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Modification of a Variational Objective Analysis Model for New
Equations for Pressure Gradient and Vertical Velocity in the
Lower Troposphere and for Spatial Resolution and Accuracy of

Satellite Data

1. Iatroduction

Beginning in late 198, the NASA supported research to
extend and improve upon the Achtemeier (1975) numerical
variational objective analysis model to include observations from
space based platforms for the diagnosis of cyclone scale weather
systems. The goal of this research is a variational data
assimilation method that incorporates as dynamical constraints
the primitive equations for a moist, convectively unstable
atmosphere and the radiative transfer equation. Variables to be
adjusted include the three-dimensional vector wind, height,
temperature, and moisture from rawinsonde data, and cloud-wind
vectors, moisture, and radiance from satellite data. This
presents a formidable mathematical problem. In order to
facilitate thorough analysis of each of the model components, we
defined four variational models that divide ﬁhe problem naturally
according to increasing complexity. The first of these
variational models (MODEL 1), which is the subject of this
report, contains the two nonlinear horizontal momentum equatiomns,
the integrated continuity equation, and the hydrostatic equatiom.

MODEL 1 is based upon Sasaki’s (1958, 1970) method of variatiomal



objective analysis. Problems associated with an internally
consistent finite difference method, a nonlinear hybrid
terrain-following vertical coordinate, formulations for the
pressure gradient terms, formulations for the velocity tendency
terms and the development of a convergent solution sequence are

addressed with MODEL 1I.

The theoretical development, coding for numerical
computation, and preliminary testing of MODEL I was completed by
August, 1985. The results of these tests indicated that before
the theoretical complexity of the model was increased by the
inclusion of the energy equation as a fifth dynamic constraint,
it was advisable to modify MODEL 1, if necessary, a) to improve
the way the large nonmeteorological contributions to the pressure
gradient force weré reduced, b) to generalize the integrated
continuity equation, and ¢) to introduce horizontal variatiom in
the precision modulus weights for the observations. The results

of our work on these three topics are the subject of this report.

Section 2 summarizes our work with the rederivation and
implementation of an improved hydrostatic equation and pressure
gradient force algorithm. This work was especially critical to
the success of the overall MODEL ! development after it was found
that the original derivation was in error. All current and
future publications including the final report (Achtemeier,
etal., 1986) present results from the corrected version of MODEL

1. Section 3 introduces the generalized integrated continuity




equation and Section 4 presents the progress toward formulations

for the horizontal variation in the precision modulus weights.

2. Reformulation of the Hydrostatic Equation and the Horizomntal

Pressure Gradient Force

The motivation for changing the method for removing the
large nonmeteorological contributions by unlevel terrain in the
hydrostatic equation and in the horizontal pressure gradient
terms in the nonlinear horizontal momentum equations came about
from a detailed evaluation of the MODEL I variational objective
analysis model. We had found an anomously large filling of a
deep synoptic scale trough that was located over the Great Basin
and Rocky Mountain highlands areas. Our analysis of the
contributions of the individual constraints to the final fields
of geopotential height did not reveal that dynamic balancing or
filtering inherent in the model was the cause for the filling.
Preliminary calculations indicated that a modification in a
"terrain correction temperature” could realize a correction in
the pressure gradien; force which, when translated into the
spatial distribution of geopotential height, was of the magnitude
of the filling of the synoptic scale trough. Further
investigation revealed that the algorithm appeared to be correct

in differential form for pressure surfaces but there was doubt

about whether it was valid in difference form on sigma surfaces.



Given the uncertainities in the original formulatioms, it
was decided to rederive the hydrostatic equation and the pressure
gradient force terms of the horizontal momentum equations to
remove the orographic effects in a more rigorous fashion. This
posed a major reprogramming effort because 1) the terms changed
are important terms in the variational adjustment and any major
modifications in their form would result in equally major
modifications in the Euler-Lagrange equations, 2) the terms are
expressed explicitly in the derivations to form a diagnostic
adjustment equation for the geopotential height through the
reduction of the number of variables and their modification would
require rederivation of the adjustment equation and introduce
additional complicating terms, and 3) as described in the
paragraph below, these terms determine the form in which the

initial data must enter the variational model.

The procedure for acquiring the variationally adjustable
part of the thermodynamic variables once they have been
interpolated into the sigma coordinates first requires that all
variables be nondimensionalized. Second, we remove a hydrostatic
component that includes much of the vertical variatioms of the
lower coordinate surface due to variable topography. Third, a
hydrostatic reference atmosphere is removed and finally, the
residual fields are multiplied by the ratio of the Rossby number
to the Froud number to bring them into compatibility with the
non&imensionalized dynamic equations. The variatiomal

adjustments are carried out on these residual variables.




Several formulations were made to achieve the requirements
of the second step. In order to minimize the reprogramming
tasks, we sought formulations that did not change the forms of
the major terms nor introduce nonconstant coefficients. These

formulations are summarized below.

a) No removal of topographic effects

The first approach at correcting the formulations for the
removal of the nonmeteorological contribution to the geopotential
heights by the underlying coordinate surface was to not remove
them. The programs for processing the initial data were modified
80 that there was no removal of a terrain component from the
initial data. Several additional modifications to MODEL I were
necessary to maintain compatibility. Fig. la shows the heights
of the lower coordinate surface at 1200 GMT 10 April 1979 with
the large contribution by unlevel terrain included. The figure
shows mostly the variation of height due to elevation. The
Appalachian highlands and the Mississippi Valley are visible in
the east and the western highlands are visible over Colorado amd
Utah. The smoothed elevations, which extend to about 1600 m, do
not resolve the higher mountain ranges. Fig. lb shows only the
meteorological heights as they appear on the 1000 mb surface. A
low about 100 m deep is located over Colorado. This
meteorological system is an order of magnitude smaller than the
terrain height. If the latter is not balanced by the pressure
field which is part of the second term of the pressure gradient
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force as it appears in terrain following coordinates,
considerable error can be introduced into the adjusted height
gradients and, through the solution of the dynamic constraints,

introduced into the wind field.

Our calculations show that the height field in Fig. la is
mostly balanced by the pressure field (not shown) through second
term of the pressure gradient force. However, the variational
equations separate these terms and build the large
nonmeteorological heights into the solution. Upon running MODEL
I, we found that the cyclical adjustment sequence did not
converge to a solution. It is imperative therefore that the
terrain effects be separated from the height adjustments as was

originally attempted.

b) Removal of the Nommeteorological Hydrostatic Component:

Method A

Assume that observations of temperature and height have been
gridded onto the nonlinear sigma coordinate surfaces and
nondimensionalized according to classical scale theory. Assume
also that the pressure has been determined in a manner that is
consistent with the heights and temperatures. The nondimensional

hydrostatic equation is

3¢w = 9 1n pw - 0 (1)
== T W

where the subscript, v, identifies the whole or total

untransformed variable. We partition the nonmeteorological




component through the definitions for height and pressure, viz.,

4{.,' ¢‘j' ¢T and P, =Pp *+P where the subscript, T,

identifies the terrain contribution. The hydrostatic equatiom is

then
a("a = '
? + v TW + B = 0) (2)
where
9 In 3
Yw 55 _E_P- )
B' = 0 o o P (4)
o0 ) o

Equation (2) is identical in form to the original versiom in
MODEL 1. The coefficient ¥ is horizontally variant however, and
this increases the complexity of the MODEL [ equations over the

original derivation.

If we assign the pressure for the lowest three layers to be

800, 900, and 1000 mb, respectively, then the remaining partitiom

l variables may be determined by setting @l = 0 and solving for the
terrain height with the initial, unadjusted temperature for -'fw.
Then we remove the reference atmosphere for each sigma level by
| defining ¢‘_' ¢k“‘ @, Xw- XR+ ¥, and T, = T + T vhere the
subscript, R, refers to the referemce atmosphere. Substitution

into (2) leaves

a¢R 3o — — t (5)
W+¥+(YR+Y) (TR+T)+B =0,
We also require that '-I.R be found through
ﬁ- + Y, I, =
30 YrIr 0. (6)



Then the hydrostatic equation for the adjustable meteorological

residual is

%g +YT+8 = 0 N
vhere ? - pl+ YTR. Note that though 51 was set to zero in
order to obtain the terrain height, it will not be zero once the
intial temperature has been replaced by the variational

correction.

Fig. lc shows the heights on the 1000 mb equivalent
pressure surface after the removal of the terrain comtributiom by
Method A. Although the large height anomaly present in Fig. la
has been removed, the use of Method A is undelifable for the
following reasons. First, Method A removed too much height from
the areas of high elevation, ie., it overestimated the depth of
the lov center over Colorado in comparison with the actual
heights of the 1000 mb surface (Fig. 1b). The mean layer
temperature used for the calculation of the thickness between
700-1000 mb was estimated by the mean layer temperature between
700 mb and the pressure of the lowest sigma surface (80 mb at
the highest elevation). Use of this relatively cold temperature
in the hypsometric equation underestimates the thickness of the
layer which, when subtracted from the heights at 700 mb, should
underestimate the depth of the low at 1000 mb. Thus Method A may

have overestimated the depth of the low by as much as 120 meters.




Second, scale analysis of the terms of (7) revealed that the
variational adjustment of the temperature in the second term of
(4) was equal in magnitude to the correction of the second term
of (7). Thus (7), writtem in the form that can be most easily
adapted into MODEL I, does not guarantee convergence of the
solution sequence. Indeed we found convergence only when the

temperature in the second term of (4) was held left wnadjusted.

¢) Removal of the Nomnmeteorological Hydrostatic Component:

Method B

As in Method A, Method B begins with the nondimemsional

hydrostatic equation valid for the whole or total thermodynamic

variables,
¢ 3 In p
W - w
-3&— + Tw ———_30' = 0, (8)

We define the meteorological and terrain partitions of the height
and pressure as before, ¢w' ¢a.+¢r‘ and p_ = pp + p, and
substitute into (8) this time expanding the logarithmic term

also. The resulting hydrostatic equation is

3¢ -
T03+YTW+B"OI (9)
vhere
3 1n
Y = E, (10)
3. P 3, T, 9 (11)
T w v —_———— o
'35 5 PV H T ®

In this formulation, ¥ 1is horizontally invariant and thus



retains the simplified form of the hydrostatic equation as it
appeared in the original derivation of MODEL 1. We again define
p = 800, 900, 1000 mb as equivalent pressure surfaces as a
distinction between the heights obtained by Method B and the
heights of the original pressure surfaces as obtained directly
from the observations. If ¢ is averaged over each layer to get
¢R’ the reference atmosphere may be removed subject to the

condition that

30 _

39 + v TR = 0 3 (12)
if ¢ ¢+ @ and T =T, +T. Then (9) reduces to

B 4 yT +8 =0 (13)

where, upon variational adjustments for height and temperature,
@ takes the form

Bp,r

Py 3
B’(-p—-l)jaa' (=¢°) + = ==

o |

(-1, (14)

The advantages of Method B are that ¥ is horizontally
invarisnt and that scale analysis reveals that the adjustment
terms of (14) are at least an order of magnitude smaller tham the
second term of (13). Thus (13) will not impede the convergence
of the solution sequence of MODEL I. The difficulty with Method
B is thgt the total and equivalent pressures appear as
undifferentiated coefficients. Thus the accuracy of (14) and
hence (13) 1is critically dependent upon a method to determine a

representative pressure for each sigma layer. After some

10




experimentation, it was found that an accurate representative
pressure vas given by the average of the arithmetic mean plus

twvice the geometric mean,

p-%[-;'— (P, +Py) +2 /P01, (15)
Fig. 1d shows the height of the 1000 mb equivalent pressure
surface after the application of Method B. The resemblance of
all features to the heights of the actual 1000 mb surface (Fig.
1b) is evident except for the smaller central height of the low
center over Colorado. The underestimation of this feature was
expected because of the cold layer thicknesses there as described
in reference to Method A. Since we have merely partitioned the
heights, not neglected height terms, the remaining heights that
make up the difference in the heights between Fig. 1d and Fig.
1> must be contained in the residual term. Method B was adopted

for the hydrostatic constraint in MODEL I.

Once the terrain and meteorological variables have been
partitioned through the hydrostatic equation, it is a simple
matter to calculate the pressure gradient force terms of the
horizontal momentum equations. The nondimensional pressure

gradient term in the x-directiom is given by

¥, _dp,

PGX = —> + T (16)
9x

w 9x 4

wvhere the superscript, x, implies that the temperature has been

averaged over the interval of differemtiation. Partitioning of

the heights and pressures leaves

3 3 d1np
a _T > ____ T (17)
PCX = T + = + Tw T ’

11



We note that before the partitioning, the height of the lower
coordinate surface was entirely nonmeteorological by the
definition of the terrain-following vertical coordinate. The
pressure term contained both the terrain and meteorological
contributions to the pressure gradient force. The partitioning
has forced part of the meteorological pressure into the heights
as Jp/dx =0 and also into ¢'1‘ through p, in (11).

Therefore, the pressure gradient is not given totally by the
first term of (17) as is evident by the differences between the
height analyses in Figs. 1b and 1d, but by the first term plus
elements of the second and third terms. The pnrtitioning is not
8 coordinate transformation, hence the term equivalent pressure
surface, nor is it a perfect separation of the terrain fron the
meteorological pressure gradient. It is only a method to reduce
the large nonmeteorological component between the original

pressure gradient terms.

Introduction of the reference atmosphere and application of

scale analysis modifies (17) as follows,

PGX = % + o0, (18)
vhere
9 1np
- w R 2_ 19
n =T T+ O/Fax(¢T+TR]‘npw)- (19)

The temperature in the first term of (19) is subject to the
varistional adjustment. Since the remaining terms are determined

from initial variables and held fixed, we may rewrite nx as

=X w0X Blnpw
n, =12+ (T"-T")

- (20)
X X ax

12




to give the remaining meteorological part of the horizontal

pressure gradient force.

3. Generalization of the Integrated Continuity Equation

The transformation of the continuity equation from pressure
coordinates into the nonlinear sigma coordinates involved M a
correction term that is the vertical velocity mmltiplied by a
coefficient that is & nonlinear function of sigma. This
coefficient appears as an integral upon the solution of the
integrated continuity equation for the vertical velocity. An
exact solution of the integral was not obtained at the time the
variational model was being coded. Our attempts to approximate a _
solution by averaging failed because of the highly nonlinear
relationship betveen pressure and sigma. Rather than hold up the
model development with attempts to approximate this term, it was
decided to set the term equal to one and proceed. The result was
that packing of the sigma coordinate surfaces over elevated
terrain was not taken into account in the calculatiom of vertical
velocities. Low level divergences were accorded too much weight
in the integration and subsequent adjustment of the continuity

equation.

We now know that an exact solution for the integral can be
obtained if the integration is taken over the pressure interval
between sigma layers. We thus proceed to generalize the

integrated continuity equation. The equation of continuity in

13



nonlinear sigma coordinates is

S N - T S (21)
T oy T T U’ )
where
K
F=gq,vw, + Rll(z (——a"a‘:/f + ——3‘3'; ) . (22)
In additionm,
-2[J-a (p-p™]
and
q - (p-p*)34 Js[zaJ(P‘P*)] , (24)
2 (pgmp®) 2
where
a = 0*/(P*-Pu) N (25)
and
J = 38(1)-1:"‘)3 + a(p-p*) , (26)
if
Pg~Py, -3
= [1=g* -pk (27)
B = [1-¢ (P*'Pu)] (pg=P*)

The definitions of the various symbols are as follows.
V§ = dp./dt is the vertical velocity in pressure coordinates
along the lower sigma coordinate surface, Rl = (0.1, K is the
variable part of the nondimensionalized Lambert conformal map
scale factor, Pg is the surface pressure, Py is the
pressure at the top of the analysis domain, and p* = 700 mb is
the pressure at a reference sigma level, ,*, defined for the

nonlinear sigma coordinate system. Refer to Achtemeier, etal.,

14




198) for a more complete description of the dynamical

constraints and the sigma coordinate system.

When solved for the vertical velocity, (21) takes the

following form,

. . 1 (28)
o‘so‘oqo- r HQ do‘)
o
o
wvhere
3u , v (29)
H-E‘-‘{' ay +F)
and
1
- o q, do, (30)
Q e fz 1

We seek the solution of the integral term Q. Upon conversiom to

an integral over pressure, the exponent of (30) becomes
P
1 - 1 og 31
f: q, do L 1 55 9P, (3L

From the definition of the sigma coordinate,

o = B(p-p®)’ + alp-p) (32)
the derivative, d6°/dp, is found to be equal to

do _ _p*)2 (33)
b 38(p-p*) + a,

Combining (33) with q in (23) and integrating over pressure

gives
P Ve ] _ 2 Pl (34)
[, 2 e = - 1n B38Gmen)" + eIyl
and therefore, (30) becomes
2
38(py-P*) Ho (35)

Q = 2 "
3B(p-p*) +a

15



Because the term, Q, is a variable coefficient that
multiplies the horizontal divergence, it causes the introduction
of additional terms in the Euler-lagrange equations for the
variational adjustment model. These terms increase the
complexity of the diagnostic equation for the adjustment velocity
potential. Therefore, the Euler-Lagrange equations which are
affected by the generalization of (28) are rederived. All new
terms are introduced into the equations in a manner consistent
with the vertically staggard grid of the variational model. Themn
the variational model is rerun and a series of tests conducted to
verify the coding of the formulation and determine how the

correction term impacts upon the vertical velocity.

The third constraint, M,, expressed in complete form is

oy - J 1 q, do .. - fol q; do
M3 = I (ux+vy) e o do + (c—co e oo )

o

1 .Lh =Xy

+ jo [Hl q, wg + R, K (ux+vy)
o

ey oy -folqldo, (36)
- Rl(u xny‘l-vyl(xx)]e g

Performing the variation only on the product of the Lagrangiam

16




multiplier with (36) gives the following terms in the adjustment

equations for u, v, and 0.

a
Su A M,] = =, Ll 0do) , - Ry (A, j:l Q &Y do)
o o

-’ Oy f:l Q & do) ) (37)
[o]

o

1 1 |, =xy
Sv [J\3M3] =~ (A3 J': Q dc:)y - R1 (A3 E QK dc)y
o

-R QO fcl O B do) (38)
R A5 - y )

o

- A, (39)

do [X3M3] 3

Upon inspection of the terms of these equations, it becomes
apparent that neither )3 nor the integral of Q is a functiom
of sigma. Therefore we can combine both into a new Lagrangian

multiplier,

A a A |lqao, (40)
3 30

o
The variations on u, v, and g (eqs. (37), (38), and (39))

17



simplify to

Su D] = = Ay, - B GFT), = Ry <A’“”) (41)
T
sv (A ] = - x - R, (A*Tcxy) - R KD (42)
x
>‘3
1
r Q do
o
[o]
These modifications are inserted into the full

Euler-Lagrange equations that coatain reference to A3. The

Euler-Lagrange equations for u and v are

x (44)
- = 0
Hl“ A3x + >‘2 + Fl )

- [;"nyl (u-cx)"]x - [m )‘1 (wcy)x]y

TEXY *—xy *—y (45)
-R, (5 A )}-Rl[()\K)‘*')\ 1
nlv-xgy-x1+F2 -0 (46)

an_l‘[lvo-Rl >\+R {mku +m17

18




FE e —

- [m AZ (u-cx)S]x - [m 2 (v—c ) ] R G2 ).}

T

Fo:
xy
- R [(7\31( )y + )\3Ky 1 .

The Euler-Lagrange equation for § is

>
*

w
L]
o

Q do

In addition, the integrated continuity equation is

1 . -
f: Q(ux+vy) do +0 + F7 0 ,

o

.0 1 .Lh
F, = -Q5 + fz [HL qv, + R1K (ux+vy)
(o]

- R, GF +VEDI Qdo

7

(48)

(49)

(50)

(51)

19



Variables are eliminated to produce a diagnostic equation in

A;- Dividing (44) and (46) by T, and reformulating as

components of the divergence gives

1 . * 1 -

EK e RS ALY (52)
1 [ * 1

Vx - (ﬁ )\3)')}’ + [ﬁ—l- (—Al + FZ)]y = 0, (53)

Then (52) and (53) combine into the divergence and after

integration over some interval d¢’ become

g g

1 » [°1 * (%1
- L Qu ) do + (5, J:% do) + O L g a0,

) o'l o1

% ;1 1 4
SRR ACRE NN A rEplads o, (54)

o]

Now @ is eliminated from (49) and (50) so that

*
g A ¥
1 Q(u +v.) do - = -T3+F, = 0, (55)
x Y 1% T
oo Q do 2
0'0
A diagnostic equation in /\3 is obtained upon elimination of the

integrated divergence through combining (54) and (55):
%*

A
o J':l %1 do)_ + (A;y J:l %1 do), - ﬁ“l +r, T %) (36)
o o g Q do
where °
9 .1 1 B (57
. L (G Op + Bl + G Chy +Fl) Qs -2+,

0

20




e e ——

[
g

0

We also note that several terms of (56) obey an identity (Eq.(48)
in Achtemeier et al., 198). Therefore (56) transforms into the
two-dimensional second-order elliptic partial differential

equation with non-constant coefficients given by

g - g
QL do 2T« Jl &y a0 2"+ jl (%—) do A
1 1 *

T 3Ixx s 3yy s 3x
Q [o}
%1 Q. * *3 (58)
+ J (H )Y do A3Y “n.7o + FlO = 0,
o 1 211
0 g Q do
[o]

In the event that ﬂ: is horizontally invariant, (58) further

simplifies to

(o]
L@y g0 w22 - 23 +F. = 0 (59)
i 3 - 10
Go 1 HZIGI
°o Q do

Model 1 was rerun with Q calculated from the above
development and compared with Q=1.0 for all levels. Fig. 2
shows the vertical velocities at level 3 (700 mb). There is
found an approximate 50 percent reduction in the vertical
velocity for the analysis where variable layer thickness is a
factor,' the reduction having been made over the higher elevation
areas west of the Great Plsins. For example, a greater than 4 cm

sec center of rising motion for the Q=1.0 analysis (Fig.

21



2a) has been reduced to slightly greater tham 2 cm nec-l for

the analysis with varisble Q (Fig 2b). Elsewhere over lower

elevations the impact of the layer thickness is much smaller.
4, Impact of Horizontal Variation of Precision Moduli

As a simplifying factor in the derivation of the MODEL 1
variational analysis, we made the precision moduli that weight
the observations functions of height only. This is a reasonable
assumption as long as the data are relatively evenly distributed
over the analysis domain and the data quality are horizontally
invariant. The TIR0S-N data violates the assumption on both
counts. The TIROS-N data we are using for the 10 April 1979
model verification case studies contains large gaps which are of
regional scale. The method for objective gridding of the data
fills the gaps by interpolation from surrounding data. The
resulting temperature fields are only spproximate in these areas
and can be significantly in error if the data gaps coincide with
temperature maxima or minima. Our analysis of 12 GMT 10 April

1979 was such a case.

Model I was designed for horizontally variant weights. No
rederivations were necessary for this part of the study. We
began sensitivity studies with the velocity adjustment potential
equation number (58). The precision modulus weights were allowed
to vary over five orders of magnitude giving adjustments that
ranged 'fron 100 percent restoration of the horizontal velocity

divergence to 100 percent restoration of the initial vertical

22




velocity. The weights were distributed over a number of
geometrical patterns in order to determine the conditioms which'
violate the stability criteria for (58). The results to date are
too preliminary to report upon at this time however, early
indications are that, in some of the cases we tested, the use of
the five order of magnitude variation in the weights, even though

satisfying stability criteria, can produce greatly exaggerated

horizontal velocity fields.

23



Acknowledgements

This research was performed for the University Space

Research Association under NASA Contract NAS8-36474.

References

Achtemeier, G. L., 1975: On the Initialization problem: A

variational adjustment method. Mon, Wea. Rev., 103, 1090-1103.

Achtemeier, G. L., H. T. Ochs III, S. Q. Kidder, R. W. Scott,
J. Chen, D. lsard, and B. Chance, 198: A Variational
Assimilation Method for Satellite and Conventional Data:
Development of Basic Model for Diagnosis of Cyclone Systems.

Nasa Contractor Report 3981, 223 pp.

Sasaki, Y., 1958: An objective analysis based upon the variational

method. J. Meteor. Soc. Japamn, 36, 77-88.

Sasaki, Y., 1970: Some basic formalisms in numerical variational

analysis. Mon. Wea. Rev., 98, 8§/ 5-88&.

24




\A -

I_\\\\\\\\i\\v Wt e

ORIGINAL PAGE I8
OF POGR QUALITY

Figure 1. Heights of the lower coordinate surface for MODEL 1l at
1200 GMT 10 April 1979, a)the unlevel terrain included, b) the
meteorological heights as they appear on the 1000 mb surface, c¢)
the heights on the 1000 mb equivalent pressure surface after the
removal of the terrain contributiomn by Method A, and d) the
height of the 1000 mb equivalent pressure surface after the
application of Method B.

25



and b) for the

el 3 (700 mb), 1200 GMT

the Q=1.0 analysis




1. REPORT NO,
NASA CR-4025

2, GOVERNMENT ACCESSION NO.

3. RECIPIENT'S CATALOG NO.

4. TITLE AND SUBTITLE Modification of a Variational Objective
Analysis Model for New Equations for Pressure Gradient and
Vertical Velocity in the Lower Troposphere and for Spatial
Resolution and Accuracy of Satellite Data

5. REPORT DATE
October 1986

6. PERFORMING ORGANIZATION CUDE

7. AUTHOR(S)
G. L. Achtemeier

8. PERFORMING ORGANIZATION REPORT #

9. PERFORMING ORGANIZATION NAME AND ADDRESS
Climate and Meteorology Section
I1linois State Water Survey

2204 Griffith Drive
Champaign, IL 61820

10. WORK UNIT, NO.
M-542

11. CONTRACT OR GRANT NO.
NAS8-36474

12. SPONSORING AGENCY NAME AND ADDRESS
National Aeronautics and Space Administration
Washington, DC 20546

13. TYPE OF REPOR7T & PERIOD COVERED

Final Contractor Report

14. SPONSORING AGENCY CODE

15. SUPPLEMENTARY NOTES
Contract Monitor:

John W. Kaufman, Atmospheric Sciences Division, Systems
Dynamics Laboratory, Marshall Space Flight Center, Alabama 35812

168, ABSTRACT

meteorological data.

complexity.

Beginning in late 1982, the NASA supported research to develop a numerical
variational model for the diagnostic assimilation of conventional and space-based
In order to analyze the model components, we defined four
variational models that divide the problem naturally according to increasing
The first of these variational models (MODEL I), which is the subject
of this report, contains the two nonlinear horizontal momentum equations, the
integrated continuity equation, and the hydrostatic equation.

This report summarizes the results of research a) to improve the way the
large nonmeteorological parts of the pressure gradient force are partitioned
between the two terms of the pressure gradient force terms of the horizontal
momentum equations, b) to generalize the integrated continuity equation to account
for variable pressure thickness over elevated terrain, and c) to introduce
horizontal variation in the precision modulus weights for the observations.
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