
Semi -Annual Progress Repor t

Grant No. NAG-1 -51 1-3
September 1, 1984 - December 31, 1986

A SECOND GENERATION EXPERIMENT I N
FAULT-TOLERANT SOFTWARE

IM-
3 / w 7 Submitted to :

National Aeronautics and Space Admin is t ra t ion
Langley Research Center

Hampton, VA 23665

At tent ion: Dr. Dave E. Eckhard t
ISD M/S 130

Submitted by:

J . C. K n i g h t
Associate P r o f es sor

Repor t No. UVA/528235/CS87/103

A u g u s t 1986

:MASA-CG-179848) A S E C C H D G E P E F A ' I I C N
E X F r ? H I & E # T IN F A U I T - T C L E R A E T S C E I k l ARE

Ha7- I 22.42

SGis iannual Prcqress R f r o r t , 1 5 e ~ . 1984 -
31 Dec. 1986 [Virqinia U n i v .) 28 p LSCL 09B U n c l a s

G3/61 44678

DEPARTMENT OF COMPUTER SCIENCE

Semi-Annuai Progress Repor t

Grant No. NAG-1-511-3
September 1, 1984 - December 31, 1986

A SECOND GENERATION EXPERIMENT I N
FAU LT-TOLERANT SOFTWARE

Submitted to :

National Aeronautics and Space Admin is t ra t ion
Langley Research Center

Hampton, VA 23665

At tent ion: D r . Dave E. Eckhard t
ISD M/S 130

Submitted by:

J. C. K n i g h t
Associate Professor

Department of Computer Science

SCHOOL OF ENGINEERING AND APPLIED SCIENCE

UNIVERSITY OF VIRGINIA

CHAR LOTTESV I LLE, V I RG I N I A

Repor t NO. UVA/528235/CS87/103

Augus t 1986

Copy No.

TABLE OF CONTENTS

Paqe

1.INTRODUCTION. 1

11. MULTI-VERSION SOFTWARE TEST ENVIRONMENT
STRUCTURE . 3

111. MULTI-VERSION SOFTWARE TEST ENVIRONMENT
FORMATS.. 12

IV. ERROR DETECTION BY SELF TEST EXPERIMENT 23

REFERENCES . 25

PRECEDING PAGE BLANK NOT FILMED

iii

SECTION I

INTRODUCTION

The purpose of the work performed under this grant is to begin to

obtain information about the efficacy of fault-tolerant software by conducting

two large-scale controlled experiments. In the first, an empirical study of

multi-version software is being conducted. This experiment will be referred

to as the “MVS” experiment in this report. The second experiment is an

empirical evaluation of self tes t ing as a method of error detection and will

be referred to as the “STED” experiment.

The MVS experiment is being conducted jointly by NASA, four

universities, and Charles River Analytics, Inc. The participating universities

are North Carolina State University, the University of California a t Los

Angles, the University of Illinois at Urbana-Champaign and the University of

Virginia. During the current grant reporting period, the work at the

University of Virginia in the MVS experiment has centered around the

preparation of an environment for testing the subject programs. Other

elements of the experiment are being carried out a t the other sites.

The purpose of the MVS experiment is to obtain empirical measurements

of the performance of multi-version systems. Twenty versions of a program

have been prepared at four different sites (the universities) under reasonably

realistic development conditions from the same specifications. The

experimenters are now preparing to evaluate these programs in various ways,

in particular by extensive dynamic testing.

- 1 -

The STED experiment is being conducted jointly by the University of

Virginia and the University of California, Irvine. During the current grant

reporting period, the work at the University of Virginia in the STED

experiment has involved design of the experiment and preparation of the

subject test programs.

The purpose of the STED experiment is to obtain empirical

measurements of the performance of assertions in error detection. Eight

versions of a program have been modified to include assertions at two

different universities under controlled conditions. The experimenters are now

preparing to evaluate these programs by comparing their error-detection

performance in comparison with voting in 2-version systems.

In this report, we describe the overall structure of the testing

environment for the MVS experiment and its status in section 11. In section

111, we describe a preliminary version of the control system that has been

implemented for the MVS experiment to allow the experimenter to have

control over the details of the testing. We describe our work to date in the

STED experiment in section IV.

- 2 -

SECTION II

MULTI-VERSION SOFTWARE TEST ENVIRONMENT STRUCTURE

The basic layout of the test environment was decided at joint meeting

of the research members held in Boston in April, 1986. This basic layout

has been extended in various ways as a result of numerous discussion and

changes in requirements. A fundamental goal of the environment is to be as

independent of the machine used for the testing as possible. Thus, although

built and distributed as a UNIX based system, the environment should run

on other machines with little change.

The philosophy of the test system is to allow the experimenter to

specify the initial conditions and sensor failure requirements for a single

simulated flight and then to generate a series of acceleration values that are

supplied to the programs along with the initial and failure conditions. This

is intended to simulate a single flight of an aircraft.

The system allows the experimenter to specify that several (perhaps

many) flights are required each with a different (but perhaps similar or

related) set of initial conditions. For example, some parameter might have

to be varied systematically over some range. In this case, the system will

create a sequence of initial conditions in which the required parameter is

varied but the same set of acceleration and Euler angles is used for each

simulated flight in the set. The systematic variation and the reexecution of

the programs on the set of accelerations is handled by the execution

environment.

-3-

The environment consists of a set of programs that are organized into

five tiers or levels. The general form is shown in figure 1. The interfaces

between the levels are precisely defined. Each consists of character files

thereby permitting the greatest degree of machine independence. The details

of the interfaces are referred to here as formats. For example, format 0

describes the interface between tier-0 and tier-1, and consists of a single

explicitly named file. Other formats use more than one file, including in

most case the standard input and standard output files. Figures 2, 3, 4 and

5 show the input and output details for each tier individually. In these

figures, a dashed line represents either standard in or standard out, and a

solid line connected to a named ellipse indicates an explicit disk file. The

exact content of the formats is described in the section III.

Tier4

The purpose of the single program in t ie r4 is to interact with the

experimenter to determine the parameters of the tests that have to be run.

This program produces a file of data for control of subsequent programs

after gathering the details of the required tests from the experimenter. The

program makes no decisions and generates no data itself (except defaults) so

the output datafile contains everything that the ex2erimenter supplied. For

simple tests, most parameters can take the default values allowing the

definition of the tests to be created with very little input from the

experimenter.

- 4 -

Interactive
Parameter
Determ.

Format 1

Datal p'". "at! I Aircraft I
Generator Generator Simulator

Sensor
Simulator

UIUC NCSU UVA
Driver Driver Driver Driver

I I

I
Filtern ...

Fig. 1 - Overall Environment Layout

- 5 -

r 1 : : Terminal
- >
-

Interactive
Parameter

-3eterminatior

Fig. 2 - Input And Output For Tier-0

Optionally, an existing parameter file can be read by the program to

provide a set of initial conditions for the interaction with the experimenter.

Thus if two sets of tests are to be run with minimal change between runs,

the data file from one can be read in to set values initially for the

experimenter during the interaction. A second data file that differs little

from the first can the be generated merely by indicating the changes.

As will be seen from the discussion in section 111, the interaction carried

out by the t ie r4 program could result in the specification of a large number

of tests. The number is computed and supplied to the experimenter for

confirmation.

The tier-0 program is written in Pascal. Although it is interactive, the

program nperates in a very rim-ple menu style to P,~_S?LTP independence cf

terminal characteristics,

- 6 -

Tier-1

The programs in tier-1 obtain the specifications for the initial conditions

They then generate the series from the file that the t i e r 4 program creates.

of accelerations and angles that is required for the specified test flight(s).

There are three programs in tier-1. Each operates with the same input

and output interfaces (formats 0 and 11, and as far as the rest of the

environment is concerned, they are equivalent. The first generates a series of

accelerations from a trace file. It merely reads accelerations obtained from

measurement on the B737 aircraft and converts them to the format required

(L> Parameter

- 0 - I *- --
Oc*c I --

Trace Data Xandom Data Aircraft
Generator Generator Simulator

-- w
#e I *-

r
--. 0

Fig. 3 - Input And Output For Tier-1

-7-

by the following tier. This program is written in Pascal.

The second program generates accelerations and angles randomly.

Although these values are unrealistic, they are adequate for testing. This

program is written in Pascal.

The third program is an aircraft simulator that generates realistic values

for the required data. This program is being prepared by Charles River

Analytics. It is written in FORTRAN.

Tier-2

There is a single program in tier-2, the sensor simulator. This program

is written in FORTRAN and the original version was supplied by Charles

Parameters

Acceleration
File

Sensor
Simulator

I
I

\5
Flight Test Cases

Fig. 4 - Input And Output For Tier-2

- 8 -

River Analytics. This program has been modified by the University of

Virginia to include the necessary loops for driving the following tiers where

parameters are being varied in a series of simulated flights. The program

takes an acceleration value and other parameters supplied from the data file

generated by the t i e r 4 program and generates the corresponding sensor

values.

Tier-3

Tier-3 contains the actual versions under test, several driver programs,

and a utility program. It was deemed inadvisable to attempt to run all 20

versions together with a single driver. Merely compiling a major program of

that size would take considerable resources. We have found that several

Flight Test Cases

I
I
1

Drivers

I
I

Results
Combiner

Fig. 5 - Input And Output For Tier-3

- 9 -

Pascal compilers available to us were unable to compile such a program.

To avoid these problems, tier-3 contains four drivers, one for each

university. They read the same inputs but create their own output files and

so can be run in parallel. A utility program (the combiner) is then used to

combine the output files so that they appear to have come from a driver

that executed all twenty programs together. The combiner merely reorganizes

the output files of the four drivers. It makes no content changes to the

data.

The tier-3 drivers keep the initial conditions for a particular flight as

global data while executing the required versions. This data includes the

calibration data. Thus although each program thinks that it will operate on

a single flight. acceleration value, the calibration and other parametric

information is identical for each acceleration for a flight and so the effect is

to have the program do calibration followed by a series of acceleration

values.

Tier-4

Tier4 consists of an arbitrary number of “filter” programs that read the

output of tier-3 and do useful things with the output. As new. functions

are required, new filters will be added. Present filters include programs to

allow formatted printing of the raw test results in various forms. Filters

are being developed to allow the raw data produced by the tests to be

stored in as compact a form as possible on tape. The purpose of these

filters is to allow tests to be run and their entire output to be saved for

- 10 -

later analysis.

analyses being performed at the same time,

This will permit tests to be performed without all possible

- 11 -

SECTION III

MULTI-VERSION SOFTWARE TEST ENVIRONMENT FORMATS

In this section the detailed contents of the interface formats are

discussed.

Previously, the set-up for testing the RSDIMU versions allowed only

minimal control over the generation of the input variables. Consequently, it

was not possible to study the effects of gradually changing the values of

such variables without repeatedly recompiling the test programs, which

would be, of course, senseless. What follows describes the means used to

give the experimenter greater control over generation of input values to the

versions in the present environment. With such control the effects of each

RSDIMU input variable can be studied individually or in combination with

other selected input variables in whatever ways might be deemed desirable

during the course of the testing.

Each set of input variables, as generated by this control information, is

interpreted as a set of initid conditions. Given this set of initial conditions,

a series of testcases is generated, each with a different acceleration value and

set of vehicle frame Euler angles, The number of acceleration values used is

given by a control parameter. Within the series of testcases, sensor failure

also is simulated as specified by the control information. By keeping the

same set of initial conditions for a sequence of acceleration values, the

calibration data is kept the same, and the resulting effect is that of

performing one calibration of the sensors and then saving that information to

- 12-

be &ed while performing a series of in flight sensor readings and sets of

calculations. In this manner, the capability is achieved for what is hoped to

be a reasonable simulation of “flight”, with successive sensor readings taken

over a period of time.

Sensors are failed on each specified testcase according to their control

values (see below). The test drivers in tier-3 have been modified so that for

each two consecutive acceleration value and angle sets with the same set of

initial conditions, the values for linfailin input to each version are the values

for linfailout computed by that version on the previous acceleration and

angle set. In this way the various responses of the versions to sensor failure

can be studied over a sequence of acceleration values.

The variables that can be controlled are as follows:

linstd

linfailin

rawlin

dmode

temp

scale0,

scale 1,

scale2

misalign

nsigt

p u

: noise standard deviation for accelerometers

: accelerometer failure initial conditions

: raw sensor data for acceleration computation

: display mode

: current temperature on each face

: linear accelerometer slope coefficients

: accelerometer misalignment angles

: noise tolerance

- 13-

thetai,

psii : Euler angles for rotation from the vehicle frame to the

instrument frame

Rawlin cannot be controlled directly, as it must be generated by the sensor

simulator based on the acceleration, Euler angle, and misalignment angle

values. However, whether its value for a given sensor should reflect failure

during calibration or failure during flight can be controlled directly, and so

can the value for noise which is used in generating the rawlin value for a

sensor which is to be found noisy by the RSDIMU versions. Offraw, the

calibration data for the eight accelerometers, can also be indirectly controlled

in similar ways, but that control is being left for a later modification of the

test control.

For all of the variables above, except for linfailin, misalign, scale0,

scalel, scale2, and the sensor failure control information, there are defined

three control modes:

0 : to indicate that a value should be randomly-generated within a specsed

range,

1 : to indicate that the variable should be varied over a specified range

while all other variables except the acceleration values are held constant,

2 : to indicate that the variable should be set to a certain specified constant.

- 14-

For each of these variables the control information is contained on one

line of standard input, with the formats as follows:

0 min max

1 lowerbound upperbound step

for mode 0:

for mode 1:

for mode 2: 2 constant

specify the range within which the value is to be

randomly-generated. “Lowerbound” and “upperbound” specify the range over

which the variable is to be varied for mode 1 and “step” specifies the

increments by which it is to be varied. “Constant” is the specified value to

which the variable is to be set when mode 2 is used. Min, m a ,

lowerbound, upperbound, step, and constant will each be assumed to be of

the same type as the RSDIMU input variable which they are being used to

control.

6 6 m P P and 66max9S

For linfailin and for the control information regarding which sensors

will fail during calibration (equivalent to the output variable “linnoise”) the

format is slightly different:

for mode 0

for mode 1: 1 number

for mode 2:

0 lowerbound upperbound

2 boo11 bool2 boo13 boo14 boo15 bool6 boo17 bool8

Here the modes are dehed as follows:

0 : specifies that a randomly-generated number of the eight values be set to

true. This number will be between “lowerbound” and “upperbound”

- 15-

inclusive. Which of the sensor values are set will be randomly

determined.

1 : specifies that “number” of the eight values be set to true. Which of

the sensor values are set will be randomly determined.

2 : specifies that the eight values be set to the respective constant values,

“booll” through “bool8”

“Number” is assumed to be an integer and “booll” through “bool8” will be

assumed to be either 0’s or l’s, with “1” representing true and “0”

representing false. “Lowerbound” and “upperbound” will be assumed to be

integers between 0 and 8 inclusive.

For misalign, scale0, scalel, and scale2 the format is as follows:

min max

In this case, since there is only one mode, mode numbers are unnecessary.

That mode specifies that each of the 24 misalign values (or each of the 8

scaleX values) be randomly-generated between the values “min” and “max”,

which are assumed to be real numbers and which may be equal.

In addition to the ability to control the values of RSDIMU input

variables, it is desirable to have the ability to control which sensors fail

during “flight” and during which iteration of sensor reading during the

“flight” each sensor fails. To this end the following format is used:

- 16-

intl int2 int3 int4 int5 int6 int7 int8

“Int 1” through “int8” are integers which represent the sensor reading

iteration during which sensors 1 through 8 respectively will fail. A value

of 0 for “intX” indicates that sensor X will not fail during this test of the

RSDIMU procedures. The non-zero values for “intl” through “int8” must

be distinct from one another, as it is assumed in the RSDIMU specifications

that at most one sensor will fail on a given sensor reading. The indicated

sequence of sensor failures will be simulated once for each set of initial

conditions (i.e. for each “flight”). Sensor failure simulation will be

accomplished by modifying the generated value for rawlin in such a way

that it will appear too noisy to be functional. The modifying value used

will be the value for “noise” generated by its control information. Sensors

are made to fail not only on the desired sensor reading, but also on all

successive readings within a given “flight”, so that if a particular RSDIMU

version fails to mark that sensor as having failed on that iteration, it may

still do so on a subsequent iteration. The value for “intX” should not

exceed the value for the number of acceleration values per “flight”.

The known acceleration values and the values for phiv, thetav, and psiv

are no longer obtained from standard input. Instead, the tier-1 programs

write them to a temporary file named by the control parameter

“AccelerationFileName” so that they can be used repeatedly 0.e. for each set

of “initiai conditions” j.

- 17-

These control formats have been implemented in such a way that, if

two or more variables are being varied over ranges, testcases are generated

for all combinations of all the values over which each is being varied, and

at the same time conform to any control specifxations for other variables.

- 18-

FILE FORMAT 0 (format f o r input t o t ier-1 programs):

CONTROL INFO I Number o f Accelerat ion Values f o r each f l i g h t

I Version Se lec t i on Vector (1 element per version, 1 se lec ts

I
I AccelerationFileName
I con t ro l i n f o f o r l i n s t d
I c o n t r o l i n f o f o r l i n f a i l i n
I con t ro l i n f o f o r number of sensors t o f a i l i n c a l i b r a t i o n
I con t ro l i n f o f o r sensor f a i l u r e dur ing f l i g h t
I con t ro l i n f o f o r noise
I con t ro l i n f o f o r dmode
I con t ro l i n f o f o r temp[l]
I con t ro l i n f o f o r temp[2]
I con t ro l i n f o f o r temp[3]
I con t ro l i n f o f o r temp[4]
I con t ro l i n f o f o r scale0
I con t ro l i n f o f o r scale1

BLOCK I Seedl, Seed2 f o r random numbers, t i e r s 1 and 2

corresponding ve rs ion f o r execution, 0 bypasses)

con t ro l i n f o f o r scale
con t ro l i n f o f o r misal
c o n t r o l i n f o f o r ns ig t
con t ro l i n f o f o r p h i i
c o n t r o l i n f o f o r theta
c o n t r o l i n f o f o r p s i i

- 19-

FILE FORMAT 1 (format for input to tier-2 programs):

CONTROL INFO BLOCK (see above)

+ a f

Vehic

l e containing Number-ofJcceIeration-Va

eAccel[x] VehicleAccel[y] VehicleAcce

- 20 -

ues lines of

[z] phiv thetav psiv

F I L E FORMAT 2 (format f o r input t o t ier-3 programs):

CONTROL INFO BLOCK
FLIGHT BLOCK

(see above)
(repeated once f o r each f l i g h t)

I obase
I o f f r a w [l , l] ... offraw[8.1]

I .
I .
I .
I of f raw[l ,50] ... offraw[8,50]
I I i n s t d
I l i n f a i l i n [l] ... l i n f a i l i n [8] lencoded as in tegers 0..1)
I dmode
I temp[l] ... temp[4]
I scale0[1] ... rcale0[8]
I s c a l e l [l] ... scale l [8]
I scale2[1] ... scaIe2[8]
I m i s a l i g n [l . l] ... misal gn[1,6]
I misalign[2.1] ... misal gn[2,6]
I misalign[3.1] ... misal gn[3,6]
I misalign[4.1] ... misal ign[4,6]
I n s i g t
I p h i i
I t h e t a i
I p s i i
I ACCELERATION BLOCK (repeated once per
I I r a w l i n [l] ... rawl in[8]
I I normface[l] ... normface[4]
I I phiv thetav p s i v
I I KnownBestest . acce I erat i on[x]

accel value)

.. KnownBestest.acceleration[z]

-21 -

FILE FORMAT 3 (format for input to tier-4 programs):

CONTROL XNFO BLOCK
The Fol lowing Repeated For Each FI ight:

(see above)

I KnownBestest.accel[x] . . . KnownBestest.acce1 [z]
I The Following Repeated for Each Version Selected For Execution:
I 1 ~inoffset[I] ... Iinoffset[B]
I I I innoise[l] ... I innoise[8] lencoded booleans)
I I Iinfailout[l] ... linfailout[8] iencoded booleans)
I I linout[l) ... linout[8]
I I dismode
I I disupper[l] . . . disupper[3]
I I dislower[l] .. . dislower[3]
I I bestest.status bestest .acceleration[l] . . . bestest.acceleration[3]
I I chaneat[l].rtatus chanest[l].accel[l] ... chanest[l].accel[3]
I I chanest [2]. status chanest [2] .acce I [1 1.. .chariest [2]. acce I [3]
I I chonest[3].status chonest[3].accel[l] ... chanest[3].accel[3]
I I chanest[4].statua chanest[4].accel[l] ... chanest[4].accel[3]
I I chanface[l] ... chanface[4]
I I systatus {encoded boolean)

- 22 -

SECTION IV

ERROR DETECTION BY SELF TEST EXPERIMENT

In the second experiment, the empirical evaluation of self testing for

error detection, we are attempting to determine how well programmers can

prepare assertions for the detection of execution-time errors. This study is

empirical.

From the set of twenty-seven programs written for the Knight and

Leveson experiment 111, eight were chosen for modification. Each of these

eight was supplied to three programmers who worked separately to add

assertions to the programs. The effort expended by each programmer was

one week. The experiment protocol was:

(1) The program specification was supplied to the programmers and they

were given a presentation describing the goals of the experiment, the

protocol, and the schedule. Each programmer was also supplied with a

copy of the chapter on error detection from the text by Anderson and

Lee 121.

(2) The programmers were required to study the specification and the text

on error detection, and then to attempt to develop assertions based

purely on knowledge of the specifications.

(3) When the specification-based assertions were complete, the programmers

were supplied with the source text of the program they were to modify.

- 23 -

The programs were then modified to include assertions.

(4) After the assertions had been added, the programmers were supplied

with fifteen test cases that executed correctly prior to the addition of

the modifications. These test cases should have executed correctly after

the addition of the assertions. The programmers were requested to test

the modifications and assertions in any way they chose in addition to

the fifteen test cases.

(5) Finally, the modaed programs were subjected to the same set of

acceptance tests that had been used in the original experiment [l].

The programmers were asked to keep detailed logs of their effort during

the time they were working on the project, and each was required to

complete a background technical and educational questionnaire.

At this time, all three copies of each of the eight programs has been

prepared and accepted. The modified programs are being tested using the

same test driver and test cases that were used in the original experiment.

- 2 4 -

REFERENCES

(1) Knight, J.C., N.G. Leveson, and L.D. %.Jean, “A Large-Scale Experiment
In N-Version Programming”, Digest of Papers FTCS-15: Fifteenth Annual
International Conference on Fa& Tolerant Cornwing, Ann Arbor, Michigan,
June, 1985, pp. 135-139.

(2) Anderson T., and P.A. Lee, “Fault Tolerance: Principles and Practice”,
Prentice Hall International, 198 1.

- 25 -

