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Chapter 1

| Introduction

1.1 Eigenvalue and Eigenvector Derivatives and their

Applications

Dynamié response and loads are an important consideration in the
understanding and design of many physical systems. The analytical models
for a wide range of these systems are governed by linear differential equations
so that dynamic model analysis often consists of the solution of an eigenvalue
problem. The eigenvalues and the eigenvectors of the system are fundamental
quantities employed in determining the behavior of the system. Variations in
system parameters lead to changes in the eigenvalues and the eigenvectors

and hence in the response characteristics of the system. It is important to




know the magnitude of these variations, and this information is contained in
the derivatives of the system eigenvalues and eigenvectors. Thus derivatives
of eigenvalues and eigenvectors are of immense interest in several fields of
physical sciences and engineering and much research effort has been
expended in developing methods to calculate them.

The applications of these derivatives (or synonymously, sensitivities) are
manifold. Probably the most important applications are in the area of design
optimization. System response sensitivities provide vital information in an
optimization procedure and in general the cost of calculating derivatives is the
dominant contributor to the total cost in an optimization procedure so that the
efficient computation of eigenvalue and eigenvector derivatives is desirable.
Derivatives can also be effectively used to approximate the eigenvalues and
eigenvectors of a modified system and thus reduce the cost of reanalysis,
substantially lowering the computational burden in optimization tasks. The
derivatives are very useful even in non-automated design procedures because
it is often not clear, from analysis alone, how to modify a design to improve
or maintain the desirable properties. The derivatives identify design
parameters that have the most or the least influence on the design process
and thus ease the effort in design trend studies.

Derivatives of eigenvalues and eigenvectors are particularly valuable in
calculating the statistics of eigenvalue locations in stochastic dynamic
systems. All physical systems are essentially subject to random environments

and the effect of randomly changing environments is crucial for such systems



as missiles, spacecraft, airplanes, land vehicles, buildings and machinery. In
addition, many system models do not have weli-defined properties and it is
frequently difficult to predict these properties (for example, stiffnesses)
accurately[1-4]. The uncertainties in the system eigenvalues and eigenvectors
are calculated from the estimated uncertainties in the properties of the system
and the environment by using the derivatives of eigenva»lues and eigenvectors.

The application of derivatives is not restricted to design-oriented activities.
Sensitivity analysis is also playing an increasing role in determining the
analytical model itself. In the areas of system identification and analytical
model improvement using test results, sensitivity analysis is of growing
importance. Much recent work in these fields is directly dependent on the

calculation of eigensystem derivatives.

1.2 Importance of higher order derivatives

While in the past attention was mostly restricted to first order derivatives
of eigenvalues, higher order derivatives are assuming a greater importance
recently. It has been found in certain cases that second order derivatives are
very effective in improving accuracy of approximations[5-13] and efficiency of
design[7,11,12]. In almost all instances, eigenvalues are non-linear functions
of system parameters and a second order approximation offers a wider range

of applicability compared to the first order approximation. Intermediate




variables which may improve the quality of first order approximations are not
generally available for eigenvalue approximations. Also, some optimization
algorithms require second order derivatives, and first order derivatives of
optimal solutions require second order derivatives of constraints[13]. The use
of second derivatives can also greatly reduce the number of reanalyses
required for the convergence of an optimization procedure[11,14]. Further, in
certain optimization algorithms, second order approximations for eigenvalue
constraints can drastically relax the move limits, thus achieving a nearly
optimum trajectory, and can virtually eliminate the need for trial and error
adjustment of move limits, thus improving the performance of the
optimizer{14]. Looking at another aspect, in probiems where instabilities are
to be avoided, a first order calculation may completely fail to detect
instabilities[6]. References [15,16] also offer examples of the usefulness of

second order derivatives.

1.3 General Matrices

The problem of calculating the derivatives of symmetric and hermitian
eigenproblems is relatively simple and solution procedures are
well-established, e.g.[17-21]. However, many physical problems give rise to
non-self-adjoint formulations and thus lead to general matrices. An important

example is aeroelastic stability which requires the solution of eigenproblems



with complex, general and fully populated matrices. General matrices are also
obtained in damped structural systems and in network analysis and control
system design where the eigenvalues are usually called poles. In the present
study, the emphasis is on general matrices and the special properties of

matrices, such as symmetry, are not considered.

1.4 Approximate Updates to Eigenvalues

Eigenvalue calculation for any but the smallest systems is an expensive
process and is a major contributor to the computational expense of the typical
dynamic analysis. In the design of structural systems, an iterative
design/analysis process is performed until a satisfactory design is achieved.
The cycle of the iterative process consists of an update of the structural
design, a response analysis and calculation of updated responses and loads.
When the process is not automated, a revision of the mathematical model may
also be present. In typical dynamic analyses, each design cycle is an
expensive process because the mathematical models are large and the time
and effort required for analysis of an updated design are often prohibitive and
greatly reduce the effectiveness of the design process. Apart from the
computational effort, organizational effort can also be substantial.

Appreciable cost savings can be realized if a quick evaluation of a change

in system response resulting from the design changes is possible. An




efficient, even if approximate, evaluation of eigenvalues of a modified system
is valuable in these applications. The value of an approximation depends on
its efficiency as well as its accuracy in applications. A quick approximation
that is valid in a very limited range of design space is of little use as it can
severely reduce the global efficiency by requiring many more evaluations for
convergence of the design process.

Several researchers have worked on suitable approximations for
eigenvalues of a modified design. However, in the past, attention seems to
have been restricted to real symmetric systems which have eigenvalues in the
real number field. It is one of the objectives of the present work to extend the
techniques of approximation to general (complex non-hermitian) systems and

perform a comparative analysis of the various techniques.

1.5 Objectives of the Present Work

The objectives of the present research are to:

1. Review and perform a comparative analysis of the various methods
available for calculating the derivatives of eigenvalues and eigenvectors

of general matrices.

2. Propose and evaluate some modifications to existing techniques.
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| Introduction

1.1 Eigenvalue and Eigenvector Derivatives and their

Applications

Dynamic response and loads are an important consideration in the
understanding and design of many physical systems. The analytical models
for a wide range of these systems are governed by linear differential equations
so that dynamic model analysis often consists of the solution of an eigenvalue
problem. The eigenvalues and the eigenvectors of the system are fundamental
quantities employed in determining the behavior of the system. Variations in
system parameters lead to changes in the eigenvalues and the eigenvectors
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know the magnitude of these variations, and this information is contained in
the derivatives of the system eigenvalues and eigenvectors. Thus derivatives
of eigenvalues and eigenvectors are of immense interest in several fields of
physical sciences and engineering and much research effort has been
expended in developing methods to calculate them.

The applications of these derivatives (or synonymously, sensitivities) are
manifold. Probably the most important applications are in the area of design
optimization. System response sensitivities provide vital information in an
optimization procedure and in general the cost of calculating derivatives is the
dominant contributor to the total cost in an optimization procedure so that the
efficient computation of eigenvalue and eigenvector derivatives is desirable.
Derivatives can also be effectively used to approximate the eigenvalues and
eigenvectors of a modified system and thus reduce the cost of reanalysis,
substantially lowering the computational burden in optimization tasks. The
derivatives are very useful even in non-automated design procedures because
it is often not clear, from analysis alone, how to modify a design to improve
or maintain the desirable properties. The derivatives identify design
parameters that have the most or the least influence on the design process
and thus ease the effort in design trend studies.

Derivatives of eigenvalues and eigenvectors are particularly valuable in
calculating the statistics of eigenvalue locations in stochastic dynamic
systems. All physical systems are essentially subject to random environments

and the effect of randomly changing environments is crucial for such systems




as missiles, spacecraft, airplanes, land vehicles, buildings and machinery. In
addition, many system models do not have well-defined properties and it is
frequently difficult to predict these properties (for example, stiffnesses)
accurately[1-4]. The uncertainties in the system eigenvalues and eigenvectors
are calculated from the estimated uncertainties in the properties of the system
and the environment by using the derivatives of eigenvallues and eigenvectors.

The application of derivatives is not restricted to design-oriented activities.
Sensitivity analysis is also playing an increasing role in determining the
analytical model itself In the areas of system identification and anaiytical
model improvement using test results, sensitivity analysis is of growing
importance. Much recent work in these fields is directly dependent on the

calculation of eigensystem derivatives.

1.2 Importance of higher order derivatives

While in the past attention was mostly restricted to first order derivatives
of eigenvalues, higher order derivatives are assuming a greater importance
recently. It has been found in certain cases that second order derivatives are
very effective in improving accuracy of approximations[5-13] and efficiency of
design[7,11,12]. In almost all instances, eigenvalues are non-linear functions
of system parameters and a second order approximation offers a wider range

of applicability compared to the first order approximation. Intermediate




variables which may improve the quality of first order approximations are not
generally available for eigenvalue approximations. Also, some optimization
algorithms require second order derivatives, and first order derivatives of
optimal solutions require second order derivatives of constraints[13]. The use
of second derivatives can also greatly reduce the number of reanalyses
required for the convergence of an optimization procedure[11,14]. Further, in
certain optimization algorithms, second order approximations for eigenvalue
constraints can drastically relax the move limits, thus achieving a nearly
optimum trajectory, and can virtually eliminate the need for trial and error
adjustment of move limits, thus improving the performance of the
optimizer{14]. Looking at another aspect, in problems where instabilities are
to be avoided, a first order caiculation may completely fail to detect
instabilities[6]. References [15,16] also offer examples of the usefulness of

second order derivatives.

1.3 General Matrices

The problem of calculating the derivatives of symmetric and hermitian
eigenproblems is relatively simple and solution procedures are
well-established, e.g.[17-21]. However, many physical problems give rise to
non-self-adjoint formulations and thus lead to general matrices. An important

example is aeroelastic stability which requires the solution of eigenproblems



with complex, general and fully populated matrices. General matrices are also
obtained in damped structural systems and in network analysis and control
system design where the eigenvalues are usually called poles. In the present
study, the emphasis is on general matrices and the special properties of

matrices, such as symmetry, are not considered.

1.4 Approximate Updates to Eigenvalues

Eigenvalue calculation for any but the smallest systems is an expensive
process and is a major contributor to the computational expense of the typical
dynamic analysis. In the design of structural systems, an iterative
design/analysis process is performed until a satisfactory design is achieved.
The cycle of the iterative process consists of an update of the structural
design, a response analysis and calculation of updated responses and loads.
When the process is not automated, a revision of the mathematical model may
also be present. In typical dynamic analyses, each design cycle is an
expensive process because the mathematical models are large and the time
and effort required for analysis of an updated design are often prohibitive and
greatly reduce the effectiveness of the design process. Apart from the
computational effort, organizational effort can also be substantial.

Appreciable cost savings can be realized if a quick evaluation of a change

in system response resulting from the design changes is possible. An




efficient, even if approximate, evaluation of eigenvalues of a modified system
is valuable in these applications. The value of an approximation depends on
its efficiency as well as its accuracy in applications. A quick approximation
that is valid in a very limited range of design space is of little use as it can
severely reduce the global efficiency by requiring many more evaluations for
convergence of the design process.

Several researchers have worked on suitable approximations for
eigenvalues of a modified design. However, in the past, attention seems to
have been restricted to real symmetric systems which have eigenvalues in the
real number field. It is one of the objectives of the present work to extend the
techniques of approximation to general (complex non-hermitian) systems and

perform a comparative analysis of the various techniques.

1.5 Objectives of the Present Work

The objectives of the present research are to:

1. Review and perform a comparative analysis of the various methods
available for calculating the derivatives of eigenvalues and eigenvectors

of general matrices.

2. Propose and evaluate some modifications to existing techniques.




3. Formulate guidelines for selecting the most efficient computational

algorithm for particular applications.

4. Review the various approximations to eigenvalues for real symmetric

systems and extend them to the case of complex general systems.

5. Compare the various approximations in terms of efficiency and accuracy

for some systems.

1.6 Outline

Chapter 2 reviews the various methods available for the calculation of
derivatives of eigenvalues and eigenvectors for general matrices. The
important consideration of normalization of eigenvectors of complex general
matrices, which has not been adequately dealt with in the literature, is
discussed. A new algorithm to calculate the derivatives of eigenvalues and
eigenvectors simultaneously, based on a better normalizing condition, is
described and important numerical aspects regarding the implementation of
the algorithm are discussed, with consideration being given to sparse
matrices. The various algorithms are classified as Adjoint or Direct.

The efficiency considerations of the various algorithms are examined in
Chapter 3. Operation counts are presented in terms of matrix size, number

of design parameters, and the number of eigenvalues and eigenvectors of



interest. Actual CPU times are also presented for typical matrices for a range
of parameters that influence the efficiency of the algorithms.

Chapter 4 provides a survey of approximation methods proposed in the
literature for real symmetric matrices, describing their special features. The
approximation methods are extended to complex general matrices wherever
feasible. Some approximation methods which do not seem to have been
applied in the past are also presented. The approximation methods are
classified on the basis of their theoretical origin.

Numerical results from applying the proposed techniques of
approximations are presented in Chapter 5. Operation counts are presented
in terms of matrix size, number of design parameters, number of eigenvalues
of interest and the number of times the approximation is to be performed. The
approximation techniques are applied to typical matrices and random matrices
and are evaluated in terms of their accuracy and efficiency.

Chapter 6 contains the conciuding remarks. General guidelines for
selecting approximation methods and algorithms for calculation of eigenvalue
and eigenvector derivatives are summarized. This chapter also contains
remarks about the limitations of the present work and recommendations for

further research.




Chapter 2
Derivatives of Eigenvalues and Eigenvectors for

General Matrices

2.1 Problem Definition

The matrix eigenproblem is defined as follows:
Aulf) = By 2.1.1)
and the corresponding adjoint problem is

VT = Ryt (2.1.2)



where A is a general complex matrix of order n and A%), ul¥) and v(%) are the
k -th eigenvalue and right and left eigenvectors respectively. A superscript T
denotes the transpose.

(The adjoint problem is defined by some authors in an alternative form as

S A = 5 (0K

where superscript * denotes a conjugate-transpose. However, the notation of
eq. (2.1.2) is more popular in the literature on structural dynamics).
The eigenvalues and eigenvectors are complex and do not necessarily
occur in complex-conjugate pairs. All eigenvalues are assumed to be distinct.
The matrix A and hence, AK) ulk) and v{k) are functions of design
parameter vector p with individual parameters denoted by Greek subscripts,

e.g. p,. Derivatives with respect to p, are denoted by the subscript ,a e.g.,
JA
TPy

= A ,. All the design variables are assumed to be real.
The well-known biorthogonality properties of the eigenvectors are given

by
vOTU = g it i j (2.1.3)
and

OTa =0 itr ) (2.1.4)

10




Note that, the left hand side of eq. (2.1.3) is not an inner product as usually
understood, since v() and/or ul) may be complex vectors. Note also that the

left eigenvectors of A are the right eigenvectors of AT and vice versa.

2.2 Normalization of eigenvectors

The eigenvectors u(k) and v(¥ are not completely defined by egs. (2.1.1)
and (2.1.2). A normalization condition has to be imposed to obtain unique
eigenvectors. For brevity, let us consider only the normalization of the right
eigenvector. A normalizing condition frequently imposed in the self-adjoint

case is the following:
a7k — 4 (2.2.1)

However, it is not always possible to use eq. (2.2.1) for non-self-adjoint
problems as uk)Tulk) can equal zero or a very small number causing numerical
difficulties. This is true even if the matrix A is real, as shown by the example

0 -1

matrix A =[ ] Unfortunately, considerable confusion exists in the

1 0
literature regarding this point and several authors arbitrarily adopted
eq.(2.2.1) as a normalizing condition for non-self-adjoint problems,
e.g.[11,12,15,22-25]. In this respect, the formulations of these references are

not rigorous for general matrices.

One possible way to avoid the above difficulty is to replace eq.(2.2.1) by

"



u® u® = (2.2.2)

where superscript * denotes a conjugate-transpose. Eq. (2.2.2) is not prone to
the difficulties of eq. (2.2.1) because ulk)'ulk) js always guaranteed to be
non-zero. But, €q.(2.2.2) is not a complete normalizing condition as it does not
render the eigenvector unique. If u satisfies eq.(2.2.2), then w = ue’, where
i=+—1 and cis an arbitrary real number, also satisfies eq.(2.2.2). Despite
this limitation, eq.(2.2.2) can be wused satisfactorily in certain
formulations[26,27].

Another normalization condition, inspired by the biorthogonality property

of the left and right eigenvectors, is
VTl = 4 (2.2.3)

Eq.(2.2.3) also does not render the eigenvectors unique, since a pair
uk) vk} can be replaced by cu'® (1/¢c)vk), where ¢ is an arbitrary non-zero
compliex number, and still satisfy eq. (2.2.3). Again, this is not necessarily a
severe restriction for calculation of the derivatives of eigenvectors[5,16,28-30].
it must, however, be emphasized that if the eigenvector is not unique, nor is
its derivative.

The normalization condition

u) =1 (2.2.4)

12




is very attractive because it renders the eigenvectors unique and at the same
time, the index m can be chosen easily to avoid ill-conditioning. Apparently,
only Nelson[31] used this normalizing condition in obtaining the derivatives

of eigenvectors. The index, m, may be chosen such that

lub] = miaxlu,-(k)l (2.2.5)

Another choice for m, used by Nelson[31], is
lup' | vl = max g1 10 2:26)

The nature of uncertainty of the derivative of the eigenvector is of some
interest. Without a normalizing condition, an eigenvector is uncertain to the
extent of a non-zero constant multiplier. The derivative of an eigenvector is
uncertain to the extent of an additive multiple of tha&eigenvector. To show
this, let uk) be an eigenvector so that w(k) = culk) {5 also an eigenvector.

Then, if p, is a design parameter,

®  ocu® G
ow L _ JeuT) | jouT L gy (2.2.7)
0Py 0P, 0Py
The quantity d = dc is not zero since the quantity ¢ is not really a
p(l

constant, but is a function of the nature of the normalization criterion. In
practice, the constant d depends on the way the eigenvectors uk) and wk) are

normalized.

13




2.3 Methods of Calculation

The various methods of calculating the derivatives of eigenvalues and

eigenvectors can be divided into three categories:
1. Adjoint Methods, which use both the right and the left eigenvectors.
2. Direct Methods, which use only the right eigenvectors.

3. lterative Methods, which use an iterative algorithm that converges to the

required derivatives.

2.3.1 Adjoint Methods

The first expressions for the derivatives of eigenvalues of a general matrix
seem to have been derived by Lancaster[32]. Considering only a single
pérameter, Lancaster obtained the following expressions for the first and
second derivatives of an eigenvalue:

WAy

Ak - % (2.3.1)
. GHOT k)

14




(k) V(k)TA' (mu(k) n (v(k)TA' uu(j)) (VU)TA' au(k))
}",uaz 0T (K +2 X p : o7 N (2.3.2)
yOT ) 1211( (7»( ) _ KU))(V( Tyt )) (VU) u(]))
]

Eqg. (2.3.1) can be obtained in the following manner. Differentiate eq. (2.1.1)

with respect to the parameter p, to obtain
A u + Aulk) = 2By 4 0y (2.3.3)
Premultiplying both sides by v(K)7 we get

vOTA u® 4 fBTagl) = T W) Ty Ry ) (2.3.4)

,a

The last terms in the expressions on both sides are equal due to eq.

(2.1.2), so that

v(k)TA‘ au(k) = }»f’gv(kﬁu(k) (2.3.5)

Eq. (2.3.1) follows immediately. Eq. (2.3.2) is derived in its more general form
later. An expression corresponding to eq. (2.3.1) for a non-linear eigenvalue

problem
AMu® = ¢ (2.3.6)

was obtained by Pedersen and Seyranian[33] in a similar manner as

15



JOTA k0

u
: (2.3.7)

To obtain the second derivatives of eigenvalues, the first derivatives of left
and right eigenvectors are calculated either explicitly[5,12,16,26,30] as in eq.
(2.3.16) or implicitly[12,15,32] as in eq. (2.3.18). Since the eigenvalues are
assumed to be distinct, the set of eigenvectors forms a basis for the n-space
and the first derivatives of eigenvectors can be expressed in terms of the

eigenvectors as

n n i
12 = 3 ijau(j) and Vf’;) = J§1dkj(lv(j) (238)

ut
. =1

Now, the calculation of the first derivatives of eigenvectors reduces to the
evaluation of the coefficients c,;, and dj,.

Premultiplying eq. (2.3.3) by vU7 where j # k , we get
vaAlau(k) + vU)TAuf';) = VU)T)»S’fl)u(k) + VU)T)\(k)uf'fl) (2.3.9)

Now, substituting the expansions of eq. (2.3.8) and using eqgs. (2.1.1) and (2.1.2)
and the bi-orthogonality property of eq. (2.1.3), we obtain

MLV

(L0~ 0y, 0T,0

16




Proceeding in a similar manner after differentiating eq. (2.1.2) with respect to
the parameter p,, we obtain

WA W0

dyja = e k#j (2.3.11)
s (A0 — A0y 0Ty

The above expressions for the coefficients c,;, and d;, were obtained by
Rogers[29].
It can be observed that

o vy
kja = TS
YO Ty

(2.3.12)
Reddy[34] derived an equivalent expression for the response derivative by
casting the derivative as the solution of a forced response problem for the
same system.

Note that, in view of eq. (2.2.7), the coefficients ¢, and d;,, in eq. (2.3.8)
are arbitrary and depend on the normalization of the eigenvectors. For
example, if eq. (2.2.4) is used to normalize the right eigenvectors, then

- = 3 ¢ u¥ 2.3.13
Ckka jz ija Um (2.3.13)

=1
i*k

and if eq. (2.2.3) is used to normalized the left eigenvectors, then

17




It has been proposed[31,35,36] that the eigenvector derivative be
approximated by using less than the full set of eigenvectors in the expansion
of eq. (2.3.8) so that the evaluation of eigenvector derivative by Adjoint method
could become cheaper. This variant of Adjoint method has received mixed
reports in the literature[31,35]. The quality of such an approximation is difficult
to assess beforehand and the selection of the number of eigenvectors to be
retained in the expansion is problem dependent. It is not considered in this
work because a meaningful comparison with other methods cannot be easily |
be made. However, this consideration should not be ignored while
implementing the sensitivity calculations for particular problems.

The expressions for the second derivatives of eigenvalues were obtained
by Plaut and Huseyin[30]. For the sake of simplicity in expressions, let us
assume, without loss of generality, that the right and left eigenvectors are

normalized as in eq. (2.2.3). Eq. (2.3.1) can then be written as

A = Ty (2.3.15)

Differentiating with respect to a parameter Pg uncorrelated to the parameter

Py, We obtain

W PR BRI ea

,

which can be equivalently written, without involving the derivative of the left

eigenvector, as
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KT

(Ao =2l + v - el @23.17)

k KT k
;\.,((I)B = V( ) A' aBu( ) + v a

Eq. (2.3.16) can be rewritten using eqgs. (2.3.10) and (2.3.11) as

k notk ‘
}Lflfl)ﬁ — V(k)TA' aﬁu( ) + 1510\( ) _ XU))(ijadij + ij[idkju) (2.3.18)
j*k

Crossley and Porter[5,28] derived similar expressions for derivatives with

derivative was derived by Elrazaz and Sinha[9] and it is

- )
oNa oK N7TA out -
opq. opy ' 9Pa
NN = 1) 3" 7%A g%
2! yN—2 0 502
UPy UPq
~n N—1 (k)
Ny k) JA 0 u
— T L+ an — (2.3.19)
(3p(';v Ta opy
NN = 1) VTR g2k
! N=2 2
2 apg Tt
oy o k) N 14k
apa 0prllv-1

Morgan[37] developed a different computational approach for the
derivative of an eigenvalue without requiring the eigenvectors explicitly. His

expression is equivalent to
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trace of {[adj(A - x(k)l)]A_ a}

trace of adj(A — k(k)l)

(k) —
Aa = (2.3.20)
The corresponding expression for derivatives with respect to matrix elements

was derived by Nicholson[38].

it can however be shown that[39]
adj(A — AK) = gu®kT (2.3.21)
where t, is a constant and that[40]

trace of {[adj(A -2 A u} = V7AW 032
trace of adj(A — }»(k)l) = tkv(k)Tu(k)

Thus, in the computation of adj(A — A(KI), both right and left eigenvectors
are implicitly computed, in view of eq. (2.3.21). Eqgs. (2.3.22) also show that
Morgan’s eq. (2.3.20) is equivalent to Lancaster’'s eq. (2.3.1). Woodcock[41]
also obtained formulas involving the adjoint matrix for the first and second
derivatives of eigenvalues. An operation count shows that calculation of the
adjoint matrix is several times more expensive than the explicit calculation of
right and left eigenvectors so that Lancaster’s formula is preferable to
formulas requiring the adjoint matrix. This conclusion is also supported by
sample computations[42]. In addition, although eq. (2.3.20) was used
satisfactorily for small problems[43,44], numerical difficulties were reported for

reasonably large problems[45]. Woodcock’s formula for the second derivative
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of the eigenvélue requires a partial derivative of the adjoint matrix and this is
so complicated that Woodcock himself recommends the finite difference
method. Formulas due to Morgan and Woodcock are not therefore considered
in the following.

In calculating the derivatives by Adjoint Methods, i.e., using egs. (2.3.1),

(2.3.8)-(2.3.18),

o the first derivative of an eigenvalue requires the corresponding right and

left eigenvectors.

¢ the first derivative of an eigenvector requires all the left and right

eigenvectors.

¢ the second derivative of an eigenvalue requires the corresponding right

and left eigenvectors and their first derivatives.

2.3.2 Direct Methods

The second category comprises methods that evaluate the derivatives
using only the right eigenproblem. Direct methods typically involve either the
evaluation of the characteristic polynomial or the solufion of a system of linear
simultaneous equations without requiring all the left and right eigenvectors.
Methods requiring the evaluation of the characteristic polynomial and the

derivative of the determinant[45,46] are O(n®) processes while other methods
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considered here are at most O(n3) processes. in addition, the determination
of the characteristic polynomial is, in general, an unSatisfactory process with
respect to numerical stability, even when all the eigenvalues are
well-conditioned([47]. While numerically stable algorithms have been
proposed for evaluation of the characteristic polynomial[48], the computational
expense still seems to be formidable. Hence, we do not consider these
methods. Methods requiring the solution of a system of equations have the
particularly attractive feature that the coefficient matrix needs to be factored
only once for each eigenvalue regardiess of the number of parameters and the
order of the derivatives required. Thus, they are very useful in applications
where higher order derivatives are required.

The earliest method in this class is due to Garg[22] who obtained the first
derivatives of the eigenvalue and the eigenvector by solving two systems of
(n + 1) equations each in the real domain, without requiring any left
eigenvectors. However, his formulation involves several matrix
multiplications. Rudisill[23] proposed a scheme in which only the
corresponding left and right eigenvectors are required to calculate the first
derivative of the eigenvalue and the eigenvector. This was refined by Rudisill
and Chu[24] to avoid calculating the left eigenvectors altogether. Solution of
a system of only (n + 1) equations is required (though in the complex domain)
to obtain the first derivatives of eigenvalue as well as eigenvector. Extension

to higher order derivatives is straightforward. Cardani and Mantegazza[25]
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proposed solution methods of the same formulation for sparse matrices and
extended it to the quadratic eigenproblem.

One weakness that is common to all the above formulations that do not
require left eigenvectors[22-25] is that they rely on the normalization condition
given by eq. (2.2.1), which is unreliable as discussed eérlier.

Nelson[31] circumvented this difficulty by using the normalizing conditions

vOTY® = 4 and u(k) 1 (2.3.23)

However, the formuiation of Rudisili and Chu is supc
formulation in that it does not require any left eigenvectors.

In this work, we propose a variation of the Rudisill and Chu formulation
which does not rely on the questionable normalizing condition of eq. (2.2.1)
and at the same time requires no left eigenvectors.

Differentiating eq. (2.1.1), we get

Aut 4 A ulk) = AWK 00 (2.3.24)

which can be rewritten in partitioned matrix form as
[A - AW —u(k)]{ } - A ' (2.3.25)

Now, we impose the normalizing condition of eq. (2.2.4). Differentiation of

eq. (2.2.4) yields,
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¥ =g (2.3.26)

Because of eq. (2.3.26), the m-th column of the coelfficient matrix in eq.
(2.3.25) can be deleted. Eq. (2.3.26) also reduces the number of unknowns by
one so that eq. (2.3.25) is now a system of n equations in n unknowns. Eq.

(2.3.25) is rewritten as

By, = r (2.3.27)
where
K, k
B =[A- }\( )I : —u( )]m-lh column deleted

with m-th element deleted

u® (2.3.28)

To get second derivatives, differentiate (2.3.24) with respect to Py and get,

K K k k k
(A = 1l - w0y = — A g - @ 2

(2.3.29)

[¢3

k k
or, in par titioned matrix for m,
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k) k ﬂﬁ K) v (K
[A )k( —u( )]{ (k) } a‘;u e (A,(I - Xf()l)u( B)

- (A' B - }»(k)l)u
Following the same reasoning as before, eq. (2.3.30) is wrilten as
By, = s

where

u®

(1[5
e L )
NG

,aff

with m-th element deleled

§ = - A' uBu(k) - (A,(l — }\,'Ugl)u'(;;z - (A‘ B — }\.flis)l)llfl:l)

(2.3.30)

(2.3.31)

(2.3.32)

Note that, if AX) is a distinct eigenvalue of A and if uf%) # 0, then the matrix

A is of rank (n — 1) and the m-th column that is deleted is linearly dependent

on the other columns. Hence the matrix B is non-singular. The maltrix B will

also be well-conditioned if u{f) is the largest component in the cigenvector

ulk) and the matrix A is itself not ill-conditioned. The vectors y; and y, can be

obtained by standard solution methods. If the matrix A is banded or if the

derivatives of both right and left eigenvectors are required, it may be more

efficient to use a partitioning scheme as described below.
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2.3.3 Madification of Direct Method for Banded Matrices

Equations (2.3.27) and (2.3.31) can be written as
k (k k), (k) _
(A - 7“( )|)m-th column deleted“,(} m-th row deleted )‘f()“( ) = r (2.3.33)

Let uk) be normalized so that ufl) = ulk) = constant
Eq. (2.3.33) is a system of n equations. Writing the m-th equation
separately, we have, if the superscript (k) is omitted for notational

convenience,

CX o — A X =t (2.3.34)
and

apX o = A qlUmo = m (2.3.35)
where

C = (A~ M)pm-th row and column deleted

X a7 Y g mth row deleted

X = U th row deleted

t = I'mth row deleted
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a,T,, = m-th row of A with the m-th column deleted

From (2.3.35),

_.T
)‘,aumO =agX ,

rm
From (2.3.34),

X o=C (L x+1)
Eliminating x ,, we have

thm ~ Iy

, T
Uno — X by,

where

T 1
b, = [C'] a,

Proceeding in a similar manner for the left eigenvector,

y'q = [CT]—1(}\'_(1y + tl)

Y o = V. o m-th row deleted

Y = Vm-th row deleted
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(2.3.37)

(2.3.38)

(2.3.39)



t, = (")m-th row deleted

r; being the appropriate right hand side.

Thus the following procedure can be used to obtain the derivatives A , and

1. Form a LU decomposition of the matrix C.

2. Solve b, = [CT]7 'a,, by forward substitution.

3. Caliculate A , from (2.3.38).

4. Calculate x , from (2.3.37) by backward substitution.
5. Expandx ,tou , settingu, , = 0.

if the derivatives v of the left eigenvectors are also required, only three

further steps are needed.
6. Calculate Y a from (2.3.39) by forward substitution.

7. Expand y qtov ,setting v = 0.

m, o

8. Normalize v , appropriately depending on the normalization of v. For

1
example, to obtain the derivative of the left eigenvector that satisfies the

normalization condition of eq. (2.2.3), subtract (vTu , + vT u)v .
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The matrix C nee}ds to be factored only once. Also, the matrixlc retains
the bandedness characteristics of the original matrix A, so that advantage can
be taken of it. Furthermore, higher order derivatives can be obtained by
merely substituting an appropriate right hand side ve'cior, r. However, higher
order derivatives can suffer in accuracy because of accumulated round-off
error.

The conditioning of matrix C needs some comment. Note that C is
obtained from the singular matrix (A — A(K1) by deleting both the row and
column corresponding to index m. Hence, for matrix C to be non-singular, one
must make sure that the m-th row is linearly dependent on the other rows as
well as that the m-th column is linearly dependent on the other columns. In
other words, C is non-singular iff ufk) # 0 and v{k) = 0. If v{X) is very small
compared io the largest element in v(¥), steps 2 and 4 in the above procedure
will give inaccurate results even if uf%) is the largest element in u®). In
general, it is not possible to make a good choice for m without the knowledge
of the left eigenvector. Since the calculation of left eigenvector using forward
substitution in an inverse iteration scheme is cheap (as explained later in
Section 3.1), it is suggested that the left eigenvector be calculated and the
index m be chosen as in eq.(22.6). This is the eame criterion used by
Nelson[31] and will assure as well-conditioned a matrixl C as possible.

In summary, we note that, in calculating derivatives by Direct Method,

® |eft eigenvectors are not used.
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e a complete solution of the eigenvalue problem is not required, if the
derivatives of only a few of the eigenvalues and eigenvectors are sought.
This is in contrast to Adjoint Method which requires all the left and right

eigenvectors to calculate the first derivative of any eigenvector.

® calculation of any derivative requires the solution of a system of linear

equations.

e only one matrix factorization needs to be performed for all orders of
derivatives of an eigenvalue and its corresponding right and left

eigenvectors.

2.3.4 lterative Methods

Andrew[27] proposed an iterative algorithm to calculate the first
derivatives of eigenvalues and eigenvectors. This algorithm is a refined and
generalized version of the iterative scheme developed by Rudisill and Chu[24].
Except for the dominant eigenvalue, the convergence of this algorithm seems
to be very much dependent on the choice of the initial values for the
derivatives. To be efficient for non-hermitian matrices, this iterative method
requires a complex eigenvalue shifting strategy which is not easy to

implement. Hence this method is not considered.
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Chapter 3

Efficiency Considerations in Calculating Derivatives

In order to establish criteria for the selection of the most efficient algorithm
for calcﬁlating the derivatives of eigenvalues and eigenvectors in a given
application, we compare the operation counts and actual CPU times required
by Adjoint and Direct methods. The decision as to which algorithm is best is
necessarily problem-dependent. The comparison is, however, described in
terms of three variables that can usually be ascribed to a given problem and

which significantly influence the decision. These variables are
1. the size of the matrix n
2. the number of design parameters m

3. the number of eigenvalues of interest /.
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3.1 Operation Counts

To start with, let us consider the operation counts (multiplications and
divisions only) for the adjoint methods given by eqgs. (2.3.1),(2.3.8)-(2.3.18) and
the direct methods given by eqs.(2.3.27)-(2.3.32). They are summarized in
Table 1. It should be noted that the operation counts represent an estimate
of the actual number of operations performed by a solution routine and inciude
only the most significant terms. The actual number of operations will vary
slightly depending on programming details. The effect of the sparsity of the
matrix derivative A ; is modeled in the operation counts by the parameter x,
defined such that the number of operations in evaluating the product A ,u is
equal to xn?(that is, kK = 1 corresponds to a full A ).

The eigenvalues are calculated using the EISPACK subroutine package[49]
by first reducing the matrix to upper hessenberg form using unitary similarity
transformations and then applying the QR algorithm. The number of
operations and the CPU time for calculating the eigenvalues is not relevant in
evaluating the methods to calculate the derivatives. The operation count for
eigenvalue computation is given only for comparison.

The right eigenvectors are calculated by inverse iteration on the same
upper hessenberg matrix used for calculating the eigenvalues and are back
transformed using standard subroutines in the package EISPACK. The
corresponding operation count is given in Table 1. The inverse iteration

algorithm is an extremely powerful method for computing eigenvectors and is
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much superior in accuracy as well as speed of convergence to the common
alternative algorithms based on the solution of h.omogeneous equations or
direct iteration. Algorithms based on the solution of homogeneous equations
are limited in their accuracy by the accuracy of the eigenvalue and those
based on direct iteration are limited in their convergence, particularly for
eigenvectors not corresponding to .either the largest or the smallest
eigenvalue.

For the calculation of left eigenvectors, it is important to note that there is
no need to repeat the process with the transposed matrix. The left
eigenvectors are obtained cheaply using forward substitution in place of
backward substitution in the inverse iteration process. There is also no need
to repeat the matrix factorization. A subroutine was written to calculate the
right and left eigenvectors in this manner and the corresponding operation
count is given in Table 1.

Table 1 gives the orperation count of evaluating the individual steps. To
obtain the number of operations involved in evaluating the derivatives, we
must add the operation counts for all the steps required in the calculations.

These counts are given in the following discussion.
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Table 1. Operation Counts

Eigenvalues and Eigenvectors .

Operation Operation Count
Evaluation of eigenvalues 8n3 to 10n3
Evaluation of right eigenvectors 1(2n?)
Evaluation of left eigenvectors I(—g—nz)

Adjoint Methods

Operation Operation Count
Evaluation of eq. (2.3.1) Imn2k
Evaluation of eq. (2.3.8), Imn2(k + 2)
(2.3.10),(2.3.11)
E ; . m 2
valuation of eq. (2.3.18) / (2) n2x

Direct Methods

Operation Operation Count

" . n3
LU decomposition of matrix B I(—)
Formulation and solution of eq.(2.3.27) Im?‘)z(vc + 1)
Formulation and solution of eq.(2.3.31) { (rg) n?@3k + 1)
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3.2 CPU Time Statistics

In the following tables, computational cost for the calculation of the first
and second derivatives of eigensystems are compared for matrices of order
20, 40 and 60. The CPU time statistics are obtained on ihe IBM 3084 computer
using the VS-FORTRAN compiler with no compiler optimization. The
correlation between operation counts and CPU times is shown in Tables 2 and
3. The ratio of operation count(OC) and CPU time for various operations,
tabulated in Tables 2 and 3, is about 10° operations per CPU second with a
variablity of 27 percent.

The typical matrices are generated for the dynamic stability aeroelastic
analysis of a compressor stage rotor with mistuned blades. The geometric and
structural parameters of the rotor and formulation and method of analysis are
the same as those of NASA Test Rotor 12 described in reference[50] except
that the number of blades and the torsional frequencies are varied. The
torsional frequency values are selected randomly from a population of mean
1.0 and standard deviation 0.01. The standard deviations of the actual

samples are slightly different.
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Table 2. Correlation between Operation Count(OC) and CPU time

Calculation of right eigenvectors

n / OC/CPU seconds (x104)
60 60 8.6
60 10 8.3

Calculation of right and left eigenvectors

n I OC/CPU seconds (x104)
60 60 8.5
60 10 9.2

Evaluation of eq. (2.3.1)

n [ m OC/CPU seconds (x10%)
60 60 10 10.7
60 60 5 10.7
60 10 10 10.7
60 10 5 10.7

Evaluation of eq. (2.3.8),(2.3.10),(2.3.11)

n I m OC/CPU seconds {x104)
60 60 10 12.0
60 60 5 11.9
60 10 ' 10 11.9
60 10 5 11.9
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Table 3. Correlation between Operation Count{OC) and CPU time(Contd.)

60
60

60
60

60
60

60
10

60
10

60
10

Evaluation of eq. (2.3.18)

m OC/CPU seconds (x10%)
10 91
5 7.4

Decomposition of matrix B

OC/CPU seconds (x10%)

8.5
9.2
Evaluation of eq. (2.3.27)
m OC/CPU seconds (x10%)
10 12.9
5 13.0
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3.3 Calculation of First derivatives of Eigenvalues only

Operation Count

Adjoint Method I(%—n2 + xmn?)

3
Direct Method /[—”5- + (x + 1)mn?)

It is clear from the operation count that the Adjoint Method, which is an
0(n?) process, is superior to Direct Method, an O(n3) process, for large n. The
number of design variables and the number of eigenvalues of interest have no
bearing on this conclusion. As the order of the matrix increases, the direct
method becomes more expensive. For example, for 5 design variables and
10 eigenvalues of interest, the CPU time for the Direct method is 2.3 times
more expensive than for the Adjoint Method for n = 20, and for n = 60, the

ratio is 3.0.
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3.4 Calculation of First derivatives of Eigenvalues and

Eigenvectors
Operation Count
Adjoint Method —;—-n3 + Imn2(x + 2)
Direct Method igu + Imn2(x + 1)

When the derivatives of both eigenvalues and right eigenvectors are
required, the choice of method is dependent on the values of / and m. When
very few eigenvalues are of interest, the Direct method is cheaper. When
many eigenvalues are of interest, the Direct method is more expensive than
the Adjoint method. However, this effect of the number of eigenvalues of
interest is less significant when the number of design variables is large. As
the number of design variables increases, the direct method becomes more
competitive, even when all eigenvalues are of interest. For a 60 x 60 full
(x = 1) matrix, this is illustrated in Figure 1 on page 40.

The operation count shows that the computation by adjoint method of
eigenvector derivative, which is necessary for the second derivative of

eigenvalue, is an O(n3) process and is more expensive than the computation
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Figure 1. CPU Times for calculation of first derivatives of eigenvalues and eigenvectors for a 60
x 60 matrix
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of the eigenvector itself which is an O(n2) process using the procedure
described in Section 3.1. This fact is significant as some authors have stated

the opposite[6,7].
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3.5 . Calculation of First and Second derivatives of

Eigenvalues only

Operation Count

Adjoint Method D03 4 (x + )ymn3 + 1 (’") n2
2 2
3
H ﬂ__ m 2 +
Direct Method / 3 + | (2)n (3x + 1)
3
Direct-Adjoint Method /"T + ! (’g) n2¢ + Imn2(2x + 1)

The Direct-Adjoint Method denotes the calculation of the eigenvector
derivatives by the Direct method and the eigenvalue second derivatives by the
Adjoint Method. The third term in the operation count for the Direct-Adjoint
Method is significant only when m is small. From the operation count, it is
seen that the Direct-Adjoint Method is always cheaper than the Direct Method.
Hence, the choice lies between the Adjoint Method and the Direct-Adjoint
method. Here, considerations similar to those of the last section hold and the
choice of method depends on the values of / and m. When few eigenvalues
are of interest, the Direct-Adjoint method is cheaper. When many eigenvalues

are of interest, the Adjoint method is superior. But this advantage of A(djoint

42




220
] p
200 g
; i
J \Q~' e
180- o
J N
] v
4 « .7 4
160 . \ -
] -7 0\0}'//
— h /// A0 f\/,/
E 140 l";/’
= b - -
5 b s -
; : // /‘/
~ 1204 Pt
— = 4/
£ 7 4/
s : /’//’/
= 100 L [
= ] e i ’\"\O///,
= ] ,//‘ -~ '?\\\\ -
= 80 /// // m //’
I 4 - Vs -
Nt : k/ B/ ////
] 4 )
60 e - o ADIOINL
4 - -7 e Y-
4 e -~ BV
.{ P e o+
- 4 — - -
40 eI I
] o= o7 b)) w7
] e p= ) DI
20 -7 =TT m = 1 ADJOINT
4 8———__—__—:»—‘-‘5 ———————————————— AT T e
4 [ et
0
rrr—r——————r T~ — ~—r——r +—r —~————r— T -
0 10 20 30 40 50 60
NUMBER OF FIGENVALUES OF INTEREST, !

Figure 2.

CPU Times for calculation of second derivatives of eigenvalues for a 60 x 60 matrix
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Method diminishes as the number of design variables increases. This is again

illustrated for a 60 x 60 full matrix (x = 1) in Figure 2 on page 43.
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Chapter 4

Approximate Eigenvalues of Modified Systems

4.1 Introduction

The eigenvalue problem to be solved is
Au®) = By (4.1.1)
and
vTA = AWy (T (4.1.2)

where A is a general complex matrix of order n and AK) u%) and v(¥) are the

k -th eigenvalue and right and left eigenvectors respectively.
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The matrix A differs by a small amount from a nominal matrix Ag. The

eigenvalues Ay and the right and left eigenvectors ug and v are taken to be

known.
A = Ay + AA ’ (4.1.3)
Agu) = Al (4.1.4)
and
viTag = AT (4.1.5)

Throughout this chapter, we will also assume that the left eigenvectors are

normalized such that
viOTuld = 1 (4.1.6)
The eigenvalues A and the eigenvectors u and v can be written as

2 =280+ A
ulk) = ug() + Al (4.1.7)
vl = vg() + AvH)

Let p,o be the vector of nominal design variables and Ap, be a vector of

perturbations from the nominal design variables so that
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Ag = A(pyo) (4.1.8)
and
A = A(p,o + Ap,) (4.1.9)

Approximate quantities are denoted by the subscript a. For example, an
approximation for the eigenvalue A) is denoted by A{). Al derivatives are
evaluated at the nominal design.

An exact relation exists between AA, AA, Au and Av as ioiiows.

A+ v AR + 2500 Tau™ + AvHTuy)

+ v TAAA® + AvBTA ALY

N AvOTAALY) + AviITAAALY

(4.1.10)

1+ Av(k)TuO + ngu + AvH T A

The object is to obtain AK) without solving a full eigenvalue problem. %K)

can be obtained exactly using eq. (4.1.10), if Au and Av are known. Since ihe

exact values Au and Av cannot be obtained without solving a full eigenvalue

problem, various approximations can be formed based on the above
expression.

The approximations are broadly classified into
1. Derivative based approximations

2. Rayleigh-Quotient based approximations
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3. Trace-theorem based approximations

4. .O{hers

4.2 Derivative Based Approximations

Derivative based approximations are of special importance in optimization
problems because first derivatives are required anyway in most optimization
algorithms.

The most common of the derivative based approximations are based
directly on truncated Taylor series. We will consider Linear and Quadratic
approximations in this category. The enormous cost associated with the
computation of any higher derivatives with multiple design variabies
effectively precludes the possibility of using higher order approximations

based on the Taylor series.

4.21 Linear Approximation(LIN)

This is the simplest approximation to be considered in this work. Linear
Approximation is obtained by truncating the Taylor series expansion for the

eigenvalue after two terms.
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W0 = 3 E ap (4.2.1)
a=1 Opa

A linear approximation is usually inadequate in terms of accuracy because
eigenvalues are often highly non-linear functions of design variables. The

linear approximation will be referred to herein as LIN approximation.

4.2.2 Quadratic Approximation(QUAD)

The Quadratic approximation is obtained by truncating the Taylor series

expansion for the eigenvalue after three terms.

A 1 m m o4 k)

MO0+ T S ap + LT F LD apapy (4.2.2)
a=1 0Py 2 a=13=1 CP.CPy

The quadratic approximation can be quite expensive for large orders of the
matrix or large number of design variables. Miura and Schmit]{14] used a
simplified form of the quadratic approximation and found that, considering
global efficiency, the higher cost of the quadratic approximation can
sometimes offset the higher accuracy in an optimization problem. The
quadratic approximation will be referred to herein as QUAD approximation.

Because of these efficiency considerations, attempts were made to

improve the accuracy of the linear approximations through the use of

intermediate variables with respect to which the eigenvalues may be nearly

49



linear. However, Miura and Schmit[14] concluded that such intermediate
variables cannot be found for a general structural problem.

The accuracy of linear approximations can also be improved in another
fashion. This is by introducing non-linearities without, however, introducing

the second derivatives, which are expensive to calculate.

4.2.3 Conservative Approximation

In optimization applications, it is often desired to have a conservative
approximation. For eigenvalue problems, this usually means underestimating
the eigenvalues. Starnes and Haftka[51] proposed a hybrid approximation,
which is a combination of a linear approximation and a reciprocal
approximation (linear in 1/p, ) such that it is the most conservative
combination of the two. Since this approximation is only applicable to real
guantities, it is applied to the real part and/or the imaginary part of the

eigenvalue as required in particular applications.

‘;7\(’()
AW =4 F g L
a 0 =1 a ()pa

Ap, (4.2.3)

where
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_ otk
1 if 0
A 0Py
© ) 0 ortk)
= gf —— >0
Py 0p,

Even though this approximation is not, in general, more accurate than the
linear approximation, it is popular because it is more conservative than the

linear approximation and it is also convex.

4.2.4 Generalized Inverse Power Approximation

Non-linearities can also be introduced into the linear approximation in a
more direct manner, as in the Generalized Inverse Power approximation,
described by Prasad[52,53].

The linear approximation is first reformulated as

N
m A ot
W=k s [” )L :|8<p (4.2.4)

~ -~ (44

and the function ¢, is chosen as

,
Py = (4.2.5)

where r is any real number.
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Prasad[52] also gave an alternate formulation for r = 0. The real number
r. is a controlling parameter for the approximation. There is no obvious choice

for r in a general problem.

4.2.5 Generalized Hybrid Approximation

Woo[54] combined the concepts of the conservative approximation of
Starnes and Haftka[51] and the Generalized Inverse Power approximation and

defined a Generalized Hybrid approximation as

m (37»“0

p
A=+ 3 - (——“ )’ 426
a 0 a=1 apa (.pa paO) p(lO ( )
where
if m\(k) 0
[} (3/3(1
r ==
v(k)
g—h if <0

g being a real number and h being a positive integer such that
g=0andg — h < —1. The choice of g and h is again not obvious, though
the fact that larger values for g and h make the approximation more
conservative may provide some guideline. Since this approximation too is
only applicable to real quantities, it is applied to the real part and/or the

imaginary part of the eigenvalue as required in particular applications.
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42.6 Reduction Method(RDN)

A different approach to derivative based approximations is based on the
Taylor series approximation to the eigenvectors. This consists of reducing the
original eigenvalue problem to a series of smaller order eigenproblems and is
inspired by Noor’s concept of global approximation vectors{55]. The concept
of global approximation vectors is extended here to general matrices.

Noor’s formulation is simplified by assuming that the eigenvectors can be
treated as linear functions of the design variables. For the sake of simplicity,

consider only one design variable. Let
uf) = ol + yu) = Lol ] {;} (4.2.7)

and substituting eq. (4.2.7}) in eq. (4.1.1), we get,

Aluf) uf] { g2 JLuf W7 (4.2.8)
If the above equation is premuitiplied by [vff) vk ]7, then we have

P{1} = A Q{1} (4.2.9)

Y a”ly

where

P = [vg() vf'g]TA[ugk) ufﬁ)]
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and

Q = [v? v¥73ul o)

Eq. (4.2.9) is a 2 x 2 linear eigenvalue problem and can be solved almost
effortlessly. Of the two eigenvalues of eq. (4.2.9), the one closest to the linear
approximation is chosen. In the case of multiple design variables, the only
change needed is to replace vk} and u%) by the respective derivatives in the
direction of change in design. It can be proved that, if the eigenvectors are
linear functions of the design variable, eq. (4.2.9) gives an exact eigenvalue
when ug and vy are normalized such that their first derivatives are respectively
orthogonal to them. This approximation will be referred to herein as the RDN

approximation.

4.3 Rayleigh Quotient Based Approximations

The Rayleigh quotient for the general eigenproblem given by eqs. (4.1.1)

and (4.1.2) is defined as

yTAx

VTX

Rix,y) = (4.3.1)

When all the eigenvalues of matrix A are distinct, then the Rayleigh

quotient R(x,y) has a stationary value at x = u%) and y = vk (the right and
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left eigenvectors associated with the eigenvalue A% ) for k =12, ..., N.

Further, this stationary value is equal to AK)[56]. That is,

(K)T g, (K)

Rw®, v) =AW = YA ;\" (4.3.2)
vT &)

The approximations in this section are based on the above property. They

seek to approximate the eigenvectors u®) and v(¥) and use them in the

Rayleigh quotient to calculate the approximate eigenvalue.

4.3.1 Rayleigh Quotient with Nominal Eigenvectors(RAL1)

This approximation is obtained by simply using the nominal eigenvectors

in the Rayleigh quotient.

kf,k) ~ v((Jk)TAu((Jk) (4.3.9)
Equivalently,
)\‘(ak) - kgk) + v(ok)TAAuf)k) (4.3.4)

The second expression is cheaper to compute when AA is sparse. We will

refer to this approximation as the RAL1 approximation.
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4.3.2 Rayleigh Quotient with Linearly Approximated

Eigenvectors(RAL2)

The left and right eigenvectors are approximated from those of the nominal
matrix using a 2-term Taylor series:

m
ugk) — ol 4 a);‘,1uf'2Apa

m
Wb =y a§1v'(l:’) Ap, (4.3.5)

The computation of the eigenvector derivatives ul¥) and v} is discussed
in Chapters 2 and 3.

These linearly approximated eigenvectors are then used in a Rayleigh
quotient to generate an approximate eigenvalue. Our RALZ2 approximation is

therefore given by

T Ay

KT (k
(7T (0

A = (4.3.6)

v

4.3.3 Rayleigh Quotient with Perturbed Eigenvectors(RAL3)

In this algorithm, the perturbation AA in the matrix is used to evaluate the

perturbations in the right and the left eigenvectors either by Adjoint or Direct
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Method, which are analogous to the Adjoint and Direct methods described in
Chapter 2. In the Adjoint method, assuming that the eigenvectors are
normalized according to eq. (2.2.3) and (2.2.4), the perturbations in the right
and left eigenvectors, du'k) and dvlk) respectively, are calculated as follows:

n - n i
sulb) = 3 ekjug) and vl = 3 fkjvg) (4.3.8)

where

e, = ————————— k #j 439
kj (ké)k) B )\g)) ) { )
. v AR uf oy
ki — — ] (4.3.10)
(} (k) _ 7&8))
and
ey = —fp = — 5 e ul) (4.3.11)
kk kk iZ kj “0m e
j*k

McCalley[57] used this approach for error analysis of real symmetric
eigenvalue problems. Chen and Wada[58,59] and Chen and Garba[60]jused an
equivalent formulation for real symmetric matrices and obtained eigenvalue
approximations for all eigenvalues of the matrix simultaneously. Faddeev and

Faddeeva[61] applied this approach to general matrices to improve the
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accuracy of approximate eigenvalues. Meirovitch and Ryland[62] presented
an extension to second order perturbations for general matrices.

In the Direct method, assuming that the right eigenvectors are normalized
according to eq. (2.2.4), the perturbations in eigenvectors are calculated as

follows. In eq. (4.1.1), substitute eq. (4.1.3) and

G

ulh = 40 4 5y (4.3.11)
v(k) = vg() + 6v(k)

to get, after ignoring second order perturbation terms,
Agdu + AAul = 2 {F5u®) + skl (4.3.12)

Eq. (4.3.12) is identical to eq. (2.3.24) when the derivatives are replaced by
perturbations. Hence, the same solution methods described in Section 2.3 can

be used to solve eq. (4.3.12) for the perturbations in the eigenvector. Thus,

sul) =9 (4.3.13)
and

Bpdy = or (4.3.14)
where

58




k k
By = [Ag — }‘g) )I | '_ué) )]m-th column deleted

5u(k)
O =<9 T £
5)\(’() with m-th element deleted

r= — AAuf) - (4.3.15)

The perturbations in left egigenvectors are cobtained similarly using forward
substitution.
The perturbations in the right and left eigenvectors are used to

approximate the eigenvectors. Thus,
ugk) = ug() + su'®
v = ) L gy (4.3.16)

The approximate eigenvectors are then used in the Rayleigh quotient as
in eq. (4.3.6) to form an approximation to the eigenvalue. Romstad, et. al [63]
presented both the Adjoint method approach and an equivalent Direct method
approach of this approximation for real symmetric matrices. However, they
obtained different numerical resuits with the two approaches because of an

error in their expressions for eigenvector perturbation by Adjoint method.
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4.3.4 Rayleigh Quotient with One-step Inverse Iteration(RAL4)

The Inverse lteration method has been recognized as a powerful tool for
accurate computation of eigenvectors[47,64]. The unusual feature of the
Inverse lteration method is that accurate eigenvectors can be computed even
when the eigenvalue is not known accurately as long as the eigenvalue is
close enough to the correct eigenvalue. This feature .can be used effectively
to improve the accuracy of a rapid but rough approximation. 1In addition, a
one-step inverse iteration is usually sufficient because most of the
improvement in accuracy normally occurs in the first step and in a
modification problem, the nominal eigenvector is available and provides an
excellent initial iterate.

In this algorithm, a first approximation 1{) to the eigenvalue 1) is formed
as a Rayleigh Quotient (RAL1) given by eq. (4.3.3). This approximation is then
used in a one-step inverse iteration scheme to .obtain approximate

eigenvectors as follows:

o) = (& - 28" uff

~ (4.3.17)
W = (AT 2T

The approximate eigenvectors are then used in the Rayleigh quotient as
in eq. (4.3.6) to form an approximation to the eigenvalue. We will refer to this

approximation as RALA4.
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Note that the evaluation of the ul) and vi¥) requires only one matrix
factorization, since the second part of eq. (4.3.17) can be solved by forward

substitution using the same factored matrix used in solving the first part.

4.4 Trace-Theorem Based Approximations

These approximations are based on well known iterative methods for
finding the roots of a polynomial. We apply these methods to the
characteristic polynomial, p(A) of matrix A using only one step of the iteration
for the approximation.

The remarkable feature of the approximations in this section lies in the fact
that the coefficients of the characteristic polynomia! need not be calculated
explicitly. This is achieved by employing the following result, known as the

Trace Theorem[56].

Trace Theorem: If p(A) # 0, then

fA) = —l;—,(%)- = - [ Trace of (A — M)_1] (4.4.1)
o = 2P
where p’(A) e
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441 One-step Newton-Raphson Iteration(NRT1)

Here, we employ the Newton-Raphson formula

N,
PPrat) _uy _ 1

K Kk
g - 201
p'(Aa1) f(hg1)

(4.4.2)

where A{) is an initial approximation for the eigenvalue Ak,

Using the Trace Theorem, eq. (4.4.1), an approximation is formulated as

1
A0 =l = (4.4.3)
Trace of (A — A {1)

Note that this approximation requires a matrix inversion. The initial
approximation Al is chosen as the Rayleigh quotient of eq. (4.3.3).

We will refer to this approximation as NRT1 approximation.

4.4.2 Refined One-step Newton-Raphson Iteration(NRT2)

In this approximation, we utilize the second derivative of p(\) to obtain a
better approximation. To refine the Newton-Raphson Ilteration using the

second derivative, consider the truncated Taylor series expansion

k ’ rn k
0 = p0") = pd) + P SHRY - 1) + 0sp (INRE) - 28444
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Use eq. (4.4.2) to eliminate AlX) in the third term on the right hand side, to get

rrgy (K)y 2,4 (K)
, K. p"rai)p”(251)
0 = pg)) + OGN — M) + —— =2 (4.4.5)
2(p' 0.1

so that the refined Newton-Raphson formula is

k ren (KN 208 (K
k) _ P(>~g1)) _hp (7»(81))/) ()v(m))

Al = (4.4.6)
P 2 e
From the definition of f(A), we have
() = pLF(x) + 121 ] (4.47)
Now, differentiating eq. (4.4.1) with respect to x, while noting that
L a-wm =LA P | (4.4.8)
di
we get,
F(\) = — Trace of [(A — A" J? (4.4.9)

This expression is then used in the refined Newton-Raphson formula of eq.

(4.4.8) to obtain our next approximation given below.

k 2, (K
NN Uy + 320 %)

a ai
2r°(59)

(4.4.10)

63



Note that, in evaluating (L) using eq. (4.4.9), the matrix multiplication need
not be performed completely, since only the diagonal elements of the matrix
product are needed.

This approximation will be referred to herein as the NRT2 approximation.

4.4.3 One-step Laguerre Iteration(LIT)

Laguerre iteration is often used to compute eigenvalues and is known to
have excellent convergence properties[47]. For our purposes, we need only
one step of the Laguerre iteration. The one-step Laguerre iteration consists
of

np(A
hg = haq — PCuat) (4.4.11)

p'(ha) £ [0 — 1% (har) = nn = Dp(hap)p” (a1

This approximation also utilizes the second derivative of p(x) . The
derivation of eq. (4.4.11) is given in Wilkinson[47]. To obtain our

approximation, we rewrite the above, using the trace theorem, as

Ay = Agq — > L = (4.4.12)
fhgr) £ [ = (n — DF(Ryq) — nln — 1) (hy)]

The evaluation of f(L) is described in Section 4.4.2. The sign in the
denominator is chosen so as to make the denominator have the greater

absolute value. We will refer to this approximation as the LIT approximation.
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4.5 Other Approximations

An alternative approach to approximate eigenvalues is taken by Paipetis
and Croustalis[65] who developed an algorithm to approximate the coefficients
of the characteristic polynomial which is then solved to obtain approximate
eigenvalues. In addition to the numerical difficulties associated with the
evaluation of the coefficients of the characteristic polynomial and its solution,
this method severely restricts the characteristics of the system matrix.

We will consider one more approximation called [1,1]Pade approximation.

4.5.1 [1,1] Pade Approximation(PAD1)

We derive the [1,1] Pade approximation by geometrical construction along
the lines of Johnson[66]. Let us for the moment assume that the eigenvaios
to be approximated is real.

Let A0 and Al be the first and second approximations to the eigenvalue
MK, The information contained in these approximations is exploited by
Aitken’s method[67] to obtain a hopefully better approximation. We form tne

differences
k k k
) =2l — Al

BhG3 = Mg — had (4.5.1)

a
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If A0, M) and Al is a converging series, we will have

Sl < Shyy (4.5.2)

We now draw a straight line through the points (A, 5018)) and (A{), 5145)
to extrapolate to SAK) = 0 on a (Ak), 5AK)) plot. This is illustrated in Figure 3.

It is expected that the extrapotated value L) would be a better approximation

than either A{8) or A{%).

The result is
Sl(k) sx”"
W =) el Tral (4.5.3)

sal) — sk

Although the motivation applied only to real eigenvalues, this result can
be immediately extended to complex eigenvalues. Using eqgs.(4.5.1), eq. (4.5.3)

is rewritten as

K)\2 k)4 (k

0 A5H? = a§hY
a k k k
2~ ]

(4.5.4)

If the approximations A{), Al are the linear and the quadratic
approximations, the approximation of eq. (4.5.4) can be recognized to be in the
form of the [1,1] Pade approximant. In the following, this is assumed and this

approximation will be referred to as PAD1 approximation.

66




SA

Figure 3. Derivation of [1,1] Pade Approximation using Geometric Construction
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Chapter 5
Accuracy and Efficiency of Eigenvalue

Approximations

5.1 Introduction

In Chapter 4, we listed several approximations for the eigenvalues of
general matrices. For a given application, the selection of the appropriate
approximation usually depends on the saving of computational time that a
given approximation entails. In the task of selecting a good approximation,
information about the accuracy and the efficiency of computation of the
approximations is essential. Accuracy and efficiency are not independent
elements in the selection of an approximation algorithm. Poor accuracy

usually translates into low efficiency in the global process.
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In this Chapter, the accuracy and efficiency considerations relating to the
approximations listed in the last chapter are discussed. The accuracy
considerations are treated in Section 5.2 and the efficiency considerations in
Section 5.3. The Conservative, Generalized Inverse Power and the
Generalized Hybrid approximations are not studied as their accuracy is
problem dependent and a general assessment is not feasible.

Some of the approximations discussed have been applied to symmetric
matrices by researchers in structural dynamics. However, there exists no
systematic comparison of accuracy and efficiency. To the best of the author’s
knowledge, the trace theorem based algorithms have never been used for
approximating eigenvalues of modified systems in the structural dynamics

literature.

5.2 Accuracy Considerations in Approximating

Eigenvalues

For simplicity of notation, we consider a single design variable. It will be
obvious, however, that the results of the error analysis are applicable to the

case of multiple design variables as well.
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5.2.1 Order of an Approximation

For a useful comparison of the various approximations, we define the

order of an approximation as follows:

Definition: If an approximation i, to an eigenvalue X is such that the error
(g — N = O[(Ap)°* T " or (A, — M= Clap,)* T T HorAp, -0 (521

then that approximation is said to be of s-th order.

Note that, for a rigorous estimate of the error in an approximation,
information about both the order of the approximation as well as the
proportionality constant C in eq. (5.2.1) is needed. However, the order of the
approximation is usually the most important property of the approximation and
the proportionality constant is useful only when comparing approximations of
the same order. In this work, attention is focused on the order of the

approximation and the proportionality constant is discussed only in examples.

5.2.2 First Order Approximations

Among the approximations described in the last chapter, the linear
approximation(LIN) and the Rayleigh quotient with nominal eigenvectors

(RAL1) are first order approximations.
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It is easy to show that the Linear approximation is of first order. Consider

the two term Taylor series for AK) with remainder given by

M oM
2 = 2 Ap + —12-——2-—@“)([3,;&)2 (5.2.2)
OPa 0Py

where p, < 8o < Pg T APy -

Comparing this to the linear approximation, eq. (4.2.1), we have the error
A — Ak = oap?) (5.2.3)

Hence the linear approximation is a first order approximation.
To find the error in the RAL1 approximation, subtract eq. (4.3.4) from the

exact expression of eq. (4.1.10). Ignoring the third order terms, we have

viOTaAA™ + AV A ALY + AvRTAAUY

w0 = AR WA + avTul) — aoav® A
;" - )‘RAL1 - k T (k T (524)
1+ Av®Tug + viau + Av A

Considering that, to the first order,

AA, Au, Av = O(Ap,)
we have

AW — ), = opd) (5.2.5)
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Thus, RAL1 is a first order approximation.

5.2.3 Second Order Approximations

The Quadratic approximation and its improvement by [1,1] Pade
approximation(PAD1) are the second order approximations we described. To
show that the quadratic approximation is of second order, consider the three

term Taylor series with remainder given by

: v (K) 2, (k) 34 (k)
Ok 1 0°A 1 0°A
AW =+ T2 _Ap 4+ e (Ap,)? E——TS—(Qm)(ApO,)3 (5.2.6)
a UP UPg

Comparing this to eq. (4.2.2), we have the error in the quadratic

approximation as
k k 3
M =280 = 0p) (5.2.7)

showing that the quadratic approximation is a second order approximation.
The PAD1 approximation is an improvement on the quadratic approximation
and so it is at least of second order.

The linear, quadratic and the PAD1 approximations are applicable to all
functions and do not take advantage of the special properties of the eigenvalue

problem. All the other approximations we are going to discuss are developed
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specifically for approximating the eigenvalues and it will be shown that they

achieve higher accuracy with less computational effort.

5.2.4 Third Order Approximations

The reduction method RDN, the Rayleigh quotient based methods RALZ2
and RAL3 and the one-step Newton-Raphson iteration NRT1 are the third

order methods As the first three

]
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approximations RDN, RAL2 and RAL3 are closely related, we will derive the
order of only the RAL2 approximation and infer the orders of the RAL3 and the
RDN from this derivation.

Recall that in the RAL2 algorithm, the eigenvalue is approximated by using
linearly approximated left and right eigenvectors in the Rayleigh quotient.
Hence, we may write the two term Taylor scries with remainder for the
eigenvectors as

u® = ol + Tul) 0 )apy)

2 ,

v =y 10y ap ) (5.2.8)

o . aaira

Hence, the approximate eigenvectors can be rewritten in terms of the exact

eigenvectors as
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k
0 = 4 — 2 u® ()P

vgk) =k 2 (k) (Ca)(APa) (5.2.9)

Substituting these expressions in eq. (4.3.6) and using the egs. (4.1.1-2), we

get
o WA W - 2% + o 5210
T Ty 1 - 2% + oapd) B
where
2% = L vili)u® + vOTul) ) Jiap,)? (5.2.11)

Carrying out the long division and putting M) = Al ,, we find the error

in the RAL2 approximation as
k k 4
2K =8, = owpg) (5.2.12)

it is hence proved that the RAL2 approximation is of third order.

It may be recalled that in the RAL3 approximation, we approximate the
eigenvalue by a Rayleigh quotient using left and right eigenvectors that were
obtained by using first order perturbations whereas in the RAL2 algorithm, we
approximated the eigenvectors using their first derivatives in a two-term

Taylor series. There is mathematically no difference between these two
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methods and their difference lies only in the computational algorithms. It
follows then that RALZ2 is also a third order approximation. There is indeed
little difference in the accuracy of the two approximations when they were
tested on example matrices.

The order of the reduction method approximétion(RDN) is difficult to
obtain algebraically. However, we can infer the order of the RDN
approximation by comparing it to the RAL2 approximation. We first note that
the chief characteristic of the RAL2 approximation is that the eigenvector of
the modified matrix is assumed to be in the subspace consisting only of the
linearly approximated eigenvector. The RDN approximation is more flexible
in that the eigenvector of the modified matrix is assumed to be in the subspace
consisting of the original eigenvector and its derivative. Thus, the RDN
approximation can be expected to be somewhat better than the RALZ2
approximation. Hence, the RDN and the RAL2 approximations are expected
to be of the same order but possess a different proportionality constant in the
sense of eq. (5.2.1). This conclusion is validated by several numericail
experiments.

To derive the order of the one-step Newton-Raphson iteration(NRT1), we
first write the Taylor’'s series for the characteristic polynomial, p(A) and its

derivative, p’(A), as
p0Y) = p M) + 0 — a0y + 05059 - AFYPpr + (5.2.13)

and
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8y = pr + a8 — Ay + 0508 — AW 4 (5.2.14)

where primes denote derivatives evaluated at A(K). Then the Newton-Raphson
Algorithm of eq. (4.4.2), modified by by subtracting A) from both sides and

noting that p(Alk)) = 0,

A 3K =00 0

0 Z M 1050l — a2y 4 (5.2.15)

may be written as

0.50.% — a8 + (3 - A3 4 .

Wk < p p (5.2.16)
pl + 0\'(31) _— )\'( ))p” 4 ..
giving
Ak k(k))z_l_’_’_ (5.2.17)

2p

We have chosen the initial approximation A{) to be the RAL1 approximation,

which has already been shown to be a first order approximation. Hence,
AW 2Ry = oap? (5.2.18)

so that
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AWK — A%y = oapd) (5.2.19)

establishing that the NRT1 approximation is a third order approximation.

5.2.5 Higher Order Approximations

The remaining approximations, RAL4, NRT2 and LIT are all fifth order
approximations. We proceed to obtain the order of these approximations.

To get the order of the RAL4 approximation, we follow Ostrowski’s
approach[68] using, however, the simplifying assumption that all the
eigenvalues are well-separated. Let U and V denote the matrices whose
columns are the right eigenvectors u and the left eigenvectors v respectively
of the matrix A. Let A denote the diagonal matrix of eigenvalues. From the
biorthogonal property of the left and right eigenvectors normalized as given

by eq. (2.2.3), we have

vViaAu = A and viu=1 (5.2.20)
Define
) ) T k T (k
) = v, e = oW, q¥ = v, e = uVy (5.2.21)

From eqgs. (5.2.20), we have
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VI(A — AU = A — AR (5.2.22)
so that
| (A = AN —1=u(A - Aln-vT (5.2.23)

Using the above and ih_e definitions of eq. (5.2.21) after premultiplying the

first part of eq. (4.3.17) by V7, we obtain the relation

N = (A — A1 nff) (5.2.24)
From the second part of eq. (4.3.17), we can obtain, in a similar manner,

E) = (A — AN~ 1 gl (5.2.25)

Using egs. (56.2.20-21), the RAL4 approximation can now be written as

KT k)
}»g‘) = M (5.2.26)

&50Tn0

Substituting the expressions (5.2.24) and (5.2.25) in eq. (5.2.26), we have

Dy (k). (k
n Agng)

STCENTY:

k
[-sé)l)T]O/

J i=1 (}L(’) — }"(61))2

2 = (5.2.27)

™M=
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Subtracting the exact eigenvalue A} from both sides of this expression, we

~ get after considerable algebra,

n A0~ AWelini

I=1 )\'(’) 1 (k)2
A0 x| Aa1)

) oz = 0 0 (5.2.28)
Az — A7) K i A= X31)
’ @()kﬂ( ) + Z n(k)&.‘ )

(}\.(,) k))
i¢k

Then, if the eigenvaiues are welil separated and if } g,‘ is a reasonably close
approximation of the eigenvalue L) | the second term in the denominator will

be negligible compared to the first. So, we may write

n (0 — 2¥hefinf)

i=1 (x(") — ;‘gg))2

2K k) ik
~ (5.2.29)
(&g — %) A

However, Al is taken to be the RAL1 approximation. Hence we have,

K)T A lk)
A = S Ang) (5.2.30)

&4 nfld

Subtracting A% from both sides as before,
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2 00 =2 8efing)
i*k
AH -2 = (5.2.31)

k
Elnl 4 Zn Ky 0

i#k

Or,

'§1(7»(I) K(k))ﬁ(k)n(k)
k) _ i*k
E..Okﬂ()k ' - § éo, no, (5.2.32)
NCRTC) i=
at ;sek _

When the eigenvalues are well-separated and xg? is close to the exact

eigenvalue AK), the first term is dominant, so that

Z (k(’) A k) ;;(k) (k)
i=1
ik
k ~
Edmy, = (5.2.33)

(59 = 1)

Substituting eq. (5.2.33) in eq. (5.2.29),
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' k
p 0 — 2 EGnb
i=1 ()\’(i) —- 7»;'(1))2

NCY I
oy = 0 — A —— (5.2.34)
(af = A™) 2 08 = AOhefng)
I=
i*k
Now, putting A = Afk), 4, and A9 = Afk), 4, we have
A . - AW el - A2 (5.2.35)

Since RAL1 is a first order approximation as shown in Section 5.2.2,
k k 6
A -k = o@pd) (5.2.36)

proving that the RAL4 approximation is of fifth order.
The derivation of the order of the NRT2 approximation is analogous to that
of NRT1 approximation given in the last section if eq. (4.4.10) is used in place

of eq. (4.4.2). After considerable algebra, we get
Ay — A0 = ofand — A¥)’ (5.2.37)

For the Laguerre Method, Wilkinson[47] gives
A — A = orpl - Ak (5.2.38)

Since the initial approximation used in both these algorithms is of first order,

we have
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A, 2%y = oapd) (5.2.39)
A a0y = oapd) (5.2.40)

so that both the NRT2 and the LIT approximations are fifth order

approximations as stated.

5.2.6 Validation of the Theoretical Results

Taking logarithms of both sides of eq. (6.2.1), we have

log (A, = X)) = (s + 1)log (Ap,) + constant (5.2.41)

so that if the error in an s-th order approximation is plotted against the change
in design variable on log-log scale, one must obtain a straight line with slope
(s + 1).

The orders of approximations obtained in the last section are verified by
numerical experiments, summarized in the following figures. In order to
minimize the effect of round-off errors as much as possible, a small matrix of
order 5 is used for validation of theoretical results. The matrix elements are
the quadratic polynomials of a design variable where the coefficients are
generated using a random number generator. The errors in the approximate
eigenvalues are in comparison to the exact eigenvalue that is obtained by the

QR algorithm and improved by using the eigenvectors computed by inverse
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Figure 4. Relative Percentage errors in the Absolute value of the Eigenvalue 5 x 5 Matrix
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iteration in a Rayleigh quotient. Figures 4, 56 and 6 show the errors in the
absolute value, the real part and in the imaginary part of an eigenvalue of the
5 x 5 matrix plotted on a log-log scale against the change in design variable.
In all the following figures, 10/ is represented in the FORTRAN notation 1Ei.
The slopes of the straight line segments in Figure 4, 5 and 6 agree very closely
with the orders of the approximations derived in Section 5.2. The difference
in accuracy between the high order and the low order approximations is
clearly apparent.

Approximations are also applied to one of the eigenvalues of a larger
matrix of order 40, generated in the same manner as the smaller matrix of
order 5 before. The results obtained are shown in Figures 7, 8 and 9. The
results for a flutter analysis matrix are shown in Figures 10, 11 and 12. The
generation of the flutter analysis matrix is described in Section 3.2. The design
variable used in the Figures 10, 11 and 12 is the reduced frequency,
k defined as (—(’%’-) where © is the vibration frequency, b the blade
semi-chord and V the air speed in far field.

The deviations from straight line behavior appearing in Figures 10, 11 and
12 at small values of Ap, are typical instances of round-off error with which
we are not concerned.

In all these Figures, approximations of equal order are indicated by
straight lines of equal slope. The proportionality constant, which reflects
accuracy, is indicated by the vertical position of the corresponding straight

line.
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It is seen‘that both the first order approximations have about the same
accuracy and that the improvement achieved by the PAD1 approximation over
the quadratic approximation is marginal. The reduction method approxirﬁation
with good consistency shows substantially more accuracy than the other third
order methods. Among the fifth order approximations, the NRT1

approximation is consistently poorer in accuracy than others.

5.3 Efficiency Considerations in Approximating

Eigenvalues

Efficiency is probably the most important consideration in the comparative
evaluation of the various approximations, particularly in the context of design
optimization. The comparison is once again made in terms of variables which
significantly influence the cost of computing an approximation. in addition to
the size of the matrix n, the number of design parameters m and the number
of eigenvalues of interest / that we considered in Chapter 3, we have an
additional variable in the approximation context and this is the number of
design poihts d at which an approximation is sought based on the same
nominal design.

Tables 4 and 5 present the operation counts for all the approximations
studied. The operation counts include the necessary computations of the left

and right eigenvectors at the nominal design represented by the matrix Ag, if
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Table 4. Operation Counts for First and Second Order Approximations

Approximation
LIN

RAL1

Approximation

QUAD

PAD1

First Order Approximations

Operation Count
7 92 2
I(-—2—n + kmn< + dn)
7.2 2
I > n< + kdn*)

Second Order Approximations

Operation Count

n3 my 2 2 2
I—3—+I(2)nv<+lmn (2x + 1) + dIn

- Direct-Adjoint Method
1.3 3 m\ 2. 4+ qin2
o7 + (x + 1)mn +I(2)n K + din
- Adjoint Method

Same as QUAD
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Table 5. Operation Counts for Third and Higher Order Approximations

Third Order Approximations

Approximation Operation Count
3
RDN I[—-';— + 2(x + 1)mn? + 2dn?] Direct Method
—;—n3 + In2[(x + 2)m + 2d] ~ Adjoint Method
; |
RAL2 /["T + 2(x + 1)mn? + dn?] Direct Method
%rﬂ + In2(x + 2)m + d] Adjoint Method
3
RAL3 dl[—%— + 2(x + 1)n?) Direct Method
—;-n3 + din(x + 3) Adjoint Method
NRT1 din3

Higher Order Approximations

Approximation Operation Count
RAL4 dl(%s—)
NRT2 din3
LIT dIn3
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they are significant. But they do not include the operations for the calculation
of the nominal eigenvalues Ay since these do not affect the comparison of the
efficiency of the different approximations. When the derivatives of
eigenvectbrs or the second derivatives of the eigenvalues are needed for an
approximation, operations counts for both the Adjoint method algorithm and
Direct method algorithm are given separately. The details of the Adjoint and
the Direct methods are discussed in Chapters 2 and 3.

Note that the computational expense of RAL1, RAL3, RAL4 and all the fifth

order approximations is independent of the number of design variables.

5.4 Discussion of Approximations

5.41 Case When No Derivatives are Available

The results depicted in Figures 4-12 show that both the first order
approximations we studied, LIN and RAL1, are practically identical in
accuracy. Comparing their operation counts, we conclude that, when first
order accuracy is acceptable, LIN approximation is preferable if the number
of design variables is small and the number of design points for approximation
is large. When the number of design variables is large, the RALI1

approximation is more efficient.
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The experience of numerical experiments also shows that the improvement
achieved by the PAD1 approximation over the quadratic approximation is
marginal so that we have two second order approximations of nearly the same
accuracy. The behavior of the [1,1] Pade approx.imation based on initial
approximations other than the linear and the quadratic has not been studied.
However, the operation counts show that the evaluation of the second
derivatives is very expensive. The third and higher order approximations are
not only more accurate but are also more efficient so that the second order
approximations QUAD and PAD1 can be completely dropped from
consideration. Among the third order methods, RAL2, RAL3 and NRT1 have
similar or same accuracy while the Reduction method RDN shows higher
accuracy in most cases, sometimes close to that of some of the fifth order
approximations. This is explained by the fact that the reduction method
approximates the eigenvectors in a subspace of two vectors whereas RAL2
and RAL3 approximations use a subspace of only one vector. However, the
reduction method is also more expensive than RAL2 and RAL3 as shown by
the operation counts in Table 5.

Hence, among the third order methods, the trade-off between accuracy
and efficiency determines the choice of the approximation. When accuracy is
more important than efficiency, the reduction method is chosen over the
others. When efficiency is more important, we have the choice between RAL2
and RAL3. The Newton-Raphson approximation(NRT1) is dropped from

consideration because there are higher order methods which give higher
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accuracy with the same computational expense. Note that the Direct method
computatibn‘of the RAL3 approximation is more expensive than the Adjoint
method computation except for very few eigenvalues of interest and very few
design points of approximation. The choice between RAL2 and RALS3 is similar
to that between LIN and RAL1 in the first order case. RAL2 approximation is
preferéble if the number of design variables is small and the number of design
points for approximation is large. When the number of design variables is
large, the RAL3 approximation is more efficient.

The higher order approximations are particularly efficient when the
number of design variables is large and the number of design points and the
number of eigenvalues of interest is small. The RAL4 algorithm is somewhat
more efficient than the other two. Among these approximations, for the cases
tested, the RAL4 and the LIT methods give better accuracy than NRT2. As the
NRT2 approximation is no cheaper than the LIT approximation, this eliminates
the NRT2 approximation from consideration. Whether there is any
considerable difference in accuracy between the RAL4 and the LIT methods
requires further investigation. In the absence of any such difference, the RAL4
approximation may be considered to be the best higher order approximation
available in terms of accuracy and efficiency.

The computational cost of the higher order approximations escalates
rapidly to equal that of the exact computation of eigenvalues. Comparing the

operation count of the RAL4 approximation and the exact computation, we
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note that the RAL4 approximation is more expensive than the exact

computation when the product d/ is above 30.

5.4.2 Case When Derivatives are Available

Most design optimization algorithms require first derivatives of
constraints. Design optimization of dynamic response in structures almost
always involves constraints on the eigenvalues and sometimes constraints on
eigenvectors are also involved. In such cases, the first derivatives of the
eigenvalues and perhaps eigenvectors are already available free for use in
approximations so that the operation counts for derivative-based
approximations given in Tables 4 and 5 are reduced, affecting some of the
conclusions. In this section, we discuss the relative merits of the
approximations when the first derivatives are already available.

We first consider the case when constraints are placed only on the
eigenvalues so that the first derivatives of only eigenvalues are available free.
in such a case, the operation count for only the linear approximation is
affected and is shown in Table 6. The linear approximation is now an O(n)
process and is practically free in terms of computational expense compared to
any other approximation. Thus, when constraints are placed on the
derivatives of eigenvalues, the linear approximation is the best approximation
unless particularly high accuracy is required. If high accuracy is desired, the

conclusions of Section 5.3.1 still hold.
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Table 6. . Operation Counts for First Order Approximations when Eigenvalue Derivatives are Free

First Order Approximations

Approximation Operation Count
LIN Idn
7 2 2
RAL1 I(?n + xdn<)
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We next consider the case when the constraints are placed on both the
eigenvalues and eigenvectors so that all first derivatives are available free. In
such a case, the operation counts for all derivative-based approximations are
affected and are shown in Tables 7 and 8.

The derivative based approximations except the quadratic ép;)roximation
are much more attractive when all the first derivatives are aQailable. The
linear approximation is again practically free so that it always makes sense to
use linear approximation in terms of efficiency. The third order
approximations RDN and RAL2 are now O(n?) processes and are substantially
cheaper than the fifth order approximations which are still O(n3) processes.
However, the RDN approximation is now twice as expensive as the RAL2
approximation and the additional computational expense of the RDN
approximation is less easily justified even though it is somewhat more
accurate. The quadratic approximation is again more expensive than the more
accurate third order approximations. Operation counts for the fifth order
approximations are not affected by the availability of the first derivatives and

hence the conclusions regarding the same are also unaffected.
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Table 7. Operation Counts for First and Second Order Approximations'when All First Derivatives

are Free
First Order Approximations
Approximation Operation Count
LIN ldn
7.2 2
RALA1 Id(—2—n + xn<)
Second Order Approximations
Approximation Operation Count
QUAD l(’g) n?¢ + Imn2 + din?
- Direct-Adjoint Method
(x + 1)mn3 + | (’") n2 + din?
2
- Adjoint Method
PAD1 Same as QUAD
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Table 8. Operation Counts for Third and Higher Order Approximations when All First Derivatives
are Free

Third Order Approximations

Approximation Operation Count
RDN 4din2
RAL2 din?
RAL3 —;—nf’ + din?(x + 3) Adjoint Method
NRT1 din3

Higher Order Approximations

Approximation Operation Count
RAL4 dl(-n;—)
NRT2 din3
LIT din3
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Chapter 6

Conclusions

The large computational expense associated with the flutter optimization
of a cascade of rotating blades motivated this study. The problem of
computational expense is attacked from two fronts, sensitivity analysis and
approximations. The existing literature was surveyed in both fields and
improvements are suggested. General recommendations for the selection of
the most efficient algorithms are presented.

The normalization of the eigenvector needs to be properly related to its
derivative. In practice, this means that the derivative of the eigenvector is to
be normalized before it is used, to conform to the normalization of the
eigenvector its_elf. When the eigenvector is not normalized in a unique
manner, its derivative cannot be evaluated. It has been shown that fixing one
of the components of the eigenvector is the best normalizing condition for

computation of the derivative.
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In the sensitivity analysis part, the algorithms presently available for
computing exactly the derivatives of eigenvalues and eigenvectors are
classified into Adjoint and Direct Methods. Adjoint Methods use both the left
and the right eigenvectors whereas the Direct Methods use only the right
eigenvectors. The Adjoint Methods and the Direct Methods found in the
literature are extended to apply to eigenvectors normalized in the manner
described above. Algorithms that compute approximate derivatives are not
studied as their implementation is problem dependent or complicated.

The Adjoint and the Direct methods are examined for their efficiency under
different sets of conditions. The choice reflects whether the solution of the
adjoint problem is worth the extra computational expense. The solution of the
adjoint problem is shown to be cheaper than the solution of the direct problem
because left and right eigenvectors can be calculated using the same factored
matrix. It is concluded that if only the first derivatives of eigenvalues are
required, the solution of the adjoint problem is worth the expense since the
Adjoint method is superior to the Direct Method. When first derivatives of
eigenvectors are also required, the decision is dependent on the problem size,
the number of design variables and the number of eigenvalues of interest. The
Direct method is more competitive if the number of design variables is large
and the eigenvalues of interest are few. When the first and second derivatives
of eigenvalues are required, similar considerations hold. it is also shown that

once the first derivatives of eigenvectors are calculated, the second

105



derivatives of eigenvalues are calculated more efficiently by the Adjoint
method than by the Direct method.

in the approximation part, many existing approximation methods are
applied to general matrices. Some new approximation methods, inspired by
the computational techniques in linear algebra, are proposed. Noor’s concept
of global approximation vectors is simplified and then extended to general
matrices to arrive at another approximation called the reduction method.

The approximations are classified as Derivative Based, Rayleigh Quotient
Based, Trace Theorem Based and [1,1]Pade approximations according to their
theoretical origin. In terms of accuracy, the approximations are reclassified
according to the order of the error expected from the approximation. The
approximation methods are also examined for computational expense as this
is a significant issue in the selection of a particular method. At each order of
accuracy, the approximations are compared in termis of their efficiency and
general recommendations are made. Additional recommendations are made
for the case when the derivatives are already available. In particular, it is
concluded that the quadratic approximation is inferior to many other
approximations both in accuracy and efficiency.

The analysis performed in this work is applicable also to the generalized
eigenvalue problem in a straightforward manner so that all the conclusions are
valid for the usual structural stability problem. However, the conclusions are
limited by the assumption of distinct and well-separated eigenvalues of

interest. The sensitivity analysis and approximation methods for muitiple or
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closely spaced eigenvalues is fraught with difficulties, numerical as well as
theoretical. The muitiple eigenvalue case is suggested as a topic for further

research.
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