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ABSTRACT: The EOS project is investigating the design and construction of a family
of real-time distributed embedded operating systems for reliable, distributed aerospace
applications. Using the real-time programming techniques developed in co-operation
with NASA in earlier research, the project staff is building a kernel for a multiple pro-
cessor networked system. The first six months of the grant included a study of schedul-
ing in an object-oriented system, the design philosophy of the kernel, and the architec-
tural overview of the operating system.

In this report, we will describe our operating system and kernel concepts. An
environment for the experiments has been built and several of the key concepts of the
system have been prototyped. The kernel and operating system is intended to support
future experimental studies in multiprocessing, load-balancing, routing, software fault-
tolerance, distributed data base design, and real-time processing.
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1. Summary.

This project is building an experimental operating system EOS, an example real-
time embedded operating system for computer systems in aerospace applications. EOS
is based on a distributed, object-oriented approach, and is specifically intended for dis-
tributed software applications in NASA's research and development program. The goals
of this research include an investigation of the practical organization of kernels for mul-
tiple processor networked computers, real-time scheduling of tasks, the construction of -
system-based fault-tolerant support for distributed computing, and the design of basic
service objects in a distributed, object-oriented operating system.

In the past six months, we have completed several studies:

e Completion of research into a high-level scheduling primitive for real-time’systems
called a Mediator. Judy Grass, the investigator, completed her Ph.D. which is
appended to this report. Temporal logic was used to specify the semantics of the
primitive. The primitive permits considerable flexibility in programming synchroni-
zation and scheduling while retaining modularity for that programming.

e Completion of the research on Path Pascal. The compiler for Path Pascal on UNIX
was further debugged and the system stablized. The Path Pascal system has been
used to support the operating systems class this Spring and Fall. Each class
involved about 150 students using the system on an IBM S9000 microcomputer.
Some of the students wrote projects in Path Pascal. The compiler has been distri-
buted to some twenty sites.

e A study of device driver models. A device driver model was constructed for use
with Path Pascal. It has since been adapted for use with EOS.

e Lessons learnt from Path Pascal in the construction of its run-time kernel have
been applied to the construction of a prototype run-time process dispatcher for
EOS. The dispatcher is coded in C++. Processes are programmed as instances of
the class ‘““thread’. Classes are also used to program synchronization primitives.

e A bootstrap kernel has been constructed by removing all unessential detail from the
UNIX System V kernel. The kernel provides a simple shell, access to disk, and link-
ing and loading facilities and fits on a floppy diskette. The bootstrap kernel is
being used to boot the EOS kernel. Utilities in the bootstrap kernel will be replaced
by EOS utilities as they are being developed. (The C binding of C++ allows a sim-
ple replacement scheme.)

e A virtual memory scheme is being developed to share paged data amongst
networked machines with the same data formats. Although this work is primarily
useful for interconnecting workstations with faster processor servers, the technique
also permits more flexibility by allowing virtual memory spaces to- be multipro-
cessed.
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e The structure of .a lightweight RCP and message passing scheme has been devised
~ which will permit exploitation of virtual circuit communication systems as well as
packet switched systems. The structure also allows the underlying communication
system to exploit networking capabilities and topologies to improve multicast and
broadcast communications.

e The overall architecture of the operating system has been studied and consists of
domains of objects and processes communicating through a lightweight remote pro-
cedure call. Within a domain, communications are optimized to procedure calls.
Each domain can contain many lightweight processes, these are special instances of
an “object’’. Objects can be shared concurrently by several domains. Processors
are allocated to domains and’ they execute the active threads of control within those
domains. Context switching between domains occurs because of priority concerns or
because there are no threads ready to execute within the domain. Context switch-
ing between lightweight processes within a domain does not involve a major change
in context. The file system, policy modules, user protection schermes and many
other concerns of the operating system will be coded above the operating system
kernel as system objects.

e The design of the kernel has been closely examined. The target is to produce the
smallest kernel which will support the basic building blocks of the operating system.
The kernel will support inter address space communication, task and process
switching, and interrupt management.

e All kernel and operating system components will include real-time scheduling infor-
mation and components. A short review of real-time systems suggested that such
provisions should be built in to the system from the beginning, even if they are not
used in the initial system prototyping.

e We have considered naming schemes for tasks, processes, and objects. A more
detailed report will be produced later in the year.

e Protection will be provided by a hierarchical scheme that includes both access lists
and capabilities. This scheme will be implemented above the kernel in the operat-
ing system. The kernel will only enforce protection provided by the hardware. The
choice made here is to eliminate inefficiencies in the kernel which would be caused
by repeated interpretation of access rights and to place the obligation for checking
access rights with the object that requires protection (for example the file system.)
The kernel will provide mechanisms to authenticate processes and sources and desti-
nations of remote procedure calls.

The research project is using the tools and methodologies developed in earlier

research! in co-operation with NASA [8,9]. The operating system overview is docu-
mented in 8,9,14,15,16,30,31]. The development environment supports implementation,
reconfiguration, and testing of systems of component objects on both service-host and

! Some of the papers, reports, and theses that document our research are included in
Appendix A.
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stand-alone computers.

We intend to perform much of the operating system component testing on AT&T's
3B2/310, Motorola’s M68020, Encore Multimax, VAX 730s, and on the AMETEK
Hypercube. The kernel is being designed as a portable system and will be tested on
several different architectures to ensure that machine dependencies have not been built
into the software. The AMETEK cube will be used as a reconfigurable testbed for real-
time systems. Each node of the cube can communicate by DMA to its five neighbors:
The connectivity of the cube permits its use to model a hierarchical collection of shared
buses or networks to which are attached groups of real-time processors. The availability
of a large number of processors on the cube also enables some processors to be used for
monitoring and simulating real-time [/O. A simulator for the cube exists on the VAX
750 and permits debugging.

Code will be mainly written in C++ and C to make it portable to all the machines
that will be used in the project. :

2. Mediated Objects

During the past year a design for mediated objects has been completed and formal-
ized. The mediated object construct was developed to provide support for synchroniza-
tion and scheduling for distributed systems programming. This support is essential to
the development of complex real-time Embedded Operating Systems. Our interest in
this topic comes from the observation that many existing tools for concurrent processing
overly constrain concurrency, complicate scheduling and do not allow a modular
approach to the specification of timing constraints.

Our interest in formal specifications have resulted in a complete temporal logic
specification of the mediator construct. We believe that this specification is useful as
unambiguous documentation of the design, as a guide to implementation and as an
essential tool for program verification. This specification has also been a valuable check
on the design and led to many improvements.

The design of the mediated object is presented in detail in a Ph. D. thesis presented
in Appendix B. The informal presentation of the design has been the subject of a
conference paper (31] which is in Appendix C. The temporal logic specification and the
example of the use of the specification for verifying mediator programs are presented in
the thesis.

The implementation of mediated objects should be a straight forward task. Few of
the elements of mediators have not already been implemented in some form. The imple-
mentor has been provided with an unambiguous specification as a guide.

3. The Path Pascal Compiler

During the Spring semester, the compiler was once again used for the operating sys-
tem class. A few bugs were found with the implementation and these have been
corrected. The number of errors found was sufficiently small to consider the compiler
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reasonably reliable. The VAX and SUN compilers have been distributed to a number of
schools. '

4. A Device Driver Model for Path Pascal

The Path Pascal programming language is designed to allow the user to experiment
with the programming of multiprogramming systems. Its greatest use is in designing
and simulating operating systems; for this purpose, however, the language itself is
incomplete. One feature that the language lacks, by design, is any support for I/O dev-
ices. Appendix D contains a description of a device driver model for Path Pascal.

Devices are presented to Patl} Pascal as a set of external objects that can be linked
with Path Pascal programs. Through these objects, the user can define a set of peri-
pherals, such as disk drives and terminals, and allow the program to communicate with
them. The model imposes a structure upon the communications with the device driver.

The model is currently being modified for use in EOS to provide actual device
drivers. :

5. Architecture of EOS.

EOS is built to support communicating real-time tasks that are composed of collec-
tions of processes performing operations on collections of objects. Each task runs in its
own virtual memory. A task may use one or more processors to process its processes in
which case the virtual memory is shared between the processors. Objects may be local
to a task or process, shared between a group of tasks, or remote. The domain (accessible
data) in which the task executes has four subdomains. Each subdomain is protected
from the other subdomains by a hardware firewall. Individual objects and processes
within the subdomains may be protected if the hardware supports segmentation and seg-
mentation registers. Access to remote objects is accomplished through remote procedure
calls and a server task. Other communication mechanisms are provided by additional
communication objects.

The design of the multi-processor operating system will build on our experience and
other related work. Of particular interest are the Mach (1] and Accent [50] systems and
the V System [22,23,24]. The hardware model that we assume is a large number of
high-performance processors (perhaps with vector operations) with local memory, inter-
connected through shared memory, high band-width networks or cross-bar switches.
We believe that future networks appropriate for aerospace applications may involve
optic fiber time division multiplexing, multiple frequencies or cross bar switching permit-
ting efficient multicasts and virtual circuits. Such networks will be able to interconnect
a large number of machines and provide a high bandwidth. The bandwidth of the net-
work could make the CPU processors a network system bottleneck. Flexibility within
the network configuration will permit experimental hardware to be attached to the
networked computer system. Adaptability, reconfigurability, availability and reliability
appear to be future important software considerations.

The design we have selected for EOS is based on the current evolution of operating
systems towards object-orientation. This also reflects our experience with Path Pascal
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based operating system design. The motivation for this evolution is that current operat-
ing systems are difficult to adapt to new, multi-computer/multi-processor architectures
and reliable applications. The structure of many of today’s operating systems are based
on a sixties perception of time-sharing and real-time operation. Instead of a centralized
timesharing or real-time operating system model, research is concentrating on a model
in which operating systems are collections of independent but communicating objects.
Such an approach enhances adaptability, reliability, reconfigurability and the ability to
exploit multiprocessor hardware.

After a period of two decades, the timesharing system has begun to invade all

corners of the commercial and industrial market. UNIX? is an example of one such suc-
cessful system. During the two decades, knowledge about the structuring of computer
systems has improved and new operating system concepts introduced. However,
improved understanding of the structure of an operating system is not, by itself, a
motivating force to develop a new operating system. It is our belief that the change in
communication bandwidth will change how resources within a computer system are
managed and that this will provide the major motivation to redesign operating systems.
Adaptive and reliable system architectures provide additional motivation to explore new
operating system designs: It is our intention. to build a prototype embedded operating
system which can be used as a testbed to decide how best aerospace operating systems
for adaptive real-time applications should evolve.

However, our research is adopting a very pragmatic approach to the operating sys-
tem structure. We have decided that we cannot impose overhead on the operation of
the system that would not have been required in a normal time-sharing or real-time
design. Using these two goals, our work has been to develop a new model for an operat-
ing system and kernel based on improved communications facilities and the studies that
we and other researchers have made into the structures of operating systems.

At the lowest level of the operating system is a nugget. The nugget supports task
and process switching and synchronization between processes. The nugget is written in
C++ and a small amount of assembler code. A prototype nugget is listed in Appendix
E. Upon the nugget is built a kernel. The kernel provides a user level system interface.
It is through the kernel interface that tasks may request other operating system services.

The kernel will be constructed as a set of co-operating objects written in C+-.
Using our experience from LINK, these objects will provide a standardized set of func-
tions which may be used to build a variety of different operating system service inter-
faces to the user. The functions are organized into layers (for example, remote pro-
cedure calls will be mapped onto sequenced messages which will in turn be mapped onto
asynchronous message passing primitives.) The interface between the kernel and the
user is modeled after the object—oriented notion of a class. The interface takes the form
of a set of primitives we have nicknamed a RUSK or reduced universal system kernel.
The primitives will include process creation, deletion and various communication primi-
tives like open, read, write, and close. The parameters to these primitives are chosen so

? UNIX is a trademark of AT&T.
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that name resolution issues are encapsulated within the kernel. (In UNIX, the physical
file descriptors of open files and process identifiers of active processes are bound to a sin-
gle processor. This prevents UNIX United and its implementations from allowing explicit
reference to remote running processes and open file descriptors.) ‘

Eztensions to the kernel take the form of additional layers which specialize the ker-
nel interface. Kernel extensions include real-time, fault-tolerance, distributed comput-
ing functions like load balancing, and other specialized functions. These kernel exten-
sions are integrated with the kernel interface using'a model based on the object-oriented
notion of a subclass. Users may add kernel extensions in a similar manner to the way in
which UNIX System V permits filters to be pushed onto a stream. Tasks may select the
appropriate kernel subclass at task creation time.

When the processes of a task request access to a non-local object, the kernel binds
that request to a particular shared or remote object using name-server objects provided
by the operating system. Local objects may be accessed by means of procedure calls.
Bound, shared objects may be accessed by means of ‘‘gated’ procedure calls. The kernel
system call interface is also implemented as a ‘‘gated” procedure call. Bound, remote
objects may be accessed by means of local stub objects and remote procedure calls made
through the kernel interface.

The operating system consists of an operating system task and a library of objects.
It can be organized as a distributed operating system if required to overcome the possi-
ble limitations imposed on the software by a particular parallel architecture. For exam-
ple, on a hypercube architecture, processors within the cube may not have access to disk
controllers. For such systems, it would be more efficient to place the physical file system
operating system objects on nodes at the periphery of the cube that do have access to
disk controllers. The reorganization is performed by replacing the objects with stubs
that make low level remote procedure calls to the file system remote objects on specific
processors.

We intend to perform much of the operating system component testing on AT&T

3b2, M68020 computer systems, VAX 750s, and on the AMETEK Hypercube. The ker-

nel is being designed as a portable system and will be tested on several different architec-
tures to ensure that machine dependencies have not been built into the software.

The resulting code will have many experimental research applications. We hope to
use the AMETEK cube implementation as a reconfigurable testbed for real-time sys-
tems. The structure of a typical real-time control task is shown in Figure 4.1. A hierar-
chy of such tasks might be used to implement a real-time application. The connectivity
of the cube permits its use to model a hierarchical collection of shared buses or networks
to which are attached groups of real-time processors. In such a hierarchy, real-time
processes that interact with sensors and actuators with fast responses are placed at the
leaves of the hierarchy on independent processors served by highly available buses.
Status information is gathered from and control information is passed to these proces-
sors by one or more control processors which reside at the next level on the bus hierar-
chy. In turn, these control processors communicate to higher levels of control over the
next level of the hierarchy. The availability of a large number of processors on the cube
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also enables some processors to be used for monitoring and simulating real-time I/0.

The architecture of EOS may change as we develop a more concrete implementa-
tion. Issues concerning the virtual memory organization of the system could still alter
the design. Also, we hope to gain feedback from various other NASA investigators

about our proposed architecture.

8. Communications.

There have been many communication primitives proposed for distributed systems.
In EOS, we intend to support well those primitives for which there is appropriate
hardware support. To this end we provide several high-level communication primitives
like the remote procedure call and interfaces to allow other communication mechanisms

to be built efficiently.
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8.1. Overview

The overall underlying architecture of inter-process and inter-processor communi-
cations for the EOS kernel is one of lightweight asynchronous message passing; the
closest analogue to it among existing systems is the V Kernel of Cheriton {22,23,24|. [t
allows for rapid message-based communications between processes, whether at the same
node or at different nodes, provides a multicast facility for communicating with groups
of processes, and allows for real-time scheduling of message traffic. In order to be as
lightweight as possible, it is set up to minimize the amount of copying required in the
processing of a message. A remote procedure call is built on top of the message passing
mechanism for use by the object Qperation invocation scheme of the system.

The communications architecture comprises at least five distinct areas that have
been identified so far:

(1) A buffer manager to handle the allocation of buffer space for communications traffic;
this service must be centralized to avoid needing to copy messages between layers of
the system.

(2) A set of communication device drivers to handle the details of interfacing for the
communications hardware present on a particular system.

(3) An asynchronous message service to control the switching of messages among the
processes and nodes of the system.

(4) A router to choose the routing for a message to follow. The router must be able to
choose routings for multicasts, and to provide reliable estimates of the real-time
requirements for getting a message to its destination.

(5) A sequencer to ensure (if necessary) that messages arrive in the order in which they
were sent, and to guarantee once-only message transmission.

Remote procedure calls, remote object servers, and the like are implemented atop
this basic framework (Figure 5.1).
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Figure 6.1. Communications overview

6.2. Buffer manager.

The buffer manager provides a single point where message buffers can be allocated.
The address space in which they are allocated remains visible throughout the kernel, and
hence the messages need not be copied between the layers of the communications facil-
ity.

Each buffer comprises an area of memory of a specified size, and a usage count.
The usage count is maintained by the buffer’s ‘‘use’” and ‘‘free” functions, and keeps
track of the number of active references to the buffer. When the usage count reaches
zero, the buffer may be reused by another operation.

The rationale behind maintaining a usage count, rather than simply providing
Unix-like “allocate’” and ‘‘free’” operators, relates to the fact that a multicast message
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may need to be forwarded over several communication links. Maintaining a usage count
seems the easiest way to handle this situation.

6.2.1. The buffer-manager object.

The buffer-manager object is the global entry to the buffer manager. It provides
a single entry point: :

buff = buffer-manager.allocate (size)

The size argument is the size of the buffer to allocate, in bytes. The buff return is a
pointer to a buffer object containing a buffer of the specified size and a usage count of
1.

8.2.2. The buffer object.

A buffer object represents a buffer of memory, its size, and its usage count. It
provides four basic operations:

siz = buffer.size

The size of the buffer (specified when the buffer was allocated) is returned as'siz.
ptr = buffer.area

A pointer to the memory area allocated for the buffer is returned as ptr.
buffer.use

The usage count of the buffer is increased by one.
buffer.free

The usage count of the buffer is decreased by one. If the usage count has reached zero,
the memory area associated with the buffer is released. Any use of this function that
may cause the usage count to reach zero must be regarded as spoiling the buffer pointer;
the pointer must not be used again after this function returns.

8.3. Communication device drivers.

The communication device drivers handle the physical hardware interface to the
communication links among the nodes of the system. They are implemented using the
“physical device object”’ model that has already been proposed for Path Pascal. Such
an object has three identified functions:

device.initialize (data)

Initializes the device for communications. The data argument is an
implementation-dependent structure that describes the configuration of the device. The
initialize operation places the device in a quiescent state, ready for the remaining
operations to use it.

status = device.operate (command, buffer)

Performs an operation on the device, as specified by command. The available commands
include at least read and write operations. The buffer is read from or written to the
device according to the command. The requesting process is delayed until the operation
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is completed; the status return then reflects the success or failure of the operation.
status = device.awalt-interrupt

Delays the requesting process until an urgent condition (e.g., an unrequested write at the
other end of a communication link) is detected. When such a condition is detected, a
description of the situation is returned as status.

The device driver routines will be located in the operating system, a virtual memory
and domain set aside for operating system data and tasks. The device drivers have
access to the real memory locations required to perform their task within their virtual
memory. Short interrupt handling routines will interface particular device drivers into
this scheme. We believe that coptext switching time should be sufficient to allow the
device drivers to be placed in virtual memory. However, if not, they can be moved into
the kernel.

6.4. Router.

The object structure of the message router has yet to be fully elaborated; hence its
appearance in Figure 5.1 as a “cloud”. Its basic functionality is that, given a list of
nodes to which a message is directed, it must determine some nearly- optlmal routing by
which the message can be sent to those nodes. The routing chosen may depend on the
urgency of a message (urgent messages my need to get minimum-time routings; non-
urgent ones, minimum-cost routings) and hence the router must be aware of the priority
of a message for which it is finding a routing.

Since the system is directed towards real-time operations, the router must also have
some knowledge of expected communication delays in the network, and be able to esti-
mate the expected elapsed time for a message to reach its destination. For messages
with deadline schedules, it may be required to return a denial indication if its estimates
indicate that a message is unlikely to reach its destination in the required time.

In order to minimize processing when a message must be forwarded by one or more
intermediate nodes before reaching its destination, it may need to provide out-of-band
information directed at the router on an intermediate node; its interface with the asyn-
chronous message manager must provide for this.

If an attempted transmission of a message fails, the router must be informed, in
order that its network tables may be updated to reflect the status of the node or com-
munication link that failed.

Higher levels of the system may require an interface to the router in order to pro-
vide it with ‘‘advice” relating to the choice of routes (for instance, data on congestion of
the communication pathways).

One possible set of interfaces to the router would look like:
route-set = find-routing (buffer, dests, info)

Finds a routing to get the message in buffer to the set of node-process pairs specified
by dests. The info argument is a data structure providing information for the router
to make its decisions; it must at least include specifications for the urgency and deadline
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of the message. The find-routing request returns a set of ordered pairs
(1ink, data) where 11nk identifies a communications link on which the message is to
proceed and data is a buffer containing out-of-band data to be transmitted with the
message in order to advise the router at the other end of the link how to proceed.

forward (buffer, data)

Find a routing for the next hop for a message which has arrived from another node.
The buffer contains the message; the data argument is another buffer containing the
out-of-band data supplied by the router at the previous node. Just as with find-
routing, a set of (1ink, data) pair§ is returned.

4

fail (l1ink-info) ,

Record that a particular link or node has failed. The l1ink-1info argument gives data
on the particular component that has failed and the type of failure, in order that the
router can be advised for its decisions relating to future messages.

Research is in progress on further specifying these interfaces, and on heuristics for
choosing message routings on the hypercube configuration. Preliminary results on the
latter topic will be reported in a forthcoming paper.

8.5. Asynchronous message manager.

The asynchronous message manager provides a facility, similar to that in the V Sys-
tem, for reliable delivery of messages addressed to some set of processes in the network.
Full end-to-end acknowledgement of messages is provided, to ensure ‘‘at least once’’
semantics for delivery of the messages. If ‘“‘exactly once” and ‘‘delivery in sequence’
semantics are required, a higher-level sequencing layer can provide them.

8.5.1. Functions.
1Y 68

At least four functions are provided: ‘‘send,”, ‘‘send and await reply,” ‘‘inquire,”
and ‘‘receive.” A “message’’ object is implemented to describe messages in progress.

message = send (process-1list, buffer, info)

Sends the message contained in buffer to the set of (node, process) pairs specified by
process-list. The infoargument specified other information about the message,
including at least its priority and deadline for completion.

(buffer, status) = send-await-reply
(process-1ist, buffer, info)

Sends the message contained in buffer to process-11ist, exactly as with send. The
requesting process is then blocked until one of the processes in process~1ist sends a
reply message to it. When the reply is received, it is returned as a (buffer, status) pair,
exactly as with reply below. The status return must be able to specify at least:

e Failure of the target process.

e Failure of the target node.

e Network failure; failure of enough links to make the
target node unreachable.
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e [nability to com'plete the request before its deadline.

status = inquire (message)

Inquires as to the status of the specified message (as returned by send). The requesting
process is not blocked. The status return includes at least the four possibilities specified
above, plus an “in progress’ status which must also provide an estimate of the comple-
tion time for the request.

(buffer, info) = recelive (control) .

Receive the next message destined for the requesting process. The message text is
returned in buffer; the info réturn gives data on at least the identity of the sending
node and process, the original destinations for the message, and the requested comple-
tion time. If no message is pending, the requesting process is optionally (by an indicator
in the control argument) blocked until a message is received.

8.5.2. Comments.

When a message arrives over a link, the first thing that the message service must do

is to determine whether it is addressed to a local process, and if so, queue it accordingly.

If it is destined for a remote process, the message service must also call the router to
obtain forwarding information, and pass the message along over the next link.

Any incoming message for which the corresponding process has failed must be
rejected with an appropriate status message returned to the sender. If the message was
sent using the asynchronous send operation, the rejection will be detected by the next
inquire operation. _

All link operations must be provided with a timeout capability to detect failed
nodes and links.

6.8. Sequencer.

The sequencer is the next layer above the asynchronous message manager. It pro-
vides exactly the same set of functions as the message manager, but in addition ensures
that duplicate messages are weeded out (it is possible for a single message to arrive at a
node over different routes in the lower-level layer) and that messages are received in the
order in which they are sent. It provides the infrastructure needed to implement a gen-
eral remote-procedure-call protocol.

7. Virtual Memory.

The hardware we are targeting the system for is presumed to be a segmented, paged
architecture similar to the IBM 360-370. However, we assume a large virtual memory
address and a large (2-32k) segment address space or better. Pages are expected to be
approximately 2k. In the initial design we will use a 3b2-like architecture as it most
closely resembles an ‘‘standard” architecture with common features to many existing
machines. The 3b2 architecture has a 32 bit virtual memory address and uses 4 segment
tables per virtual memory (2 bits of the address), each with 8k segments (13 bits of vir-
tual address) divided into 64, 2k pages (11 bits of virtual address).
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Hardware support for separate virtual address spaces will be used at this point only
to protect the virtual address spaces of tasks/objects from one another. The use of vir-
tual memory to support address spaces larger than physical memory, via the use of
secondary storage, will not be implemented at this time (although its eventual addition
will certainly be kept in mind during the design process). We feel that this is a valid ini-
tial simplification for the prototype in that the types of systems targeted for support by
this project are those which are primarily of the nature of embedded control systems
where huge address spaces are not crucial.

Essentially, we intend to use the segmented virtual memory to provide protection
for objects belonging to the kernél, operating system, and specific user application pack-
ages. For example, the file system may be implemented as an object which is shared by
applications. It will reside in virtual memory and be protected from misuse by the
application. Different file systems may coexist in the system. (This is why we choose to
place the file system in virtual memory as a separate object rather than as part of the
kernel.) However, we recognize the problems of making each object in the system an
individual “segment” in a strictly linear segmented, paged address space which does not
have segment registers. Such a scheme might impose a large penalty, (but perhaps small
in terms of each segment access), on cross—-domain procedure and object operation invo-
cations and require difficult to generate relocatable code.

Our proposed scheme partitions the address space into four sections; an address
space for the nugget and kernel to be shared by all virtual memories; an address space for
a collection of sharable objects (including class code and instances); an address space for
task information which would include data and text for the objects and lightweight
processes owned and used locally by the task; and an address space for a collection of
lightweight processes containing local process variables, parameters, and stack (see Fig-
ure 6.1.)

The nugget and kernel section and the task section are permanent members of the
virtual memory and remain unchanged except for the acquisition and disposal of addi-
tional segments and pages required by the task. The object section may be exchanged
on demand in order to access a different collection of objects with different protection
requirements. The objects mapped by this section may be shared between groups of
tasks. The process collection section may also be exchanged on demand for another pro-
cess collection. Process collections are not shared between tasks however. The section
mechanism provides a large grain protection mechanism that prevents different collec-
tions of lightweight processes from interfering with one another.

The collection of objects that constitutes a section can be stored on permanent file
storage as persistent objects. When a task first requests the use of a collection of
objects, it is loaded as a binary image into real memory. During the course of the com-
putation, parts of an object may be paged out to backing store as space requirements
dictate. Replacing one object section with another object section requires the replacing
of the segment table of the objects with the segment table of the other objects. On a
machine like the 3b2, this involves changing one pointer. On a machine like an Intel
286, this involves changing some, but not all, segment registers. At the end of the task’s
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Figure 6.1: Virtual memory layout showing mapping of sharable objects

use of the object, its binary image may be stored back on permanent storage.

A collection of objects may be shared between different concurrent tasks by map-
ping the collection into the object section of more than one task. Synchronization of the
operations performed on an individual object is the responsibility of the developer of
that object. A usage count ensures that a collection of objects is not stored back on per-
manent storage until the number of tasks accessing that collection drops to zero.

Since each collection of objects (processes) use the same linear address space; two
collections of objects (processes) that have already been mapped into a binary image
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cannot be loaded into the same object (process) section. When an operation on an
object is invoked, the nugget and kernel must ensure the correct updating of the object
section. For example, an object may request an operation on an object in a different col-
lection. This will result in a change of the object section. Similarly, when a return from
an inter-object invocation is made, the nugget and kernel must ensure that the old
object section is restored before execution is resumed.

A task may have the need for several different process collections to implement its
application. For example, a real-time task might be composed of several collections of
processes, each controlling a separate real-time experiment. It is possible to map
different collections of processes into the process section at different times, allowing col-
lections of lightweight processes’to interact efficiently within the same address space
while physically protecting other collections of processes of the task from possible harm-
ful access. The task schedules its lightweight processes through operations on the thread
objects (although the processes are dispatched by the nugget.)

Rather than relinquish control of the CPU when a lightweight process blocks, a task
may choose to reschedule a different lightweight process. This mechanism allows the
nugget to dispatch a process that has the same virtual memory requirements as the pre-
vious process. Within the operating system, a different level of scheduling dictates when
a task must relinquish control of the CPU.

An invocation of an operation on a shared object is achieved by a ‘‘gated” pro-
cedure call. If the object is resident in the object section, this amounts to a direct pro-
cedure call to the operation code. If the object is not present, the invocation results in a
trap to the kernel. '

For various implementation and efficiency reasons, the protection mechanism for
objects is not as secure as might be desired unless the hardware has segmentation regis-
ters. For example, the process stacks are kept in a shared section of address space. Com-
plete protection from undesirable effects of an invocation of an object can only be
achieved by placing that object in a separate virtual memory space with a task that
operates as a server for the operations on that object. The object is then accessed
through the remote procedure call communication mechanism. Stubs for remote objects
are loaded into the address space of the task where they can be shared by all the
processes of the task. A remote procedure call transmits a message to the server task for
the particular object. The server task implements the remote procedure call by using a
lightweight process to execute the operation on the object.

An extension to the virtual memory scheme allows the processes of a task to be exe-
cuted on several processors provided that the hardware uses similar data representations.
In a scheme devised by Essick for UNIX but adapted for EOS, the data segments of vir-
tual memory of a task may be paged between two or more processors. The code seg-
ments that implement the processes are partitioned and compiled for each participating
processor. Paging of data segments occurs on demand and it is used to synchronize the
updating of and access to shared data. The kernel and nugget section of the virtual
memory resides only in one machine. The scheme permits a task to reside on both an
[/O processor and a high-speed processor. The two processors are closely coupled
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through the use of a common virtual memory. When used in this way, the scheme
allows I/O driven computations to use the speed of a high-speed processor tran-
sparently, that is without modification of the code. Another use of the same scheme is
to provide load balancing by off-loading parts of a user task onto other processors
dynamically as the computation progresses and load changes on individual processors. A
detailed proposal for this scheme is in preparation as part of Essick’s Preliminary Ph.D.
thesis proposal.

8. Tasks and Processes

A task has an associated viftual address space in which processes are (potentially)
executing. The virtual address space of one task offers protection from interference from
other tasks. The resources of a task will include the address space itself and (usually)
access to services provided by other tasks.

The task’s processes are the main object of activity in the proposed system.
Processes in a task can provide services requested of it by other tasks, and can actively
initiate requests for service to other tasks.

Tasks and processes can be dynamically created and destroyed and will provide the
basis for the support of ‘“pluggable service modules”. For example, there may be a
“memory allocator service task” or a ‘‘communications services task’’. In fact, there
may be more than one type of server for a given resqurce providing different operations
and/or different semantics for the same operations. For example, there might be a “syn-
chronous communications service task’’ and also an ‘‘asynchronous communications ser-
vice task’’.

To meet real-time objectives, a task should be able to specify the scheduling of its
processes using an approach similar to that of the Mediator {30,31]. Also, context
switching between processes within a task should be very fast. In this regard, the
processes could be considered to be ‘“lightweight,” with the major portion of the state
information common to all processes within the task (and, therefore, not needing to be
saved or restored during an intra-task context switch). Figure 7.1 shows two tasks
which contain many lightweight processes. Context switching between processes in user
space in different tasks will require changing the virtual memory mapping and hence will
not be lightweight. However, context switching between processes within the kernel will
be lightweight, the virtual memory mapping is only changed on a need to access user
space basis.

A prototype scheme for dispatching lightweight processes has been programmed in
C++ and is shown in Appendix E.

9. Object Support.

The system proposed is an object-oriented system. This is important in that it pro- -
motes the encapsulation of data and state information of system entities. It is especially
important for fault-tolerant systems in that periodic ‘“‘checkpointing’ of critical objects
is straightforward in such a system. In addition, this encapsulation allows much easier
migration of entities to other nodes. The prime factor in determining the
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Figure 7.1: Tasks and Processes in name spaces

implementation strategy is to provide object-orientation without undue real-time over-
head.

A task allows one or more processes to access one or more objects within a virtual
memory. Each object has a set of operations and belongs to a class or subclass. An
object may reside in the local address space of a task and its lightweight processes or it
may reside in a global system address space and be shared between between tasks. To
permit an object to be accessed remotely, a service task provides lightweight server
processes which receive requests and invoke operations on the object. A client process
accesses a remote object by executing a call to a stub object which is created within the
task. The stub object within the task communicates through the nugget and packages a
remote procedure request across the network. This remote procedure request is received
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by the server task and given to a particular lightweight process server.

The C++ notion of a class and subclass is very powerful. Generic classes allow
families of classes to be created conveniently. In EOS, a thread class supports the notion
of a lightweight process. Prototype C++ classes used by a task to provide the facility of
creating and destroying processes are shown in Appendix E. Process scheduling and syn-
chronization primitives are also provided by the C++ class approach. Appendix E con-
tains a class providing P, V operations. Current work is devising monitor and guarded
command generic C++ classes. In addition, classes may be used to provide simple com-
munication channels. For example, an extension of the queue class in Appendix E that
uses semaphores to control access to the queueing operations provides a FIFO synchroni-
zation discipline on producer/consumer processes.

10. IPL

A UNIX-based IPL program has been built to allow fast prototyping and debugging
of the EOS nugget and kernel code. The IPL program includes a simple UNIX shell and
permits the loading and execution of a single binary image. The [PL system is small
enough to be stored on a single floppy. The current IPL program is available for the
3B2.

11. Conclusions

The project has accomplished much in the past six months. Devising an organiza-
tion for EOS has taken a longer time than we had first planned, however the structure
we now have for the operating system makes an object-oriented operating system possi-
ble to build without imposing undue penalties on performance.

In the next few months, we shall be contacting other NASA contractors and
researchers with our operating system proposals for comment. During this time, we shall
proceed to build a prototype system. We hope that the framework we have devised can
be used as the foundations for experimental studies of many aspects of object—oriented
real-time operating system design for aerospace applications. .
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Abstract

Thns paper describes a construct called a mediator.
Mediators support synchronization and acheduling for
systems programming within distributed systems. Media-
tors are based on a resource view of systems, and fit
within a programnming methodology that emphasizes
resource modularily, synchronization modularity and
encapsulated concurrency. The paper examines other
existing synchronization mechanisms in the light of
modular programming requirements. Subsequently, a
sample syntax and semantics for mednators is presented
with many examples.

The mediator includes many interesting features.
These include: an adaptation of guarded commands; keys
that allow requests to be examined and manipulated
before they receive service; parallel guard execution; cou-
pled and uncoupled modes of service execution.

Finally, the paper discusses a few aspects of imple-
mentation.

1. Introduction

This paper introduces the mediator construct for
implementing synchronization and scheduling in distri-
buted systems. This language construct supports systems
programming applications that require complex and flexi-
ble synchronization and scheduling schemes. The
research was prompted by the recognition that many of
the existing language constructs either overly constrain
concurrency, make expression of some kinds of syn-
chronization and scheduling difficult, or due to formal
language design considerations fail to provide practical
support for real programmers. The discussion of design
goals that follows indicates examples of each of these fail-
ings.

1.1. The Problem

The development of the mediator was motivated by
the lack of synchronization and scheduling tools to ade-
quately support the development of distributed systems,
such as those embedded in space craft. Such tools must

This work is part of the EOS project and was sup-
ported in part by NASA grant NSG-1471.

MNLINIOD QIO LINNNNINALOeNY NN A 1NO0Z TTET

meet a number of requirements, including support for
modular and structured system design, flexibility, expres-
siveness, clarily and ease of use.

Modular design is a powerful aid to structuring
software development which affects all phases of the
software life cycle from specification, through develop-
ment, testing and validation to maintenance. These
three aspects of modularity must be considered: resource
modularity, encapsulation of concurrency and synchroni-
zation modularity.

Resource modularity is a basic concern in both
sequential and concurrent program design. The develop-
ment of abstract data types [1] and object—oriented pro-
gramming (2| are an expression of this concern {3]. The
encapsulation of data and controlled access through care-
fully defined operations provide the user with a higher-
level, abstract view of a data resource[4]. At the same
time, the data is protected from invalid accesses. The
module also creates a locality of reference, placing the
data and operation definition in one place rather than
scattered throughout the code.

Early- synchronization tools, including busy-waits,
semaphores (5], and conditional critical regions {6-8], did
not create a locality of reference, and so made the struc-
turing of synchronization difficult. Most recent proposals
have recognized this problem, and have taken some ver-
sion of the abstract data type as a base. In some cases
the module is a passive and takes no action until called
on by an active process (e. g. monitors [9] ). Passive syn-
chronization modules are the rule in constructs based on
shared data. Usually constructs based on message pass-
ing use an active module. Ada [10|, Distributed
Processes (DP) [11}, Synchronizing Resources {SR) [12],
and Argus {13] belong in this category.

CSP [14] also uses a message passing model, but it is
not strictly based on an abstract data type model. In
CSP, individual processes cncapsulate data. Other
processes may access the encapsulated data only by an
exchange of messages. The process owning the data
resource defines all the operations on the data and local-
izes data access. Synchronization is not as well localized,
because the synchronization depends on the “matching”
of input and output commands distributed among many
processes.

Although there are many synchronization constructs
that support resource modularity, relatively few of them
permit real concurrency within the encapsulated module.



For instance, monitors allow at most one process Lo be
active at a time. In order to allow multiple processes to
access a resource simultaneously (as for reader processes
in the well-known readers and writers problem [15] ), a
monitor is used only to implement a pre-read/ post-read
and pre-write/ post-write protocol, which is called
before and after a call to an external read or write rou-
tine [9]. There is no assurance that the protocol will be
followed. Deadlock or data corruption may resuit if it is
not. The lack of encapsulated concurrency also makes it
difficult to nest modules or to otherwise structure con-
currency. Structured concurrency is needed to develop
atomic action and fault-tolerant systems [13,16-18|.
Concurrent Pascal (which is monitor based) 19, DP {11},
Ada [10] and CSP [14] all fail to encapsulate con-
currency. Argus [13,20] provides encapsulated con-
currency, but with severe restrictions to ensure recovera-
bility. SR [12], Path Pascal (PP) [21] Distributed Path
Pascal (DPP) [22], serializers [23], and MCP [24] do allow
specification of encapsulated concurrency.

Synchronization modularity refers to the ability to
specily synchronization and scheduling constraints
separate from the specification of the resource data
abstraction. This additional structuring device aids in
systemn development, but also benefits the validation of
design and code. Modular synchronization may also
make it possible to develop libraries of synchronizers and
schedulers. The isolation of timing aspects contributes to
real-time programming as well.

Few constructs provide synchronization modularity.
Among those are Path Pascal (PP and DPP) |21], sen-
tinel processes [25], and serializers [23]. Serializers are
implemented in a LISP environment. Sentinel processes
appear to be the imperative language analog. Both com-
bine built-in counters with queueing primitives to allow
modular specification of synchronization. These con-
structs appear to be weil suited to FIFO scheduling prob-
lems and variants of the reader/writer problem, but are
less fiexible than desired [26]. Path Pascal encapsulates
most synchropization specifications in a path expression.
This often provides a high degree of synchronization
modularity. The synchronization modularity is lost
when conditional synchronization or scheduling is
specified. These must be programmed using nested
objects. This results in loss of modularity as well as
inefficiency due to the implicit scheduling applied at each
level of nesting. In order to maintain synchronization
modularity, synchronization data must be encapsulated.
In addition, there must be support for conditional syn-
chronization and scheduling.

For practical embedded distributed systems, it is
important not to overly constrain the system implemen-
tor in terms of possible synchronization and scheduling.
Synchronization schemes that enforce atomic recoverable
transactions (such as Argus and Clouds [27,28]) are
overly conservative in what can be specitied. These sys-
tems use lock-based synchronization schemes to ensure
serializability of actions in order to allow recoverability if
an action should fail. Much of this is not directly in con-
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trol of the action implementor. In this sense, these

schemes are overly restrictive.

Other schemes allow more flexibility in what can be
specified, but make the expression of some kinds of con-
straints difficult. As we noted above, Sentinel Processes
make scheduling problems quite easy to specify, but
specification of operation sequences is complicated [25].
In Path Pascai it is easy to specify sequences of opera-
tions, but implementing scheduling or conditional! syn-
chronization is complicated. It should be possible to
express constraints in terms of resource history, resource
and synchronization state and information about pending
requests.

The configuration of concurrent systems raises other
questions about flexibility. Many proposed language con-
structs for writing distributed systems rely on static sys-
tems. In DP and Concurrent Pascal [11,19] processes
and modules are instantiated at system creation and
never terminate. This is not reasonable for real systems
that sometimes require on-the-fly reconfiguration to add
newly developed services; nor does this adequately allow
processes to abnormally terminate due to an error. DP
and Concurrent Pascal do not support dynamic alloca-
tion and reallocation of resources.

Other counstructs allow processes and objects to
come and go, but are inflexible in other ways. Fre-
quently commnunication paths are static. CSP is an
extreme case of this [14] in which the sender and the

receiver of a mmessage need to know each other's name.
This featurc of CSP makes it difficult to write libraries of
services [14]. CSP was meant to be an exercise in pro-
gramming using input, output and concurrency primi-
tives rather than a complete language proposal [14].
Some CSP successors, such as OCCAM (29, have
attacked this problem by introducing ports. SR [30] has
a similar communication problem. Server processes and
clients are tied in a one-to—one relationship that is expli-
cit and rigid.

Most synchronization proposals allow servers to
honor requests from anonymous clients. This is a flexible
arrangement, but occasionally there are cases in which
the client’s identity must be known. Some language con-
structs provide this information (PLITS |31} ), but more
often it is left up to the implementor. The mediator pro-
posal supports dynamic creation and termination of
mediators and flexible communication paths. It also pro-
vides a means of identifying clients.

1.2. A Proposal

The mediated object combines several proposals in
an attempt to provide a solution to the problems that are
outlined above. The mediated object paradigm is based
on object-oriented language design for operating systems
applications. In this model, resources are encapsulated
and access to them is allowed only through- exported
operations. The synchronization schemes used in DP
[11}, Monitors [8], SR(12] and Ada [10] all are examples
of languages using this paradigm. The mediated object




encapsulates data and allows access to that data through
a well-defined interface. Client processes request a ser-
vice from an exported list of service names, and the
mediator determines how the service will be provided.
Synchronization and scheduling constraints are specified
by the mediator body, and isolated from the definition of
data and operations.

The main features of a mediated object are given
below.
1) Initialization and termination blocks are included both
for the data resource and for the mediator.
2) The essential control structure within the mediator is
an adaptation of Dijkstra’s guarded commands [32). Our
adaptation uses delay semantics [11] rﬂher than
Dijkstra's abort semantics.

3) Requests are associaled with unique keys that allow
the mediator to manipulate requests and implement
scheduling.

4) Guards may contain status tests to inquire about
pending requests, and boolean tests which may refer to
data contained in pending requests [14,31].

5) The mediator controls execution of client requests by
commands allowing coupled and uncoupled client process
execution [33]. There is an exphclt command to return
results to a client.

6) Parallel guards are used to multi-program the media-
tor. Mediator execution is guaranteed mutually exclusive
belween guard evaluations.

7) Mediators map the name of a service requested by the
client onto that of an appropriate operation. Clients do
not call on services directly.

The proposal presented here is preliminary. A for-
mal definition of mediators using temporal logic is in
preparation. Some features of the syntax and semantics
may change as the formal description is developed, and
as implementation issues become more central. Section
two of this paper explains the mediator in greater detail,
presenting examples. Section three examines implementa-
tion aspects. Many of the individual components of the
mediator have been implemented in other languages.
The main difficulty is combining these in an efficient
manner.

2. Concepts and Notations

Mediators and mediated objects are built out of a
small number of concepts combined to provide a means
of implementing distributed systems resources. The
mediated object is one component of a larger language.
This paper does not present a complete language. The
“host” language is assumed to be similar to Pascal.

2.1. The Mediated Object

The mediated object includes the definition of
encapsulated data and operations defined on that data as
well as the specification of the mediator itself. The fol-
lowing is a schema of a mediated object.
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name = object
interface declaration

resource variables
resource vperations

mediator
mediator variables
mediator routines
initialisation block
mediator body
termination block
end mediator
end object

A mediated object is made up of three parts: 1) the
interface, 2) the encapsulated resource and 3) the media-
tor. The resource constants, types and variables defined
within the object are shared by the resource routines.
The mediator maps requests for services listed in the
interface onto appropriate operations and synchronizes
access. The mediator may contain its own data and rou-
tines not accessible to any external caller. Mediator data
usually consists of flags and counters, although it may
also include queue structures for scheduling.

The inediated object is a type, and a user may
create several instantiations of a given object. The
mediator initiation code is executed when an object is
instantiated. The termination code executes when the
body of the mediator terminates.

Figure 1 presents a complete mediated objeci. In
other examples, only the mediator will be presented.
Figure 1 contains many notations that have not yet been
explained. It illustrates the declaration of an interface,
object data (RW_data), resource routines (read and
write), and local mediator data (reader_count). Object
parameters are passed by value and by value-result.
Reference parameters seriously compromise data encap-
sulation and are impractical for current distributed
implementations.

Clients request a mediator service which is named in
the interface by including the name of the service as a
parameter o a call on the object. Once a client process
has requested a service, the client is blocked until the
mediator returns the results of the completed service.
The actual execution of a requested service may be
delayed by the mediator. The semantics of a call on a
mediator is the same, whether the mediator is installed
at a remote location or locally.

2.2. Basic Mediator Statements

The mediator is composed of several kinds of basic
statements and a specialized control structure. The sim-
ple statements that can be used within the mediator
include: assignments, local mediator routine calls, and
the commands skip, exec, spawn and release. Exec,
spawn and release are statements to initiate services for
clients and to return the results of services. These have a
key variable parameter that uniquely identifies- the client
for which the action was taken. Keys are explained in
detail below. The second parameter of au exec or spawn



reader_writer = object
Interface
job : export part
pid : key client_process_id;
case service : (read, write) of
read : (readprm: var some_type);
write : (writeprm : some_type);
end export part} :

var RW_data: some-type;

procedure read (readprm: var some_type);
begin readprm := RW_data end procedure;

procedure write (writeprm : some_type);
begin RW_data := writeprm end procedure; .

mediator
var
reader_count : integer;
| 9] : client_process_id;
init reader_count :== 0 end init
body
any iin key:
eyele
req(i); job(i).service = write ~>
eyele
reader_count = 0 ->
exec(i, write (job(i).writeprm));
release(i);
until true
a
req(i); job(i).service = read ->
reader_count :a= reader_count + 1;
spawn(i, read (job(i). readprm));
until false
/1
any iin key:
eyele
term(i); job(i).service = read ~->
reader_count :== reader_count - 1;
release(i);
until false
end body

end mediator
end object
Figure 1. Reader_Writer Object.

statement is a resource operation call. Exee permits cou-
pled execution of a’ resource operation (on behalfl of a
client identified by the key). The mediator initiates a
process to execute the operation, and then blocks until
the operation has terminated. For example, in the
reader_writer object above, the statement ezec(i, write
(7ob(i). writeprm)); initiates a write operation for client i.
The mediator blocks until the operation has completed.
On the other hand, spawn initiates an operation and
allows uncoupled execution. The mediator does not wait
for the operation to terminate, and continues executing
mediator code. In the reader_wrster object, the statement
spawn(i, read (job(i). readprm); initiates a read operation
for client i.

The release command returns the results of an

operation to the client and removes the request from the
mediator. This may be invoked only after an exec has

been completlcd, or a status test (term, see Section 2.3)
reveals that a -spawned request has terminated.
Reader_writer (figure 1) contlains examples of release
both after coupled and uncoupled service. The separale
termination test allows synchronization data to be main-
tained as services complete. Release also makes it possi-
ble to delay and synchronize termination and the return
of results. This can be used to implement a conversation
scheme [34), atomic actions|35), or other forms of fault-
tolerance.

2.3. Guarded Commands

Sequences of actions within the mediator body are
specified by the control structures presented here, and by
parallel guarded comnimands, which arc presented in vec-
tion 2.4. The basic mediator control structure is a
guarded command of this form:

any identifier In key:
cycle
guard -> statementJist;
]

=]
guard -> statement Jist
untll exit_condition;

The prefix any ... key: is optional.

The mediator guarded command has many similari-
ties to Hoare's CSP guarded commands [14], which in
turn can be credited to Dijkstra [32]. The chosen key-
words and semantics are closer to the guarded regions of
Brinch Hansen's DP [11]. The concept of key is related
to Hoare's guard command range [36], and to message
keys in PLITS [31,37]. The similarities and diflerences
will be discussed below. .

A guarded command is a control statement in which
different statement lists are chosen for execution based
on the truth value of the associated guards. Because the
evaluation of guards is central to this construct, they will
be explained first. The guarded command will be
described after. The application of keys to guarded com-
mands will be presented last.

Guards are made up of a status test and boolean
equations. Mediator guard evaluation always results in
either a true or a false value. The special guard other-
wise is true only when all the other guards in the guard
command are false.

Status tests allow inquiries about pending requests
for mediator service. These are tests for requests to ini-
tiate an operation (req) or to return results after the
operation has completed (term). For the guard reg( s )
to be true, the list of unserved requests must contain a
request from client . Once the guard has been fired (it's
associated statement list chosen to execute), req( i ) can-
not become true again until the service has been com-
pleted and the results returned (by release( i )). The
guard term( 1 ) is similar, becoming true when the execu-
tion of an operation for client i terminates.

A boolean guard paired with a status test may
examine the value of a client's request pararmeters. Each




client’s requcst is represented within the mediator by a
job descriptor defined by the interface declaration. The
descriptor is a variant record containing fields for a key
variable, the name of ‘the service requested and the
paramcters for that service. The service field serves as a
tag for variant parameter fields. The descriptor is
accessed using the key by indexing on the variable job, as
in these examples. The job descriptor for the

" reader_writer object is defined by the interface section

in figure 1. In thc reader_writer object, jobd(s).service
references the service lag field. Boolean guards may also
test the value of the mediator's local variables. Boolean
guards paired with status tests are not evaluated if the
status test is false. .

In the following explanation of a guarded command,
the execution of the guard is considered id isolation,
without considering possible interleaving with other
parallel guarded commands. The presence of parallel
guards introduces delays, but does not affect the seman-
tics of the guarded command.

Mediator guarded commands are .closely related to
Brinch Hansen'’s guarded regions [11]. The mediator pro-
cess must wait until some guard condition is true, and
theu execute the associated statement list. A statement
list associated with a true guard is said to be enabled A
guard whose associated statement list has been chosen
and started execulion is said to have been fired

When the statement list of a fired guard has finished
excculing, the exit condition in the final until line of the
guarded command is tested. If the condition is true, the

guarded command terminates, otherwise its guards are
reevaluated.

Nondeterminism is a possibility when more than one
guard is enabled. In this case, one guard will be chosen
to fire. A mediator implementation must ensure at least
weak fairness to avoid starvation problems. The media-
tor cannot delay if there are enabled guards.

The delay semantics of this guard command differs
from Dijkstra’s original definition and Hoare's adaptation
[14,32]. - Hoare and Dijkstra’s constructs abort the
guarded command when no guard is true. This creates a
framework that is convenient for formal verification, but
resuits in servers that do not facilitate waiting. Waiting
is usually implemented by explicitly programming a busy

loop. Because waiting is fundamental to providing ser-
vices, we prefer to wait implicitly.

Brinch Hansen implements both delay semantics in
guarded regions and abort semantics for guarded com-
mands. The mediator proposal includes only delay
semantics, because the inclusion of an otherwise guard
and exit conditions make the abort semantics redundant.
The otherwise guard has other applications for imple-
menting background actions and is a useful shorthand
for the negation of all other guards.

Mutual exclusion within a mediator depends both on
the use of the exec statement and the careful choice of
preconditions defined in a guard statement. The exec
statement iniliates a service process and blocks the medi-
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ator, but it does not check for other initiated processes.
In the Reader-writer example (fiznre 1), mutual exclu-
sion for the- write operation is ¢ensured by the guard
“cycle reader_count = 0 ->" and by the action of
exec. The guard will not permit a write to begin until
all executing read operations are terminated. The exec
stateinent blocks the mediator as the write is serviced lo
prevent other operations from becoming active.

Keys are used to identily the client to the mediator,
to access job descriptors for guard evaluation and
scheduling purposes and to tie clients to specific
resources, as in allocator objects. The key concept was
suggested by Hoare’s CSP process range labels [14,36],
but their use 'in mediators is considerably different.
Hoare applies ranges to processes to create a finite
number of explicitly and contiguously indexed processes.
This application of ranges is not included in mediators.
Hoare also applies ranges to guarded commands to sub-
stitute values within s given range for a bound variable
in the guard statements. The following example is from
{14]:

“(#:1..n)G -> CL stands for

Gl1->CL10G2-> CL20...0Gn-> CLn.”

In effect, the guard is expanded by creating a guard and
statement list for every value of i. The application of
ranges in Hoare’s guarded commaads is quite general.

In the mediator proposal, keys serve only to identify
client processes. Like Hoare's ranges, a key statement
(any ..) defines a key variable which wiil be bound
within the guard comunand it modifies. Consider the
guarded command shown in figure 2. It is executed as if
it were written as shown in figure 3. In this example the
value of the key identifier is in the range 1..n and defined
as the interface field job.rangeprm. Usually a process
identifier (the pid descriptor field) will be used as the
key. The designer of a mediator does not need to know
explicitly what process identifier values are being used,
just that they are unique. Although, in an abstract
sense, a potentially infinite key variable range implies an
infinitely expanded guard, there is no need to implement
them that way. Keys are always associated with status
tests. Only guards corresponding to clients with requests
can evaluate to true, so only such guards need to be
evaluated. This significantly limits the number of guards
evaluated. Evaluation can be restricted further when
fairness is taken into consideration.

Key variables are tied to job descriptors defined by
the interface. The most useful key reference is to the
client process identifier. The mediator designer may
designate another descriptor field as a key, as in figures 2
and 4. In any case, the chosen key field must be unique
for each pending request.

The mediator in figure 4 implements synchroniza-
tion for the dining philosophers problem. The client pro-
cess executes the statement diner (rangeprm, eat); to
request the mediator’s eat service. This solution is one of
many possible solutions using mediators.
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any i ln key:
eycle
req(i); job(i).service == A ->
exec(i,A);
release(i);
o
req(i); job(i).service = B->
x == x4+ 1;
exec(i,B);
relesse(i)
until false;
Figure 2. A Guarded Command.

cycle
req(1); job(1).service = A -> ‘
exec(1,A);
release(1);
o
req{1); job(1).service = B ->
x:=x <+ 1;
exec(1,B);
release(1);
a
req(2); job(2).service = A ->
exec(2,A);
Q
req(10); job(10). service = B ->
X=X+ 1;
exec(10.B);
release(10)
until false;

Figure 3. The Guarded Command Expanded.

2.4. Parallel Guarded Commands

The following schematic shows the syntax of the
parallel guarded command, a mechanism that allows the
interleaving of different mediator actions.

body
guarded_command

/!

see

guarded_command
end body

Parallel guarded commands are proposed to allow
different sets of guards to be evaluated at different times
during mediator execution. It allows the mediator to
“shuffle” together the evaluation of several guarded com-
mands. The choice of the notation // to separate paral-
lel guarded commands is deliberate. A mediator

containing paralle] guarded commands uses a multipro-
grammed Lhread of coatrol, one thread of coatrol for
each guarded command. Only one thread of control is
active at a time. The active coutrol block can change
only when guards are evaluated. This creates mutually
- exclusive execution of the statement lists between guard
evaluations. The nediator body terminales if all of the
parallel guard blocks terminate.

Consider the simplified example in figure 5. (Labels
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Interface
Job: export part
mylork : key range;
case service: {eat) of
eat: ()
end export part;

medlator
type range =0 .. n-1
var .
fork : array [range] of {free, inuse);
l,j :range;
init
for j == 0 to n-1; [fork{j} := free;
end init

body
any iln job.rangeprm :
eyele
req(i); job(i).service = eat and fork[i] == free
and fork|(i+1) mod n] = free ->
fork([i] :s= inuse;
fork{(i+1) mod n] := inuse;
spawn(i, eat(i));

term(i); job(i).service = eat ->
fork(i] := free;
fork{(i+1) mod n} :== free;
release(i);
end eyele
end body
end mediator
Figure 4. Dining Philosophers.

body
11: eyele
A-> 12: SA;
13: eycle B-> 14: SB until true;
until false
/l
ml: eyele
C-> m2: SC;
m3: cycle D-> md: SD until true;
untll falee
end body
Figure 5. SimpliGed Parallel Guarded Command.

have been included to make discussion easier). In tigure
S, A, B, C, D are guards. SA, SB, SC, SD are state-
ment lists. The control vector of this mediator has two
elemnents. The notation “<labell, label2, ... , labein >"
is a control vector in which n threads of contlrol are at
the locations labell through labeln. This notation is
adapted from the expression of execution state in Manna
and Pnueli's temporal logic scheme(38]. In figure 5, the
initial control vector is: <11, m1>. "When guard evalua-
tion occurs in the initial state, the guards A and C are
evaluated. As for isolated guard commands, the associ-
ated statement list of some true guard will be executed.
If the guard A from the cycle 11 is fired, the statement
list starting at 12 will begin execution. It will continue
exceuling without interruption until the new guard com-
mand ul 13 is encountered (assuming SA contains no




‘

guard commands). At this point the control vector is
<13, n1>, and the new guard evaluation includes the
guards B and C. Considering all possible combinations,
the set of guards evaluated at any one time may be: [A,
C|, [A, D}, B, C| or |B, D].

The statement lists following guards may contain
exec, spawn and release statements without altering
the flow of control discussed above. In every case, con-
trol passes to the following statement. In the case of an
exec stalement, this is delayed until the resource opera-
tion it has initiated terminates. This delay temporarily
blocks further mediator activity, but does not alter the
flow of control.

.

The parallel guard notation is an easy and concise
way of specifying changing sets of enabling conditions. It
is possible Lo rewrile a parallel guard as one large simple
guard commaud by using a distribution algorithm. The
resulting guard command is considerably more bulky and
actually less clear.

The introduction of a control vector within the
mediator docs not create the same complications for rea-
soning aboul programs that are usually associated with
paralle! processes. The contro! How in mediators is very
restricted, giving statement lists that will be executed in
mutual exclusion. This fact, combined with the small
size of mediators and the explicit statement of precondi-
tions in the guards makes it quite easy to reason about
the behavior of paralle] guards.

The reader/writer mediator demonstrates one appli-
cation of the parallel guard. In that example, firing the
guard reg(s); job(i).service write executes the asuoci-
ated statement, which is a eycle statement. As long as
its guard reader_count = 0 is false, the guard cannot fire.
No new write or read operations will be initiated, but the
secoud parallel guard will ailow read operations to finish
up and leave the mediator. Parallel guarded commands
coupled with nested guard commands gives a convenient
way to block some actions while permitting others.

2.6. Some Additional Examples

The examples that follow demonstrate some applica-
tions of mediators. Only the mediator portion is
included.

2.6.1. Alarm clock

The alarm clock object (figure 6) delays a caller for
a time period specified in the request’s parameter n.
Calls for the wake service cause a delay. Calls for the
lick service advance the clock. The field oui_time must be
declared for the operation wake job descriptor within the
mediator as a mediator local extension to the job descrip-
tor.

2.6.2. Shortest Job Next

The mediator in figure 7 implements a scheduler
that chooses the job with the lowest estimated service
time for the next execution. Requests are served in
mutual exclusion. This framework is applicable to many
scheduling problems.
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Inlt now := 0 end Init
body
any i in key:
eycle
req(i); job(i).service == wake ->

-- start the service, but termination will be delayed
Job(i). out_time :== now + job(i). n;
spawn(i, wake);

untll false;

/]

any i In key:
eyele
req(i); job(i).service = tick ->
now :== now + 1;
exec(i, tick);
release(i);
flag := false;
any j in key:
cyecle
term(j); job(j).service == wake
and job(j).out_time <= now ->
release(j);

otherwise -> flag :== true
~- exit eyele
until tlag;
untii false;
end body
Figure 6. Alarm Clock.

body
any i ln key:
ecycle
req(i); job(i).service = server ->
enqueue (i, job(i).cstimate);
until false;
//
eycle
queue_not_empty ->
j 1= dequeue;
spawn(j, server);
eycle
term(j); job(j).service = server ->
release(j);
unti} true;
until false;
end body

~- inilsate service aperation

Figure 7. Shortest Job Next.

The first guard command simply calls a local opera-
tion to queue up job descriptors in order of their esti-
mate parameter. The second guard command removes
the head element of the job descriptor queue and starts
that job's execution. The spawn and wait for

termination allows the mediator to continue enqueueing
new requests while a service operation iy executing.

The key variable j in the second guard command is
set by direct assignment rather than through a cycle
modifier.

2.6.3. An Allocator

The allocator in figure 8 gives a client process
exclusive rights to a resource for a series of accesses, The




body -
any i In key:
eycle
req(i); job(i). service == allocate ->
exec(i, allocate);
release(i);
flag ;== false;
eycle
req(i); job(i).service = use ->
exec(i, use);
release(i);
a
req(i); job(i).service = free ->
exec(i, free); ’
release(i);
flag ;= true;
until flag;
until false;
end body
Figure 8. Allocator.

client must request an allocation, then may make
repeated calls on the resource. Finally, the client must
explicitly release the resource before it can become avail-
able to another clicnt. This exainple uses the key bindiug
made in the outer cycle to restrict use of the resource to
one process in the inner cycle.

The mediator differs from the monitor solution [9]
for this problem in a number of ways. Most importantly,
the resource being allocated is encapsulated with the
mediated object. The mediator protects the resource
from unsynchronized accesses by faulty processes. The
mediator also prevents the resource from being released
by any process but the one the resource has been granted
to. The monitor solution does not offer protection in
either of these cases.

3. Implementation

Implementing mediators shouid not present
significant problems, because many of the components of
the construct have been itnplemented in other languages.
The main problem will be fitting the components
together in an efficient manner.

There are several possible implementations for the
mediator call mechanism. For example remote procedure
calls could be applied [39|. A remote procedure call can
be implemented as an exchange of messages between the
client and mediator. The client sends a request message
containing the name of the operation requested, its pro-
cess identifier and parameters. It then waits to receive a
reply, which will arrive when the mediator has released
the operation. The mediator receives a request and
creates a job descriptor. This is placed in the list of
pending requests, becoming available for status tests.
The job descriptor is destroyed when the mediator
releases a job and returns results to the client. In the
perception of the client process, a remote procedure call

appears to be no diffcrent than a simple local procedure
call.

The exec and spawn statements require systern
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support to initiate service for requests. This support
may include creating a new system process and schedul-
ing its execution on a free processor.

The special application of guards in mediators
makes it possible to limit the number of guard reevalua-
tions. After a guard evaluation, only certain events may
change the value of the guards: the arrival of a new
request, the termination of an active request or the exe-
cution of mediator statements after a guard has fired. If
all guards have evaluated as false, therc is no need to
reevaluate the guards until either new requests arrive, or
active requests terminate.

It is also possible to limit the number of guards con-
sidered during evaluation. The evaluation of guards con-
taining status tests can be constrained in two ways.
Status tests need only be evaluated for clients that are
present in the mediators list of pending requests, since
the value of any other status guard is automatically false.
Application of fairness limits the evaluation of status
tests for clients as well. These can be evaluated in the
order of their arrival until an enabling guard is found.

The evaluation of pure boolean guards cannot be
limited this way. Fortunately, these are likely to be few
in number. These also present a fairness problem. It is
easy to apply a fair ordering criteria for requests based
on time of arrival, but such criteria can not be applied to
simple boolean guards that may, without firing, become
true and false repeatedly. Implementing weak [airness
may require implementiug event queues or counts so that
these guards may be ordered.

The design of mediators is best suited to a system
made up of distributed multiprocessor nodes, with one or
several mediated objects installed at each node. Imple-
menting mediators on such a system should be straight-
forward. Implementation of mediators on a uniprocessor
is also possible using multiprogramming, but would prob-
ably be very inefficient. Mediators implemeuted on a dis-
tributed network of uniprocessors could work quite well.
This could be accomplished by multiprogramming the
mediated object on one node, or by allowing the media-
tor to exist on one node, and execute operations at

remote nodes. The limiting factor would be the amount
of object data that would need to be sent to the remote
service nodes.

4. Conclusion

This paper has presented a preliminary proposal for
a new language construct, the mediator, that may serve
as a useful tool in programming distributed embedded
systems. Mediators allow direct programming of syn-
chronization and scheduling and are able to directly use
both information about a pending request and the
present synchronization state. This makes mediators a
powerful construct for syanchrouization and scheduling
applications. At the same time, the design of mediators
supports structured design of concurrent programs.




Finally, mediators should not present significant
implementation problems and are adaptable to s number
of distributed architectures.
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This thesis describes the mediated object construct. Mediated objects‘support synchron-
ization and scheduling for system; programming within distributed systems. Mediated
objects are based on a resource view of systems, and fit within ; programming methodology
that emphasizes resource modularity, synchronization modularity and enc#psulated con-

currency.

A mediated object consists of an interface specification, a data abstraction construct (an
object) and a separate mediator module that specifies synchronization and scheduling within
the mediated object. The mediator displays many interesting features. These include: an
ad;ptation of guarded commands; keys that allow requests to be examined and manipulated
before they receive service; parallel guard execution; coupled and uncoupled modes of service

execution.

The design of the mediated object construct is first presented informally with many pro-
gramming samples. A temporal logic specification is also presented as a formal description of
the construct. The temporal logic may be used for verifying mediated objects. A sample
verification is included. Few practical languages have been specified with temporal logic.

The specification provided helpful feedback during the development of the construct.

Finally, the thesis discusses a few aspects of implementation and offers suggestions for

future research.
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CHAPTER 1.

INTRODUCTION

This thesis introduces the mediated object construct for implementing synchronization
and scheduling in distributed systems. The mediated object combines a data abstraction
module with a synchronization and scheduling module called a ﬁediator. The mediated
object construct supports systems programming applications that require complex and flexi-
ble synchronization ax;d schedulipg schemes. The research was prompted by the recognition
that many of the existing language constructs either overly constrain concurrency, make
expression of some kinds of synchronization and scheduling difficult, or due to formal

language design considerations fail to provide practical support for real programmers.

1.1. Motivation for Concurrency and Distribution

Computer systems that support concurrency are significantly more complex than simple
single-user sequential systems. Managing concurrency also creates a certain amount of over-
head. Distributed systems are yet more complex and entail even more overhead. In many
applications the benefits of such systems outweigh the costs of developing, implementing and

using them. Some applications could not be computerized at all without such support.

1.1.1. Concurrency

The first attempts to provide a form of concurrent programming in computer systems
occurred during the development of second generation computer systems in the early

1960’s[29]. In order to efficiently share access to an expensive mainframe among many users,



multiprogramming was <developed.' In multiprqgramming, a single processor switches between
different user jobs, keeping the processor as t;usy as possible[97]. Efficient use of sharable
resources has continued to be a prime motivation for developing concurrent programming.
The concern for efficient use of resources led to the beginning of multiprocessing systems at
about the same time[29]. Multiprocessing systems combine several processors in one com-

puter to increase throughput.

An early application of multiprocessing applied separate processors to manage input and
output while a main processor managed other computations(107]. This increased throughput

by freeing the main processor from driving slow mechanical I/O devices.

Later applications increased the number of main proc;assors contained in one computer
[29]. Multiprocessors are used to support greater throughput in time-sharing systems and to
speed up individual users’ jobs. Single users may exploit multiprocessing either by explicitly
partitioning a program to perform separate tasks concurrently, or by allowing the computer
to analyze the program for operations that may be done in parallel and to execute the pro-
gram implicitly in parallel(29]. The former is often referred to as multitasking. This is a
typical application of concurrent processing. The latter approach is commonly used for
numerical processing, and is often what is meant by parallel processing. Concurrent process-
ing does not usually refer to implicit analytical approaches to parallelism. In this thesis we

will address only concurrent processing.

Concurrency may be applied solely to speed up the execution of algorithms that are not
inherently concurrent. Concurrent algorithms are sometimes applied to mathematical prob-
lems that have adequate sequential algorithms. One example is a concurrent algorithm

applied to a matrix multiplication problem|50].




,

Other problems appear to be inherently concurrent, and a concurrent solution for such
problems is both more natural and easier to develop(29]. Many real-time systems are in this
category. For example, air traffic control programs that must track a number of airplanes at
once may be more easily implemented using the support for dealing with many independent
events pllovided in a concurrent syst-:em. The actual implementation of such a system may be
made by time-slicing a single processor, or by taking advantage of multiprocessing. In either

case, the system itself is best modeled as a concurrent one.

1.1.2. Distribution

Distributed systems join a number of processors that, unlike multiprocessors, do not
share memory. instead, in a distributed system many independent, possibly heterogeneous,
computers are tied together by communication lines{97]. The motivation for creating such
systems is in part the same as that for creating concurrent systems. Distribution can be used
to efficiently share resources and to speed up computations. It can also be used to increase

system reliability and to implement communications systems.

Resource sharing in distributed systems differs from sharing in simple multiprocessor
systems in that resources located at remote sites may be accessed by users that do not have
such resources available at their own site. Because of distribution, expensive but not heavily
used resources need not be duplicated for every computer in a system. In some distributed
systems it is possible to increase the throughput of the entire distributed system by shifting
computations from heavily loaded machines to computers that have idle cycles. This kind of

load balancing is another way of efficiently using the entire system resource.



System reliability may be improved by using the redundancy present in distributed sys-
tems. When a processor in such a system fails, it may be possible to shift its workload to
another functioning processor. If a resource located at one location fails, another compatible

resource may still be functioning elsewhere.

It is also possible to use the communications network inherent in a distributed system

for pure communications applicatioris, such as electronic mail(97].

Real-time control systems can make use of small processors configured in a distributed
system to take advantage of the great amount of concurrency possible and the added reliabil-

ity and efficiency such systems offer.

1.2. Language Design Goals for Distributed Systems

Developments in higher—level language design for managing concurrency and distribu-
tion has been driven both by the changes in systems architecture and by software engineering
developments. As the dominant computer system architecture has changed from uniproces-
sors to multiprocessor mainframes to networks of uniprocessors and distributed multiproces-
sor systems, the context for developing concurrent programming tools has also changed.
Meanwhile, the cost effectiveness of some synchronization mechanisms has changed as the

cost of computer memory and processors has dropped.

Whether for multiprocessor or distributed systems, concurrent programs are extremely
difficult to develop. Human beings are not well adapted to dividing their attention between
simultaneous tasks, and can only comprehend concurrency with a great deal of effort. Pro-
gramming is made more difficult by the fact that processes in such a system operate at

different and unpredictable rates, and also must cooperate in order to share common




resources or exchange information. Obviously, language and systems tools are required in
order to program concurrent applications productively. The nature of these tools has
changed with our understanding of the nature of concurrent processing and software

engineering.

Chapter two of this thesis discusses in detail some developments in programming
language design to support concurr’ent processing. Concurrent language design has followed
closely in the footsteps of sequet;tial language design. Early research developed a number of
primitives, including the test and set instruction{97], and algorithms using such primitives.
Later research has concentrated on using higher-level constructs to ease the programming

burden and to ensure more reliable results.

Software engineering research has found several techniques to be useful in managing the
complexity of programming large systems of sequential prograrﬁs. These include modular
programming and the principle of “information hiding”[27]. These techniques help to impose
organizational structure on programs and make the development of complex programs more
manageable. Constructs developed for concurrent programs have adopted this approach as
well. Newer constructs manage concurrency through higher-level abstractions that imple-

ment modularity and “information hiding”.

All language design is the result of tra&e—oﬂ's. Languages that offer a framework for easy
verification are often limited in flexible expressive power. Some languages hide many details
of communication between distributed processors, making an easy environment for applying
distribution to many problems. Others make the user manage the communications protocols
directly, providing a more flexible mechanism that is more difficult to use. In most cases, the

goal has been to provide tools to structure the development of concurrent, distributed pro-




grams.

The difficulty of developing reliable programs cannot be met by careful language design
alone. The best of tools can be badly used. This problem has been addressed by developing

rigorous program development methodologies and methods for program verification(41,60].

Both of these efforts are supported by formal language specifications. Many of the tools

created for the developing and verifying sequential programs can not be directly applied to
concurrent programs. Many of the general techniques of partitioning problems and applying

formal logic to the problem of verification have been used.

The mediated object was developed for managing resources in a distributed embedded
system. The design emphasizes resource modularity, synchronization modularity and flexibil-
ity. A mediated object encapsulates a shared resource that may be accessed by requesting
specific services from the mediator. The mediator is a prc;gram contained within the medi-
ated object that encapgulates synchronization and scheduling for the object. Concurrent,
noninterleaved accesses to the resources are allowed within the mediated object. In this
sense, the mediated object allows encapsulated concurrency. The range of synchronization
and scheduling constraints that can be specified by the mediator is very broad. An additional
feature allows the mediator to manage pools of heterogeneous resources that provide

equivalent services.

The mediated object design is supported by a temporal logic specification. Mediators
may be verified using this specification and the temporal proof system developed by Manna

and Pnueli(83]. We have developed an example of such a verification.




1.3. Outline of the Thesis

In the following thesis, we will discuss some existing synchronization mechanisms as
they apply to distributed systems. Chapter two examines the literature on concurrency and
synchronization in prograniming languages. Chapter three discusses the design goals for
r;lediated objects. Chapter four presents an informal description of the mediator construct.
Chapter five contains a formal ten'rporal logic specification and a sample proof. Chapter six
presents some observations on implementing mediators. Chapter seven discusses the éonclu-

sions of the thesis and offers some possibilities for further research.



CHAPTER 2.

A SURVEY OF THE LITERATURE

In designing a concurrent language, the designer faces all the familiar problems of
sequential language design. These .include providing sequential Acontrol structures and sup-
port for building abstractions. A concurrent language design must address three centr.al
problems that are not part of sequential language design (8,36]. A concurrent language must

have a notation and mechanism to:

e represent concurrency;
e provide interprocess communication;
e synchronize process interactions.

These concurrent design components and sequential design considerations are not completely

orthogonal, but it is convenient to look at these as separate issues.

2.1. Concurrency

The earliest problem faced in designing concurrent languages and systems was to pro-
vide notations and mechanisms for parallel execution. All of the solutions are based on the

process concept. A process is a sequential program that is in execution(29].

Processes may be used in a number of ways. In a multiprogramming system, the
processes represent different jobs that may or may not be related. These jobs take turns
using a single processor in order to better the overall system performance [97]. Multipro-

gramming may be implemented on computers that contain a single processor, or on comput-




ers that contain several (multiprocessors). This use of processes is essential to time-shared
operating systems. A multiprocessing system uses multiple processors that either share
memory or communicate by a network. While multiprogramming techniques may be used to
manage work for a single processor in such a system, this kind of system can support true

parallel process execution.

Coroutines fit nicely into a multipregramming view of concurrency. A coroutine is a
program whose execution is interleaved on a single processor with the execution of two or
more other coroutines. No synchronization is provided beyond the ability to suspend one

coroutine and resume execution of another (8.

Fork and join primitives are low level constructs that allow dynamic creation and ter-
mination of concurrent processes. When a fork instruction is executed by a process, a second
new process is created that will execute concurrentiy.with the process that created it. The
original process is often called the parent process. Join hgs been specified in several
ways(8,97]. A join opei'ation combines the execution of two processes into one process. In
one implementation, if two processes both execute a join, the process that executes the join
first is terminated. The other process is allowed to continue(97]. In other implementations,
only the parent process may execute a;join. The parent then waits for the child process to

terminate before the parent may proceed(8].

The fork and join construct have great expressive power, and have been widely used in
many systems(8]. The problem with this construct is that the fork instruction can be used in
an undisciplined manner to produce unstructured code. This is the same kind of problem as

the goto statement creates for structured programming(97].
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Cobegin' and coend statements provide a more structured way to dynamically create
and terminate processes [31,115]. When a cobegin is executed, two or more processes are
created that will proceed concurrently. The cobegin statement is the beginning of a block
that must end with a coend statement. All processes spawned by the cobegin terminate
together vahen all have reached the execution of the coend statement. This is a block strue-

tured control statement that supports structured programming(8|.

Modern concurrent languages use the fork/ join primitive or cobegin / coend state-
ments to implement concurrency. Generally routines that may be executed concurrently are
explicitly declared as processes. Some languages implement systems of processes that are
static. In these, process declarations are equivalent to a cobegin that spawns a fixed number
of processes that will not grow or diminish during execution. This is true of Brinch Hansen’s
Distributed Processes (18] and Andrews’ SR {6]. In other languages, invocation of a process
by a call spawns a process (essentially a fork) which will terminate when its sequential execu-
tion terminates. Concurrent PASCAL (17| and Path Pascal {67 take this approach. Fre-
quently the spawning of a process is done implicitly, but there are a number of languages that
include the cobegin construct explicitly. Argus (77|, CSP (50|, OCCAM (86| and Edison [19]

are some examples.

The simple ability to synchronously begin and terminate process execution that is pro-
vided by the cobegin construct provides only a very weak form of synchronization that is
only sufficient if the processes do not cooperate or share variables. Two processes that share
variables may interfere if no additional synchronization is implemented. Interference refers

to the unexpected and undesired interactions that may occur between unsynchronized or
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badly synchronized processes. A familiar example to UNIX®®! ysers would be the scrambled
screen that sometimes results from forked background jobs outputting to the same terminal
on which a user is editing a file. Similar interference may occur to shared data, with the
actions of one process invalidating assumptions about that data on which another process
must depend. Additional synchronization tools are needed to prevent this kind of data corr-

uption. .

2.2. Proceas Communication and Synchronization

The nature of the synchronization mechanism design depends on the way in which
processes may communicate. There are essentially only two ways in which processes may
exchange information. Processes may share variables by accessing the same addresses in
memory, or they may send and receive messages from each other. The difference is less clear
if the messages may contain call by reference parameters, but the distinction is still useful.
In many ways, these are two sides of the same coin. Anything that can be done within one
communication framework can be done within the other {72], although the elegance of the
resultant programs may differ. These communications mechanisms are suited to different

environments and present some unique characteristics.

Shared variable communication fits quite naturally into a system supported by a mul-
tiprocessor mainframe (36]. It is possible to duplicate the effect of a shared variable system
on a network, but this requires either extra wiring or message passing support. In a shared
variable system, the user is ultimately responsible for providing all synchronization, as none

is inherent in the communication mechanism [8].

! UNIX is a trademark of Bell Laboratories
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The semantics of ‘message passing has implicit synchronization characteristics. A pro-
cess must send a message before another process may receive it. Implementing a message

passing system requires more operating system support than must be provided in a shared

'memory system. Most of the additional support is in providing communications links

between processes [118]. Implementing communications links involves a number of decisions
concerning how processes synchronize when they send or receive messages. The most basic

decision is whether a sender and receiver must synchronize when they pass a message.

It is possible to roughly group synchronization constructs by the type of interprocess
communication used to support them (8,36]. This classification is clearer for some of the ori-
ginal synchronization constructs. It becomes less clear when more recent languages are con-
sidered. Because more recent structures for synchronization (such as atomic transactions)
represent higher levels of abstraction, it becomes easier to imagine them implemented within

either framework.

Synchronization in programming languages is used in two distinct ways. The most fun-
damental application of synchronization is used to ensure that operations on shared data
occur “indivisibly”. Processes may also be synchronized to enforce access ordering consistent

with higher level abstractions.

2.2.1. Atomicity.

Operations that appear to act “indivisibly” are frequently referred to as atomic actions
[12,26]. Some researchers have understood this definition to mean that all atomic actions
must exhibit “all-or-nothing” semantics [1,2,76,117]. By this definition, all atomic actions

must either complete their intended effect, or have no effect at all. This adds the requirement
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that all atomic actions neceésarily provide error detection and recovery in addition to safe
synchronization. The concept of “indivisible execution” is quite useful apart from considera-
tions of recoverability. This definition has frequently been used in research on verification

(69,71]. We will use the term “atomic action” in this sense only.

Atomic actions are frequently implemented to ensure data consistency in the face of con-
current accesses. Concurrent arithmetic on a shared variable illustrates a low-level use of the
concept. Consider two processes, P and Q, which execute the following statements con-

currently:
P: x:=x+1; Qx:=x+1;

As users of higher level languages, we tend to think of statements as behaving atomically. If
z were equal to 1 before these operations occurred, we would expect the only possible final
value of z to be 3. However, these statements would be translated by a compiler into code
that reads the value of z into a register, adds 1 to that value and stores the results back into
z. Since P and Q may interleave these steps in various ways, the actual result could be 1, 2
or 3 [8]. Synchronization to ensure data consistency and x\lon—interference by enforcing atom-
icity must be applied on this rather low level and on higher levels of abstraction as well. A
database “atomic transaction” is one such case, in which special effort must be taken to

ensure accesses to related groups of data maintain the consistency of the entire database

(36,40].
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2.2.2. Conditional S}'nchronization

There is a second application of synchronization that is not concerned with maintaining
the indivisibility of state changes implied by atomicity, but rather with limiting which state
changes will be allowed. Typically, such synchronization has been used to ensure that the
invariants of a data abstraction are maintained [4,47-50,70,92,93]. Implementations of con-
current buffer objects uses synchro;ﬁzation in this way. Operations on such an object must
be synchronized so that no operation will be allowed to “read” data from an empty buffer or
to “write” data to a full one. In this case, synchronization is not enforced solely to prevent
concurrent accesses from interfering. Whether or not access wiil be allowed is based on the
condition of the shared resource and on the type of operation. Such synchronization is fre-

quently called conditional synchronization [8].

2.3. Shared Variable Synchronization

A number of synchronization primitives have been developed for concurrent systems
using shared variables for communication. The main applications of these primitives are to
ensure mutual exclusion when the shared variables are accessed and to implement conditional

synchronization(8|.

2'301 . BUSY—WSit

Initial approaches to synchronization in shared variable systems were rather low-level
constructs. One of the earliest of these was the busy-wait loop [31]. In this approach, critical
sections (code acting on shared data) were protected by shared Boolean variables that had to

be true for a process to enter the section. If the variable was false when tested, the testing
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process would continue ;testing it repeatedly until it became true (through the action of some
other process). This solution had th;e virtue of not requiring sp'ecial hardware support, but
‘suffered from many drawbacks. This solution wastes a good deal of processor time, an espe-
cially serious problem when processors were very expensive. Another serious problem was the

difficulty of designing and implementing safe synchronization with such low-level tools.

2.3.2. Semaphores

Semaphores [31] are a higher level construct than busy-waiting for synchronization. P
and V operations on a semaphore implement a test on a Boolean. Executing a P operation
causes a process to release the processor if it is not immediately able to execute. Another
process leaving its critical section executes a V operation that will reactivate a process wait-
ing on a corresponding P. Simple semaphores and counting semaphores can be combined to

implement a variety of conditional synchronization schemes as well.

The actual implementation of the semaphore may be done with a busy-wait, but this
may be avoided by including these instructions as part of the operating system nucleus(29].
In this case processes can be suspended and reawakened on P and V operations by operations

that the nucleus must have for handling queues of processes.

Although they are a higher level primitive than the busy-wait, semaphores are not a
structured programming construct. Subtle errors in using these operations can lead to seri-
ous synchronization errors. The programmer is responsible for ensuring the every P opera-
tion is balanced out by a corresponding V operation. In a large program the individual
operations implementing synchronization are not localized, making it hard to find all the

instructions used to implement a certain constraint. Programs written with semaphores are




18

often hard to develop, hard to understand and hard to maintain.

2.3.3. Conditional Critical Regions

Once some low-level means of synchronizing processes were found, higher-level language
constructs that would allow a more structured approach to synchronizatic;n began to be
developed. Conditional critical regsons [15,16,48] presented one successful approach. In a
conditional critical region shared variables are confined to a construct called a resource.
Such variables may only be accessed in mutual exclusion. Sections of code that access a
resource are identified as a region. Statements that are enclosed in a region may be accessed
by only one process at a time. Conditional synchronization can be implemented by including

a Boolean test at the entry of the region.

This approach does not solve all of the probl;ams associated with the low-level, unstruc-
tured nature of semaphores. The tests and manipulations of Boolean conditions used to
implement conditional synchronization are once more scattered throughout the code. This
makes it difficult to read the code and understand the exact nature of constraints. Despite
the difficulty of structuring the use of conditional critical regions, this construct still has a
certain attraction. Brinch Hansen chose to use a simplified version of critical sections as the

main synchronization construct in Edison [19].

2.3.4. Monitors

A Monitor is a higher-level language construct that ensures that a data resource will be
used in mutual exclusion, without requiring the programmer to explicitly program low-level

synchronization[16,31,49]. The syntax of a monitor is similar to that of a class (figure
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2.1)[13]. The monitor contains encapsulated data and a number of operations defined on the
data. It functions as an abstract data type. As in an abstract data type, the only access to
encapsulated data is through the operations defined on them. Only one process may be active

in the monitor at a time.

class readers and writers: monitor
begin readercount: integer;
busy: Boolean;
OKtoread, OKtowrite: condition;
procedure startread;
begin if busy V OKtowrite.queue then OKtoread.wait;
readercount := readercount + 1; .
OKtoread.signal;
comment Once one reader can start, they all can;
end startread; '
procedure endread; _
begin readercount := readercount - 1;
if readercount = 0 then OKtowrite.signal
end endread;
procedure startwrite;
begin
if readercount # 0 V busy then OKtowrite.wait
busy := true
end startwrite;
procedure endwrite;
begin busy := false;
if OKtoread.queue
then OKltoread.signal
else OKtowrite.signal
end endwrite;
readercount := 0;
busy := false;
end readers and writers;

Figure 2.1. Readers and Writers Monitor[49].
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This simple view pf a monitor does not provide for conditional synchronization. There
are many variations of monitors that use different schemes to provide conditional synchroni-
zation. Hoare’s scheme [49] (figure 2.1) parallels the solution used in conditional critical
regions. In this approach, special “conditional” variables are defined in the monitor.
Processes within the monitor may execute the operations wait and signal on them. When a
process executes a wait, it becomes blocked and relinquishes control of the monitor. When
another process executés a signal it will awaken a blocked process and suspend itself until no
more processes are blocked on waits. Many processes may be blocked by the monitor, but at
most one will be executing. This approach has been combined with priorities to add a simple

scheduling capacity to monitors.

Other conditional synchronization schemes for monitors appear to be variations on this
basic theme. Concurrent Pascal [17], uses queue variables with delay and continue opera-
tions that implement a slightly less powerful séheme, in that not all monitors written in
Brinch Hansen’s scheme may be trax;slated directly into Hoare’s scheme without adding addi-
tional routines to the monitor{56]. The continue statement, however, is somewhat less
costly to code than the signal statement. The continue statement causes the process that
éalled it to.return from the mediator. Signal is more difficult to implement, as it must
suspend the signaling process and ensure that that process will not become unblocked before

all processes blocked on wait have resumed(8|.

The use of special Boolean condition variables tends to separate the conditional syn-
chronization testing from the conditions that lead to a process blocking or resuming execu-
tion. The result can be inscrutable code unless much care is taken. Hoare [49] proposed a

conditional wait that would operate on an arbitrary Boolean expression. In this scheme,
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whenever a process exits a monitor an implicit signal is executed that causes waiting
processes to retest their conditions. This is somewhat less efficient than the above
approaches, but a lot easier to use [8]. This by no means exhausts the variants that have

been implemented to deal with conditional synchronization in menitors (36].

Monitors effectively ensure that the execution of monitor operations interleave. For the
portion of the operation that is interleavéd, no interference may occur. The execut;ion of an
operation may be suspended by performing a wait or signal. This creates a possibility of
interference in conditional synchronization because the actions of other processes will be
interleaved between the time a certain process becomes blocked and when it resumes opera-
tion. For example, a process executing an operation in the mediator may establish a certain
condition, execute a signal and become suspended. If it requires that condition to be true
when it resumes operation, either all possible interleaved executions must ensure that condi-
tion is maintained, or the suspended pro;:ess will need to test for that condition when it
resumes(8,119]. Ensuring that conditions will not change for suspended processes like the one
described above and writing additional tests to ensure conditions on resumption are not easy

tasks.

Systems that include a large number of components may be built usin'g a large number
of monitors to manage access to those components. In these cases is may become necessary
for a process executing within a monitor to call another monitor. Such calls are referred to
as nested monitor calls. Nested monitor calls are a problem in the simple monitor scheme
presented here[8,97]. Consider the situation in which a process executing in monitor A calls
an operation in monitor B. While executing in monitor B, the process still retains mutual

exclusion in monitor A. No other process can gain access to monitor A. This will continue to
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be so as long as the process has not returned from B. If the process becomes blocked in B, a
considerable delay may occur before the process returns from its call. This situation can seri-
ously degrade the performance of a system(8|. In this simple example, only two monitors are

involved. It is possible for a chain of calls involving several monitors to tie up all those moni-

tors when the last call made becomes blocked in another monitor. The performance cost

becomes correspondingly larger.

Many solutions have been proposed to deal with nested monitor calls. Many of these are
cited in [8]. Some have suggested that such calls be prohibited or limited to cases in which
the monitors involved were lexically nested (as in Modula[119]). Others have proposed
mechanisms to allow a process blocked in a nested mediator call to release mutual exclusion

of all its monitors, and to reacquire mutual exclusion when the call becomes unblocked. A

. final solution is to provide other mechanisms to handle the situp.tions in which nested monitor

calls would be used.

The biggest remaining objection to the monitor scheme is that monitors provide only
mutually exclusive access to the resources that they encapsulate. Many resources may
require higher degrees of parallelism to be used most efficiently. Certain kinds of accesses to
shared data do not pose threats to data consistency. For example, several processes reading
from a table simultaneously do not pose a threat of interference. This kind of simultaneous
access cannot be constructed within a monitor. Solutions to the readers and writers prob-
lem[27] implemented with monitors use a monitor like that in figure 2.1 to apply a protocol,
but the actual read or write operation must occur outside of the monitor. However, the mon-
itor cannot enforce the use of synchronization control. A process may access the shared data

without it. This .may simply damage the shared resource, or it may deadlock the monitor



21

(115].

Monitors have proved to be an enormously influential mechanism for synchronization.
Many languages have been extended for concurrent uses by adding some variant of the moni-
tor concept. Many of these operate in shared memory systems; Concurrent Pascal {17}, Mesa

[87], Modula [119], Concurrent Euclid [54] and Path Pascal [67]. The influence of monitors

has also been felt in languages baséd on message passing: DP [18], Ada™? SR [6,7], Distri-

buted Path Pascal [66] and Argus [117].

2.4. Open Path Expressions

In xﬁonitors, mutual exclusion synchronization is provided implicitly by the construct,
while conditional synchronization is done with user programmed signal and wait statements
that are scattered throughout the module. An Open Path Ezpression is a notation based on
regular expressions that can specify many complex synchronization constraints in a single
expression(21,25]. Open path expressions have been introduced into an encapsulated data
module called an object to manage concurrency in Path Pascal and Distributed Path Pascal
[24,66,67]. As in a monitor, processes may access data only through the operations the object
defines on that data. However, access is not limited to mutual exclusion. A path expressions
may specify that an unlimited number of processes may execute an operation simultaneously,
that some fixed number may execute it, or that execution may occur only in mutual exclu-
sion. Similarly, cert#in combinations of operations may be allowed to execute together, while
other combinations are prohibited. In all cases, the basic unit of synchronization is the

operation.

? Ada is a trademark of the U. S. Government, ADA. Joint Program Office.
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A path expression specifies access restrictions using lists of operation names and path
operators. This has been called an “operat;ional approach” to synchronization [8] because
synchronization is expressed as allowable sequences of operations on an object. There is no
mechanism provided to enforce synchronization based on the value of variables encapsulated
within the object. This leads to a certain awkwardness when implementing conditional syn-
chronization within Path Pascal objects. It is possible to do so using nested objects to imple-
ment what is essentially a monitor—liice signal/ wait protocol. Scheduling, a type of condi-

tional synchronization, can be implemented by similar methods.

There have been some attembts to extend path expressions to include tests of Boolean
conditions. Predicate path expressions are one such extension[4|. David Mizell further gen-
eralized path expressions to address the conditional synchronization problem(88]. Mizell’s
generalized paths have lost their regular expression form and h;we developed into a program-

ming language including loop and branch constructs and local variables.

Path expressions offer a very expressive notation for a broad range of synchronization
schemes. The programmer is not limited to mutually exclusive execution, so it is possible to
build customized synchronization based on the semantics of the operations. Path expressions
also effectively separate the design of synchronization from the design of operations for many
problems. The separation is less effective when nested objects must be used to implement
conditional synchronization. However, nested objects do assure that all uses of the resources
they implement will be properly synchronized. Finally, path expressions take the difficult
chore of writing low level synchronization code out of the hands of the programmer, resulting

in safer code from the start.
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The Path Pascal object has proved to be very flexible. It has served as a host language
for implementing real-time deadline processing mechanisms [116], extensions for fault-

tolerant computing [55,105] and software capabilities [79].

Path expressions have been used in a number of projects related to systems development
and software engineering. The Clouds project at the Georgia Institute of technology has used
path expressions {2]. They have beén adc;pted as part of the SLAN~-4 specification language

[9] and have played a part in other research on specification and verification [11,90,108}.

2.5. Synchronization for Message Passing Systems

Loosely coupled processors in a distributed system inevitably communicate by some

form of message passing. The act of sending and receiving a message can become the basis

for synchronization because it has an inherent order. In such a system, the contents of the .

message takes the place of shared variables. The major problems in designing a concurrency
scheme based on message passing are identifying the source and destination processes for a

message and designing a precise semantics for synchronization.

2.5.1. Naming

One simple approach to naming in a message passing system is to require the sender to
name its intended receiver, and the receiver to directly name its intended source. In general,
the direct naming approach is easy to implement and easy to understand(8]. Direct naming,

however, is somewhat limited in the kinds of relationships that it can easily express.

Server processes are not easily implemented with direct naming. A server process is

meant to provide a service to whatever client process calls it. A disk driver routine is an
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example of such a process, as many processes will call on it to read files for them. The server
processes must be flexible enough to serve any client that calls on it. It cannot reasonably
anticipate the names of all potential clients [8,36,115]. On the other hand, some pipelines are
fairly easy to program in a direct naming framework. In a pipeline, one process produces a
stream of output that immediately becomes the input of another concurrent process. A pipe-
line may consist of several stages, e’ach executed by a separate concurrent process. In cases
where a given static ordering of pipeline processes will be maintained, the direct naming
scheme can easily be used. However, pipelines that are dynamically created at run-time can
not easily be implemented with static naming schemes{8|. This approach would make it

difficult to implement pipelining as it occurs in UNIX

iWf1n11
{ivij.

CSP uses a static direct naming scheme(50]. In CSP, the names of interacting processes
occur as constants, thus all the names of processes that may interact must be know when the
system is compiled. Because the naming in CSP is entirely static, certain applications are

difficult to implement using CSP.

One alternative to direct naming allows processes communicate only indirectly through
a known intermediate, often called a channel Channels may be named statically, fixing the
names at compile time, or they may be computed dynamically at run time. Static channel

naming suffers from the same kind of inflexibility as direct naming(8].

Channels may be implemented in many ways. In a mailboz scheme, all processes share a
list of intermediate locations to which each may send messages, and from which each may
receive messages. This scheme may be quite expensive to implement without special network-

ing support(8|.
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A more restrictive approach that is easier t.o implement ties the intermediate location to
one receiver. In this case it is called a port. Ports allow multiple client/ single server rela-
tionships to be easily implemented(8]. Many languages, including Ada [28], have been imple-
mented using ports. ‘Ports have been proposed as an extension to CSP as well [20,65] and

implemented in the CSP-like language OCCAM (86].

4

2.5.2. Synchronization

The kind of synchronization provided by a message based language is determined to a
large extent by the kind of synchronization enforced between senders and receivers (106].
‘Communication between a sender and a receiver may océur either synchronously or asynchro-
nously. When a sender and receiver communicate synchronously, sending and receiving
must occur together. If a process is ready to send, and its intended receiver is not ready to
receive, the sender must wait for the receiver. If the receiver is ready to accept a message,
and the sender is not ready to send it, the receiver waits for the sender. The execution of
either a send or a receive statement may cause a delay. When a sender and receiver com-
municate asynchronously, there must be a buffer between the sender and receiver. The
sender process is not delayed if the receiver is not ready. It just transmits its message and
continues on. The message is stored in a buffer until the receiver is ready to accept it by exe-

cuting a receive. If a receive is executed when no messages are waiting, the receiver usually

must wait for a new message. In some cases, languages provide a non-blocking receive

statement to use as a test for pending messages.

Either of these forms of communications provides a basic measure of synchronization

between the sender and the receiver. In either case the receiver can be assumed to be execut-
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ing either “behind” or “in step” with the sender. When these communications primitives are
combined with guarded commands [32], communications can be controlled by the internal

process state. This facilitates implementing conditional synchronization.

A guarded command consists of a Boolean expression followed by a statement or state-
ment list. These are built into a list of alternates as in figure 2.2. When a guarded command
is executed, some statement with a 'guard that evaluates to true will be executed. If no guard
evaluates to true, the command gborts. Guarded commands are also used in a looping con-

struct in which failure to find a true guard causes the iteration of the statement to terminate.

In CSP, guards may contain receive statements(50]. If no message is ready to be
received, the execution of the statement list is delayed until some message arrives. CSP has
been extended to allow synchronous send statements in guards as well [20,65,109]. This is a
good deal more difficult to implement because it requires some protocols to be developed to

arbitrate between pairs of processes wishing to communicate|8].

if Gl — S1
0 G2 — S2
C G3 —S3
0O Gn = Sn
fi

Figure 2.2. A Guarded Command[32].
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2.5.3. Remote Procedure Calls

In general, the send and receive primitives discussed above operate on a rather low
level. Often it requires more than one exchange of messages to program an interaction
between processes(8,36,115]. For instance, in a client/ server interaction two sets of message
must be exchanged. The first exchange requests the service. The second one is implemented
to obtain the results of that service. This type of relationship is better served by a tradi-
tional procedure call mechanism, where waiting for the results is implicit in calling for the
service. However, the traditional procedure call mechanism is not suited to distributed com-

puting.

The remote procedure call[89] was developed to provide this kind of higher level syn-
chronization over a network. The request for a service is expressed as a call, with parame-
ters, to a remote procedure. The remote procedure is executed by the server process as a
“proxy” for the client process. On completion of the remote process, the client receives the
results of the computation and continues executing. A remote procedure call implements
message passing at service initiation and conclusion that otherwise the user would have to

provide.

There are many possible ways to manage server processes in a remote procedure call
scheme. The remote procedure may be declared as a simple procedure, but implemented as a
process that continuously loops, waiting for a call to begin execution. Remote procedures are
implemented this way in SR [6,7], and in Distributed Path Pascal [66]. SR has other con-
structs that allow concurrent execution within a server object, as remote calls do not. DPP
implements concurrent execution by spawning processes as they are needed within the remote

object. This is transparent to the user. Argus guardians implement concurrent execution in
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a similar manner{77|. -

Remote processes may implemented by specific statements for explicitly accepting calls
from clients. Ada tasks [28,42,114,122] use such accept statements in guarded commands to
initiate remote services. The Ada remote call mechanism is called a rendezvous. Brinch
Hansen’s DP [18] takes a similar approach. In these languages, execution of a remote pro-
cedure by a server process occurs m mutual exclusion. In SR[6| a similar construct allows
multiple processes to execute. The user must explicitly declare one process for each potential
concurrent process execution. Each server process is tied permanently to one client. This is a

rather inflexible notation, but does allow simultaneous service to multiple clients.

Remote procedure calls have been used to implement atomic transactions in the Argus
[77] and Clouds [2] systems. They are used to implement an at most once semantics for the
remote call(8], and to ensure that either an action will be completed once, or it will have no
effect at all. In this case, the remote cgll implements both synchronization and failure atomi-
city. The amount of concurrency possible in such systems is severely constrained in the

interest of providing an environment for recovery.

2.5.4. Remaining Interference Problems

The use of synchronous or asynchronous message passing does not in itself guarantee
that processes will not interfere [5,91,103,113,115|. Some kinds of interference are eliminated
because the addresses that processes access in this scheme are disjoint. However, in order for
communications between processes to be useful, there must be assumptions made by and
about both partners in the communications. These assumptions are made on the basis of the

process’ own state and the communications received from the other process. It is possible for
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the state of a sender pfocess'to change between the time a message is sent and the time it :15
received. If the message has been invalidated by such a state change, the receiver may act
under invalid assumptions. Asynchronous message passing systems are prone to this prob-
lem, and special protocols generally are implemented to deal with it. The delay in transmis-
sion during which a message may become invalid does not exist in synchronous systems, yet
interference may still occur. Once’a me;asage has been sent and received, its contents may
still be invalidated by the continued execution of the participants [8,104]. The programmer

must prevent these problems using the basic synchronization tools provided.

2.8. Scheduling

Any processing module that can not service all requests as they are received must imple-
ment some form of scheduling to choose between pending requests. Scheduling is used to
decide which blocked process will be allowed to continue executing when a r;esource becomes
free. Many components of operéting systems are scheduled in one way or another in order to
provide efficient service. When time is a consideration, efficient scheduling is important. For
instance, it is required as an inherent part of any scheme using priorities or deadlines to

ensure timely service [29].

Very few languages implement scheduling primitives for users. In most cases, users are
left to build their own schedulers out of other language primitives. As T. Wei mentions in his
thesis (116}, any concurrent la.\nguage must implement scheduling on the execution of parallel
processes. This is frequently done implicitly, as in Path Pascal, Concurrent Pascal, DP, and
Argus [36]. Some monitor schemes have been implemented that allow a priority to be added

to the wait statement [49]. HAL/S, a language for real-time programming [57] (cited in

°
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(116]) implements dynamic scheduling in a complex framework. Ada implements a static
process priority scheme used for preemptive scheduling. Maintaining consistency in the face

of preemption is a problem for the user to solve.

Andrews’ SR language[6] includes a scheduling primitive. Once an operation invoked by

-remote procedure call has been accepted, the choice of which caller will be allowed to execute

is determined by a scheduling pa.rax;zeter in the accept statement. This may refer to a single
parameter of the call, or to a function based on the call’s parameters. Andrews claims that
the implementation is somewhat expensive because the scheduling requires reevaluation each
time a call selection is done, but that it is not more expensive than user coded solutions [6,7].
Dennis Leinbaugh {74,75] has also integrated scheduling into a concurrent -language design.
The language it is based on is similar to PL/I, and the notation is verbose and strongly com-

partmentalized.

It is not always possible to reconcile a synchronization construct with such scheduling
mechanisms. In mechanism-s that synchronize on the basis of a class of requests (such as all
requests for a “read” operation), once such an operation has been enabled, a scheduling primi-
tive may chose a particular request to execute. In a synchronization system that allows the
characteristics of an individual request to determine its eligibility, such a scheduling primitive

is not workable.
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In real-time programming, the separation makes it easier to estimate the execution time
of operations during compile time [116]. The ability to estimate execution time is essential to
programming in real-time [3,34,36,73,97,120], separating synchronization from timing makes

at least part of the determination static.

Few constructs provide synchronization modularity. Among those are Path Pascal (PP
and DPP) (23], sentinel processes [98], and serializers {44]. Serializers are implemented in a
LISP environment. Sentinel processes appear to be the imperative language analog. Both
combine built-in counters with queueing primitives to allow modular specification of syn-
chronization. These constructs appear to be well suited to FIFO scheduling problems and

variants of the reader/writer problem, but are less flexible than desired [14].

Path Pascal encapsulates most synchronization specifications in a path expression. This
often provides a high degree of synchronization modularity. The synchronization modularity
is lost when conditional synchronization or scheduling is specified. These must be pro-
grammed using nested objects. This results in loss of modularity as well as inefficiency due to
the implicit scheduling applied at each level of nesting. In order to maintain synchronization

modularity, synchronization data must be encapsulated.

Mediated objects provide both data modularity and synchronization modularity and

maintain the expressiveness of less modular synchronization mechanisms.

3.2. Expressiveness

The expressiveness of a synchronization construct frequently has been demonstrated by
programming a number of familiar test problems. The readers/ writers problem(27], the din-

ing philosophers problem (31} and a simple ring-buffer are some examples [36,97). Test
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problems illustrate synchronization based on different kinds of information. Toby Bloom (14]

gives the following categorization of synchronization constraints:

e the operation requested;

e the time of the request;

e the request parameters;

e the resource state; ,
o the history of events in the resource.

v

These apply both for providing mutual exclusion and conditional synchronization, and as a
basis for scheduling. The expressiveness of a synchronization construct may be measured by

its ability to deal with each of these types of information and combinations of these types.

A second consideration in expressiveness is the degree of control over synchronization
and concurrency a construct gives to the programmer. Considerations of safety and expres-
sive power often must be traded off in designing practical languages (see Brinch Hansen's dis-
cussion of the trade-offs made in Edison [19] ). It is possible to conceive of a construct that
provides synchronization based on all of the types of information above, but allows only
mutually exclusive access to a resource. Such a construct would not be appropriate for

embedded distributed system use [22,73].

Mediated objects allow synchronization and scheduling to be specified using all the kinds
of constraints mentioned in list above. The system programmer is given a great deal of lati-

tude in the kinds of synchronization that may be implemented.

3.3. Ease of Use

Measuring the “ease of use” of a construct can be very subjective. Programmers
develop certain habits when using particular languages that may cause differences of opinion

about what is and is not easy to use. This warning aside, some assertions can be made about
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ease of use.

The complexity of expressing a certain kind of synchronization should be proportional
to the complexity of the abstract synchronization. The notation should be readable. A good
rough estimate of usability can be obtained by making a small modification in a synchroniza-
tion specification and observing the degree of change reﬁer;ted in the new implementation

[14,34]. Ideally, such changes should entail only small modifications in the implementation.

Mediated objects because of their flexibility make a wide range of applications easier to
implement than would be possible with more limited constructs. Some simple applications
may appear overly complex in a mediated implementation. Some of the wordiness of media-
tors is meant to make a complex notation more familiar through use of self-explanatory key
words. However, there is always a certain trade—off between expressive power and ease of

use.

3.4. Support for Verification

A useful synchronization mechanism should support program verification. Program
verification is a somewhat controversial issue in software engineering [5,30,112]. One group
claims that the complexity of proving large programs makes verification either impossible or
useless [30]. At the other extreme are claims that formal proof techniques are the only way
to ensure that large programs do what they are supposed to do [10,33,37,68,69]. It is not rea-
sonable to exﬁect that verification alone can give programmers total confidence in the pro-
grams they design [102]; however, verification supported by careful language design and

automated tools certainly should increase the designer’s confidence.
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Verification consid.eratiohs are not entirely separate from the features discussed above.
Modular programming concepts allow program proofs to be done in a piecewise manner,
which reduces proof complexity [37,43,45,46,68,69]. The expressiveness of a programming
language affects verifiability as well, but not always in a positive way. Some very powerful
programming constructs, such as the goto or pointer rr;ake some programs extremely difficult
to verify [51,78]. Verif:xcation can be a gt’xideline in developing such constructs and in their

application (5].

A programming language designed to support verification must be precisely specified.
This affects both ease of use and portability. Because we do not intend to develop an entire
programming language, the “host language” chosen for our synchronization construct should

verifiable.

The design of mediated objects has been guided by verification considerations. We have
developed a temporal logic specification of mediators that may be used as a base for

verification.
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CHAPTER 4.

THE MEDIATED OBJECT CONSTRUCT

The mediated object para.digm is based on object-oriented language design for operating
systems applications. In this model,’ resources are encapsulated and access to them is allowed
only through exported operations. The synchronization schemes used in DP (18], Monitors
[49], SR[6] and Ada [28] all are examples of languages using this paradigm. The mediated
object encapsulates data and allows access to that data through a well-defined interface.
Client processes request a service from an exported list of service names, and the mediator

determines how the service will be provided. Synchronization and scheduling constraints are

specified by the mediator body, and isolated from the definition of data and operations.

The main features of a2 mediated object are given below.
1) Initialization and termination blocks are included both for the data resource and for the
mediator.
2) The essential control structure within the mediator is an adaptation of Dijkstra’s guarded
commands [32]. Our adaptation uses delay semantics [18] rather than Dijkstra’s abort seman-
tics.
3) Requests are associated with unique keys that allow the mediator to manipulate requests
and implement scheduling.
4) Guards may contain status tests to inquire about pending requests, and Boolean tests
which may refer to data contained in pending requests [35,50].
5) The mediator controls execution of client requests by commands allowing coupled and

uncoupled client process execution [99]. There is an explicit command to return results to a
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client.

6) Parallel guards are used to multi-program the mediator. Mediator execution is guaranteed
mutually exclusive between guard evaluations.

7) Mediators map the name of a service requested by the client ont;) that of an appropriate

operation. Clients do not call on services directly.

The descriptions that follow first present a schematic of a portion of the mediated
object syntax and then an informal semantic description with examples. Portions of these
results have appeared in{38]. Chapter 5 presents a formal temporal logic specification of the

construct.

The mediated object is one component- of a larger language. This thesis does not
present a complete language. For our purposes, we assume the “host” language is similar to
Pascal. As a result, our mediator syntax is Pascal-like. If this construct were implemented

in another language, the syntax would necessarily be quite different.

4.1. The Mediated Object

The mediated object includes the definition of encapsulated data and operations defined
on that data as well as the specification of the mediator itself. Figure 4.1 is a schema of a

mediated object.

A mediated object is made up of three parts: 1) the interface, 2) the encapsulated
resource and 3) f.he mediator. The resource constants, types and variables defined within the
object are shared by the resource routines. The mediator maps requests for services listed in
the interface onto appropriate operations and synchronizes access. The mediator may con-

tain its own data and routines not accessible to any external caller. Mediator data usually
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identifier = object
interface declaration

resource variables
resource operations

mediator
mediator variables
mediator routines .

initialization block
mediator body
termination block
end mediator
end object

Figure 4.1. Mediated Object Schematic.

consists of flags and counters, although it may also include queue structures for scheduling.

The mediated object is a type, and a user may create several instantiations of a given
object. The mediator initiation code is executed when an object is instantiated. The termi-

nation code executes when the body of the mediator terminates.

Figure 4.2 presents a complete mediated object. In other examples, only the mediator
will be presented. Figure 4.2 contains many notations that have not yet been explained. It
illustrates the declaration of an interface, object data (R W_d.ata), resource routines (read and
write), and local mediator data (reade;_count). Object parameters are passed by value and
by value-result. Reference parameters seriously compromise data encapsulation and are

impractical for current distributed implementations.

Clients request a mediator service which is named in the interface by including the name
of the service as a parameter to a call on the object. Once a client process has requested a

service, the client is blocked until the mediator returns the results of the completed service.
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reader_writer = object
interface
job : export part
pid : key client_process_id;
case service : (read, write) of
read : (readprm: var some_type);
write : (writeprm : some_type);
end case;
end export part;

var RW_data: some-type;

procedure read (readprm: var some_type);
begin readprm :== RW_data end procedure;

procedure write (writeprm : some_type);
begin RW_data := writeprm end procedure;

mediator
var
reader_count : integer;
i, ] : client_process_id;
init reader_count :== 0 end init
body

any i in key: cycle
req(i); job(i).service = write —>
cycle
reader_count == 0->
exec(i, write (job(i).writeprm));
release(i);
until true
c
req(i); job(i).service = read - >
reader_count :== reader_count + 1;
spawn(i, read (job(i). readprm));
until false '
/1
any i in key: cycle
term(i); job(i).service = read ->
reader_count := reader_count - 1;
release(i);
until false
end body
end mediator
end object
Figure 4.2. Reader_Writer Object.
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The actual execution of a requested service may be delayed by the mediator. The semantics
of a call on a mediator is the same, whether the mediator is installed at a remote location or

locally. '

4.2. The Interface

4

The interface declaration lists- the services provided by the mediated object and the
parameters of a request for each service. This provides an external view of the object.
Within the mediator, every request that is either pending or being serviced by the mediator is
represented by a job descriptor of this form. The descriptor for a specific request is dis-
tinguished by Jthe key parameter. The syntax we have used is similar to that of Pascal vari-
ant records. The name of a requested service serves as the variant record tag. A schematic
of the interface declaration is presented in figure 4.3. Figure 4.2 contains a complete example
of an interface declaration and its use. The fixed parameters in the interface declaration are
those parameters present in all calls to the mediator. In every case, this will include a
parameter designated as key by the keyword key. The key parameter must be unique for
every client that requests service from the mediator. The key is used to identify the client

making a request and to manipulate job descriptors within the mediator. The use of keys is

described in more detail below.

The service_Jist in the schematic represents a list of services that the mediated object
provides. These do not necessarily correspond to the names of encapsulated routines. The
mediator maps a request for a particular service onto a specific routine that can provide that
service. In some case, more than one routine may be available that provide equivalent ser-’

vices. This allows the mediator to control pools of heterogeneous, but equivalent resources.
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interface
identifier : export part
fixed_parameters
case identifier : (service_list) of
variant_parameters
end case '

end export part
" Figure 4.3. Interface Schematic.

Parameters are identified as value parameters and value-result parameters within the
interface. The mediator can inspect the value of these parameters to implement appropriate

synchronization and scheduling.
A request for a read action in the reader_writer example (figure 4.2) takes this form:

reader_writer (me, reader, myprm);

where me is a constant containing the client process’ uniquely assigned identifier, reader is the
name of the requested service and myprm is a parameter. This request is mapped onto a -
mediator job descriptor with the values: job(me). pid = me, job(me). service = reader,

job(me). readprm = myprm.

identifier : loeal part
fixed_fields
case identifier : (service_list) of
variant_fields
end case
end local part
Figure 4.4. Local Descriptor Schematic.
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The interface deﬁnition.includes all parameters that pass between the client and the
mediator and defines a job descriptor. In some cases it is useful to add additional informa-
tion to this descriptor for use within the mediator as in figure 4.11. Figure 4.4 shows a
schematic for a local extension to the interface. The data contained in the extension is part
of a job descriptor acces;ed using the key. The extension of the descriptor is local data in the

v

mediator.

4.3. Basic Mediator Statements

The mediator is composed of several kinds of basic statements and a specialized control
structure. The simple statements that can be used within the mediator include: assign-
ments, local mediator routine calls, and the commands skip, exec, spawn and release.
Exec, spawn and release are statements to initiate services for clients and to return the
results of services. These have a key variable parameter that uniquely identifies the client for
which the action was taken. This use of keys is explained in detail below.. The second param-
eter of an exec or spawn statement is a resource operation call. Exee permits coupled execu-
tion of a resource operation (on behalf of a client identified by the key). The mediator ini-
tiates a process to execute the operation, and then blocks until the operation has terminated.
For example, in the reader_writer object above, the statement ezec(i, write (job(i). wri-
teprm)); initiates a write operation for client i. The mediator blocks until the operation has
completed. On the other hand, spawn initiates an operation and allows uncoupled execution.
The mediator does not wait for the operation to terminate, and continues executing mediator
code. In the reader_writer object, the statement spawn(i, read (job(i). readprm); initiates a

read operation for client 1.

N
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The release cominand returns the results of an operation to the client and removes the
request fron.x the mediator. This may L;e invoked only after an exec has been completed, or a
status test (term, see below) reveals that a spawned request has terminated. Reader_writer
(figure 4.2) contains examples of release both after coupled and uncoupled service. The
separate termination test allows synchronization data to be maintained as services complete.
Release als'o makes it possibie té delay and synchronize termination and the return of

results.

4.4. Guarded Commands

Sequences of actions within the mediator body are specified by the control structures
presented here, and by parallel guarded commands, which are presented below. The basic
mediator control structure is a guarded command as shown in figure 4.5. The prefix any ...

key: is optional.

The mediator guarded command has many similarities to Hoare’s CSP guarded com-
mands (50|, which in turn can be credited to Dijkstra (32]. The chosen keywords and seman-

tics are closer to the guarded regions of Brinch Hansen’s DP [18]. The concept of key is

any identifier in key:
cycle
guard -> statement_list;
(m}

a
guard -> statement_list
until exit_condition;
Figure 4.5. Guarded Command Schematic.
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related to Hoare’s guard command range [52], and to message keys in PLITS (35,36]. The

similarities and differences will be discussed below.

A guarded command is a control statement in which different statement lists are chosen
for execution based on the truth value of the associated guards. Because the evaluation of
guards is central to this construct, they will be explained first. The guarded command will be

described after. The application of keys tc; guarded commands will be presented last.

Guards are made up of a status test and Boolean equations. Mediator guard evaluation
always results in either a true or a false value. The special guard otherwise is true only

when all the other guards in the guard command are false.

Status tests allow inquiries about pending requests for mediator service. These are tests
for requests to initiate an operation (req) or to return results after the operation has com-
pleted (term). For the guard req( i ) to be trﬁe, the list of unserved requests must contain a
request from client i. Once the guard has been fired (it’s associated statement list chosen to
execute), reg( i ) cannot become true again until the service has been completed and the
results returned (by release( i )). The guard term( i ) is similar, becoming true when the exe-

cution of an operation for client ¢ terminates.

A Boolean guard paired with a status test may examiqe the value of a client’s request
parameters. Each client’s request is represented within the mediator by a job descriptor
defined by the interface declaration. The descriptor is a variant record containing fields for a
key variable, the name of the service requested and the parameters for that service. The ser-
vice field serves as a tag for variant parameter fields. The descriptor is accessed using the
key by indexing on the variable job, as in these examples. The job descriptor for the

reader_writer object is defined by the interface section in figure 4.2. In the reader_writer
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object, job(i).service references the service tag field. Boolean guards may also test the value
of the mediator’s local variables. Boolean guards paired with status tests are not evaluated if

the status test is false.

In the following explanation of a guarded command, the execution of the guard is con-
sidered in isolation, without considering possible interleaving with other parallel guarded
commands. The presence of parallel guards introduces delays, but does not affect the seman-

tics of the guarded command.

Mediator guarded commands are closely related to-Brinch Hansen’s guarded regions
[18]. The mediator process must wait until some guard condition is true, and then execute
the associated statement list. A statement list associated with a true guard is said to be
enabled. A guard whose associated statement list has been chosen and started execution is

said to have been fired.

When the statement list of a fired guard has finished executing, the exit condition in the
final until line of the guarded command is tested. If the condition is true, the guarded com-

mand terminates, otherwise its guards are reevaluated.

Nondeterminism is a possibility when more than one guard is enabled. In this case, one
guard will be chosen to fire. A mediator implementation must ensure at least weak fairness-
to avoid starvation problems. Weak fairness in guard evaluation means that a guard that is
enabled often enough will eventually be fired. The mediator cannot delay if there are enabled

guards.

The delay semantics of this guard command differs from Dijkstra’s original definition

and Hoare’s adaptation {32,50]. Hoare and Dijkstra’s constructs abort the guarded command
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when no guard is true.. This creates a framework that is convenient for formal verification,
but results in servers that do not facilitate waiting. Waiting is usually implemented by expli-
citly programming a busy loop. Because waiting is fundamental to providing services, we

prefer to wait implicitly.

Brinch Hansen implements Both delqy semantics in guarded regions and abort semantics
for guarded commands. The mediator proposal includes only delay semantics, because the
inclusion of an otherwise guard and exit conditions make the abort semantics redundant.
The otherwise guard has other applications for implementing background actions and is a

useful shorthand for the negation of all other guards.

Mutual exclusion within a mediator depends both on the use of the exec statement and
the careful choice of preconditions defined in a guard statement. The exec statement ini-
tiates a service process and blocks the mediator, but it does not check for other initiated
processes. In the reader-writer example (figure 4.2), mutual exclusion for the write operation
is ensured by the guard “cycle reader_count = 0 —>" and by the action of exec. The guard
will not permit a write to begin until all executing read operations are terminated. The exec
statement blocks the mediator as the write is serviced to prevent other operations from

becoming active.

Keys are used to identify the client to the mediator, to access job descriptors for guard
evaluation and scheduling purposes and to tie clients to specific resources, as in allocator
objects. The key concept was suggested by Hoare’'s CSP process range labels [50,52], but
their use in mediators is considerably different. Hoare applies ranges to processes to create a
finite number of explicitly and contiguously indexed processes. This application of ranges is

not included in mediators. Hoare also applies ranges to guarded commands to substitute
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values within a given range for a bound variable in the guard statements. The following

example is from [50]:

“(#1..n)G -> CL stands for
G1->CL10G2-> CL20...0Gn-> CLn.”

In effect, the guard is expanded by creating a guard and statement list for every value of .

The application of ranges in Hoare’s guarded commands is Quite general,

In the mediator proposal, keys serve only to identify client processes. Like Hoare’s
ranges, a key statement (any ...) deﬁges a key variable which will be bound within the guard
command it modifies. Consider the guarded command shown in figure 4.6. It is executed as
if it were written as shown in figure 4.7. In this example the value of the key identifier is in
the range 1..n and defined as the interface field job.rangeprm. Usually a process identifier
(the pid descriptor field) will be used as the key. The designer of a mediator does not need to
know explicitly what process identifier values are being used, just that they are unique.
Alth'ough, in an abstract sense, a potentially infinite key variable range implies an infinitely
expanded guard, there is no need to implement them that way. Keys are always associated

with status tests. Only guards corresponding to clients with requests can evaluate to true, so

any i in key: cyecle
' req(i); job(i).service = A ->

exec(i,A);
release(i);

a

req(i); job(i).service = B ->
X=X + 1;
exec(i,B);
release(i)

until false;
Figure 4.6. A Guarded Command.
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cycle
req(1); job(1).service = A ->
exec(1,A);
release(1);
a
req(1); job(1).service =B ->
=x+ 1;
exec(1,B); .
release(1); .
a
req(2); job(2).service = A ->
exec(2,A);
a
req(10); job(10). service = B ->
i=x+1;
exec(10,B);
release(10)

until false;
Figure 4.7. The Guarded Command Expanded.

only such guards need to be evaluated. This significantly limits the number of guards

evaluated. Evaluation can be restricted further when fairness is taken into consideration.

Key variables are tied to job descriptors defined by the interface. The most useful key
reference is to the client process identifier. The mediator designer may designate another
descriptor field as a key, as in figures 4.6 and 4.8. In any case, the chosen key field must be

unique for each pending request.

The mediator in figure 4.8 implements synchronization for the dining philosophers prob-
lem. The client process executes the statement diner (rangeprm, eat); to request the

mediator’s eat service. This solution is one of many possible solutions using mediators.

|
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diner = object
interface
job: export part
myfork : key range;
case service: (eat) of
eat: ()
end export part;

procedure eat;

begin - do whatever to eat end;
mediator

type range = 0 .. n-1

var

fork : array [range] of (free, inuse);
i,j :range;
init
for j := 0 to n-1; fork(j] := free;
end init
body
any i in key: eycle - _
req(i); job(i).service = eat and fork(i] = free
and fork|(i+1) mod n}] = free ->
fork[i] := inuse;
fork[(i+1) mod n] := inuse;
spawn(i, eat(i));
a
term(i); job(i).service = eat ->
fork(i] := free;
fork{(i+1) mod n|] := free;
release(i);
end cycle
end body
end mediator
end object

Figure 4.8. Dining Philosophers.

4.5. Parallel Guarded Commands

The schematic in figure 4.9 shows the syntax of the parallel guarded command, a

mechanism that allows the interleaving of different mediator actions.

N
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body
guarded_command
/1
/1
guarded_command
end body

Figure 4.9. Parallel Guarded Command Schematic.

Parallel guarded commands are proposed to allow different sets of gugrds to be
evaluated at different times during mediator execution. It allows the mediator to “shuffle”
together the evaluation of several guarded commands. The choice of the notation // to
separate parallel guarded commands is deliberate. A mediator containing parallel guarded
commands uses a mﬁltiprogrammed thread of control, one t_:hread of control for each guarded
_ command. Only one thread of control is active at a time. The active control block can
change only when guards are evaluated. This creates mutually exclusive execution of the
statement lists between guard evaluations. The mediator body terminates if all of the paral-

lel guard blocks terminate.

Consider the simplified example in figure 4.10. (Labels have been included to make dis-
cussion easier). In figure 4.10, A, B, C, D are guards. SA, SB, SC, SD are statement lists.
The control vector of this mediator has two elements. The notation “<label1, label?, ... ,
labeln >” is a control vector in which n threads of control are at the locations labell through
labeln. This notation is adapted from the expression of execution state in Manna and
Pnueli’s temporal logic scheme(84]. In figure 4.10, the initial control vector is: <l1, m1>.
When guard evaluation occurs in the initial state, the guards A and C a.x"e evaluated. As for

isolated guard commands, the associated statement list of some true guard will be executed.
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body
11: cycle
A-> 12: SA;
13: cycle B-> 14: SB until true;
until false
/!
ml: cycle
C-> m2: SG;
: m3: cycle D ->", m4: SD until true;
until false
end body

Figure 4.10. Simplified Parallel Guarded Command.

If the guard A from the cycle l1 is fired, the statement list starting at 12 will begin execution.
It will continue executing without interruption until the new guard command at 13 is encoun-
tered (assuming SA contains no guard commands). At this point the control vector is <13,
ml>, and the new guafd evaluation includes the guards B and C. Considering all possible
combinations, the set of guards evaluated at any one time may be: [A, Cl, (A, D], (B, C] or

B, D).

The statement lists following guards may contain exec, spawn and release statements
without altering the flow of control discussed above. In every case, control passes to the fol-
lowing statement. In the case of an exec statement, this is delayed until the resource opera-
tion it has initiated terminates. This delay temporarily blocks further mediator activity, but

does not alter the flow of control.

The parallel guard notation is an easy and concise way of specifying changing sets of
enabling conditions. It is possible to rewrite a parallel guard as one large simple guard com-
mand by using a distribution algorithm. The resulting guard command is considerably more

bulky and actually less clear.
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The introduction of a control vector within the mediator does not create the same com-
plications for reasoning about programs that are usually associated with parallel processes.
The control flow in mediators is very restricted, giving statement lists that will be executed
in mutual exclusion. This fact, combined with the small size of mediators and the explicit
statement of preconditions in the guards makes it quite easy to reason about the behavior of

parallel guards. ,

The reader/writer mediator demonstrates one application of the parallel guard. In that
example, firing the guard req(i); job(i).service = write executes the associated statement,
which is a cycle statement. As long as its guard reader_count = 0 is false, the guard cannot
fire. No new write or read operations will be initiated, but the second parallel guard will
allow read operations to finish up and leave the mediator. Parallel guarded commands cou-
pled with nested guard commands gives a convenient way to block some actions while permit-

ting others.

4.6. Some Additional Examples

The examples that follow demonstrate some applications of mediators. In many cases

only the mediator will be presented.

4.6.1. Alarm clock

The alarm clock object (figure 4.11) delays a caller for a time period specified in the
request’s parameter n. Calls for the wake service cause a delay. Calls for the tick service
advance the clock. The field out_time must be declared for the operation wake job descriptor

within the mediator as a mediator local extension to the job descriptor. This figure presents
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alarm_clock = object;
interface
job : export part
pid : key client_process_id;
case service : (wake, tick) of
wake : (n : integer);
tick : ()
end case
end export part

procedure wake; begin end;
procedure tick; begin end;

mediator
var
i, j : client_process_id;
now : integer;
flag : boolean;

job : loecal part
case service : (wake, tick) of
wake : (out_time : integer);
tick : ()
end case,;
end local part

init now ;= 0 end init
body
any i in key: eycle
req(i); job(i).service = wake ->
-— start the service, but termination will be delayed
job(i). out_time := now + job(i). n;
spawn(i, wake);
until false;
//
any i in key: cycle
req(i); job(i).service = tick ->
now :== now + 1;
exec(i, tick);
release(i);
flag := false;
any j in key: cyecle
term(j); job(j).service = wake and job(j).out_time <= now ->
release(j);
a
otherwise -> flag := true
- e21t cycle
until flag;
until false;
end body
end mediator
end object

Figure 4.11. Alarm Clock.
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a complete mediated object in order to demonstrate the use of a job descriptor augmented by

_ local data.

4.8.2. Shortest Job Next

The mediator in figure 4.12 implements a scheduler that chooses the job with the lowest
estimated service time for the next éxecution. Requests are served in mutual exclusion. This

framework is applicable to many scheduling problems.

The first guard command simply calls a local operation to queue up job descriptors in
order of their estimate parameter. The second guard command remo;res the head element of
the job descriptor queue and starts that job’s execution. The spawn and wait for termination
allows the mediator to continue enqueueing new requests while a service operation is execut-

ing.

body
any i in key: eyecle
req(i); job(i).service = server ->
enqueue (i, job(i).estimate);
until false;
/]
cycle
queue_not_empty ->
j 1= dequeue;

spawn(j, server); —- initigte service operation
cycle
term(j); job(j).service = server ->
release(j);

until true;
until false;
end body
Figure 4.12. Shortest Job Next.
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The key variable j in the second guard command is set by direct assignment rather than

through a cycle modifier.

4.6.3. An Allocator

The allocator in figure 4.13 gives a client process exclusive rights to a resource for a
series of accesses. The client must x:équest an allocation, then may make repeated calls on the
resource. Finally, the client must explicitly release the resource before it can become avail-
able to another client. This example uses the key binding made in the outer cycle to restrict

use of the resource to one process in the inner cycle.

The mediator differs from the monitor solution [49] for this problem in a number of
ways. Most importantly, the resource being allocated is encapsulated with the mediated

object. The mediator protects the resource from unsynchronized accesses by faulty processes.

body
any i in key: cycle
req(i); job(i). service = allocate ->
exec(i, allocate);
release(i);
flag := false;
cycle
req(i); job(i).service = use ->
exec(i, use);
release(i);
a
req(i); job(i).service = free ->
exec(i, free);
release(i);
flag := true;
until flag;
until false;
end body
Figure 4.13. Allocator.
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init val := 0 end init
—— val 18 the semaphor counter variable
body
any i in key: cycle
req(i); job(i). service =P ->
exec(i, P);
val :=val + 1;

release(i);

O , .

req(i); job(i). service = V and val > 0 ->

exec(i, P);
val := val - 1;
release(i);

until false;

end body

Figure 4.14. Semaphore.

The mediator also prevents the resource from being released by any process but the one the
resource has been gi'a.nted to. The monitor solution does not offer protection in either of

these cases.

4.6.4. A Semaphore

The mediator in figure 4.14 implements a semaphore. We have included this example to
demonstrate that the mediator construct has at least the expressive power of semaphores.

The function of this object is purely synchronization.

4.8.5. Cigarette Smokers Problem

Patil[96] introduced this problem to demonstrate some of the limitations of semaphores

for implementing synchronization:

Three smokers are sitting at a table. One of them has tobacco, another has cigarette papers,
and the third has matches; each one has a different ingredient required to make and smoke a
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cigarette but he may not give an ingredient to another. On the table in front of them, two of
. the three ingredients will be placed, and the smoker who has the necessary third ingredient
should pick the ingredients from the table, make a cigarette and smoke it.

A mediated object solution to this problem is presented in figure 4.15. In this example, three
processes (deliver_paper, deliver_tobacco, deliver_match) place items on the table. The three

smoker processes are got_match, got_paper and got_tobacco.

4.8.8. Ring Buffer

Ring buffers are frequently used in operating systems to support processes that act in a
producer/ consumer relationship{97]. The producers fill in the buffers at their own pace,
while consumers empty those buffers. In a ring buffer, the number of available buffers is lim-
ited and the total number of buffers is fixed. Synchronization is used both to prevent
interfering accesses to a single buffer and to prevent consumers from “overtaking” the pro-
ducers. A simple solution to the problem that allows at most one simultaneous put and get

on different buffer is presented in figure 4.16. We have include the entire mediated object.
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init
tobacco := false; paper := false; match := false;
resource_count := 0;
end init
body
cycle
resource_count < 2 ~->
any i in key: eycle
req(i); job(i). service = deliver_tobacco and not tobacco ->
exec(i, deliver_tobacco); 3 .
tobacco := true;
resource_count := resource_count + 1;
release(i);
m]
req(i); job(i). service = deliver_paper and not paper ->
exec(i, deliver_paper);
paper :== true;
resource_count := resource_count + 1;
release(i);
a
req(i); job(i). service = deliver_match and not match ->
exec(i, deliver_match);
match = true;
resource_count := resource_count + 1,
release(i);
until true;
a
resource_count = 2 ->
any i in key: eyele
req(i); job(i). service = got_match and tobacco and paper ->
exec(i, got_match);

tobacco := false; paper :== false;
resource_count := 0;
release(i);

a

req(i); job(i). service = got_paper and tobacco and match ->
exec(i, got_paper);
tobacco := false; match := false;
resource_count := 0;
release(i);

=]

req(i); job(i). service = got_tobacco and paper and match ->
exec(i, got_tobacco);
paper = false; match := false;
resource_count := 0;
release(i);

until true;
until false;
end body

Figure 4.15. Cigarette Smokers.
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ring_buffer = object;
interface
job : export part
pid : key client_process_ijd;
case service : (put, get) of
put : (p_data : some_type );
get : (g.data : var some_type)
end case
end export part
const ring size = n; ’
type ring range = 0 .. (n-1);
var ring: array [ring.range| of some_type;

v

procedure put (data: some_type, ring_index : ring_range);
begin ring [ring_index| := data end;

procedure get (data: var some_type; ring_index: ring_range);
begin data := ring [ring_index| end,

mediator
var
i : client_process_id;
head, tail : ring_range;

init head := 0; tail := 0 end init
body
any iin key: eycle
req(i); job(i).service = put and (head + 1) mod ring _size < > tail ->
spawn(i, put (job(i). p_data, head));
cyele
term (i); job(i).service = put ->
release (i);
head := (head + 1)} mod ring_size;
until true;
until false;
/1
any i in key: eyele
req(i); job(i).service = get and head < > tail ->
spawn(i, get (job(i). gdata, tail));
cycle '
term(i); job(i). service = get ->
release (i);
tail := (tail + 1) mod ring_size
until true;
until false;
end body
end mediator
end objeet

Figure 4.16. Ring Buffer.
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CHAPTER 5.

A TEMPORAL LOGIC SPECIFICATION

In the chapter above we presented an informal description of the mediated object. Such
‘a description is useful as an introduction to a new language construct, but is not adequate as
a basis for implementation or for gaining a detailed knowledge of the construct. In this

chapter we present a temporal logic specification of the mediated object construct. Parts of

this specification were originally developed in (39].

The imprecision of informal specifications led to a search for a practical means of for-
mélly specifying the mediator construct. The specification tool chosen had to meet these cri-
teria: naturally describe concurrency; easily deal with shared variables; be independent of
possible implementation; serve as a basis for verification. Temporal logic [84] meets these
requirements. Because temporal logic makes synchronization relationships explicit, it is a
powerful tool for reasoning about concurrent programs. This chapter presents a formal tem-
poral logic specification of mediators which can serve as the outline of a proof system to sup-

port verification.

The use of temporal logic to specify a new programming construct is a new and, we
believe, powerful technique. Research in temporal logic has primarily applied this tool to
demonstrate verification techniques using simplified languages [70,84,94|. It also has been
used, as a secondary specification for program synthesis or verification purposes, for

languages that have already been formally specified by other means [98,121].
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We had hoped to-be able to directly apply Manna and Prueli’s model [81] to mediat'ors,
but were soon disabused of that notion. Both the data domain and control structures used in
mediators are more complex than those of Manna and Pnueli’s simplified language. Our
constructs are also based on somewhat different assumptions. Much of our work has involved
developing a different model for mediators and adapting temporal logic axiomatization to this

model.

5.1. Temporal logic as a language specification tool

We considered several language specification methods before temporal logic was chosen
to specify mediators. These included attribute grammars, axiomatic semantics and denota-

tional semantics.

An attribute grammar definition was rejected for a number of reasons. Attribute gram-
mar definitions give an operational definition of a language that can be very suggestive of an
implementation. For this reason they tend to be very useful to implementers, but unhelpful
to users [95]. A language specified using attribute grammars usually would need another
specification to support verification. Finally, attribute grammars tend to be very large with
a lot of their bulk devoted to elaborating data typing and basic language elements. Because
the mediator construct is meant to be an extension to an unspecified Pascal-like language, a
specification technology that would allow us to be somewhat unspecific about data typing and

concentrate on concurrency issues is preferable.

Denotational semantics are abstract and precise enough for our use, but the application
of denotational semantics to concurrency problems is very much a research topic [110].

Moreover, denotational descriptions do not deal well with shared variables. Finally, denota-
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tional descriptions are extrerhely complex and difficult to understand. For these reasons this

approach was rejected.

Axiomatic specifications offered a tool that allowed sufficient abstraction and precision
without undue complexity. They promised to be useful and meaningful to a wider range of
users and implementers than either attril’mté gi'ammars or denotational semantics would be.
Although a great deal of research has been done on applying axiomatic semantics to con-
current programming (53,69,92,93|, axiomatic definitions do not appear to be well adapted to

expressing complex interactions between multiple flows of control.

Temporal logic builds on an axiomatic basis by adding a direct and natural means of
reasoning about the sequences of events and flow of control in a concurrent system [70,84;94].
It can be used as a tool to provide an unambiguous description of mediator behavior for a
potential implementer, and a sound basis for verification for a user. It already has provided a
check on the mediator design specification during the development of the mediator construct.

Temporal logic has proved to be an excellent tool for the specification of mediators.

5.2. A Short Introduction to Temporal Logic

In this section we present a short and informal introduction to temporal logic. The sub-
ject is explored in great detail in[81,82,84], and interested readers may look there. Our dis-

cussion follow the outline of the introduction presented in[64].

Temporal logic is a first—order language that uses the familiar logical operators,

quantifiers and connectors. In addition four modal operators are defined:
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the “always” operator,
the “sometimes” operator,
the “next” operator,

the “until” operator.

o000

The first three operators are unary, the last is binary.

Manna and Pnueli parﬂition variables into global and local sets. The global variables
are unchanged over the execution of the program, while local ones may. change from step to

step in the computation. Quantifiers are only applied to the global variables.

Manna and Pnueli’s temporal logic language uses a model(l,a,0) in which I is a global
interpretation, a a global assignment and o a sequence of states. [ specifies the domains in
which the language operates. a defines I;he value of all global variables. ¢ is the component
of the language that is, in a sense, of the most interest to us. Temporal formula are defined

over infinite sequences of states o:
O = 84,8,85) o0

Each state s; gives the value of all the variables. The global variables do not change value

from state to state. The local variables may change value. -

It is also possible to speak of sequences of states that do not originate with the initial
state s;. These can be referred to as k-shifted states denoted:

I
Mg $ad T 5 L)

The temporal operators can be interpreted over sequences of states as follows. The

notation “s |~ w” means that formula w is interpreted over the state sequence o.

Since logical expressions that do not contain temporal operators are time independent,

they can be expressed as:
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ob-w iff sg—w
The unary temporal operators can be written as:

ol-Ow iff Vk:k>0: ¥ - w
cH—ow if k> 0: 6™ - w
ol—ow iﬂ'a(l)lew

The “until” operator can be defined (using a quantifier notation developed in[41}]. ):
o b= 1w, U wyiff k> 0: 6™ - w,and Vi:0<i<k: o - w,
Manna and Pnueli define other operators and give detailed definitions of other logical opera-

tors and quantifiers in[83]. In our notation we represent a vector y by a y with a bar over it:

Y.

A program can not be verified using temporal log.ic without a temporal proof system
the programm.ing language in which the program is written. The proof system consists of
three parts(84]. The first of these is the uninterpreted logic part, which essentially defines the
axioms of first—order temporal logic. This portion does not change for any programming

language, and is defined in(83,84].

The second part of the temporal proof system is the domain part which defines the
domains of a programming language and any induction rules covering those domains. In the
case of mediators, a great deal of the domain definition pertains to a potential host language,
and not to the mediated object. As a result, to simplify matters we have chosen to deal only
with natural numbers within our mediated object language. These can be dealt with using

familiar axioms.

One useful example of an induction rule pertains to to sets with a well founded ordering.

A set A is said to be well founded with respect to an ordering relation > if there exists no
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infinitely decreasing sequence
Qg > Qg > Qg > *°°
If (A,>) is a well founded set and w(a) is a temporal formula dependent on « € A, then an

induction rule can be defined that will allow us to prove the termination of an iterative

language construct. One such rule is the 9IND rule, which can be stated as:

w(a)D°[¢V3ﬂ=ﬂ>d=w(ﬂ)]

w(a) D oy
This rule serves as a kind of a template which can be filled in to “instantiate” rules for vari-
ous kinds of well founded sets. For example, an instantiation of this rule for natural numbers

called “IND” is given in (80].

Q(0) D oy -
Q(m+1) D 0 v 0Q(m)

Q(k) D oy

If Q is a predicate associated with the loop, and v is the loop termination condition, the this

rule can be used to show the termination of a loop.

The third part of a temporal proof system is the program part in which the semantics of
the programming language are defined. Manna and Pnueli define their languages using a set
of graph templates{84]. We will follow their method in this introduction. In our temporal

logic definition of the mediated object we chose to use a textual method that is equivalent.

In a temporal proof system, a program may be represented as a directed graph. Vari-
able declarations are not included. The graph abstracts the program’s flow of control. For
example, a Pascal if statement would be represented by two edges coming out of a common

vertex. One of these would represent the then branch of the if; the other would represent



the else branch. Both of th;.se edges join again at the vertex representing the exit of the if
statement. The edges of the graph are each labeled and tagged by a guarded command. The
guard states the conditions under which that particular transition may be taken. The state-
ment part of the guarded command may either be null or an assignment. These are the only
statments left after the control flow of the program has been reduced to a graph. Figure 5.1
shows an if statement and its graph. The edges a and b in figure 5.1 represent the then and
else part of the if statement, respectively. Both have a source vertex at | and a sink vertex

at m. This approach tends to strip away most of the syntactic aspects of the language jeav-

ing only the semantic core of the language behind.
In Manna and Pnueli’s model of a concurrent program P with m parallel processes
P:y:=g(z); P | ... || Pa
is represented in this system by a number of these graphs, one for each process in the pro-

gram(83,84|. Each process graph has a unique initial vertex. A concurrent process graph

may or may not have a termination vertex, reflecting the fact that many concurrent

if ¢(y) then S1 else 52
¢(y) — [S1]

a

- ¢(y) — [S2]

b

Figure 5.1. if graph.
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programs have continuously operating processes.

A state of a concurrent program is of the form:
s=(X;n)
where X = (), ..., \,,) is a vector of the current values held by the location counters of each
process = and 7 is a vector of the current values of all the local program variables y. Each

element in X points to the next instruction to be executed in its process(83|. Program execu-

tion is modeled by an infinite sequence of states o, as for sequential programs.

Proofs of simple sequential programs in a temporal proof system proceed by assuming
that initially progranﬁ control is at the initial vertex (a vertex of in-degree 0) and then for-
mally showing .t.hat eventually the last vertex must be reached with a certain predicate hold-
ing. Sequential program proofs are either partial correctness proofs or total correctness
proofs. In a partial correctness proof, it must be demonstrated that if a program starts at
the initial vertex and a correct initial state, that if the last vertex is reached a certain predi-
cate will hold. Partial correctness proofs do not require a proof that the last vertex will ever
be reached, just that a certain condition will be true if that occurs. In a total correctness

proof, termination must be proved as well{41,45].

These kinds of proof may not apply in concurrent programs because frequently con-
current programs are continous and contain no terminal vertices. Instead concurrent proofs

are concerned with safety (invariance) and liveness (eventuality) properties|68,82,84,94].

Safety properties describe what states are permissible during concurrent program execu-
tion. In this way they insure that “nothing bad will ever happen”[68]. Partial correctness is

one kind of safety property. Others include mutual exclusion and freedom from deadlock[84].
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These properties may be specified by a predicate that must hold for each transition in a pro-

gram. For this reason they are often called invariance properties.

Liveness properties state that certain things must occur[68]. That is, that once a certain
state has been reached in a computation, that eventually some othér state will hold. Total
correctness is one example of a liveness property in that once the initial state holds, total
correctness demands that the termination vertex must eventually be reached and a certain
predicate must hold. Other liveness properties of concurrent programs include the accessi-

blity of critical sections, responsiveness and liveness(84].

The notion of being “at a vertex” may be made more formal by introducing location
variables. A location variable can point to a location on a graph (or in a program) and allows
a concise expression of where the control is in a given program. For example, the expression
“at 1” says that control is at the first vertex of the if statement in figure 5.1. Location vari-
ables can further be used to express control flow with direct reference to program text rather

than graphs, as we have done below.

Once a program graph has been drawn, axioms can be written to express the effect of
each edge (or transition) in the graph. These axioms are called transition axioms and reflect
exactly the eflect of taking a transition in the graph. In this way, they provide a formal

specification of the programming language.

For example, the Pascal if statement has the transition axioms:

F:[at1Ac(y) A y=u] Do[at m A y=F(u)]

Fy:[at 1A =c(y) A y=u] Do[at m A y=G (u)]

(assuming that S1is y := F(y) and S2is y := G(y))




Each transition axiom has a name that relates it to an edge on the graph to which it
refers. Transition axioms state that if control is at a certain vertex of the graph, and certain
conditions hold, that eventually control will be at another vertex with another set of condi-

tions holding. -

In the example above, axiom F," states that if control is at label | and c(;) holds and y is
equal to some set of global variables u, then sometime control will pass to label m and v will

have been changed according to function F. The meaning of axiom F, is similar.

The use of global variables in the transition axioms (such as u in the axioms above) is a
standard trick that makes it easier to deal with the fact that local variables change during
state transitions. Because of this change over time, it is not meaningful to speak in terms of
y := {(y). In a temporal proof system, for a given state the v on the one side of the assign-
ment must have the same value as the y on the other side. An assignment of this sort only
makes sense if { is an identity function. Global variables are used to “freeze” the values of v

in one state to make the assignment meaningful.

In general, both in this short introduction and in the temporal logic specification for
mediators that follows, all local program variable names will start with a “y”. Global vari-
ables will start with an “x”. Auxiliary global variables (as in the axioms above) will start

with a “u”.

The axioms presented in this introduction are so-called weak transition azioms{80)
because they use the sometimes operator ¢. For sequential programs, stronger axioms could

be written using the next operator o.
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All edges in a graph, or statements in a language, can be formally axiomatized in this

manner. Figure 5.2 shows a generalized graph of a statement transition.

The program part of a temporal proof system is used to define the semantics of a partic-
ular language. This usually includes giving templates for constructing graphs from the
language’s control abstractions. It also iflcludes defining the semantics of a statement that
could label the command part of thé guarded commands on the graph edges. An example of
a complete language specified this way can be seen in[63]. This thesis presents a specification

of a portion of a language using textual representations in place of graphs.

Once such a specification has been completed, it can be used as part of a temporal proof
system to verify programs. In general, to prove a safety property of a concurrent program of

the form
P:y:=glz) P, || .. | Pn
we show that:
p(z) DOy

where ¢ is the precondition of the program and 4 an invariant. In order to prove this invari-

ant, it is necessary to show that

Figure 5.2. Generalized graph.
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e the assertion ¢ iS{ true in the initial state of the program:
e.g.: p(ymed) Dy

e the assertion ¥ remains true for all possible transitions.

e.g.: for every transition in P, if the assertion ¥
is true before the transition, it remains true afterwards.

This proof rule is formalized in [83] Where it is called the Initialized Invariance Rule (IINV):

[at I—o A ;= g(;)] oY
P leads from ¢ to ¢

Oy

Liveness properties may be proved using the Eventuality Rule (EVNT) formailized
in[83]. In this rule v and ¢ are again functions of the program state (<p(7r';;); ¢(;;_)) and P, is

one process of program P:

A: P leads from © to oV
B: P, leads from ¢ to ¢
C: @ D o V Enabled(P,))

© D ply

The propositions A,B and C that allow us to establish the conclusion are fairly straightfor-
ward. Proposition A states that the transitions of P either must maintain the truth of @ or
establish 1. Proposition B requires us to show that a transition by one process P, goes from
a state satisfying ¢ to one satisfying . The final proposition C requires us to show that if

we are in a state satisfying o, that eventually either ¥ will be true, or a transition of P . will

be enabled.

The EVNT rule also can be used to establish liveness properties of the form:

p D oY,
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These two proof rules (IINV and EVNT) are ‘essential to the proof of the sample con-
current program that calculates the Greatest Common Denominator (GCD) that is presented
in[83] (figure 5.3). The sample proof that follows is taken from that paper and has been

altered only slightly to add additional explanation where needed.

The GCD program is meant to terminate with the correct greatest common denomina-

4

tor in variable y,. It requires a total correctness proof of the theorem:
[at (lgimq) A (v1,92) = (z1925)] D ofat (Izymy) Ay, = ged(z,z,)]
The proof of theorem a can be spiit into a proof of a safety (invariance) property and a proof
of termination (a liveness property).
The invariant we must prove is:
(Lemma A) Ofged(y,,¥,) = ged(z,,,)]
To prove lemma A:

. Al. Show ged(y,,y;) = gcd(z,,z,) initially,
A2, Show ged(y,,y,) = ged(z,,z,) remains true
over all transitions in P.

Since initially

(1) v2) = (2, 25)

lppif y, > y, then y, :=y, -y, my: if y, < y, then y, :=y, -y,
l,:if y, # y, then go to [, m,: if y, # y, then go to m,
l,: halt m,: halt

-P,- -P,-

Figure 5.3. Distributed Greatest Common Denominator




73

(y,90) = (zuz2),
the first proposition is obviously true. It is easy to show that the second proposition holds

over all the transitions of P as well, so we deduce that the invariant in lemma A holds.

Manna and Pnueli prove a second lemma (lemma B) in[83] to help prove termination:

Lemma B: )
[“ lgy N\ at mg, A{ypy) > 0 A (ypyg) SN+l Ay, # yz]
D ofat ‘o,x A at mg, A (ypya) > O A (yya) < n)}

The notation at l,, is used as an abbreviation for at {, V at I, and the notation (y,,y,) > 0

means (y,) > 0 A (fly,) > 0.

Proof of lemma B:

First, it is useful to define a predicate:
@y ¥ D): ab lg; A abmg, A (yo92) > OA(y, + ¥ < n).
So lemma B is:
[(yywn+1) A (v, # ¥2)| D 0@(ysy20)-
The proof can be split into two cases:

B1. [p(yl,yz,n+1_) Ay, > 93] D °©(y,,¥50)-
B2. [(p(y,,y,,n+1) Ay, < ¥2)l D 0p(y,yygon)-

To prove Bl Manna and Pnueli (83| note that by the rules of propositional reasoning:
1. o(yysyqm+1) D (at Iy Vv at 1)
The first case to consider is when process P, is at I, Let:

@' o(ypypn+1) A (v, > v)) Aat
¥ ‘P(yuyzrn)

Propositions ' and y' satisfy the premise of the EVNT rule with P, = P,.
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First consider proposition A of the EVNT rule. This states that every transition in P
must lead from ¢ to ¢’ V ¢'. If we look at the transitions of P,, we notice that only the tran-
sition my — m, and the transitions from m, are relevant. If y, > y, when the transition m,

— m, occurs, the value of ©' does not change. Since only the transitions out of m, to m, is

possible if fIy, > fly, and this transition does not affect the local variables, they also leave:

o invariant. This establishes proposition A of EVNT.

In the process P, only the transition I, — I, is enabled. The effect of this transition is
to replace (y,,4,) by (y; = ¥ v5). If before this transition y, + y, < n + 1 and (y,,5;) > 0,
then by simple arithmetic, ' will hold after the transition. This establishes proposition B of

EVNT with P, = P,.

Since by ¢/, the transition from I, is enabled, proposition C is immediately true. Since

we have demonstrated all three conditions of the EVNT rule we may conclude that ' O o9/,
that is:
2 [p(yw2n+1) A (3, > ) A 3t L] D 9p(y,0)-

The next subcase of Bl is where P, is at {,. Again we define two predicates:

©" O(y¥n+1) A (y, > y,) A atl,
" = 0" (¥ y0+1) A (¥ > ¥a) A at

We can show (as is the case above) that ©" and ¢" satisfy the three conditions of the EVNT

rule, so that o" D o¢", i.e.:
3. [(ysya0+1) A (v, > ¥2) A at 1] D 0[p(y,,ypn+1) A (v, > v) A at o)

From here the proof of case B1 proceeds:
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4. [p(ypyen+1) A (4, > ¥2) A at 1y] D 0p(y,,yqn)
... by 2, 3 and ¢ Concatenation rule[83]

5. [‘P(.’I1vyz:n+1) Ay, > yz)] > °‘P(yuyz:n)
... by 1, 2, 4 and propositional reasoning

This concludes a proof of case Bl.

The proof of case B2 is symetrical to case Bl. Because we have proved both cases B1

and B2, we may conclude that lemm3 B is true.

Lemma A and lemma B provide a foundation to prove the original theorem. Most of
the steps in the proof require nothing more complex than propositional calculus. The proof

of termination requires the natural number induction rule IND presented above.

Theorem proof:

6. [P(yy2n+1) A (3, # ¥3)] D *0(y,v20)
... LemmaB

7. o(yypn+1) D ((y, = y5) V 0p(ypyzn)]
... by propositional reasoning

8. ©(yygn+1) D[y, = v,) V *9(y,,¥250)]
“ ... by temporal and propositional
reasoning
9. -“P(yuyz:o)
... by propositional reasoning
and the fact that the conjunction
(y1>0) A (92>0) A (y1+ycub2 <0)
is not possible.

10. ©(y,,¥5,0) D oy, = Ya)
... by propositional reasoning

11. W(yuyzxn) o O(y‘ = y2) V
... by 8, 10 and IND

12. 3n.p(yy,y0) D vy = ¥5)
... by Jinsertion rule(83]

13. [at(lymo) A (y1p¥2) = (2122)> 0] D 3n.p(y,yz0)
‘ .. by takingn =12z, +z, >0
Now, assuming that y, = y, for all the possible transitions it is possible to show that:

14. (yl = yz) D o[at(lzv"‘z) A (yl = 3’2)]

Using 12, 13, 14 and the ¢ Concatenation rule(83] results in:
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15. [at{lymo) A (yy,92) = (z175) > 0] D Ofatllzmy) A (v,=v.)]
This proposition together with lemma A and the temporal rule that says that
o(w, A wy) D (0 wy A ow,) gives:

[at (1omo) A (y0r32) = (zy25)] D ofat (Iymg) Ay, = ged(z,,z,)]

Which is the theorem we wanted to prove.

It is interesting to notice that, although programs in temporal logic can be represented
graphically, it is quite possible to prove theorems about programs without actually having to
draw a graph. Manna and Pnueli rely on a labeled textual representation of the program in
their proof of GCD. Actually drawing a graph of this program would not have made the

proof any different.

5.3. A Formal Specification

Mediators are formally specified by describing the‘sequence control of language con-
structs and by giving the enabling conditions and state transformations of operations in the
language. Temporal logic axiom schemas are used to specify some constructs in the language
that share a common control abstraction. These serve as templates for all transitions having
the corresponding flow of control. The actual axioms for specific operations are obtained by
filling in the placeholders in these schemas, namely the enabling condition and the state
transformation. Other language constructs that have a unique control abstraction are

specified directiy by temporal logic axioms.

We use Manna and Pnueli’s temporal language [84]. Their language is a first—order
language over a fixed domain and includes four temporal operators : However, we do not use

their convention of explicitly specifying the values of all variables in the axioms. Instead, we
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include only variables whose values change during the transition.

The current state of a mediated object is modeled as a tuplee L =

< ymed, yproe, yobj, 7, py sp_ptr, 3 >. Program variables are partitioned into three sets: local
variables of the medjator (m), local variables and parameters of object procedures (yproc)
and encapsulated data of the object (y—o-l; ) ymed and yproc are further partitioned into sets of
variables local to individual procedufes. Thus ymed,.P (yproch) refers to the variable i (j) in the
mediator (object) procedure P (Q). The notation is overloaded by using the subscripts val, v-r

and local to refer to value parameters, value—result parameters and local variables of a pro-

cedure respectively.

The location variables x' point to locations l; within the mediator and keep track of the
mediator’s multiple threads of control.
of active requests in the object. These variables point to labels within object procedures. The
location variable sp_ptr is used solely for the initialization and termination of the mediator
and points to locations in the init and term blocks. The special value X is used to denote a
null value for location and service-location variables. The véctor s records the status of ser-
vice requests in the mediator. Each pending request has a corresponding element s* , wherek

is the request key, that takes the values:

req — the service has been requested, but not yet recognized by the mediator;
pre  — the mediator has recognized the request, but it has not yet started execution;

active — the mediator has started execution of the request, but it has not terminated;

term — execution has terminated, but the mediator has not recognized termination;
post — the mediator has recognized termination, the request has not yet been released;
mu  — there is no request pending for the key value k.
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We use the notation STATUS(id) to refer to a“, the status of the request with key “id”‘

As the actual number of requests and active processes is variable, the vectors p and s are

considered to be infinite vectors indexed by the unique service request key.

The start state of the mediator has all the program variables undefined, all the location
and service-location variables with the null value X, all status variables with the null value

v

mu, and sp_ptr pointing to the start location of the initialization block.

In order to make our axioms clearer, we define a new temporal operator oM (Next state
of the mediator). Manna and Pnueli use the sometime operator “0” to reason about the next
state of a particular process. However, this is not strong enough for our purposes. The media-
tor maintains multiple threads of control which are interleaved only during the guard evalua-
tion process. Once an open guard is selected and fired, the statements in its gua?ded list are
execu;;ed consecutively until this thread of control either terminates or reaches the next guard
evaluation point. To enforce the consecutive (non-interleaved) execution of a block of state-
ments in the mediator, we need to be able to talk about the next state of the mediator. For
this reason the new temporal operator oM is defined to mean that w is true in the state
resulting from the very next transition taken by the mediator as opposed to transitions taken
by concurrently executing service routines. This can be written in terms of the state of the

mediator and the basic temporal logic operators as:
M —_——
0" w = [(ymed=u) A (7=0)) U w

where 7 and Z are global constants used to talk about the values of program and location

variables in a previous state.
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We use the notation Z=ao{w'=m] to denote that vector z has the value of vector w with
the value of the i** element replaced by m. We use the notation at [ to mean that some ele-

ment x of 7 is equal to label /.

5.3.1. Modeling the Mediator’s Control Abstraction

Body and cycle are the two lafiguage constructs that explicitly alter the flow of control
in a program. We describe the effect of these constructs on program labeling through the use
of textual schemas (see figure 5.4). We then formally specify the sequence control defined by

these constructs by giving temporal logic axiom schemas.

When a mediated object is instantiated, the mediator begins executing its initialization

block (init ... end init). This is a simple sequential program on the mediators local data

"b. .

f init any key-id in key:
. init-body I.: cycle
l:‘: end ini¢ guard, — [, : stmt,
body - :
i 1
ly: cyele
//
a
// guard, — l, : stmt,
l:# Cyclen ;n': until ¢ ( ymed );
end body ¢
term
lo term
term~body
‘:”3 end term
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that can be modeled quite conlventionally. The termination of the initialization block creates
the initial state for execution of the mediator body. The significant change in state when the
initialization block terminates is that 7 takes on an initial configuration as defined by the
parallel guarded commands in the body. The initialization axiom expresses this transforma-
tior;. In the initialization axiom, and in the termination axiom that follows, the labels refer

to labels in figure 5.4.

v

(1) Initialization:  [(sp_ptr=L®) D O™[(sp_ptr=)) A (Vi)(1<i<n D ='=ly)]

The mediator body may also terminate if all the parallel guarded commands within it
terminate. In this case, a termination block (term ... end term) will execute. The termina-
tion axiom describes the transformation from the mediator body’s multiple thread of control

represented by 7 to the simple sequential control flow of the termination block.
(2) Termination:  [(Vi)(1<i<n D (#'=1))] D o™[(sp_ptr=i"™) A (Vi)(1<i<n D (#'=)))]
The axioms for the execution of the termination block are familiar and conventional.

The flow of control defined by eycle is more complicated and is specified in the form of
a parameterized axiom schema. An axiom schema serves as a template for a group of
language constructs that share a similar flow of control. The rule for a specific construct is
built from a schema by substituting the precondition parameter (pre) and the postcondition

parameter (post) with the appropriate values.

Schema 1 gives a template for the guard evaluation semantics. We define schema 1 for

a transition from the cycle statement label I to a statement list label 1, which is associated

with a particular guard of that cycle statement. This schema is used to describe how a sin-
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gle guard is non-deterministically selected from the set of all open guards in the mediator
and is fired. A guard is open if and only if some location variable oy points to a cycle state-
ment immediately containing the guard and if the guard’s condition is true in the current
state. Schema 1 specifies weak fairness in guard evaluation, that is if the guard transition is
infinitely often enabled, the transition will eventually be taken. The complete specification of
the cycle ;:onstruct also must include a specification of the termination condition, which is

presented below.

Schema 1 : Transitions corresponding to guard evaluation for a cyecle.
Oofat 1, A pre] D
ofatl, A (F=€) A pre A oM[(;szo[fi:l._]) A post|]

{If the transition is enabled infinitely often in the future, then it will
eventually be taken.!

The guard evaluation process also includes receiving new requests. A client may send a
request to the mediator at any time during the mediator’s activity. Reception of a request
from a client with the key ¢ causes STATUS(s) = mt; to become STATUS(:) = pre, and
client s job descriptor to become available to the mediator.v Because it is undesirable to
have either the STATUS vector or the set of job descriptors in ymed change independently
during mediator computations, the mediator may receive requests only under the same cir-

cumstances that it may evaluate guards.
This is specified by an axiom of the following form applied to every cycle construct in
the program:

(3) [at Iy A (Fi: i in key: a request from i has arrived A STATUS(i)) = mu A i = u)] D
o [at I, A STATUS(u) = pre}

This axiom allows for a delay in receiving requests and limits their reception to times when
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guards may be evaluated.

The termination of service operations creates a similar situation. The service operation,
once initiated executes independently of the mediator (see éection 5.3.3). When an operation
executed on behalf of client i reaches its last statement and terminates, STATUS(:) must
change from: active to term. Again, to keep the mediator state constant during mediator
computatations, we must constrain “when ’this change may occur. There are essentially two
cases to consider. Service operations initiated by an exec command terminate while the
mediator is blocked. These may be handled by the axioms of the exec statement presented

below. Service operations that were initiated by a spawn terminate independently. The

mediator delays recognizing the termination until a time when guards may be evaluated:

(3a) [at I, A (F: iin key: g =V & STATUS(i) = active Ai =u)] D
o [at 1 sub m A STATUS(u) = term]

In this axiom [_ labels a cycle command, i/ is the last statement in service routine P and o is
a location counter for the service routine executed on client 1’s behalf. More of the semantics

of the spawn command is given below.

Schema 2 is a stronger axiom that enforces the consecutive execution of statements in

the associated statement list of a guarded command.

Schema 2 : Transitions corresponding to operations in st-list of cycle.
(at 1, A (7=€) A pre] D OM[(;=Eo[Ei=ln]) A post|

{If the transition is enabled in the current state, then it will be the
very next transition taken by the mediator.}

The construct defined in this paper typically would be embedded in a conventional pro-

gramming language. Additional axiom schemas would be needed to define control statements
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in the host language, as per [81,94].

5.3.2. Semantics of operational statements

The previous section described the control abstraction of mediators in terms of temporal
logic axiom schemas. These serve as templates for specifying the semantics of actual opera-
tions and permit the semantics to l;e expressed in a clear, concise and easy—to—read fashion.
For those constructs that fit these schemas, we present their semantics by naming the schema
involved and the values of the placeholders. Other constructg are specified directly with tem-

poral logic axioms. English interpretations are used to highlight important aspects of the

constructs.

The basic operation statements used in mediators include a skip statement and assign-
ment statements, both of which may be specified in a conventional manner. The control flow

of these statements is encapsulated in Schema 2.

The skip command may be specified as:

(4) Construct: 1: skip;

Schema used : Schema 2
Parameters: pre: true
post: true

Assignment statements are specified as:

(5) Construct: | : ymed := h(ymed); L;:
Schema used : Schema 2

Parameters: pre:  ymed=3u
post: ymed=h(u)

Local mediator procedure calls may be specified as in (64]. In the axiom that follows,

3,4 is a vector of actual values for call-by~value parameters. a,_, is a vector of actual values
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for value-result parameters. The paraxr;eters passed into local routines will be from ymed.
We have ignored the possibility of side effects to simplify the axiom somewhat. Side-effects
are dealt with in[64]. The label I is the first statement in subroutine P. The element L in
the axiom refers to a stack of location variables, with |L; denoting ghe size of this stack and
top(L) its top element{64]. This allows us to deal with recursive calls and to “remember”
return locations. The variables ;r-n_c? refers to routine P’s parameters and local variables.
(6a) Language Construct: 1: P (a3, - )i Lt
[at 1 A (1L} =) AlGuy=i0) A (& =) A (ymed=3) A (F=E)] D

oM|(F=&s[£'=15]) A (1L} =s+1) A (top(L)=1,)

A (ymcd=§o[ymed:d=a1;ymed: _ =i;ymed, ., =undefined))]

The last component of this axiom that refers to elements of yme:i expresses parameter pass-

ing.

In the following axiom that defines the return of routine P, the label If is the last state-

ment of the routine after which the routine will terminate.

(8b) [at IF A (top(L)=1) A(LL}=s) A (ymed=3) A (7=E) A (ymedy_=w)] D

oM[(F=Eo[€'=L]) A (L} =s—1) A (ymed=wo[a,_=1,])]

The terms in this axiom that refer to ymcdf_, and a,_, capture the return of value-result

parameters.

5.3.2.1. Mediator Control Statements

Mediator guarded commands are considerably different from the original definition of

guarded commands{32]. A mediator guarded command does not abort if none of its guards
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evaluates as true, rather it delays until some gua..rd becomes true (cf.[18]). Some mediator
guards effect a change in request status when they fire. The gu;n'd evaluation semantics al;o
determines the interleavihg of statement execution. These characteristics allow guarded com-
mands to be used to build complex synchronization schemes that depend on the requests
present and the state of the mediator. The labels in the guard evaluation axioms that follow

correspond to those of the cycle stat;ment in figure 5.4.

The semantics of a guard which is a simple Boolean condition c(ymed) is given by

Schema 1 with the parameters having the values:

——
P

Construct: 1, : c{ymed) —,:
Schema used : Schema 1

Parameters: pre: c(ymed)
post: true

Similarly, the semantics of a guard which is a status test paired with a Boolean condition is:

(8) Construct: | : req(id);c(ymed,id) — 1,:

Schema used : Schema 1
Parameters: pre: (STATUS(id) = req) cand c(ymed,id)
post: (STATUS(id) = pre)

For a term guard this is:

(8a) Construct: |, : term(id);c(ymed,id) — 1,:

Schema used : Schema 1
Parameters: pre: (STATUS(id) = term) cand c(ymed,id)
post: (STATUS(id) = post)
Guarded commands prefixed by a key selector (any key_id in key:) may be handled by

adding a quantifier to the enabling condition, and binding the key_id to an enabling value.
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(9) Construct: 1 : any key-id in key: req(key-id);c(ymed,key-id) — 1,:

(Vk: k in'key: 00 [(at 1, A (STATUS(k) =req.) cand c(ymed, k) D
o( at 1, A (ymed=3u) A (STATUS(k) =req) cand c(ymed, k) A
o™((ymed=1)o [key_id = k]) A (STATUS(k) = pre)))]

This axiom describes the same flow of control as in schema 1, e.g. a guard that is infinitely
often enabled will eventually be fired. We.have not used schema 1 here because of the key

v

binding that occurs in this axiom. A’single guard of the form

req(key—id);c(ymed,key-id)
in a cycle statement that is prefixed by any key_id in key: describes a set of transitions,
one for each value in the range described by the key field of the job descriptor. The axiom is
written so that if the guard bound to a particular value of & in the range of key is fired, the

mediator variable key_id is assigned that k on the transition to the associated statement list

.

If the guard contains a term status test, this rule is applied:
(9a) Construct: 1 : any key-id in key: term(key-id);c(ymed,key-id) — 1,:
(Vk: k in key: 00 [(at 1, A (STATUS(k) =term) cand c(ymed, k) D
o( at 1, A (ymed=3u) A (STATUS(k) =term) cand c(ymed, k) A
o™((ymed=1)o [key_id = k]|) A (STATUS(k) = post)))|

Quantification is used in this axiom as in axiom (9). The only difference between these

axioms is the status of the request that will satisfy the guard.

The otherwise guard also fits Schema 1. Its precondition is that the conjunction of all

the other guards (as defined above) in the same cycle is false. The postcondition is true.

Guarded command termination may occur when the final until statement of the cycle

statement is reached. The cycle terminates (passes to label L) when the exit condition is

-‘, - -
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.true, and returns to the start of the eycle otherwise. Labels in this case correspond to those

on the cycle statement in figure 5.4. This axiom describes the termination of a cycle:
(10) fat L A (7=8)] D 0M{(—c(ymed) A(F=Eol€=1a))V (c(ymed) A (F=Eo[€=L])
It should be noted that evaluating the exit condition may not have side effects.

v

5.3.3. Mediator Service Statements

Three special commands within the mediator (exec, spawn and release) allow it to
activate operations on the encapsulated resource and to return the results of operations to
clients. None of the other mediator statements directly affect the encapsulated resource.
Exec and spawn both create processes to perform service operations on the encapsulated
data. The execution of an exec command causes the mediator to block until that operation

has terminated.

(11) Language construct: l, : exec(id,P(a,,,3,_,)); L
Schema used : Schema 2
Parameters: pre: (STATUS(id) = pre)
post: (STATUS(id) = term)

In addition, we need two axioms to describe the coupled execution of the service routine. In
the first axiom (12), which describes a call on the service routine P, the location variable x is
given the temporary value 3 to indicate that this thread of control of the mediator is blocked.
Because the exec axiom above requires the i'® thread to make the next mediator transition,
this additional axiom enforces the blocking of the other threads of control. The symbol P is
a location variable for a process that executes a service operation for a request with the key

id. It is set to the initial statement in the routine P: l: .
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(12) [at I A (STATUS(id)=pre)] D o[(s=l;) A (STATUS(id)=active) A (v'=F)]

The second additional axiom (13) describes what happens when the execution of the service
routine terminates and returns.
(13) [(#“=I7) A (#'=8)] D o[(r'=],) A (STATUS(id)=term)]

v

In this axiom the label I,P is the exit'label of the service routine. The axiom states that once
the final statement in the service routine has been reached, eventually the status of the served

request (STATUS (id)) will become term, and the mediator will resume execution.

Together these additional axioms ;pecify that the mediator remains blqcked until =
again points to a program location. They also capture the start and termination of the ser-
vice routine (pid). These are analagous to the rules for a simple procedure call and return.
These axioms do not include the parameter passing aspect of these statements. Instead, we
refer the reader to [64] and to the discussion above of parameterﬂ passing for local mediator

routine calls.

The axioms to describe the spawn statement are simpler because the mediator does not

wait for termination when a spawn is executed:

(14) Language construct: 1, : spawn(id,P(a,,3,.)); L, ¢
Schema used : Schema 2
Parameters: pre: (STATUS(id) = pre)
post: (p'd=l: ) A (STATUS(id)=active)

The termination of a spawned service does not directly affect the flow of control of the media-
tor, and for this reason it is not neccessary to add an additional axiom like axiom 12 to

describe blocking the mediator. The post condition in axiom (14) describes the initiation of a

process 2 to execute a service for request id. The label l: is that of the initial statement in
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service procedure P.

An additional axiom describes the termination of the service and a change in the status

of the job serviced:
(15) [%=I]] D o[STATUS(id)=term]

The label l,P is again the last statement in service routine P. The axiom says that once the
final statement in the service routine is reached, eventually the routine will return and that

the status of request td will become term.

Because the semantics of every statement in the mediator except the cycle statement
requires the following statement to be executed next, the transition described in axiom (15)

will only occur when guards may be evaluated.

In order to use the spawn and exec statement semantics in a mediator verification, we
make the assumption that all service routines terminate. A complete verification of a medi-
ated object would require demonstrating termination of the service routines using conven-

tional proof techniques.

The release statement returns the results of service execution to the client. A client

that has requested a service from the mediator blocks until the mediator “releases” it:

(16) Language construct: 1, : release(id) ; L;:
Schema used : Schema 2
Parameters: pre: (STATUS(id) = term) V (STATUS(id) = post)
post: (STATUS(id) = mu) A release_job

We do not present the semantics for the rebuining of result parameters to the client but use

the term release_jobs to refer to them. The semantics for this from the client’s point of view

is similar to that of procedure calls.
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5.4. A Sample Verification of a Mediator

Verification of a mediated object consists of two parts. The mediator is shown to
satisfy its synchronization and scheduling requirements. This requires the assumption that
service operations, once initiated, do terminate. The operations are then verified to show that
they provicie the specified service. This approach is possible because the mediator and the

4

encapsulated resource operate in disjoint data spaces.

As an example, we formally specify the synchronization requirements of a reader_wriler
mediator and briefly sketch its proof. The proof relies on program axioms extracted from the

solution using the rules given in the previous section and on a temporal logic proof system (as

in [84}).

The properties of the mediator that we might wish to verify are the invariance (safety)
properties of partial correctness and mutual exclusion and the eventuality (liveness) proper-
ties of accessibility and liveness. The mutual ;exclusion requirement of the readers—writers
problem is that access of the resource to readers and writers be mutually exclusive. This can

be stated in temporal logic terms as:

(a) O [(reader_count=0) D
= (Zk: k in key: (STATUS(k) = active) A (job(k).service = read))]

(b) O [~ (3: kin key: (STATUS(k) = active) A (job(k).service = write))
A (reader_count>0))].

(¢) O[0 < (Nk:kin key: (STATUS(k) = active A job(k). service = write)) < 1]
The first assertion states that if reader_count = 0, no reader can be active. This assertion is
proved by showing that reader_count is incremented whenever a new reader is activated and

is decremented whenever an active reader terminates. The second assertion states that no

writer can be active if reader_count is non—zero. This follows trivially from the semantics of

) <
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init
reader_count := 0
end init
body
any i in key:
l: eycle
req(i); job(i).service = write ->
1;: cycle g
reader_count = 0 ->
licee: €Xec(i, write (job(i).writeprm));
lrduu: release(i);
L: until true

m]
req(i); job(i).service = read ->
" L reader_count := reader_count + 1;
Lipawn: SPaWn(i, read (job(i). readprm));
1,: until false '
//
any i in key:
m: cycle
term(i); job(i).service = read - >
m,: reader_count := reader_count - 1;
m,,,,,.: release(i);

m,: until false
l,:m,: end body

Figure 5.5. Labeled Reader_Writer Mediator.

the guard controlling the activation of a writer. Mutual exclusion of these operations is thus
enforced by the judicious use of the counter reader_count. The third assertion states that

there is never more that one write operation active at a time.

We will now prove the first assertion (a) to demonstrate how the temporal logic
specification may be used to verify a mediator. The proof will follow the framework
developed by Manna and Pnueli in[82]. Their method is a generalization of the intermittent

assertion method(85]. In order to prove a program invariant, such as (a) above, it is neces-



sary to show that

e the assertion ¢ is true in the initial state of the program:
e.g.: ©o(ymed) Dy

o the assertion ¢ remains true for all possible mediator transitions.
e.g.: for every transition in the mediator, if the assertion ¢
is true before the transition, it remains true afterwards.

If these can be demonstrated, then it can be inferred that

v

(ymed) D T .

Before we begin proving assertion (a), it is useful to demonstrate that certain parts of

the mediator define critical sections that can be treated as a whole in our proof. These are:
L= {lmc;lr'lom} Ly = {Lipawa) M= im,m,..}
Using this notation at L means
at 1.V at L
Since L and L, both are locations of =, it is trivially true that

O=[atLAatL,.

Proving these are critical sections requires us to prove the invariant:
(d) @ = [(at L v at L,) A at M]
Since this is an invariant, the method we outlined above may be used. That is we must show:

(d1) assertion d is true initially
(d2) assertion d remains true for all possible transitions

The initial state of the mediator is:

¥ = {l, m}, reader_count = 0, (Vk: k in key: STATUS(k) = mu)
... prove by simple sequential proof of the init block and axiom (1).
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Since in this state control is = {at L Vv at L, V at M], assertion (d) is clearly true in this state.

We have shown (d1).

Now we need to show that (d) holds for all possible traansitions. In fact, Manna and
Pnueli point out that only those transitions that can affect the value of an invariant assertion

really must be considered(82]. In this case those transitions are:

(i): 1Ly (9): Luteam = L
M@l = lad (V) Ly =

(iii): m — my; (Vi): Mygene = m,-

To prove that assertion (d) holds, we assume it is true before each of these transitions, apply

the transition and demonstrate that assertion (d) still holds.

Formﬂly given a statement that fits schema 2, such as traasitions (iv - vi), we must
show'that;
[(at 1, A pre A = [(at L Vv at L,) A at M]) D (at I, A = [(at L Vv at L,) A at M])]
to prove that this holds for transition (iv) we must show that:

(3t Lyee A — [ (at L V at Ly) A at M]) D (at L, A= ((at L v at L,) A at M])]

The proof that (d) holds for transition (iv):

at L. DatL ... definition of at L
atLD=atM ... assertion (c) in precondition
at L. D 0™ at L, ... by axiom (16)

[t Ly A = at M] D 0™ at L A-at M| ... propositional reasoning

at l,‘ A=-atM ... by making transition (iv)

~ [(at L v at Ly) A at M])

Transitions (v) and (vi) can be proved the same way.
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Proving the invariant (d) is maintained in transitions (i-iii) is more difficult. To prove

the invariant holds for transition (ii): 1, — l,e We must show that:
[(at1, A =[(at LV at L,) A at M]) D(at I A = [(at L vV at L) A at M])]

The difficulty here is that the precondition: at I, A = [ (at L V at L,) A at M] is true indepen-

dent from the value of [at M|. We must consider the two cases:

4

case 1: at M
case 2: —~atM

Let us attempt to prove the invariant (d) on the transition (ii) given case 1:

at M ... given in case 1
at M Datm; Vat m,,., ... definition of at M

This introduces two subcases to prove: at m, and at m,,,,,:

at m, ' ... first subcase
atm, D oMat m,,, * .. by axiom (5)

However, if being a¢ m, implies that the very next mediator state must come from the transi-
tion from m, to m,,,,,, then it is impossible for us to make transition (ii), hence a contradic-

tion. We must conclude: = at m,. The second subcase leads to the same contradiction:

at m ... ... second subcase
at m,,, D0*atm, ... by axiom (16)

and we deduce:
= ab mpg,..-
From these two subcases we derive:
= atm; A = at m,,,,. D = at M.

Now we can easily prove the invariant on transition (ii):
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atl, A= [(atLVvatL,) at M| ... assumed
—-atM «.. by case 1 proof
at 1. ... transition (ii)
at I, DatL, ... definition of at L,
atl A -atM ... axiom (7) on », does not affect =,

at 1. A = [(at L V at L,) A at M])]
This proves the invariant over transition (ii). The same technique can be used for proving
transitions (i) and (iii) preserve the invariant (d). -
From proving the invariance initially (d1) and over these transitions (d2) we can deduce

(d) O=[(at L vatL,)AatM|

The mutual exclusion we have proved here can also be proven using this method for aay
segment of code that does not contain a guard evaluation. It is a natural consequence of the
fact that initially all the elements of 7 point to guard evaluations and that all the transitions

but guard evaluation are governed by the strong temporal operator oM.

The proof of (a) is, once again, an invariance proof. To prove (a) we must show that the

assertion:
[(reader_count=0) O = (Ik: k in key: (STATUS(k) = active) A (job(k).service = read))]

holds initially (al), and holds through all possible transitions of the program (a2).

As we stated in proving (d1), the initial state of the mediator is:
* = |l, m}, reader_count = 0, (Vk: k in key: STATUS(k) = mu)
Since reader_count = 0 and no jobs are active, (al) is trivially true. Here we make a slight
diversion to prove a useful lemma:

(lemma a.1) O [reader_count > 0]

This is another invariance property. It is obviously true in the initial state. Since the value



of reader_count is only changed in two places, we need prove the invariance over only the
transitions (i) L, = l,;,,, and (ii) m; = m g0,
The proof for transition (i) is quite simple. Since statement 1, adds to reader_count:
[at I, A reader_count > 0] D [at 1., A reader_count > 0]

by the definition of addition. We have already shown in assertion (d) that if this transition is

enabled, it will be taken.

The proof of transition (ii) is more complicated. We need to show that:
[at m, A reader_count > 0] D [at m,,,,,, A reader_count > 0]
This can be broken down into two cases:

(case 1) reader_count > 0 ;
(case 2) reader_count = 0.

The assertion is obviously true for case 1, since subtracting one from a non-zero number can
not make it negative. But what of case 2? Consider that the only transition that can lead to
being at m, is the transition m — m,. The precondition for this transition is that for an ¢ that

is bound at m;:
(at m A STATUS(i) = term A job(i).service = read].
After the transition for m — m, we have:
[;t m, A STATUS(i) = post A job(i).service = read).
by axiom (9a). The problem here is that no job(i) can obtain the state STATUS(i) = term
without previously having been the parameter of an exec statement (exec(i,...)) or a spawn

statement (spawn(i,...). We will not prove this formally here, but it is a clear result of the

fact that only three of the axioms describing mediators allow the STATUS(i) to becom;.- term
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(axioms 3a, 13 and 15), and these describe the results of a service operation (initiated by

spawn or exec) completing.

Since the read operations in our mediator are only initiated by a spawn at label ...
This means that in order for the transition m — m, to be enabled, the transition I, = 1, .
— 1, must have occurred. Since this transition only increments reader_count, we know that:

= [at m, A reader_count = 0|. From this argument we can deduce (lemma a.1).

As a second useful lemma, we show that reader_count is equal to the number of read
jobs that are either STATUS = active or STATUS = term whenever a guard evaluation

occurs., That is:

(a.lemma2) Of(at 1V at 1) A at m| D reader_count =
(Nk: k in key: (STATUS(k) = active V STATUS(k) = term)
A job(k). service = read)

Please note that

[reader_count = (Nk: k in key:
(STATUS(k) = active V STATUS(k) = term) A job(k). service = read|]

implies assertion (a).

Lemma a.2 is obviously true in the initial state. We will prove lemma a.2 over all tran-
sitions by showing that il we start in a state (at 1 V at |;) A at m] that any deterministic
path of transitions that return us to such a state maintains the invariant. In the semantics of
the mediator, a chain of transitions each of which is defined with the o™ operator forms a
deterministic path. The mediator program consists of three such deterministic paths:

(pll): llm - lnhno - lcl - l;

(pl): 11 - llpawn nd l. - l;
(pm): m; => m,,,,, —> m, -> m.
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We need to show that if:

reader_count =

(Nk: k in key: (STATUS(k) = active V STATUS(k) = term) A job(k). service = read)
in a state in which
[(at1Vv at ) A at mj

and we transition out of that state, it wil still be true when we return to such a state. Since

pl,, pl and pm define all such transitions, we need to show that the transitions

(i) 1, = ply;
(ii) I = pl;
(iii) m — pm

maintain the assertion. Lemma a.2 is, in effect, a loop invariant. This method is supported

by the Single Path Rule described in [82].

Lemma a.2 is trivially true over path pl, (transition i) as no element in that path alters

the value of reader_count or changes the status of any read request.

We start transition (ii) with:

[(at 1) A (reader_count = (Nk: k in key: (STATUS(k) = active V STATUS(k) = term)
A job(k). service = read))|

Since the transition described by pl increments reader_count at l;, activates one read opera-
tion at 1, and has no effect on any other job, the invariant holds at the end of pl (return to

at l). The invariant holds over transition (ii).

The proof of transition (iii) is similar. We start with:

[(at m) A (reader_count = (Nk: k in key: (STATUS(k) = active V STATUS(k) = term)
A job(k). service = read))|

Since we assume we can fire the guard at m, it must be true that:




(Zk: k in key: (STATUS(k) = term) A job(k). service = read) ... by axiom (9a).

the effect of traversing path pm is to decrement reader_count by one and to remove one read

job with STATUS = term. The path has no other effect, so when we return to m, lemma a.2

still holds.

'We have proved that our assertion holds over all possible path transitions from the

state [(at 1 V at |,) A at m]. We may deduce that lemma a.2 holds.

At this point we return to the proof of assertion (a). Rather than actually look at all
possible mediator transitions in proving (a2), we may prune set of transitions to only those
that affect elements in assertion (a). Those are transitions that assign to the reader_count
variable and any transition that may change the status of a read fequest to of frqm

STATUS(i) = active. These first two of these transitions are:

(i) lﬁ - llpl'l; (li) lmn - lc'

We can prove the invariant (a) holds for transition (i) using lemma a.1:

[at L A ((reader_count=0) D :
= (Zk: k in key: (STATUS(k) = active) A (job(k).service = read)))] D
[at Lpown A ((reader_count=0) D
= (3k: k in key: (STATUS(k) = active) A (job(k).service = read)))]

The proof for transition (i):

at L A ((reader_count=0) D
= (Zk: k in key: (STATUS(k) = active) A (job(k).service = read)))
... assumed

reader_count > 0
... lemma a.1

at 1

pawa
... assume transition

at 1 A reader_count > 0

pawn
... axiom (5), addition, lemma a.1
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at 1 A = (reader_count = 0)

pawn . .
... propositional reasoning

at Logun A (reader_count=0) DO

= (3k: k in key: (STATUS(k) = active) A (job(k).service = read))
«. (False D x) = True
The proof of transition (i) feeds directly into the proof of transition (ii), that forms the

critical section L that we proved mutually exclusive with assertion (d). Since above we have

shown that

at | O reader_count > 0,

spawn

and since nothing in the spawn statement affects the value of reader_count, the implication
(reader_count=0) D = (Zk: k in key: (STATUS(k) = active) A (job(k).service = read))

remains trivially true.

We need to prove another transition in order to show the invariance of assertion (a).
Since statement m, decrements reader_count we need to look at the transition (iii) m, —

m Since statement m,,,,, is not defined on a read job with STATUS = active, there is

release’
no reason to consider the transition from that label. It is easier to see that the assertion

holds for transition (iii) if we back up and consider that statement m, can only be reached by

firing the guard at m. Since we assume we can fire the guard at m, it must be true that:
(Zk: k in key: (STATUS(k) = term) A job(k). service = read) ... by axiom (9a).
This means that:
(Nk: k in key: STATUS(k) = term A job(k). service = read)) 2> 1

And furthermore because of lemma a.2 we can see that if we are about to the guard at m is

open for a transition to m, we know that in this case:
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reader_count = 1D = (Zk: k in key: (STATUS(k) = active) A (job(k).service = read)). -
Firing the guard makes:

at m, A reader_count = 1 A = (k: k in key: (STATUS(k) = active)
A (job(k).service = read)).

After transition (iii):

at Mg, A reader_count=0 A = (Ik: k in key: (STATUS(k) = active)
A (job(k).service = read)).

which certainly satisfies invariant (a).

The case of transition (iii) :
at m, A reader_count >1
is less interesting. After the transition we get:
at m A reader_count _>_.1
where assertion (a) holds trivially.
Now we have demonstrated that (a) holds in the initial state and that it continues to
hold for all transitions in the mediator, hence we have proven that:

(a) O [(reader_count=0) D
= (Zk: k in key: (STATUS(k) = active) A (job(k).service = read))].

The proof of assertion (b) that states mutual exclusion for write operations follows a
similar outline. It is fairly easy to show that the deterministic path that can activate a write
operation (pl, above) may only be entered with reader_count = 0. The proof of (c) can be
derived directly from the fact that the exec statement is specified to block any further transi-

tions in the mediator until the operation that it initiated terminates.
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The second property that must be considered in a mediator proof is that of accessibility
(a liveness property). In other words, if a service request for a read or a write has been
received, then service for that particular request (i.e. the one bearing that specific key-

identifier) should eventually be initiated. Formally,

(e) (Vk: kin key ((STATUS(k) = req) A (job(k).service = write)) O
' 0 (8t lyye A (keyid = k)))

(f) (Vk: k in key: ((STATUS(k) = req) A (job(k).service = read)) D
0 (3t Lpyw A (keyid = k)))

where 1., and 1., are the labels of the exec and spawn statements in figure 5.5. The proof
of these assertions requires the assumption that service operations always terminate and that
they do not change the value of reader_count. It is then a standard exercise to apply the

proof system to the program axioms to prove these assertions. Manna and Pnueli’s EVNT

rule(82] is essential to this proof.

5.5. Final Remarks

Once it was recognized that mediators did not exactly fit Manna and Pnueli’s simplified
model of a concurrent language[84], designing a model for mediators and writing a formal
specification proved to be a straight—forward task. A number of different notations were con-
sidered, including Manna and Pnueli’s graphical one. Schemas were developed mainiy to

allow us to present the semantics in a limited space(39].

Doing the formal specification provided a lot of information about the design of the
mediated object, and in some cases led to changes in the design. For example, an earlier ver-
sion of the mediator construct did not include exit conditions in the cycle statement.

Instead, a break statement allowed an unconditional exit to the next statement after the
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cycle that contained it. The break statement was rejected when we recognized that for-

mally specifying such a construct in a direct manner was extremely difficult.

The elimination of the break statement in favor of an exit condition added to the cycle
statement led to other changes. An earlier version of the design included two kinds of guard
commands, a cycle statement that defined a looping guarded command, and a when state-
ment that defined a “one time only” guarded command. Once an exit condition was added to
the cycle statement, the when statement became redundant. It was merely equivalent to a

cycle statement with an exit condition of true.

Temporal logic proved to be a very valuable tool in developing the mediated object.
The fact that we could develop a formal specification allows us to have more confidence in the
design, even without the practical experience of implementing and using the construct. The
existence of an easy to use formal description should be useful to future implementors as'an
unambiguous statement of the design. It should also be useful to any future users who may

wish to verify synchronization characteristics of the mediated objects they write.
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CHAPTER 8.

SOME COMMENTS ON IMPLEMENTATION

Mediated objects have not yet been implemented, but we expect that implementing
mediators should not present significant problems. Many of the components of the construct

‘have been implemented in other languages. The main problem will be fitting the components

together in an efficient manner.

There are several possible implementations for the mediator call mechanism. For exam-
ple remote procedure calls could be applied [89]. A remote procedure call can be imple-
mented as an exchange of messages between the client anci mediator. The client sends a
request message containing the name of the operation requested, its process idegtiﬁer and
parameters. It then waits to receive a reply, which will arrive when the mediator has
released the operation. The mediator receives a request and creates a job descriptor. This is
placed in the list of pending requests, becoming available for status tests. The job descriptor
is destroyed when the mediator releases a job and returns results to the client. In the percep-
tion of the client process, a remote procedure call appears to be no different than a simple
local procedure call. Mediator calls could also be implemented like Ada rendezvous(28] which

are very similar to remote procedure calls in intent.

The exec and spawn statements require system support to initiate service for requests.
This support may include creating a new system process and scheduling its execution on a
free processor. Ramamritham and Keller’s Sentinel Processes implement statements for cou-
pled and uncoupled execution of this kind[98|. Their implementation could not be used

directly as they operate with different parameters than our exec and spawn commands.
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The evaluation 6_f parallel guards appears to be a significant problem at first glance.
The apparent distributed evaluation of guards from a number of parallel guarded commands
does not immediately fit a familiar paradigm, and it appears that evaluating and reevaluating

guards could be extremely inefficient.

The mediator body can be implemented in a direct, and somewhat simple-minded, way
using a single process and a table of “active” guards. The activ? guard table would contain
those guards corresponding to an element of the location vector x as described in the previous
chapter, e.g. those guards at a control point. This essentially defines a jump table that can
be used whenever the active flow of control reaches a guard evaluation. The table would need

to be updated with each successful guard evaluation.

Guard evaluation does not need to be inordinately expensive. The special application of
guards in mediators makes it possible to limit the number of guard reevaluations. After a
guard evaluation, only certain events may change the value of the guards: the arrival of a
new request, the termination of an active request or the execution of mediator statements
after a guard has fired. If all guards have evaluated as false, there is no need to reevaluate

the guards until either new requests arrive, or active requests termirate.

It is also possible to limit the number of guards considered during evaluation. The
evaluation of guards containing status tests can be constrained in two ways. Status tests
need only be evaluated for clients that are present in the mediators list of pending requests,
since the value of any other status guard is automatically false. Application of fairness limits
the evaluation of status tests for clients as well. These can be evaluated in the order of their

arrival until an enabling guard is found.
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The evaluation of pure Boolean guards cannot be limited this v;'ay. Fortunately, these
are likely to be few in lnumber. These also present a fairness problem. It is easy to apply a
fair ordering criteria for requests based on time of arrival, but such criteria can not be
applied to simple Boolean guards that may, without firing, become true and false repeatedly.
Implementing weak fairness may require implementing event queues or counts so that these

guards may be ordered.

v

The design of mediators is best suited to a system made up of distributed multiproces-
sor nodes, with one or several mediated objects installed at each node. Implementing media-
tors on such a system should be straightforward. Implementation of mediators on a unipro-
cessor is also possible using multiprogramming, but would probably be very inefficient. Medi-
ators implemented on a distributed network of uniprocessors could work quite well. This
could be accomplished by multiprogramming the mediated objec§ on one node, or by allowing
the mediator to exist on one node, and execute operations at remote nodes. The limiting fac-
tor would be the amount of object data that would need to be sent to the remote service

nodes.
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CHAPTER 7.

CONCLUSION

This paper has presented a preliminary proposal for a new language construct, th_e
mediated object, that may serve as a useful tool in programming distributed embedded sys-
tems. Mediators allow direct progr;mming of synchronization and scheduling and are able to
directly use both information about a pending request and the present synchronization state..
This makes mediated objects a powerful construct for synchronization and scheduling appli-
cations. At the same time, the design of mediated objects supports structured design of con-

current programs. We have also presented a temporal logic specification of the mediated

object and indicated how this specification could be used to verify objects.

Mediated objects emphasize the principle of modularity in their design. In a mediated
object the specification of the data abstraction rgpresentihg a resource is designed and coded
separately from the design of synchronization and scheduling for that resource. Because the
resource is encapsulated within the mediated object, all uses of the resource are subjected to
the synchronization and scheduling constraints implemented in the mediator. This separa-

tion and encapsulation both ensures a degree of protection for the resource and makes its

design clearer.

The mediated object also allows for encapsulated concurrency. . The mediator designer
can specify as much or as little concurrency with the mediated object as desired, but still

maintain encapsulation of the resource and its synchronization and ensure that the specified

constraints will be enforced.
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The flexibility of the mediated object is demonstrated by the wide variety of sample
programs that we have been able to present. The mediated object is flexible both in terms of
the kinds of synchronization and scheduling that it can implement, but also in terms of the

way the mediator specifies those constraints.

Finally, we have presented a framework for verifying mediated objects. The flexibility
of mediators in some senses makes trade-offs on the safety provided bf more “protective”
and less flexible concurrency structures such as those implemented in Argus{117]. This
trade—off would not be acceptable if the object designer could not be confident that the object
design met specifications. The temporal logic specification we have developed and the

verification framework developed by(82] allow verification.

The newest elements of the mediator design include the design of parallel guards, the
use of keys to mainpulate information about clients, the mapping of generic service names to
actual operations within the mediator and the use of temporal logic as a p imary language

specification.

7.1. Directions for Further Research

The mediated object may provide a fertile source for future research in language imple-
mentatio;zx and design as well as research into veriﬁcation and specification. It would be use-
ful and instructive to complete an implementation of this construct in some suitable host
language. An implementation in Pascal(59] could build on some of the work already done on
implementing Path Pascal(23]. Another suitable host language may be C++(111] using

classes as a basis for building mediated objects.
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Mediators can implement non-preemptive scheduling schemes, but not preemptive ones.
There are many systems applications in which the ability to do preemptive scheduling would
be useful. In order to extend mediated onbjects to implement preemption it would be neces-
sary to both include an interrupt mechanism and to provide a way to recover the state of the
encapsulated resource. Recovery is needed because interrupted use of a software resource

usually will leave that resource in an inconsistent state.

The implementation of a recovery mechanism is also essential in software fault-
tolerance schemes. The mediated object could be extended to implement recovery blocks,
much as Path Pascal was[105}, or to implement conversations(26,58,100]. Besides a recovery
mechanism, the extension to software fault-tolerance requires an exception handling mechan-

ism that is totally lacking in the current design.

One feature of the mediator may be useful in developing a recovery block mechanism.
The ability of the mediator to delay the return of results from a service after that service has
terminated and to actually schedule when a release may occur may be directly applicable to

programming coordinated termination for processes engaged in a conversation.

We have largely ignored the problems of hard deadline real-time programming in our
discussion of the mediated object. This is a very important topic in programming for embed-
de(i systems, but also one that is extremely difficult to deal with. Considering the mediator
in this context raises a number of interesting (and complex) questions that may offer a

profitable area of research.

Finally, we have considered a number of issues concerning temporal logic as a
specification and verification tool for mediated objects. This thesis was not intended to break

new ground in this area, but rather to use existing temporal logic “technology” to support




110

our design. In the course of trying to apply temporal logic as presented for the rather simple
programming languages discussed in(82,84], we discovered that these tools are not ready to be
picked up and directly applied to languages that are richer in control structures and that

operate in more complex domains. There is much that can be done to improve the usability

of temporal logic.
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Abstract. Path Pascal has proven itself a useful tool in simulating the behavior of
multiprogramming systems, both in research and in teaching. One lack it has demon-
strated is the ability to simulate the action of input—output devices in order to model
operating systems on real machines. To rectify this lack, a system is presented that
allows the Path Pascal programmer simulated access to a variety of I/O equipment, and
a device model is presented which allows additional types of devices to be defined at will.

1. Introduction.

The Path Pascal programming language is designed to allow the user to experiment
with the programming of multiprogramming systems. Its greatest use is in designing
and simulating operating systems; for this purpose, however, the language itself is
incomplete. One feature that the language lacks, by design, is any support for I/O dev-
ices.

This lack is rectified in the support software by providing a device simulator, writ-
ten as a set of external objects that can be linked with Path Pascal programs. Through
these objects, the user can define a set of peripherals, such as disk and tape drives, unit
record equipment, and terminals, and allow the program to communicate with them.

These simulated devices are capable of operating in two major modes. In one of
these, the program runs freely in a way that can be termed ‘‘pseudo-real time.” In this
mode, device requests are handled concurrently with the operation of the program and
allowed to complete as rapidly as the underlying system’s response time allows. The
“pseudo-"" designation reflects the fact that the Path Pascal program is itself running on
a multiporgrammed system, and hence has other programs competing for the system'’s
resources; true real-time simulation is impossible in such an environment.

The other mode may be termed *‘simulated-time’ or ‘‘synchronous.” In this mode,
I/O requests are still processed concurrently as much as possible, but their terminations
are scheduled with respect to the wallclock time in the Path Pascal system. Each
device type being simulated embodies a model of that device's service time as requests

The work presented herein was funded in part by the National Aeronautics and Space Administration
under Grant NSG-1471.
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2 ] Path Pascal Device Model

are presented to it, and the termination times therefore give some idea as to how the
program would perform in real-time on an actual machine.

2. The Device Model.

Understanding the model for how a program communicates with a device is crucial
to using the device simulator programs effectively. While somewhat simplistic, the
model provides a reasonably accurate simulation of nearly all devices available today.

Each device is represented by a device object in the Path Pascal program. A
device supports four fundamental operations: open, close, do_1ic, and await_int.

Each device on which I/0 is to be performed must be initialized with an open
request. This requests takes two arguments: a character string which is a shell command
to start the device server, and a Boolean value which describes what is to happen with
SIGINT signals from the operating system (We ignore the latter feature for now; see the
description of the tty device for details).

The open request starts a server program that simulates the requested type of dev-
ice, and initializes certain internal control information. Following this, do_io and
awalt_int requests may be used to perform input from and output to the device.

Most I/O proceeds through the do_1o request. Its flow is perhaps as simple as it
can be while still capturing the idea of asynchronous processing. In its simplest form,
he flow is as follows:

The device is seized for exclusive access. Until this do_1o request is complete,
other requests will block at this point.

e The type of operation (e.g., seek, write, rewind) is sent to the device.

e The requested operation is performed by the device. If the operation is an output-
type operation (e.g., seek, write), user-supplied data are sent to the device. If it is
an input-type operation (e.g., read), data from the device are transferred to a
user-supplied buffer area. While the operation is in progress, other Path Pascal
processes may proceed; the requesting process blocks at a semaphore until the data
transfer is completed.

e The device returns a status describing the success or failure of the operation. This
status is returned as a value by do_1o0. Prior to returning, if the system is operat-
ing in simulated time, the device simulator performs a delay operation so that the
I/O terminates at the correct simulated time. Pseudo-real-time I/O always ter-
minates as soon as possible.

In addition to the above sequence, some communication with I/O devices is ini-
tiated by the device rathe than the program. Examples of this are the user pressing the
BREAK key on a terminal, an operator mounting or dismounting a removable storage
medium, and a sudden failure of a device. We shall see further examples of this type of
operation in the discussion of the multiplexer device type. These unrequested condi-
tions on devices are called ‘‘urgent conditions’ or ‘‘urgent interrupts.”
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Path Pascal Device Model 3

The Path Pascal program wishing to handle an urgent condition on a device may
do so by executing that device's awalt_1int request. This request, in its simplest form,
has the following flow:

e The device is seized for awaiting the interrupt. Until some urgent condition is
detected, other await_int requests will block at this point. Note that this seizing
of the device and that performed by do_1o are orthogonal; i.e., a do_1o and an
awalt_urg request may be outstanding at the same time.

e The Path Pascal process is blocked until an urgent condition is detected. Other
Path Pascal processes may proceed.

e  When some urgent condition occurs, the device sends a status indication describing
the condition. The Path Pascal process that executed the awalt_int request is
unblocked, and the await_int function returns the status as its value.

Finally, a close operation is provided on the device object. This operation indi-
cates that the device is no longer required, terminates the associated server, and releases
the memory used for various internal control structures associated with the device.

3. Multiplexer channels.

The above device model serves for the simplest cases of I/O, where all data
transfers occur in the sequence, ‘“‘send request; await interrupt; process status return.”’
It has some drawbacks, however, in some of the more sophisticated uses of I/0O.

One problem is that a Path Pascal process must be dedicated to each device on
which I/O is in progress. In a system such as a terminal controller, where [/O may be
pending on a large number of low-volume devices, the overhead of maintaining all these
processes may be prohibitive; some means must therefore be provided for the program to
wait for an interrupt from any one of a set of devices.

Another problem relates to the construction of peripherals in the real world. Gen-
erally speaking, large computers have multiplexed I/O channels (various manufacturers
use various names to describe these) which allow a single channel to be used for requests
for several peripherals, but impose the restriction that only one may actually transfer
data at a time. For instance, it is typical to have many disk drives attached to a single
I/O path, and to be able to have all of them seeking at once. Only one at a time, how-
ever, may execute read or write operations.

These situations are incorporated in the Path Pascal device model by a special dev-
ice type, called a “multiplexer channel.” Each multiplexer channel represents a single
I/O path to multiple devices. The set of I/O requests accepted by the multiplexer chan-
nel is the union of the requests accepted by the individual devices attached to it, plus
several requests specific to the channel itself; the most important of these is select,
which transmits a device number to the channel. The device number identifies a device
to be used for a subsequent I/O request.

Multiple requests can operate in parallel on a multiplexer channel; nevertheless, the
device model presented in Section 2 still applies. When a request is sent to a multiplexer
channel, the process that sent it still blocks until the operation is completed. The
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apparent contradiction is resolved, and the capability to operate in parallel is gained, by
introducing a new set of requests, called ‘‘non-blocking operations.”

A non-blocking operation is an operation that will take some time following a data
transfer before it completes. An example of such an operation is a seek on a disk drive,
which transfers the seek address immediately but will typically take many milliseconds
before addressing the requested track. (An even more extreme example is a rewind
operation on a tape drive, which may take up to several minutes.) On a device which
accepts a non-blocking version of one of these operations, as soon as all data transfer is
complete, the device returns a status code indicating that an operation is in progress.
The multiplexer channel is then freed for other work.

When the actual work for“a non-blocking operation is complete, the device gen-
erates an urgent condition. The status code presented with the interrupt indicates the
success or failure of the original request. The program (which has presumably issued an
awalt_1int request) receives the status and is free once again to send commands to the
device.

Of course, since the device is attached to a multiplexer channel, there is the possi-
bility that a do_1o0 request is pending on another device, so a further request for this
device may have to wait. The runtime system handles this case automatically, since no -
device (including a multiplexer channel) may have more than one do_1io request in
operation at a time.

The muitiplexer channel device type imposes some additional requirements on the
device software in the Path Pascal runtime system. In particular, the await_int
request handler in the device object must execute a delay operation when an inter-
rupt is received in simulated-time operation, to bring the simulated time up to the
moment when the interrupt occurs. '
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. Appendix E.
Lightweight processes in an object-—oriented system.

by

Kevin B. Kenny

1. Introduction.

Research is now in progress on defining an operating system which uses an object-oriented program-
ming style even at its lowest levels. As a preliminary study, a dispatcher has been implemented which
gives the user the ability to have a number of lightweight processes running in a single domain. A version
has been implemented which simulates the operation of a system by time-slicing within a single process
under Unix on a2 VAX. Implementation work is in progress for an actual kernel running on one of the
microcomputers in our laboratory.

A number of fairly natural abstract data types were described in the course of this investigation.
The types will be presented below, roughly in order by the level of abstraction; primitive types will be
presented first.

2. Piles.

The implementation of the dispatcher required stacks, queues, and priority queues of several different
types of object. Since it was foreseen that these data structures will be required in many other applica-
tions, they have been fully generalized with a construct called a p1le. A pile is an object with three fun-
damental operations:

o Clear the pile.
e Add an object to the pile.
e Locate the “first” object on the pile, and remove it.

The C++ definition of a pile is shown in Figure 2.1.

class pile {

public:
virtual pile& operator << (void *); // Add an item
virtual void = next (); // Remove &k return an item
virtual pile& clear (); // Empty the pile
plle& operator = (pilek); // Assignment among piles
pile (piled); // Copy in 1initialization
pile () {3 // Constructor
};

Figure 2.1. The pile data type.

The research presented in this paper was supported in part by the National Aeronautics and Space Administration under Grant
NASA-NSG-1471.
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Lightweight processes in C++ 2

The virtual functions shown in the declaration are not implemented for the pile class; instead, they
are all replaced by stubs which call a function named empty_container. When empty_contalner is
called, the program aborts; in the simulation environment on the VAX, an error message is printed indi-
cating that an unimplemented virtual function was called. The virtual functions are replaced with actual
ones in the implementation of queue, priority queue, and stack data types.

3. Stacks, queues, and priority queues.

With the unifying construct of a p1le in hand, we now can proceed to build classes for the abstract
types stack, queue, and pqueue (priority queue). These are all derived from the pile class by adding
internal structures to represent the data, and replacing the virtual functions with ones that perform the
requisite manipulations. As an example, the declarations for queue and pqueue are shown in Figure 3.2.

In this implementation (note that the user of queue need not be aware of it), queues are maintained
by maintaining a linked list of linkage nodes (called queue_entry’s). Each of these comprises a pointer
to the object in the queue, and a pointer to the next linkage node in the queue. The last linkage node
points back to the first, eliminating the need for separate head and tail pointers.

Priority queues are (in this primitive implementation; more sophisticated procedures are expected)
implemented as linear lists as well. A priority queue, however, also requires a comparator function,
which tells the relative priority of two elements; this function is supplied to the priority queue’s construc-
tor. A comparator is invoked with a call of the form:

(¥c) (entryi, entry2);

and is expected to return a negative value'if entryl precedes entry2, zero if entryi has equal priority
to entry2, and a positive value if entry2 precedes entryi.

4. Generic piles.

As defined, pile’s are not very useful; the entries that are added to and removed from them are just
void pointers. A set of macros are provided to generalize these to the notion of ‘“‘generic piles”’, which can
contain arbitrary data. A pile of objects of type t is declared with the macro invocation gpile(t); in
order to have this class available, the macro invocation

declare(gplile, t)
must appear in the source file among the other class definitions.

The constructor for a generic pile accepts a reference parameter, which is the pile to be made generic.
For example, the dispatcher’s ready queue is a pile of threads (we shall define these later) organized as a
priority queue with comparator function rq_comp. The combination is declared with:

declare(gpile, thread)
pqueue rq ((comparator) rq_comp);
gpile(thread) ready_queue (&rq);

5. Rationale: Why generic piles?

At first glance, it may appear that the definition of generic piles is cumbersome; it is not clear why
all the complexity is required. The conventional way to program such things would be to code a few sub-
routines that made insertions and deletions, and to call them directly. The object-oriented approach
presented here, though, offers a measure of uniformity and flexibility.

The uniformity comes from the fact that a generic object can be used to represent any type; a queue
of processes has the same data structure as a queue of buffers or a queue of messages. The underlying pro-
cedures need be implemented and debugged only once, an expected saving of development and mainte-
nance expense.

Furthermore, there is a uniformity of interface. Adding to a priority queue, a stack, or a heap is the
same process as adding to a queue; in fact, the routine doing the adding need not even know which type of
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typedef int (*comparator) (voidx, void*);

class queue_entry {
friend class queue;
friend class pqueue;

queue_entry * qe_next;
void * qe_item;

queue_entry (vold =* 1, queﬁe_entry *n=0);
“queue_entry ();
};

class queue : public pile {
friend class pqueue;

queue_entry * q_last;

public:
pileZ operator << (void *); // Add an item
void * next (); // Remove and return an item
pile& clear (); // Clear the queue
queueX operator = (queuek); // Assignment operator
queue (); // Constructor
queue (queuel); // Copy in assignment
“queue (); // Destructor
 H
class pqueue : public queue {
comparator ¢; // Comparison function
public:
plle& operator << (void *); // Add to queue
pqueue (comparator); // Define queue
pqueue& operator = (pqueue & q) { // Assignment

queue: :operator = (q);
return *this;
}

Figure 3.2. The queue and pqueue classes.

pile is being manipulated. This uniformity has already been observed to simplify the construction of the
dispatcher; the same code adds processes to the ready queue, to the delay queue, and to semaphore queues,
despite the fact that these three types of queue have different organizations.

The flexibility comes from the fact that the data structures implementing the types are hidden from
the caller. If an implementor has decided to replace (say) the linear list in the priority queue class with a
data structure that can be searched in less time, it can be done by changing that class’s private data and
revising its entry functions. No change (other than recompilation) to the users of the class is needed.
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8. Machine condltlons.

We come now to another pnmmve data type: machine conditions. This type represents whatever
information is necessary to save the state of a lightweight process and restore it again. A typical imple-
mentation is shown in Figure 8.3.

The constructor for the machine conditions class is responsible for any work needed to make a thread
of control ready to run with the specified function as its entry point. On the VAX, this involves allocating
stack space and making an initial stack that describes the entry and provides a point for its ultimate
return.

The sole operation which may be performed on a set of machine conditions is “‘dispatch,” which
takes whatever action is necessary to suspend the dispatcher’s flow of control and resume that of the
thread. On a VAX, “dispatch” switches stacks to the thread, changes the signal context to the thread
(several signals are blocked when the dispatcher is executing), and returns to the thread. A dispatch ends
with one of the following:

. e A kernel call (via the function _disp_end. The parameters to the kernel call are located by the
pointer argv returned by the dispatch call; argc gives the number of parameters. The first
parameter gives an ordinal number of the function to be performed.

. An interrupt (on the VAX simulation, a Unix signal). The state of the thread is saved, and arge
and argv are set up as if the thread executed a kernel call with function number D_INTERRUPT.
The remaining arguments give enough information to locate the source of the interrupt (under Unix,

typedef int (*entryfunct) (...);

class Machine Cond {

void *frame_pointer; . // Frame pointer for next dispatch
vold *stack_base; // Base of the stack area
long num_entries; // Size of the stack area 1n longwords

public:
void dispatch (int &argc, int *&argv);
// Procedure to dispatch to the
// specified machine conditions.
// Returns argument list from the
// first kernel call performed.
Machine_Cond (entryfunct entrypoint,
int argec = O,
vold * argv = O,
int stack_size = 0);
// Constructor takes entry address,

// argument list description, and
// (optional) stack space needed.
Machine Cond () ; // Default initializer

Machine Cond (Machine Cond&); // Copy in 1initialization
void operator- (Machine _Cond®) ; // Copy 1in assignment
“Machine Cond (); // Destructor 1is needed.
}: '

Figure 8.3. ‘‘Machine conditions’ class.
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Lightweight processes in C++ 5
the siénal number and signal code ate passed).
. The entry function.of the thread returns. argc and argv are set up as if the thread executed a ker-

nel call with function number D_END. A second argument is supplied, which gives the return value

from the entry function.

In order to perform the hardware support required, a fairly extensive amount of assembly language
programming was done; the compiler has no primitives to support multiple threads of execution.

7. Threads.

We finally come to the thread data type, which is the fundamental data type describing a light-
weight process. It contains the process’s machine conditions, a “wait-for-son” semaphore (which will be
described later), an indicator of the thread’s state (ready, running, or blocked), the thread’s priority, the
thread’s wakeup time if the thread is delayed, and the thread’s termination status if it has terminated. It
has entry functions that make the thread ready to run (by placing it on the ready queue) and dispatch to

the thread. Its declaration is shown in Figure 7.4.

Figure 7.4. The thread data type.

typedef enum {
T_READY,
T_RUNNING,
T_BLOCKED,
T_DEAD,
T_BURIED
} thread state;

class thread {
thread = next_thread;

Machine Cond mc;

semaphore wis;
public:

thread_state state;

long vcputime;

int priority;

int gqpriority;

long wakeup time;
int termination_status;

vold ready();
void disp proc();

thread (entryfunct, int, voids=,

// State of a thread

// On the ready queue

// In execution

// Blocked

// Terminated

// Terminated and destroyed

Next thread on the 1list of all
threads.

Machine conditions

Wait-for-son semaphore

Current state of the thread

Virtual CPU time consumed so far

Current prilority

Copy of current priority. When a
task 1s on the ready queue,
priority may be changed;
the ready queue 1s therefore
sorted by qpriority so that
it 1s never out of sequence.

Time to wake up 1f task 1s delayed.

Status with which a DEAD thread
died.

Place task on ready queue.
Dispatch task and process kernel
service request.

int=0, int=0);

!/

Constructor accepts entry functlon,
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// argument count,
// argument list pointer,
// thread priority,
// and stack size.

thread (threadk); // Copy in initialization.

thread& operator = (thread?); // Assignment among threads.

“thread (); // Destructor does walt-for-soms.

Y

Figure 7.4 (continued). The thread data type.

I3

re

The constructor of a thread initializes the local data to the thread (the machine conditions, the prior-
ity, and the virtual CPU time), and links the thread onto a list of all threads known to the system. This
list has no use in the present implementation, but is provided so that such features as deadline scheduling
and dynamic adjustment of priorities may be provided later.

The constructor then links the thread on the ready queue so that it may be executed independently
of the parent process. Thereafter, both threads execute under control of the dispatcher.

While a thread is in execution, it may refer to data located in its parent’s activation record (for
instance, the parameters passed to it may be located there). Because of this, the parent’s activation record
may not be destroyed until the child thread has terminated. One possible approach to ensure that the
activation record is still available (used in Ada) is to maintain a usage count for every activation record
and free the activation record only when no procedure is using it. This technique was rejected for use with
the C++ system, as it necessitates an expensive allocation call on procedure invocations. Moreover, the
thread system was designed to work with the existing procedure call/return mechanism of C+-+, where no
such interface is provided.

Instead of the dynamic allocation scheme, instead, a simple wait-for-sons synchronization like that

used in Path Pascal Koltad: Gruawald } 59 heen implemented. It is interesting to note that no changes to the
language call/exit mechanism were needed to accommodate this implementation; the wait-for-son is
accomplished by having a semaphore (called wfs) as a component of the thread object. When the activa-
tion record containing a thread is to be destroyed, the thread’s destructor is called. Within the destructor
(in addition to operations for freeing the process stack and machine conditions) there is a P operation on
this semaphore, which has the effect of waiting until the corresponding V is issued at thread termination
time. ‘

Having the wait-for-son synchronization has also proven valuable in doing a generalized synchroniza-
tion operation; if a set of tasks must be performed in no specific order, with their parent waiting until all
have completed, this may be done by spawning a thread for each task and having the successive
wait-for-son operations delay the parent’s termination until all the children have finished.

The thread’s operation is controlled by the system dispatcher making calls to the dispatch entry
function. This function marks the thread as “running,” and calls the ‘“dispatch” entry of its machine con-
ditions object to dispatch to it. It records the virtual CPU time used, and then selects one of the following
actions based on the way dispatch was ended.

. If dispatch ended because the thread ended, the thread is marked “dead” and the return value of the
entry function is recorded as its termination status. A V operation is executed on the wait-for-son
semaphore to re-awaken the parent thread if it blocked waiting for this thread to terminate.

. If dispatch ended because of an interrupt, the thread is returned to the ready queue, and the func-
tion, catch_interrupt, is called to field the interrupt exactly as if it had occurred in the kernel.
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. If dispatch ended because the thread asked to be blocked on some queue, the thread object is added
to that queue and its state is changed to ‘‘blocked.”

Because of the flexibility of the “pile”” construct, these three functions have proved sufficient thus far
to handle all the dispatching requirements of the system.

8. Semaphores.

In the previous section, the wait-for-sons operation was described in terms of semaphore operations.
As the reader might have already surmised, basic synchronization is implemented with semaphores. Dijkstra

The semaphore construct was chosen because it is easy to implement and is a fundamental component of

more sophisticated synchronization primitives. A major intent of this research is to explore synchroniza-
tion issues in an object-oriented multiprogramming system; a full discussion of these is beyond the scope
of this paper.

A semaphore is an object which comprises a counter and a list of processes blocked at the semaphore.

It accepts two fundamental operations, P and V, and may also be read as an integer, in which case the

value of the counter is returned. The definition of a semaphore is shown in Figure 8.5; note that the P and

-V operations are implemented as friend functions. The choice of friend functions rather than entry

points was done for notational convenience; it is more familiar to write P(s) and V(s) rather than the
more obscure, if more technically correct, s.P() and s.V().

A P operation decrements the semaphore counter. If the count goes negative, the process which exe-
cuted the P operation is blocked and joins the queue of processes at the semaphore.

A V operation increments the semaphore counter. If the count is non-positive, the process which did
the least recent P operation is removed from the queue of processes at the semaphore and made ready (by
calling the ready entry point of the thread object representing it).

class semaphore {
friend semaphore& P(semaphoref);
friend semaphore& V(semaphoreZ);

int count; // Semaphore counter.
queue q;
gpile(thread) =*walting; // Queue of threads blocked at
// semaphore

public:
operator int () { return count; } // Examine count
semaphoreX operator = (semaphoreZ); // Copy semaphores
semaphore (semaphore&);
semaphore (1int); // Initialize semaphore
semaphore ();
~semaphore (); // Destroy semaphore
Y

semaphore& P (semaphoreX s);
semaphore& V (semaphoreX 8);

Figure 8.5. The semaphore data type.
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Both of these operations need some special support to make sure that they take place atomically. On
a system with only one processor, this support can consist simply of masking interrupts while the opera-
tion is being performed. On a system with multiple processors sharing memory, some sort of hardware
synchronization, such as a test-and-set loop is required. On the VAX simulation system, the atomicity is
guaranteed by masking signals while the operation is in progress; if a P operation blocks, the signal mask
is reset by the dispatcher call. For this reason, the design decision was made to save the signal mask of a
thread between dispatches only if the thread left execution as the result of an interrupt.

9. Interrupt handling.

Having semaphores, and having the capability to interrupt a process in execution, we now can define
the discipline by which the system handles interrupts; i.e., conditions which can pre-empt the execution of
a process. .

We assume that any interrupt in ‘which the system is interested has an interrupt process correspond-
ing to it. This process is responsible for performing an endless cycle of servicing one interrupt and waiting
for another. The waiting is accomplished by a P operation on a semaphore corresponding to the type of
interrupt; thus the code for a typical interrupt process would be as shown in Figure 9.8.

The register_ 1nterrupt call is used to inform the interrupt handler that the system expects to
handle a particular interrupt. It adjusts the interrupt masks so that the interrupt will be handled when a
thread is executing (barring its being explicitly blocked, for example in the P operation of a semaphore).
It alsc keeps the interrupt from occurring in the dispatcher (again by setting interrupt masks). It initial-
izes the sigsem semaphore corresponding to the interrupt to allow synchronization of the interrupt pro-
cess. [t may also need to perform hardware-related initialization, e.g., sending data to a priority interrupt
controller.

When an interrupt occurs, there are two possibilities: either a thread was in execution, or the proces-
sor was idle (Interrupts are inhibited in the dispatcher). If a thread was in execution, its state is saved,
and the dispatch ends (at the machine condition level). The dispatch routine in the thread object gets
arguments indicating that an interrupt has occurred and giving its type; it returns the interrupted thread
to the ready queue and calls catch_interrupt to process the interrupt.

extern semaphore *sigsem []; // Vector of semaphores corresponding
// to the interrupts to be processed.

int interrupt_process (...) {

// Do whatever initialization is necessary.
//
register_interrupt (number) // Tell the interrupt catcher that we
// want to handle an interrupt.
tor (;;) {
P(+sigsem [number]); // Wait for the interrupt
// Process the interrupt.
};

Figure 9.8. Typical interrupt process.
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If an interrupt occurs while the processor is idle, no special processing is needed for thread control,
and the interrupt handler calls catch_interrupt directly.

Either way, control arrives at catch_interrupt with the dispatcher in control of the processor and
the interrupt information passed as parameters. The information is used to deduce an interrupt number
(on the VAX, this is simple — the interrupt number is simply the Unix signal number) and a V operation
is executed on the corresponding semaphore. Control returns to the dispatcher. '

In most cases, the interrupt thread will have been blocked on the semaphore, and the V will have
returned it to the ready queue. If its priority is higher than that of the interrupted thread (as it usually
will be), then it will be dispatched before the interrupted thread, a rudimentary form of pre-emptive
scheduling. It also may change the priorities of threads, including ones on the ready queue; these changes
will take effect on the next dispatches to the threads. '

-
v

10. Timers.

One particularly important case of an interrupt handler is the thread that manages the interval
timer; this timer is used to perform time-slicing among threads and to schedule wakeups. Since the simu-
lated system on the VAX was designed to run in either real or simulated time, the decision was made to
make timer management intimate with the dispatcher. '

The user interface to the timer management comprises several routines:

long cpuclock () .
This routine returns the amount of virtual CPU time consumed by the entire system so far. Succes-
sive values of it are subtracted to give the amount of CPU time to charge to a process for one
dispatch.

long wallclock ()
This routine returns the current time, in milliseconds past some time in the past. It is used when the
system is in real-time mode to determine the wakeup time for a delay operation.

long clock ()
This routine returns the simulated clock. In simulated time mode it is the amount of virtual time
consumed by delay and awalt operations; in real time mode it is synonymous with wallclock.

void await (long)
This routine waits until a particular absolute time, specified in milliseconds. Its primary use isin a
cyclic task which wants to begin at particular intervals of time: such a task might appear as shown
in Figure 10.7.

void delay(long)
This entry delays the executing thread for a specified amount of time. It is useful in cases where the
thread wants to be reawakened periodically; it is also used in simulation studies to simulate the

long time = clock(): // Record time first cycle began.
do { // Cycle...
// ... Do whatever 1is required.
time += interval; // Compute the next time to run.
awalt (time); // Wait until that time
} while (time < stop_time); // Quit when time has elapsed.

Figure 10.7. Typical task requiring cyclic scheduling.
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duration of events. The two forms, delay(n) and await(n+clock()), are semantically identical.

All the procedures except awalt (and hence delay) are effectively passive; they just read the values
of clocks. The active awalt procedure interacts with the thread managing the interval timer as follows.
Note that it and the clock process require full mutual exclusion, which is enforced by the use of a binary
semaphore.

. If there is an interval timer already set, and it is due to ring later than the wakeup time requested,
return the thread which requested it to the delay queue.

. If we are executing in real time, perform a V operation on the interval timer’s semaphore to simulate
a wakeup and allow the clock process to check the delay queue.

. Enqueue this process on the delay queue. (Some special machinations are required here to make sure
that the enqueue happens atomically with releasing the mutual exclusion and allowing the clock
thread to execute). .

There are two kinds of clock thread, corresponding to simulated time and real time. In simulated
time, the clock thread is always ready, with the lowest priority of any thread in the system. When it is
dispatched (and, hence, no other thread is ready), it advances the simulated time to the time that the next
thread on the delay queue is due to wake up, and awakens it; it then returns itself to the ready queue
(behind the just—-awakened thread) and allows execution to proceed. If the delay queue is empty, it halts
awaiting an interrupt (the use of interrupts in simulated-time mode is not recommended).

In real time, the clock thread runs with a very high priority (so that it can pre-empt other threads).
It examines the first thread on the delay queue. If it is due to wake up, it readies the thread and examines
another. If it is not due, it sets the interval timer to generate an interrupt at the thread’s wakeup time,
and awaits another timer interrupt.

Verification that the two clock threads just described (for the actual C++ code, see one of the
Appendices) actually interact correctly to implement the awalt function is left as an exercise for the
reader.

11. The main dispatcher.
With all of the preceding structures defined, the main function of the dispatcher is trivially simple:
. Construct threads for the appropriate clock and for the user’s main program.

. While the main program has not terminated, pull threads from the ready queue and dispatch to
them. If the ready queue is empty and the main program still has not terminated, delay (i.e., idle
the processor) until an interrupt occurs, and repeat the check on the ready queue.

Listings of all the procedures to implement the objects described here are presented in an Appendix.

12. Future plans for the system.
Work is in progress on extending the system described here in several ways:

. Models of concurrency other than shared memory (e.g., message queues and remote procedure calls)
are being implemented.

o The extension of this kernel to provide other functions is being contemplated; the most likely next
step is the implementation of a set of device drivers as active objects (i.e., objects which own their
own threads of control).

. The possibility of implementing a kernel for a Unix-like system with this set of procedures as its
dispatcher is being investigated. In order to do this, a signal mechanism must be implemented;
beyond this nothing else appears to be required in the way of dispatching and synchronization pro-
vided that a dispatch always ends with the processor in supervisor state.

. Extending the synchronization primitives to a richer set than simple semaphores is also being investi-
gated. A particularly interesting line of research is to investigate how well such constructs as media-

tors, %% monitors, 1°¥* guarded commands, and Ada rendezvous will map to an object-oriented
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system. In several cases it appears that it will be possible to construct objects that implement these
constructs in a fairly automatic manner, without requiring any extensions to the base language; it is
an intriguing possibility that C++, without originally having been designed for multiprogramming,
may nevertheless accept such constructs gracefully. '

DRAFT - Do not circulate
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