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SUMMARY 

A sur face  heater  was developed using a g raph i te  f iber-epoxy composite as 

t h e  heat ing  element. Th is  heater can be th in ,  h i g h l y  e l e c t r i c a l l y  and 

the rma l l y  conductive, and can conform t o  i r r e g u l a r  surface. 

be used i n  a i r c r a f t ' s  thermal de ic ing  system t o  q u i c k l y  and un i fo rm ly  heat t he  

Therefore i t  may 

a i r c r a f t  surface. One-ply of u n i d i r e c t i o n a l  g raph i te  f iber-epoxy composite 

was laminated between two p l i e s  o f  f i b e r  glass-epoxy composite, w i th  nicke.1 

f o i l  con tac t i ng  t h e  end po r t i ons  o f  the composite and p a r t l y  exposed beyond 

the  composites f o r  e l e c t r i c a l  contact .  The model heater used brominated P-100 

f i b e r s  f rom Amoco. The f i b e r ' s  e l e c t r i c a l  r e s i s t i v i t y ,  thermal c o n d u c t i v i t y  

3 
00 and dens i t y  were 50 a-cm, 270 W/m-K and 2.30 gm/cm , respec t i ve l y .  The 
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e l e c t r i c i t y  was found t o  penetrate through t h e  composite i n  the  t ransverse 

d i r e c t i o n  t o  make an acceptably low fo i l -composi te  contact  res is tance.  When 

conduct lng cur ren t ,  t he  heater temperature increase reached 50 percent  o f  t h e  

steady s t a t e  va lue w i th in  20 sec. 

heater  prov ided the re  was no water corrosion. I f  the  fo i l -compos i te  bonding 

f a i l e d  d u r i n g  storage, l i q u i d  water exposure was found t o  o x i d i z e  t h e  f o i l .  

Such bonding f a i l u r e  may be avoided if per fo ra ted  n i c k e l  f o i l  i s  used, so t h a t  

t he  composlte p l l e s  can bond t o  each other  through the  pe r fo ra ted  'holes and 

t h e r e f o r e  M1ockll t h e  f o i l  i n  place. 

There was no overheat ing a t  t h e  ends o f  t he  



INTRODUCTION 

Both military and civilian aircraft of the future will have an increasing 

number of components fabricated from composite materials. This motivation 

stems from not only the desire to reduce the aircraft weight, but also to make 

aircraft surface smoother, which could result in larger amount of laminar flow 

and hence less aircraft drag. If leading edges of lifting surfaces (i.e., 

wings and tails) and engine inlets are to be made from composite materials, 

then one problem which must be addressed is that o f  ice protection. 

anti/deicing systems which have been used for years by the aircraft 

industry does not appear to be useful for composite designs since 

composites characteristically have low thermal conductivities on the 

transverse direction and hence large amounts of heat would have to be provided 

to ensure that the outer surface reaches the required anti or deicing 

Thermal 
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I temperature. 
However, this paper presents a concept for electric thermal anti/deicing 

of composite surfaces which seeks to solve the aforementioned problem. In 

particular, the use of thin graphite fiber composite for the heater is 

proposed. This thin heater has three unique features: highly electrically 

and thermally conductive graphite fibers are used in the composite material as 

the heating element, nickel foil is used as the electrical contact, and 

flexible prepreg (i.e., uncured composite) is used to conform to irregular 

surfaces and yield uniform heating. 

be placed much closer to the exterior surface than would be the case with a 

more conventional electric thermal device for a composite installation. ’ 

Other advantages of this anti/deicing heater over previous ones will also 

Such a design would allow the heater to 

be described in this report, along with the structure and design details of 

the model heater. 
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-. APPARATUS AND PROCEDURE 

Heater Materials and Design 

The basic design of the heater is illustrated in Fig. 1. One ply of 

highly electrically and thermally conductive graphite fiber composite was 

laminated between two plies of electrically insulating composite material, 

with nickel foil contacting the end portions of the graphite fibers. Part o f  

the foil was exposed beyond the composite for an electrical contact. Several 

model heaters were fabricated to demonstrate the concept and perform the 

preliminary experiments. They were made from the materials described below. 

Fiber-epoxy composite. The heating element was made of highly 

electrically conductive, brominated pitch based P-100 graphite fibers (Amoco 

Corporation). Bromination of the highly graphitized pitch based fibers was 

performed in this laboratory and the brominated fiber product has been studied 

extensively. 

200 "C, 100 percent humidity at 60 O C ,  vacuum,2 liquid water, and a variety 

of organic  solvent^.^ Brominated P-100 fiber surfaces contain very little, 

if any, b r ~ m i n e . ~  The physical properties of pristine and brominated P-100 

fibers are described in Table 1. It is noted, from Table 1, that the 

The brominated fibers were shown to be stable in air up to 

10-percent decrease in thermal conductivity due to bromination is a result of 

the increase in the fiber cross-sectional area. This suggests that fiber 

structural damage due to bromination are very small. 

The fiber-epoxy composite was made from the above fibers, with MY720 

epoxy and HT976 hardener (Ciba-Geigy). It was cured at 177 "C and 100 psi for 

90 min. Some properties of the cured composite are listed in Table 2. It is 

noted that a composite material with a 60-percent volume of such fibers, has a 

longitudinal electrical conductivity slmllar to a typlcal chrome-nickel 
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heater,13 and a longitudinal thermal conductivity about the same as 

aluminum 6061,7 or about ten times that of the typical chrome-nickel heating 

element. 

Protectlve layers. The electrically insulating, protective layers were 

0.15 mm thick fabric fiberglass-epoxy composite. 

Nickel foil. The nickel foil, a product of AESAR, is 99-percent pure, 

0.0254 mm thick, with an electrical resistivity of 6.8 pQ-cm.14 The 

nickel foil was dipped in HN03 for 5 sec to remove any oxides on the foil 

surface prior to lamination. 

Ftgure 2 is a photograph showing the three types of model heaters cut out 

of a 7.62 x 20.32 cm composite, with the fibers In the 20.32 cm direction. 

All three heaters were 20.32 cm long and had 1.7 mm thlck heating element. 

The top heater shown in Fig. 2 was used to conduct the heating performance 

experiment, was 1.3 cm wide with a 2.5 cm of fiber-foil overlap. 

heater was 3.4 cm wide with a 1.3 cm overlap, and was used to conduct the 

corrosion experiment. The bottom heater was used as a control sample, and was 

2.9 cm wide with a 1.3 cm overlap. 

The middle 

In order to measure the voltage variation 

inside the composite, two narrow nickel foil pieces were laminated into the 

middle section of the top heater shown in Fig. 2. 

apart. Sketches o f  the side view of this particular heater are shown in 

Figs. 3 and 4. 

These two foils were 7 cm 

Heating Performance Experiments 

Electricity penetration across the sraphite fibers in the composite. In 

order to heat uniformly, the current density in the heater needs to be as 

uniform as possible, and the electricity penetration across the graphite 

fibers needs to reach completion before it conducts through a significant 

length of the composite. In the experiment to verify whether this is true, 
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the heater shown i n  the top of Fig. 2 was connected t o  a current  source 

(Keithley 225) and a voltmeter (Keithley 181) as  described i n  Fig.  3. 

four contacts between the nickel f o i l  and the wires (points  A, 8, C ,  and D i n  

F ig .  3) could be opened or closed according t o  the needs of the experiment. A 

constant current of 100 mA was conducted through the heater,  via d i f f e r e n t  

combinations of contacts.  

t o  determine i f  the  e l e c t r i c i t y  penetrated through the composite In the 

transverse directqon. 

voltmeter terminals,  i f  the  current conducting across the  f i b e r  d i d  not reach 

completion, then t h e  current  densi ty ,  and therefore  the voltmeter readings, 

would not be a constant,  b u t  depend on which contacts t h e  current  conduct 

through. 

The 

The voltmeter readings were compared t o  each other 

In the region of the composite between the  two 

Contact res is tance.  The heater shown i n  the t o p  of F ig .  2 was a l s o  

connected t o  the current  source and the voltmeter as described i n  Fig. 4.  

constant current of 100 mA was conducted through the heater via the four f o i l  

A 

contacts A ,  B, C ,  and D. One end of the voltmeter was connected t o  one end of 

the heater ( i . e . ,  points A and 6)  while the other end of the voltmeter was 

connected t o  one o f  the two f o i l  s t r i p s  laminated i n t o  the middle section of 

the heater ,  or t o  the other end of t h e  heater ( i . e . ,  points E, F,  or G ) .  

These voltages, together w i t h  the  zero voltage a t  one end of the  heater ( i . e . ,  

polnts A and B ) ,  were plotted as a functlon of heater posit ion.  Since the 

resis tance per u n l t  length of the heater was uniform, the  voltage was expected 

t o  be a l inear  functlon of posit ion.  T h e  deviations of the measured nickel 

f o i l  voltages from t h i s  l inear  function a t  the nickel f o i l ' s  inner edge 

posit ion were defined as  the contact potential .  

The contact potent ia l  d i v i d e d  by the current passing through the  heater 

was defined as  the contact res is tance of the heater.  
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Heating rate and temperature distribution. The heater shown at the top of 

Fig. 2 was heated at room environment by a 6 A dc current at a voltage of 

0.563 V.  

IR thermometer. Temperature as a function of heating time was recorded at 

three different positions: the foil-composite overlap areas at both ends, and 

The temperature of the heater was monitored by a noncontact 

the center of the heater. The final, steady-state temperature was recorded at 

five different heater positions: the inside and outside edges of the foils at 

both ends, and the center of the heater. 

- Corrosion Experiment. The heater shown in the center of Fig. 2 was heated 
by a 20 A current at 0.65 V at room environment until the steady-state 

temperature was reached. 

ends of the heater were measured by an IR thermometer. This heater, together 

with the terminal wire, was then immersed in a container of tap water. It was 

heated in the water by a 20 A current for a few hours once every few days. 

The heater was then taken out of the water every 2 to 7 weeks, dried, and' 

heated by a 20 A current at ambient conditions. 

Table 3. 

heater, and the potential difference between the foils at both ends of the 

heater were again measured. 

heating data described the extent of water corrosion. 

The steady-state temperatures at the center and both 

The time schedule Is shown in 

The steady-state temperature at the center and both ends of the 

Comparison o f  the pre- and post-water immersion 

RESULTS AND DISCUSSION 

Advantages o f  the Composite Material Heater as a Deicer 

The conventional deicing heater uses metal foil as the heating element. 

One of the disadvantages for the metal foil as heating element is that it does 

not have a good, durable bond to the protecting layer. The other disadvantage 

is that heating may not be uniform, resulting in cold spots which hold ice on 

the airplane, and hot spots which cause the ice to melt and refreeze at 

different sites. 

6 



The composite-composite bonding in the composite material heater is more 

uniform and stronger than the composite-metal bonding found in conventional 

deicers. 

results in uniform heating. 

Good bonding and high thermal conductivity of the graphite fiber 

The deicer needs to conform to irregularly shaped surface in order to 

heat the surface uniformly. The metal foil heating element in the 

conventional deicer is either flexible but fragile, or strong but inflexible. 

The composite heating element described here is both strong and, before 

curing, flexible. Therefore, it can conform to irregularly shaped large 

surfaces and yield uniform heating on such surfaces. 

Due to the high electrical conductivity of the graphite fibers heating is 

achieved in the thin layer of heating element (0.17 m thick in the model 

heater) without using high voltage. Since the voltage drop across the heater 

is not high the thin protection layer can be used without dielectric breakdown. 

Since the heater can be thin, the heat is applied directly to the region 

very close to the surface to be heated. Therefore the amount of heat 

accumulated by the composite heater is minimized, and the heating rate can be 

high despite the low transverse thermal conductivity. Also, since the heater 

can be thin, the electricity can penetrate through the heating element in the 

transverse direction despite the low transverse electrical conductivity. 

Complete Electricity Penetration in the Transverse Direction 

With a 100 mA current conducted through the heater described in Fig. 3, 

the voltmeter readings obtained were found to have essentially the same value 

(3.545 mV) for all possible combinatlons of contacts. Since nonuniform 

current density i n  the heater would result in different values of such 

voltmeter readings, it was concluded that the current density in the section 

of the heater between the two voltmeter terminals was a constant. Therefore, 
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i n  t h i s  sec t i on  o f  t h e  heater,  t he re  was no t ransverse cur ren t ,  and the  

e l e c t r i c i t y  penet ra t ion  i n  the  t ransverse d i r e c t i o n  was complete. 

E l e c t r i c a l  R e s i s t i v i t y  and Heat ing Performance o f  t h e  Model Heater 

I f  I I s  the c u r r e n t  conducted through t h e  heater,  E i s  t h e  vo l tage 

drop across t h e  heater, P i s  t he  power per  Uni t  area o f  t h e  heater,  

p ,  L, W and t a r e  t h e  r e s i s t i v i t y ,  length,  width,  and th ickness o f  t he  

heater,  then the  equat ion r e l a t i n g  the  requ i red  power and the  heater ' s  

r e s i s t i v i t y  and dimension i s  

2 
PLW = I€ = +$ 

Knowing t h a t  the heater  descr ibed i n  F ig .  3 was 0.17 mn t h i c k  and 1.27 cm 

wide, t he  d is tance between t h e  f o i l  i n  t he  middle sec t ion  o f  t he  heater was 

7.0 cm, and t h e  vol tmeter reading was 3.545 mv when the  cu r ren t  was 100 mA, 

t he  r e s i s t i v i t y  o f  t h i s  p a r t i c u l a r  composite was ca l cu la ted  t o  be 109 pa-cm. 

I f  the  0.17 mm t h i c k  heat ing  element w i t h  a r e s i s t i v i t y  o f  109 pQ-cm . i s  

used t o  f a b r i c a t e  a 2.54 cm wide, 91.44 cm ( 3  f t )  long de icer  w i t h  

4.65 W/cm2 power dens i t y  (30 W/in.', the  power dens i ty  requ i red  f o r  

a i r p l a n e  d e i c i n g  a p p l i c a t i o n ) ,  according t o  t h e  above equation, t h e  c u r r e n t  

conduct ing through and the  vo l tage drop across the  de icer  would be 68 A and 

15.8 V, respec t ive ly .  

Contact Resistance 

F igure  5 shows the  vo l tage as a f u n c t i o n  o f  p o s i t i o n  i n  the  heater under 

a 100 mA cur ren t .  Th is  f u n c t i o n  i s  t he  s t r a i g h t  l i n e  connect ing the  two 

middle data po in ts  i n  t h e  p l o t .  The s t r a i g h t  l i n e  i n t e r c e p t s  the  n i c k e l  . f o i l  

p o s i t i o n  (shaded area i n  F ig.  5) a t  po in ts  A and 8. The contac t  p o t e n t i a l ,  o r  

t he  d e v i a t i o n  between the  e l e c t r i c a l  p o t e n t i a l  represented by these t w o  p o i n t s  

and the  measured n i c k e l  f o i l  po ten t i a l s ,  were 0.62 and 0.68 mV. These contac t  

p o t e n t i a l s  were equiva lent  t o  the  vo l tage drop across 1.3 and 1.4 cm o f  t h i s  
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heater, respectively. Therefore, if the heaters are much longer than 1.4 cm, 

the contact potential effects would not be significant. 

The contact resistance (the ratio of contact potential to current) was 

6.2~10-~ and 6 . 8 ~ l O - ~  Q at the two ends of the heater, whose heating 

element was 1.27 cm wide, 0.17 mn thick, and had 2.5 cm overlap with the 

nickel foil. 

It was noted that in a defective heater, the contact potential was 

equivalent to 10 to 15 cm composite length. 

1.4 cm described above and may result in overheating at the end portion of the 

heater if the foil-composite overlap is not long enough. 

This is much longer than the 

Heating Rate and Temperature Distribution 

When the heater described above was heated starting at room temperature 

with a dc current of 6 A at a potential of 0.563 V ,  the temperature rise near 

the two ends and at the center of the heater were monitored with time 

(Fig. 6). It was observed that the temperature increase reached 50 percent of 

its final, steady-state value in 20 sec. 

function of heater position Is shown in Fig. 7. 

was uniformly heated except at the very edge of the heater, where a lower 

temperature was observed. 

The steady-state temperature as a 

It was found that the heater 

It was found from this and other unpublished experiments that the 

negative end of the heater (i.e., the end where electrons go to the graphite 

fibers from the nickel foil) is consistently hotter than the positive end of 

the heater (1.e.. the end where electrons went to the nickel foil from the 

graphite fibers). 

emission from a sharp surface (i.e., graphite fibers, 10 pm diam) to a flat 

surface (i.e., nickel foil) requires less energy, or electric potential, than 

electron flow in the other directlon. 

This can be explained by the phenomenon that electron 

This argument suggests that at the 
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negative end of the heater, most electrons are "emitted" from the inside edge 

o f  the nickel foil (25 pm thick) to the graphite fibers, while at the positive 

end of the heater, the electrons are "emitted" uniformly from the graphite 

fibers to the nickel foil. Thus the inside edge of the nickel foil at the 

negative end of the heater has the highest current density in the heater. 

same argument suggests that using perforated foil at the negative end of the 

heater will increase the sharp edged region of the nickel foil. This may 

result in a more uniform distribution of the current density, and reduces the 

possibility of overheating at the inside edge of the foil. 

The 

Corrosion by Immersion in Water 

Before immersing the heater shown in the middle of Fig. 2 in water, it 

The steady- was test heated by a 20 A current at 0.65 V in a room environment. 

state temperature at both ends and the center of the heater were 91, 90, and 

75 O C ,  respectively. Knowing this composite was 3.4 cm wide, 0.17 mm thick and 

17.8 cm long, and neglecting the contact potential, the resistivity of the 

composite was calculated to be 105 pQ-cm. 

After immersing this heater into the water and taking it out once in 2 to 

7 weeks to dry for heating test. 

voltage drop across the heater were recorded as functions of immersion time and 

heating time. The voltage 

across the heater was found to initially increase slowly, then accelerate. 

After 119 days of water corrosion and 79.5 hr of 20 A current heating, some 

overheated spots on the heater started to turn brown during the dry heating 

test. The center 

of this discolored, overheated part was the inner edge of the nickel foil at 

the negative end of the heater. 

earlier in this report, that the inner edge of the nickel foil at the negative 

end of the heater has the highest current density in the heater. 

The center and end temperatures and the 

The time schedule and results are shown in Table 3. 

At that time the voltage drop across the heater was 2.05 V .  

This result agrees with the suggestion given 
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For both the corrosion test sample and the control sample, the nickel 

foil was found to separate from the composite after some time of repeated 

mechanical handling and examination. But, unlike the corrosion test sample, 

the voltage across the control sample under a similar current density was 

found unchanged after 87 days of storage, and was not affected by foil-fiber 

separation. Therefore, it is believed that when the fiber and the foil start 

to separate, the water begins to oxidize the nickel foil, creating an 

electrically insulating layer on the foil, and therefore degrading the 

composite heater. 

One method to avoid the foil-fiber separation.?s to use perforated nickel 

foil as an electrical contact. In this case the graphite fiber-epoxy 

composite and the fabric glass-epoxy composite can actually bond through the 

holes on the nickel foil, preventing the foil-fiber separation by "locking" 

the foil in place. 

The behavior of heater temperature as a function of immersion time is not 

well understood. However, it was found that the center temperature was hotter 

than the end temperatures before the corrosion test experiments. After a long 

time in the water corrosion test though, the end temperature was about the 

same as the center temperature. 

the end portion of the heater, i.e., the place of foil and fiber contact. 

This suggests that corrosion took place at 

Alternative Materials 

The individual components of the heater were chosen to demonstrate the 

concept and perform the preliminary heating experiment. 

alternative materials could be used. For example, the brominated P-100 fibers 

in the heating element could be replaced by other kind of highly electrical 

conductive fibers such as brominated P-75 fibers15 or fluorine intercalated 

P-55 fibers.16 

in a higher electrical resistivity o f  the heating element. 

1 1  

It is possible that 

This change would reduce the heater's cost, but would result 



Nickel was used as the foil material, because it is relatively 

electrically conductive, more corroslon resistant than copper and 

al~minum,'~ and less expensive than precious metals. 

stainless steel foils may be used, because they are more corrosion resistant 

and are known to be compatible with graphite,18 but they have a rather low 

electrical conductivity. 

corrosion resistant and electrically conductive, but they are much more 

expensive than nickel. 

compromise between cost and durability in the functional environment of the 

particular application. 

Titanium, monel, or 

Platinum and gold may be used because they are more 

Actual choice of the foil material may depend on a 

High Temperature Composite Material Heater 

It is hoped that the heater described in this report can be used in other 

unidentified applications where fast and uniform heating on large and 

irregularly shaped surfaces is necessary. In some applications, the heater 

temperature may need to be higher than the maximum operating temperature of 

both epoxy and brominated fibers (200 "C). For those applications epoxy needs 

to be replaced by other high temperature matrix materials such as polyimide or 

ceramic, and brominated fibers need to be isolated from the air and to be 

heated to the heater's operating temperature before fabrication. Unpublished 

data indicate that after heating brominated P-100 fibers in vacuum at 650 and 

800 "C for 2 weeks, their resistivities become 8328 and 132238 VQ-cm, 

respectively. Although this heating procedure significantly increases the 

fiber resistivity, the fibers are still highly conductive. Therefore they are 

still applicable as the heating element in high temperature heaters. 

Future Work 

In the immediate future, the heater described above will be mounted on a 

model airfoil to conduct icing experiments in Icing Research Tunnel at NASA 
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Lewis Research Center. A l s o ,  add i t i ona l  experiments w i l l  be conducted t o  

f u r t h e r  examine t h e  heaters made from d i f f e r e n t  mater ia ls ,  and t h e  

fo i l -compos i te  contact .  

CONCLUSION 

The composite ma te r ia l  heater  using brominated P-100 g r a p h i t e  f iber-epoxy 

as the  heat ing  element, f a b r i c  glass-epoxy as the  p r o t e c t i n g  l aye r ,  and n i c k e l  

f o i l  as the  e l e c t r i c a l  con tac t  was demonstrated t o  have acceptable heat ing  

performance. The r e s i s t i v i t y  o f  the heat ing  element was 105 t o  109 pR-cm, 

and the  cu r ren t  dens i t y  i n  t h e  heater was uniform. For the  20.3 cm model 

heater used i n  heat ing  performance experiment, the  sum o f  t h e  two f o i l - f i b e r  

contac t  p o t e n t i a l s  a t  t he  ends of the heater  represented 14  percent  o f  t o t a l  

heater  vo l tage drop. 

t h e  heater  i s  poo r l y  fab r i ca ted  o r  badly corroded. When c u r r e n t  was conducted 

through a room temperature heater, i t s  temperature increase reached 50 percent  

o f  t he  f i n a l  steady-state value o f  20 sec. 

h igh  contac t  p o t e n t i a l s ,  b u t  might be prevented by us ing pe r fo ra ted  n i c k e l  

f o i l  ins tead of p l a i n  f o i l .  

Overheating due t o  poor e l e c t r i c a l  con tac t  may occur i f  

F o i l - f i b e r  separat ion can cause 
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TABLE 1. - PROPERTIES OF P R I S T I N E  AND 

BROMINATED P-100 FIBERS 

E l  ec t r i  c a l  
r e s i s t i v i  t y  
i n  f i b e r  
d l r e c t i o n ,  
p s c m  

The rma 1 
c o n d u c t i v l  t y ,  
W/m-K 

Diameter, p 

Dens1 t y  , 
gm/cm3 

Bromine/Carbon 
wei g h t  r a t  1 o 

Spec1 f 1 c heat ,  
c a l  /gm- " C  

V i  s t  1 ne 
P-1 00 

250 
(Ref .5 )  

300 
(Ref .7) 

9.1 
(Ref .6) 

2.18 
(Ref .8) 

0 

0.17 
(Ref .12) 

3rominated 
P-1 00 

50 
(Ref .6)  

270 
(Ref .7)  

9.5 
(Ref .6) 

(Ref .8) 

0.18 
(Ref .9) 

0.20 
(Ref .12) 

2.30 

TABLE 2. - TRANSPORT PROPERTIES OF THE 

BROMINATED P-100 FIBER-EPOXY 

COMPOSITES WITH 60 PERCENT 

F IBER VOLUME FRACTION 

E l e c t r i c a l  
r e s l s t i v l t y ,  
R-cm 

Thermal 
conduct1 v i  t y  , 
W/m-K 

Densi t y  , 
g/cm3 

Spec i f  i c  
heat,  
c a l  /gm-K 

Thermal 
d i f  f u s i v i  t y ,  
cm2/sec 

L o n g i t u d i n a l  
d i  r e c t i  on 

b83xl  0-6 

162 
(Ref .  8) 

a1.90 

0.22 
(Ref .12) 

0.93 

Transverse 
d i r e c t i o n  

0.5 
(Ref . l o )  

2.2 
(Ref .8)  

a1.90 

0.22 
(Ref .12) 

0.013 

aCal c u l a t e d  va 1 ue 

bCa 1 c u l  a t  ed Val ue 

( f i b e r  d e n s i t y  = 2.30 Ref. 8, 
epoxy d e n s l t y  = 1.30 !3/Cm3, Ref. 11) 

( f i b e r  r e s i s t i v i t y  = 50 pQ-Cm, Ref. 6) 



TABLE 3. - POTENTIAL DIFFERENCE BETWEEN THE ENDS, AND TEMPERATURE 
AT THE CENTER AND BOTH ENDS OF THE 3.4 CM WIDE HEATER WHILE 

UNDER DRY HEATING TESTS AT A 20 A CURRENT 

temp., 
C 

T o t a l  
d u r a t  i on 
I n water ,  

73 

( - )  temp., (+ )  temp., 
C C 

T o t a l  
d u r a t i o n  
w i t h  20 A 

a p p l i e d  c u r r e n t ,  
hr 

91 
90.5 
86 
88.4 
94 

0 
6 
7 

28.8 
59.2 
79.5 

90 1 5  
84 82 
86.5 80 
18 86 

90 94 I 

End- to-end 
potent  I a1 
d i f f e r e n c e ,  

V 

0.65 
0.65 
0.69 
0.73 
0.95 
2.05 

Center 1 End 1 I End 2 
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FIGURE 1. -  STRUCTURE OF THE COMPOSITE 

M T E R I A L  HEATER, 

FIGURE 2.- MODEL HEATERS USED I N  THE TESTING. TOP: HEATER 
FOR HEATING PERFORMANCE EXPERIMENT. MIDDLE: HEATER FOR 

CORROSION TEST. BOTTOM: CONTROL SAMPLE. 



. 
FIGURE 3. -  ELECTRICAL CIRCUIT USED TO TEST THE ELEC- 

T R I C I T Y  PENETRATION I N  THE TRANSVERSE DIRECTION. 

FIGURE 4. -  ELECTRICAL CIRCUIT USED TO ESTIMATE THE 
CONTACT RESISTANCE BETWEEN THE F O I L  AND THE COM- 
POSITE. 
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CURRENT= 6 A .  
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POSITION. HEATER WIDTH= 1.27 CM: 
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