In this case the
gradient of G is a vector that is perpendicular to the surface. To make a
unit vector out of the gradient, we divide by the magnitude to get
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IH-(K(ZO)X,K(ZO)Y,K(ZO)(Z - ZQ)) e.

\Y8G\2

.4WJ
1/2

= s (13.22)

where S is a unit vector perpendicular to the surface. The chain rule applied
to Eq. (13.22) yields

G.e.

I <°i):
i

1/2 = S

and applied to Eq. (13.21) yields

/ dZ .„ \ /

dZ

(13.23)

dZ

where K1 = dK/dZo. dX/dX^ is 1 if X^ = X and zero otherwise, etc., for
^ and dZ/dX-^. Rearranging gives

dZ
+ G Y + G_(Z - Z )) - KGJ

2. J o J
+ KG. = 0 .

i

Dividing by the magnitude of the gradient of G and using Eq. (13.23) yields

dZ
o

dX.

-KS.i

If n denotes the outer^normal to the surface, S is plus or minus^n. But a
change in the sign of S does not effect the above expression so S can be
replaced with the outer normal n. The equation finally becomes

vz = (13.24)

From Eq. (13.24) it is seen that VZO is either parallel or antiparallel to
the outer normal of the surface. We can predict that VZO is antiparallel
to the outer normal by looking at an arbitrary point and noting the surface
that passes through that point. If the point moves perpendicular to the
surface in
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the direction of the outer normal, it will move to a larger surface having a
smaller left intercept. So Zo decreases when the point of evaluation moves
in the direction of the outer normal which implies that the component of the
gradient of Zo in the direction of the outer normal is negative. Note that
K* is positive since K is increasing so the above conclusion together with
Eq. (13.24) implies

n,X + n.Y + n.fz - Z - £7 ) > 0 . (13.25)
1 i. J \ O Iv /

As a check for consistency, note that the expression in Eq. (13.25) is the
scalar product between the outer normal and the position vector with origin at
(0,0,Z0 + K/K'). This origin is clearly to the right of the left
intercept. Also, the right intercept is at ZQ + D/K and from Eq. (13.16) we
have it that the origin is to the left of the right intercept. So Eq. (13.16)
ensures that the position vector, whose scalar product with the outer normal
is represented by Eq. (13.25), is measured from a point that is inside the
surface. Since the surface is assumed to be convex, the scalar product is
positive. Incidentally, the implication also goes the other way. If
Eq. (13.25) is satisfied for all (X,Y,Z) on the surface, it is also satisfied
when X = Y = 0 , Z = Z O + D/K, n^ = n£ = 0, n3 = 1. This produces
Eq. (13.16). So, if the surface is convex, Eq. (13.16) is satisfied if and
only if Eq. (13.25) is satisfied everywhere on the surface. The two
conditions are equivalent.

Since -VZQ is parallel to the outer normal,

dS = -$Z0 • dl

where dS is in the direction of the outer normal. Putting this and Eq. (13.24)
into Eq. (13.20) yields

Energy = / E (ZQ)

0 V ' In VK ntX

Kn •

+ n2Y + n

dl

}(Z ~ Zo ~ K7/]

dZ .
o

(13.26)

Since all equipotential surfaces are geometrically similar, the surface
integral in Eq. (13.26) can be related to a surface integral on the electrode
surface. Since the coordinates X,Y,Z lie on the surface given by Eq. (13.7),
the new coordinates

X1 = KX, Y1 = KY, Z1 = K(Z - ZQ) + L

lie on the surface given by

G(X',Y',Z' - L) = 0

which is Eq. (13.5), the equation of the electrode surface. An element of
surface area in the prime coordinates is related to that in the unprimed
coordinates by

dS1 = K2dS .
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The point X,Y,Z and the original surface taken together have a similar
geometry as the point X',Y',Z' and the electrode surface taken together. So
the normal to the original surface evaluated at X,Y,Z equals the normal to the
electrode surface evaluated at X',Y',Z'. In other words,

n(X,Y,Z) = n'CX'.Y'.Z1) .

Making the substitutions results in

n • dS 1 -

f
~ 9 n Y'

Y 1-I r-t **• I tT^~ "1 **Z - Z - — I K 1

n' • dS1

K K
V (V - L

+ — + n3~K—

We can drop the primes by explicitly showing what surfaces the integrations
are on. SL will denote the electrode surface and S(ZO) will denote the
surface with intercept at Zo. We get

n • dS

S(Zo) 0

1
K

n dS
(13.27)

Eq. (13.26) becomes

irnc, r..... r^-1 °uneigy = j ,„ v
U ix \" /

r n

L
 HIX -i- n2Y +

• dS

n3 Z -
K 2 \T - — 1
K' 1K. / J

dZ (13.28)

To obtain an estimate of the energy, the functions represented by E(ZO)
and K(Z0) must be selected so that the integral in the above equation can be
evaluated. This is the subject of the remaining sections.
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SECTION 14

DERIVATION OF EQUATION 3.2

An upper bound on the energy stored in the field can be obtained by
selecting some E and K compatible with the constraints and using Eq. (13.28).
There are several tempting choices. For example, if K2/K' were constant,
the surface integral in Eq. (13.28) would not depend on ZQ and could be
factored out as a constant and the calculations would be simplified. Unfor-
tunately, this choice of K does not satisfy Eq. (13.17) or Eq. (13.14). It is
also tempting to use Eq. (10.10), the model field, for E. But if this is
done, the choice of possible Ks becomes more restricted because there is a
strong tendency for the integral to produce singularities. Another approach
is to make a completely ad hoc selection. This author has tried several and
the choice of functions that produced Eq. (3.2) seems to be the best of the
few that were tested.

The K used here is given by

DZ
K(Z ) = — - - - . (14.1)

L + LD - Z
o

A simple calculation will show that

^=Z°tL'*"L • (U.2)
K DZ

o

It is evident that the constraints given by Eq. (13.13) and Eq. (13.17) are
satisfied. The electric field on the Z axis is given by

2 2 'L + LD - Z
o

where A is a constant that must be adjusted to satisfy the constraint given by
Eq. (13.12). Using this to evaluate A produces

2V (L2 + LD)1/2A =
+.L

(L2
+LD)

1/2-L
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Interchanging the order of integration in Eq. (13.28) and substituting for E
and K yields

Energy - - / /
dZ dS
°

Z0 n • r + (DL + L ) n

(14.5)

where

rR = Ye£ + (Z - L - D)

+ Ye2 + (Z - L)

(14.6)

TR and TL are the position vectors measured from the right and left
intercepts of the electrode. The Zo integration can be performed directly
and the result is

„ A2B rEnergy =•-=- J

[<rL • n) <*R
- 1/2

• n)] rL ' n

i/2\
IdS

where

B =
2 -1/2

[L + LD] (14.7)

Since the integration is done on a surface of revolution, the integral can be
expressed as a line integral on the curve defined by the intersection of the
electrode with the positive X half of the XZ plane. Simply replace dS with
2irXdfi.. Also, it is now time to use the correct proportionality constants.
If e0 represents the permittivity constant, the energy in the MKS system of
units is given by

2
A Be IT r

Energy = °_ J
D

n)]
1/2

Tan~1|LB
rR * n

n

. (14.8)

Eqs. (14.8), (14.7), (14.4), and (3.1) produce Eq. (3.2).

Several times in the analysis that produced Eq. (3.28), it was assumed
that the surface is everywhere convex. If this condition is satisfied and if
the curve defined by the intersection of the electrode in the XZ plane is
everywhere convex, the integrand in Eq. (14.8) will remain finite. To see this,
note that the only possibilities for a singularity occur when ?R • n -» 0 or
?L • n •» 0. If ?R • n •» 0, the argument to the inverse tangent goes to zero
and the inverse tangent approaches the value of its argument and the term that
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goes to zero divides out. The only remaining possibility for a singularity
occurs when r~L • n -> 0. To show that this also does not produce a singularity,
it suffices to show that

-» - 1/2
(rL ' n)

remains finite, or that

.2

remains finite. Note that n is an outer normal so

dZ - dX ~n v — A _ — - O
»/\ 1 ^40 ^

and

r • n = X dZ - (Z - L)'dX
L da da

so

I 1Z _ Z - L

X dX X2

(14.9)

where we have' used

d_ _ dX d_
da ~ da dX

which approaches d/dX when the point of evaluation approaches the left
intercept (the only possible location for a singularity). It suffices to show
that the denominator in Eq.̂ (14.9) does not go to zero. To evaluate the limit
of the denominator, use 1'Hospital's Rule to get

lim /I dZ Z - L\ 1 d2Z.im /I dZ _
+0 \XdX-X+0

which is not zero if the curve is convex.
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SECTION 15

INCREASING THE ACCURACY OF THE CAPACITANCE ESTIMATE

The best capacitance or energy estimate comes from the field that
produces the smallest energy that the constraints will allow. The constraints
are (1) the requirement that the equipotential surfaces be given by
Eq. (13.7), and (2) that E and K satisfy Eqs. (13.12), (13.13), and (13.17).
Making the energy as small as possible (by adjusting E and K) will produce the
best approximation for the field in some sense of "best approximation." It is
obviously the best approximation in the sense of producing the best estimate
of the stored energy. It is also the best approximation in another well-known
sense which will be briefly reviewed. Note

r I ••/ e - e
actual 1 2 ,3.r f 2,3,, ,. •*

d X = J e d X + J E
actual 'actual

- 2e) d3X

= S e2d3X +
actual

. .
actual

d3X

Using Green's first identity,

S $<$ , • vx<|> „ T 240 d3x = T ($ . .- 2$) $$ . . • ds
actual Tactual /actual Tactual

.. ,actual
V2<j) d3X .
^actual

The volume integral on the far right is obviously zero. The surface integral
is over all boundary surfaces but since the potentials are zero on all
boundaries except the electrode, the surface integral can be taken to be on
the electrode surface where factual ~ 24» = V - 2VO = -Vo. dS is at present
an inner normal . (to the electrode) but the sense can be changed by multiplying
by -1 and the result is

actual
. .

actual
- 2<t>) dX = V J"T actual

dS

= -V J e . . • dS
o actual

so that

-t , J2d3X
actual

= S e <TX - V
-» -»
e . . • dS
actual

(15.1)
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As an incidental point, the surface integral in Eq. (15.1) is proportional to
the charge on the electrode. If we let e be zero, the equation relates the
energy stored in the actual field to the charge on the electrode. This,
together with the definition of capacitance, provides a derivation of the.
relationship between capacitance and energy. This derivation doesn't require
that we recognize the equivalence between energy stored in the field and
energy required to charge the capacitor.

The left side of Eq. (15.1) is the continuum version of the square error
in the electric field. Therefore, minimizing the energy, which minimizes the
right side (and therefore the left side) of Eq. (15.1), produces the best
approximation in the sense of least square error in the electric field.
There is another way to look at this. Note that the fictitious electric
field already has a zero curl, since it was derived from a potential, and the
boundary conditions on the potential are built into the problem. The only
thing left to specify in order to completely determine e is its divergence.
The actual field has zero divergence so the best approximation is obtained by
making e have as "close to a zero divergence" as the constraints will allow.
We can think of the process of minimizing the energy as a process of finding
the field that has a "best fit" to zero divergence. From the equivalence
between minimizing the energy and obtaining the least square error in the
electric field, it is evident that the interpretation of "best fit" to zero
divergence is least square error with a field (the actual field) that really
has a zero divergence.

The above discussion applies to the general case of adjusting a field to
minimize the energy. But when the electric field has the kind of structure
that we have been working with (i.e., the adjustability is through the
functions E and K), there is yet another, but equivalent, interpretation that
can be given to "best fit" to zero divergence. To find this interpretation,
we will use the Euler equation (sometimes called the Euler-Lagrange equations,
these equations are discussed in Refs. 18 and 21, or any advanced classical
mechanics textbook) to minimize the energy which is given by Eq. (13.28).
The need to include the constraint Eq. (13.12) as a subsidiary condition can
be avoided if we work with V(ZO) instead of E(ZO) where E(ZO) = dV(Zo)/dZQ.
Instead of working with a constraint, we are now working with a fixed
end-point problem in the variable V. We will first minimize Eq. (13.28) in V
with K regarded as an arbitrary but fixed function. Euler's equation gives

3
3V

d
dZ

0

3
3V '

2
(V)

K 1
n dS

= 0

The expression that is being operated on does not explicitly contain V so the
differential equation has the first integral (with E replacing V)

n dS
= A (15.2)
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where A is a constant. Eq. (15.2) can be made to look familiar by reversing
some of the steps made in Section 13. By using Eqs. (13.27) and (13.24),
Eq. (15.2) becomes

-E(Z ) ! vZ • dS = A
o o
S(Z0)

E(ZO) can be moved inside the integral since the integration is on a
constant Zo surface and Eq. (13.11) gives

s(zo) dS = A = constant (15.3)

Eq. (15.3) states that the optimum E for any given K is the function that will
make the electric 'field have the same surface integral on all equipotential
surfaces. This result could have been anticipated because we know that we are
seeking a field that has the; "best fit" to a zero divergence and we could have
guessed that constant surface integrals on the equipotential surfaces is a
good candidate for defining this best fit. However, the requirement of
constant surface integrals is not complete because this condition can be
satisfied for any admissible function K and different choices of K will
produce different field patterns.

The constant A can be evaluated from the requirement of Eq. (13.12) and
the result is

V
A =

J

</ •

f 1
->

„/ n • dS
o

K'
r / 2\~i
n,X + n.Y + n ,[Z - L - §7)L i 2 31 K ;j j

-1
(15.4)

dZ

Using Eq. (15.2), Eq. (13.28) can be expressed as

Energy =A/ E(Z ) AdZ = A riX E(Z )dZ = AV0 o o 0 o o c

Using Eq. (15.4) gives

Energy =
o

dS

-1 (15.5)

n
3 ( Z - L - | ^ ) .

dZ
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All that remains is to select a function K. Once this has been done, the
integral in Eq. (15.5) can be evaluated numerically. It will probably be
helpful to convert the surface integral into a line integral as was done in
Section 14. An adjustment in the energy will be needed to include the
proportionality constants appropriate for the system of units that will be
used.

One possible choice for K is given by Eq. (14.1). This was the choice
used to get Eq.(3.2). Since Eq. (15.5) automatically includes the optimum
E(Z0) for any choice of K(ZO), and Eq. (3.2) used a randomly selected
E(ZO), using the same K in both equations will result in Eq. (15.5) having
the greater accuracy. If the reader can find a K that will produce a smaller
estimate, the accuracy will be even higher.

This would be a good place to end this discussion except that the reader
must be wondering why there has not been any attempt to find the optimum K.
The reason is mathematical complexity. If the reader would like to pursue
this analysis, the following steps may help him to get started.

The objective is to find the K that will minimize the right side of
Eq. (15.5), so we want to maximize the integral. Let F be the integrand so
that

F = K'.
dS

- L - T

-1
(15.6)

The only Zo dependence in this expression is implicit through the K and K'
so Euler's equation has a first integral (see page 19 of Ref. 21) which is

F - K' = C = constant

A brute force calculation of the derivative 3F/3K' substituted into the
above equation will produce

, n.dS
K2 S 3

SL
ntX + n2Y + nJz - L - |TJ

2 = C dS

-,(«- >• -
The above equation is supposed to be solved for K or, at least, some
expression that can be substituted into Eq. (15.5) is to be solved. At this
stage the mathematical complexity is enough to overwhelm this author and the
reader is on his own if he wishes to continue.
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APPENDIX

Some example electrode shapes are shown on the following pages. Each
page contains several curves, each curve defining the shape of a different
electrode, and a data table. For each electrode shown, the data table lists
several quantities as follows:

R/L: Radius of curvature of apex of electrode divided by distance
from grounded plane to apex of electrode.

(V/E)/L: V/E is the ratio of the potential of the electrode to the
electric field at the apex of the electrode. (V/E)/L is this
ratio divided by distance from grounded plane to apex of
electrode. The entries in the "ACTUAL" column are values
that are accurate to the number of digits displayed. The
entries in the "CALCULATED" column are the approximations
that are obtained from Eq. (1.1). The "% ERROR" column shows
the error that results from using Eq. (1.1). A positive (or
negative) error indicates that the calculated value is too
high (or low). Note that (V/E)/L is dimensionless.

CAP/L: Capacitance of the grounded plane-electrode system divided by
the distance from grounded plane to electrode. The entries
in the "ACTUAL" column are values that are accurate to the
number of digits displayed. The entries in the "CALCULATED"
column are the approximations that are obtained from
Eq. (3.2). The "TERROR" column shows the error that results
from using Eq. (3.2). The error is always positive because
Eq. (3.2) always produces an overestimate. "NA" will appear
in the "CALCULATED" and "% ERROR" columns when an electrode
does not have the required convex shape, and Eq. (3.2)
contains undefined quantities. It can occasionally happen
that Eq. (3.2) can be used on a shape that is not everywhere
convex. There are numerical entries in the "CALCULATED" and
"% ERROR" columns whenever the calculation could be made.

An attempt to find an example shape that matches an actual electrode can
be made the following way. First, glance through the examples and note the
ones that have a shape that reasonably resembles the actual electrode. Out of
this set of examples (if there are any), select the one having an R/L that
approximates the R/L for the actual electrode. Judgment will be needed when
making a compromise between accuracy in shape and accuracy in R/L. The choice
is likely to depend on whether it is V/E or capacitance that is of interest.

Assuming that one of the example electrodes accurately fits the actual
electrode in both shape and in R/L (which is not likely, but is possible),
estimates of V/E and capacitance can be obtained the following way. Find the
entry in the "ACTUAL" column under (V/E)/L for the example electrode. Multiply
this entry by the distance from grounded plane to apex of the actual electrode.
The result will be V/E for the actual electrode in the same units in which the
distance was expressed. Now find the entry in the "ACTUAL" column under
(CAP/L) for the example electrode. Multiply this entry by the distance from
grounded
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plane to apex of the actual electrode. The result will be the capacitance of
the actual electrode. If the distance was expressed in meters, the capacitance
will be in farads.

The above procedure can be used if one of the example electrodes happens
to accurately represent the actual electrode. If not, the primary usefulness
of the examples is to give some feeling for the kind of error that should be
expected when using Eq. (1.1) or Eq. (3.2). This information is found in the
"% ERROR" columns.
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<- GROUNDED PLANE

CURVE
#

1
2
3
4

R/L

1.44E 00
1.07E 00
5.79E-01
2.91E-O1

ACTUAL

6.98E-01
6.34E-01
4.B3E-01
3.09E-01

(WE) /L
CALCULATED

6.B3E-01
6. 16E-O1
4.65E-01
3.04E-01

'/.ERROR

-2.1
-2.8
-3.7
-1.7

CAP/L (FARADS/METER)
ACTUAL CALCULATED

1 . 24E-09
9.94E-10
6.47E-10
4.03E-10

1 . 93E-09
NA
NA
NA

•/.ERROR

56.0
NA
NA
NA
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<- GROUNDED PLANE

CURVE
R/L

(V/E)/L CAP/L (FARADS/METER)
ACTUAL CALCULATED XERROR ACTUAL CALCULATED XERROR

5
6
7
8

4.65E 01
4.88E OO
1.52E 00
5.48E-01

9.
8.
6.
4.

B6E-01
77E-01
BOE^Ol
24E-01

9.
8.
6.
4.

86E-01
BOE-01
95E-O1
51E-01

0.0
0.3
2.1
6.4

9.
1.
3.
1.

97E-09
04E-09
27E-10
27E-10

1.
1.
4.
1.

20E-08
29E-09
20E-10
74E-10

20.6
24.1
28.4
36.5
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=- GROUNDED PLANE

CURVE
#

9
10
11
12
13
14

R/L

5.53E 01
5.BOE 00
1.35E 01
1.79E 00
6.37E-01
2.21E-01

ACTUAL

9.
8.
9.
7.
4.
2.

88E-01
95E-01
53E-O1
21E-O1
77E-01
44E-01

(V/E)/L
CALCULATED

9.
8.
9.
7.
4.
2.

8BE-01
97E-01
53E-O1
29E-01
8BE-01
49E-01

'/.ERROR

0.0
0.2
O.O
1. 1
2.3
l.B

CAP/L
ACTUAL

1.
1.
2.
3.
1.
7.

17E-OB
24E-09
88E-09
9BE-1O
63E-10
77E-11

(FARADS/METER)
CALCULATED '/.ERROR

1.
1.
3.
5.
2.
1.

42E-OB
55E-09
54E-09
10E-1O
19E-10
18E-1O

20.9
25.1
23.2
28.0
34.4
51.4
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<- GROUNDED PLANE

20 19 18 17

CURVE
*

15
16
17
IB
19
20

3.
1.
5.
2.
9.
1.

R/L

21E 01
41E O1
56E 00
47E 00
26E-01
6BE-01

ACTUAL

9.BOE-01
9.54E-01
8L.91E-01
7.93E-01
5.83E-01
2.50E-01

(V/E5/L
CALCULATED

9.
9.
8.
7.
5.

2.

80E-O1
55E-01
93E-O1
BBE-01
81E-01
01E-01

V.ERRDR

0.0
0.0
0.2
O.5
-0.3
-19.4

CAP/L (FARADS/METER)
ACTUAL CALCULATED V.ERRDR

6.
2.
1.
5.
2.
9.

42E-09
S2E-09
12E-09
15E-10
26E-10'
67E-11

7.
•3.
1.
6.
3.
1.

B4E-09
47E-09
41E-09
61E-10
01E-10
46E-10

22. 1
23.2
25.2
28. 2

• 33. 3
51 . 4
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<- GROUNDED PLANE

25 24 23 22

CURVE
ft '

21
22
23'
24
25

' R/L

8.1 BE 01
1.13E 01
4.84E 00
1.51E 00
5.49E-01

ACTUAL

9.92E-01
9.43E-01
8.76E-01
6.78E-01
4.24E-01

<V/E)/L
CALCULATED

9.92E-01
9.44E-01
8.79E-01
&.94E-01
4.52E-01

CAP/L
•/.ERROR ACTUAL

0.0
0.1
0.4
2.3
6.6

1.66E-OB
2.28E-09
9.74E-10
3.06E-10
1. 19E-1O

(FAR ADS /METER)
CALCULATED XERROR

2.02E-08
2. 80E-09
1 . 22E-09
3.96E-10
1.62E-10

21.3
22.7
24.8
29.6
36.2
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<- GROUNDED PLANE

CURVE <V/E)/L CAP/L (FARADS/METER)
# R/L ACTUAL CALCULATED 7.ERROR ACTUAL CALCULATED '/.ERROR

26 3.76E 01
27 4.02E 00
28 1.29E 00

9.82E-01
B.52E-01
6.33E-01

9.B3E-01
B.5BE-01
6.60E-01

0.0
0.7
4.2

6.16E-09
6.35E-10
1.93E-10

7.B2E-09
8.40E-10
2.83E-10

27.0
32.2
46.2
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<- GROUNDED PLANE

CURVE
R/L

(V/E)/L CAP/L (FARADS/METER)
ACTUAL CALCULATED '/.ERROR ACTUAL CALCULATED '/.ERROR

29
30
31
32

4.
2.
6.
1.

13E OO
CUE OO
61E-01
26E-01

8.&1E-O1
7.52E-01
5.06E-01
1.60E-01

8.
7.
4.
1.

61E-01
51E-01
98E-01
59E-01

-0.0
-0.2
-1.5
-0.4

1.
1.
4.
1.

98E-09
04E-09
39E-10
54E-1O

2.
1.
6.
3.

43E-09
32E-09
1BE-10
34E-10

22.4
26.7
40.9
117.4
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e- GROUNDED PLANE

CURVE
R/L

<V/E)/L CAP/L (FARADS/METER)
ACTUAL CALCULATED '/.ERROR ACTUAL CALCULATED '/.ERROR

33 7.43E-01
34 4.87E-01
35 2.92E-01
36 1.51E-01

5.93E-O1
5.05E-01
3.94E-01
2.5BE-O1

5.27E-01 -11.2
4.22E-01 -16.3
3.04E-01 -22.7
1.85E-01 -28.3

B.61E-10
7.18E-1O
5.90E-10
4.67E-10

1.21E-09 40.7
1.07E-09 48.B
9.69E-10 64.1
l.OOE-09 114.1
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<- GROUNDED PLANE

CURVE
4t R/L

(V/E)/L CAP/L (FARADS/METER)
ACTUAL CALCULATED '/.ERROR ACTUAL CALCULATED '/.ERROR

37 6.41E 00
38 1.90E 00
39 6.36E-01
40 1.25E-01

9.05E-01
7.39E-01
4.89E-01
1.54E-01

9.06E-01
7.4OE-01
4.8BE-01
1.58E-01

0.0
0. 1
-0.2
2.6

2.65E-09
8.60E-10
3.57E-10
1.21E-10

3.16E-09 19.5
l.OBE-09 25.3
4.90E-10 37.4

NA NA
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