
P.

!
|

!

!

m

!

I

!
°

!
I
!

|

I

1088 Mid-Year Report

//5

EOS" A project to Investigate the Design and Construction of

Real-Time Distributed Embedded Operating Systems.

/

/,¢-3 _ 5-5

Principal Investigator: R. H. Campbell.

Research Assistants:

Ray B. Essick,

Judy Grass,

Gary Johnston,

Kevin Kenny,
,¥:-- ._ "0 .....

Software Systems Research Group

University of Illinois at Urbana-Champaign

Department of Computer Science

1304 West Springfield Avenue

Urbaaa, Illinois 61801-2987

(217) 333-0215

[NASA-CR-179ET4) EOS: _ PEOJEC_ TO
INVESIIGATE TEE DESIGN ANE ££NS_SUCIION O_

_£AL-_IME DISORIEntED EMBEDDED C_ERATING

SYSTEMS Mid-Year Beport, 19_6 |Illinois

univ., Urhana-Cha=gaiqn.) 205 _ CSCL 09B G 3/61

N87-11510

Unclas

43960

I



I

t
I
!

I
I
I
I
m

I
I
!
I
l
I
I

1986 Mid-Year Report

EOS: A Project to Investigate the Design and Construction of

Real-Time Distributed Embedded Operating systems.

Principal Investigator: R. H. Campbell.

"Research Assistants:

Ray B. Essick,

Judy Grass,

Gary Johnston,

Kevin Kenny,

Vince Russo.

Software. Systems Research Group

University of Illinois at Urbana-Champaign

Department of Computer Science

1304 "West Springfield Avenue

Urbana, Illinois {}1801-2987

(217) 333-0215

ABSTRACT: The EOS project is investigating the design and construction of a family

of real-time distributed embedded operating systems for reliable, distributed aerospace

applications. Using the real-time programming techniques developed in co-operation

with NASA in earlier research, the project staff is building a kernel for a multiple pro-

cessor networked system. The first six months of the grant included a study of schedul-

ing in an object-oriented system, the design philosophy of the kernel, and the architec-

tural overview of the operating system.

In this report, we will describe our operating system and kernel concepts. An

environment for the experiments has been built and several of the key concepts of the

system have been prototyped. The kernel and operating system is intended to support

future experimental studies in multiprocessing, load-balancing, routing, software fault-

tolerance, distributed data base design, and real-time processing.
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I. Summary.

This project is building an experimental operating system EOS, an example real-

time embedded operating system for computer systems in aerospace applications. EOS

is based on a distributed,object-oriented approach, and is specificallyintended for dis-

tributed software applications in NASA's research and development program. The goals

of this research include an investigation of the practicalorganization of kernels for mul-

tiple processor networked comptlters, real-time scheduling of tasks, the construction of

system-based fault-tolerant support for distributed computing, and the design of basic

serviceobjects in a distributed,object-oriented operating system.

In the past six months, we have completed several studies:

• Completion of research into a high-level scheduling primitive for real-time'systems

called a Mediator. Judy Grass, the investigator, completed her Ph.D. which is

appended to this report. Temporal logic was used to specify the semantics of the

primitive. The primitive permits considerable flexibilityin programming synchroni-

zation and scheduling while retaining modularity for that programming.

• ,'_,-,,_,_,io_,.,n of the research on Path Pascal. "r'ho ,'_,,',,pi!er for Path Pascal on U.N_'T_
_ VLAa]tJ L_ v LV_ V_A

was further debugged and the system stablized. The Path Pascal system has been

used to support the operating systems class tb.is Spring and Fall. Each_ class

involved about 150 students using the system on an IBM $9000 microcomputer.

Some of the students wrote projects in Path Pascal. The compiler has been distri-

buted to some twenty sites.

• A study of device driver models. A device driver model was constructed for use

with Path Pascal. It has since been adapted for use with EOS.

• Lessons learnt from Path Pascal in the construction of its run-time kernel have

been applied to the construction of a prototype run-time process dispatcher for

EOS. The dispatcher is coded in C++. Processes are programmed as instances of

the class "thread". Classes are also used to program synchronization primitives.

• A bootstrap kernel has been constructed by removing all unessential detail from the

UNIX System V kernel. The kernel provides a simple shell, access to disk, and link-

ing and loading facilities and fits on a floppy diskette. The bootstrap kernel is

being used to boot the EOS kernel. Utilities in the bootstrap kernel will be replaced

by EOS utilities as they are being developed. (The C binding of C++ allows a sim-

ple replacement scheme.)

• A virtual memory scheme is being developed to share paged data amongst

net_'orked machines with the same data formats. Although this work is primarily

useful for interconnecting workstations with faster processor servers, the technique

also permits more flexibility by allowing virtual memory spaces to be multipro-

cessed.
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• The structure of a lightweight RCP and message passing scheme has been devised

which will permit exploitation of virtual circuit communication systems as well as

packet switched systems. The structure also allows the underlying communication

system to exploit networking capabilities and topologies to improve multicast and

broadcast communications.

• The overall architecture of the operating system has been studied and consists of

domains of objects and processes communicating through a lightweight remote pro-

cedure call. Within a domain, communications are optimized to procedure calls.

Each domain can contain many lightweight processes, these are special instances of

an "object". Objects can be sh3:red concurrently by several domains. Processors

are allocated to domains and" they execute the active threads of control within those

domains. Context switching between domains occurs because of priority concerns or

because there are no threads ready to execute within the domain. Context switch-

ing between lightweight processes within a domain does not involve a major change

in context. The file system, policy modules, user protection schemes and many

other concerns of the operating system will be coded above the operating system

kernel as system objects.

• The design of the kernel has been closely examined. The target is to produce the

smallest kernel which will support the basic building blocks of the operating system.

The kernel will support inter address space communication, task and process

switching, and interrupt management.

• All kernel and operating systen{ components will include real-time scheduling infor-

mation and components. A short review of real-time systems suggested that such

provisions should be built in to the system from the beginning, even if they are not

used in the initial system prototyping.

• We have considered naming schemes for tasks, processes, and objects. A more

detailed report will be produced later in the year.

• Protection will be provided by a hierarchical scheme that includes both access lists

and capabilities. This scheme will be implemented above the kernel in the operat-

ing system. The kernel will only enforce protection provided by the hardware. The

choice made here is to eliminate inefficiencies in the kernel which would be caused

by repeated interpretation of access rights and to place the obligation for checking

access rights with the object that requires protection (for example the file system.)

The kernel will provide mechanisms to authenticate processes and sources and desti-

nations of remote procedure calls.

The research project is using the tools and methodologies developed in earlier

research I in co--operation with NASA [8,9]. The operating system overview is docu-

mented in [8,9,14,15,16,30,31]. The development environment supports implementation,

reconfiguration, and testing of systems of component objects on both service-host and

I Some of the papers, reports, and theses that document our research are included in

Appendix A.
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stand-alone computers.

We intend to perform much of the operating system component testing on AT&T's

3B2/310, Motorola's M68020, Encore Multimax, VAX 750s, and on the A.METEK

Hypercube. The kernel is being designed as a portable system and will be tested on

several different architectures to ensure that machine dependencies have not been built

into the software. The AMETEK cube will be used as a reconfigurable testbed for real-

time systems. Each node of the cube can communicate by DMA to its five neighbors:

The connectivity of the cube permits its use to model a hierarchical collection of shared

buses or networks to which are attached groups of real-time processors. The availability

of a large number of processors on the cube also enables some processors to be used for

monitoring and simulating real-time [/O. A simulator for the cube exists on the VAX

750 and permits debugging.

Code will be mainly written in C++ and C to make it portable to all the machines

that will be used in the project.

2. Mediated Objects

During the past year a design for mediated objects has been completed and formal-

ized. The mediated object construct was developed to provide support for synchroniza-

tion and scheduling for distributed systems programming. This support is essential to

the development of complex real-time Embedded Operating Systems. Our interest in

this topic comes from the observation that many existing tools for concurrent processing

overly constrain concurrency, complicate scheduling and do not allow a modular

approach to the specification of timing constraints.

Our interest in formal specifications have resulted in a complete temporal logic

specification of the mediator construct. We believe that this specification is useful as

unambiguous documentation of the design, as a guide to implementation and as an

essential tool for program verification. This specification has also been a valuable check

on the design and led to many improvements.

The design of the mediated object is presented in detail in a Ph. D. thesis presented

in Appendix B. The informal presentation of the design has been the subject of a

conference paper [31] which is in Appendix C. The temporal logic specification and the

example of the use of the specification for verifying mediator programs are presented in

the thesis.

The implementation of mediated objects should be a straight forward task. Few of

the elements of mediators have not already been implemented in some form. The imple-

mentor has been provided with an unambiguous specification as a guide.

_. The Path Pascal Compiler

During the Spring semester, the compiler was once again used for the operating sys-

tem class. A few bugs were found with the implementation and these have been

corrected. The number of errors ['ound was sul_ciently small to consider the compiler
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reasonably reliable. The VA.X and SUN compilers have been distributed to a number of

schools.

4. A Device Driver Model for Path Pascal

The Path Pascal programming language is designed to allow the user to experiment

with the programming of multiprogramming systems. Its greatest use is in designing

and simulating operating systems; for this purpose, however, the language itself is

incomplete. One feature that the language lacks, by design, is any support for I/O dev-

ices. Appendix D contains a description of a device driver model for Path Pascal.

Devices are presented to Path Pascal as a set of external objects that can be linked

with Path Pascal programs. Through these objects, the user can define a set of peri-

pherals, such as disk drives and terminals, and allow the program to communicate with

them. The model imposes a structure upon the communications with the device driver.

The model is currently being modified for use in EOS to provide actual device

drivers.

5. Architecture of EOS.

EOS is built to support communicating real-time tasks that are composed of collec-

tions of processes performing operations on collections of objects. Each task runs in its

own virtual memory. A task may use one or more processors to process its processes in

which case the virtual memory is shared between the processors. Objects may be local

to a task or process, shared between a group of tasks, or remote. The domain (accessible

data) in which the task executes has four subdomains. Each subdomain is protected

from the other subdomains by a hardware firewall. Individual objects and processes

within the subdomains may be protected if the hardware supports segmentation and seg-

mentation registers. Access to remote objects is accomplished through remote procedure

calls and a server task. Other communication mechanisms are provided by additional

communication objects.

The design of the multi-processor operating system will build on our experience and

other related work. Of particular interest are the Mach [11 and Accent [50] systems and

the V System [22,23,24]. The hardware model that we assume is a large number of

high-performance processors (perhaps with vector operations) with local memory, inter-

connected through shared memory, high band-width networks or cross-bar switches.

We believe that future networks appropriate for aerospace applications may involve

optic fiber time division multiplexing, multiple frequencies or cross bar switching permit-

ting efficient multicasts and virtual circuits. Such networks will be able to interconnect

a large number of machines and provide a high bandwidth. The bandwidth of the net-

work could make the CPU processors a network system bottleneck. Flexibility within

the network configuration will permit experimental hardware to be attached to the

networked computer system. Adaptability, reconfigurability, availability and reliability

appear to be future important software considerations.

The design we have selected for EOS is based on the current evolution of operating

systems towards object-orientation. This also reflects our experience with Path Pascal
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based operating system design. The motivation for this evolution is that current operat-

ing systems are difficult to adapt to new, multi-computer/multi-processor architectures

and reliable applications. The structure of many of today's operating systems are based

on a sixties perception of time-sharing and real-time operation. Instead of a centralized

timesharing or real-time operating system model, research is concentrating on a model

in which operating systems are collections of independent but communicating objects.

Such an approach enhances adaptability, reliability, reconfigurability and the ability to

exploit multiprocessor hardware.

After a period of two decades, th.e timesharing system has begun to invade all

corners of the commercial and ir_dustrial market. UNL_ 2 is an example of one such suc-

cessful system. During the two ctecades, knowledge about the structuring of computer

systems has improved and new operating system concepts introduced. However,

improved understanding of the structure of an operating system is not, by itself, a

motivating force to develop a new operating system. It is our belief that the change in

communication bandwidth will change how resources within a computer system are

managed and that this will provide the major motivation to redesign operating systems.

Adaptive and reliable system architectures provide additional motivation to explore new

operating system designs, It is our intention to build a prototype embedded operating

system which can be used as a testbed to decide how best aerospace operating systems

_^.._-_: ......I _:..... l:_,,:^,,oshould evolve.

However, our research is adopting a very pragmatic approach to the operating sys-

tem structure. We have decided that we cannot impose overhead on the operation of

the system that would not have been required in a normal time-sharing or real-time

design. Using these two goals,our work has been to develop a new model for an operat-

ing system and kernel based on improved communications facilitiesand the studies that

we and other researchers have made into the structures of operating systems.

At the lowest levelof the operating system is a nugget. The nugget supports tas'k

and process switching and synchronization between processes. The nugget is written in

C++ and a small amount of assembler code. A prototype nugget is listedin Appendix

E. Upon the nugget is built a kernel. The kernel provides a user level system interface.

It isthrough the kernel interface that tasks may request other operating system services.

The kernel will be constructed as a set of co-operating objects written in C :--_.

Using our experience from LINK, these objects will provide a standardized set of func-

tions which may be used to build a variety of differentoperating system service inter-

faces to the user. The functions are organized into layers (for example, remote pro-

cedure callswillbe mapped onto sequenced messages which willin turn be mapped onto

asynchronous message passing primitives.) The interface between the kernel and the

user is modeled after the object-oriented notion of a class. The interface takes the form

of a set of primitives we have nicknamed a RUSK or reduced universal system kernel.

The primitives willinclude process creation,deletion and various communication primi-

tives likeopen, read, write, and close. The parameters to these primitives are chosen so

2 UNL"( is a trademark of AT&T.
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that name resolution issues are encapsulated within the kernel. (In UNL-_, the physical

file descriptors of open files and process identifiers of active processes are bound to a sin-

gle processor. This prevents UNL_ United and its implementations from allowing explicit

reference to remote running processes and open file descriptors.)

Eztensions to the kernel take the form of additional layers which specialize the ker-

nel interface. Kernel extensions include real-time, fault-tolerance, distributed comput-

ing functions like load balancing, and other specialized functions. These kernel exten-

sions are integrated with the kernel interface using'a model based on the object-oriented

notion of a subclass. Users may add kernel extensions in a similar manner to the way in

which UNIX System V permits _lters to be pushed onto a stream. Tasks may select the

appropriate kernel subclass at task creation time.

When the processes of a task request access to a non-local object, the kernel binds

that request to a particular shared or remote object using name-server objects provided

by the operating system. Local objects may be accessed by means of procedure calls.

Bound, shared objects may be accessed by means of "gated" procedure calls. The kernel

system call interface is also implemented as a "gated" procedure call. Bound, remote

objects may be accessed by means of local stub objects and remote procedure calls made

through the kernel interface.

The operating system consists of an operating system task and a library of objects.

It can be organized as a distributed operating system if required to overcome the possi-

ble limitations imposed on the software by a particular parallel architecture. For exam-

ple, on a hypercube architecture, processors within the cube may not have access to disk

controllers. For such systems, it would be more efficient to place the physical file system

operating system objects on nodes at the periphery of the cube that do have access to

disk controllers. The reorganization is performed by replacing the objects with stubs

that make low level remote procedure calls to the file system remote objects on specific

processors.

We intend to perform much of the operating system component testing on AT&T

3b2, M68020 computer systems, VAX 750s, and on the AMETEK Hypercube. The ker-

nel is being designed as a portable system and will be tested on several different architec-

tures to ensure that machine dependencies have not been built into the software.

The resulting code will have many experimental research applications. We hope to

use the AMETEK cube implementation as a reconfigurabie testbed for real-time sys-

tems. The structure of a typical real-time control task is shown in Figure 4.1. A hierar-

chy of such tasks might be used to implement a real-time application. The connectivity

of the cube permits its use to model a hierarchical collection of shared buses or networks

to which are attached groups of real-time processors. In such a hierarchy, real-time

processes that interact with sensors and actuators with fast responses are placed at the

leaves of the hierarchy on independent processors served by highly available buses.

Status information is gathered from and control information is passed to these proces-

sors by one or more control processors which reside at the next level on the bus hierar-

chy. In turn, these control processors communicate to higher levels of control over the

next level of the hierarchy. The availability of a large number of processors on the cube
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Figure 4.1: Task Hierarchy

also enables some processors to be used for monitoring and simulating real-time I/O.

The architecture of EOS may change as we develop a more concrete implementa-

tion. Issues concerning the virtual memory organization of the system could still alter

the design. Also, we hope to gain feedback from various other NASA investigators

about our proposed architecture.

6. Communications.

There have been many communication primitives proposed for distributed systems.

In EOS, we intend to support well those primitives for which there is appropriate

hardware support. To this end we provide several high-level communication primitives

like the remote procedure call and interfaces to allow other communication mechanisms

to be built efficiently.
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8.1. Overview

The overall underlying architecture of inter-process and inter-processor communi-

cations for the EOS kernel is one of lightweight asynchronous message passing; the

closest analogue to it among existing systems is the V Kernel of Cheriton [22,23,24]. It

allows for rapid message-based communications between processes, whether at the same

node or at different nodes, provides a multicast facility for communicating with groups

of processes, and allows for real-time scheduling of message tramc. In order to be as

lightweight as possible, it is set up to minimize the amount of copying required in the

processing of a message. A remote procedure call is built on top of the message passing

mechanism for use by the object bperation invocation scheme of the system.

The communications architecture comprises at least five distinct areas that have

been identified so far:

(1) A buffer manager to handle the allocation of buffer space for communications traffic;
this service must be centralized to avoid needing to copy messages between layers of

the system.

(2) rk set of communication device drivers to handle the details of interfacing for the

communications hardware present on a particular system.

(3) An asynchronous message service to control the switching of messages among the

processes and nodes of the system.

(4) A router to choose the routing for a message to follow. The router must be able to

choose routings for multicasts, and to provide reliable estimates of the real-time

requirements t'or getting a message to its destination.

(5) A sequencer to ensure (if necessary) that messages arrive in the order in which they

were sent, and to guarantee once-only message transmission.

Remote procedure calls, remote object servers, and the like are implemented atop

this basic framework (Figure 5.1).
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RPC, etc.

Higher-level "advisers"
for network routing

Sequencer

Asynchronous

message service

Communication
device

drivers

Buffer manager

Figure 5.1. Communleatlons overview

6.2. Buffer manager.

The buffer manager provides a single point where message buffers can be allocated.

The address space in which they are allocated remains visible throughout the kernel, and

hence the messages need not be copied between the layers of the communications facil-

ity.

Each buffer comprises an area of memory of a specified size, and a usage count.

The usage count is maintained by the buffer's "use" and "free" functions, and keeps

track of the number of active references to the buffer. When the usage count reaches

zero, the buffer may be reused by another operation.

The rationale behind maintaining a usage count, rather than simply providing

Unix-like "allocate" and "free" operators, relates to the fact that a multicast message
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may need to be forwarded over several communication links. Maintaining a usage count

seems the easiest way to handle this situation.

6.2.1. The buffer-manager object.

The buffer-manager object is the global entry to the buffer manager. It provides

a single entry point:

buff =buffer-manager.allocate (slze)

The s£ze argument is the size of the buffer to allocate, in bytes. The buff return is a

pointer to a buffer object containing" a buffer of the specified size and a usage count of

1.

8.2.2. The buffer object.

A buffer object represents a buffer of memor-y, its size, and its usage count. It

provides four basic operations:

sl.z = buffer.size

The size of the buffer (specified when the buffer was allocated) is returned as s I z.

p_r = buffer.area

A pointer to the memory area allocated for the buffer is returned as ptr.

buffer.use

The usage count of the buffer is increased by one.

buffer.free

The usage count of the buffer is decreased by one. If the usage count has reached zero,

the memory area associated with the buffer is released. Any use of this function that

may cause the usage count to reach zero must be regarded as spoiling the buffer pointer;

the pointer must not be used again after this function returns.

6.3. Communication device drivers.

The communication device drivers handle the physical hardware interface to the

communication links among the nodes of the system. They are implemented using the

"physical device object" .model that has already been proposed for Path Pascal. Such

an object has three identified functions:

device.initialize (dal;a)

Initializes the device for communications. The data argument is an

implementation-dependent structure that describes the configuration of the device. The

£nltlallze operation places the device in a quiescent state, ready for the remaining

operations to use it.

status = dev_.ce.operar_e (command, buffer)

Performs an operation on the device, as specifiedby command. The available commands

include at least read and write operations. The buffer is read from or written to [he

device according to the command. The requesting process is delayed until the operation

!
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is completed; the sr, a_us return then reflects the success or failure of the operation.

star,us = devlce, await-ln_errup_

Delays the requesting process until an urgent condition (e.g.,an unrequested write at the

other end of a communication link) is detected. When such a condition is detected, a

descriptionof the situationisreturned as st,argus.

The device driver routines will be located in the operating system, a virtual memory

and domain set aside for operating system data and tasks. The device drivers have

access to the real memory locations required to perform their task within their virtual

memory. Short interrupt handling routines will interface particular device drivers into

this scheme. We believe that coptext switching time should be sufficient to allow the

device drivers to be placed in virtual memory. However, if not, they can be moved into

the kernel.

6.4. Router.

The object structure of the message router has yet to be fully elaborated; hence its

appearance in Figure 5.1 as a "cloud". Its basic ¢,,,_,,,_l_,...__..v.._...j_.. th,_.__., glv,,,..........._ l_t nf'

nodes to which a message is directed, it must determine some nearly-optimal routing by

which the message can be sent to those nodes. The routing chosen may depend on the

urgency of a message (urgent messages my need to get minimum-time routings; non-

urgent ones, minimum-cost routings) and hence the router must be aware of the priority

of a message for which it is finding a routing.

Since the system is directed towards real-time operations, the router must also have

some knowledge of expected communication delays in the network, and be able to esti-

mate the expected elapsed time for a message to reach its destination. For messages

with deadline schedules, it may be required to return a denial indication if its estimates

indicate that a message is unlikely to reach its destination in the required time.

In order to minimize processing when a message must be forwarded by one or more

intermediate nodes before reaching its destination, it may need to provide out-of-band

information directed at the router on an intermediate node; its interface with the asyn-

chronous message manager must provide for this.

If an attempted transmission of a message fails, the router must be informed, in

order that its network tables may be updated to reflect the status of the node or com-

munication link that failed.

Higher levels of the system may require an interface to the router in order to pro-

vide it with "advice" relating to the choice of routes (for instance, data on congestion of

the communication pathways).

One possible set of interfaces to the router would look like:

rout, e-set, = find-rour, lng (buffer, desk.s, Info)

Finds a routing to get the message in buffer to the set of node-process pairs specified

by desr.s. The lnfo argument is a data structure providing information for the router

to make its decisions; it must at least include specifications for the urgency and deadline
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of the message. The find-routing request returns a set of ordered pairs

(link, data) where link identifies a communications link on which the message is to

proceed and data is a buffer containing out-of-band data to be transmitted with the

message in order to advise the router at the other end of the link how to proceed.

forward (buffer, data)

Find a routing for the next hop for a message which has arrived from another node.

The buffer contains the message; the data argument is another buffer containing the

out-of-band data supplied by the router at the previous node. Just as with find-

routlng, a set of (link, data) pair_ is returned.

fail (llnk-lnfo)

Record that a particular link or node has failed. The llnk-lnfo argument gives data

on the particular component that has failed and the type of failure, in order that the

router can be advised for its decisions relating to future messages.

Research is in progress on further specifying these interfaces, and on heuristics for

choosing message routings on the hypercube configuration. Preliminary results on the

latter topic will be reported in a forthcoming paper.

8.5. Asynchronous message manager.

The asynchronous message manager provides a facility, similar to that in the V Sys-

tem, for reliable delivery of messages addressed to some set of processes in the network.

Full end-to-end acknowledgement of messages is provided, to ensure "at lea'st once"

semantics for delivery of the messages. If "exactly once" and "delivery in sequence"

semantics are required, a higher-level sequencing layer can provide them.

6.5.1. Functions.

At least four functions are provided: "send,", "send and await reply," "inquire,"

and "receive." A "message" object is implemented to describe messages in progress.

message = send (process-llst, buffer, Info)

Sends the message contained in buffer to the set of (node, process) pairs specified by

process-llst. The lnfoargument specified other information about the message,

including at least its priority and deadline for completion.

(buffer, status) = send-awalt-reply

(process-list, buffer, Info)

Sends the message contained in buffer to process-list, exactly as with send. The

requesting process is then blocked until one of the processes in process-llst sends a

reply message to it. When the reply is received, it is returned as a (buffer, status) pair,

exactly as with reply" below. The status return must be able to specify at least:

• Failure of the target process.

• Failure of the target node.

• Network failure; failure of enough links to make the

target node unreachable.
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• Inability to complete the request before its deadline.

s_;atus = inquire (message)

Inquires as to the status of the specified message (as returned by send). The requesting

process is not blocked. The status return includes at least the four possibilities specified

above, plus an "in progress" status which must also provide an estimate of the comple-

tion time for the request.

(buffer, lnfo) = receive (control)

Receive the next message destined for the requesting process. The message text is

returned in buffer; the lnfo r_turn gives data on at least the identity of the sending

node and process, the original d6stinations for the message, and the requested comple-

tion time. If no message is pending, the requesting process is optionally (by an indicator

in the control argument) blocked until a message is received.

6.5.2. Comments.

When a message arrives over a link, the first thing that the message service must do

is to determine whether it is addressed to a local process, and if so, queue it accordingly.

If it is destined for a remote process, the message service must also call the router to

obtain forwarding information, and pass the message along over the next link.

Any incoming message for which the corresponding process has failed must be

rejected with an appropriate status message returned to the sender. If the message was

sent using the asynchronous send operation, the rejection will be detected by the next

In qu 1 r e operation.

All llnk operations must be provided with a timeout capability to detect failed

nodes and links.

6.6. Sequencer.

The sequencer is the next layer above the asynchronous message manager. It pro-

vides exactly the same set of functions as the message manager, but in addition ensures

that duplicate messages are weeded out (it is possible for a single message to arrive at a

node over different routes in the lower-level layer) and that messages are received in the

order in which they are sent. It provides the infrastructure needed to implement a gen-

eral remote--procedure--call protocol.

7. Virtual Memory.

The hardware we are targeting the system for is presumed to be a segmented, paged

architecture similar to the IBM 360-370. However, we assume a large virtual memory

address and a large (2-32k) segment address space or better. Pages are expected to be

approximately 2k. In the initial design we will use a 3b2-1ike architecture as it most

closely resembles an "standard" architecture with common features to many existing

machines. The 3b2 architecture has a 32 bit virtual memory address and uses 4 segment

tables per virtual memory (2 bits of the address), each with 8k segments (13 bits of vir-

tual address) divided into 64, 2k pages (11 bits of virtual address).
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Hardware support for separate virtual address spaces will be used at this point only

to proteci the virtual address spaces of tasks/objects from one another. The use of vir-

tual memory to support address spaces larger than physical memory, via the use of

secondary storage, will not be implemented at this time (although its eventual addition

will certainly be kept in mind during the design process). We feel that this is a valid ini-

tial simplification for the prototype in that the types of systems targeted for support by

this project are those which are primarily of the nature of embedded control systems

wl_ere huge address spaces are not crucial:

Essentially, we intend to use the "segmented virtual memory to provide protection

for objects belonging to the kernel, operating system, and specific user application pack-

ages. For example, the file system may be implemented as an object which is shared by

applications. It will reside in virtual memory and be protected from misuse by the

application. Different file systems may coexist in the system. (This is why we choose to

place the file system in virtual memory as a separate object rather than as part of the

kernel.) However, we recognize the problems of making each object in the system an

individual "segment" in a strictly linear segmented, paged address space which does not

have segment registers. Such a scheme might impose a large penalty, (but perhaps small

in terms of each segment access), on cross-domain procedure and object operation invo-

cations and require difficult to generate relocatable code.

Our proposed scheme partitions the address space into four sections; an address

space for the nugget and kernel to be shared by all virtual memories; an address space for

a collection of sharable objects (including class code and instances); an address space for

task information which would include data and text for the objects and lightweight

processes owned and used locally by the task; and an address space for a collection of

lightweight processes containing local process variables, parameters, and stack (see Fig-

ure 6.1.)

The nugget and kernel section and the task section are permanent members of the

virtual memory and remain unchanged except for the acquisition and disposal of addi-

tional segments and pages required by the task. The object section may be exchanged

on demand in order to access a different collection of objects with different protection

requirements. The objects mapped by this section may be shared between groups of

tasks. The process collection section may also be exchanged on demand for another pro-

cess collection. Process collections are not shared between tasks however. The section

mechanism provides a large grain protection mechanism that prevents different collec-

tions of lightweight processes from interfering with one another.

The collection of objects that constitutes a section can be stored on permanent file

storage as persistent objects. When a task first requests the use of a collection of

objects, it is loaded as a binary image into real memory. Daring the course of the com-

putation, parts of an object may be paged out to backing store as space requirements

dictate. Replacing one object section with another object section requires tb.e replacing

of the segment table of the objects with the segment table of the other objects. Oa a

machine like the 3b2, this involves changing one pointer. On a machine like an Intet

286, this involves changing some, but not all, segment registers.._t the end of the task's
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Figure 6.1: Virtual memory layout showing mapping of sharable objects

use of the object, its binary image may be stored back on permanent storage.

A collection of objects may be shared between different concurrent tasks by map-

ping the collection into the object section of more than one task. Synchronization of the

operations performed on an individual object is the responsibility of the developer of

that object. A usage count ensures that a collefction of objects is not stored back on per-

manent storage until the number of tasks accessing that collection drops to zero.

Since each collection of objects (processes) use the same linear address space; two

collections of objects (processes) that have already been mapped into a binary image
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cannot be loaded into the same object (process) section. When an operation on an

object is invoked, the nugget and kernel must ensure the correct updating of the object

section. For example, an object may request an operation on an object in a different col-

lection. This will result in a change of the object section. Similarly, when a return from

an inter-object invocation is made, the nugget and kernel must ensure that the old

object section is restored before execution is resumed.

A task may have the need for several different process collections to implement its

application. For example, a real-time task might be composed of several collections of

processes, each controlling a separate real-time experiment. It is possible to map

different collections of processes into the process section at different times, allowing col-

lections of lightweight processes" to interact efficiently within the same address space

while physically protecting other collections of processes of the task from possible harm-

ful access. The task schedules its lightweight processes through operations on the thread

objects (although the processes are dispatched by the nugget.)

Rather than relinquish control of the CPU when a lightweight process blocks, a task

may choose to reschedule a different lightweight process. This mechanism allows the

nugget to dispatch a process that has the same virtual memory requirements as the pre-

vious process. Within the operating system, a different level of scheduling dictates when

a task must relinquish control of the CPU.

An invocation of an operation on a shared object is achieved by a "gated" pro-

cedure call. If the object is resident in the object section, this amounts to a direct pro-

cedure call to the operation code. If the object is not present, the invocation results in a

trap to the kernel.

For various implementation and efficiency reasons, the protection mechanism for

objects is not as secure as might be desired unless the hardware has segmentation regis-

ters. For example, the process stacks are kept in a shared section of address space. Com-

plete protection from undesirable effects of an invocation of an object can only be

achieved by placing that object in a separate virtual memory space with a task that

operates as a server for the operations on that object. The object is then accessed

through the remote procedure call communication mechanism. Stubs for remote objects

are loaded into the address space of the task where they can be shared by all the

processes of the task. A remote procedure call transmits a message to the server task for

the particular object. The server task implements the remote procedure call by using a

lightweight process to execute the operation on the object.

An extension to the virtual memory scheme allows the processes of a task to be exe-

cuted on several processors provided that the hardware uses similar data representations.

In a scheme devised by Essick for UNIX but adapted for EOS, the data segments of vir-

tual memory of a task may be paged between two or more processors. The code seg-

ments that implement the processes are'partitioned and compiled for each participating

processor. Paging of data segments occurs on demand and it is used to synchronize the

updating of and access to shared data. The kernel and nugget section of the virtual

memory resides only in one machine. The scheme permits a task to reside on both an

[/O processor and a high-speed processoc. The two processors are closely coupled
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through the use of s; common virtual memory. When used in this way, the scheme

allows I/O driven computations to use the speed of a high-speed processor tran-

sparently, that is without modification of the code. Another use of the same scheme is

to provide load balancing by off-loading parts of a user task onto other processors

dynamically as the computation progresses and load changes on individual processors. A

detailed proposal for this scheme is in preparation as part of Essick's Preliminary Ph.D.

thesis proposal.

8. Tasks and Processes

A task has an associated viLtual address space in which processes are (potentially)

executing. The virtual address sp'ace of one task offers protection from interference from

other tasks. The resources of a task will include the address space itself and (usually)

access to services provided by other tasks.

The task's processes are the main object of activity in the proposed system.

Processes in a task can provide services requested of it by other tasks, and can actively

initiate requests mr" service to other tasks.

Tasks and processes can be dynamically created and destroyed and will provide the

basis for the support of "pluggable service modules". For example, there may be a

"memory allocator service task" or a "communications services task". In fact, there

may be more tha_ one type of server for a given resource providing different operations

and/or different semantics for the same operations. For example, there might be a "syn-

chronous communications service task" and also an "asynchronous communications ser-

vice task".

To meet real-time objectives, a task should be able to specify the scheduling of its

processes using an approach similar to that of the Mediator [30,31]. Also, context

switching between processes within a task should be very fast. In this regard, the

processes could be considered to be "lightweight," with the major portion of the state

information common to all processes within the task (and, therefore, not needing to be

saved or restored during an intra-task context switch). Figure 7.1 shows two tasks

which contain many lightweight processes. Context switching between processes in user

space in different tasks will require changing the virtual memory mapping and hence will

not be lightweight. However, context switching between processes within the kernel will

be lightweight, the virtual memory mapping is only changed on a need to access user

space basis.

A prototype scheme for dispatching lightweight processes has been programmed in

C÷÷ and is shown in Appendix E.

9. Object Support.

The system proposed is an object-oriented system. This is important in that it pro-

motes the encapsulation of data and state information of system entities. It is especially

important for fault-tolerant systems in that periodic "checkpointing" of critical objects

is straightforward in such a system. In addition, this encapsulation allows much easier

migration of entities to other nodes. The prime factor in determining the
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Figure 7.1: Tasks and Processes in name spaces

implementation strategy is to provide object-orientation without undue real-time over-
head.

A task allows one or more processes'to access one or more objects within a virtual

memory. Each object has a set of operations and belongs to a class or subclass. An

object may reside in the local address space of a task and itslightweight processes or it

may reside in a global system address space and be shared between between tasks. To

permit an object to be accessed remotely, a service task provides lightweight server

processes which receive requests and invoke operations on the object. A client process

accesses a remote object by executing a callto a stub object which is created within the

task. The stub object within the task communicates through the nugget and packages a

remote procedure request across the network. This remote procedure request is received

I
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by the. server task and given to a particular lightweight process server.

The C++ notion of a class and subclass is very powerful. Generic classes allow

families of classes to be created conveniently. In EOS, a thread class supports the notion

of a lightweight process. Prototype C++ classes used by a task to provide the facility of

creating and destroying processes are shown in Appendix E. Process scheduling and syn-

chronization primitives are also provided by the C++ class approach. Appendix E con-

tains a class providing P, V operations. Current work is devising monitor and guarded

command generic C++ classes. In addition, classes may be used to provide simple com-

munication channels. For example, an extension of the queue class in Appendix E that

uses semaphores to control access' to the queueing operations pro_'ides a FIFO synchroni-

zation discipline on producer/conSumer processes.

10. IPL

A UNIX-based IPL program has been built to allow fast proCotyping and debugging

of the EOS nugget and kernel code. The IPL program includes ._ simple UNL-X shell and

permits the loading and execution of a single binary image. The IPL system is small

enough to be stored on a single floppy. The current IPL program is available ['or the

382.

II. Conclusions

The project has accomplished much in the past six months. Devising an organiza-

tion for EOS has taken a longer time than we had firstplanned, however the structure

we now have for the operating system makes an object-oriented operating system possi-

ble to build without imposing undue penaltieson performance.

In the next few months, we shall be contacting other NASA contractors and

researchers with our operating system proposals for comment. During this time, we shall

proceed to build a prototype system. We hope that the framework we have devised can

be used as the foundations for experimental studies of many aspects of object-oriented

real-time operating system design for aerospace applications.
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MEDIATORS: A SYNCHRONIZATION MECHANISM
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Urbana, Illinois

Abstract

This paper describes a construct called a mediator.

Mediators support synchronization and ;,cheduling for

systems programming within distributed systems. Media-

tors are based on a resource view of systems, and fit

within a programming methodology that emphasizes
resource modularity, synchronization modularity and

encapsulated concurrency. The paper examines other

existing synchronization mechanisms in the light of

modular programming requirements. Subsequently, a

sample syntax and semantics for mediators is presented
with many examples.

The mediator includes many interesting features.

These include: an adaptation of guarded commands; keys

that allow requests to be examined and manipulated

before they receive service; parallel guard execution- cou-
pled and uncoupled modes of service execution.

Finally, the paper discusses a few aspects of imple-
mentation.

1. Introduction

This paper introduces the mediator construct for

implementing synchronization and scheduling in distri-
buted systems. This language construct supports systems

programming applications that require complex and flexi-

ble synchronization and scheduling schemes. The

research was prompted by the recognition that many of
the existing language constructs either overly constrain

concurrency, make expression of some kinds of syn-

chronization and scheduling difficult, or due to formal

language design considerations fail to provide practical

support for real programmers. The discussion of design

goals that follows indicates examples of each of these fail-

ings.

I.I. The Problem

The development of the mediator was motivated by

the lack of synchronization and scheduling tools to ads-

quately support the development of distributed systems,

such as those embedded in space craft. Such tools must

This work is part of the EOS project and was sup-

ported in part by NASA grant NSG-1471.

meet a number of requirements, including support for

modular and structured system design, flexibility, expres-

siveness, clarity and ease of use.

, Modular design is a powerful aid to structuring

software development which affects all phases of the

software life cycle from specification, through develop-

ment, testing and validation to maintenance. These
three aspects of modularity must be considered: resource

modularity, encapsulation of concurrency and synchroni-

zation modularity.

Resource modularity is a basic concern in both

sequential and concurrent program design. The develop-

ment of abstract data types [I] and objecb-oriented pro-
gramming [21 are an expression o( this concern [3]. The

encapsulation of data and controlled access through care-

fully defined operations provide the user with a higher-

level, abstract view of a data resource[4]. At the same
time, the data is protected from invalid accesses. The

module also creates a locality of reference, placing the
data and operation definition in one place rather than

scattered throughout the code.

Early. synchronization tools, including busy-waits,

semaphores [5I, and conditional critical regions [6-8], did
not create a localityof reference,and so made the struc-

turing of synchronization difficult.Most recent proposals

have recognized this problem, and have taken some ver-

sion of the abstract data type _ a base. In some cases

the module is a passive and takes no action until called

on by an active process (e. g. monitors [9] ). Passive syn-
chronization modules are the rule in constructs based on

shared data. Usually construct_ based on message pass-

ing use an active module. Adz [101, Distributed

Procmes (DP) [111, Synchronizing Resources (SR) [12],
and Argus [131 belong in this category.

CSP [141 also uses a message passing model, but it is

not strictly .based on an abstract data type model. In

CSP, individual processes encapsulate data. Other

processes may access the encapsulated data only by an

exchange of messages. The process owning the data

resource defines allthe operations on the data and local-

izesdata access. Synchronization isnot as well localized,

because the synchronization depends on the "matching"

of input and output commands distributed among many

processes.
Although there are many synchronization constructs

that support resource modularity, relatively few of them

permit real concurrency within the encapsulated module.



For instance, mouitors allow at most one process to be

active at a time. In order to allow multiple processes to

access a resource simultaneously (as for reader processes
in the well-known readers and writers problem [151 ), a

monitor is used only to implement a pre-read/pos_read

and pre-write/ poa_write protocol, which is called
before and after a call to an external read or write rou-

tine [9]. There is no _urance that the protocol will be

followed. Deadlock or data corruption may result if it is
not. The lack of encapsulated concurrency also makes it
difficult to nest modules or to otherwise structure con-

currency. Structured concurrency is needed to develop

atomic action and fault-tolerant systems [13,16-18J.

Concurrent P._cal (which is monitor based) [19l, DP _11],

Ada [I0[ and CSP [14] all fall to encapsulate con-

currency. Argus [13,20] provides encapsulated con-
currency, but with severe restrictions to ensure recovera-

bility. SR [12], Path Ps._cal (PP) [21] Distributed Path
Pascal (DPP) [22], serializers [23], and MCP [24] do allow
specification of encapsulated concurrency.

Synchronization modularity refers to the ability to

specify synchronization and scheduling constraints
separate from the specification of the resource data

abstraction. This additional structuring device aids in

system development, but also benefits the validation of

design and code. Modular synchronization may also

make it possible to develop libraries of synchronizers and

schedulers. The isolation of timing aspects contributes to
real-time programming as well.

Few constructs provide synchronization modularity.

Among those are Path Pascal (PP and DPP) [21], sen-

tinel proce_es [25], and serializers [23]. Serializers are

implemented in a LISP environment. Sentinel processes

appear to be the imperative language analog. Both com-

bine built-in counters with queueing primitives to allow

modular specification of synchronization. These con-

structs appear to be well suited to FIFO scheduling prob-

lems and variants of the reader/writer problem, but are

less flexible than desired [26]. Path Pascal encapsulates
moat synchronization specifications in a path expression.

This often provides a high degree of synchronisation

modularity. The synchronization modularity is lost

when conditional synchronization or scheduling is
specified. These must be programmed using nested

objects. This results in loss of modularity as well as

inefficiency due to the implicit scheduling applied at each
level of nesting. In order to maintain synchronization

modularity, synchronization data must be encapsulated.
In addition, there must be support for conditional syn-

chronization and scheduling.

For practical embedded distributed systems, it is
important not to overly constrain the system implemen-
tor in terms of possible synchronization and scheduling.

Synchronization schemes that enforce atomic recoverable

transactions (such as Argus and Clouds [27,281) are

overly conservative in what can be specified. These sys-

tems use lock-based synchronization schemes to ensure

serializability of actions in order to allow recoverability if
an action should fail. Much of this is not directly in con-
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trol of the action implementor. In this sense, these

schemes are overly restrictive.

Other schemes allow more flexibility in what can be

specified, but make the expression of some kinds of con-
straints difficult. As we noted above, Sentinel Processes

make scheduling problems quite easy to specify, but
specification of operation sequences is complicated [25].

hi Path Pascal it is easy to specify sequences of opera-

tions, but implementing scheduling or conditional syn-

chronisation is complicated. It should be possible to

express constraints in terms of resource history, resource

and synchronization state and information about pending

requests.

The configuration of concurrent systems raises other
questions about flexibility. Many proposed language con-

structs for writing distributed systems rely on static aye-

terns. In DP and Concurrent Pascal [11,19] processes
and modules are instantiated at system creation and
never terminate. This is not reasonable for real systems

that sometimes require on-the-fly reconfiguration to add

newly developed services; nor does this adequately allow

processes to abnormally terminate due to an error. DP

and Concurrent Pascal do not support dynamic alloca-
tion and reallocation of resources.

Other constructs allow processes and objects to

come and go, but are inflexible in other ways. Fre-
quently communication paths are static. CSP is an

extreme case of this [14] in which the sender and the

receiver of a message need to know each other's name.
This feature of CSP makes it difficult to write libraries of

services [14]. CSP was meant to be an exercise in pro-
gramming using input, output and concurrency primi-

tives rather than a complete language proposal [14].

Some CSP successors, such as OCCAM [29], have
attacked this problem by introducing ports. SR [30] ha_

a similar communication problem. Server processes and
clients are tied in a one-to--one relationship that is expli-

cit and rigid.

Moat synchronization proposals allow servers to

honor requests from anonymous clients. This is a flexible

arrangement, but occasionally there are cages in which
the client's identity must be known. Some language con-

structs provide this information (PLITS [31] ), but more

often it is left up to the implementor. The mediator pro-
poaal supports dynamic creation and termination of
mediators and flexible communication paths. It also pro-

rides a means of identifying cliento.

1.2. A Proposal

The mediated object combines several proposals in

an attempt to provide a solution to tl_e problems that are
outlined above. The mediated object paradigm i_ based

on object-oriented language design for operating systems

applications. In this model, resources are encapsulated
and access to them is allowed only through exported

operations. The synchronization schemes used in DP

llll, Monitors [91, SR[121 and Ads [10] all are examples
of languagcs using tills paradigm. '['he mediated object
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encapsulates data and allows access to that data through
• well-defined interface. Client processes request a ser-
vice from an exported list of service names, and the

mediator determines how the service will be provided.

Synchronization and scheduling constraints are specified

by the mediator body, and isolated from the deanition of

data and operations.

The main features of • mediated object are liven
below.

I) Initialization and termination blocks are included both
for the data resource and for the mediator.

2) The essential control structure within the mediator is

an adaptation of Dijkstra's guarded commands [32 I. Our

adaptation used dcla_ semantics [II] rRther than
Dijkstra's abort semantics.

3) Requests are associated with unique keys that allow
the mediator to manipulate requests and implement

scheduling.

4) Guards may contain 8tat_ tcs_ to inquire about
pending requests, and boolean tests which may refer to

data contained in pending requests [14,31].
5) The mediator controls execution of client requests by
commands allowing coupled and uncoupled client process

execution [33J. There is an explicit command to return
results to a client.

6) Parallel guard are used to multi-program the media-

tar. Mediator execution is guaranteed mutually exclusive

between guard evaluations.

7) Mediators map the name of a service requested by the
client onto that of an appropriate operation. Clients do
not call on services directly.

The proposal presented here is preliminary. A for-

mal definition of mediators using temporal logic k in
preparation. Some features of the syntax and semantics

may change as the formal description is developed, and

as implementation issues become more central. Section

two of this paper explains the mediator in greater detail,

presenting examples. Section three examines implementa-

tion aspects. Many of the individual components of the

mediator have been implemented in other languages.
The main difBculty is combining these in an efficient
manner.

2. Concepts and Notations

Mediators and mediated object# are built out of a

small number of concepts combined to provide a means
of implementing distributed systems resources. The

mediated object is one component of a larger language.

This paper does not present a complete language. The

"host" language is usumed to be similar to Pascal.

2.1. The Mediated Object

The mediated object includes the definition of

encapsulated data and operations defined on that data as
well as the specification of the mediator itself. The fol-

lowing is a schema of a mediated object.

470

name m object
interface declaration

resourcevariables
resourceoperations

mediator
mediator variables
mediator routines

initialisation block
mediator body
termination block

end rned|ator
end object

A mediated object is made up of three parts: 1) the
interface, 2) the encapsulated resource and 3) the media-

tor. The resource constants, types and variables defined
within the object are shared by the resource routlnes.

The mediator maps requests for services listed in the

interface onto appropriate operations and synchronizes
access. The mediator may contain its own data and rou-

tines not accessible to any external caller. Mediator data

usually consists of flags and counters, although it may

also include queue structures for scheduling.

The mediated object is a type, and a user may

create several instantiations of' a given object. The

mediator initiation code is executed when an object is
instantiated. The termination code" executes when the

body of the mediator terminates.

Figure 1 presents a complete mediated object, in

other examples, only the mediator will be presented.

Figure I contains many notations that have not yet been

explained. It illustrates the declaration of an interface,

object data (RW_data), resource routines (read and
write), and local mediator data (reader.._onnt). Object

parameters are passed by value and by value--result.

Reference parameters seriously compromise data encap-
sulation and are impractical for current distributed
implementations.

Clients request a mediator service which is named in

the interface by including the name of the service as a

parameter to a call on the object. Once a client process
has requested a service, the client is blocked until the

mediator returns the results of the completed service.

The actual execution of a requested service may be
delayed by the mediator. The semantics of a call on a

mediator is the same, whether the mediator is installed

at a remote location or locally.

2.2. Bule Mediator Statements

The mediator is composed of several kinds of b_ic
statements and a specialised control structure. The sim-
ple statements that can be used within the mediator

include: L_igaments, local mediator routine calls, and

the commands skip, exec, spawn and release. Exee,
spawn and release are statements to initiate services for

clients and to return the results of services. These have a

key variable parameter that uniquely identifies'the client

for which the action was taken. Kerfs are explained in
detail below. The second parameter of an exee or spawn
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reader_writer =ffiobject
Interface

job : export part
pid : key cllent_proceu_id;
cMe service : (read, write) of

read : (resdprm: var some_type);
write ."(writeprm : some_type);

end export patti

vat RW_datau som_-tyl_;

procedure read (readprm: var some_type);
begin readprm :m RW_data end procedure;

procedure write (wrlteprm : some_type);
besin RW_data :ffiffiwriteprm end procedure; .

mediator
¥810

resder_colnt : intestr;
i, j : client_procese_]d;

Init reader_count :== 0 end inlt
body

Any i in key:
cycle

req(i); job(i).service _ffiwrite-_
cycle

reader_count _ffi0 -_
exer(i, write (job(i).writeprm));
relesee(i);

until true
0

req(i); job(1)_service m read -_
reader_count :=ffireader.count + 1;
spawn(i, read (job(i}. readprm));

until false

//
any i in key:

cycle
term(i); job(i).service ----read ->

reader_count :u resider_count- I;
release(i);

until take

end body
end mediator

end object
Figure 1. Reader_Writer Object.

statement is a resource operation call. Exec permits cou-
pled execution of a" resource operation (on behalf or a
client identified by the key). The mediator initiates a

process to execute the operation, and then blocks until

the operation has terminated. For example, in the

reader_writer object above, the statement ezee(i, write
(job(i]. writeprm)]; initiates a wrfle operation for client i.

The mediator blocks until the operation has completed.

On the other hand, spawn initiates an operation and
allows uncouvled execution. The mediator does not wait

for the operation to terminate, and continues executing

mediator code. In the reader.._riter object, the statement

,spawn(i, read (job(i]. readprm); initiates a read operation
for client i.

The release command returns the results of an

operation to the client and removes the request from the

mediator. This may be invoked only after an exec has

been completed, or a status tcst (term, see Section 2.3)

reveals that a spawned request has terminated.

Reader_writer (figure 1) contains examples of release
both after coupled and uncoupled service. The separate

termination test allows synchronisation data to be mai,z-

talned as services complete. Release also makes it possi-
ble to delay and synchronize termination and the return

of results. This can be used to implement a ¢onversatior,

scheme [34], atomic actionz[35], or other forms of fault-
tolerance.

2.8. Guarded Commands

Sequences of actions within the mediator body are

specified by the control structures presented here, and by
parallel guarded commands, which arc presente_d in _e_.-

tion 2.4. The basic mediator control structure is a

guarded command of this form:

any identi£er In key:
cycle

guard -_ statement.llst;
n

' D

guard -) etatementlist
until exit_goudition;

The prefix any ... key: is optional.

The mediator guarded command has many similari-

ties to Hoare's CSP guarded commands [14], which in

turn can be credited to Dijkstra [32]. The chosen key-

words and semantics are closer to the guarded regions of

Brinch Hansen's DP [11J. The concept of key is related
to Hoare's guard command range [36], and to message

keys in PLITS [31,37]. The similarities and differences
will be discussed below.

A guarded command is a control statement in which
different statement lists are chosen for execution based

on the truth value of the a._ociated guards. Because the

evaluation of guards is central to this construct, they will

be explained first. The guarded command will be

described after. The application of keys to guarded com-

mands will be presented last.

Guards are made up of a status test and boolean

equations. Mediator guard evaluation always results in

either a true or a/a/ae value. The special guard other-

wise is true only when all the other guards in the guard

command are/a/se.

$tat_ tests allow inquiries about pending requests
for mediator service. These are tests for requests to ini-

tiate an operation (req) or to return results after the
operation has completed (term). For the guard req( i ]

to be true, the list of unserved requests must contain a

request from client 8'. Once the guard has been fired (it's

associated statement list chosen to execute), req( i ) can-

not become true again until the service has been com-

pleted and the results returned (by release( i )). The

guard term( i ) is similar, becoming true when the execu-
tion of an operation for client i terminates.

A boolean guard paired with a status test may

examine the value o1" a client's request parameters. Each
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client's request is represented within the mediator by a

job descriptor defined by the interface declaration. The

descriptor is a variant record containing fields for a key

variable, the name of :the service requested and the

parameters for that service. The service field serves as a
tag for variant parameter fields. The descriptor is

accessed using the key by indexing on the variable job, as

in these examples. The job descriptor for the

rcadcr..writcr object i_ defined by the Interface section

in figure I. In the reader.._ritcr object, job(i).scr_ce

references the servire tag field. Boolean guards may also
test the value o/" the mediator's local variables. Boolean

guards paired with status tests are not evaluated i/' the
status test k false.

In the following explanation of a guarded command,
the execution of the guard is considered ifi isolation,

without considering possible interleaving with other

parallel guarded commands. The presence of parallel
guards introduces delays, but does not affect the seman-
tics of the guarded command.

Mediator guarded commands are .closely related to

Brineh Hausen's guarded regions [11]. The mediator pro-
cem must wait until some guard condition is true, and
then execute the nmJociated statement list. A statement

list associatod with a true guard is said to be enabled. A

guard whose associated statement llst has been chosen
and st.art_l execution is said to have been fired.

When the statement list of a fired guard has finished

exccutlug, the exit condition in the final until line of the
guarded command is tested. If the condition is true, the

guarded conmmnd terminates, otherwise its guards are

reevaluated.

rqondeterminism is a possibility when more than one

guard is enabled. In this case, one guard will be chosen

to fire. A mediator implementation must ensure at least
weak fairness to avoid starvation problems. The media-

tor cannot delay if there are enabled guards.

The delay semantics of this guard command differs

from Dijkstra's original definition and Hoare's adaptation

[14,321. Hoare and Dijkstra's constructs abort the

guarded command when no guard is true. This creates a

framework that is convenient for formal verification, but

results in servers that do not facilitate waiting. Waiting

is usually implemented by explicitly programming a busy

loop. Because waiting is fundamental to providing ser-

vices, we prefer to wait implicitly.

Brineh Hansen implements both delay semantics in

guarded regions and abort semantics for guarded com-
mands. The mediator proposal includes only deialt
semantics, because the inclusion of an otherwise guard
and exit conditions make the abort semantics redundant.

The otherwise guard has other applications for imple-

menting background actions and is s useful shorthand

for the negation of all other guards.

Mutual exclusion within a mediator depends both on

the use of the exec statement and the careful choice of

preconditions defined in a guard statement. The exee
statement initiatez a service process and blocks the medi-

ator, but it does not check for other initiated processes.

In the Reader-writer example (fig,|re 1), mutual exclu-

sion for the-write operation is easured by the guard

"cycle reader_count = 0-_" and by the action of
exee. The guard will not permit a write to begin until

all executing read operations are terminated. The exee
statement blocks the mediator as the write is serviced to

prevent other operations from becoming active.

Keys are used to identify the client to the mediator,

to acce_,s job descriptors for guard evaluation and

scheduling purposes and to tie clients to specific
resources, as in allocator objects. The key concept was

suggested by Hoare's CSP process range labels [14,36J,
but their use "in mediators is considerably different.

Hoare applies ranges to p_ to create a finite

number of explicitly and contiguously indexed processes.

This application of ranges is not included in mediators.

Hoare also applies ranges to guarded commands to sub-

stitute values within a given range for a bound variable

in the guard statements. The following example is from

l"l"
"(i:l..n)G -> CL stands br
G1 -> CLI r_ G2 -> CL2 r_ ... r_ Gn-> CLn."

In effect, the guard is expanded by creating a guard and

statement llat for every value of i. The application of

ranges in Hose's guarded commands is quite general.

In the mediator proposal, keys serve only to identify

client proce_es. Like Hoare's ranges, a key statement

(any ...) defines a key variable which will be bound

within the guard command it modifies. Consider the

guarded command shown in figure 2. It is executed M if'
it were written as shown in figure 3. In this example the

value of the key identifier is in the range 1.. n and defined

as the interface field job.rangeprm. Usually a process

identifier (the p_d descriptor field) will be used as the
key. The designer of a mediator does not need to know
explicitly what process identifier values are being used,

just that they are unique. Although, in an abstract

sense, a potentially infinite key variable range implies an

infinitely expanded guard, there is no need to implement
them that way. Keys are always associated with status

tests. Only guards corresponding to clients with requests
can evaluate to true, so only such guards need to be

evaluated. This significantly limits the number of guards

evaluated. Evaluation can be restricted further when
fairness is taken into consideration.

Key variables are tied to job descriptors defined by
the interface. The most useful key reference is to the

client procsse identifier. The mediator designer may

designate another descriptor field as a key, as in figures 2

and 4. In any case, the chosen key field must be unique
for each pending request.

The mediator in figure 4 implements synchroniza-

tion for the dining philosophers problem. The client pro-
c,.m, executes the statement dirAer (ranfeprm, eat); to
request the mediator's tag service. This solution is one o1"

many possible solutions using mediators.
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any i in key:

cycle

req(1); job(i).eer,ice "- A ->

rshm(i);
Q

req(l); job(1).Nrvlce == B->

X: un Z + 1;

.n,¢(l_);
rei.N(i)

until false;

Figure 2. A Guarded Command.

cycle

req(l); job(1)..rvlc, = A ->

en,c(1.'.);

relem(l);
o

req(l); job(l)_ervlce _ ]3 -_
X:_ x + 1;

releue(1);
G

req(2); job(2).servlce == A ->

exec(2_.);

..°

G

req(lO); job(lO), service = B ->

X:affiX + 1;

exec(10.B);

releue(lO)

until false;

Figure 3. The Guarded Commud Expanded.

2.4. Parallel Guarded Commands

The following schematic shows the syntax of the

parallel guarded command, a mechanism that allows the

interleaving of different mediator actions.

body

guarded_command

//
,.o

//
zuarded_commud

end body

Parallel guarded commands ale proposed to allow

different sets of guards to be evaluated at different times

during mediator execution. It allows the mediator to

"shuffle" together the evaluation of several guarded com-

mands. The choice of the notation// to separate paral-

lel guarded commands is deliberate. A mediator

containing parallel guarded commands uses a multlpro-

trammed thread of' control, one thread of control for

each guarded command. Only one thread of control is

active at a time. The active control block can change

only when guards are evaluated. This creates mutually

- exclusive execution of the statement lists between guard

evaluations. The mediator body terminates if all o1" the

parallel guard blocks terminate.

Consider the simplified example in figure 5. (Labels

Interface

Job: export part

myfork : key range;

case servlee: (eat) of

,at: 0
end expoet part;

mediator

tyl_ rule 8= 0 .. n-I

vlr

fork : array [ranleJ of' (free, inuse);

l, j : rule;
init

for j "=- 0 to n-l; -rork(jJ :-- free;

end halt

body

any i in job.ranleprm :

eyele

req(i); job(1)_ervice _= eat and forkll] == free

and fork[(i+l) mad n] ,ffi tree ->

fork(lJ :-- inue;

fork[(i+l) mad nJ :=ffi inuse;

spawn(i, eat(i));
rl

term(i); job(1).Nrvice =ffieat - >

tork[ll :-- free;

rorkl(i+t) mad nj :-- free;

releue(i);

end cycle

end body

end medh_tor

Figure 4. Dining Philosophers.

body

11: cycle
A->

until hdee

//
ml: cycle

C->

12: SA;

13: cycle B-> 14: $B until true;

rag: SO;

m3: eycle D-> m4: SD until true;

until hdN

end body

Figure S, Shnpiir, ed Parallel Guarded Command.

have l_,en included to make discussion easier). In figure

5, A, B, C, D are guards. SA, SB, SC, SD are state-

meat lists. The control vector of this mediator has two

elements. The notation "_ labell, label_, ... , labeln _"

is a control vector ia which n th?eads of control are at

the location- label1 through labeln. This notation is

adapted from the expression of execution state in Manna

and Pnueli's temporal logic acheme(38]. In figure 5, the

initial control vector is: _11, ml_. "When guard evalua-

tion occurs in the initial state, the guards A and C are

evaluated. As for isolated guard commands, the associ-

ated statement list of some true guard will be executed.

If the guard A from the cycle !I is fired, the statement

list starting at 12 will begin execution. It will continue

exec.Li.t; wil, h(,ut interruption until the new guard com-

nmud al. I:¢ is cnco,,ntered (assuming SA contains no
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guard comnlands). At this point the control vector is

<13, ml>, and the ne.w guard evaluation includes the

guards B and C. Considering all possible combinations,

the set of guards evaluated at any one time may be: [A,

C I, lA, D I, [B, C I or In, D I.

The statement lists following guards may contain
exee, spawn and release statements without altering

the flow of control discussed above. In every case, con-

trol passes to the following statement. In the case of an
exec statement, this is delayed until the resource opera-

tion it has initiated terminates. This delay temporarily

blocks further mediator activity, but does not alter the
llow of control.

The parallel" guard notation is an easy and concise

way of specifying changing sets of enabling condition*. It

is possible to rewrite a parallel guard a_ one large simple
guard command by using a distribution algorithm. The

resulting guard command is considerably more bulky and

actually less clear.
The introduction of a control vector within the

mediator do_ not create the same complications for rea-

soning about programs that are usually associated with

parallel p.,_ce_e_. The control IIow in mediators is very
restricted, giving statement lists that will be executed in
mutual exclusion. This fact, combined with the small

size of mediators and the explicit statement of precondi-
tions in the guards makes it quite easy to reason about

the behavior of parallel guards.

The reader/writer mediator demonstrates one appli-

cation of the parallel guard. In that example, firing the

guard req(i); job(*).service ---- write executes the associ-

ated statement, which is a cycle statement. As long as

its guard reader_count -----0 is false, the guard cannot fire.
No new write or read operations will be initiated, but the

second parallel guard will allow read operations to finish
up and leave the mediator. Parallel guarded commands

coupled with nested guard commands gives a convenient

way to block some actions while permitting others.

2.5. Some Additional Examples

The examples that follow demonstrate some applica-
tions of mediators. Only the mediator portia6 is
included.

2.8.1. Alarm clock

The alarm clock object {figure 6) delays a caller for

a time period specified in the request's parameter n.

Calls for the wake service cause a delay. Calls for the
tick service advance the clock.The field out_time m_st be

declared for the operation wake job descriptor within the

mediator as a mediator local extension to the job descrip-
tor.

2.5.2. Shortest Job Next

The mediator in figure 7 implements a scheduler

that chooses the job with the lowest estimated service

time for the next execution. Requests are served in

mutual exclusion. This framework is applicable to many

scheduling problems.
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inlt now :=c 0 end 1nit
body

any i in key:
eyele

req(i); job(i).mrvice -,, wake - >
-- *tU_ b_e R¢_*, bin| |*miaa|io_ _| b* dr|aired
job(l), out_time :== now 4- job(i), n;
*pawn(i, wake);

until faiN;
//

any i in key:
cycle

req(i); job(i)aervice m tick ->
now :m now + 1;
exec(i, tick);
reteue(1);
hg :-- fake;
any j in key:

cycle
term(j); job_j).mrvke =ffiwake

Ind job(j).out..tlme < I now ->
r.ie**.U);

12
otberwhm -> gag :_ true

.- ,_'l c_cic
unt|l rialS;

until fake;
end body

Figure e. Alarm Clock.

body
any i in key:

cycle
req(i); job(*).service =- server ->

enqueue (i, job(i).cltimate);
until [aim;
//

,yule
queue.notjmpty - >

j :-- deqeeuu;
.pan(j...r,er);,
cycle

torm(j_ job(j)._rvke m mrver ->
rele,,,tj);

until true;
until fal_;

end body
Figure 7, Short4mt Job Next.

initial, ,,rvie, operalio_

The first guard command simply calls a local opera_

tion to queue up job descriptors in order of their esti-

mate parameter. The second guard command removes
the head element of the job descriptor queue and starts

that job's execution. The spawn and wait for

termination allows the mediator to continue enqueueing

new requests while a service operation is executing.

The key variable j in the second guard command is

set by direct assignment rather than through a cycle
modifier.

2.6.& An Allocator

The allocator in figure 8 gives a client process

exclusive rights to a resource for a series of accesses. The



budy
any i In key:

cycle
req(|);job(1),serviceI tllocate->

ezec(i, allocate);
_leue(1);
|aS:l false;
cycle

req(i);job(1)aJervicez use- >
•_,c(i, use);
release(1);

{3

req(i);job(i).service_ free->
ace(i, r,,);
reieue(i);
|t45 :s true;

until ha;
until fake;

end body
Figure 8. Allocator.

client must request aJt allocation, then may make
repeated calls on the resource. Finally, the client must
explicitly release tile resource before it can become avail-
able to another clil:nt. This example uses the key binding
made in the outer cycle to restrict use of the resource to
one process in the inner cycle.

The mediator differs from the monitor solution [gJ
for this problem in a number of ways. Most importantly,
the resource being allocated is encapsulated with the
mediated object. The mediator protects the resource
from unsynehronized accesses by faulty processes. The
mediator also prevents the resource from being released
by any process but the one the resource has been granted
to. The monitor solution does not offer protection in
either of these cases.

3. Implementation

Implementing mediators should not present
significant problems, because many of the components of
the construct have been implemented in other languages.
The main problem will be fitting the components
together in an efficient manner.

There are several possible implementations for the
mediator call mechanism. For example remote procedure
calls could be applied [39J. A remote procedure call can
be implemented as an exchange of messages between the
client and mediator. The client sends a request message
containing the name of the operation requested, its pro-
cuss identifier and parameters. It then waits to receive a
reply, which will arrive when the mediator has released
the operation. The mediator receives a request and
creates a job descriptor. This is placed in the list of
pending requests, becoming available for status tests.
The job descriptor is destroyed when the mediator
releases a job and returns results to the client. In the
perception of the client process, a remote orocedure call

appears to be no different than a simple local procedure
call.

The cxec and spawn statements require system

support to initiate service for requests. This support
may include creating a new system process and schedul-
ing its execution on a free processor.

The special application of guards in mediators
makes it possible to limit the number of guard reevalua-
tions. After a guard evaluation, only certain events may
change the value of the guards: the arrival of a new
request, the termination of an active request <,r the exe-
cution of mediator statements after a guard h-"_ fired. If
all guards have evaluated as fake, there is no need to
reevaluate the guards until either new requests arrive, or
active requests terminate.

It is also possible to limit the number of guards con-
sidered during evaluation. The evaluation of guards con-
taining status tests can be constrained in two ways.
Status tests need only be evaluated for clients that are
present in the mediators list of pending requests, since
the value of any other status guard is automatically/else.
Application of fairness limits the evaluation of status
tests for clients as well. These can be evaluated in the

order of their arrival until an enabling guard is found.

The evaluation of pure boolean guards cannot be
limit_,d this way. Fortunately, these are likely to be few
in number. These also present a fairness problem. It is
easy to apply a fair ordering criteria for requests based
on time of arrival, but such criteria can not be applied to
simple boolean guards that may, without firing, become
true and /abe repeatedly. Implementing weak fairness
may require implementing event queues or counts so that
these guards may be ordered.

The design of mediators is best suited to a system
made up of distributed multiprocessor nodes, with one or

several mediated objects installed at each node. Imple-
menting mediators on such a system should be straight-
forward. Implementation of mediators on a uniprocessor
is also possible using multiprogramming, but would prob-
ably be very inefficient. Mediators implemented on a dis-
tributed network of uniprocessors could work quite well.
This could be accomplished by multiprogramming the
mediated object on one node, or by allowing the media-
tot to exist on one node, and execute operations at

remote nodes. The limiting factor would be the amount
of object data that would need to be sent to the remote
service nodes.

4. Conclusion

This paper has presented a preliminary proposal for
a new language construct, the mediator, that may serve
as a useful tool in programming distributed embedded
systems. Mediators allow direct programming of syn-
chronization and scheduling and are able to directly use
both information about a pending request and the
present synchronization state. This makes mediators a
powerful construct for synchronization and scheduling
applications. At the same time, the design of mediators
supports structured design of concurrent programs.
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Finally, mediators should not present significant

implementation problems ,_nd are adaptable to a number
of distributed architectures.

I.

2.

3.

4.

S.

0.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

ReFm'en e(,s

Punu, D. I.. A Teckmlfee .for So/t_rc Moilde

Speeiftcst/o. m_ E_mples. CACM (May 1972)

vui. 1S, no. 5, pp. 330-330.

Birtw;stle, G. M., O..J. Dahi, B. Mybrh=ug sad K.

Ny6urd. Simula Bq;in. Aeerb,-:h, Philadelphia,

PA, 1073.

Dijkstrn, E. W. A Discipline of" Progrlmlmln|.
Pre_ice-Hadl, Englewood CliKs, N J, 1976.

Campbell, R. H. sad A. N. Hnbermsnn_ The

Spectfu:mtt'on Of Pr@cel ! S]tng_ronlugltton d_lf Ps_

Ezpreee/onJ. In: LNCSt vol. 16. Sprln|er-VeriN_,

New York, NY, 1974, pp. 80-102.

Dijke_a, E. W. (Ysoperetin9 Sequent_e_ Presses. In:

ProsrammluK Language, F. Ganuys, ed.

Academie Press, New York, NY, 1988.

Hoers, C. A. R. Tomsr_ • T/_orp o/Pnral/ef Profram.

sin#. In: Oper&tin K Systems T_ehniquu, C. A.

R. Hoast and R. H. Perrott, ed. Academic Pr_,

London, 1972, pp. 91-71.

Brinch Hanesn, P. Strtchsred M_tiprofrsmminf.

CACM (July, 1972) rot. 15, no. 7, pp. 674--678.

--. Comcu, re_ Proframm_sq Conceptj. ACM Com-

puting Surveys (Dec. 1973) voL 6, no. 4, pp. 223-
245.

Hoare, C. A. R. Monitors- An Operstinf Sits:era Serve.

tsrimt Concept. CACM (Oct; 197_4) voi. 17, no. 10,

pp. &49-567.

DeFense, U. S. Depaurt_ent of. Profrsmm_f _nffsef¢

Ads: Reference Mnxmd. In: Voi. lOS Looture

Notes in Computer Selene. Sprinser-Verhq|,

New York, NY, 1981.

Brlnch Haman, Per. D_fnbu_d P_ee_se: A C_m.

era'rest Profremndnf Co_ept. CACM (Nov. 1_8)

voL 21, no. 11, pp. 9_1-041.

Andrews, Gresory R. SVsehro*_ Resources. ACM

TOPLAS (Oct. 1981) vol. 3, no. 4, pp. 408-4S0.

Liskov, B,_rbarn and Robert seheilhr. Guard/a_ ned

Aet/o_: [,inlmiatie Support .for J_o_ssg, Distridh_d

Profrnms. ACM Trml. Pros. L,--$. and 5yst,

(July 1983) voi. S, no. 3, pp. 381-404.

Houe, C. A. R. Commnnlcetimf Se_stial Press,ass.

CACM (Aug. 1978) vol. 21, no. 8, pp. 669-477.

Controls, P. J., F. Heymm and D. L. Pstnu. Con.

current Control witA Rse_r_ u_ Writers. CAC'M

(Oct. 1971) vol. 14, no. 10, pp. 687-408.

Cmpbeil, Roy H. sad Bri_ R_ndeil. "]Error Recovery

in Asynchronous System", Tech. Report: Univ. of

Illinois, Urbana--Cbampalgn, Dept. Cutup. Sci.,

Urbeaa, 11,, 1984.

JaJote, Pankaj and Roy H. Campbell. Reeoesrabilit_ o/

Action+ and Atomicity. IEEE TOSE (To appear in

1986).

Best, E. and lq. Randell. A Fornmi Model o/Atomicit|"

in A_ynchro_,ou_ S_eter,.. Aetna informuties

19.

_0.

22.

23.

24.

26.

29.

27.

29.

30.

31.

32.

33.

34.

476

(1981) vol. 10, pp. 93-1'_9.

Brinch Hnnesn, P. The Profrummlnf /,nnfuafc Con-

current P_c_l. IEEE TOSE (1976) vol. SF-,-I, pp.
199-206.

Weihl, WUUam and Burbus Liskov. Sp,ci_c=t/on _nd

Implementation o.f Re_ient, Atam_c D't|s T_pea.

SIGPLAN Notice (Jnne 1983) vol. 18, no. 0, pp.
63-64.

CampbeU, R. _L _nd R. B. Kois_d. An Oes,v_eu o.f

PATH PASCAL', Des_.. 51GPLAN Notleu

(Sept. 1980) voL 15, no. P, pp. 13-14.

Koistad, Robert Bruce. "Distributed Pnth Puc,d." A

Langus|e for Prosramming Coupled Systems", Ph.

D. Thesis, Tech. Report: Dept. Cutup. Sol., Univer-

sity of Illinois nt Urbnnn-Champ_|n, UIUCDCS-

R-43-1139, Urbane, 11-, 1983.

Hewitt, C. E., sod R. R. Atkinson. Spe¢if_cstion_ end

Proof Techniques /or Ser/ollnre. LEEE TOSE

(1979) vol. SE-4, no. 1, pp. 10-23.

Bslmoun, H., C. Betorne ud L. Fernud. One Ezprescion

d_ ia Slmc/sroui_at/on c4 de I'Ordonnancrmcn_ dot

Proee,a_s Oor_urrea_ per Variables Psrtafee_. In:

Pros. Qth Int. Syrup. on Prosrsmmlnst LNCS

1117, M. Paul and B. Robi_et, ed. Sprlni;er-VerlaL

New York, N'Y, 1984, pp. 13-22.

Ramsmrithsm. l_ithlvuan and Robert M. Keller.

Spesi.fw/nf end Pro_/nf Properties o/ Sentinel

Proee_Je_. In: Pro¢. Sth Int. IEEE/AC_/ Soft-

Eng. _onforonee., 1981, pp. 374-381.

Bloom, Toby.. Ee_,_t_n_ S_nchron_vot/on Mech_n/,n_.

In: Pros. 7th Symposium on O5 Prlne|piu

(Pacific Ceove, CA. Dec 10--12). ACM, New

York, HN, 1979, pp. 24-32.

AUchIn, J. E. and M. S. McKendry. Sln:hronizut/on

ned Recoesr_ of Actions. Preprlnts 2nd ACM

SIGAC.,'T-SIGOPS Symposium on Prleiplu of'

Distributed Computin8 (As|. 17-19, 1983).

AUchhs, James g. sad Msr_in S. McKeadrT. "5epport

for Objects ud Actions in Clouds: Stntus Report',

Tech. Roport _,,Ol'Igi& Institute oi' TecJLno|oi_,

Athmt_ _ Athmt_ CA, 1983.

May, D. OCCAM. SIGPLAN Notice (AprU 1983)

voL 18, no. 4, pp. 69-79.

Andrews, {_regory R. "The /l)_tr_bnhzd Profrsmmin#

l, angufe SR - Mec/mmkma, Dee/fro and Imp/erect-

tat/on". Soft. Pr&et. and Exp_r. (1982) voi. 12,

pp. 719-753.

Feldmsa, Jerome A. Hick..l, cesi Progrsmntin¢ for Db.

tribu_d Compet_n_. CACM (June 1979) vol. 22, no.

0, pp. 353-387.

Dijkstra, EdsllmP W. _uardzd Commusd_, Nondeter.

minacy em_ Formal Derider�on of Profrsm. CACM

(Aug. 1975) voi. 18, no. 8, pp. 4S3-457.

Ramamritham, Kriihivusa sad Robert M. Keller.

Specifscat/on u.f S_nchroniz_ne Procce+ce. IEEE

TOSE (Nov. 1983) vol. SE-9, no. 8, pp. 722-733.

Hornins, J. J., H. C. Lnuer, P. M. Melllur-$mith sad

B. Rnndell. A Profram Structure for Error Detection

end Re¢o_er,j. In: LNCS, voi. 10, E. Oelenbe and

C. K_i_r, ed. Springer-Verl=9, New York, _'Y,

1974, pp. 171-187.



35.

30.

37.

38.

39.

Anderson, T. and P. A. Lee. Fault. Tolera,ee* Prin-

ciples and Practice. Prentice-Hun ilaternational,

Ens|ewood CliPs, NJ, 1981.

Hosre, C. A. R. A Modzl for Commxnlca|_nf Srquznti_

Proccs,z,. In: On The Conetruetion oF Pro-

Statue, R. M. McKe,Ic and A. M. McNaushton, ed.

Cimbridse Unlvenlty Pree6, C_mbridse, UK, 1980,

pp. 229-243.

Y;I,,,sn, Robert E. ud Daalel P. Friedmnn. Coordi-

nat4d ComputinliJ Too t- and Teehniques for

Distributed $o/_wart. McGrsw-HUi, New York,

/_(, 1984.

lqMns, Z. and A. Pnuell. Ver_)Scsfion o/ C0neurrenf

Profrem: The Temper_ Pr6mewor _" In: The
Cor_tne_ Problem in Computer Science, J_.

S. Boytr nd J. S. Moore, ed. Acsdemic P_me, ].on-

don, UK, 1983, pp. 216-273.

Nebon, B. J. "Remote Procedure cadr, Ph. I). Dimertu-

&ion, C_rnqle-mebn U_voreiLT, PitLebursh, PA,
1981.

477

.I

i
I

I
I
I

I

I
I
I

I

I
I

I
I
I
I
I

I



!
I

I
I

I
I

I

I
I
i
I

I
I

I

I
i
I

I
!

EOS Project Mid-Year Report 1986

Mediators: A High-Level Language Construct

for Distributed Systems

Judith Elien Grass

Department of Computer Science

University of Illinois at Urbana-Champaign

Urbana, Illinois

April 1086

Appendix C



I
l

I
I

I
I

I

I
I
I

I
I
I

I

I

I
I

|

I

MEDIATORS: A HIGH-LEVEL LANGUAGE CONSTRUCT

FOR DISTRIBUTED SYSTEMS

BY

JUDITH ELLEN GRASS

B.S., Georgetown University, 1975

A.M., University of Illinois, 1977

M.S., University of Illinois, 1982

THESIS

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosopy in Computer Science

in the Graduate College of the

University of Illinois at Urbana-Champaign, 1986

Urbana, Illinois



,o Copyright by

Judith Ellen Grass

1986

I
I
I

I
I

I
I

I

I
I
I

i

I
I
I

I
I

II
I



I

i
li
!
,!

!
|

i

!
|
II
|

II
I
II
!
el
!

,oo

in

MEDIATORS: A HIGH-LEVEL LANGUAGE CONSTRUCT

FOR DISTRIBUTED SYSTEMS

Judith Ellen Grass, Ph.D.
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This thesisdescribesthe mediated objectconstruct. Mediated objectssupport synchron-

ization and scheduling for systems programming within distributed systems. Mediated

objectsare based on a resource view of systems,and fitwithin a programming methodology

that emphasizes resource modularity, synchronization modularity and encapsulated con-

currency.

A mediated objectconsistsof an interfacespecification,a data abstractionconstruct(an

object) and a separate mediator module that specifies synchronization and scheduling within

the mediated object. The mediator displays many interesting features. These include: an

adaptation of guarded commands; key8 that allow requests to be examined and manipulated

before they receive service; parallel guard execution; coupled and uncoupled modes of service

execution.

The design of the mediated object construct is first presented informally with many pro-

gramming samples. A temporal logic specification is also presented as a formal description of

the construct. The temporal logic may be used for verifying mediated objects. A sample

verification is included. Few practical languages have been specified with temporal logic.

The specification provided helpful feedback during the development of the construct.

Finally, the thesis discusses a few aspects of implementation and offers suggestions for

futureresearch.
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CHAPTER 1.

INTRODUCTION

This thesis introduces the mediated object construct for implementing synchronization

and scheduling in distributed systems. The mediated object combines a data abstraction

module with a synchronization and scheduling module called a mediator. The mediated

object construct supports systems programming applications that require complex and flexi-

ble synchronization and scheduling schemes. The research was prompted by the recognition

that many of the existinglanguage constructseitheroverly constrain concurrency, make

expression of some kinds of synchronization and scheduling difficult,or due to formal

language design considerationsfailto providepracticalsupport for realprogrammers°

1.1. Motivation for Concurrency and Distribution

Computer systems that support concurrency are significantly more complex than simple

single-user sequential systems. Managing concurrency also creates a certain amount of over-

head. Distributed systems are yet more complex and entail even more overhead. In many

applications the benefits of such systems outweigh the costs of developing, implementing and

using them. Some applications could not be computerized at all without such support.

I.I.I. Concurrency

The first attempts to provide a form of concurrent programming in computer systems

occurred during the development of second generation computer systems in the early

1960's[29]. In order to efficiently share access to an expensive mainframe among many users,
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multiprogramming was developed_ In multiprogramming, a single processor switches between

different user jobs, keeping the processor as I_usy as possible[g7]. Efficient use of sharable

resources has continued to be a prime motivation for developing concurrent programming.

The concern for efficient use of resources led to the beginning of multiprocesoing systems at

about the same time[20]. Multiprocessing systems combine several processors in one com-

puter to increase throughput.

An early application of multiprocessing applied separate processors to manage input and

output while a main processor managed other computations[107]. This increased throughput

by freeing the main processor from driving slow mechanical I/O devices.

Later applications increased the number of main processors contained in one computer

[29]. Multiprocessors are used to support greater throughput in time-sharing systems and to

speed up individual users' jobs. Single users may exploit multiprocessing either by explicitly

partitioning a program to perform separate tasks concurrently, or by allowing the computer

to analyze the program for operations that may be done in parallel and to execute the pro-

gram implicitly in parallel[29]. The former is often referred to as multitasking. This is a

typical application of concurrent processing. The latter approach is commonly used for

numerical processing, and is often what is meant by parallel processing. Concurrent process-

ing does not usually refer to implicit analytical approaches to parallelism. In this thesis we

will address only concurrent processing.

Concurrency may be applied solely to speed up the execution of algorithms that are not

inherently concurrent. Concurrent algorithms are sometimes applied to mathematical prob-

lems that have adequate sequential algorithms. One example is a concurrent algorithm

applied to a matrix multiplication problem[50].
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Other problems appear to be inherently concurrent, and a concurrent solution for such

problems is both more natural and easier to develop[29]. Many real-time systems are in this

category. For example, air traffic control programs that must track a number of airplanes at

once may be more easily implemented using the support for dealing with many independent

events provided in a concurrent system. The actual implementation of such a system may be

made by time-slicing a single processor, or by taking advantage of multiprocessing. In either

case, the system itself is best modeled as a concurrent one.

1.1.2. Distribution

Distributedsystems join a number of processors that, unlike multiprocessors,do not

share memory. Instead,in a distributedsystem many independent, possiblyheterogeneous,

computers are tied together by communication lines{97].The motivation for creating such

systems isin part the same as that for creatingconcurrent systems. Distributioncan be used

to efficientlyshare resourcesand to speed up computations. It can alsobe used to increase

system reliabilityand to implement communications systems.

Resource sharing in distributed systems differs from sharing in simple multiprocessor

systems in that resourceslocatedat remote sitesmay be accessed by users that do not have

such resourcesavailableat theirown site.Because of distribution,expensive but not heavily

used resourcesneed not be duplicatedforevery computer in a system. In some distributed

systems itispossibleto increasethe throughput of the entiredistributedsystem by shifting

computations from heavilyloaded machines to computers that have idlecycles.This kind of

load balancing isanother way of efficientlyusing the entiresystem resource.

I
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System reliabilitymay be improved by using the redundancy present in distributedsys-

tems. When a processorin such a system fails,it may be possibleto shiftitsworkload to

another functioningprocessor.Ifa resourcelocated at one locationfails,another compatible

resourcemay stillbe functioningelsewhere.

It isalso possibleto use the communications network inherent in a distributedsystem

for pure communications applicatiods,such as electronicmail[97].

Real-time controlsystems can make use of small processorsconfiguredin a distributed

system to take advantage of the great amount of concurrency possibleand the added reliabil-

ityand efficiencysuch systems offer.

1.2. Language Design Goals for Distributed Systems

Developments in higher-levellanguage design for managing concurrency and distribu-

tion has been driven both by the changes in systems architectureand by software engineering

developments. As the dominant computer system architecturehas changed from uniproces-

sots to multiprocessormainframes to networks of uniprocessorsand distributedmultiproces-

sor systems, the context for developing concurrent programming tools has also changed.

Meanwhile, the cost effectivenessof some synchronization mechanisms has changed as the

costof computer memory and processorshas dropped.

Whether for multiprocessoror distributedsystems, concurrent programs are extremely

dii_cultto develop. Human beings are not well adapted to dividing theirattentionbetween

simultaneous tasks,and can only comprehend concurrency with a great deal of effort.Pro-

gramming is made more dii_icultby the fact that processes in such a system operate at

differentand unpredictable rates, and also must cooperate in order to share common

n
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resourcesor exchange information. Obviously, language and systems tools are required in

order to program concurrent applicationsproductively. The nature of these tools has

changed with our understanding of the nature of concurrent processing and software

engineering.

Chapter two of this thesis discussesin detail some developments in programming

language design to support concurrent processing.Concurrent language design has followed

closelyin the footstepsof sequentiallanguage design. Early research developed a number of

primitives,including the testand set instruction[97],and algorithms using such primitives.

Later research has concentrated on using higher-levelconstructs to ease the programming

burden and to ensure more reliableresults.

Software engineeringresearchhas found severaltechniques to be usefulin managing the

complexity of programming large systems of sequentialprograms. These include modular

programming and the principle of _information hiding"J27]. These techniques help to impose

organizational structure on programs and make the development of complex programs more

manageable. Constructs developed for concurrent programs have adopted this approach as

well. Newer constructs manage concurrency through higher-level abstractions that imple-

ment modularity and "information hiding".

All language design is the result of trade--offs. Languages that offer a framework for easy

verification are often limited in flexible expressive power. Some languages hide many details

of communication between distributed processors, making an easy environment for applying

distribution to many problems. Others make the user manage the communications protocols

directly, providing a more flexible mechanism that is more dimcult to use. In most cases, the

goal has been to provide tools to structure the development of concurrent, distributed pro-



grams.

The difficultyofdevelopingreliableprograms cannot be met by carefullanguage design

alone. The best of toolscan be badly used. This problem has been addressed by developing

rigorous program development methodologies and methods for program verification[41,60].

Both of these effortsare supported by formal language specifications.Many of the tools

created for the developingand verifyingsequentialprograms can not be directlyapplied to

concurrent programs. Many of the general techniquesof partitioningproblems and applying

formal logicto the problem of verificationhave been used.

The mediated objectwas developed for managing resourcesin a distributedembedded

system. The designemphasizes resource modularity,synchronizationmoduiarity and flexibil-

ity. A mediated objectencapsulatesa shared resource that may be accessed by requesting

specificservicesfrom the mediator. The mediator isa program contained within the medi:

ated object that encapsulatessynchronization and scheduling for the object. Concurrent,

noninterleaved accessesto the resources are allowed within the mediated object. In this

sense,the mediated object allows encapsulated concurrency. The range of synchronization

and scheduling constraints that can be specified by the mediator is very broad.

feature allows the mediator to manage pools of heterogeneous resources

equivalent services.

An additional

that 'provide

The mediated object design is supported by a temporal logic specification. Mediators

may be verified using this specification and the temporal proof system developed by Manna

and Pnueli[83]. We have developed an example of such a verification.
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1.3. Outline of the Thesis

In the following thesis,we will discusssome existingsynchronization mechanisms as

they apply to distributedsystems. Chapter two examines the literatureon concurrency and

synchronization in programming languages. Chapter three discussesthe design goals for

mediated objects. Chapter four presentsan informal descriptionof the mediator construct.

Chapter fivecontains a formal temporal logicspecificationand a sample proof. Chapter six

presentssome observationson implementing mediators. Chapter seven discussesthe conclu-

sionsof the thesisand offerssome possibilitiesfor furtherresearch.
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CHAPTER 2.

A SUR_E'Y OF THE LITERATURE

In designing a concurrent language, the designer faces all the familiar problems of

sequential language design. These .include providing sequential control structures and sup-

port for building abstractions. A concurrent language design must address three central

problems that are not part of sequential language design [8,36]. A concurrent language must

have a notation and mechanism to:

• represent concurrency;

• provide interprocess communication;

• synchronize process interactions.

These concurrent design components and sequential design considerations are not completely

orthogonal, but it is convenient to look at these as separate issues.

2.1. Concurrency

The earliest problem faced in designing concurrent languages and systems was to pro-

vide notations and mechanisms for parallel execution. All of the solutions are based on the

process concept. A process is a sequential program that is in execution{29].

Processes may be used in a number of ways. In a rnultiprogramrning s!/stern, the

processes represent different jobs that may or may not be related. These jobs take turns

using a single processor in order to better the overall system performance [97]. Multipro-

gramming may be implemented on computers that contain a single processor, or on comput-

!
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ers that contain several (rnultiprocessors). This use of processes is essential to time-shared

operating systems. A rnultiprocessing system uses multiple processors that either share

memory or communicate by a network. While multiprogramming techniques may be used to

manage work for a single processor in such a system, this kind of system can support true

parallel process execution.

Coroutines fit nicely into a multipregramming view of concurrency. A coroutine is a

program whose execution is interleaved on a single processor with the execution of two or

more other coroutines. No synchronization is provided beyond the ability to suspend one

coroutine and resume execution of another [8].

Fork and join primitives are low level constructs that allow dynamic creation and ter-

mination of concurrent processes. When'a fork instruction is executed by a process, a second

new process is created that will execute concurrently.with the process that created it. The

original process is often called the parent process. Join has been specified in several

ways[8,97]. A join operation combines the execution of two processes into one process. In

one implementation, if two processes both execute a join, the process that executes the join

first is terminated. The other process is allowed to continue[97]. In other implementations,

only the parent process may execute a join. The parent then waits for the child process to

terminate before the parent may proceed[8].

The fork and join construct have great expressive power, and have been widely used in

many systems[8]. The problem with this construct is that the fork instruction can be used in

an undisciplined manner to produce unstructured code. This is the same kind of problem as

the goto statement creates for structured programming[97].
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Cobegin and coend statements provide a more structured way to dynamically create

and terminate processes [31,115].When a cobegin isexecuted, two or more processesare

created that willproceed concurrently. The cobegin statement is the beginning of a block

that must end with a eoend statement. All processesspawned by the cobegin terminate

together when allhave reached the executionof the eoend statement. This isa block struc-

tured controlstatement thatsupports structuredprogramming[8].

Modern concurrent languages use the fork/join primitiveor eobegin //coend state-

ments to implement concurrency. Generallyroutinesthat may be executed concurrently are

explicitlydeclared as processes. Some languages implement systems of processes that are

static.In these,processdeclarationsare equivalentto a cobegin that spawns a fixednumber

of processesthat willnot grow or diminishduring execution. Thls istrue of Brinch Hansen's

DistributedProcesses [18]and Andrews' SR [6].In other languages, invocation of a process

by a callspawns a process(essentiallya fork) which willterminate when itssequentialexecu-

tion terminates. Concurrent PASCAL [17]and Path Pascal [67]take this approach. Fre-

quently the spawning of a processisdone implicitly,but there are a number of languages that

include the cobegin constructexplicitly.Argus [77l,CSP [50],OCCAM [86]and Edison [19]

are some examples.

The simple abilityto synchronously begin and terminate processexecution that ispro-

vided by the cobegin constructprovides only a very weak form of synchronization that is

only sufficientif the processesdo not cooperateor share variables. Two processesthat share

variablesmay interfereifno additionalsynchronizationisimplemented. Interferencerefers

to the unexpected and undesired interactionsthat may occur between unsynchronlzed or

!
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badly synchronized processes.A familiarexample to UNIX _'r_1userswould be the scrambled

screen that sometimes resultsfrom forked background jobs outputting to the same terminal

on which a user iseditinga file.Similar interferencemay occur to shared data, with the

actions of one process invalidatingassumptions about that data on which another process

must depend. Additional synchronizationtoolsare needed to prevent thiskind of data corr-

uption. . ,

2.2. Process Communication and Synchroniffiation

The nature of the synchronization mechanism design depends on the way in which

processes may communicate. There are essentially only two ways in which processes may

exchange information. Processes may share variables by accessing the same addresses in

memory, or they may send and receive messages from each other. The difference is less clear

if the messages may contain call by reference parameters, but the distinction is still useful.

In many ways, these are two sides of the same coin. Anything that can be done within one

communication framework can be done within the other [72], although the elegance of the

resultant programs may differ. These communications mechanisms are suited to different

environments and present some unique characteristics.

Shared variable communication fits quite naturally into a system supported by a mul-

tiprocessor mainframe [36]. It is possible to duplicate the effect of a shared variable system

on a network, but this requires either extra wiring or message passing support. In a shared

variable system, the user is ultimately responsible for providing all synchronization, as none

is inherent in the communication mechanism [8].

l UNIX is a trademark of Bell Laboratories
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The semantics of message passing has implicitsynchronization characteristics.A pro-

cess must send a message before another process may receiveit. Implementing a message

passing system requiresmore operatingsystem support than must be provided in a shared

memory system. Most of the additionalsupport is in providing communications links

between processes[118].Implementing communications linksinvolves a number of decisions

concerning how processessynchronize when they send or receivemessages. The most basic

decisioniswhether a sender and receivermust synchronizewhen they pass a message.

It is possibleto roughly group synchronizationconstructs by the type of interprocess

communication used to support them [8,36].This classificationisclearerfor some of the ori-

ginal synchronization constructs.Itbecomes lessclearwhen more recentlanguages are con-

sidered. Because more recentstructuresfor synchronization (such as atomic transactions)

representhigher levelsof abstraction,itbecomes easierto imagine them implemented within

eitherframework.

Synchronization in programming languages isused in two distinctways. The most fun-

damental applicationof synchronizationis used to ensure that operations on shared data

occur _indivisibly'.Processesmay alsobe synchronized to enforceaccessordering consistent

with higherlevelabstractions.

2.2.1. Atorrdeity

Operations that appear to act _indivisibly _ are frequently referred to as atomic actions

[12,26]. Some researchers have understood this definition to mean that all atomic actions

must exhibit _all-or-nothing" semantics [1,2,76,117]. By this definition, all atomic actions

must either complete their intended effect, or have no effect at all. This adds the requirement

!
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that all atomic actions necessarily provide error detection and recovery in addition to safe

synchronization. The concept of "indivisible execution" is quite useful apart from considera-

tions of recoverability. This definition has frequently been used in research on verification

[69,71]. We will use the term _atomic action" in this sense only.

Atomic actions axe frequently implemented to ensure data consistency in the face of con-

current accesses. Concurrent arithn_etic on a shared variable illustrates a low-level use of the

concept. Consider two processes, P and Q, which execute the following statements con-

currently:

P: x:--x+l; Q:x:--x+ I;

As users of higher level languages, we tend to think of statements as behaving atomically. If

z were equal to 1 before these operations occurred, we would expect the only possible _nai

value of z to be 3. However, these statements would be translated by a compiler into code

that reads the value of z into a register, adds 1 to that value and stores the results back into

z. Since P and Q may interleave these steps in various ways, the actual result could be 1, 2

or 3 [8]. Synchronization to ensure data consistency and non-interference by enforcing atom-

icity must be applied on this rather low level and on higher levels of abstraction as well. A

database "atomic transaction" is one such case, in which special effort must be taken to

ensure accesses to related groups of data maintain the consistency of the entire database

[36,40].
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2.2.2. Conditional Synchronization

There is a second application of synchronization that is not concerned with maintaining

the indivisibility of state changes implied by atomicity, but rather with limiting which state

cha_ges will be allowed. Typically, such synchronization has been used to ensure that the

invariants of a data abstraction are maintained [4,47-50,70,92,93]. Implementations of con-

current buffer objects uses synchroflization in this way. Operations on such an object must

be synchronized so that no operation will be allowed to _read" data from an empty buffer or

to _write" data to a full one. In this case, synchronization is not enforced solely to prevent

concurrent accesses from interferin$. Whether or not access will be allowed is based on the

condition of the shared resource and on the type of operation. Such synchronization is fre-

quently called conditional synchronization [8].

2.3. Shared Variable Synchronization

A number of synchronization primitives have been developed for concurrent systems

using shared variables for communication. The main applications of these primitives are to

ensure mutual exclusion when the shared variables are accessed and to implement conditional

synchronization [8].

2.3.1. Busy-Wait

Initial approaches to synchronization in shared variable systems were rather low-level

constructs. One of the earliest of these was the busy-wait loop [31]. In this approach, critical

sections (code acting on shared data) were protected by shared Boolean variables that had to

be true for a process to enter the section. If the variable was false when tested, the testing



15

process would continue testingitrepeatedlyuntilitbecame true (through the actionof some

other process). This solutionhad the virtueof not requiringspecialhardware support, but

sufferedfrom many drawbacks. This solutionwastes a good dealof processor time, an espe-

ciallyseriousproblem when processorswere very expensive. Another seriousproblem was the

difficulty of designing and implementing safe synchronization with such low-level tools.

2.3.2. Semaphores

Semaphores [31]are a higher levelconstruct than busy-waiting for synchronization. P

and V operations on a semaphore implement a teston a Boolean. Executing a P operation

causes a process to releasethe processorifit is not immediately able to execute. Another

processleaving itscriticalsectionexecutes a V operation that willreactivatea process wait-

ing on a corresponding P. Simple semaphores and counting semaphores can be combined to

implement a varietyofconditionalsynchronizationschemes as well.

The actual implementation of the semaphore may be done with a busy-wait, but this

may be avoided by includingthese instructionsas part of the operating system nucleus[29].

In thiscase processescan be suspended and reawakened on P and V operations by operations

that the nucleus must have for handling queues of processes.

Although they are a higher level primitive than the busy-wait, semaphores are not a

structured programming construct. Subtle errors in using these operations can lead to seri-

ous synchronization errors. The programmer is responsible for ensuring the every P opera-

tion is balanced out by a corresponding V operation. In a large program the individual

operations implementing synchronization are not localized, making it hard to find all the

instructions used to implement a certain constraint. Programs written with semaphores are
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often hard to develop,hard to understand and hard to maintain.

2.3.3. Conditional Critical Regions

Once some low-levelmeans of synchronizingprocesseswere found, higher-levellanguage

constructs that would allow a more structured approach to synchronization began to be

developed. Conditional criticalregions [i5,16,48]presented one successfulapproach. In a

conditionalcriticalregion shared variablesare confined to a construct called a resource.

Such variables may only be accessed in mutual exclusion. Sections of code that access a

resource are identifiedas a region. Statements that are enclosedin a region may be accessed

by only one process at a time. Conditionalsynchronizationcan be implemented by including

a Boolean testat the entry of the region.

This approach does not solveallofthe problems associatedwith the low-level,unstruc-

tured nature of semaphores. The testsand manipulations of Boolean conditions used to

implement conditionalsynchronizationare once more scatteredthroughout the code. This

makes it difficultto read the code and understand the exact nature of constraints.Despite

the difficultyof structuringthe use of conditionalcriticalregions,thisconstruct stillhas a

certainattraction.Brinch Hansen chose to use a simplifiedversion of criticalsectionsas the

main synchronizationconstructin Edison [19].

2.3.4. Monitors

A Monitor is a higher-level language construct that ensures that a data resource will be

used in mutual exclusion, without requiring the programmer to explicitly program low-level

synchronization[16,31,49]. The syntax of a monitor is si.milar to that of a class (figure
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2.1)[13]. The monitor contains encapsulated data and a number of operations defined on the

data. It functions as an abstract data type. As in an abstract data type, the only access to

encapsulated data is through the operations defined on them. Only one process may be active

in the monitor at a time.

class readers and writers: monitor

I
I
I

II
II
I
I

begin readercount: integer;

busy: Boolean;

OKtoread, OKtowrite: condition;

procedure startread;

begin if busy V OKtowrite.queue then OKtoread.wait;

readercount := readercount + 1;

OKtoread.signal;

comment Once one reader can start, they all can;

end startread;

procedure endread;

begin readercount := readercount- 1;

if readercount = 0 then OKtowrite.signal

end endread;

procedure startwrite;

begin

if readercount _ 0 V busy then OKtow'rite.wait

busy :-- true

end startwrite;

procedure endwrite;

begin busy := false;

if OKtoread.queue

then OKtoread.signal

else OKtowrite.signal

end endwrite;

readercount := 0;

busy := false;

end readersand writers;

Figure 2.1. Readers and Writers Monitor[49].
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zation.

regions.

Processes within the monitor may execute the operations wait and signal on them.

This simple view of a monitor does not provide for conditional synchronization. There

are many variations of monitors that use different schemes to provide conditional synchroni-

Hoare's scheme [49] (figure 2.1) parallels the solution used in conditional critical

In this approach, special "conditional" variables are defined in the monitor.

When a

process executes a wait, it becomes blocked and relinquishes control of the monitor. When

another processexecutes a signal itwillawaken a blocked process and suspend itselfuntilno

more processesare blocked on waits. Many processesmay be blocked by the monitor, but at

most one willbe executing. This approach has been combined with prioritiesto add a simple

schedulingcapacity to monitors.

Other conditional synchronization schemes for monitors appear to be variations on this

basic theme. Concurrent Pascal [17], uses queue variables with delay and continue opera-

tions that implement a slightly less powerful scheme, in that not all monitors written in

Brinch Hansen's scheme may be translated directly into Hoare's scheme without adding addi-

tional routines to the monitor[56]. The continue statement, however, is somewhat less

costly to code than the signal statement. The continue statement causes the process that

called it to return from the mediator. Signal is more difficult to implement, as it must

suspend the signaling process and ensure that that process will not become unblocked before

all processes blocked on wait have resumed[8].

The use of specialBoolean conditionvariablestends to separate the conditionalsyn-

chronizationtestingfrom the conditionsthat lead to a process blocking or resuming execu-

tion. The resultcan be inscrutablecode unlessmuch care is taken. Hoare [49]proposed a

conditionalwait that would operate on an arbitraryBoolean expression. In this scheme,

I
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whenever a process exits a monitor an implicit signal is executed that causes waiting

processes to retest their conditions.

approaches, but a lot easier to use [8].

This is somewhat less efficient than the above

This by no means exhausts the variants that have

been implemented to deal with conditional synchronization in monitors [36].

Monitors effectively ensure that the execution of monitor operations interleave. For the

portion of the operation that is interleaved, no interference may occur. The execution of an

operation may .be suspended by performing a wait or signal. This creates a possibility of

interference in conditional synchronization because the actions of other processes will be

interleaved between the time a certain process becomes blocked and when it resumes opera-

tion. For example, a process executing an operation in the mediator may establish a certain

condition, execute a signal and become suspended. If it requires that condition to be true

when it resumes operation, either all possible interleaved executions must ensure that condi-

tion is maintained, or the suspended process will need to test for that condition when it

resumes[8,119]. Ensuring that conditions will not change for suspended processes like the one

described above and writing additional tests to ensure conditions on resumption are not easy

tasks.

Systems that includea largenumber of components may be builtusing a largenumber

of monitors to manage accessto those components. In these cases ismay become necessary

for a process executingwithin a monitor to callanother monitor. Such callsare referredto

as nested monitor calls. Nested monitor calls are a problem in the simple monitor scheme

presented here[8,97]. Consider the situation in which a process executing in monitor A calls

an operation in monitor B. While executing in monitor B, the process still retains mutual

exclusion in monitor A. No other process can gain access to monitor A. This will continue to
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be so as long as the Processhas not returned from B. Ifthe process becomes blocked in B, a

considerabledelay may occur beforethe processreturnsfrom itscall.This situationcan seri-

ously degrade the performance of a system[8]. In thissimple example, only two monitors are

involved. Itispossiblefor a chain of callsinvolvingseveralmonitors to tieup allthose moni-

tors when the lastcallmade becomes blocked in another monitor. The performance cost

becomes correspondinglylarger. .

Many solutionshave been proposed to deal with nested monitor calls.Many of these are

cited in [8].Some have suggested that such callsbe prohibited or limited to cases in which

the monitors involved were lexicallynested (as in Modula[119]). Others have proposed

mechanisms to allow a processblocked in a nested mediator callto releasemutual exclusion

of allits monitors, and to reacquiremutual exclusionwhen the callbecomes unblocked. A

finalsolutionisto provide other mechanisms to handle the situationsinwhich nested monitor

callswould be used.

The biggest remaining objection to the monitor scheme is that monitors provide only

mutually exclusive access to the resources that they encapsulate. Many resources may

require higher degrees of parallelism to be used most ei_ciently. Certain kinds of accesses to

shared data do not pose threats to data consistency. For example, several processes reading

from a table simultaneously do not pose a threat of interference. This kind of simultaneous

access cannot be constructed within a monitor. Solutions to the readers and writers prob-

lem[27] implemented with monitors use a monitor like that in figure 2.1 to apply a protocol,

but the actual read or write operation must occur outside of the monitor. However, the mon-

itor cannot enforce the use of synchronization control. A process may access the shared data

without it. This may simply damage the shared resource, or it may deadlock the monitor

!
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[I15].

Monitors have proved to be an enormously influentialmechanism for synchronization.

Many languages have been extended for concurrent uses by adding some variant of the moni-

tor concept. Many ofthese operate in shared memory systems: Concurrent Pascal [17],Mesa

[87],Modula [119],ConcurrentEuclid [54]and Path Pascal [67].The influenceof monitors

has also been feltin languages based on message passing:DP [18],Ada _- SR [6,7],Distri-

buted Path Pascal [66]and Argus [117].

2.4. Open Path Expressions

In monitors, mutual exclusion synchronization is provided implicitly by the construct,

while conditional synchronization is done with user programmed signal and wait statements

that are scattered throughout the module. An Open Pa'th Expression is a notation based on

regular expressions that can specify many complex synchronization constraints in a single

expression[21,25]. Open path expressions have been introduced into an encapsulated data

module called an object to manage concurrency in Path Pascal and Distributed Path Pascal

[24,66,67]. As in a monitor, processes may access data only through the operations the object

defines on that data. However, access is not limited to mutual exclusion. A path expressions

may specify that an unlimited number of processes may execute an operation simultaneously,

that some fixed number may execute it, or that execution may occur only in mutual exclu-

sion. Similarly, certain combinations of operations may be allowed to execute together, while

other combinations are prohibited. In all cases, the basic unit of synchronization is the

operation.

s Ada isa trademark of the U. S. Government, ADA Joint Program Office.
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A path expressionspecifiesaccessrestrictionsusing listsof operation names and path

operators. This has been calledan _operationalapproach" to synchronization [8]because

synchronization isexpressed as allowablesequences of operations on an object. There isno

mechanism provided to enforcesynchronizationbased on the value of variablesencapsulated

within the object. This leads to a certainawkwardness when implementing conditionalsyn-

chronizationwithin Path Pascal objects.Itispossibleto do so using nested objectsto imple-

ment what is essentiallya monitor-likesignal/wait protocol. Scheduling,a type of condi-

tionalsynchronization,can be implemented by similarmethods.

There have been some attempts to extend path expressionsto include testsof Boolean

conditions.Predicate path expressionsare one such extension[4].David Mizell furthergen-

eralizedpath expressionsto address the conditionalsynchronization problem[88]. Mizell's

generalizedpaths have losttheirregularexpressionform and have developed intoa program-

ming language includingloop and branch constructsand localvariables.

Path expressions offer a very expressive notation for a broad range of synchronization

schemes. The programmer is not limited to mutually exclusive execution, so it is possible to

build customized synchronization based on the semantics of the operations. Path expressions

also effectively separate the design of synchronization from the design of operations for many

problems. The separation is less effective when nested objects must be used to implement

conditional synchronization. However, nested objects do assure that all uses of the resources

they implement will be properly synchronized. Finally, path expressions take the dii_icult

chore of writing low level synchronization code out of the hands of the programmer, resulting

in safer code from the start.
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The Path Pascal object has proved to be very flexible. It has served as a host language

for implementing real-time deadline processing mechanisms [116], extensions for fault-

tolerant computing [55,105] and software capabilities [79].

Path expressionshave been used in a number of projectsrelatedto systems development

and software engineering.The Clouds projectat the Georgia Instituteof technology has used

path expressions[2I. They have be4n adopted as part of the SLAN-4 specificationlanguage

[9}and have played a part inother researchon specificationand verification[11,90,i08}.

2.5. Synchronization for Message Pa_sing Systems

Loosely coupled processors in a distributedsystem inevitablycommunicate by some

form of message passing. The act of sending and receivinga message can become the basis

for synchronization because ithas an inherent order. In such a system, the contents of the

message takes the placeof shared variables.The major problems in designing a concurrency

scheme based on message passing are identifyingthe source and destinationprocessesfor a

message and designinga precisesemantics for synchronization.

2.s.1. Naming

One simple approach to naming in a message passing system isto requirethe sender to

name itsintended receiver,and the receiverto directlyname itsintended source. In general,

the directnaming approach iseasy to implement and easy to understand[8]. Direct naming,

however, issomewhat limitedin the kinds of relationshipsthat itcan easilyexpress.

Server processes are not easily implemented with direct naming. A server process is

meant to provide a service to whatever client process calls it. A disk driver routine is an

.
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example of such a process,as many processeswillcallon itto read filesfor them. The server

processes must be flexibleenough to serveany clientthat callson it. It cannot reasonably

anticipatethe names of allpotentialclients[8,36,115].On the other hand, some pipelinesare

fairlyeasy to program in a directnaming framework. In a pipeline,one process produces a

stream of output that immediately becomes the input of another concurrent process. A pipe-

linemay consistof severalstages,each executed by a separate concurrent process. In cases

where a given staticordering of pipelineprocesses will be maintained, the directnaming

scheme can easilybe used. However, pipelinesthat are dynamically createdat run-time can

not easilybe implemented with staticnaming schemes[8]. This approach would make it

difficultto implement pipeliningas itoccursin ,r,,Tr_-_f,,,,Iu _'q_.-- LXVi, j .

CSP uses a staticdirectnaming scheme{50]. In CSP, the names of interactingprocesses

occur as constants,thus allthe names ofprocessesthat may interactmust be know when the

system is compiled. Because the naming in CSP is entirelystatic,certainapplicationsare

difficultto implement using CSP.

One alternativeto directnaming allowsprocessescommunicate only indirectlythrough

a known intermediate,often calleda dtannel. Channels may be named statically,fixingthe

names at compile time, or they may be computed dynamically at run time. Staticchannel

naming suffersfrom the same kind of inflexibilityas directnaming[8].

Channels may be implemented in many ways. In a mailbozscheme, allprocessesshare a

listof intermediate locationsto which each may send messages, and from which each may

receivemessages. This scheme may be quiteexpensiveto implement without specialnetwork-

ing support[8].

I
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A more restrictive approach that is easier to implement ties the intermediate location to

one receiver. In this case it is called a port. Ports allow multiple client// single server rela-

tionships to be easily implemented[8]. Many languages, including Ads [28], have been imple-

mented using ports. Ports have been proposed as an extension to CSP as well [20,651 and

implemented in the CSP-like language OCCAM [86].

2.5.2. Synchronization

The kind of synchronization provided by a message based language is determined to a

large extent by the kind of synchronization enforced between senders and receivers [106].

Communication between a sender and a receiver may occur either synchronously or asynchro-

nously. When a sender and receiver communicate synchronously, sending and receiving

must occur together. If a process is ready to send, and its iatended receiver is not ready to

receive, the sender must wait for the receiver. If the receiver is ready to accept a message,

and the sender is not ready to send it, the receiver waits for the sender. The execution of

either a send or a receive statement may cause a delay. When a sender and receiver com-

municate asynchronously, there must be a buffer between the sender and receiver. The

sender process is not delayed if the receiver is not ready. It just transmits its message and

continues on. The message is stored in a buffer until the receiver is ready to accept it by exe-

cuting a receive. If a receive is executed when no messages are waiting, the receiver usually

must wait for a new message. In some cases, languages provide a non-blocking receive

statement to use as a test for pending messages.

Either of these forms of communications provides a basic measure of synchronization

between the sender and the receiver. In either case the receiver can be assumed to be execut-
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ing either"behind" or "in step" with thesender. When these communications primitivesare

combined with #uarded commands [32],communications can be controlledby the internal

processstate. This facilitatesimplementing conditionalsynchronization.

A guarded command consistsof a Boolean expressionfollowed by a statement or state-

ment list.These are builtintoa listof alternatesas in figure2.2. When a guarded command

isexecuted,some statement with a _uard that evaluatesto truewillbe executed. Ifno guard

evaluates to true,the command aborts. Guarded commands are alsoused in a looping con-

structinwhich failureto finda trueguard causesthe iterationof the statement to terminate.

In CSP, gu'ardsmay contain reeeisestatements[50]. If no message is ready to be

received,the executionof the statement listisdelayed untilsome message arrives. CSP has

been extended to allow synchronous send statements in guards as well [20,65,109].This isa

good deal more dif_cultto implement because itrequiressome protocolsto be developed to

arbitratebetween pairsof processeswishing to communicate[8].

I
I
I
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Figure 2.2. A Guarded Command[32].
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2.5.3. Remote Procedure Calls

In general,the send and receive primitives discussedabove operate on a rather low

level. Often it requires more than one exchange of messages to program an interaction

between processes[8,36,115].For instance,in a client/serverinteractiontwo setsof message

must be exchanged. The firstexchange requeststhe service. The second one isimplemented

to obtain the resultsof that service. This type of relationshipis betterserved by a tradi-

tionalprocedure callmechanism, where waiting for the resultsis implicitin callingfor the

service.However, the traditionalprocedure callmechanism isnot suitedto distributedcom-

puting.

The remote procedure call_89] was developed to provide this kind of higher level syn-

chronization over a network. The request for a service is expressed as a call, with parame-

ters, to a remote procedure. The remote procedure is executed by the server process as a

_proxy" for the client process. On completion of the remote process, the client receives the

results of the computation and continues executing. A remote procedure call implements

message passing at service initiation and conclusion that otherwise the user would have to

provide.

There axe many possibleways to manage server processesin a remote procedure call

scheme. The remote procedure may be declared as a simple procedure,but implemented as a

process that continuouslyloops,waiting for a callto begin execution. Remote procedures are

implemented this way in SR [6,7],and in DistributedPath Pascal [66]. SR has other con-

structsthat allow concurrent executionwithin a serverobject,as remote callsdo not. DPP

implements concurrentexecutionby spawning processesas they are needed within the remote

object. This istransparentto the user. Argus guardians implement concurrent execution in
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a similar manner[77].

Remote processes may implemented by specific statements for explicitly accepting calls

from clients. Ada tasks [28,42,114,122] use such accept statements in guarded commands to

initiate remote services. The Ada remote call mechanism is called a rendezvous. Brinch

Hansen's DP [18] takes a similar approach. In these languages, execution of a remote pro-

cedure by a server process occurs in mutual exclusion. In SR[6] a similar construct allows

multiple processes to execute. The user must explicitly declare one process for each potential

concurrent process execution. Each server process is tied permanently to one client. This is a

rather inflexible notation, but does allow simultaneous service to multiple clients.

Remote procedure calls have been used to implement atomic tran._action.s in the Argus

[77] and Clouds [2] systems. They are used to implement an at most once semantics for the

remote call(8], and to ensure that either an action will be completed once, or it will have no

effect at all. In this case, the remote call implements both synchronisation and failure atomi-

city. The amount of concurrency possible in such systems is severely constrained in the

interest of providing an environment for recovery.

2.5.4. Ren_dning Interference Problems

The use of synchronous or asynchronous message passing does not in itself guarantee

that processes will not interfere [5,91,103,113,115]. Some kinds of interference are eliminated

because the addresses that processes access in this scheme are disjoint. However, in order for

communications between processes to be useful, there must be assumptions made by and

about both partners in the communications. These assumptions are made on the basis of the

process' own state and the communications received from the other process. It is _possible for

I
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the state of a sender processto change between the time a message issent and the time itis

received. Ifthe message has been invalidatedby such a state change, the receivermay act

under invalidassumptions. Asynchronous message passing systems are prone to thisprob-

lem, and specialprotocolsgenerallyare implemented to deal with it. The delay in transmis-

sion during which a message may become invaliddoes not existin synchronous systems, yet

interferencemay stilloccur. Once a message has been sent and received,itscontents may

still be invalidated by the continued execution of the participants [8,104]. The programmer

must prevent these problems using the basic synchronization tools provided.

2.8. Scheduling

Any processingmodule that can not serviceallrequestsas they are received must imple-

ment some form of scheduling to choose between pending requests. Scheduling is used to

decide which blocked processwillbe allowed to continue executing when a resource becomes

free.Many components ofoperating systems are scheduled in one way or another in order to

provide efficientservice.When time isa consideration,efficientschedulingisimportant. For

instance,it is required as an inherent part of any scheme using prioritiesor deadlines to

ensure timely service[29].

Very few languages implement schedulingprimitivesfor users. In most cases,users are

leftto build theirown schedulersout of other language primitives.As T. Wei mentions in his

thesis[116],any concurrentlanguage must implement scheduling on the execution of parallel

processes. This isfrequentlydone implicitly,as in Path Pascal,Concurrent Pascal,DP, and

Argus [36].Some monitor schemes have been implemented that allow a priorityto be added

to the wait statement [49]. HAL/S, a language for real-time programming [57](citedin

I

I
I

I
I

I
I

I
I

I
I

I

I
I
I

I
I

I



I

I

I

I

I

I

I

I

!

I

I

I

I

I

I

I

I

I

3O

[I16])implements dynamic scheduling in a complex framework. Ada implements a static

process priorityscheme used for preemptive scheduling. Maintaining consistencyin the face

of preemption isa problem for the usertosolve.

Andrews' SR language[6]includesa schedulingprimitive. Once an operation invoked by

remote procedure callhas been accepted,the choiceof which callerwillbe allowed to execute

isdetermined by a schedulingparameter in the accept statement. This may referto a single

parameter of the call,or to a functionbased on the call'sparameters. Andrews claims that

the implementation issomewhat expensivebecause the scheduling requiresreevaluationeach

time a callselectionisdone, but that itisnot more expensive than user coded solutions[6,7].

Dennis Leinbaugh [74,75]has also integratedscheduling into a concurrent language design.

The language itisbased on issimilartoPL/I, and the notation isverbose and strongly com-

partmentalized.

It is not always possibleto reconcilea synchronization construct with such scheduling

mechanisms. In mechanisms that synchronizeon the basisof a classof requests (such as all

requestsfor a _read" operation),once suchan operationhas been enabled,a scheduling primi-

tivemay chose a particularrequest to execute. In a synchronizationsystem that allows the

characteristicsof an individualrequesttodetermine itseligibility,such a scheduling primitive

isnot workable.
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In real-time programming, the separation makes it easier to estimate the execution time

of operations during compile time [116]. The ability to estimate execution time is essential to

programming in real-time [3,34,36,73,97,120], separating synchronization from timing makes

at least part of the determination static.

Few constructsprovide synchronizationmodularity. Among those are Path Pascal (PP

and DPP)[23], sentinelprocesses[98],and serializers[44].Serializersare implemented in a

LISP environment. Sentinel processesappear to be the imperative language analog. Both

combine built-incounters with queueing primitivesto allow modular specificationof syn-

chronization. These constructs appear to be well suited to FIFO scheduling problems and

variantsof the reader/writerproblem, but are lessflexiblethan desired[14].

Path Pascal encapsulates most synchronization specifications in a path expression. This

often provides a high degree of synchronization modularity. The synchronization modularity

is lost when conditional synchronization or scheduling is specified. These must be pro-

grammed using nested objects. This results in loss of modularity as well as inefficiency due to

the implicit scheduling applied at each level of nesting. In order to maintain synchronization

modularity, synchronization data must be encapsulated.

Mediated objects provide both data modularity and synchronization modularity and

maintain the expressiveness of less modular synchronization mechanisms.

3.2. Expressiveness

The expressivenessof a synchronizationconstructfrequentlyhas been demonstrated by

programming a number of familiartestproblems. The readers/writers problem{27],the din-

ing philosophers problem [31] and a simple ring-buffer are some examples [36,97]. Test

_EC_C_;_. _ _,_-_?. c! ':._i_ '.,.'_ _i .;,,, PREGF,.DING PAGE ER.P,NK NOT FILMED
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problems illustrate synchronization based on different kinds of information. Toby Bloom [14}

gives the following categorization of synchronization constraints:

I
I
I

• the operation requested;

• the time of the request;

• the request parameters;

• the resource state;

• the history of events in the resource.

These apply both for providing mu£ual exclusion and conditional synchronization, and as a

I
I
I

basis for scheduling. The expressiveness of a synchronization construct may be measured by

its ability to deal with each of these types of information and combinations of these types.

A second consideration in expressiveness is the degree of control over synchronization

I

I
and concurrency a constructgives to the programmer. Considerations of safety and expres-

sivepower often must be traded offin designingpracticallanguages (seeBrinch Hansen's dis-

cussionof the trade-offsmade in Edison [19]). Itispossibleto conceive of a construct that

I

I
provides synchronization based on all of the types of information above, but allows only

mutually exclusive access to a resource. Such a construct would not be appropriate for

embedded distributed system use [22,73].

I

I

Mediated objects allow synchronization and scheduling to be specified using all the kinds I
of constraints mentioned in list above. The system programmer is given a great deal of lati-

tude in the kinds of synchronization that may be implemented.

3.3. Ease of Use

Measuring the _ease of use" of a construct can be very subjective. Programmers

develop certainhabitswhen using particularlanguages that may cause differencesof opinion
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about what is and is not easy to use. This warning aside, some assertions can be made about I
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ease of use.

The complexity of expressing a certain kind of synchronization should be proportional

to the complexity of the abstract synchronization. The notation should be readable. A good

rough estimate of usability can be obtained by making a small modification in a synchroniza-

tion specification and observi.n8 the degree of change reflected in the new implementation

[14,34]. Ideally, such changes should entail only small modifications in the implementation.

Mediated objects because of their flexibility make a wide range of applications easier to

implement than would be possible with more limited constructs. Some simple applications

may appear overly complex in a mediated implementation. Some of the wordiness of media-

tors is meant to make a complex notation more familiar through use of self-explanatory key

words. However, there is always a certain trade-off between expressive power and ease of

use.

3.4. Support for Verification

A useful synchronization mechanism should support program verification. Program

verification is a somewhat controversial issue in software engineering [5,30,112]. One group

claims that the complexity of proving large programs makes verificationeither impossible or

useless [30]. At the other extreme axe claims that formal proof techniques are the only way

to ensure that large programs do what they are supposed to do [10,33,37,68,69]. It is not rea-

sonable to expect that verification alone can give programmers total confidence in the pro-

grams they design [102]; however, verification supported by careful language design and

automated tools certainly should increase the designer's confidence.
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Verificationconsiderationsare not entirelyseparate from the featuresdiscussedabove.

Modular programming concepts allow program proofs to be done in a piecewise manner,

which reduces proof complexity [37,43,45,46,68,69].The expressivenessof a programming

language affectsverifiabilityas well,but not always in a positiveway. Some very powerful

programming constructs,such as the goto or pointermake some programs extremely difficult

to verify [51,78].Verificationcan be a guidelinein developing such constructs and in their

application [5].

A programming language designed to support verification must be precisely specified.

This affects both ease of use and portability. Because we do not intend to develop an entire

programming language, the "host language" chosen for our synchronization construct should

verifiable.

The design of mediated objects has been guided by verification considerations. We have

developed a temporal logic specification of mediators that may be used as a base for

verification.
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CHAPTER 4.

THE NLEDL_TED OBJECT CONSTRUCT

I

I

I
I

The mediated object paradigm is based on object-oriented language design for operating

systems applications. In this model, resources are encapsulated and access to them is allowed

only through exported operations. The synchronization schemes used in DP [18], Monitors

[49], SR[6] and Ada [28] all are examples of languages using this paradigm. The mediated

object encapsulates data and allows access to that data through a well-defined interface.

Client processes request a service from an exported list of service names, and the mediator

determines how the service will be provided. Synchronization and scheduling constraints are

specified by the mediator body, and isolated from the definition of data and operations.

The main features of a mediated object are given below.

1) Initialization and termination blocks are included both for the data resource and for the

mediator.

2) The essential control structure within the mediator is an adaptation of Dijkstra's guarded

commands [32]. Our adaptation uses delay semantics [18] rather than Dijkstra's abort seman-

I

I
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I
I

I
I

I
I

tics.

3) Requests are associatedwith unique keys that allow the mediator to manipulate requests

and implement scheduling.

I

I
4) Guards may contain status tests to inquire about pending requests, and Boolean tests

which may refer to data contained in pending requests [35,50].

5) The mediator controls execution of client requests by commands allowing coupled and

uncoupled client process execution [99]. There is an explicit command to return results to a
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client.

6) Parallel guards are used to multi-program the mediator. Mediator execution is guaranteed

mutually exclusivebetween guard evaluations.

7) Mediators map the name of a servicerequested by the clientonto that of an appropriate

operation. Clientsdo not callon servicesdirectly.

The descriptionsthat follow"_rstpresent a schematic of a portion of the mediated

object syntax and then an informal semantic descriptionwith examples. Portions of these

resultshave appeared in[38].Chapter 5 presentsa formal temporal logicspecificationof the

construct.

The mediated object is one component of a larger language. This thesisdoes not

_,,ount a complete language. For our purposes,we assume the "host" language issimilartor6 _w_._v

Pascal. As a result,our mediator syntax isPascal-like.Ifthisconstructwere implemented

in another language, the syntax would necessarilybe quitedifferent.

4.1. The Mediated Object

The mediated object includes the definition of encapsulated data and operations defined

on that data as well as the specification of the mediator itself. Figure 4.1 is a schema of a

mediated object.

A mediated object is made up of three parts: 1) the interface, 2) the encapsulated

resource and 3) the mediator. The resource constants, types and variables defined within the

object are shared by the resource routines. The mediator maps requests for services listed in

the interface onto appropriate operations and synchronizes access. The mediator may con-

tain its own data and routines not accessible to any external caller. Mediator data usually
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|
hlterface declaration

resource variables

resource operations

mediator

mediator variables

mediator routines

initialization block

mediator body
termination block

end medlator

end object

Figure 4.1. Mediated Object Schematic.

!
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I
consists of flagsand counters, although it may also include queue structures for scheduling.

The mediated object is a type, and a user may create several instantiations of a given

object. The mediator initiationcode isexecuted when an object is instantiated. The termi-

nation code executes when the body of the mediator terminates.

Figure 4.2 presents a complete mediated object. In other examples, only the mediator

will be presented. Figure 4.2 contains many notations that have not yet been explained. It

illustratesthe declaration of an interface, object data (RW_data), resource routines (read and

write), and local mediator data (reader_count). Object parameters are passed by value and

by value-result. Reference parameters seriously compromise data encapsulation and are

impractical for current distributed implementations.

Clients request a mediator service which isnamed in the interface by including the name

of the service as a parameter to a call on the object. Once a client process has requested a

service, the client is blocked until the mediator returns the results of the completed service.
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reader_writer -_ object
inter/ace

job : export part

pid : key cUent_process_id;

ease service : (read, write) of

read : (readprm: var some_type);

write : (writeprm : some_type);

end ease;

end export part;

var RW_data: some-type;

procedure read (readprm: var some_type);
begin readprm :_ RW_data end procedure;

procedure write (writeprm : some_type);

begin RW_da.ta :_ writeprm end procedure;

mediator

vat

reader..count : integer;

i, j : client_proceu_id;
|nit reader_count := 0 end |nit

body

any i in key: cycle

req(i); job(i).service = write -_>

cycle
reader_count _ 0-_

exec(i, write (job(i).writeprm));

release(l);
until true

req(1); job(1).servlce = read ->
reader_count :--'_ reader_count + 1;

spawn(i, read (job(i). readprm));
until false

//
any i in key: cycle

term(i); job(1).service ---_ read -_

reader_count :_ reader_count- 1;

release(i);
until fake

end body
end mediator

end object

Figure 4.2. Reader_Writer Object.

I
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The actual executionof a requestedservicemay be delayed by the mediator. The semantics

of a callon a mediator isthe same, whether the mediator isinstalledat a remote locationor

locally.

4.2. The Interface

The interfacedeclarationlists-theservicesprovided by the mediated object and the

parameters of a request for each service. This provides an external view of the object.

Within the mediator, every requestthat iseitherpending or being servicedby the mediator is

represented by a job descriptorof thisform. The descriptorfor a specificrequest is dis-

tinguishedby the key parameter. The syntax we have used issimilarto that of Pascal vari-

ant records. The name of a requestedserviceserves as the variant record tag. A schematic

of the interfacedeclarationispresentedin figure4.3. Figure 4.2 containsa complete example

of an interfacedeclarationand itsuse. The fixedparameters in the interfacedeclarationare

those parameters present in all callsto the mediator. In every case, this will include a

parameter designated as key by the key-word key. The key parameter must be unique for

every clientthat requestsservicefrom the mediator. The key is used to identifythe client

making a request and to manipulate job descriptorswithin the mediator. The use of keys is

describedin more detailbelow.

The service_listin the schematic representsa listof servicesthat the mediated object

provides. These do not necessarilycorrespond to the names of encapsulated routines. The

mediator maps a requestfor a particularserviceonto a specificroutine that can provide that

service. In some case,more than one routine may be availablethat provide equivalentser-"

vices.This allowsthe mediator to controlpools of heterogeneous,but equivalentresources.

!

I
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!
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interface

|dentiGer : export part

fixed_parameters

ease identifier : (service_llst) of

variant_parameters
end ease

end export part

Figure 4.3. Interface Schematic.

!
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Parameters are identified as value parameters and value-result parameters within the

interface. The mediator can inspect the value of these parameters to implement appropriate

synchronization and scheduling.

A request for a read action in the reader_writer example (figure4.2) takes this form:

reader_writer (me, reader, myprm);

where me is a constant containing the clientprocess' uniquely assigned identifier,reader is the

name of the requested service and rnyprm is a parameter. This request is mapped onto a;

mediator job descriptor with the values: job(me), pid _- me, job(me), service -- reader,

job(me), readprm -- myprm.

l
I
I

identifier : local part
fixed_fields

ease identifier : (service_list) of
variant_fields

end ease

end local part

Figure 4.4. Local Descriptor Schematic.

i
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The interface definition includes all parameters that pass between the client and the

mediator and defines a job descriptor. In some cases it is useful to add additional informa-

tion to this descriptor for use within the mediator as in figure 4.11. Figure 4.4 shows a

schematic for a local extension to the interface. The data contained in the extension is part

of a job descriptor accessed using the key. The extension of the descriptor is local data in the

mediator.

4.3. Basic Mediator Staternenta

The mediator iscomposed of severalkinds of basicstatements and a specializedcontrol

structure. The simple statements that can be used within the mediator include: assign-

taunts,local mediator routine calls,and the commands skip, exec, spawn and release.

Exec, spawn and release are statements to initiateservicesfor clientsand to return the

resultsof services.These have a key variableparameter that uniquely identifiesthe clientfor

which the actionwas taken. This use of keys isexplainedin detailbelow. The second param-

eterof an exec or spawn statement isa resourceoperation call.Exec permits coupled execu-

tion of a resource operation (on behalfof a clientidentifiedby the key). The mediator ini-

tiatesa process to executethe operation,and then blocks untilthe operation has terminated.

For example, in the reader_writer object above, the statement ezec(i, write (job(i). wri-

teprm)); initiates a write operation for client i. The mediator blocks until the operation has

completed. On the other hand, spawn initiates an operation and allows uncoupled execution.

The mediator does not wait for the operation to terminate, and continues executing mediator

code. In the reader_writer object, the statement spawn(i, read (job(i). readprm); initiates a

read operation for client i.
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The relea6e command returnsthe resultsof an operation to the clientand removes the

request from the mediator. This may be invoked only afteran exec has been completed, or a

status test(term, see below) revealsthata spawned request has terminated. Reader_writer

(figure4.2) contains examples of release both after coupled and uncoupled service. The

separate termination testallowssynchronizationdata to be maintained as servicescomplete.

Release also makes it possible to delay and synchronize termination and the return of

results.

4.4. Guarded Commands

Sequences of actions within the mediator body are specifiedby the control structures

presented here, and by parallelguarded commands, which are presented below. The basic

mediator controlstructureisa guarded command _ shown in figure4.5. The prefixany ...

key: isoptional.

The mediator guarded command has many similaritiesto Hoare's CSP guarded com-

mands [50],which in turn can be creditedto Dijkstra [32].The chosen keywords and seman-

ticsare closerto the guarded regionsof Brinch I-lansen'sDP [18]. The concept of key is

,

!
!
I

any identifierin key:

cycle

guard -) statement_list;
D

Q

guard -) statement_llst

untllexit_condition;

Figure 4.5. Guarded Command Schematic.

!
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related to Hoare's guard command range [52], and to message keys in PLITS [35,36]. The

similarities and differences will be discussed below.

A guarded command is a control statement in which different statement lists are chosen

for execution based on the truth value of the associated guards. Because the evaluation of

guards is central to this .construct_ they will be explained first. The guarded command will be

described after. The application of keys to guarded commands will be presented last.

Guards are made up of a stat_ test and Boolean equations. Mediator guard evaluation

always results in either a true or a false value. The special guard otherwise is true only

when all the other guards in the guard command are false.

Status tests allow inquiries about pending requests for mediator service. These are tests

for requests to initiate an operation (req) or to return results after the operation has com-

pleted (term). For the guard req( i ) to be true, the list of unserved requests must contain a

request from client i. Once the guard has been fired (it's associated statement list chosen to

execute), req( i ) cannot become true again until the service has been completed and the

results returned (by release( i )). The guard term( i ) is similar, becoming true when the exe-

cution of an operation for client i terminates.

A Boolean guard paired with a status test may examine the value of a client's request

parameters. Each client's request is represented within the mediator by a job descriptor

defined by the interface declaration. The descriptor is a variant record containing fields for a

key variable, the name of the service requested and the parameters for that service. The ser-

vice field serves as a tag for variant parameter fields. The descriptor is accessed using the

key by indexing on the variable job, as in these examples. The job descriptor for the

reader_writer object is defined by the interface section in figure 4.2. In the reader_writer
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object,job(i).servicereferencesthe servicetag field.Boolean guards may alsotestthe value

of the mediator's localvariables.Boolean guards pairedwith statustestsare not evaluated if

the statustestisfalse.

In the followingexplanationof a guarded command, the execution of the guard is con-

sidered in isolation,without consideringpossibleinterleavingwith other parallelguarded

commands. The presence of parallelguards introducesdelays,but does not affectthe seman-

ticsof the guarded command.

Mediator guarded commands are closelyrelated to-Brinch Hansen's guarded regions

[18]. The mediator process must wait untilsome guard conditionis true,and then execute

the associatedstatement list.A statement listassociatedwith a true guard issaid to be

enabled. A guard whose associatedstatement listhas been chosen and started execution is

said to have been fired.

When the statement listof a firedguard has finishedexecuting,the exitconditionin the

finaluntil lineof the guarded command istested. Ifthe conditionistrue,the guarded com-

mand terminates,otherwiseit_guards are reevaluated.

Nondeterminism isa possibilitywhen more than one guard isenabled. In thiscase,one

guard willbe chosen to fire.A mediator implementation must ensure at leastweak fairness

to avoid starvationproblems. Weak fairnessin guard evaluation means that a guard that is

enabled oftenenough willeventuallybe fired.The mediator cannot delay ifthere are enabled

guards.

The delay semantics of thisguard command differsfrom Dijkstra'soriginaldefinition

and Hoare's adaptation [32,50].Hoare and Dijkstra'sconstructsabort the guarded command
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when no guard is true. This createsa framework that isconvenient for formal verification,

but resultsin serversthat do not facilitatewaiting. Waiting isusuallyimplemented by expli-

citlyprogramming a busy loop. Because waiting is fundamental to providing services,we

preferto wait implicitly.

Brinch Hansen implements both delay semantics in guarded regions and abort semantics

for guarded commands. The mediator proposal includes only delay semantics, because the

inclusion o£ an otherwise guard and exit conditions make the abort semantics redundant.

The otherwise guard has other applications for implementing background actions and is a

useful shorthand for the negation of all other guards.

Mutual exclusion within a mediator depends both on the use of the exec statement and

the careful choice of preconditions defined in a guard statement. The exee statement ini-

tiates a service process and blocks the mediator, but it does not check for other initiated

processes. In the reader-writer example (figure 4.2), mutual exclusion for the write operation

is ensured by the guard _cycle reader_count-- 0-_" and by the actionof exee. The guard

willnot permit a writeto begin untilallexecutingread operations are terminated. The exee

statement blocks the mediator as the write is serviced to prevent other operations from

becoming active.

Neys are used to identifythe clientto the mediator, to accessjob descriptorsfor guard

evaluation and scheduling purposes and to tie clientsto specificresources,as in allocator

objects. The key concept was suggested by Hoare's CSP process range labels[50,52],but

theiruse in mediators isconsiderablydifferent.Hoare appliesranges to processesto createa

finitenumber of explicitlyand contiguouslyindexed processes. This applicationof ranges is

not included in mediators. Hoare also appliesranges to guarded commands to substitute
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values within a given range for a bound variable in the guard statements. The following

example isfrom [50]:

"(i:l..n)G-_> CL stands for
G1 -_ CL1 Q G2 -_> CL2 r_...r_Gn-_> CLn. _

In effect,the guard isexpanded by creatinga guard and statement listfor every value of i.

The applicationof ranges in Hoare's guarded commands isquitegeneral.

In the mediator proposal, keys serve only to identifyclientprocesses. Like Hoare's

ranges,a key statement (may ...)definesa key variablewhich willbe bound within the guard

command it modifies.Consider the guarded command shown in figure4.6. Itisexecuted as

ifitwere written as shown in figure4.7. In thisexample the value of the key identifierisin

the range 1..n and defined as the interface field job.rangeprm. Usually a process identifier

(the pid descriptor field) will be used as the key. The designer of a mediator does not need to

know explicitly what process identifier values are being used, just that they are unique.

Although, in an abstract sense, a potentially infinite key variable range implies an infinitely

expanded guard, there is no need to implement them that way. Keys are always associated

with status tests. Only guards corresponding to clients with requests can evaluate to true, so

!

!
I
I

any i in key: cycle
req(i); job(i).service ---_A ->

exec(i,A);
release(i);

Q

req(i); job(i).service ffi B ->
x :-----x + 1;

exec(i,B);
release(i)

until false;

Figure 4.6. A Guarded Command.

I
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req(1); job(1).service = A ->

exec( 1_.);

release(I);
Q

,_q{Z);job(Z)._e.ic_ = S ->
x:_x+l;

exee(i,B);
release(I);

Q

req(2); job(2).service = A ->

exec(2,A);

Q

req(10); job(10), service ---- B ->

x:-----x+l;

ex_(10,B);
reieue(lO)

until false;

Figure 4.7. The Guarded Command Expanded.

only such guards need to be evaluated. This significantly limits the number of guards

evaluated. Evaluation can be restricted further when fairness is taken into consideration.

Key variables are tied to job descriptors defined by the interface. The most useful key

reference is to the client process identifier. The mediator designer may designate another

descriptor fieldas a key, as in figures 4,6 and 4.8. In any case, the chosen key fieldmust be

unique for each pending request.

The mediator in figure 4.8 implements synchronization for the dining philosophers prob-

lem. The client process executes the statement diner (rangeprm, eat); to request the

mediator's eat service. This solution is one of many possible solutions using mediators.
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interfaee

job: export part

myfork : key range;

case service: (eat) of

eat-0
end export part;

procedure eat;

begin - do whatever to eat end;

mediator

type range _--- 0 .. n-1
vat

fork : array [range] of (free, inuse);

i, j : range;
init

for j :_ 0 to n-l; fork[j] :-- free;
end init

body

any i in key: cycle "

req(i); job(i).service : eat and fork[i] _ free

and fork[(i÷l) rood n] = free ->

brk[i] :_ inuse;

fork[(i+l) rood n] := inuse;
spawn(i, eat(i));

o

term(i); job(i).service --_ eat ->

fork[i] :'_-- free;

fork[(i+l) rood n] := free;

release(i);

end cycle

end body
end mediator

end object

Figure 4.8. Dining Philosophers.
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4.5. Parallel Guarded Commands

The schematic in figure4.9 shows the syntax of the parallel

mechanism that allowsthe interleavingofdifferentmediator actions.

guarded command, a
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body

guarded..command
//

//
guarded..command

end body

Figure 4.9. Parallel Guarded Command Schematic.

Parallel

evaluated at different times during mediator execution.

together the evaluation of several guarded commands.

guarded commands are proposed to allow different sets of guards to be

It allows the mediator to %huge"

The choice of the notation // to

separate parallel guarded commands is deliberate. A mediator containing parallel guarded

commands uses a multiprogrammed thread of control, one thread o[ control for each guarded

command. Only one thread ot" control is active at a time. The active control block can

change only when guards are evaluated. This creates mutually exclusive execution of the

statement lists between guard evaluations. The mediator body terminates if all of the paral-

lel guard blocks terminate.

Consider the simplified example in figure 4.10.

cussion easier). In figure 4.10, A, P, C, D are guards.

The control vector of this mediator has two elements.

(Labels have been included to make dis-

SA, SB, SC, SD are statement lists.

The notation "<_labeli, label2, ... ,

labeln_" is a control vector in which n threads of control are at the locations label1 through

labeln. This notation is adapted from the expression of execution state in Manna and

Pnueli's temporal logic scheme[84]. In figure 4.10, the initial control vector is: <_11, ml_.

When guard evaluation occurs in the initial state, the guards A and C are evaluated. As for

isolated guard commands, the associated statement list of some true guard will be executed.
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body

If: cycle
A->

until fake

//
ml: cycle

C->

until fake

end body

12: SA;

13: cycle B-> 14: SB untll true;

m2: SC;

m3: cycle D -> " m4: SD untll true;

Figure 4.10. Simplified Parallel Guarded Command.
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If the guard A from the cycle 11 is fired, the statement list starting at 12 will begin execution.

It will continue executing without interruption until the new guard command at 13 is encoun-

tered (assuming SA contains no guard commands). At this point the control vector is <13,

ml>, and the new guard evaluation includes the guards B and C.

combinations, the set of guards evaluated at any one time may be:

[B,D].

Considering allpossible

[A, C], [A, D], [B, C] or

The statement listsfollowingguards may contain exec, spawn and release statements

without alteringthe flow of controldiscussedabove. In every case,controlpassesto the fol-

lowing statement. In the case of an exec statement, thisisdelayed untilthe resourceopera-

tion ithas initiatedterminates. This delaytemporarily blocksfurthermediator activity,but

does not alterthe flowof control.

The parallel guard notation is an easy and concise way of specifying changing sets of

enabling conditions. It is possible to rewrite a parallel guard as one large simple guard com-

mand by using a distribution algorithm. The resulting guard command is considerably more

bulky and actually less clear.
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The introduction of a control vectorwithin the mediator does not create the same com-

plications for reasoning about programs that are usually associated with parallel processes.

The control flow in mediators is very restricted, giving statement lists that will be executed

in mutual exclusion. This fact, combined with the small size of mediators and the explicit

statement of preconditions in the guards makes it quite easy to reason about the behavior o£

parallel guards. , ,

The reader/wrlter mediator demonstrates one application of the parallel guard. In that

example, firing the guard req(i); job(i).ser_ice = write executes the associated statement,

which is a cycle statement. As long as its guard reader_count -- 0 is false, tile guard cannot

fire. No new write or read operations will be initiated, but the second parallel guard will

allow read operations to finish up and leave the mediator. Parallel guarded commands cou-

pled with nested guard commands gives a convenient way to block some actions while permit-

ting others.

4.6. Some Additional Examples

The examples that follow demonstrate some applications of mediators.

only the mediator will be presented.

In many cases

4.8.1. Alarm clock

The alarm clock object (figure 4.11) delays a caller for a time period specified in the

request's parameter n. Calls for the wake service cause a delay. Calls for the tick service

advance the clock. The field out_time must be declared for the operation wake job descriptor

within the mediator as a mediator local extension to the job descriptor. This figure presents
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alarm_clock ---- object;
interf'aee

job : export part

pid : key client.proce__id;

ease service : (wake, tick) of'

wake : (n : integer);

tick: ()
end _ae

end export part

procedure wake; begin end;

procedure tick; begin end;

mediator

vat

i,j :client..proce_id;

now : inteKer;
I]aK : boolean;

job : local part

case service : (wake, tick) of

wake : (out_time : inteKer);

tick: ()

end case;

end local part

lnit now :-- 0 end init

body

any i in key: cycle

req(i); job(i).service ---- wake ->

_tart the _ervice, but termination will be delayed

job(i), out_time :_ now + job(i), n;

spawn(i, wake);

until false;

//
any i in key: cycle

req{i); job(i).service _ tick ->

now :_ now + 1;

exec(i, tick);

releue(i);

flag :_ false;

any j in key: cycle

term(j); job(j).service _ wake and job(j).out_time <_ now ->
release(j);

Q

otheewise -> Aa.K := true

-- e_it cycle

until risK;

until false;

end body
end mediator

end object

Figure4.11. Alarm Clock.

I
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a complete mediated object in order to demonstrate the use of a job descriptor augmented by

local data.

4.6.2. Shortest Job Next

The mediator in figure4.12 implements a schedulerthat chooses the job with the lowest

estimated servicetime for the next dxecution. Requests are served in mutual exclusion. This

framework isapplicableto many schedulingproblems.

The firstguard command simply callsa localoperation to queue up job descriptorsin

order of theirestimate parameter. The second guard command removes the head element of

the job descriptorqueue and startsthatjob'sexecution. The spawn and wait for termination

allows the mediator to continue enqueuelng new requestswhile a serviceoperation isexecut-

ing.

I

I
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body

any i in key: cycle
req(i); job(i).service _ server ->

enqueue (i, job(i).estimate);
until false;

//
cycle

queue_not.empty - >
j :--- dequeue;
spawn(j, server); -- initiateaert_ce operation

cycle
term(j); job(j).service _ server ->

release(j);
until true;

untilfalse;

end body

Figure 4.12. ShortestJob Next.
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The key variable3."in the second guard command isset by directassignment rather than

through a cycle modifier.

4.6.3. An Allocator

The allocatorin figure4.13 gives a clientprocess exclusiverightsto a resource for a

seriesof accesses.The clientmust rbquestan allocation,then may make repeated callson the

resource. Finally,the clientmust explicitlyreleasethe resource before itcan become avail-

able to another client.This example usesthe key binding made in the outer cycle to restrict

use of the resourceto one processinthe innercycle.

The mediator differsFrom the monitor solution [49]for this problem in a number of

ways. Most importantly, the resource being allocatedis encapsulated with the mediated

object. The mediator protectsthe resourcefrom unsynchronized accessesby faultyprocesses.

I

I
I

!

i

i
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body

any i in key: cycle
req(1); job(i), service ----allocate ->

exec(i, allocate);
release(i);

flag :--'_fake;
cycle

req(i); job(1).service = u-,,e->
exec(i,use);
release(i);

Q

req(1); job(i).service _-_free -_
exec(i, free);
release(1);

nag :-- true;
untli flag;

until False;
end body

Figure 4.13. Allocator.

I
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inlt val :_ 0 end inlt

-- val i8 the semaphor counter variable

body
any i in key: cycle

req(i); job(i), service _ P ->
exec(i, P);
val :'- val ÷ 1;

release(i);
[]

req(i); job(i), service _-_V and val _> 0 -_>
exec(i,P);
val :----val - 1;
release(1);

until false;
end body

Figure 4.14. Semaphore.
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The mediator also prevents the resource from being releasedby any process but the one the

resource has been granted to. The monitor solution does not offerprotection in eitherof

these cases.

4.0.4. /k Semaphore

The mediator in figure 4.14 implements a semaphore. We have included this example to

demonstrate that the mediator construct has at least the expressive power of semaphores.

The function of this object is purely synchronization.

4.0.5. Cigarette Smokers Problem

Patil[96]introduced thisproblem to demonstrate some of the limitationsof semaphores

forimplementing synchronization:

Three smokers aresittingata table.One ofthem has tobacco,anotherhas cigarettepapers,

and the thirdhasmatches; eachone has a differentingredientrequiredto make and smoke a
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cigarette but he may not give an ingredient to another. On the table in front of them, two of

the three ingredients will be placed, and the smoker who has the necessary third ingredient

should pick the ingredients from the table, make a cigarette and smoke it.

A mediated object solution to this problem is presented in figure 4.15. In this example, three

processes (deliver..paper, deliverjobacco, deliver..match) place items on the table. The three

smoker processes are got_match, got..paper and got_tobacco.

4.6.6. Ring Buffer

Ring buffers are frequently used in operating systems to support processes that act in a

producer/ consumer relationship[97]. The producers fill in the buffers at their own pace,

while consumers empty those buffers. In a ring buffer, the number of available buffers is lim-

ited and the total number of buffers is fixed. Synchronization is used both to prevent

interfering accesses to a single buffer and to prevent consumers from _overtaking" the pro-

ducers. A simple solution to the problem that allows at most one simultaneous p_,t and get

on different buffer is presented in figure 4.16. We have include the entire mediated object.

!
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Init

tobacco := false; paper := false;match := false;

resource_count :_ O;

end inlt

body

cycle
resource_count < 2->

any i in key" cycle

req(i);job(i),service_ deliver_tobaccoand not tobacco ->

exec(i, deliver_tobacco);

tobacco :_ true;

resource_.count:= resource_count + I;

rele_,(i);
Q

req(i); job(i), service = deliver_paper and not paper ->

exec(i, detiver..paper);

paper :_ true',

resource_count :-- resource_count + i;

relea._e(i);
Q

req(i);job(i),service_= deliver..matchand not match ->

exec(i, deliver_match);
match := true;

resource_count := resource_count + 1;
release(i);

until true;
O

resource_count _ 2 -_>

any i in key: cycle

req(i);job(i),service= got..match end tobacco and paper ->

exec(i,got_match);

tobacco := false;paper := false;

resource_count := O;

releue(i);
r_

req(i); job(i), service = Kot_paper end tobacco and match ->

exec(i, got.paper);
tobacco := false; match := false;

resource_count := O;
releue(i);

r_

req(i); job(i), service = Kot_tobacco and paper and match ->

exec(i, got_tobacco);
paper := rMse; match :_ false;

resource_count :_ O;

release(i);
until true;

until raise;

end body

Figure 4.15. CigaretteSmokers.
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rinds.buffer -----objeet;
interface

job : export part

pid : key ¢lient_procees_id;

ease service : (put, get) of

put; : (p_dat_ : some_L_pe );

get : (g_data : vat some_type)
end _aee

end export part

const ring_size = n;

type ring_range ---_ 0 .. (n-l);

vat ring : array [ring_rangeJ of some_type;

proeedure put (data: some_type, ring_index : ring..range);

begin ring [ring..index] := data end;

procedure get (data: vat some_type; ring.index: ring..range);

begin dat_ :----- ring [ring.index] end;

mediator

vat

i : client_process_id;

head, tail : ring_range;

inlt }_e_/:----- O; tail :-----0 end inlt

body

any i in key: eyele

req(.i); job(i).service = put and (head + 1) rood ring._ize < > tail ->

spawn(i, put (job(i). p_data, head));

cycle

term (i); job(i).service -- put ->

release (i);

head :---- (head + 1) rood rinlL_ize;
until true;

until fslse;

//
any i in key: eyele

req(i); job(i).service ----"get and head < > tail ->

spawn(i, get (job(i). g..data, tail));
cycle

t_rm(i); job(i), service = get ->

release (i);
tail:'-- (tail+ I) rood ring.,size

until true;

until false;

end body
end mediator

end object

Figure 4.16. Ring Buffer.
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CHAPTER 5.

A TEI_PORAL LOGIC SPECIFICATION

In the chapter above we presented an informal descriptionof the mediated object. Such

a descriptionisusefulas an introductionto a new language construct,but isnot adequate as

a basis for implementation or for gaining a detailed knowledge of the construct. In this

chapter we present a temporal logicspecificationof the mediated objectconstruct. Parts of

thisspecificationwere originallydeveloped in [39].

The imprecisionof informal specificationsled to a search for a practicalmeans of for-

reallyspecifyingthe mediator construct. The specificationtoolchosen had to meet these cri-

teria: naturally describeconcurrency; easilydeal with shared variables; be independent of

possible implementation; serve as a basis for verification. Temporal logic [84] meets these

requirements. Because temporal logic makes synchronization relationships explicit, it is a

powerful tool for reasoning about concurrent programs. This chapter presents a formal tem-

poral logic specification of mediators which can serve as the outline of a proof system to sup-

port verification.

The use of temporal logic to specify a new programming construct is a new and, we

believe, powerful technique. Research in temporal logic has primarily applied this tool to

demonstrate verification techniques using simplified languages [70,84,94]. It also has been

used, as a secondary specification for program synthesis or verification purposes, for

languages that have already been formally specified by other means [98,121].
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We had hoped to be able to directlyapply Manna and Pnueli'smodel [81]to mediators,

but were soon disabused of that notion. Both the data domain and controlstructuresused in

mediators are more complex than those of Manna and Pnueli'ssimplifiedlanguage. Our

constructsare alsobased on somewhat differentassumptions. Much of our work has involved

developing a differentmodel formediators and adapting temporal logicaxiomatization to this

model.

5.1. Temporal logic as a language specification tool

We considered severallanguage specificationmethods before temporal logicwas chosen

to specify mediators. These included attributegrammars, axiomatic semantics and denota-

tionalsemantics.

An attributegrammar definitionwas rejectedfor a number of reasons. Attribute gram-

mar definitionsgive an operationaldefinitionof a language that can be very suggestiveof an

implementation. For thisreason they tend to be very usefulto implementers, but unhelpful

to users [95]. A language specifiedusing attributegrammars usually wollld need another

specificationto support verification.Finally,attributegrammars tend to be very large with

a lot of theirbulk devoted to elaboratingdata typing and basiclanguage elements. Because

the mediator constructismeant to be an extension to an unspecifiedPascal-likelanguage, a

specificationtechnology thatwould allow us to be somewhat unspecificabout data typing and

concentrateon concurrency issuesispreferable.

Denotational semantics are abstract and precise enough for our use, but the application

of denotational semantics to concurrency problems is very much a research topic [110].

Moreover, denotational descriptions do not deal well with shared variables. Finally, denota-
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tionaldescriptionsare extremely complex and difficultto understand. For these reasons this

approach was rejected.

Axiomatic specificationsoffereda toolthat allowed sufficientabstractionand precision

without undue complexity. They promised to be usefuland meaningful to a wider range of

users and implementers than eitherattributegrammars or denotationalsemantics would be.

Although a great deal of research _as been done on applying axiomatic semantics to con-

current programming [53,69,92,93], axiomatic definitions do not appear to be well adapted to

expressing complex interactions between multiple flows of control.

Temporal logic builds on an axiomatic basis by adding a direct and natural means of

reasoning about the sequences of events and flow of control in a concurrent system [70,84,94].

It can be used as a tool to provide an unambiguous description of mediator behavior for a

potential implementer, and a sound basis for verification for a user. It already has provided a

check on the mediator design specification during the development of the mediator construct.

Temporal logic has proved to be an excellent tool for the specification of mediators.

5.2. A Short Introduction to Temporal Logic

In thissectionwe presenta short and informal introductionto temporal logic.

jectisexplored in great detailin[81,82,84],and interestedreaders may look there.

cussionfollowthe outlineof the introductionpresented in[64].

The sub-

Our dis-

Temporal logic is a first-order language that uses the familiar logical operators,

quantifiers and connectors. In addition four modal operators are defined:
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<>

o

the _always" operator,

the _sometimes" operator,

the _next" operator,

the _until" operator.

The firstthreeoperatorsare unary, the lastisbinary.

Manna and Pnueli partitionvariablesinto global and localsets. The globalvariables

are unchanged over the executionof the program, while localones may change from step to

step in the computation. Quantifiersare only appliedto the globalvariables.

Manna and Pnueli'stemporal logiclanguage uses a model(I,c_,_)in which Iis a global

interpretation,a a global assignment and cra sequence of states. I specifiesthe domains in

which the language operates, a definesthe value of allglobalvariables,cristhe component

of the language that is,in a sense,of the most interestto us. Temporal formula are defined

over infinitesequencesof states_:

Each state 8_ gives the value of all the variables. The global variables do not change value

from state to state. The local variables may change value.

It is also possible to speak of sequences of states that do not originate with the initial

state 80. These can be referred to as k-shifted states denoted:

_(k) : mk,ak+l, . . .

The temporal operators can be interpretedover sequences of statesas follows.

notation Us _- w" means that formula w isinterpretedover the statesequence or.

The

Since logical expressions that do not contain temporal operators are time independent,

they can be expressedas:
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_--w iff_o _- w

The unary temporal operators can be written as:

_Ow iffVk:k_O:_(kl_w
I-- v w iff 9k : k_ O: _(kl I-- w
_-- 0 w iff _(_1F--w

The _'until" operator can be defined (using a quantifier notation developed in[41]. ):

I'- wl _/ w2 iff _c :k__ 0: ¢(k) _._ w2 and Vi : 0 < i < k: ¢(_) b" wt

Manna and Pnueli define other operators and give detailed definitions of other logical opera-

tors and quantifiers in[83].

u

y.

In our notation we represent a vector y by a y with a bar over it:

A program can not be verified using temporal logic without a temporal proof system

the programming language in which the program is written. The proof system consists of

three portal84]. The first of these is the uninterpreted logic part, which essentially defines the

axioms of first-order temporal logic. This portion does not change for any programming

language, and is defined in[83,84].

The second part of the temporal proof system is the domain part which defines the

domains of a programming language and any induction rules covering those domains. In the

case of mediators, a great deal of the domain definition pertains to a potential host language,

and not to the mediated object. As a result, to simplify matters we have chosen to deal only

with natural numbers within our mediated object language. These can be dealt with using

familiar axioms.

One useful example of an induction rule pertains to to sets with a well founded ordering.

A set A is said to be well founded with respect to an ordering relation >- if there exists no
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ihfinitely decreasing sequence

_'o )" °_l >" °t2 >'" ""'

If (A,).-)is a well founded set and w(a) isa temporal formula dependent on c_e A, then an

induction rule can be defined that willallow us to prove the termination of an iterative

language construct. One such ruleisthe oIND rule,which can be statedas:

w(_) _ o[,#,v _e: _ _- c,: w(_)]

w(a)_ o_

This ruleservesas a kind of a template which can be filledin to "instantiaten rulesfor vari-

ous kinds of wellfounded sets. For example, an instantiationof thisrulefornatural numbers

called "IND" is given in [80].

q(o)_ o_
Q(m+l) D o V oQ(m)

Q(k) Do¢

IfQ isa predicateassociatedwith the loop,and ¢ isthe loop termination condition,the this

rulecan be used to show the terminationof a loop.

The thirdpart of a temporal proof system isthe program part inwhich the semantics of

the programming language are defined. Manna and Pnueli definetheirlanguages using a set

of graph templates[84].We will followtheirmethod in thisintroduction. In our temporal

logicdefinitionof the mediated objectwe chose to use a textualmethod that isequivalent.

In a temporal proof system, a program may be representedas a directedgraph. Vari-

able declarationsare not included. The graph abstractsthe program's flow of control. For

example, a Pascal ifstatement would be representedby two edges coming out of a common

vertex. One of these would representthe then branch of the if;the other would represent
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the else branch. Both of these edges join again at the vertex representing the exit of the if

statement. The edges of the graph are each labeled and tagged by a guarded command. The

guard states the conditions under which that particular transition may be taken. The state-

ment part of the guarded command may either be null or an assignment. These are the only

statments left after the control flow of the program has been reduced to a graph. Figure 5.1

shows an if statement and its graph. The edges a and b in figure 5.1 represent the then and

else part of the if statement, respectively. Both have a source vertex at 1 and a sink vertex

at m. This approach tends to strip away most of the syntactic aspects of the language leav-

ing only the semantic core of the language behind.

In Manna and Pnueli's model of a concurrent program P with ra parallel processes

P: Y":-" g(z'); Pl II ... IIP,_

is represented in this system by a number of these graphs, one for each process in the pro-

gram[83,84]. Each process graph has a unique initial vertex. A concurrent process graph

may or may not have a termination vertex, reflecting the fact that many concurrent
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if' c(y) then S1 else $2

c(_)-[Sll

-,c(_)- [s2]

b

Figure 5.1. if graph.
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programs have continuously operating processes.

A state of a concurrent program is of the form:

sffi(x';_)

where )_ _ (XI, ... , X,m} is a vector of the current values held by the location counters of each

Ii
process lr and _ is a vector of the current values of all the local program variables _/. Each

element in _ points to the next instruction to be executed in its process(83]. Program execu-

tion is modeled by an infinite sequence of states #, as for sequential programs.

Proofs of simple sequential programs in a temporal proof system proceed by assuming

that initially program control is at the initial vertex (a vertex of in-degree 0) and then for-

really showing that eventually the last vertex must be reached with a certain predicate hold-

ing. Sequential program proofs are either partial correctness proofs or total correctness

proofs. In a partial correctness proof, it must be demonstrated that if a program starts at

the initial vertex and a correct initial state, that if the last vertex is reached a certain predi-

cate will hold. Partial correctness proofs do not require a proof that the last vertex will ever

be reached, just that a certain condition will be true if that occurs. In a total correctness

proof, termination must be proved as wel]I41,45 ].

These kinds of proof may not apply in concurrent programs because frequently con-

current programs are continous and contain no terminal vertices. Instead concurrent proofs

are concerned with safety (invarianceJ and liveness (eventualityJ properties[68,82,84,94].

Safety properties describe what states are permissible during concurrent program execu-

tion. In this way they insure that _nothing bad will ever happen'J68]. Partial correctness is

one kind of safety property. Others include mutual exclusion and freedom from deadlock[84].
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These propertiesmay be specifiedby a predicatethat must hold for each transitionin a pro-

gram. For thisreasonthey are often calledinvarianceproperties.

Liveness propertiesstate that certainthingsmust occur[68I. That is,that once a certain

state has been reached in a computation, that eventuallysome other statewillhold. Total

correctnessis one example of a livenessproperty in that once the initialstate holds,total

correctnessdemands that the term£nation vertex must eventually be reached and a certain

predicate must hold. Other livenesspropertiesof concurrent programs include the accessi-

blityof criticalsections,responsivenessand liveness[84].

The notion of being _at a vertex" may be made more formal by introducing location

variables.A locationvariablecan point to a locationon a graph {or in a program) and allows

a conciseexpressionofwhere the controlisin a given program. For example, the expression

_at I" says that controlisat the firstvertex of the ifstatement in figure5.1. Location vari-

ablescan furtherbe used to expresscontrolflowwith directreferenceto program textrather

than graphs, as we have done below.

Once a program graph has been drawn, axioms can be written to express the effectof

each edge {or transition)in the graph. These axioms are calledtransitionaxioms and reflect

exactly the effectof taking a transitionin the graph. In thisway, they provide a formal

specificationof the programming language.

For example, the Pascal ifstatement has the transitionaxioms:

F.: [ at l A c{y} A Y---_7D o[ at m A y=F{_}I

F6: [at IA -_c{_}A Y-=_7D o[ at m A ll=G {_}1

{assuming that S1 is_/:-_ F{_) and $2 isy :-- G(_'}}
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Each transitionaxiom has a name that relatesit to an edge oi_the graph to which it

refers.Transition axioms statethat ifcontrolisat a certainvertex of the graph, and certain

conditions hold, that eventuallycontrolwillbe at another vertex with another set of condi-

tionsholding.

In the example above, axiom F6 statesthat ifcontrolisat labelland c(_')holds and _-is

equal to some setof globalvariable__, then sometime controlwillpass to labelm and _-will

have been changed accordingto functionF. The meaning of axiom Fb issimilar.

• m

The use of globalvariablesin the transitionaxioms (such as s in the axioms above) isa

standard trickthat makes iteasierto deal with the factthat t,,_,l.... ;._h1°°,.h.... _,,,.,;,..,,,.

state transitions.Because of thischange over time, itisnot meaningful to speak in terms of

:_ f_y).In a temporal proof system, for a given state the y on the one sideof the assign-

ment must have the same value as the y"on the other side. An assignment of thissort only

makes sense iff isan identityfunction.Global variablesare used to "freeze_ the valuesof y"

in one state to make the assignment meaningful.

In general,both in this short introductionand in the temporal logicspecificationfor

mediators that follows,alllocalprogram variablenames willstartwith a _y_. Global vari-

ables willstart with an _x_. Auxiliaryglobal variables(as in the axioms above) willstart

with a _u_.

The axioms presented in this introduction are so-called weak tran.sitionazioms[80]

because they use the sometimes operator o. For sequentialprograms, stronger axioms could

be written using the next operator o.

I
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All. edges in a graph, or statements in a language, can be formally axiomatized in this

manner. Figure 5.2 shows a generalized graph of a statement transition.

The program part of a temporal proof system is used to define the semantics of a partic-

ular language. This usually includes giving templates for constructing graphs from the

language's control abstractions. It also includes defining the semantics of a statement that

could label the command part of th_ guarded commands on the graph edges. An example of

a complete language specified this way can be seen in[63]. This thesis presents a specification

of a portion of a language using textual representations in place of graphs.

Once such a specification has been completed, it can be used as part of a temporal proof

system to verify programs. In general, to prove a safety property of a concurrent program of

the form

we show that:

P: v":---- g(_'); P, l{.-. IIP.

_(_)D _

where _oisthe preconditionof the program and _ban invariant. In order to prove thisinvari-

ant, it is necessary to show that
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Figure 5.2. Generalized graph.
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• the assertion_ istruein the initialstateof the program:

e.g.:_(Vmed)D

• the assertion_ remains trueforallpossibletransitions.

e.g.:forevery transitionin P, ifthe assertion

istrue beforethe transition,itremains true afterwards.

This proof rule is formalized in [83] Where it is called the Initialized Invariance Rule (IINV):

[_,70̂ Z= g{;}lD¢
P leads from _ to

Liveness properties may be proved using the Eventuality Rule {EVNT) formailized

in[83]. In this rule _o and _bare again functions of the program state (_o(_;_); ¢(_;_)) and P_ is

one process of program P:

A: P leads from _o to _oV¢

B: Pk leads from _o to _b

c: _ D 0{¢ v Enable_{e_))

The propositionsA,B and C that allow us to establishthe conclusionare fairlystraightfor-

ward. PropositionA statesthat the transitionsof P eithermust maintain the truth of _ or

establish_. PropositionB requiresus to show that a transitionby one process Pk goes from

a state satisfying_o to one satisfying¢. The finalpropositionC requiresus to show that if

we are in a statesatisfying_o,that eventuallyeither¢ willbe true,or a transitionof Pk will

be enabled.

The EVNT rulealsocan be used to establishlivenesspropertiesof the form:

_oDo¢.

I
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These two proof rules (IINV and EVNT) areessential to the proof of the sample con-

°

current program that calculates the Greatest Common Denominator (GCD) that is presented

in[83] (figure 5.3). The sample proof that follows is taken from that paper and has been

altered only slightly to add additional explanation where needed.

The GCD program is meant to terminate with the correct greatest common denomina-

tor in variable 91" It requires a tota_ correctness proof of the theorem:

[at (lo,mo) A (91,92) = (xl,z=)] _ O[at (12,m2) A 91 = gcd(zl,z2)]

The proof of theorem a can be spilt into a proof of a safety (invariance) property and a proof

of termination (a liveness property).

The invariant we must prove is:

(Lemma A) _[gcd(yl,y2) -- gcd(=l,z2) ]

To prove lemma A:

•A1. Show gcd(y_,y2) -- gcd(z1,z2) initially,

A2. Show gcd(yl,y2 ) = gcd(zl,z2) remains true
over all transitions in P.

Since initially
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(91,92):= C=,,z2)
/0: if 9_ > 92 then 91 :-- 91 - 92 m0: if 91 < 92 then 92 := 92 - 9_

11: if 91 _ 92 then go to l 0 rot: if 91 _ 92 then go to m 0

12: halt m2: halt

-PI- -P2-

Figure 5.3. Distributed Greatest Common Denominator
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the first proposition is obviously true. It is easy to show that the second proposition holds

over all the transitions of P as well, so we deduce that the invariant in lemma A holds.

Manna and Pnueli prove a second lemma (lemma B) in[83] to help prove termination:

Lemma B:

[at :o,,A at ,,,,o,,a;(v,,v,)> oA (_,,,y,)_<n+l A _,,_ _',1
Olat1o,l Aat too,' A (l,,Yl) > 0 A (Yi,Y,)_ n)]

The notation at 1o,1 is used as an abbreviation for at 1o V at li, and the notation (Yt,Y2) > 0

means (y,)> 0 A (/lyi)> O.

Proof of lemma B:

First,itisusefulto definea predicate:

_(y_,12,n): at 10aA at _0,_A (_,,Y2)> 0 ^ (_ + Y2<--n).

So lemma B is:

The proof can be splitintotwo cases:

B1. [Io(yi,ii,n+!)A (It,> yi)}D o_o(i,,lll,n).

82. [_(_,i,,,,,+l)A (_, < y_)l_ <>_(y,,_,,,n).

To prove BI Manna and Pnueli [831 note that by the rules of propositional reasoning:

1. _(y,,_,n+l) _ (at t0 v at I,).

The first case to consider is when process PI is st 10. Let:

_': _(y,,_2,n+l) A (y_ > Y2)̂ at I0
_': _(_,y2,n)

Propositions _o' and _b_ satisfy the premise of the EVNT rule with Pt -- PI"
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First consider proposition A of the EVNT rule. This states that every transition in P

must lead from _d to _d V _b_. If we look at the transitions of P2, we notice that only the tran-

sition m 0 ---* m 1 and the transitions from rn I are relevant. If Yl > t/2 when the transition m 0

--* m 1 occurs, the value of _* does not change. Since only the transitions out of rn I to m 0 is

possible if lIy I > /Iy2, and this transition does not affect the local variables, they also leave

_oI invariant. This establishes proposi, fion A of EVNT.

In the process P_, only the transition I0 -* 11 is enabled. The effect of this transition is

to replace (Yt,Y2) by (Vt - y2, Y2)" If before this transition Yl + Y2 --_ n + 1 and (Yt,Y2) > 0,

then by simple arithmetic, O_ will hold after the transition. This establishes proposition B of

EVNT with Pk -- Pt"

Since by _d, the transition from I0 is enabled, proposition C is immediately true. Since

we have demonstrated all three conditions of the EVNT rule we may conclude that _ D o_¢,

that is:

2. [_(_,,y_,n+t)^ (y, > y,) ^ at 101_ o_(_,_,n).

The next subcase of B1 is where Pt is at l 1. Again we define two predicates:

¢': _(y,,y_,n+t) ^ (y, > _) ^ at h
O# = _d: to(yt,y2,n+l ) A (y-_ > Y2) A at l0

We can show (as is the case above) that _e and _/_satisfythe three conditionsof the EVNT

rule,so that _l _ o_pli.e.:

3.[_(y,,y_,n+t)^ (y,> v_)̂ att,]_ o[_(y,,y_,n+1)^ (y,> y_)̂ at10l

From here the proof ofcaseB1 proceeds:
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I

I
4. [_o(yl,y2,n_-I)A (_/i> Y2)A at It]D °_°(Yl,Y2,n)

...by 2, 3 and o Concatenation rule[83]

5.[_(y_,_,n+1)^ (y_> Y2)]_ o_(y_,y_,n)
...by 1,2,4 and propositionalreasoning

I This concludes a proof of case B 1.

I
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I

The proof of case B2 issymetricalto case B1.

and B2, we may conclude that lemm'_ B istrue.

Because we have proved both cases B1

Lemma A and lemma B provide a fou.ndationto prove the originaltheorem. Most of

the steps in the proof requirenothing more complex than propositionalcalculus.The proof

of termination requires the natural number induction rule IND presented above.

Theorem proof:

7._(yl,y_,n+1)_ [(y_- _)v o_(yl,y_,n)]

9."-_(y,y2,0)

I0._(y,y_,0)_ o(y_= y_)

i 11._(y_,y_,n)_ o(y_= y_)
12.3n.@(yl,y2,n)_ o(yl"" Y2)

I 13.

... Lemma B

... by propositional reasoning

... by temporal and propositional

reasoning

...by propositionalreasoning

and the factthat the conjunction

(yl_>O) A (Y2_>O) A (yl+y, ub2 _ O)

is not possible.

... by propositional reasoning

... by 8, 10 and IND

... by 3 insertion rule[83]

[at(lo,,.o)̂ (y_,v_)= (=,,._)> o]_ :_._(_1,_,,n)
... by taking n -- z_ + z z > 0

I Now, assuming that _ _ _ for all the possible transitions it is possible to show that:

I

I

14. (It,= Y_)D O[atC/2,m_)A (y_= y_)]

Using 12, 13, 14 and the o Concatenation rule[83]resultsin:
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15. [atCl0,-_0)^ (_,,y2)= C=.=2)> 01_ OEatCl2,._2)^ Cy,=y_)]

This proposition together with lemma A and the temporal rule that says that

o(w I A w2) _ (o w I A o_ 2) gives:

[at (10,m0) A (Y,,Y2) = (=,,=2)] _ ¢[at (t,,m,) A y,-- god(=,,=2)]

Which is the theorem we wanted to prove.

It is interesting to notice that, although programs in temporal logic can be represented

graphically, it is quite possible to prove theorems about programs without actually having to

draw a graph. Manna and Pnueli rely on a labeled textual representation of the program in

their proof of GCD. Actually drawing a graph of this program would not have made the

proof any different.

5.3. A. Formal Specification

Mediators are formally specified by describing the sequence control of language con-

structs and by giving the enabling conditions and state transformations of operations in the

language. Temporal logic axiom schemas are used to specify some constructs in the language

that share a common control abstraction. These serve as templates for all transitions having

the corresponding flow of control. The actual axioms for specific operations are obtained by

filling in the placeholders in these schemas, namely the enabling condition and the state

transformation. Other language constructs that have a unique control abstraction are

specified directly by temporal logic axioms.

We use Manna and Pnueli's temporal language [84]. Their language is a first-order

language over a fixed domain and includes four temporal operators : However, we do not use

their convention of explicitly specifying the values of all variables in the axioms. Instead, we
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includeonly variableswhose valueschange during the transition.

The current state of a mediated object is modeled as a tuple: _. -_

< ymed'-"--",yproc,yob"-'_,_,p,mp..ptr,_'>. Program variablesare partitionedinto three sets:local

variablesof the mediator (yme--_),localvariablesand parameters of objectprocedures (_pr-'_

and encapsulated data of the object(yobj).ymed and ypro-'-'_are furtherpartitionedintosetsof

variableslocalto individualprocedures.Thus ymedf (yproc_)refersto the variablei (j)inthe

mediator (object)procedure P (Q).The notationisoverloaded by using the subscriptsval,v-r

and localto referto value parameters, value-resultparameters and localvariablesof a pro-

cedure respectively.

i
The location variable8 x i point to locations Ii within the mediator and keep track of the

mediator's multiple threads of control. The ser.-icc=!ocationvariablesp mark the locations

of activerequestsin the object.These variablespoint to labelswithin objectprocedures.The

location variable sp_Ftrisused solelyforthe initializationand termination of the mediator

and points to locationsin the baitand term blocks.The specialvalue X isused to denote a

nullvalue for locationand service-locationvariables.The vector T records the statusof ser-

vicerequestsin the mediator. Each pendlng requesthas a corresponding element _ ,where k

isthe requestkey, that takes the values:

req -- the servicehas been requested,but not yet recognizedby the mediator;

pre -- the mediator has recognizedthe request,but ithas not yet startedexecution;

active -- the mediator has startedexecutionof the request,but ithas not terminated;

term

post

mu

execution has terminated, but the mediator has not recognized termination;

the mediator has recognized termination, the request has not yet been released;

there is no request pending for the key value k.
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We use the notation STATUS(id ) to refer to i_, the status of the request with key "id"

As the actualnumber of requestsand activeprocessesisvariable,the vectors_ and a"are

considered to be infinitevectorsindexed by the unique servicerequestkey.

The startstateof the mediator has allthe program variablesundefined,allthe location

and service-locationvariableswith the nullvalue k, allstatusvariableswith the null value

mu, and sp..ptrpointingto the startlocationof the initializationblock.

In order to make our axioms clearer_we definea new temporal operator oM (Next state

of the mediator). Manna and Pnueli use the sometime operator "o" to reason about the next

stateof a particularprocess.However, thisisnot strong enough for our purposes.The media-

tor maintains multiplethreads of controlwhich are interleavedonly during the guard evalua-

tion process. Once an open guard isselectedand fired,the statements in itsguarded listare

executed consecutivelyuntilthisthread ofcontroleitherterminates or reaches the next guard

evaluation point. To enforcethe consecutive{non-interleaved)execution of a block of state-

ments in the mediatorywe need to be able to talk about the next stateof the mediator. For

this reason the new temporal operator o_#w is defined to mean that w is true in the state

resultingfrom the very next transitiontaken by the mediator as opposed to transitionstaken

by concurrently executingserviceroutines.This can be written in terms of the state of the

mediator and the basictemporal logicoperatorsas:

where _ and _ are globalconstants used to talk about the values of program and location

variablesin a previousstate.
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We use the notation _ffi_o[w;ffim] to denote that vector : has the value of vector _ with

the value of the itA element replaced by m" We use the notation at I to mean that some ele-

ment _ri of _ is equal to label l.

5.3.1. Modeling the Mediator's Control Abstraction

Body and cycle are the two la/iguageconstructsthat explicitlyalterthe flow of control

in a program. We describethe effectof theseconstructson program labelingthrough the use

of textualschemas (seefigure5.4).We then formally specifythe sequence control definedby

theseconstructsby givingtemporal logicaxiom schemas.

When a medlated object is instantiated, the mediator begins executing its initialization

1-1_ _!- t-e__-e_oio¢_ Lm_ ... end ]nit). This is a simple sequential program on the mediators local data

I

I

I

I

I

I _bl 0 : init any key-id in key:

init-body l..: cyele

l_b: end init guard 1 ---* l%: 8trot l

I body Ot
i0 : cycle

//

|ertn •

0 "

//
n

l0 : cycle n

end body
term

term-body
end term

i n •

l,:

0

9uard t .-_ l% : stmtt

until c ( ymed );

Figure 5.4. Textual Schemas for the labeling of the body and cycle constructs.

I
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that can be modeled quiteconventionally.The termination of the initializationblock creates

the initialstatefor executionof the mediator body. The significantchange instate when the

initializationblock terminates is that ; takes on an initialconfigurationas defined by the

parallelguarded commands in the body. The initializationaxiom expressesthistransforma-

tion. In the initializationaxiom, and in the termination axiom that follows,the labelsrefer

to labelsin figure5.4.

(i)_iti_li.atio.:{(,p__=l_")D oM[(,p-p_r=X)A (Vi)(1_<i<_nD _=l_)]

The mediator body may also terminate ifallthe parallelguarded commands within it

terminate. In thiscase,a termination block (term ...end term) willexecute. The termina-

tionaxiom describesthe transformation from the mediator body's multiplethread of control

representedby _ to the simple sequentialcontrolflowof the terminationblock.

(2)Termination: [(Vi)(l<__i<_nD (_r_=l_))]D oM[(,p--ptr=-l_''')A (Vi)(l<__i_<nD (_'_=k))]

The axioms for the executionof the terminationblock are familiarand conventional.

The flow of controldefinedby cycle ismore complicated and isspecifiedin the form of

a parameterized axiom schema. An axiom schema serves as a template for a group of

language constructs thatshare a similarflow of control. The rule for a specificconstructis

builtfrom a schema by substitutingthe preconditionparameter (pre)and the postcondition

parameter (post)with the appropriatevalues.

Schema I givesa template for the guard evaluationsemantics. We defineschema 1 for

a transitionfrom the cycle statement labelI. to a statement listlabelI,_which isassociated

with a particularguard of that cycle statement. This schema isused to describehow a sin-
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gle guard isnon-deterrninisticailyselectedfrom the set of all open guards in the mediator

and isfired.A guard is open ifand only ifsome locationvariablei points to a cycle state-

ment immediately containing the guard and ifthe guard's condition is true in the current

state. Schema 1 specifiesweak fairnessinguard evaluation,that isifthe guard transitionis

infinitelyoften enabled,the transitionwilleventuallybe taken. The complete specificationof

the cycle construct alsomust include a specificationof the termination condltion,which is

presented below.

Schema 1 :Transitionscorrespondingto guard evaluationfor a cycle.

I
|

ao[at I. ^ pre]

ot_,i. ^(_=i)^p..̂o_t(_-iot_=_._j)^po,_l]
[Ifthe transitionisenabled infinitelyoften in the future,then itwill

eventuallybe taken.I

I

I

I
i

I
|

The guard evaluationprocessalsoincludesreceivingnew requests. A clientmay send a

request to the mediator at any time during the mediator's activity.Reception of a request

from a clientwith the key i causes STATUS(t_ -----mu to become STATUS(i) _ pre, and

clients_sjob descriptorto become availableto the mediator. Because it is undesirableto

have eitherthe STATUS vector or the set of job descriptorsin ymed change independently

during mediator computations, the mediator may receiverequestsonly under the same cir-

cumstances that itmay evaluate guards.

This isspecifiedby an axiom of the followingform appliedt° every cycle construct in

i the program:

(3) [at 1. A (3i: i in key: a request from i has arrived A STATUS(i) = mu A i = u)]

o [at11 A STATUS{u) = pre]

I
This axiom allows for a delay in receivingrequestsand limitstheirreceptionto times when



82

guards may be evaluated.

The terminationof serviceoperationscreatesa similarsituation.The serviceoperation,

once initiatedexecutesindependently of the mediator (seesection5.3.3).When an operation

executed on behalf of clienti reaches its laststatement and terminates,STATUS(/} must

change from activeto term. Again, to keep the mediator state constant during mediator

computatations, we must constrain•when thischange may occur. There are essentiallytwo

cases to consider. Serviceoperations initiatedby an exec command terminate while the

mediator isblocked. These may be handled by the axioms of the exec statement presented

below. Service operations that were initiatedby a spawn terminate independently. The

mediator delaysrecognizingthe termination untila time when guards may be evaluated:

(3a)[atIm A (qi:iin key: pi I_ & STATUS(i) = activeA i-- u)] D

o [at Isub m A STATUS(u} = term]

In this axiom 1. labels a cycle command, l_ is the last statement in service routine P and pi is

a location counter for the service routine executed on client i's behalf. More of the semantics

of the spawn command is given below.

Schema 2 is a stronger axiom that enforces the consecutive execution of statements in

the associated statement list of a guarded command.

I

I
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i
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Schema 2 :Transitionscorresponding to operationsin st-listof cycle.

[at I. A{;=_}Apr_I _ o_[{;=_o[_=_])Apo_I

{If the transition is enabled in the current state, then it will be the

very next transition taken by the mediator./

The construct defined in this paper typically would be embedded in a conventional pro-

tramming language. Additional axiom schemas would be needed to define control statements

!
d
n
|
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in the host language, as per [81,94].

5.3.2. Semantics of operational statements

The previous section described the control abstraction of mediators in terms of temporal

logicaxiom schemas. These serve as templates for specifyingthe semantics of actual opera-

tions and permit the semantics to be expressedin a clear,conciseand easy-to-read fashion.

For those constructsthat fittheseschemas, we present theirsemantics by naming the schema

involved and the values of the placeholders.Other constructsare specifieddirectlywith tem-

poral logic axioms. English interpretationsare used to highlightimportant aspects of the

constructs.

The basic operation statements used in mediators include a skip statement and assign-

ment statements, both of which may be specified in a conventional manner. The control flow

of these statements is encapsulated in Schema 2.

The skip command may be specifiedas:

(4) Construct: Ira: sklp; 11:
Schema used : Schema 2

Parameters: pre: true

post: true

Assignment statements are specified as:

(5)
m J

Construct: 1=: ymed :ffi h(ymed); lu:
Schema used : Schema 2

Parameters: pre: ymed=u
post: ymedfffih(u-')

Local mediator procedure callsmay be specifiedas in [64].In the axiom that follows,

_.a is a vector of actualvaluesfor call-by-valueparameters, s_ isa vectorof actualvalues
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w

for value-result parameters. The parameters passed into local routines will be from vmcd.

We have ignored the possibility of side effects to simplify the axiom somewhat. Side-effects

P
are dealt with in[64]. The label I0 is the first statement in subroutine P. The element L in

the axiom refers to a stack of location variables, with ILl denoting the size of this stack and

top(L) its top element[64]. This allows us to deal with recursive calls and to "remember"

return locations. The variables _ refers to routine P's parameters and local variables.

(Sa) Language Construct: 1.: P (_.a,g._,); 1."

[atI.A {ILl=,) A[-a,..=_,)A_,_,--_)A (ym.#_ A (_--_)]D

o"[(;=_o[4--I_])A (ILl=,4-i)A (top(L)=ln)

-- P -- --p ._ --p

The la, t component of this axiom that refers to elements of _ expresses parameter pass-

ing.

In the following axiom that defines the return of routine P, the label 1P is the last state-

ment of the routine after which the routine will terminate.

Ip _
(6b) [at 1,.P A (top(L)--l,,)A(: L: =s)A (y=,d.=_ A (:A"=_)A (yme<._,=t,,t) ]

OM[(_----_o[#=l_)A (',L',--,--I) A (y=,d=_[%_,=_,])l

D

mp
The terms in this axiom that refer to ymed:_, and _,_,capture the return of value-result

parameters.

5.3.2.1. Mediator Control Statements

Mediator guarded commands are considerably different from the original definition of

guarded commands{32 ]. A mediator guarded command does not abort if none of its guards
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I

I
evMuates as true, rather it delays untilsome guard becomes true (cf.[18]).Some mediator

guards effecta change in requeststatuswhen they fire.The guard evaluationsemantics also

determines the interleavingof statement execution. These characteristicsallow guarded com-

mands to be used to build complex synchronizationschemes that depend on the requests

present and the stateof the mediator. The labelsin the guard evaluationaxioms that follow

correspond to those of the cycle statement in figure5.4.

The semantics of a guard which is a simple Boolean condition c(y,,ed)is given by

Schema I with the parameters having the values:

t']l_ Construct: I. : C(y-'_ed) --!,{

Schema used

Parameters:

: Schema I

pre: c(vmed)

post: true

I Similarly,the semantics of a guard which isa statustestpairedwith a Boolean conditionis:

(8) Construct: lu: req(id);c(y-m-_ed, id) -- 1,:m_

'_ Schema used : Schema 1
a.

Parameters: pre: (STATUS(id) = req) cand c(_,,,ed,id)

I

I
!

post: (STATUS(id) = pre)

For a term guard thisis:

(8a) Construct: I. : term(id);c(v-m-_ed, id) --*l,:

Schen_s used : Schema 1

Parameters: pre: (STATUS(Id) = term) c_md c(vme4id)

post. (STATUS(Id)= post)

Guarded commands prefixedby a key selector(any key_jd in key:) may be handled by

adding a quantifierto the enabling condition,and binding the keyjd to an enabling value.
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(9) Construct: Ira:any key-id in key: req(key-id);c(ymcd,key-id) --_1,:

(Vk: k in'key: _o [(at 1. A (STATUS(k) =req) cand c(ymed, k) D

o( at 1Aa._.ymed= _ A (STATUS(k) =req) cand c(yrned, k) A

oM((ymed--_o [key_id -- k]) A (STATUS(k) = pre)))]

This axiom describes the same flow of control as in schema 1, e.g. a guard that is infinitely

often enabled will eventuaUy be fired. We.have not used schema 1 here because of the key

binding that occurs in this axiom. A'single guard of the form

req(key-id);c(ymed, key-id)

in a cycle statement that isprefixedby any key_id in key: describesa set of transitions,

one for each value in therange describedby the key fieldof the job descriptor.The axiom is

written so that ifthe guard bound to a particularvalue of k in the range of key isfired,the

mediator variablekey..idisassigned that k on the transitionto the associatedstatement list

[_:

ff the guard contains a term status test, this rule is applied:

(9a) Construct: Ira:any key-id in key: term(key-id);c(ymcd, key-id) --* 1,:

(Vk:k in key:o..o3_[(atI. A (STATUS(k) =term) cand c_, k) O

0( at lA,__(y,ned=_ A (STATUS(k) =term) cand c(ym,d, k) A

o_((y,ned=,--'),[keyid -- k])A (STATUS(k)- post)))]

Quantification is used in this axiom as in axiom (9). The only differencebetween these

axioms isthe statusofthe requestthat willsatisfythe guard.

The otherwise guard alsofitsSchema 1. Itspreconditionisthat the conjunction of all

the other guards (asdefinedabove) inthe same cycle isfalae.The postconditionistree.

Guarded command termination may occur when the finaluntil statement of the cycle

statement is reached. The cycle terminates (passesto label l_)when the exit condition is
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true, and returnsto thestart of the cycle otherwise. Labels in thiscase correspond to those

on the cycle statement in figure5.4. This axiom describesthe termination of a cycle:

Itshould be noted thatevaluatingthe exitconditionmay not have sideeffects.

5.3.3. Mediator Service Statements

Three specialcommands within the mediator (exec, spawn and releMe) allow it to

activate operations on the encapsulated resource and to return the resultsof operations to

clients.None of the other mediator statements directlyaffectthe encapsulated resource.

Exec and spawn both createprocessesto perform serviceoperations on the encapsulated

data. The executionof an exec command causes the mediator to block until that operation

has terminated.

(11) Language construct: 1. : exec(id,P(g..,,g.__)); lu:

Scherr,a used : Schema 2

Parameters: pre: (STATUS(id) = pre)

post: (STATUS(Id) = term)

In addition,we need two axioms to describethe coupled executionof the serviceroutine. In

the firstaxiom (12),which describesa callon the serviceroutine P, the locationvariablexiis

given the temporary value _ to indicatethatthisthread of controlof the mediator isblocked.

Because the exee axiom above requiresthe i_ thread to make the next mediator transition,

id

thisadditionalaxiom enforcesthe blockingof the other threads of control. The symbol p is

a locationvariablefor a process that executesa serviceoperationfor a request with the key

id. Itisset to the initialstatement in the routineP: l_.
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(12)[atI.A (STATUS(id)=pre)] D °{(Pm=l_)A (STATUS(id)=active)A ( i=_)]

The second additionalaxiom (13) describeswhat happens when the execution of the service

routineterminates and returns.

(13)[(pld=ItP)A (fi=/_)]D o[(Iri=!u)A (STATUS(|d)--term)]

In thisaxiom the labelif isthe exit'labelof the serviceroutine. The axiom statesthat once

the finalstatement in the serviceroutinehas been reached,eventuallythe statusof the served

request(STATUS (id))willbecome term, and the mediator willresume execution.

Together these additionalaxioms specifythat the mediator remains blocked until _ri

again points to a program location.They alsocapture the start and termination of the ser-

vice routine (pro).These are analagous to the rules for a simple procedure calland return.

These axioms do not includethe parameter passing aspect of these statements. Instead, we

referthe reader to [64]and to the discussionabove of parameter passing for localmediator

routinecalls.

The axioms to describethe spawn statement are simpler because the mediator does not

wait for terminationwhen a spawn isexecuted:

(14) Language construct: l.: spawn(id,P(_,a,_,..,)); In:

Schema used : Schema 2

Parameters: pre: (STATUS(id) = pre)

post: (pid=I_)A (STATUS(id)=active)

The termination of a spawned servicedoes not directlyaffectthe flowof controlof the media-

for, and for this reason it is not neccessary to add an additionalaxiom like axiom 12 to

describeblocking the mediator. The post conditionin axiom (14)describesthe initiationof a

id
processp to execute a servicefor request id. The label10P isthat of the initialstatement in

!

a

tl

i
,I

II
!1

I

if
I

!
!

l
11

i
!

I
I



I

i

!
!
I
I

I
I
I

I
I
I

i

I
I

I
i
I

I

89

service procedure P.

An additional axiom describes the termination of the service and a change in the status

of the job serviced:

(15) [pid= 1P] D o[STATUS(id)fterm]

The label If is again the last statentent in service routine P. The axiom says that once the

final statement in the service routine is reached, eventually the routine will return and that

the status of request id will become term.

Because the semantics of every statement in the mediator except the cycle statement

requiresthe followingstatement to be executed next, the transitiondescribedin axiom (15)

willonly occur when guards may be evaluated.

In order to use the spawn and exec statement semantics in a mediator verification,we

make the assumption that allserviceroutinesterminate. A complete verificationof a medi-

ated object would requiredemonstrating termination of the serviceroutines using conven-

tionalproof techniques.

The release statement returns the results of service execution to the client. A client

that has requesteda servicefrom the mediator blocksuntilthe mediator _releases"it:

(16) Language construct: 1m : releue(id) ; I_:
Schema used : Schema 2

Parameters: pre: (STATUS(id) ffi term) V (STATUS(id) = post)

post: (STATUS(id) ffi mu) A release.job

We do not present the semantics for the returningof resultparameters to the clientbut use

the term relea_e..jobsto referto them. The semantics for thisfrom the client'spoint of view

is similar to that of procedure calls.
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5.4. A. Sample Verification of a Mediator

Verification of a mediated object consists of two parts. The mediator is shown to

satisfyitssynchronizationand scheduling requirements. This requiresthe assumption that

serviceoperations,once initiated,do terminate.The operations are then verifiedto show that

they provide the specifiedservice. This approach is possiblebecausethe mediator and the

encapsulated resourceoperatein dis_int data spaces.

As an example, we formally specifythe synchronizationrequirements of a reader_writer

mediator and brieflysketchitsproof.The proof relieson program axioms extractedfrom the

solutionusing the rulesgiven in the previous sectionand on a temporal logicproof system (as

in [s4]).

The propertiesofthe mediator that we might wish to verifyare the invariance (safety)

propertiesof partialcorrectnessand mutual exclusionand the eventuality(liveness)proper-

tiesof accessibilityand liveness.The mutual exclusion requirement of the readers-writers

problem isthat accessof the resource to readersand writersbe mutually exclusive.This can

be stated in temporal logicterms as:

(a) o [(reader_count--0)

(_]k:k in key':(STATUS(k) ffiactive)A (job(k).serviceffiread))]

(b) o [9 (3k:k in key: (STATUS(k) = active)A (job(k).serviceffiwrite))

^ (re_der__o_nt>O))].

(c) o [0 < (Nk: k in key: (STATUS(k) = active A job(k), service = write)) <_ 11

The first assertion states that if reader_count --_ O, no reader can be active. This assertion is

proved by showing that reader_count is incremented whenever a new reader is activated and

is decremented whenever an active reader terminates. The second assertion states that no

writer can be active if reader_count is non-zero. This follows trivially from the semantics of
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Init

reader_count :-- 0

end Init

body

any i in key:

h eyrie

req(i); job(i).service -- write -_>

11: eyrie
reader_count -- 0 "-_

laK: exec(i, write (job(i).writeprm));

l,,,m: release(i);

l,l: until true
O

req(i); job(i).service = read - _>

12: reader_count :-- reader_count + I;

l_,n: spawn(i, read (job(i). readprm));

1,: until false
//
any i in key:

m: eyrie

term(i); job(i).service ---- read -_

mr: reader_count := reader_count - 1;

mr.i.u,: release(i);

m,: until false

It:mr: end body

Figure 5.5. Labeled Reader_Writer Mediator.
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the guard controlling the activation of a writer. Mutual exclusion of these operations is thus

enforced by the judicious use of the counter reader_count. The third assertion states that

there is never more that one write operation active at a time.

We will now prove the first assertion (a) to demonstrate how the temporal logic

specification may be used to verify a mediator. The proof will follow the framework

developed by Manna and Pnueli in[82]. Their method is a generalization of the intermittent

assertion method[85]. In order to prove a program invariant, such as (a) above, it is neces-
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sary to show that

• the assertion _i___sstrue in the initial state of the program:
e.g.: _(ymed) D

the assertion _ remains true for all possible mediator transitions.

e.g.: for every transition in the mediator, if the assertion _b

is true before the transition, it remains true afterwards.

Ifthese can be demonstrated, then itcan be inferredthat

g

Before we begin proving assertion (a), it is useful to demonstrate that certain parts of

the mediator define critical sections that can be treated as a whole in our proof. These are:

L_/ " tI1,m,lr,l,m J

Using this notation at L means

II
I

II

II

II
g

L_ = {Lj,l_,} M-- ' t I

t m t _lnr,de_ !"

at Iu V at Ir.i_.m. I

Since L and L2 both are locations of fx, it is trivially true that

o -.[atL ^ atL=].

Proving these arecriticalsectionsrequiresus to prove the invariant:

(d) O_[(atLVatL=)AatM]

Since this is an invariant, the method we outlined above may be used. That is we must show:

(dl) assertion d is true initially

(d2) assertion d remains true for all possible transitions

The initial state of the mediator is:

-----{1, m}, reader_count = 0, (Vk: k in key: STATUS(k) -- mu)

... prove by simple sequential proof of the [nit block and axiom (1).

I
I

a

I
I

I
I
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Since in thisstatecontrolis-_[atL V atL2 V at M], assertion(d)isclearlytrue in thisstate.

We have shown (dl).

Now we need to show that (d) holds for allpossibletransitions.In fact,Manna and

Pnueli point out that only those transitionsthat can affectthe value of an invariantassertion

reallymust be considered[82].In thiscasethose transitionsare:

(i). t-'_; (iv).l,.,_.-., l.;
(_):l, - l...; (v):l_...- l,;
(iii): m-- m,; (vi): m,,_.w,--- m..

To prove that assertion(d)holds,we assume itistrue beforeeach of these transitions,apply

the transitionand demonstrate that assertion(d)stillholds.

Formally given a statement that fitsschema 2, such as transitions(iv - vi),we must

show that:

[(at_, A p,.,A -, [ (at LV at L,)^ at MI) _ (at _ A -, [(atr. v at _.,)A at M1)I

to prove that this holds for transition (iv) we must show that:

[(atl_.s_A "_[(atL V at Ls)A at M]) D (atI%A - [(atL V at L2)A at M])]

The proof that (d) holds for transition (iv):

at l,_,wD at L

at L _ -_at M

at lrll. m _ 0 M at l.t

[at It,o_ A .-I at M]D oM[ at l°t

at l°t A _ at M

[(at L V at Ls) A at M])]

A "_atM]

...definitionof at L

...assertion(c)in precondition

...by axiom (16)

...propositionalreasoning

...by making transition(iv)

Transitions(v)and (vi)can be proved thesame way.

!
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Proving the invariant (d) is maintained in transitions (i-iii) is more difficult. To prove

the invariant holds for transition (ii): it --, I..,¢; we must show that:

[(at 11A -9 [Cat L V at L,) A at M]) D (at ha. A -_ [(at L v at L2)A at MI)I

The dii_culty here is that the precondition: at 11 A -, [ (at L V at L2) A at M] is true indepen-

dent from the value of [at M]. We must consider the two cases:

case 1: at M

case 2: _atM

Let us attempt to prove the invariant (d)on the transition (ii) given case 1:

at M ... given in case 1

at M D at m I V at mr,.. _ ... definition of at M

This introduces two subcases to prove: at m I and at m,_,m:

at m I ... first subcase

at m 1 D o_ at m_,_ ... by axiom (5)

However, if being at "h implies that the very next mediator state must come from the transi-

tion from m I to mT_,w, then it is impossible for us to make transition (ii), hence a contradic-

tion. We must conclude: _ at m 1. The second subcase leads to the same contradiction:

at mr.i.m

at m_ _ o M at m.

and we deduce:

From these two subcases we derive:

... second subcase

... by axiom (z6)

-_ at m_ m.

atm IA-,atmTe,m _atM.

Now we can easily prove the invariant on transition (ii):
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at l, A -_ [(at L V _t L,) at M]
-,arm

at 1..,c

at I._ D at L I

at l._ A "I at M

at l_ A -' [(at L V at L=) A at M])]

This proves the invariant over transition (ii).

...assumed

... by case I proof

... transition (il)

... definition of at L I

... axiom (7) on fl does not affect f2

The same technique can be used for proving

transitions (i) and (iii) preserve the,invariant (d).

From proving the invariance initially (dl) and over these transitions (d2) we can deduce

(d) 0 -_[(atL V at L,)A at M]

The mutual exclusion we have proved here can also be proven using this method for any

segment of code that does not contain a guard evaluation. It is a natural consequence of the

f-_t that initially all the elements of _ point to guard evaluations and that all the transitions

but guard evaluation are governed by the strong temporal operator o M.

The proof of (a) is, once again, an invariance proof. To prove (a) we must show that the

assertion:

[(reader_count) D -I (3k: k in key: (STATUS(k) - active) A (job(k).service ffi read))]

holds initially (al), and holds through all possible transitions of the program (a2).

As we stated in proving (dl), the initial state of the mediator is:

----[1, m I, reader..¢ount---- 0, (Vk: k in key: STATUS(k) ----mu)

Since reader..count --_ 0 and no jobs are active, (al) is trivially true. Here we make a slight

diversion to prove a useful lemma:

(lemma a.1) O [reader_count > O]

This is another invariance property. It is obviously true in the initial state. Since the value
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of reader_count is only changed in two places,we need prove the invariance over only the

transitions(i)l_---,l_,_ and (ii)m I -* mroio,..

The proof for transition(i)isquitesimple. Since statement 12adds to reader_courtS.

[at L_̂ reader_count >__O! D [at l_,,_ ^ reader_count > 0I

by the definition of addition. We have already shown in assertion (d) that if this transition is

enabled,itwillbe taken.

The proof of transition(ii)ismore complicated. We need to show that:

[at mI A reader_count __ 0] D [at mr.,.,. A reader_count _ 0]

This can he broken down into two cases:

(case 1) reader..count _> 0 ;

(case 2) reader_count = O.

The assertionisobviouslytrue for case I,sincesubtractingone from a non-zero number can

not make itnegative. But what of case2? Consider that the only transitionthat can lead to

being at n_ isthe transitionm _ m I.The preconditionforthistransitionisthat for an ithat

isbound at rot:

[at m A STATUS(i) ---_ term A job(i).service ---_ read 1.

After the transition for m --. m_ we have:

[at m 1 A STATUS(i) -_ post A job(1).service -- read].

by axiom (9a). The problem here is that no job(i) can obtain the state STATUS(i) -- term

without previously having been the parameter of an exee statement (exe¢(i,,..)) or a spawn

statement (spawn(i,...)). We will not prove this formally here, but it is a clear result of the

fact that only three of the axioms describing mediators allow the STATUS(i) to become term
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(axioms 3a, 13 and 15), and these describe the results of a service operation (initiated by

spawn or exee) completing.

Since the read operations in our mediator are only initiated by a spawn at label l,p,_.

This means that in order for the transition m _ m I to be enabled, the transition L_--* l,p,_

1, must have occurred. Since this transition only increments reader.count, we know that:

[at m t A reader_count --'_0]. From this argument we can deduce (lemma a.1).

As a second useful lemma, we show that reader_count is equal to the number of read

jobs that are either STATUS ---- active or STATUS ---- term whenever a guard evaluation

occurs. That is:

(a.lemma2) a[(at I V at 1,) A at m] D reade,.._ount =

(INk: k in key: (STATUS(k) ---- active V STATUS(k) ffi term)

A job(k), service ffi read)

Plense note that

[reader_count --'_ (Nk: k in keT:
(STATUS(k) ----activeV STATUS(k) ----term) A job(k),service-- read)]

implies assertion (a).

Lemma a.2 is obviously true in the initial state. We will prove lemma a.2 over all tran-

sitions by showing that if we start in a state [(at I V at 11) A at m] that any deterministic

path of transitions that return us to such a state maintains the invariant. In the semantics of

the mediator, a chain of transitions each of which is defined with the o M operator forms a

deterministic path. The mediator program consists of three such deterministic paths:

(pl,): 1_ --* l,,i._ -* I% ", 1;

(pl): _ -- l,p,,,,, -- I. -- 1;
(pro): mI -> m.lo_, o ->mo-> m.
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We need to show thatif:

reader_count

(Nk: k in key: (STATUS(k) --'--activeV STATUS(k) ----term) A job(k),service----read)

in a state in which

[(atIV at I,)A at m]

and we transitionout of that stateritwillstillbe truewhen we return to such a state. Since

pl,,pl and pm defineallsuch transitions,we need to show that the transitions

(i) 11_ pl,;

(ii) l "* pl;

(iii) m -* pm

maintain the assertion. Lemma a.2 is, in effect, a loop invariant.

by the SinglePath Rule describedin [82].

This method is supported

Lemma a.2 is trivially true over path pl I (transition i) as no element in that path alters

the value of reader_count or changes the status of any read request.

We start transition (ii) with:

[(at I) A (reader_count ffi (Nk: k in key: (STATUS(k) ffi active V STATUS(k) -- term)

A job(k), service= read))]

Since the transition described by pl increments reader_count at L_, activates one read opera-

tion at 1_, n and has no effect on any other job, the invaxiant holds at the end of pl (return to

at 0. The invariant holds over transition (ii).

The proof of transition (iii) is similar. We start with:

[(at m) A (reader_count = (Nk: k in key: (STATUS(k) = active V STATUS(k) -- term)
A job(k), service -- read))]

Since we assume we can fire the guard at m, it must be true that:
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(_]k: k in key: (STATUS(k) =term) A job(k), service -----read) ... by axiom (9a).

the effect of traversing path pm is to decrement reader_count by one and to remove one read

job with STATUS = term. The path has no other effect, so when we return to m, lemma a.2

still holds.

We have proved that our assertion holds over all possible path transitions from the

state [(at I V at 11) A at m]. We may deduce that lemma a.2 holds.

At this point we return to the proof of a_ertion (a). Rather than actually look at all

possible mediator transitions in provin$ (a2), we may prune set of transitions to only those

that affect elements in assertion (a). Those are transitions that assign to the reader_count

variable and any transition that may change the status of a read request to of from

STATUS(i) ---- active. These first two of these transitions are:

(i) 1_ -- l,p.._; (ii) l_,,,, --* I,.

We can prove the invariant (a) holds for transition (i) using lemma a.l:

[at 1_ A ((reader.count---O)

(3k: k in key: (STATUS(k) = active) A (job(k).service -- read)))] D

[at_,... A ((,,ade,__ount=O)
-_ (:_: k in key: (STATUS(k) -- active) A (job(k).service ffi read)))]

The proof for transition (i):

at Lj A ((reader..countffiO) D

-_ (:1_: k in key: (STATUS(k) = active) A (job(k).service - read)))
... a_umed

reader_count _ 0

at 1_

at l.p._ A reader_count ) 0

... lemma a.1

... assume transition

• axiom (5), addition, lemma a.1

I
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at l,p,_ A "- (reader-count -- O)
... propositional reasoning

at 1,p..,u A (reader_count--O) D
. (3k: k in key: (STATUS(k)ffiactive)^ (job(k).servlce= read))

... (False D x) -- True

The proof of transition (i) feeds directly into the proof of transition (ii), that forms the

critical section L that we proved mutually exclusive with assertion (d). Since above we have

shown that

at l,p.,,u _ reader_count _ O,

and since nothing in the spawn statement affects the value of reader_count, the implication

(reader_count'---O) D " (3k: k in key: (STATUS(k) --"active) A (job(k).service - read))

remains trivially true.

We need to prove another transition in order to show the invariance of assertion (a).

Since statement m I decrements reader_count we need to look at the transition (iii) r._

m,.,. m. Since statement rnr._,,, . is not defined on a read job with STATUS -= active, there is

no reason to consider the transition from that label. It is easier to see that the assertion

holds for transition (iii) if we back up and consider that statement m 1 can only be reached by

firing the guard at m. Since we assume we can fire the guard at m, it must be true that:

(3k: k in key: (STATUS(k) ---- term) A job(k), service ---_ read) ... by axiom (ga).

This means that:

(Nk: k in key: STATUS(k) ---- term A job(k), service _- read)) __ 1

And furthermore because of lemma a.2 we can see that if we are about to the guard at m is

open for a transition to m_ we know that in this case:
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reader_count----1 D -_(Bk:k in key: (STATUS(k) = active)A (job(k).service= read)).

Firingthe guard makes:

at m, A reader_count ----I A -',(_: k in key: (STATUS(k) = active)

A (job(k).service--read)).

After transition (iii):

at m,,i.m A reader_count;= 0 A ",(3k:k in key: (STATUS(k) = active)

A (job(k).service= read)).

which certainlysatisfiesinvariant(a).

The case of transition(ifi):

at m_ A reader_count > I

is less interesting. After the transition we get:

at ram.w A reader_count >_ I

where assertion (a) holds trivially.

Now we have demonstrated that (a) holds in the initial state and that it continues to

hold for all transitions in the mediator, hence we have proven that:

(a) _ [(._d.__ount--0) D

-.(3k:k in key: (STATUS(k) = active)A (job(k).service= read))].

The proof of assertion(b) that statesmutual exclusionfor write operations follows a

similaroutline. Itisfairlyeasy to show that the deterministicpath that can activatea write

operation (plI above) may only be entered with reader._o,mt -- 0. The proof of (c)can be

derived directlyfrom the factthat the exee statement isspecifiedto block any further transi-

tionsinthe mediator untilthe operationthat itinitiatedterminates.

I
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The second property that must be considered in a mediator proof is that of accessibility

(a livenessproperty). In other words, ifa servicerequest for a read or a write has been

received,then servicefor that particularrequest (i.e.the one bearing that specifickey-

identifier)should eventuallybe initiated.Formally,

(e) (Vk: k in key: ((STATUS(k) = req)A (job(k).service= write))

o (atl.m A (key..id= k)))

(f) (Vk: k in key: ((STATUS(k) - req)A (job(k).service--read))

o (atI,¢,,_A (key..id-----k)))

where l,_.cand I_,,,_are the labelsof the exee and spawn statements in figure5.5. The proof

of these assertionsrequiresthe assumption that serviceoperationsalways terminate and that

they do not change the value of reader_count. It is then a standard exerciseto apply the

proof system to the program axioms to prove these assertions.Manna and Pnueli'sEVNT

rule[82] is essential to this proof.

5.5. Final Remarks

Once itwas recognizedthat mediators did not exactlyfitManna and Pnueli'ssimplified

model of s concurrent language[84],designinga model for mediators and writing a formal

specificationproved to be a stralght-forwardtask. A number of differentnotationswere con-

sidered,including Manna and Pnueli's graphical one. Schemas were developed mainly to

allow us to present thesemantics in a limitedspace{39].

Doing the formal specificationprovided a lot of information about the design of the

mediated object,and in some casesled to changes in the design. For example, an earlierver-

sion of the mediator construct did not include exit conditions in the cycle statement.

Instead, a break statement allowed an unconditional exit to the next statement after the
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cycle that contained it. The break statement was rejectedwhen we recognized that for-

reallyspecifyingsuch a constructin a directmanner was extremely di_cult.

The eliminationof the break statement in favor of an exitconditionadded to the cycle

statement led to other changes. An earlierversionof the design included two kinds of guard

commands, a cycle statement that defineda looping guarded command, and a when state-

ment that defineda _one time only._ guarded command. Once an exitconditionwas added to

the cycle statement, the when statement became redundant. It was merely equivalentto a

cycle statement with an exitconditionof true.

Temporal logic proved to be a very valuable tool in developing the mediated object.

The factthat we could develop a formalspecificationallowsus to have more confidencein the

design,even without the practicalexperienceof implementing and using the construct. The

existenceof an easy to use formal descriptionshould be usefulto futurelmplementors as an

unambiguous statement of the design. Itshould alsobe usefulto any futureusers who may

wish to verifysynchronizationcharacteristicsof the mediated objectsthey write.
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CHAPTER 8.

SOMME COMMENTS ON IMPLEMENTATION

Mediated objects have not yet been implemented_ but we expect that implementing

mediators should not presentsignificantproblems. Many of the components of the construct

have been implemented in other languages. The main problem willbe fittingthe components

together inan ei_cientmanner.

There are severalpossibleimplementations for the mediator callmechanism. For exam-

ple remote procedure callscould be applied [89]. A remote procedure callcan be imple-

mented as an exchange of messages between the clientand mediator. The clientsends a

request message containlng the name of the operation requested,itsprocess identifierand

parameters. It then waits to receive a reply, which will arrive when the mediator has

releasedthe operation. The mediator receivesa requestand createsa job descriptor.This is

placed in the llstof pending requests,becoming availableforstatustests.The job descriptor

isdestroyed when the mediator releasesa job and returnsresultsto the client.In the percep-

tion of the clientprocess,a remote procedure callappears to be no differentthan a simple

localprocedure call.Mediator callscould alsobe implemented likeAda rendezvous[28}which

are very similarto remote procedure callsin intent.

The exec and spawn statements requiresystem support to initiateservicefor requests.

This support may includecreating a new system process and scheduling itsexecution on a

freeprocessor. Ramamritham and Keller'sSentinelProcessesimplement statements for cou-

pled and uncoupled execution of this kind{98I. Their implementation could not be used

directlyas they operatewith differentparameters than our exec and spawn commands.
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The evaluation of parallel guards appears to be a significant problem at first glance.

The apparent distributed evaluation of guards from a number of parallel guarded commands

does not immediately fit a familiar paradigm, and it appears that evaluating and reevaluating

guards could be extremely inefficient.

The mediator body can be implemented in a direct, and somewhat simple-minded, way

using a single process and a table bf _active" guards. The active guard table would contain

those guards corresponding to an element of the location vector _ as described in the previous

chapter, e.g. those guards at a control point. This essentially defines a jump table that can

be used whenever the active flow of control reaches a guard evaluation. The table would need

to be updated with each succeemful guard evaluation.

Guard evaluation does not need to be inordinately expensive. The special application of

guards in mediators makes it possible to limit the number of guard reevaluations. After a

guard evaluation, only certain events may change the value of the guards: the arrival of a

new request, the termination of an active request or the execution of mediator statements

after a guard has fired. If all guards have evaluated aa false, there is no need to reevaluate

the guards until either new requests arrive, or active requests termidate.

It is ahm poemible to limit the number of guards considered during evaluation. The

evaluation of guards containing status tests can be constrained in two ways. Status tests

need only be evaluated for clients that are present in the mediators list of pending requests,

since the value of any other status guard is automatically fa/ae. Application of fairness limits

the evaluation of status tests for clients as well. These can be evaluated in the order of their

arrival until an enabling guard is found.

I
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The evaluation of pure Boolean guards cannot be limited this way. Fortunately, these

are likely go be few in number. These also present a fairness problem. It is easy to apply a

fair ordering criteria for requests based on time of arrival, but such criteria can not be

applied to simple Boolean guards that may, without firing, become true and [alae repeatedly.

Implementing weak fairness may require implementing event queues or eount_ so that these

guards may be ordered.

The design ot mediators is best suited to a system made up of distributed multiproces-

sot nodes, with one or several mediated objects inat_iled at each node. Implementing media-

tors on such a system should be straightforward. Implementation or"mediators on a unipro-

cesaor is Map possible using multiprogramming, but would probably be very inefllcient. Medi-

a_rs implemented on a distributed network of uniprocessors could work quite well. This

could be accomplL_hed by multiprogramming the mediated object on one node, or by allowing

the mediator to exist on one node, and execute operations at remote nodes. The limiting t'ac-

for would be the amount of object data that would need to be sent to the remote service

nodes.
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CHAPTER T.

CONCLUSION

This paper has presented a preliminary proposal for a new language construct, the

mediated object, that may serve as a useful tool in programming distributed embedded sys-

tems. Mediators allow directprogramming ofsynchronizationand scheduling and are able to

directlyuse both information about a pending requestand the present synchronizationstate.

This makes mediated objectsa powerful constructfor synchronizationand scheduling appli-

cations.At the same time, the design of mediated objectssupports structured design of con-

current programs. We have also presented a temporal logicspecificationof the mediated

objectand indicatedhow thisspecificationcouldbe used to verify"objects.

Med,.'stedobjectsemphasize the principleof modularity in theirdesign. "Ina mediated

object the specificationof the data abstractionrepresentinga resource isdesigned and coded

separately from the design of synchronizationand scheduling for that resource. Because the

resource isencapsulated within the mediated object,alluses of the resource are subjected to

the synchronization and scheduling constraintsimplemented in the mediator. This separa-

tion and encapsulation both ensures a degree of protection for the resource and makes its

design clearer.

The mediated objectalso allows for encapsulated concurrency..The mediator designer

can specify as much or as littleconcurrency with the mediated object as desired,but still

maintain encapsulationof the resource and itssynchronizationand ensure that the specified

constraintswillbe enforced.
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The flexibility of the mediated object is demonstrated by the wide variety of sample

programs that we have been able to present. The mediated object is flexible both in terms of

the kinds of synchronization and scheduling that it can implement, but also in terms of the

way the mediator specifies those constraints.

Finally, we have presented a framework for verifying mediated objects. The flexibility

of mediators in some senses make_ trade-offs on the safety provided by more "protective"

and less flexible concurrency structures such as those implemented in Argus{117]. This

trade-off would not be acceptable if the object designer could not be confident that the object

design met specifications. The temporal logic specification we have developed and the

verification framework developed by[82] allow verification.

The newest elements of the mediator design include the design of parallel guards, the

use of keys to mzlnpulate information about clients, the mapping of generic service names to

actual operations within the mediator and the use of temporal logic as a primary language

specification.

7.1. Directions for Further Research

The mediated object may provide a fertile source for future research in language imple-

mentation and design as well as research into verification and specification. It would be use-

ful and instructive to complete an implementation of this construct in some suitable host

language. An implementation in Pascal[59] could build on some of the work already done on

implementing Path Pascal[23]. Another suitable host language may be C++[111] using

classes as a basis for building mediated objects.
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Mediators can implement non-preemptive scheduling schemes, but not preemptive ones.

There are many systems applications in which the ability to do preemptive scheduling would

be useful. In order to extend mediated onbjects to implement preemption it would be neces-

sary t_o both include an interrupt mechanism and to provide a way to recover the state of the

encapsulated resource. Recovery is needed because interrupted use of a software resource

usually will leave that resource in an inconsistent state.

The implementation of a recovery mechanism is also essential in software fault-

tolerance schemes. The mediated object could be extended to imp/ement recovery blocks,

much as Path Pascal was[105], or to implement conversations[26,58,100]. Besides a recovery

mechanism, the extension to software fault-tohrance requires an exception handling mechan2

ism that is totally lacking in the current design.

One hature of the mediator may be useful in developing a recovery block mechanism.

The ability of the mediator to delay the return of results from a service after that service has

terminated and to actuallyschedule when a releue may occur may be directlyapplicableto

programming coordinatedterminationfor processesengaged in a conversation.

We have largelyignored the problems of hard deadline real-time programming in our

discussionof the mediated object. This isa very important topicin programming for embed-

ded systems, but alsoone that isextremely dilTicultto deal with. Considering the mediator

in this context raisesa number of interesting(and complex) questions that may offer a

profitablearea of research.

Finally, we have considered a number of issues concerning temporal logic as a

specificationand verificationtoolfor mediated objects.This thesiswas not intended to break

new ground in thisarea,but rather to use existingtemporal logic "technology" to support
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our design. In the courseof tryingto apply temporal logicas presented for the rather simple

programming languages discussedin[82,84],we discoveredthat thesetoolsare not ready to be

picked up and directlyapplied _o languages that axe richerin controlstructures and that

operate in more complex domains. There ismuch that can be done to improve the usability

of temporal logic.
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A Physical Device Model for Path Pascal

by

Kevin B. Kenny

University of Illinoisat Urbana-Champaign

DRAFT-Do not circulate

Abstract. Path Pascal has proven itselfa useful tool in simulating the behavior of

multiprogramming systems, both in research and in teaching. One lack it has demon-

strated is the ability to simulate the action of input-output devices in order to model

operating systems on real machines. To rectify this lack, a system is presented that

allows the Path Pascal programmer simulated access to a variety of [/O equipment, and

a device model ispresented which allows additional types of devices to be defined at will.

1. Introduction.

The Path Pascal programming language is designed to allow the user to experiment

with the programming of multiprogramming systems. Its greatest use is in designing

and simulating operating systems; for this purpose, however, the language itself is

incomplete. One feature that the language lacks, by design, is any support for I/O dev-

ices.

This lack is rectified in the support software by providing a device simulator, writ-

ten as a set of external objects that can be linked with Path Pascal programs. Through

these objects, the user can define a set of peripherals, such as disk and tape drives, unit

record equipment, and terminals, and allow the program to communicate with them.

These simulated devices are capable of operating in two major modes. In one of

these, the program runs freely in a way that can be termed "pseudo-real time." In this

mode, device requests are handled concurrently with the operation of the program and

allowed to complete as rapidly as the underlying system's response time allows. The

"pseudo-" designation reflects the fact that the Path Pascal program is itself running on

a multiporgrammed system, and hence has other programs competing for the system's

resources; true real-time simulation is impossible in such an environment.

The other mode may be termed "simulated-time" or "synchronous." In this mode,

I/O requests are still processed concurrently as much as possible, but their terminations

are scheduled with respect to the wallclock time in the Path Pascal system. Each

device type being simulated embodies a model of that device's service time as requests

The work presented herein was funded in part by the National Aeronautics and Space Administration
under Grant NSG-1471.
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Path Pascal Device Model

are presented to it, and the termination times therefore give some idea as to how the

program would perform in real-time on an actual machine.

2. The Device Model.

Understanding the model for how a program communicates with a device is crucial

to using the device simulator programs effectively. While somewhat simplistic, the

model provides a reasonably accurate simulation of nearly all devices available today.

Each device is represented by a device object in the Path Pascal program. A

device supports four fundamental operations: open, close, do_io, and awai__in_.

Each device on which I/O is to be performed must be initializedwith an open

request. This requests takes two arguments: a character stringwhich isa shellcommand

to start the device server, and a Boolean value which describes what is to happen with

SIGINT signalsfrom the operating system (We ignore the latterfeature for now; see the

descriptionof the sty device for details).

The open request startsa serverprogram that simulates the requested type of dev-

ice, and initializes certai]_ internal control information. Following this, do_£o and

awa£1; in_ requests may be used to perform input from and output to the device.

Most I/O proceeds through the do £o request. Its flow is perhaps as simple as it

can be while still capturing the idea of asynchronous processing. In its simplest form,

the flow is as follows:

• The device is seized for exclusive access. Until this do £o request is complete,

other requests will block at this point.

• The type of operation (e.g., seek, write, rewind) is sent to the device.

• The requested operation is performed by the device, if the operation is an output-

type operation (e.g., seek, write), user-supplied data are sent to the device. If it is

an input-type operation (e.g., read), data from the device are transferred to a

user-supplied buffer area. While the operation is in progress, other Path Pascal

processes may proceed; the requesting process blocks at a semaphore until the data

transfer is completed.

• The device returns a status describing the success or failure of the operation. This

status is returned as a value by do £o. Prior to returning, if the system is operat-

ing in simulated time, the device simulator performs a delay operation so that the

I/O terminates at the correct simulated time. Pseudo--real-time I/O always ter-

minates as soon as possible.

In addition to the above sequence, some communication with I/O devices is ini-

tiated by the device rathe than the program. Examples of this are the user pressing the

BREAK key on a terminal, an operator mounting or dismounting a removable storage

medium, and a sudden failure of a device. We shall see further examples of this type of

operation in the discussion of the mulr_iplexer device type. These unrequested condi-

tions on devices are called "urgent conditions" or "urgent interrupts."

DRAFT-Do not circulate



Path Pascal Device Model 3

The Path Pascal program wishing to handle an urgent condition on a device may

do so by executing that device's await_int, request. This request, in its simplest form,

has the following flow:

• The device is seized for awaiting the interrupt. Until some urgent condition is

detected, other await int; requests will block at this point. Note that this seizing

of the device and tha_performed by do_io are orthogonal; i.e., a do_io and an

await; urg request may be outstanding at the same time.

• The Path Pascal process is blocked until an urgent condition is detected. Other

Path Pascal processes may proceed.

• When some urgent conditiqn occurs, the device sends a status indication describing

the condition. The Path Pascal process that executed the await_lnt; request is

unblocked, and the await int; function returns the status as its value.

Finally, a close operation is provided on the device object. This operation indi-

cates that the device is no longer required, terminates the associated server, and releases

the memory used for Various internal control structures associated with the device.

3. Multiplexer channels.

The above device model serves for the simplest cases of I/O, where all data

transfers occur in the sequence, "send request; await interrupt; process status return."

It has some drawbacks, however, in some of the more sophisticated uses of I/O.

One problem is that a Path Pascal process must be dedicated to each device on

_vhich I/O is in progress. In a system such as a terminal controller, where I/O may be

pending on a large number of low-volume devices, the overhead of maintaining all these

processes may be prohibitive; some means must therefore be provided for the program to

wait for an interrupt from any one of a set of devices.

Another problem relates to the construction of peripherals in the real world. Gen-

erally speaking, large computers have multiplexed I/O channels (various manufacturers

use various names to describe these) which allow a single channel to be used for requests

for several peripherals, but impose the restriction that only one may actually transfer

data at a time. For instance, it is typical to have many disk drives attached to a single

I/O path, and to be able to have all of them seeking at once. Only one at a time, how-

ever, may execute read or write operations.

These situations are incorporated in the Path Pascal device model by a special dev-

ice type, called a "multiplexer channel." Each multiplexer channel represents a single

I/O path to multiple devices. The set of I/O requests accepted by the multiplexer chan-

nel is the union of the requests accepted by the individual devices attached to it, plus

several requests specific to the channel itself; the most important of these is select,

which transmits a device number to the channel. The device number identifies a device

to be used for a subsequent I/O request.

Multiple requests can operate in parallel on a multiplexer channel; nevertheless, the

device model presented in Section 2 still applies. When a request is sent to a multiplexer

channel, the process that sent it still blocks until the operation is completed. The
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4 Path Pascal Device Model

apparent contradiction is resolved, and the capability to operate in parallel is gained, by

introducing a new set of requests, called "non-blocking operations."

k non-blocking operation is an operatio/1 that will take some time following a data

transfer before it completes. An example of such an operation is a seek on a disk drive,

which transfers the seek address immediately but will typically take many milliseconds

before addressing the requested track. (An even more extreme example is a rewind

operation on a tape drive, which may take up to several minutes.) On a device which

accepts a non-blocking version of one of these operations, as soon as all data transfer is

complete, the device returns a status code indicating that an operation is in progress.

The multiplexer channel is then freed for other work.

When the actual work for'a non-blocking operation is complete, the device gen-

erates an urgent condition. The status code presented with the interrupt indicates the

success or failure of the original request. The program (which has presumably issued an

await_ins request) receives the status and is free once again to send commands to the

device.

Of course, since the device is attached to a multiplexer channel, there is the possi-

bility that a do io request is pending on another device, so a further request for this

device may have to wait. The runtime system handles this case automatically, since no

device (including a multiplexer channel) may have more than one do_io request in

operation at a time.

The multiplexer channel device type imposes some additional requirements on the

device software in the Path Pascal runtime system. In particular, the awal__inr.

request handler in the device object must execute a delay operation when an inter-

rupt is received in simulated-time operation, to bring the simulated time up to the

moment when the interrupt occurs.
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Lightwelght processes in C++

Appendlx E.

Lightwelght processes in an object--oeiented system.

by

Kevin B. Kenny

I. Introduction.

Research isnow in progress on defining'anoperatingsystem which uses an object-orientedprogram-

ming style even at its lowest levels.As a preliminarystudy, a dispatcherhas been implemented which

givesthe user the abilityto have a number of lightweightprocessesrunning in a singledomain. A version

has been implemented which simulates the operation of a system by time-slicingwithin a singleprocess

under Unix on a VAX. Implementation work isin progress for an actual kernel running on one of the

microcomputers in our laboratory.

A number of Fairlynatural abstract data types were described in the course of thisinvestigation.

The types will be presented below, roughly in order by the levelof abstraction;primitive types willbe

presented first.

2. Plies.

The implementation of the dispatcherrequiredstacks,queues,and priorityqueues of severaldifferent

types of object. Since itwas foreseenthat thesedata structureswillbe required in many other appllca-

tions,they have been fullygeneralizedwith a constructcalleda pile. A pile isan objectwith three fun-

damental operations:

• Clear the pile.

• Add an objectto the pile.

• Locate the "first"objecton the pile,and remove it.

The C++ definitionof a pile isshown inFigure 2.1.

I

I

I

I
i

I
I
l
I
I
I
I
!

class pile {

publlc :

virtual piles operator <<
virtual void * nex_ O ;

virtual plle/t clear O;

plle/t opera_or = (plleJt);

pile (plleAt) ;

pile O {)

(void *); // Add an item

// Remove R return an item

// F.mp_y the pile

// Assignment among piles

// Copy in initialization
// Constructor

Figure 2.1. The pile data type.

!
!

!

!
The research presented in this paper was supported in part by the Natioaa! Aeronautics and Space Administration.under Grant

NASA-NSG-1471

DRAFT - Do not clrculate

I

I



|
i

I

I
I
I
I

|

I
I
i
!
I
I
i

I
I
I
i

Lightwelght processes in C++ 2

The virtual functions shown in the declaration are not implemented for the pile class; instead, they

are all replaced by stubs which call a function named empty conr.a£ner. When empty_conr.alner is
called, the program aborts; in the simulation environment on the VAX, an error message is printed indi-

cating that an unlmplemented virtual function was called. The virtual functions are replaced with actual

ones in the implementation of queue, priority queue, and stack data types.

8. Stacks, queues, and prlorlty queues.

With the unifyingconstructof a pile in hand, we now can proceed to build classesfor the abstract

types sl;ack,queue, and pqueue (priorityqueue). These are allderived from the pl].e classby adding

internalstructuresto representthe data, and replacingthe v_rtua[functionswith ones that perform the

requisitemanipulations. As an example, thedeclarationsfor queue and pqueue are shown in Figure 3.2.

In thisimplementation (note tha{ the userof queue need not be aware of it),queues are maintained

by maintaining a linkedliltof linkage'nodes(calledqueue enl;ry's).Each of thesecomprises a pointer

to the object in the queue, and a pointerto the next linkagenode in the queue. The lastlinkage node

pointsback to the first,eliminatingthe need forseparate head and tallpointers.

Priorityqueues are (in this primitiveimplementation; more sophisticatedprocedures are expected)

implemented as linearlistsas well. A priorityqueue, however, also requiresa comparator function,

which tellsthe relativepriorityof two elements;thisfunction issupplied to the priorityqueue'sconstruc-

tor. A comparator isinvoked with a callof the form:

(*c) (entryt, entry2) ;

and is expected to return a negative value if enr, ryl. precedes entry2, zero ifentryl has equal priority

to entry2, and a positive value if entry2 precedes entryl.

4. GeneL.ie plies.

As defined, pile's are not very useful; the entries that are added to and removed from them are just
void pointers. A set of macros are provided to generalize these to the notion of "generic piles", which can

contain arbitrary data. A pile of objects of type t is declared with the macro invocation _rp_.le (_); in

order to have this class available, the macro invocation

declare (_lle, _.)

must appear in the source file among the other class definitions.

The constructor for a generic pile accepts a reference parameter, which is the pile to be made generic.

For example, the dispatcher's ready queue is a pile of threads (we shall define these later} organized as a

priority queue with comparator function rq_comp. The combination is declared with:

declare (Splle, thread)

pqueue rq ((comparator) rq. comp) ;

gplle(thread) ready_queue (/rrq);

6. Ratlonales Why generlc p|les?

At first glance, it may appear that the definition of generic piles is cumbersome; it is not clear why

all the complexity is required. The conventional way to program such things would be to code a few sub-
routines that made insertions and deletions, and to call them directly. The object-oriented approach

presented here, though, offers a measure of uniformity and flexibility.

The uniformity comes from the fact that a generic object can be used to represent any type; a queue

of processes has the same data structure as a queue of buffers or a queue of messages. The underlying pro-
cedures need be implemented and debugged only once, an expected saving of development and mainte-

nance expense.

Furthermore, there is a uniformity of interface. Adding to a priority queue, a stack, or a .heap is the

same processas adding to a queue; in fact,the routinedoing the adding need not even know which type of

DRAFT - Do not clrculate
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I
i

I
typedef lnt (*comparator) (void*, void*);

class queue_entry {

friend class queue;

friend class pqueue;

queue_entry * qe_next;

void * qe ltem;

queue_entry (vold * 1; queue_entry * n = O);

"queue_entry O ;
Y;

class queue : publlc plle{

friend class pqueue;

publlc:
queue_entry * q last;

plle/t operator << (vold *);
void * next O ;

plle/t clear O ;

queue/t operator = (queue/t);

queue O ;

queue (queue/t) ;

"queue () ;

class pqueue : publlc queue

comparator c ;

publlc :
plle/t operator << (vold *);

pqueue (comparator) ;
pqueue/t operator = (pqueue /t q)

queue: :operator = (q) ;
return *_h18;

)

// Add an ltem

// Remove and return an item

// Clear the queue

// AsslKnment operator
// Constructor

// Copy In assignment
// Destructor

// Comparison function

// Add to queue

// Deflne queue

// Assignment

FiKure S.2. The queue and pqueue classes.

pile is being manipulated. This uniformity has already been observed to simplify the construction of the

dispatcher; the same code adds processes to the ready queue, to the delay queue, and to semaphore queues,

despite the fact that these three types of queue have different organisations.

The flexibility comes from the fact that the data structures implementing the types are hidden from

the caller, if an implementor has decided to replace (say) the linear list in the priority queue class with a
data structure that can be searched in less time, it can be done by changing that class's private data and

revising its entry functions. No change (other than recompilation) to the users of the class is needed.
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6. Machlne condltlons.

We come now to another primitive data type: machine conditions. This type representswhatever

information isnecessaryto save the stateofa lightweightprocessand restoreitagain. A typicalimple-

mentation isshown inFigure 6.3.

The constructorforthe machine conditionsclassisresponsiblefor any work needed to make a thread

of controlready to run with the specifiedfunctionas itsentry point. On the VAX, thisinvolvesallocating

stack space and making an initialstack that describes the entry and provides a point for itsultimate

return.

The sole operation which may be performed on a set of machine conditionsis"dispatch," which

takes whatever action is necessary to suspend the dispatcher'sflow of control and resume that of the

thread. On a VAX, "dispatch" switches stacksto the thread,changes the signalcontext to the thread

(severalsignalsare blocked when the dispatcherisexecuting),and returnsto the thread. A dispatch.ends

with one of the following:

* * A kernel call(via the function _dlsp_end. The parameters to the kernelcallare locatedby the

pointer argv returned by the dispatch call;argc gives the number of parameters. The first

parameter givesan ordinalnumber of thefunction to be performed.

• An interrupt(on the VAX simulation,a Unix signal).The stateof the thread issaved, and argc

and argv are set up as ifthe thread executed a kernelcallwith function number D INTERRUPT.

The remaining arguments give enough information to locatethe sourceof the interrupt-(underUnix,

i
i

I

I

!
!

i

i

_ypedef lnt (*entryfunct) (...);

class Machine Cond {

vold *frame_pointer;
void *stack base;

m

long num_entrles;
public:

// Frame pointer for next dispatch

// Base of the s_&ck area

// Slze of the stack area In longwords

void dispatch (lnt _argc, lnt *_argv);
// Procedure to dispatch to the

// specified machine conditions.

// Returns arEument llst from _he

// first kernel call performed.

Machine Cond (entryfunct entrypolnt,

lnt argc = O,

void * argv = O°
In_ stack size = 0);

//
//
//

Machine Cond O; //
Machine Cond (Machine CondO); //

void operator= (Machlne_CondR); //
"M&chlne Cond (); //

Y:

Constructor takes entry address°

argument llst description, and

(optional) stack space needed.
Default initializer

Copy in Inltlallza_ion

Copy In assignment

Destructor is needed.

Figure 8.8. "Maehlne eondltlo_s" elsss.

I
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the signal number and signal code are passed).

. The entry functionof the thread returns, argc and argv are set up as ifthe thread executed a ker-

nel callwith functionnumber D END. A second argument issupplied,which givesthe return value

from the entry function.

In order to perform the hardware support required,a fairlyextensive amount of assembly language

programming was done;the compiler has no primitivesto support multiple threadsof execution.

7. Threads.

We finally come to the thread data type, which is the fundamental data type describing a light-

weight process. It contains the process's machine conditions, a "wait-for-son" semaphore (which will be

described later), an indicator of the thread'sstate (ready, running, or blocked), the thread's priority, the

thread's wakeup time if the thread is delayed, and the thread's termination status if it has terminated. It

has entry functions that make the thread ready to run (by placing it on the ready queue) and dispatch to

the thread. Its declaration is shown in Figure 7.4.

I
i
I

I
I

I
I

|
Figure 7.4. The thread data type.

typedef enum( // State of a thread
T READY, // On the ready queue

T RUNNING, // In execution

T BLOCKED, // Blocked

T DEAD, // Terminated
T-BURIED // Terminated and destroyed

_-thread state;
m

class thread {

thread * next thread;

public :

Machine Cond mc;

semaphore wfs;

thread state state;

long v_putlme;

lnt priority;

lnt qprlority;

long wakeup_tlme;

lnt termination_status;

// Next thread on the list of

// threads.

// Machine conditions

// Walt-for-son semaphore

all

// Current state of the thread

// Virtual CPU time consumed so far

// Current priority

// Copy of current priority. When a
// task is on the ready queue,

// priority may be chan_ed;

// the ready queue is therefore

// sorted by qprlorlty so that
// it is never out of sequence.

// Time to wake up if task is delayed.
// Status with which a DEAD thread

// died.

void readyO ;

void dlsp_proc () ;

// Place task on ready queue.

// Dispatch task and process kernel

// service request.

thread (entryfunct0 int, void*, lnt=O, lnt=O);
// Constructor accepts entry function,

DRAFT - Do not circulate
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II

II

II

II and

argument count,

argument list pointer°

thread priority,
stack size.

thread (thread&);

thread& operator = (thread_);
"thread ();
>;

// Copy in initiallzat£on.

// Assignment among threads.
// Destructor does walt-for-sons.

FiKure T.4 (eontlnued). The thread data type.

The constructorof a thread initializesthe localdata to the thread (themachine conditions,the prior-

ity,and the virtualCPU time),and linksthe thread onto a llstof allthreadsknown to the system. This

listhas no use in the presentimplementation,but isprovided so that such featuresas deadline scheduling

and dynamic adjustment of prioritiesmay be provided later.

The constructorthen linksthe thread on the ready queue so that itmay be executed independently

of the parent process.Thereafter,both threadsexecute under controlof the dispatcher.

While a thread is in execution,it may referto data locatedin itsparent's activation record (fox

instance,the parameters passed to itmay be locatedthere).Because of this,the parent'sactivationrecord

may not be destroyed untilthe child thread has termlnated. One possibleapproach to ensure that the

activationrecord isstillavailable(used in Ada) isto maintain a usage count for every activationrecord

and freethe activationrecordonly when no procedure isusingit. This technique was rejectedfor use with

the C÷_- system, as itnecessitatesan expensive allocationcallon procedure invocations. Moreover, the

thread system was designed to work wlth the existingprocedure call/returnmechanism of C÷-+-,where no

such interfaceisprovided.

instead of the dynamic allocationscheme, instead,a simple wait-for-sonssynchronization likethac

used in Path Pascal Kolscsd;Crun,,-'dhas been implemented, itisinterestingto note that no changes to the

lanKuage call/exitmechanism were needed to accommodate this implementation; the walt-for-sonis

accomplished by having a semaphore (calledwfs) as a component ofthe thread object. When the activa-

tion record containinga thread isto be destroyed,the thread'sdestructoriscalled.Within the destructor

(in addition to operationsfor freeingthe processstack and machine conditions)there isa P operation on

thissemaphore, which has the effectof waiting untilthe corresponding V isissued at thread termination

time.

Having the wait-for-sonsynchronizationhas also proven valuable indoing a generalizedsynchroniza-

tion operation;ifa setof tasks must be performed in no specificorder,with theirparent waiting untilall

have completed, this may be done by spawning a thread for each task and having the successive

walt-for-sonoperationsdelay the parent'sterminationuntilallthe childrenhave finished.

The thread'soperation iscontrolledby the system dispatchermaking callsto the dispatch entry

function. This functionmarks the thread as"running," and callsthe "dispatch" entry of itsmachine con-

ditionsobjectto dispatchto it. ItrecordsthevirtualCPU time used,and then selectsone ofthe following

actionsbased on the way dispatchwas ended.

• If dispatch ended because the thread ended, the thread is marked "dead" and the return value of the

entry function is recorded as its termination status. A V operation is executed on the wait-for-son

semaphore to re-awaken the parent thread if it blocked waiting for this thread to terminate.

• Ifdispatch ended because of an interrupt,the thread isreturned to the ready queue, and the func-

tion,catch Interrupt, iscalledto _eld the interruptexactlyasifithad occurred in the kernel
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• Ifdispatch ended because'the thread asked to be blocked on some queue, the thread object isadded

to that queue and itsstateischanged to"blocked."

Because of the flexibilityof the "pile" construct,thesethree functionshave proved sumcient thus far

to handle allthe dispatchingrequirementsof the system.

8. Semaphores.

In the previous section, the wait-for-sons operation was described in terms of semaphore operations.

As the reader might have already surmised, basic synchronization is implemented with semaphores. _)ijkstra

The semaphore constructwas chosen because itiseasy to implement and isa fundamental component of
more sopliistlcatedsynchronizationprimitives.A major intentof thisresearch isto exploresynchroniza-

tion issuesin an object-orlentedmultlprogralrnmlngsystem; a fulldiscussionof these isbeyond the scope

of this paper.

A semaphore is an object which comprises a counter and a list of processes blocked at the semaphore.

It accepts two fundamental operations, P and V, and may also be read as an integer, in which case the
value of the counter is returned. The definition of a semaphore is shown in Figure 8.5; note that the P and

• V operations are implemented as friend functions. The choice of frlend functions rather than entry

point s was done for notational convenience; it is more familiar to write P(s) and V(s) rather than the
more obscure, if more technically correct, s. P 0 and s. V O.

A P operation decrements the semaphore counter. [f the count goes negative, the process which exe-

cuted the P operation is blocked and joins the queue of processes at the semaphore.

A V operation increments the semaphore counter. If the count is non-positlve, the process which dld

the least recent P operation is removed from the queue of processes at the semaphore and made ready (by

calling the ready entry point of the thread object representing it).

I

I

1

I
I
I
I

II

I
I
I

class semaphore {
friend semaphore£ P(semaphore£);

frlend semaphore£ V(sem_phore_);

lnt count;

queue q;

gplle(thread) *waiting;

public:

// Semaphore counter.

// Queue of threads blocked at

// semaphore

operator Ink 0 { return count; Y // Examine count

semaphore_ operator = (semaphore_); // Copy semaphores

semaphore (semaphorek);

semaphore (lnt); // Inltlallzesemaphore

semaphore O;
"semaphore O; // Destroy semaphore

semaphorei P (semaphoreR s);

semaphore& V (senaphore_ s);

Figure 8.5. The semaphore data type.

I
i
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I
I
I

I
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Lightwelght processes in C++

Both of these operations need some special support to make sure that they take place atomically. On

a system with only one processor, this support can consist simply of masking interrupts while the opera-

tion is being performed. On a system with multiple processors sharing memory, some sort of hardware

synchronization, such as a test-and-set loop is required. On the VA.X simulation system, the atomlcity is

guaranteed by masking signals while the operation is in progress; if a P operation blocks, the signal mask

is reset by the dispatcher call. For this reason, the design decision was made to save the signal mask ofa

thread between dispatches only if the thread left execution as the result of an interrupt.

9. Interrupt handllng.

Having semaphores, and having the capability to interrupt a process in execution, we now can define

the discipline by which the system handles interrupts; i.e., conditions which can pre-empt the execution of

a process.

We assume that any interrupt in "which the system is interested has an interrupt process correspond-

ing to it. This process is responsible for performing an endless cycle of servicing one interrupt and waiting
for another. The waiting is accomplished by a P operation on a semaphore corresponding to the type of

interrupt; thus the code for a typical interrupt process would be as shown in Figure 9.8.

The reglster interrupt call is used to inform the interrupt handler that the system expects to

handle a particular interrupt. It adjusts the interrupt masks so that the interrupt will be handled when a

thread is executing (barring its being explicitly blocked, for example in the P operation of a semaphore).
[t also keeps the interrupt from occurring L: the dispatcher (again by setting interrupt masks}. [t initial-

izes the slgsem semaphore corresponding to the interrupt to allow synchronization of the interrupt pro-
cess. It may also need to perform hardware-related initialization, e.g., sending data to a priority interrupt
controller.

When an interrupt occurs, there are two possibilities: either a thread was in execution, or the proces-

sor was idle (Interrupts are inhibited in the dispatcher). [f a thread was in execution, its state is saved,

and the dispatch ends (at the machine condition level}. The dispatch routine in the thread object gets

arguments indicating that an interrupt has occurred and giving its type; it returns the interrupted thread

to the ready queue and calls catch_Interrupt to process the interrupt.

I

I
i

|
i

extern semaphore *slgsem []; // Vector of semaphores corresponding

// to the interrupts to be processed.

lnt interrupt_process (...) (
//
// Do whate_er initlal_ation _ _eceem_ry.
//

register interrupt (number)

for C;;) (

P (*sigsera [number]) ;

// Process the interrupt.
Y;

// Tell the interrupt c_tcher th&t we

// want to handle an interrupt.

// ¥&lt for the interrupt

Flgure 9.8. Typical interrupt process.

I
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Ifan interruptoccurswhile the processorisidle,no specialprocessingisneeded for thread control,

and the interrupthandlercallscatch_interrupt directly.

Eitherway, controlarrivesat catch_Interrupt with the dispatcherin controlofthe processorand

the interruptinformation passed as parameters. The information isused to deduce an interruptnumber

{on the VA.X, thlsissimple -- the interruptnumber issimply the Unix signalnumber) and a V operation

isexecuted on the correspondingsemaphore. Control returnsto the dispatcher.

In most cases,the interruptthread willhave been blocked on the semaphore, and the V will have

returned itto the ready queue. [fitspriorityishigher than that of the interrupted thread (as itusually

will be), then it willbe dispatched before the interrupted thread, a rudimentary form of pre-emptive

scheduling. Italso may change the prioritiesof threads.,includingones on the ready queue; these changes

willtake effecton the next dispatchesto the threads.

I0. Timers.

One particularlyimportant case of an interrupt handler is the thread that manages the interval

timer;thistimer isused to perform time-slicingamong threadsand to schedule wakeups. Since the simu-

latedsystem on the VAX was designed to run in eitherrealor simulated time, the decisionwas made to

make timer management intimate with the dispatcher.

The user interfaceto the timer management comprises severalroutines:

long cpuclock O
This routinereturnsthe amount of virtualCPU time consumed by the entiresystem so far. Succes-

sive values of itare subtracted to give the amount of CPU time to charge to a process for one

dispatch.

long wallclock 0
This routinereturnsthe current time,in mUliseconds pastsome time in the past. Itisused when the

system isinreal-timemode to determine the wakeup time for a del&y operation.

long clock 0
This routinereturnsthe simulated clock. In simulated time mode itis the amount of virtualtime

consumed by delay and awalt operations;in realtime mode itissynonymous with wallclock.

void await (long)
This routine waits until a particular absolute time, specified in milliseconds. Its primary use is in a

cyclic task which wants to begin at particular intervals of time: such a task might appear as shown

in Figure 10.7.

void delay (long)
This entry delays the executing thread for a speci§ed amount of time. It is useful in cases where the

thread wants to be reawakened periodically; it is also used in simulation studies to simulate the

I

|
I

I
I

I

I
I
I

i
I

I

I
I

long time = clock();
do {

// ... Do whatever ls required.
tlme _= interval;

await (tlme) ;

} while (t, lme< stop_time);

// Record tlme flrst cycle beKan.

// Cycle...

// Compute the nex_ time to run.
// W&lt until th&t tlme

// Quit when tlme has elapsed.

Figure 10.7. Typleal task requlrlng cycllc schedullng.
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Lightwelght processes in C++ I0

duration of events. The two forms, delay (n) and &waJ.t (n÷clock 0 ), are semantically identical.

All the procedures except &waJ.t, (and hence de1&y) are effectively passive; they just read the values

of clocks. The active awalt procedure interacts with the thread managing the interval timer as follows.

Note that it and the clock process require full mutual exclusion, which is enforced by the use of a binary

semaphore.

• If there is an interval timer already set, and it is due to ring later than the wakeup tlme requested,

return the thread which requested it to the delay queue.

• [f we are executing in real time, perform a V operation on the interval tlmer's semaphore to simulate

a wakeup and allow the clock process to check the delay clueue.

• F.nqueue this process on the delay queue. (Some special machinations are required here to make sure

that the enqueue happens atomically wlth releasing the mutual exclusion and allowing the clock

thread to execute).

There are two kinds of clock thread, corresponding to simulated time and real time. In simulated

time, the clock thread is always ready, with the lowest priority of any thread in the system. When it is

dispatched (and, hence, no other thread is ready), it advances the simulated time to the time that the next

thread on the delay queue is due to wake up, and awakens it; it then returns itself to the ready queue

(behind the just-awakened thread) and allows execution to proceed. If the delay queue is empty, it halts

awaiting an interrupt (the use of interrupts in simulated-time mode is not recommended).

In real time, the clock thread runs with a very high priority (so that it can pre-empt other threads).

[t examines the first thread on the delay queue. If it is due to wake up, it readies the thread and examines

another. If it is not due, it sets the interval timer to generate an interrupt at the thread's wakeup time,

and awaits another timer interrupt.

Verification that the two clock threads just described (for the actual C+_ code, see one of the

Appendices) actually interact correctly to implement the a.wsJ._ function is left as an exercise for the
reader.

11. The maln dlspateher.

With all of the .preceding structures defined, the main function of the dispatcher is trivially simple:

• Construct threads for the appropriate clock and for the user's main program.

• While the maLn program has not terminated, pull threads from the ready queue and dispatch to

them. If the ready queue is empty and the maln program still has not terminated, delay (i.e., idle

the processor) until an interrupt occurs, and repeat the check on the ready queue.

Listings of all the procedures to implement the objects described here are presented in an Appendix.

12. Future plans for the system.

Work is in progress on extending the system described here in several ways:

• Models of concurrency other than shared memory (e.g., message queues and remote procedure calls)

are being hnplemented.

• The extension of this kernel to provide other functions is being contemplated; the most likely next

step is the implementation of a set of device drivers as active objects (i.e., objects which own their

own threads of control).

• The possiblllty of implementing a kernel for a Unix-like system with this set of procedures as its

dispatcher is being investigated. In order to do this, a signal mechanism must be implemented;

beyond this nothing else appears to be required in the way of dispatchlng'and synchronization pro-

vided that a dispatch always ends with the processor in supervisor state.

• Extending the synchronizationprimitivesto a richerset than simple semaphores isalsobeing investi-

gated. A particularlyinterestingllneof researchisto investigatehow wellsuch constructsas media-

tors,or,Jsmonitors, _oftoguarded commands, and Ada rendezvous will map to an object-0riented
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system. In severalcasesitappears that itwillbe possibleto construct objectsthat implement these

constructsin a fairlyautomatic manner, without requiringany extensionsto the base language; itis

an intriguingpossibilitythat C++, without originallyhaving been designed for multlprogramming,

may neverthelessacceptsuch constructsgracefully.
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