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INTRODUCTION

A number of upcoming space projects - for example, Langley Research Center's

SAGE II and HALOE projects - make use of instruments carried aboard Earth orbital

satellites which view the Sun and measure the intensity of solar radiation as the Sun

"rises" or "sets" with respect to the spacecraft. The atmospheric optical path

through which the spacecraft views the Sun varies in length during such an event and

attenuates the measured solar radiation to varying degrees. Consequently, by the use

of established inversion techniques, the vertical distribution of optically active

constituents along the ray path can be mapped.

A number of geometric parameters defined by the relative positions of the space-

craft, the Earth, and the Sun are used both in mission planning and during mission

operations and data reduction. Many of these parameters are highly dependent on the

orientation of the orbital plane with the Earth-Sun direction.

In the mission planning stages, for example, a number of these parameters are

used to determine the maximum required excursion of instrument pointing angles -

elevation and azimuth angles - and their rates of change for proper sizing and place-

ment of structures such as gimbals and drive mechanisms and for imposing accuracy

requirements on the design performance of these structures. The tangent height,

defined as the minimum altitude above the Earth's surface of the line of sight from

the spacecraft to some point of the solar disk, is also an important parameter. In

addition to determining the geographic "location" of the measurement, it is used to

define the mission event time, which is the time required to pass between two given

tangent heights. This time determines the data collection period, which in turn can

set requirements on data collection rates to insure that sufficient data are taken

during the event. This time may also affect the thermal design of the instrument or

its peripheral support components, as it determines the total time the instrument

hardware might be exposed to the direct rays of the Sun.

Traditionally, for elliptic orbits over an oblate Earth, these parameters are

computed by dividing the spacecraft orbit into several hundred steps, computing these

parameters at each step, and then interpolating in the resultant tables for the

required values. This procedure can be rather expensive in terms of computer time,

as over a typical 3- or 4-year mission, it may be necessary to compute thousands of

orbits to determine the maximum design ranges of these instrument parameters and to

predict the time and location of future events. For mission design purposes, how-

ever, the analysis can be greatly simplified if one is willing to assume that only

the secular perturbations produced by the oblate gravity field are important and that

the short-period and long-period perturbations, which are generally an order of mag-

nitude or more smaller than the secular perturbations, can be neglected. Using these

assumptions, Brooks (1977) presents a concise but thorough review of orbit mechanics

from a mission-planning point of view. Brooks (1980) applies these results to the

design of solar occultation missions. This paper concentrates on a detailed examina-

tion of the rise or set problem, which is the operational mode of many Earth satel-

lite experiments and hence complements the material presented in the two papers by

Brooks. The inclusion of the appendix in the present paper eliminates the need for

reliance on external data such as almanacs or ephemerides.
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SYMBOLS

azimuth angle, deg

semimajor axis of orbit, km

eccentric anomaly, deg

elevation angle above or below local horizontal, deg

eccentricity

unit vector along radius of spacecraft

unit vector to some part of solar disk

unit vector to the Sun

unit vector in orbital plane

defined by equation (13)

Greenwich mean time

inclination of orbital plane to Earth equator, deg

mean anomaly, deg

mean angular rate of spacecraft in its orbit, rad/sec

unit vector in orbital plane pointing toward periapsis

^ _ ^direction cosines of es vector along p, , and W, respectively

unit vector in orbital plane pointing toward a true anomaly of 90 °

magnitude of spacecraft radius vector, km

radius of the Earth, km

+ +

vector which forms a triangle with R t and Pt' km

sidereal time at Greenwich

Greenwich sidereal time at 0 hours GMT

last time of periapsis passage

time

true anomaly, deg

unit vector normal to plane of orbit along positive direction of angular

momentum vector



X 0

Y0

(l s

t

Y

6s

6 t

Q

Xt

P

a x

qy

m S

component of radius vector along

component of radius vector along

right ascension of the Sun, deg

right ascension of Pt' deg

^

P, km

^

Q, km

angle between Sun vector and orbital plane, deg

angular arc traced by subtangent point during rise or set event, deg

declination of the Sun, deg

declination of Pt' deg

obliquity of the ecliptic, deg

angle between radius vector and Sun vector, deg

local longitude (positive east), deg

magnitude of projection of _ onto e2-e3 plane, km

component of es in -W direction

^

es directioncomponent of in W x e r

longitude of ascending node, deg

argument of periapsis, deg

angular rate of the Earth about the Sun, rad/sec

Subscripts:

max maximum

min minimum

t sunrise or sunset event

Superscripts:

h hours

m minutes

s seconds

A dot (.) over a symbol denotes a derivative with respect to time; a caret (^)

over a symbol denotes a unit vector; and an arrow (+) over a symbol denotes a
dimensioned vector.



This paper presents an analytical method for computing the parameters pertinent
to sunrise or sunset events (hereafter called events). No interpolation is involved,
and only the parameters of interest are computedat the time and altitude conditions
imposed by mission requirements. Twoassumptions are made (I) the Earth is spher-
ical, and (2) refraction is neglected. Both of these assumptions, however, can be
removedby iterating on the solutions presented herein. A general elliptical orbit
is assumedinitially. However, once the basic equations are derived, a restriction
to circular orbits is introduced, which greatly simplifies the resulting equations
and permits a ready interpretation for extension to the more complex elliptic orbit
geometry.

ANALYSIS

Oneof the manysignificant parameters used in mission design studies and data
reduction analysis is the ray tangent height, which is the minimumaltitude above the
Earth's surface of the ray from the instrument optical center to somepoint on the
solar disk, usually the center of the visible disk. The data event time is defined
as the time interval required for the spacecraft to pass between two specified tan-
gent heights. For example, on a sunset event, the data collection period mayextend
from an altitude of about 100 km to somesmall negative altitude. (Refraction being
neglected, the negative geometric altitude would correspond to a ray just grazing the
Earth's surface.)

The duration of the event depends strongly on the orientation of the orbital
plane of the spacecraft relative to the Earth-Sun line. For example, for a given set
of tangent point altitudes, the event time will be a minimumwhen the Sun views the
orbit "edge-on."

The orbital plane, however, rotates relative to the Sun because of two different
effects, one dynamic in origin and the other gravitational. If the density of the
Earth were a function only of the distance from the center of the Earth, the orbital
plane would remain essentially fixed in inertial space. Thus, as the Earth revolves
about the Sun in its annual excursion, the orbital plane would appear to rotate rela-
tive to a solar observer. Becausethe Earth is not really a perfect sphere gravita-
tionally, an inertial rotation of the orbit plane results, which is superimposedon
the annual meanmotion.

One consequenceof this motion is that depending on the size of the orbit, the
inclination of the orbital plane to the Earth's equator, and the declination of the
Sun, there may comea time when a solar observer would see the orbit just graze the
edge of the Earth's projected disk. Thus, to an observer on the spacecraft, the Sun
would neither "rise" nor "set," but would appear to sink toward the horizon, just
graze the Earth's surface, and begin to rise again. In fact, depending on the or-
bital geometry, a condition could arise in which the orbital plane is normal to the
Earth-Sun line, and hence, for a circular orbit, the Sun would appear stationary to
an observer on a spacecraft.

The fundamental parameter on which these conditions are related is the so-called

"beta angle" (8), which is the angle the Earth-Sun vector makes with its projection

onto the orbital plane of the spacecraft (fig. I).

The following development assumes a general elliptic orbit. However, although

the principle is exactly the same, much of the algebra becomes complicated very

rapidly and tends to obscure the basic dependence on 8. Thus, once the general



equations are developed, a restriction to circular orbits will be imposed. The

simplified equations which result permit a ready physical interpretation which can

easily be extrapolated to the more complex case of elliptic orbits.

The basic approach to be taken is to project the radius vector of the spacecraft

onto a plane normal to the Earth-Sun vector and view the orbit as seen by an observer

on the Sun. The minimum projected radius of the spacecraft as thus seen, which is

directly related to 8, is then used to determine whether or not event conditions

exist, and if so, to determine the event times, elevation and azimuth angles, and

other parameters of use to the mission planner.

Figure 2 illustrates the geometry. The fundamental plane defined in figure 2 is

the plane of the spacecraft orbit, with pole W. The vector es is a unit vector to

some part of the solar disk. (The center of the disk is assumed here.) It is tac-

itly assumed that the Sun is at an infinite distance. With very little additional

complexity, the coordinate origin could be transferred to the spacecraft, and a fi-

nite distance assumed for the Sun. A slight correction to the solar right ascension

and declination would thereby be introduced to give these quantities as seen from the

spacecraft coordinate system. These small parallax effects are neglected in the

present text. If the right ascension and declination of the Sun are given by a
s

and _s for a specific date and time (see the appendix), then

^

e s =

-COS 6s cos a s-

cos 6 sin

S S

sin 6
s

(1)

Symbols p and represent unit vectors in the orbital plane, with p pointing
A ^

toward periapsis and Q pointing toward a true anomaly of 90 ° . The symbol W

represents a unit vector normal to the plane of the orbit along the positive direc-

tion of the angular momentum vector. In terms of the usual orbital elements (e.g.,

see Escobal 1965),

cos ,.* cos _ - sin _ sin _ cos i q

I^

P = ICOS _ sin _ + sin _ cos _ cos i

L sin _ sin i

(2)

-sin _ cos 9 - cos _ sin 9 cos 1l

j^

Q = I-sin _ sin _ + cos _ cos 9 cos

L cos _ sin i

(3)



(4)

where m is the argument of periapsis, _ is the longitude of the ascending node,

and i is the inclination of the orbital plane to the Earth equator.

÷

The spacecraft radius vector R is given by (Escobal 1965)

A

= X0P + Y0 Q
(5)

where

X 0 = a(cos E - e)
(6)

and

_I 2
Y0 = a - e sin E

(7)

In equations (6) and (7), a is the semimajor axis of the orbit, e is the eccen-

tricity, and E is the eccentric anomaly, related to the true anomaly v and the

mean anomaly M by the equations

E _I - e v (8)
tan _ = VI---_-_ tan

M = n(t - T) = E - e sin E (9)

The last equation relates E to time t, where T is the last time of periapsis

passage, and n is the mean angular rate of the spacecraft in its orbit

(lO)

In equation (10), _ is the gravitational constant of the central planet, which for

the Earth is 398 600.64 km3/sec 2.



Define the orthogonal vector triad

(11)

x e
^ s

I ^1e2 = W x e s

(12)

e3 = %1 x &2 (13)

where el is a unit vector to the Sun, and e2 is a unit vector in the orbital

plane.

From the geometry of figure 2, we see that

^

sin 8 = W • e s (14)

co, x I (15)

where 8 is the angle between the Sun vector and the orbital plane. Thus, from

equation (12), we can write

Ax e
s^

e2 = cos 6
(16)

and by use of the vector identity (e.g., Kaplan 1973)

+ + + + + + + + +

(A x B) x C = (C • A)B- (C • B)A

we can write e3 as

^

e 3 =

^

e sin 8 -
S

COS 8
(17)



Let R2 and R3
respectively. Then

-_ ^

denote the projections of R onto e2 and e3,

+

R 2 = R • e2 = cos B

÷ C_ ^)R • x e
s

and using another vector identity from Kaplan (1973)

(A x B) • = x • B

we get

R2 = cos

(_ x _) •
s

From figure 2

_x&=_

and hence, using equation (5), we obtain

x0(5" es)+ %([;. %)
R 2 =

cos
(18)

Similarly, since R • W = 0 by construction, we get

R 3 = [X0(; • es] + Y0[ _ • es] ] tan 8 (19)

+

Define p, the magnitude of the projection of R onto the $2-_3 plane by

2 2 2

p = R 2 + R 3



which, with the direction cosines of the es vector

^ ^

p = P • e
s

q = ° e
s

^ ^

W = W • e
s

can be written as

2 R 2 (20)P = sin 2 8 + (X0q - Yop) 2

p2 = R 2 _ (X0P + y0q)2 (21)

where

R = _X2 + Y20 = a(1 - e cos E) (22)

and use has been made of the direction cosine property

p2 + q2 + w 2 = I (23)

Given a particular value of p corresponding to an event altitude (tangent

point height, for example), equation (20) or (21) can be solved by substitution from

equations (6) and (7) for E, the eccentric anomaly for which the event occurs. A

second event condition would give a second value of E, and consequently the time

interval between the two events can be determined from equation (9) as follows:

(E 2 - E I) - e(sin E 2 - sin E I)

6t = (24)
n

Equation (20) or (21) is in general a quartic equation for cos E (or sin E),

and hence there are eight roots to be investigated, since the sign of the sine and

cosine functions only determines one of two quadrants into which E can fall. How-

ever, only four of the eight values of E will yield the correct value of p, and

9



hence equation (20) must be used to determine which four roots correspond to the

physically real roots. (See fig. 3 and the numerical example presented later.)

Some other parameters of considerable importance in mission design studies are

the elevation and azimuth angles of the Sun as seen in a local spacecraft coordinate

frame and the time rates of change of these angles.

Form two new unit vectors: ^(I) er = _/l_l' a unit vector along the radius vec-

tor of the spacecraft, and (2) W x er (fig. 4). For circular orbits, the velocity

is parallel to W x er" Thus_ the triad -W, W x %r' and er form a useful local

coordinate system, with W × e r pointing "forward," -W pointing out the "right

wing," and er pointing "upward" along the positive radius vector, the local

vertical. (See fig. 5.)

In this coordinate system, centered at the spacecraft, any vector, specifically

es' can^be defined by E£, the elevation angle above or below the local horizontal
A A

(the ^-W,^ W x e s plane), and A z, the azimuth angle measured clockwise from, say,

the W x e r vector in the local horizontal plane.

From figure 5 and equations (5) and (21), the elevation angle is

sin E£ = er " es = - -
(25)

The minus sign is chosen by convention to make the elevation angle negative when it

is measured below the local horizontal.

Let o x and Oy be the components of es in the -W and W x er directions,

respectively. Then,

Ox = -as ° _ (26a)

and

°y= " × = " cos (26b)

From equations (14) and (15), °x and Oy can be written as

o x = -sin 8 (27)

qXo- PYo

y R
(28)

I0



Thus the azimuth angle and its quadrant can be determined from

x
sin Az = (29)

+ iJ
(Ix y

Y
COS A z - (30)

2 + 2
x y

From figure 5, it can be seen that since e3 is a unit vector,

_ + = cos E
a 2
Y £

(31)

and so equations (29) and (30) appear as

sin A z -sin
= cos E£ (32)

qX0 - PY0

cos A z - R cos E£ (33)

It is of interest to determine the geographic position of the subtangent point

at the event time. Let the subscript t refer to either a sunrise or a sunset

event. The position vector of the spacecraft at the event time is found from equa-

tions (5) through (7) with the appropriate value of E used in equations (6) and

(7). Figure ±(6) shows the tangent point geometry, where ÷_t is the tangent point
÷

vector, and s t is a vector which forms a triangle with R t
and

Pt points toward

the center of the Sun.

÷
The vector S

t
can be written as

= e R cos O
t s t

: -Rt{ r • Ssl s

11



where @ is the angle between the radius vector and the Sun vector (see fig. 6), so
that

Pt : Rt - Rt(er " es)es (34)

The right ascension
÷

s t and declination 6 t of Pt
can be found from

Px = Pt cos 6t cos s t
J

Py = Pt cos 6 sint t

Pz = Pt sin 6 t

(35)

The geocentric latitude of the subtangent point is identical with the declina-

tion. To get the longitude, we must compute the sidereal time at the event time.

The orbital elements used in all the previous calculations are assumed to be

given at a specified time, t (GMT) and are given with respect to an inertial coor-

dinate system in which the x-y plane is the Earth equatorial plane, and the x-axis is

defined by the direction of the vernal equinox. (See Smart 1977, Brooks 1977, or

Escobal 1965.) The sidereal time, as applied here, locates the Greenwich meridian in

this coordinate system (see fig. 7) from which we get the relation with reference to

the subtangent point

s t = STG + I t (36)

where STG is the sidereal time at Greenwich and A t is the local longitude (positive
east). The Greenwich sidereal time at 0 hours GMT (STGO) on the date is found from

the equations in the appendix. If the orbital elements are specified at time t

(GMT) and if At is the time of the event measured from t, then the sidereal time

of the event is given by

STG = STGO + 0.25068447 At (37)

where At is given in minutes from 0 hours _4T, and the constant is the rotational

rate of the Earth in degrees per mean solar minute. The latitude and longitude of
÷

the subspacecraft point can be found in a similar manner by using R in place of
+ t
Pt above.

Simplification for Circular Orbits

The imposition of circular orbits permits a great simplification in the evalua-

tion of the above equations. First, one can set _ = 0, since periapsis is undefined

12



for a circular orbit, and measure E from the ascending node.
equations for p and Q to be written as

This permits the

[cos l= Isin (38)

L 0

^ I-sin _ c°s il

Q = 1 c°s n c°s i 1
L sin i J

(39)

and equations (6) and (7) reduce to

X 0 = R cos E (40)

Y0 = R sin E (41)

where now R is a constant, and E = M. Equations (20) and (21) reduce to

p2 = R 2 sin 2 8 + R2(q cos E - p sin E) 2

= R211 - (p cos E + q sin E) 2]

(42)

The minimum value of p is found from equation (42) to be

Pmin = RIsin
(43)

which is the semiminor diameter of the elliptical projection of the circular orbit

onto the e2-e3 plane. If Pmin < Re' the radius of the Earth, there will be a pair

of distinct sunrise and sunset events. If Pmin = Re' the orbit will just graze the
surface of the Earth as seen by a solar observer, and the sunrise and sunset roots

coalesce into one value. Finally, for Pmin > Re, there will be no sunrise or sunset
events.

If we restrict our attention now to the situation which produces a pair of

events, there will be four physically meaningful roots of equations (42), as stated

earlier, corresponding to the four points where the spacecraft pierces the cylinder

13



circumscribing the Earth as seen from the Sun and as seen in figure 3. Two of these
points (roots I and 2) correspond to the actual sunrise and sunset conditions,
respectively, and pierce the "shadowcylinder" of the "shadowside" of the Earth; the
other two roots (3 and 4) correspond to conditions at the samevalue of p but
pierce the shadowcylinder of the "Sun side" of the Earth. These roots can be dis-+

follows: R • es is the componentof _ lying along the Earth-Suntinguished as+ ^
vector. If R • e ) 0, the spacecraft is on the Sun side of the Earth (i.e., sun-s
ward of the terminator), whereas if ° es < 0, the spacecraft is on the shadowside
(i.e., behind the terminator). Thus, the real events occur for the two values of E
for which

^

• e < 0 (44)
s

From equation (5), this expression becomes

X0P + Y0q < 0

and for circular orbits

p cos E + q sin E < 0 (45)

The distinction between sunrise and sunset can most readily be made by examining

the sign of p. From equations (42)

nR2( 22 )P pq cos 2E + q -2 p sin 2E (46)

A positive p value identifies a sunrise event, and a negative p value corresponds

to a sunset event.

The values of E which give a specific p can be found by solving equa-

tions (42) to obtain

cos E = -_h _ q_2 + q2 _ h 2
2 2

P +q

(47)

where, taking into account the condition shown in equation (45), h is the positive

constant

14



h 2 (48)

Equation (47) gives two roots for cos E and hence four roots for E. Two of

the four roots can be eliminated by using equation (42), as they will not produce the

correct value for p, and the sunrise and sunset roots can be identified from

equation (46).

If we write out the expression for sin 8 from equation (14) by using

equations (I) and (4),

sin 8 = cos i sin _s + sin i cos 6 s sin (_ - es ) (49)

For a given orbit, 8 is a maximum when the orbit plane is as nearly normal to the

Sun vector as it can get, that is, when _ - es = 90° or 270 ° . From equation (49)

this condition corresponds to

8ma x = ±(i + 6s ) (50)

For a grazing condition, Pmin = Re' and we have from equation (43) that

R
e

sin 8 G = _--- (51)

where 8 G corresponds to the value of 8 for a grazing condition. Thus if

8ma x < 8G, the orbit will not experience a grazing situation - there must be events

for that orbit. Of course, 6 s changes throughout the year from -23.5 ° to 23.5 ° ,

and hence there may be grazing possibilities at some times of the year and not at

others. A grazing condition is most likely to occur near the solstices, and hence

the maximum inclination an orbit can have in order to insure that it never experi-

ences a grazing situation can be found from equations (50) and (51) if we set

6 s = 23.5 ° . The following table reflects these vaules:

Orbit altitude, km 8, deg imax, deg

3OO

400

5OO

600

700

8OO

900

1000

72.76

70.22

68.02

66.07

64.30

62.69

61 .60

59.82

49.32

46.98

44.58

42.63

40.86

39.25

37.76

36,38

15



These calculations show that if i < imax, then no grazing condition can be
experienced for that orbit, and each orbit will experience a pair of events. How-
ever, if i > imax, there is no guarantee that a grazing situation will be experi-
enced, as the grazing condition depends on the angles _, 6s, and _s' all of which
vary throughout the year. However, since _ and _s both change more rapid than
6s, especially near the solstices, the probability is high that a grazing event will
occur.

The expressions for the elevation and azimuth angles assumesimple forms for
circular orbits. For these orbits, the unit radius vector becomes

e = P cos E + sin E (52)
r

and hence equation (25) can be written

sin E£ = p cos E + q sin E = - -
(53)

Similarly equation (28) reduces to

Oy = q cos E - p sin E
(54)

Then, using equation (53),

_o 2 + = V I - (p cos E + q sin = cos

J
o 2 E) 2 E

x y £
(55)

a result we found earlier from geometric considerations, and the azimuth follows from

equations (29) and (30)

-sin 8
sin A z = cos E

£

Az = q cos E - p sin Ecos
cos E

£

(56)

16



The elevation and azimuth angle rates can also be computed from equation (53)

dE£ n(q cos E - p sin E)

dt cos E£

= n cos A z

(57)

Comparing equations (55) and (42), we see that

J2 2 px + y = R = cos E£
(58)

and hence

-R sin 8 Pmin
sin A z = = (59)

P P

from which

dA -PPminz (6O)
dt 2

p cos A
z

Finally, it may be of some interest to compute the rate of change of 8. From

equation (14)

cos _ dE W + W (61)
__ = • • e sdt Ss

If _s is the angular rate of the Earth about the Sun, then e s can be written

e =
s s

--cos e cos d sin s - sin e sin 6 -
s s s

cos e cos _ cos
s s

sin e cos _ cos
s s

(62)

17



where e is the obliquity of the ecliptic. (See the appendix.) With equations (I)
and (4), equation (61) can be put into the form

cos 8 d8 = -_ [sin i cos e cos 6 cos(_ - e )
dt s s s

+ sin e (sin _ sin i sin 6s - cos i cos _s cos es )]

+ _ sin i cos 6 cos(_ - _ ) (63)
s s

The bracketed term in equation (63) results from the annual excursion of the Earth

around the Sun, and the second term results from the secular perturbation in the line

of nodes. The angular rate _ (in degrees per day) can be well approximated by the
expression s

_s _ 1.00288 + 0.03352 cos[0.98562(d - 2)] (64)

where d is the day number of the year, and _ can be found from the perturbation

equations (Brooks 1977 or Escobal 1965). For circular orbits _ can be written as

2

= _ 32 J2 (cos i)n

in which J = 1.08228 x 10 -3 is the second-order perturbation constant, and 6 has

the same units as n.

One final parameter which is of frequent interest might be termed the "skewness"

of the data profile - this is, the length of the angular arc traced by the subtangent

point during a sunrise or sunset event. If we let this angle be y, then

+ +

Ptl " Pt2

cos y = (65)

I t111 t21

where the subscripts I and 2 refer to the beginning and end of the event, respec-

tively. Substitute from equation (34), use equation (25), and simplify to obtain

erl er2 sin sin• _ E£2 E£ I

cos y = cos E cos E (66)

£2 £1

18



Equation (52) permits this to be written as

cos(E 2 - E I) - sin E£2 sin E£
cos y = I

cos E cos E (67)

£2 £I

This arc length, when expressed in units of kilometers on the surface, can range from

0 km for 8 = 0 ° to several hundred kilometers for 8 = 8ma x.

Numerical Examples

Some numerical examples illustrating the computations and some applications

might clarify the concepts introduced in the text. One complete calculation of a

pair of events is presented, and then the application of these methods to a typical

ground-truth experiment is given.

Calculation of events.- We assume a set of orbital elements presented below:

a = 6981.2908 km

e = 0

i = 57.0 °

= 266. 1083 °

= 52. 5800 °

M = 172.3795 °

Date = November 12, 1985

T = 0 hours, GMT

From the equations of the appendix, we find for this date, a s = 227.0949 ° and

6s = -17"6197°" The sidereal time at Greenwich is 51.0702 °. We assume that sunrise

or sunset occurs when the tangent ray altitude is -70 km to approximate the effect of

refraction of the Earth's atmosphere.

From equations (2)-(4) and (I), we get the unit vectors

19



0. 38409

--0. 83674-
^

W = 0.05692

0.54464

-0.648851
A

L-0. 30270J

and the p, q, and w parameters become

p = -0.01114

q = -0.94097

w = 0.33832

Hence, 8 and Pmin are

= 19.77430 °

Pmin = 2361.882 km

Since Pmin is less than the radius of the Earth (6378 km), there are distinct

events for this orbit. With p = 6308 km, we get from equations (47), (42), and

(46), the following table of events for E:

Root E p, km 6, km/sec

1

2

3

4

26.407

333.593

152.236

207.764

6308.0

6372.2

6308.0

6240.9

-3.002

3.002
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and therefore roots 1 and 3 are the physically real roots, with root 1 corresponding
to sunset (negative p) and root 3 being the sunrise root. The meanangular rate of
the spacecraft in its orbit is (from eq. (10)) equal to 0.06201 deg/sec. Thus, the
rise and set times are

trise = 0.06201
360 - 172.3795 + 152.2363

= 5480.68 sec

= ih 31 m 21 s

tse t =
360 - 172.3795 + 26.4067

0.06201
= 3451.49 sec

= Oh 57 m 31 s

At sunrise, we find from equations (5)-(7) that

+
R
t

I-I 162.106]

and hence the tangent point vector is (from eq. (34))

+

Pt

-31 02.9701

The right ascension and declination of the subtangent point vector are (from

eq. (35))

S t = 125.551 °

_t = -32"216°
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Now, Ih 31m 21s = 91.35 minutes, and thus the Greenwich sidereal time at sunrise is
(see appendix)

STG= 51.0702 + (0.25068447)(91.35) = 73.9702°

and hence the longitude of the subtangent point is (from eq. (36))

I t = 125.551 - 73.970 = 51.581 ° east longitude

If we repeat this calculation using the sunset root, we get the table below:

Parameter Sunrise Sunset

Time Ih 31 m 21 s Oh 57 m 31 s

Latitude -32.216 ° 43.910 °

Longitude 51.583 ° 247.614 °

Now, we look at the events at an altitude of 137 km. The range of 137 to -70 km

(or vice versa) represents a typical altitude range of a Sun-scan-type experiment.

It is assumed that the Sun's position remains fixed and that the orbital elements

retain the values they had at time T. By iterating on the results given here, these

restrictions can obviously be relaxed if higher accuracy is warranted. The calcula-

tion gives E at sunrise as 156.873 ° and E at sunset as 21.770 ° . The sunrise and

sunset times are Ih 32 TM 35 s and Oh 56 TM 17 s, respectively. From either pair of times,

the total event time (from -70 to 137 km, the total time available for measurements)

is 74 sec. The time spent in Earth shadow is 33 m 49 s.

To apply these results, the following scheme can be used to determine the range

of the mission parameters for, say, I year. The above calculation is repeated daily

at 0 hours GMT. The orbital elements are updated each day by using the perturbation

equations given in Brooks (1977) or Escobal (1965). If this is done for the example

orbital elements given earlier, then such data parameters as shown in figures 8

through 11 can be derived. Figures 8, 9, 10, and 11 show as examples of typical out-

put, the range of subtangent latitude, 8, mission event time, and time in Earth

shadow, respectively, plotted as functions of days from launch. Figures 10 and 11

show that mission event time ranges from about 70 to 100 seconds and that time in

Earth shadow ranges from 29 to 35 minutes except when the orbit approaches a full

sunlight situation (i.e., near days 60, 130, 240, and 310) and when 8 nears 8ma x
(66 ° for this orbit) on days 170 and 350. At these times, the mission event times

increase dramatically, and the potential for thermal problems in the instrument also

increases. In addition, the time spent in Earth shadow decreases significantly, and

there may be a reduction in the instrument recovery time or an adverse effect on the

data transmission time.

Calculation of event nearest a specified geographic location.- As a second exam-

ple of the application of these results to mission planning, suppose that we want to
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find an event which occurs nearest to somespecified geographic location. For exam-
ple, supposea balloon launch or ground-based experiment is to be madeduring the
sunrise or sunset event which occurs nearest to Laramie, Wyoming,whose coordinates
are approximately 41° N and 105 ° W. From figure 8, it is seen that sunrise events

occur at latitudes of 41 ° N at about I and 21 days after launch, and sunset events

occur at 30 and 49 days after launch, with corresponding pairs of events occurring

throughout the year. We want to find the conditions near the Laramie event at day

21. From a detailed output of the calculations described above, we find the fol-

lowing table of events for days 21 and 22:

Parameter Day 21 Day 22

Date

Sunrise time

Subtangent point latitude

Subtangent point longitude

November 2, 1985

O h 48 m 06 s

42.124 ° N

87.520 ° E

November 3, 1985

ih 00 m 27 s

38. 465 ° N

83.009 ° E

The total time between these events is 24.20583 hours. The orbital period is

360/0.06201 = 5805 seconds, or 1.6126 hours. Thus there are 24.20583/1.6126, or 15

events occurring during this interval. Since the longitude change is from east to

west (opposite to the direction of the Earth's rotation), the total longitude spanned

at 41 ° N during this time period is 360 + (87.520 - 83.009), or 364.511 °, and thus

the change in longitude per event is 364.511/15, or 24.300733 degrees per event. The

change in longitude from 87.520 ° E to 105 ° W is about 192 ° , and thus the event near-

est to Laramie will be the rounded-off quotient 192/24.300733, or the eighth event on

November 2.

During these eight events, the actual longitude change is 194.40586 ° , so the

event occurs at 106.886 ° W, or just west of Laramie.

The mean time between events is 24.20583/15 = 1.613722 hours, and hence the

elapsed time for eight events is 12.909776 hours, or 12 h 54 m 35 s. Thus, sunrise

occurs at 12 h 54 TM 35 s + _ 48 m 06 s, or 13 h 42 m 41 s GMT.

The latitude of the subtangent point is also found by simple interpolation to be

42.124 +
(38.465 - 42.124)

15
× 8 = 40.173 ° N

A comparison between these interpolated results and a more detailed orbital calcula-

tion for this specific event gives the following table:

Parameter This case Exact

Time 13 h 42 m 41 s 13 h 42 m 40 s

Latitude 40.173 ° N 40.245 ° N

Longitude 106.886 ° W 106.858 ° W
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For most ground-truth experiments tied to satellite rise or set events, the interpo-
lated results appear to yield results of acceptable accuracy.

CONCLUDINGREMARKS

An analytical method is developed for determining the geometrical parameters
which are needed to describe the viewing angles of the Sun relative to an orbiting
spacecraft when the Sun rises or sets with respect to the spacecraft. These equa-
tions are rigorous and are frequently used for parametric studies relative to mission
planning and for determining instrument parameters.

The text is wholly self-contained in that no external reference to ephemerides
or other astronomical tables is needed. Equations are presented which allow the com-
putation of Greenwich sidereal time and right ascension and declination of the Sun
generally to within a few seconds of arc, or a few tenths of a second in time.

NASALangley Research Center
HamptonVA 23665-5225
June 11, 1986

24



APPENDIX

COMPUTATIONOF SOLARPOSITION

The following algorithm will produce the right ascension and declination of the
Sun to within a few seconds of arc, as evidenced from a considerable amount of com-
parison with solar position data published in various annual almanacs. This appendix
is completely self-contained. No other tables or reference materials such as alma-
nacs or ephemerides are needed to compute the parameters discussed in the text;
hence, these relations are quite suitable for computer use. Angles are computedmod
(360). The steps and equations of the algorithm are

I. Computethe Julian date (Almanac for Computers 1980)

where

JD

K

M

I

GMT

4 i + I + 1721013.5 + GMT24

Julian date

year (e.g., 1984)

month (I _ M 4 12)

day of month (I ( I 4 31)

Greenwich mean time, hours (0 ( GMT _ 23.99)

The symbol < > denotes the maximum integer value.

2. Compute the sidereal time at Greenwich at 0 hours GMT of a given date as follows

(Escobal 1965):

STGO = 99.6909833 ° + 36000.7689°T u + 0.00038708OT 2
u

where T u is defined by

JD - 2 415 020
Tu = 36 525

The equation for STGO includes the precession of the equinoxes but neglects the nuta-

tion terms, that is, the equation of the equinoxes. Hence, this is the mean sidereal

time at 0 hours GMT. For any GMT, the sidereal time is then found from

STG = STGO + 0.25068447GMT
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where GMTis in minutes.

3. Compute the right ascension of the mean Sun (RAMS) (Escobal 1965)

RAMS = 279.6966778 ° + 36000.76892°T u + 0.0003025°T 2
u

4. Compute the obliquity of the ecliptic e (Escobal 1968)

= 23.45229444 ° - 0.0130125OT u - 0.0000016389OT 2
u

5. Compute the Sun's apparent mean anomaly M s (Escobal 1968)

M s = 358.475844 ° + 35999.04975°T u - 0.00015OT 2 _ 0.0000033333OT 3
u u

6. Compute the eccentricity of the Earth's orbit e e (Escobal 1968)

e = 0.01675104 - 0.00004180T - 0.000000126T 2
e u u

7. Compute the equation of time ET (Smart 1977)

E T = y sin 2£ - 2e e sin M s + 4eeY sin M s cos 2£

I 2 5 2

- _ y sin 4£ - _ e e
sin 2M + [5 2 sin 2M

s [2 Yee s
cos 2£

4y2ee I 3 1 3- sin M s cos 4£ + _ y sin 6£ + _ e sin Me s

13 3 ]12 e sin 3M + ...e s

where

£ =RAMS

y = tan 2 e_
2

The term in brackets is of third order in the Earth eccentricity and may be omitted

unless extreme accuracy is required.
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If one substitutes the values of y and ee for mid-1985, the following equa-
tion (Smart 1977) will give reasonably accurate numerical values for the decade of
the 1980's:

ET = -0.4329 sin £ - 1.7900 cos £ + 2.4848 sin 2£

- 0.0083 cos 2£ + 0.0179 sin 3£ + 0.0804 cos 3£

- 0.0529 sin 4£ + ...

The units are degrees.

8. Computethe right ascension of the true Sun a (Smart 1977)s

as = RAMS- ET

9. Computethe declination of the Sun s

tan 6s = sin as tan

10. If needed, compute the hour angle of the meanSun (HAMS)and the hour angle of
the true Sun (HAS) (Smart 1977)

HAMS= GMT- 12h - Longitude

HAS= HAMS+ ET

Longitude is defined as positive east of Greenwich. The west longitude of the
true Sun is just the hour angle of the true Sunmeasuredat Greenwich. The latitude
of the true Sun is, of course, identical with the declination.
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Days from launch

Figure 8.- Annual variation of subtangent point latitude for example orbit

used in text.
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