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CHAPTER ONE

INTRODUCTION

The problem of failure in rolling and sliding contacts goes
back to the period when roller bearings, gear, and railroad
wheels were first used. Even though many failure modes had been
analyzed and empirical rules were formulated to guide designers
against these failures, a new catastrophic failure for bearings
was recently detected in test rigs for high speed engines. This
failure mode can be described as a fast growing crack that
initiates from the surface of an inner raceway of a high speed
bearing. Fig. 1.1 shows a typical split ring ball bearing used in
such high speed tests. This type of failure was encountered at
DN values of three million (where D is the bearing bore in
millimeters and N is the shaft speed in RPM). These high DN
values are needed to meet the future requirements of high
performance aircraft engines. This research investigates this
failure mode using fracture mechanics theories and numerical

stress analysis techniques.

1.1 Failure in Bearings

Rolling contact devices such as rolling bearings may have

various causes for failure. The most common causes are plastic
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indentation, heat imbalance, wear and rolling contact fatigue,

see Ref. Il].

Plastic Indentation :

The raceway under a rolling or even under a stationar&
contact undergoes plastic deformation when solid debris is caught
in the contact region or when the system is overloaded. This
case produces surface defects that can initiaté a fatigue crack
failure. Fig. 1.2.a shows some typical plastic indentations

grooves on inner raceway of bearings.

Heat Imbalance :

Since all loaded moving contacts generate heat, and on some
occasion heat is brougﬁt into a bearing from the outside, this
can evaporate the 1lubricant and soften the contact material,
which can lead to the gross failure of the bearing. Thermal
energy must be removed by cooling the bearing to avoid excessive

temperatures.

Wear :

All machined surfaces have asperities that are large
compared with molecular dimensions. When two surfaces slide over
each other, the softer asperities either fracture or deform. The
rate at which these asperities are removed is known as the wear

rate which usually depend on the initial surface roughness, the
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applied load, the lubricant and the mechanical properties of the

asperities. Typical surface wear is seen in Fig. 1.2.b.

Contact Fatigue (Spalling)

It is well known that many metals, among them steel, some
non-metals (ceramics) react to repeated application of the same
load by gradually building up a fatigue crack. In this failure
mode a small crack forms in the subsurface, normally associated
with stress raiser such as void, non-metallic inclusion, or
carbide. The crack after repeated loading propagates outward to
form a spall. But with advances in bearing materials and
processing techniques, subsurface initiated fatigue is rarely
encountered. Instead a surface initiated fatigue spalling is
more likely, where a small crack develops from a debris dent or
an oxidation pit and propagates inward. These cracks that
originate at the surface propagate at an acute angle toward the
bore of the raceway until they meet deformation bands. Here they
are diverted back toward the surface in the direction the ball
travels forming a spall. In Fig. l.2.c, a typical spall, which
was initiated around a surface furrow is shown.

While spalling is undesirable, it is a relatively gradual
fatigue process that can be detected by vibration monitors, chip
detectors and other o0il system monitors. Consequenly the
affected components can usually be removed before more serious

secondary damage 1is incurred. However, at increased rotational




speed, (a high DN wvalue), rapid fracture occurs prior to
significant spalling, and consequently no warning is received
before the complete failure of the bearing, causing extensive
damage to the engine. At high DN values, a crack will develop
from the surface defect of the inner raceway and propagate inward
at a rate higher than the spalling rate and to a greater depth

than regular spalling, causing a catastrophic failure.

1.2 Literature Review

A large number of investigations have been carried out to
clarify the mechanism of rolling contact fatigue. However,
contradiction still persist on the driving force that causes a
contact fatigue crack.

From the metallurgical viewpoint it may be considered that
the process of fatigue consists of two stages; crack initiation
and crack propagation. The propagation stage has been explained
so far by two different mechanism. The first =mechanism takes
into consideration the pressure of the lubricant seepage into the
crack. This mechanism is based on experiments presented by Way
in 1935, Ref. [2], where he demonstrated that lubricants must be
present if fatigue crack propagation is to take place. The
second mechanism is just due to surface traction, where no
lubricant is present. Fleming and Suh, Ref. [3), were the first

to analyze crack propagation in sliding contact, wunder an




asperity contact. The tangential hoop stresses due to the
centrifugal load were completely ignored. Linear fracture
mechanics was applied using approiimate solution for the stress
intensity factors. Recently, Rosenfield [4] did the same
analysis with an added feature. He included in his model the
effect of the friction on the two crack faces under shear, due to
the high compressive normal stresses. Keer and his coworkers ,
[5) [6) [7], analysed the surface crack as well as the subsurface
crack, under general Hertzian loadings. They also determined the
crack propagation angles using the maximum tangential stress
around the crack tip. They determined that the edge crack will
most likelly grow in a direction of -69 degrees from the
horizental. In a preceding paper, [6], Keer added extra features
in modelling the crack propagation of an edge crack inclined at
65 degrees from the horizontal. In that analysis, the friction
effect for the cracked faces and the lubricant effect were
included. A uniform pressure on the open part of the crack faces
was applied to model the lubricant effect. The variations of the
stress intensity factors and the angles of maximum tangential
stresses were described in great detail. But, the investigation
was not carried further to see what will happen to the angle of
propagation after the first kink (i.e. crack tip change in
direction of propagation). All the above investigations were
based on a two dimensional model of a semi infinite region, and

not until Murakami et al., Ref. {B] was a three dimensional model
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presented. The friction éffect on the crack surfaces was
ignored. It was determined that fatigue crack propagation is
accelerated predominatly by the hydraulic pressure effect, and
the direction of crack growth is fixed by the direction of the
initial crack formed.

Not until recently were the hoop stresses due to rotational
speed taken into consideration in the fatigue crack growth.
Clark, Ref. [9], was the first to suggest that at high rotational
speed the driving force for crack propagation is the alternating
mode I stress intensity factor, due to the significant tensile
hoop stresses. He qualitatively stated that the superposition of
the Hertzian stress field upon the tensile hoop stress field
causes an alternating mode I stress intensity factor which leads
to a rapid crack growth in the raceway. He basically ignored the
high alternating shear stresses introduced by the Hertzian
loading as the roller passes from one side of the crack to the
other.

Experimental investigations on the endurance and failure
characteristic of high speed bearings at three million DN values
were performed by Bamberger, Zaretsky and Signer, [10]. Groups
of 30, 120 mm bore ball bearings, made of M50 high speed steel,
were endurance tested at two speeds (12,000 and 25,000 RPM)
corredponding to 1.44x106 and 3.00x106 DN, respectivally. Initial
bearing failure at 12,000 RPM was by classical surface rolling

element fatigue of the inner race. However, continuous running
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after a small surface crack had occurred at 3.0X106 DN resulted
in a destructive fracture of the bearing because of the high hoop
stresses present due to centrifugal forces. Closer investigation
of the fracture surfaces showed that the fracture had several
distinct steps. The initial fracture was normal to the surface
until it reached the first plateau where it changed direction and
propagated parallel to the surface in the direction of the ball
travel. It then, once more, changed direction and propagated
radially inward until it changed direction for the third time.
This pattern was observed on several bearings tested, Fig. 1.3.
This experimental evidence basically contradicts the earlier
conclusions of Murakami assuming that the crack growth direction
is fixed by the initial crack direction.

With the above experimental evidence, one is forced to
analyze the fatigue crack propagation under the combined tan-
gential hoop stress due to rotation and the Hertzian load that
introduces a high alternating shear stresses, as well as high
compressive stresses as the roller crosses the crack plane. This
loading condition introduces a complex stress state that leads to
a mixed mode stress intensity factor. But very 1little
information on mixed-mode fatigue crack growth under mixed
loading conditions is available. The early research on the crack
propagation direction and time to failure was confined to one
dimensional loadings. In 1980, Sih, Ref. [1l], proposed an

expression for the mixed mode fatigue according to his strain
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energy density factor theory:

i AK_ + a ; K
171 12,8 * K BK)

AS . = 2(a
)} 11 11 1 aZZFIIAKII)

min ]

L8 L cwas °
AN min

Where ajj = functions of the angle, 6
Ej = mean stress intensity factor
AKj = stress intensity factor range
C,n = material constants
max min
S =3 - S
A min min min
max
min - Maximum Strain Energy Density Factor
min
min Minimum Strain Energy Density Factor

in the Direction, B
S . = Strain Energy Density Factor = r dW/dV
min

dW/dV= Strain Energy Density

If one considers the crack propagation rate versus the cylic
stress intensity factor range in a double logarithmic
presentation, three well known regions of crack growth rate are
observed, Fig. 1.4, [12]. 1If the stress intensitv range is below
the threshold range, A Kth’ crack growth 1is not observed. In

region 11, the rate of crack propagation varies linearly with the
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Fig. 1.4 Crack Growth Rate versus Stress Intenzity Range
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stress intensity range on a logarithmic scale. Ia region III,
the crack growth rate reaches a very high speed since the maximum
stress intensity factor is approaching the «critical stress
intensity factor for unstable crack growth KIc' The most general
analytical equation for mode I fatigue crack growth rate 1is due
to Forman and coworkers [13]), where they took into consideration

all the ranges of the experimental curve, refer to Fig. l.4:

AK_ - AK |"l
da -cC [ 1 th
danN n2
- - AK
Q1 R)ch A l]
where R =

- KIm]’n/KImax

There are only a few papers in the literature dealing with
stable crack propagation under mixed loading. One reason is that
crack growth in the second region apparently occurs under mode I
conditions, (Fisher [12]), and the main regime for mixed mode
occurence is region I. This region 1s the mosﬁ important for
fatigue crack initiation and propagation in rolling contact
fatigue. This may explain why Murakami had to include the
influence of the lubricant to increase the stress intensity range

above the threshold range for mode I.

1.3 Dissertation Outline

The aim of this study is to analyze the causes that lead to

the brittle failure of high speed bearings. The object is to
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provide bearing designers with the tools necessary to cross this
new barrier for future engines operating at DN values of three
mi]]ionvand above.

In order to accomplish this aim, the loadings that are
significant for the creation of the fast growing cracks should be
quantified. Aside from the obvious normal Hertzian load across
the contact interfaces, surface parallel forces also arise from
friction at the contacts. Also, the centrifugal forces of the
inner raceway cannot be ignored since they can play an important
role in the propagation of fast cracks.

With the external loading being defined, the stresses in the
inner raceway of a bearing will be calculated nunmerically using
the boundary integral equation method (BIEM). The first
objective of this research is to describe the interaction between
the Hertz stress field and the centrifugal hoop stress in the
presence of a surface defect like a pit or a crack in terms of
stress intensity factors, KI and KII' The parameters which
determine the stress fields generated by the rolling contact
loads are the elastic constants of the bearing materials, the
design geometries of the raceway and the roller , the
microgeometry of the surface roughness, the film forming
parameters of the lubricant, and the geometry of the crack.

The second objective is to determine the crack growth rate

and its orientation under this complex loading co>ndition. To

accomplish this, the major driving forces for fast zrowing cracks




should be identified. It 1s assumed that combined alternating
mode I and mode II loadings are behind the step like crack growth
observed at 3 million DN value. The alternating mnde I (crack
faces moving normal to the crack plane) is associated primarily
with the oscillation of the high tangential stress due to the
centrifugal loads from each passage of a heavily compressive
loaded roller. The alternating mode 11 (crack faces moving
parallel to the crack plane) is associated with the change in the
direction of the shear stress when the roller moves from one side
of the crack to the other.

In Chapter Two, the different mixed-mode <crack growth
criteria, for static and dynamic loadings, are presented and
compared. The crack extension forces are divided into two parts:
first the region for shear mode growth governed bv the shear
crack extension forces, Gre, second the tensile mode growth
region governed by the tangential crack extension forces, Gee.
This crack extension criteria will be used in the analysis of the
mixed-mode failure of the inner raceway of high speel bearings.

Chapter Three 1s dedicated to the defiva:ion and the
implementation of the boundary Integral equation method in
fracture mechanics.

In chapter Four, the loadings applied on the inner raceway
of a high speed bearing are quantified. The tangen:tial stresses
due to the rotational speed and press fit are calculated as a

function of the DN value. The Hertzian pressure distribution are
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estimated with and without lubrication.

Chapter Five gives the variation of the mixed-mode stress
intensity factors as function of the Hertzian load, crack length,
and roller position. Crack extension forces along the crack tip
are presented as well as the angles of crack propagation, which
are determined along tﬁe direction of the maximur change of the
crack extension forces. Finally, the 1life to failure of the
inner raceway is estimated from crack propagation rate data of
M50 bearing steel.

Chapter Six reviews the results and conplusions of the study
and outlines needs for future research on the mixed-mode failure
in general and the inner raceway of high speed bearings in

particular.




CHAPTER TWO
MIXED-MODE CRACK GROWTH

The bulk of fracture mechanics work to date has been
concerned with single-mode loading. Many practical situations
are mixed-mode, but pure mode I loading is usually assumed in
order to obtain easy solutions. This assumption often leads to
unsafe design. Conversely, neglecting the effects of mixed—-modes
may lead the designer to be over-conservative in an attempt to
compensate for his lack of knowledge. 1In this chzoter different
mixed-mode crack growth criteria will be presentel and compared
and the appropriate analysis will be used for the crack

propagation studies of the inner raceway of the hizh speed engine

bearings.
2.1 Linear Elastic Fracture Mechanics

Linear elastic fracture mechanics theory is based on an
analytical procedure that relates the stress and displacement
fields in the vicinity of a crack tip to the applied load, to the
structure, to the size, shape and orientation of the crack, and
to material properties. To determine the stress and displacement
fields in a cracked body, it is important to de’ine the three

basic modes of crack-surface displacements, see Fic. 2.1. Mode

17
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I, opening mode, corresponds to normal separation of the crack
surfaces under the action of the remote applied tensile stresses.
Mode II, in-plane sliding mode, corresponds to the crack faces
moving parallel to the crack plane and normal to the crack
bottom. Mode III, tearing mode is the out-of-plane shear mode.
Of the three modes, mode I is technically the most important to
crack propagation in brittle solids, and has the largest fracture
tests reported on it for different materials. In this
investigation, the mixed-mode fracture considered is a result of
mode I and mode I1. This is an in-plane loading condition, and
the out-of-plane loading, mode ITT, will be ignored.
The stress and displacement fields for a semi-infinite
region containing a sharp crack, as given in Ref. [14], have the

following forms, see Fig. 2.2:

Mode I:
8 . o B

T KI cos > e(1-0»5111 7)

Og| = ———— cos3—é— : 2.1-a

Y (2“r)6 in i) os? jl

rf s 2 ¢ 2

' (14v) ((2k-1) os—e- - cos’ )
ur KI r )li (o4 2 - T
- 2E (21: 2.1.b

ug (1+\))(-(2K+1)sin-—g— + sind ¢




Crack Tip

rig. 2.2

20

Irr /

Polar Coordinates and Stress Element with respect
to the crack tip.
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Mode 1I1:
] [ . © 28, T
orr 51n7511—3 sin —50
X
Oe = 1l 3 sine cos2 0 2.2
- — YA}
0 2y z 2
6 2 g
Ore cosif-(l-B sinir)
- - - J
u_ r(1+\))(—(2.<—1)sin g. + 3sir % 6)
1
~ KII (i_)ﬁ
= 2.2.b
2E 2%
ug (1+v) (- (2k+1) cos % + 3cos % 6)

Where E is young's modulus, V is poisson' s ratio, and

K= (3-V)/(1+V) for plane stress

K = (3-4V) for plane strain

KI and KII are defined as the stress intensity factors, for mode
I and mode II loadings respectively.

The above field equations show that the stress and
displacement fields in the vicinity of the crack tip are
functions only of the stress intensity factors and material
properties. Consequently, the stress intensity factors are

parameters that represent a measure of the applied stress, crack
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shape and size, and structural geometry. One should be made
aware that the above solutions are valid only for scall distances
from the crack tip. For larger distances from the crack tip
higher order terms should be included to match the outer boundary
conditions.

Since the priﬁcip]e of superposition applies to linear
stress and displacement fields, Eq. 2.1 and 2.2 are added
together to determine the mixed-mode stress and displacement
fields.

As seen from the above stress fields, the stresses tend to
infinity as r goes to zero, but the tangential stress and the
shear stress multiplied by the square root of r go to constant

values KI and KII’ respectively, for 6= O:

lim o© 21r = K

86 1
x>0 2.3
. 5 -
lim ore 27r KII
r=->0

As a result the stress intensity factors are measures of the
intensity of the elastic stress fields ahead of the crack tip.

Therefore, the stress intensity factors, K, and KII’ quantify the

I

intensity of the stresses for brittle materials, such as the high

strength steel used 1in bearings, wunder mixed-mode Iloading

conditions.
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2.2 Crack Extension Force

The crack extension force, also known as the "Energy Release
Rate™, G, is basically derived from the change in the work of
external loads and the strain energy as the crack grows by an

amount da, see Fig. 2.3.

G =4d (- UE + WL )/ d a 2.4

where UE is the elastic energy and WL is the worx performed by
the external forces. This definition is based on the Griffith
Energy criterion for fracture.

The above criterion assumes self-similar crack growth, the
crack extends in the same direction as the main crack. For
mixed-mode loadings, the possibility for the crack to change
direction is more likely, as seen in most mixed-mode experiments
(18], [19]. Therefore, the formulation for crack extension under
mixed-mode loadings, should be able to measure the crack
extension force at any angle ® around the crack tip. An
alternative definition is shown next based on the mechanical
energy required to close a small crack tip extension along an
angle 6 measured from the original direction of the main crack.

The crack extension force, G, can be derived from the energy
required to open an increment CC' of the crack tip, see Fig. 2.4,

This definition is taken from Ref. [14] for a self-similar crack,
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) 4
2a
- -
da da
P

Pig. 2.3 Body with Incremental Crack Extension da.
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but here it is extended for any kinked crack, to account for the
possibility that the crack can change direction under mixed-mode
conditions. The crack extension force is equal to the work that
would be done by the forces along CC' to close the crack
increment along any angle 6.

Therefore:

&

G = élimOZ/G & '5{(0gg (1) u (6-1)+0_ (1) u_(6-1): dr

2.5

The 2 is necessary because of the upper and lower surfaces. The
1/2 accounts for the proportionality between tractions and
displacements. In this equation only mode I and mode II are
considered; mode III can be easily added as 1/2 Gze u_. The
relevant stresses to be éonsidered from Eq. 2.1.a and 2.2.a, are
those across CC' prior to crack extension but in opposite

direction since a negative force is required to close the crack

extension CC'.

K K
068 = - - I 3 cos? g—+ I T 3 sin g»coszg
(2mr)? (2mr)
2.6
K K
G = - 1 . sin g-cosz 5. ———llr cos 9-(1-3sin2 g)
rd (2ﬂr)6 2 2 (2ﬂr)6 2 2

The displacements are those across C'C prior to crack closure

and are based on the new geometry of the crack. As an
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a) Load needed to close a crack extension CC'

Yl

b) Displacement along the the crack extension C'C

Fig. 2.4 Lload and displacement alorg a crazx extension CC'
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approximation, it is assumed that the displacements for the
kinked crack have the same general solution as for a straight
crack, which correspond to the new crack tip C'; therefore the
displacements for the kinked crack have the following form, based

on relations in Eq. 2.1.b and 2.2.b for 6 equal tom:

[~
]

! S-r L
Ko / (2E) ( —5;—-) (14v) (2+2)

6-

T 2.7.a
2m

K; / (2E) ( )% (14v) (2x+2)

where K'I and K'II are the new stress intensity factors for the
kinked crack.

To find K'I and K'II above, a large number of investigators
tried to determine the stress intensity factors for a kinked
crack as function of the stress intensity factors of the main
crack with no kink. Some of those investigations include the
works of Hussian, Pu and Underwood [15], Wu [16], and Hayashi and
Nemat-Nasser [17]. Hussian et al., Ref. [15], found a
discountinuity in the solution as the kinked crack length goes to
zero. Wu [16] and Hayashi's [17] results were in agreement
with each other and they concluded that by taking the limiting

case, where CC' goes to zero, the corresponding relazion for K'I

and K'II are as'follows, (see Ref. [17}):
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3 2

0 .0 0
5—31(11 smicos 2

7~
"

KI cos
2.7.b

. B , B B L2 T
11 KI sm-i-cos 5+KII cos 3 (1 3 sin 2)

~
f

Substituting Eq. 2.6 and 2.7.a into Eq. 2.5, by making use of

relations 2.7.b, the «crack extension force will have the

following form:

3 B .8 2 8 .2
c = (14+V) (k+1) {(l(I cos” 7 3K sin cos 5) +

4F 11 2
. B 2 0 8
(KI sin 5 cos® o + KII cos > 2.8

(1-3sin? 3) y2 }

f ’ /8§
* 1im 1/687 r/$

§~>0

Evaluating the integral by making the following substitution

L sin2¢‘ ; then dr = 2 6 sind cos¢ d¢ , gives
8
'n
1- r/6 S
_1_f6 x/ dr=_f2 cos® ¢ d¢
6 0 r/G 0
w/2
_ ¢ sin 2 ¢
=205 ¢ i)
0
= T
2

Substituting the value of the integral into Eq. 2.8, one gets the

crack extension force for mixed-mode loadings at any arbitrary

angle © measured from the original crack direction:
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‘-
(1+v) (1) {(K1 cos? g ’3KIISin 9 cos? = )2 2.9
G = 4E 2

.8 2 0 0
+(K151n 2 cos 5 + KII cos 7
8

(1-3sin’ =) )2}

Equation 2.9 1is divided here into two parts: first, the
crack extension force due to the tensile opening displacement
mode, I‘VBOGG dr, called herein the "tangential crack extension
force™: Gee; and second, the crack extension force due to shear

opening displacement mode, uroer dr, called herein the "shear

crack extension force": Gre' This separation of the energy
release rate, G, 1is based on the fact that there are
fractographically two types of crack growth, i.e. the shear mode
growth and the tensile mode growth (Ref. [19]), which are

»

controlled by two different driving forces, 1i.e. Gr and Gee

respectively.
The separation of the two driving forces for the crack

growth is given in the following equation for the crack extension

forces, Gee and Gre:

8 . B 2.8 2
3—_ — —
Goo|  (14v) (ka1y | Ky 0875~ 3Kyy sin 5 cos
- 6 2 0 2.10
Gre (KI 51n5-cos §-+ KIICOSE , )
(1-3 sin 3) )

When 6 is zero, i.e. looking at the extension forces ahead of the
crack tip in the direction of the main crack, Eq. 2.10 reduces

to:
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(14v) (k+1) K2 |
= 4E ; 2.11
Gre KI

Cop

Taking a closer look at the tangential crack extension force
due to the tensile opening mode, GSO , it can be shown that it is
similar to the maximum tangential stress theory proposed by
Erdogan and Sih [18] for determining the angle of crack
propagation under mixed-mode loadings.

Otsuka et al. [19] ran experiments on fatigue crack growth
under mixed-mode conditions and observed two different
fratographical modes of failures; the shear mode growth region
(controlled by Gre ) and the tensile mode growth region
(controlled by Gee), as seen in Fig. 2.5. For given stress
intensity factors, KI and KII’ the dominant mode of fajlure can
b2 determined from the crack extension forces. For very low
values of the stress intensity factors, i.e. low values of K_ and
KII’ there is no crack growth. The experimental data points of
no crack growth are shown as hollow circles. For intermediate
values of KI and KII’ the crack growth is governed bv the shear

crack extension force, Gre. The experimental data points of

shear mode growth are showa as triangles. For high values of KI
and KII’ the crack growth is governed by the teansile crack
extension force, Gee « The experimental data points of tensile
mode growth are shown as solid circles.

Therefore, below a threshold value of the shear crack

extension force, Greth’ there is no crack growth. Above this
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Fig. 2.5 Experimental Observation of Differer: Crack
Growth Modes, Ref. [19)]
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threshold value, the shear mode growth is observed. Above a

critical tensile crack exteansion force, tensile mode

©gocn
growth is observed.

Another method to account for the crack extension force is
through the path independent integral, known as the J integral.
As will be seen in the next section, the J integral is defined

for self-similar crack extension, 1.e. crack exteasion in its

original direction.
2.3 The J iategral

The J integral is often used as an alternative form to the
energy release rate, G, when the nonlinear material ahead of the
crack tip cannot be ignored. As first defined by Rice [20], the

J iategral has the form:

J=js(wf11 - tyug ) ds 2.12
where s 1s a path surrounding the crack tip, W is the strain

energy density, and t, is the traction conponent on s, and ds is

i
an element of s, see Fig. 2.6. Since Rice, theoretical studies
have been undertaken to investigate the fundamental mathematical

characteristics of the J integral, and Sternberg {21] has shown

that the J integral is a vector of path-independeat integrals,

defined as follows:
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J = Is( W n

K —,t U ) ds _ 2.13

k i 1,k

This coancept of the J integral may show much promise for mixed-
mode loadings. Eq. 2.13 defines the extension forces 1n three
different directions. Substituting the solution of the stress
and displacement fields from 2.1 and 2.2 into the J integral, one

gets, for mode I and mode II only:

2 2
N G et K+ Ky
= [’E 2.14
J -
2 2 Ky Ky

To determine the crack extension at any arbitrary angle, a

simple trigonometric relation is used to give:

Jee = Jl cos 8 +J_. sin 8

2
J A () 2 L2
Jee = A ( (KI + KII) cosH 2.15
-2 KI KI1 sinf )
Note that for pure mode I or mode II, (KI =0 or KII = 0), the

maximum crack driving force is in the direction of self-similar
crack growth. This observation contradicts some basic pure mode

I1 tests where the angle of crack propagation was observed at 70

degrees from the original crack plane.

Bui, Ref. [22], showed that J, defined in Fc. 2.13 is not
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path independent and that Eq. 2.13 is incorrect. He proposed a
new approach to calculate the integral by dividing the stress and

displacement fields into symmetric and antisymmetric parts:

J = JI + JII 2.16.a
I 1 1
where: JI = fs {w n, - ti Ui,] } ds 2.16.b
11 11 11
and JII= IS {w ny, - ti ui,l} ds 2.16.c

where uiI and tiI are the symmetric displacement and traction
fields and uiII and tiII are the antisymmetric displacement and
traction fields. Substituting into Eq. 2.16, the closed form

solutions of the stress and displacement fields around a crack

tip, one gets:

1, e
(14+V) (k+1)
= 4E ) 2.17
JII KII

which correspond to the crack extension force for &= 0, in Eq.
2.11. As seen from the above definition of the new approach to
the J integral, only self-similar crack extension is measured,

and the J integral Is an alternative method to determine the
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stress intensity factors using far away stresses and
displacements, and not as a crack extension force for any

arbitrary angle.
2.4 Mixed-Mode Crack Propagation Criteria

Many theories had been proposed to predict the angle of
initial crack growth under mixed-mode loading conditions. The
most important criteria are the maximum tangential stress [18],
the minimum strain energy density factor [23], the J integral
approach [24], the pure mode I theory [25], and the crack
extension forces, as defined earlier. All the cethods predict
almost the same direction of crack propagation for near mode I
loadings, but when mode II become dominant each method points to
a different direction. A brief description of each of the above
methods is given next with a comparison of the first three and

the crack extension forces over a wide range of mixed-mode

loadings.
Maximum tangential stress:

This criterion is based on the direction of the maximum
tangential stress around a crack tip [18], which also corresponds
to the maximum tangential crack extension force, G%% in Eq. 2.11.
It can be seen that whenOee in Eq. 2.}l.a 1is maximu:,<7re is equal
to zero. This criterion is based on the observation that the

crack will grow in the radial direction from the crack tip and
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perpendicular to the maximum tangential stress when the shear
stress is zero. The direction of crack propagation based on this

criterion is given by [26]:

i 2
tan(6/2) = 1/4 KI/KII + 1/4 \/(KI/KII) + 8 2.18

Minimum Strain Energy Release Rate:

Sih [24]) has advocated the idea that the local s:rain energy
density factor, S = r dW/dV, should be the governing cuantity for
the fracture process direction, (where r is the distance from the
crack tip and dW/dV 1is the strain energy density). The strain

eanergy density factor is given by:

2
= + +
S a11 KI 2 a12 KIKII 322 KII 2.19

a..= X ((1 + cos8) (k- cos 6))
11 16

a .= ll--—((fsin B (2cos 8-+ 1))
12 16

a,,= E—(( K+ 1) (1 = cosB) + (1 + cos ©)(3cos <~ 1))
22 16

where U is the shear modulus, equals E/(2(14V)) and K is as
defined earlier equals (3-4V) for plane strain condizion.

The crack will propagate in the direction of the minimum
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strain energy density factor given by: dS/dO = 0. 1t can be seen
that the angle of crack propagation will depend on the poisson’s
ratio, V, in this theory as opposed to the rest of the criteria.
J Integral Theory:

This theory is based on the generalized J integral developed
by Sternberg [21]), and the crack will propagate in the direction
of the maximum J as defined in Eq. 2.15. The direction of the
crack propagation based on the J integral theory is given by:

S 2 2
8 = = +
tan 2 KIKII / ( K1 KII

) 2.20
Pure Mode I Theory:

The pure mode I criterion, from [25], is based on the idea
that material separation in the process region ahead of the crack
tip takes place in pure mode I, the opening mode. When this
criterion is applied, a number of tentative extensions of the
crack in different directions have to be studied. The direction

to be chosen has to fulfill the criterion, 0. This

KII
criterion corresponds, to some extent, to the maximum tangential
stress, where 066 is maximum and oreis zero; The maximum
tangential stress criterion tries to predict the new stress
intensity factors for the kinked crack from the original crack
(crack with no kink), while the pure mode I case actually extends
the crack in the direction for which K__ equals zero. The pure

II

mode 1 theory is more accurate, but needs a large number of
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trials before the direction of KII = 0 is known.
Crack Extension Forces Criterion:

The crack growth direction based on the crack extension
forces criterion depends on the direction along which the crack
extension forces are maximum. When the value of the tangential
crack extension force is less than a threshold value GGGth' the
shear crack extension force is the crack driving force. The
direction of the crack propagation will be governed by the

direction of the maximum shear crack extension force, G For

ro°
values of the tangential crack extension force greater than the
threshold value, the direction along which the maxirun tangential
crack extension force acts, is the direction of propagation, (see
Fig. 2;5).

A comparison of the direction of crack propagation for the
first three criteria and the crack extension forces criterion is
given in Fig. 2.7 for different ratios of mixed-rode loadings.

The arc-tangent of the ratio of the stress intensity factors,

K, /K

1/Ripe is plotted versus the predicted crack propagation angle

for the above criteria. For near pure mode I loadings, tan

KI/KII greater than 60 degrees, good agreement of the three
methods 1is observed, but for near pure mode II loadings a huge
discrepancy is observed.

For pure mode II, the maximum tagential stress theory as
well as the maximum tangential crack exteasion force criterion

predict an angle of 70.53 degrees, the minimum sirain energy
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density factor theory gives an angle of 83.61, while the J
integral approach gives a zero angle. The difference between the
J integral and the other criteria can be explained from the wrong
JZ definition as seen earlier in section 2.3.

For pure mode II, based on the crack extension force
criteria, the propagation direction will be zero degree if the
shear crack extension force 1s governing and 70.53 degrees if the
tangential crack extension force is dominant.

The crack extension force criteria will be used to determine
the crack growth rate and direction in the failure analysis of
the inner raceway of high speed bearings.

Knowing the crack exteasion forces ‘and the fracture
criteria, a crack propagation law can be formulated to predict

the crack propagation rate under mixed-mode loadings.

2.5 Fatigue Crack Propagation Law for Mixed-Mode

Under cyclic loading the crack propagation occurs at lower
stresses than it does for static loading. For typical fatigue
fracture of brittle materials, macroscopic plastic deformation is
not involved. Instead, submicroscopic slip lines developed ahead
of the crack tip, that can intensify and broaden with each cycle.
Those slip lines are developed along unfavorable oriented grains.
But these slip bands cannot cause fracture in themselves, since

their effect is to harden the material. When a material work-
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hardens, it will be vulnerable to the tangential stresses -around
the crack tip, which try to open up the defects causing the
increase in microcrackings with increasing number of cycles. The
formation and the growth of these microscopic cracks ahead of the
crack tip represent the damage accumulation. This damage
accumulation is the cause of the weakening of the material ahead
of the crack tip, and the decrease of the crack resistance force.
The crack resistance force should be a decreasing fuaction with
increasing number of cycles, and how fast the crack resistance
force decays is a function of the maximum range of G or K. But
the crack growth is not continuous since experimental evidence
has shown that the crack growth stops or slows down to a level
where no crack growth is observed. After N numbers of cycles
when the crack resistance ahead of the crack tip is decreased,
the cfack will gfow instantaneously a distance 2, and then stop.
At this position the crack tip has reached a region where the
damage accumulation is non-existent or is so low that more cycles
are required before the crack can grow. This explaine the
experimental observed jump like growth of fatigue cr-cks.

Generally, one can find the formulation of the fatigue crack

growth as follows, Ref. [27]:
d a(t) = F ( a(t), P(t), d(t), t) d t 2.21

where a(t) 1is the length of the dominating crack, p(t) 1is the
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stress load and d(t) includes the damage accumulation and
material properties.

A simplified version of Eq. 2.21 was given by Paris [28],
where the damage accumulation was ignored and the load and crack
length were combined together as a function of the stress

intensity factor. Thus, Eq. 2.21 reduces to, [28]:
da / dN =C ( Ak )" 2.22

Eq. 2.22 is based on experimental results, for mode I loading
condition, and basically describe region II, 1in Fig. l.4. But
more careful experiments had shown that the mean stress has an
effect on the fatigue crack growth, and Eq. 2.22 was therefore

modified to the following form, Ref. [29]:

= n, n,
da/ dv=cC (AK ) " ( Kmax) 2.23
Recently, Forman et al., Ref. [13], have provided a general

expression which takes into account all the regions of Fig. 1.4;
= - n - — a2
da / dN = C ( AK -AK, )"/ C (1-R) Kp = 2K) 2.24

where R is the stress ratio, and equals to K__ /K .
min  max

All the above equations are based on pure mode I loadings,

and must be generalized to 1include the mixed-node loading
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conditions and the damage accumulation.

The first mixed-mode fatigue crack growth equation was
derived by Sih [11], based on his strain energy density factor,
where fatigue crack growth occurs in the direction of the maximum

change in the strain energy factor, and the fatigue growth

)

equation becomes:

da / dn =C (8s_ o 2.25

in

in is given by [11]:

As = 2(a11 K

+
min 1 AKI a

_ s
120 Kyp 8Ky + Ry 2Kpyp)

+ a,, KHAKH) 2.26

where KJ is the mean stress intensity factor, AKJ is the stress

intensity factor range, the a,,'s are fuanctions of the angle of

i3

crack propagation for which ASm {s a maximum and are given in

in
Eq. 2.19.

Alternatively, one can easily extend the crack propagation
to the mixed~mode loadings, by making use of the crack extension
forces along any angle 6, instead of the mode I stress intensity
factor in the equations on page 43. By substituting relations
2.10, for the crack extension forces in Forman's equation, the
crack growth rate will be equal to:

For Tensile Mode of Crack Growth:
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n
da o ¢ Moo T MOepey)

dN 2.27
1- - ny
( ( R)Geec Acee )

For Shear Mode of Crack Growth:

A _ n
( Gre Acreth) 1

da = C

daN _ _ n, 2.28
ca R)Grﬁc AGrG )

Therefore, depending on the mixed-mode loading conditions, one
must choose the proper mode of failure. Eq. 2.27 would be valid
for the tensile mode of fatigue crack growth while Eq. 2.28 would
be valid for the shear mode of fatigue crack propagation. The
AGijthis the threshold crack extension below which no crack
propagation is observed.

To determine the dominant crack growth mode, the values of
the maximum changes of the crack extension forces are compared
with the threshold values. Fig. 2.8 represents the boundary for
different crack growth modes. For values of AG.. greater than
AGeethtension mode is observed and Eq. 2.27 is valid. For values
of AG_ . less, two regions are observed; a) no crack growth region

68

for AGre less than AGreth’

greater, and Eq. 2.28 1is valid.

b) shear mode growth for value of Ag 6
r

This separation of the growth modes can easilv explain the
different crack growth directions observed in pure mode II tests

ran by Buzzard et al., Ref. [52]. For very small cracks the
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crack extension forces are so small that the shear mode is
dominant causing the crack to extend in the original direction.
For larger cracks, where the tangential crack extension are

higher than the threshold AGB the crack changes direction,

gth’
and propagates along 70.53 degrees, in the dirsection of the
maximum change in Gee, indicating a tensile growth mode.

Thus, the crack growth direction will be determined from the
angle O along which the change in the crack extension forces are
maximum. The crack will keep on growing in this direction until
a new loading combination changes the direction of the maximum
change of Gi1'

The crack extension forces criteria will be wused in
analyzing the mixed-mode failure of the inner raceway of the high
speed Dbearings. But Dbefore determining the <crack growth
direction and rate under mixed-mode loadings, the stress and
displacement fields have to be determined first wusing the
boundary integral equation method for any arbitrary crack
geometry and orientation, and loading conditions as will he seen

in the next chapter.



CHAPTER THREE

Boundary Integral Equation Method

3.1 Introduction

Methods of analysis 1in elasticity, and in most other
scientific and engineering fields, have been revo]utionizgd with
the advance of computers. Most of the solutions, two dimensional
or three dimensional, had been obtained for infinite or semi-
infinite bodies using the stress functions techniques, which
satisfy the desired boundary conditions near the origin and have
the properties that the stress and/or displacement vanish or
remain bounded as the boundary at infinity is approached. With
the advance of computers, solutions for finite geometries and
mixed boundary conditions were attainable by numerical
techniques. First, the finite difference method was used, by
replacing the differential equations by their classical finite
difference equivalent. More recently, the finite element method,
which makes use of the variational statement of the original
differential equations to obtain solutions, has gained
popularity. In both methods, finite difference and finite
element, the continuum is discretized, making the accuracy of the
solution a function of the fineness of the discretization.

Another method of analysis, recently rediscovered by Rizzo in

48
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1967, Ref. [31], the boundary integral equations method, BIEM,
offers an attractive alternative. The boundary integral method
involves the transformation of the partial differential equations
describing the behavior of the’unknowns inside and on the
boundary of the domain to integral equations over the boundary,
i.e. the integrals are functions of the boundary data only; thus
enabling the reduction of the dimensionality of the problem.
Closed form solutions can be obtained for simple finite
geometries and loading conditions, when the integral equations
are solvable. The resulting solution is the exact solution of
the differential equation for the given boundary conditions. For
complicated geometries and loadings conditions, the integral
cannot be solved analytically and approximations have to be
intreduced. Therefore, in the BIEM, inacéuracies arise from
numerical integration procedures, which means that by refining
these approximations any degree of precision is theoretically
achievable. By the approximation of the 1integration, the
integral equation will be transformed to a set of linear
algebraic equations. The resulting system of equations is
smaller by an order of magnitude than those for the finite
difference or the finite element methods, but are fully-
populated, whereas in other methods the matrices are symmetric
and most of the time banded.

The boundary integral equation method has seen increasing

popularity in recent years because of the some of the advantages
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listed below, Ref. [32], [33]):

i) a smaller set of algebraic equations to solve, ii) simple data
preparation to run the problem, only boundary discretization is
needed, 1iii) infinite and semi-infinite problems are properly
modelled, iv) accurate solution of selective internal stresses
and displacements, and v) good resolution for stress concen-—
tration problems. |

In view of the above advantages, the bourdary integral
equation method was used herein to analyze the stress and
displacement fields around a surface crack of the inner raceway
of the high speed bearing.

A review of the two dimensional plane strain elastostatic
solution by the boundary integral equation method is given next,
with its implimentation in a general computer prograz. The three
dimensiona} derivation is similar to the two dimensional and its

implimentation can be found in Ref. [34].
3.2 Mathematical Derivation

The most direct derivation of the bourdary integral
equations is based on a singular solution of the Navier
equations. The Navier equations of equilibriu- (in terms of

displacements) for two dimensional problems in elasticity are,

Ref. [32]:
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Fig. 3.1 Displacement Field along a Surface S, cue to
a Point Load P in an Infinite Region *
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v2 u + 1/0-20) 8, =0 3.1.a

0 =u i - 1,2

j,j !j ?
where uy are the displacements, Vv 1s Poisson's ratio and the
usual tensor notation is wused, where a repeated subscript
indicates summation over its range and a comma indicates partial

differentiation. The Navier equations can be written in another

form as:

u

1.4 + 1/(1-2v) uk,ki = 0 3.1.b

A solution to these equations can be obtained by making use
of Kelvin's singular solution due to a single unit concentrated

force acting in the interior of an infinite body [35] (see Fig.

3.1).

The displacement field at any point Q at distance r from the

point P, where the force is applied is given by Ref. [35]

u, = {-1/1876(1-1} {(3-49) Qnr 8y =k v ) e 3.2.a

or
u, = U. e, 3.2.h»

where ej are the unit base vectors, and

Uy |-1/1876(1-)]} {(3-4v) 1nr 8y " T 4T 3.2.¢
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where r is the distance between a field point Q with coordinates
: P

(xiQ) and the point of load application P with coordinates (x; )3

- Q_ 4P Q_ P 3.3

r (x, xg ) (xy xi)] .

For plane stress, poisson's ratioy 1s replaced bty , /(l+y), in
all the equations, Ref. [32].

If we consider the field point Q to be on the boundary of a

body cut out of the infinite region, then the traction forces can

be determined on this boundary by

t, = 0,. n, 3.4

where nj is the component of the outward norzal in the j
direction at the surface of the body. Expressing the stress
tensor in terms of displacements [35]

c:1J = {ch/(l-Zv)} 8 + G (u + u ) 3.5

13 “m,m 3,17 M1,3
where G is the shear modulus, differentiating Eq. 3.2 and

substituting in Eq. 3.5, Eq. 3.4 becomes:

t, = {-(1-20)/14n(1-v)r]} {dr/an [6,, +12/Q1-20) ¢ 4 ¢ ]

’ »

3.6.a

or

ti =T, . e, 3.6.b
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where

T

1

- r’1 nj + r‘J ni} 3.6.c

1)

= {-(-20)/len (=)x)} {dr/dn [, +[2/Q-2)] 1 4 ¢

We now make use of Betti's reciprocal theorem [36] which
states: If an elastic body is subjected to two systems of surface

*
tractions tj and t then the work that would be done by the

j’
*
first system tj in acting through the displacement u j of the

second system is equal to the work that would be done by the

*
second system t i acting through the displacement uj of the

first system, i.e.;

* *
Ltjujdsgfstjujds 3.7

where s is the boundary surface of the body, and ds i{s an element
of surface area.

Suppose we now choose the second system of traction and

* *
displacement ( t 3 and u 3 ) to be the one produced by a single

unit concentrated load, and the system u tj to correspond to

j >

the solution we are seeking. Since we know the solution to the
unit concentrated load (Kelvin solution), we can solve for any of

the unknown traction and displacement (t,, uj) bv substituting

*

*
Eq. 3.6 and 3.2 for t 3 and u , respectively arnZ solving the

]

integral, Eq. 3.7. Because of the singular nature of Uij and Tii

at r = 0, it is necessary to employ a limiting process as shown

in Appendix A, resulting in the following equation, known as the
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boundary integral equation:

J; tj Uji e, ds = }; u, T, ey ds - C. ug e, 3.8.a

or in another form

= U - T 3.8.b
Cij uj .g 1 tj ds ‘g 1] uj ds
c,. =6 . f =6 /2
where 13 ij or Interior points and Cij jj/ for boundary
points with smooth tangents. Eq. 3.8 1s also> known as

Somigliana's identity. For very simple geometries and boundary

.. r - r R PR SRS S,
DaLioraviLusy PRV VUL UL e g

Cunditivus Ouwigliaua o ideuiiiy 4o
analytical solutions, but for complex bodies a numerical solution
is necessary and is discussed in the next section.

Once the unknown traction and displacement are determined on
the boundary, internal displacements and stresses can be
calculated as functions of the boundary displacements and
tractions. For internal displacement, Eq. 3.8 is used with Cij

%j’ however for internal stresses Eq. 3.8 is differentiated

and substituted in Eq. 3.5, to get [32]:

Oij = 'I; Uijk te ~ Tijk u, ds 3.9
where
Uy = Q=2 1arQ-wr)] {o e o e = e

-2V
+ 2 r,i r,j r,k /(1-2V)
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= 2 :
Tyge = (C/121Q=0e%)) {2 dr/dn [Q-20) 8y5r 4 2 x|

ST AT Ty

+ n, ( 2 Vr’j r'k + (1-2V) djk)

+ "j ( 2\)r’i r,k + (1-2V) 6“()

+o [2(0-) r v, - (1-4) 8

3 1]

Thus, the displacements and stresses at any interior point, if
needed can be obtained by integrating numerically the boundary
equations, Eq. 3.8 and Eq. 3.9, respectively with Cij = 6ij’

from the solutions of the stresses and displacements at the

boundary.

3.3 Reduction of the Integral Equation to a set of linear

Simultaneous Equations

The first step in solving the boundary integral equations is
to reduce them to a set of 1linear simultaneous algebraic
equations, if the integral are unsolvable in closed form. The
boundary of a body to be analyzed is divided into M surface
elements. Those elements can be linear or curved to map the

boundary geometries, as seen in Fig. 3.2. Eq. 3.8 can then be

revritten as:

M M
Cij uj -b_zl om Uij tj dsm -b—zl sm Tij uj dsz= 3.10

As an approximation the traction, tj and displacezent, uj are
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assumed constant or to vary linearly or quadraticaly over each
element, as seen 1in Fig. 3.3. Thus, the tractions and

displacements in each element can be approximated by:

_ uK
ti(X) = N (x) ty
"
“1(x) = N (x) u, 3.11
For constant elements:
k = 1 and N=l 3.12

Here the traction and displacement are approximated as a constant
having the values at the mid-point.
For linear elements, Ref. [37]:
k =1,2
N = (1-x)/2 N = (1+x)/2 3.13
J(x) = (x2-x1)/2
where J(x) is the Jacobian that transfers the integral from the
global to the local coordinate system, where xl and x2 are the
in-plane coordinates of the nodes.

For quadratic elements, Ref. [37]:

kK =1,2,3
N o= x(x-1)/2 N% = x(x+1)/2 NS = (x+1)(1-x)
J(x) = (x2-x1)/2 + x(x1+x2 - 2 x3) 3.14

If the surface is represented by M elements, then the integral

equations become:




b 59

M n
ENCIRDIDD uj(qb“) [rij(p,qbk) N (x) 3% ax =
b=1 k=1
M nb
) tj(Qbk)[Uij(P,Qbk) N (x) 3%(x) dx 3.15
b=1 k=1

where nb is the total number of nodes in element b. Jb is the

jacobian function for the bth element. The terms, (Qbk

bk)’

uy ) or
tj(Q are the nodal values of the displacements and tractions,
respectively, for the kth node within the bth element. Eq. 3.15

should be repeated N times, corresponding to the total number of

nodal points. The total integral equations can be written as:

b
N M n
Z[C G w ZZ“ s & bk. % . b . 1
i M A A A N VR C VA S £
a=11 j j b=1 k:lj J j I
N M nb
ZZZ tj(Qbk) fuij(Pa,Qbk) N x) JP(x) dx 3.16
a=]1 b=1 k=1

The expression in Eq. 3.16 represents a set of 2N equations which

can be written in matrix form as:

[cij" +z'}:frij°bk e gP dx] {uja}-[z zfu, 2% P dx] {:ja} 3.17

where 1,j =1,2, a=1,N, b= 1M, and k = l,nb

or in general form

[A) {ul =038 {t 3.18
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The integrals in Eq. 3.17 are easily solved numerically or
in closed form over the domain of each element. For Qbk d Pa, an
eight point gaussian quadrature formula is implimented 1in the
computer program, while for Qbk = Pa, closed forz solution for
the Inr singularity is calculated.

For the case of a traction problem where the t's are known,
or the case of a displacement problem where the u's are known,
Eq. 3.18 reduces to the form

[a]{x}={c} 3.19
Eq. 3.19 represents a set of 2N linear algebraic equations which
are to be solved by Gauss Elimination method. 1= case of mixed
boundary value problem, where some values of both t and u are
specified, it is necessary to interchange the coluzns of matrices
A and B (in Eq. 3.18), so that all the unknown guantities are
contained in the column vector u and the known values are
contained in t, before reducing the equation to the form of Eq.
3.19.

By placing the nodes at the corners of elements two
difficulties become apparent:

1) The possibility exists for nodes to be placed at sharp
edges of the body rather than at flat surfaces. Cij’ in Eq.
3.16, is equal to 1/2 61j for flat surfaces. For nodes at edge
discountinuities Cij can be computed in two wavs. One uses a
limiting process as derived in Appendix A. The second method is

based on rigid body motion, as explained in Ref. [38], and is
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given below:

N
b
Cyy(,0) = —Z_:l T, (P.Q) for P # 3.20

In the computer program, all Cij terms are computed using Eq.

3.20. The value for C on flat surfaces was computed by the

1j

above equation and it was found to be exactly equal to 1/2 Gij as
predicted by the analytical formulation of Appendix A. The
second method was implimented in the computer program merely as a
check to the numerical integrations.

2) Placing nodes at corners of elements assures the
continuity of displacements and tractions. However, in modelling
real problems a step change in traction may exist. To assure
discontinuity of applied tractions, the input values of traction
are associated with the element they act on instead of the nodes.
As an example, consider two adjacent elements which lie in two
different planes ( see Fig. 3.4). Element 1 is under uniform
tension t while Element 2 is traction free. If the traction is
associated with node A directly, an extra shearing traction
exists in Element 2 varying from zero at node C to t at node A.
By assigning the traction to a node of a specific element, in
this example to node A of Element 1, the problem of adding extra
traction is avoided. Alternatively, one can place two distinct
nodes between elements 1 and 2, Fig. 3.4.b, but this method is

not implemented here.
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Some simple examples are shown next to test the boundary

integral equation computer program written for the CRAY-XMP at

NASA Lewis Research Center.

3.4 Uniform Distributed Load

The computer program of the two dimensional Boundary
integral equation method (BIEM2), {is first applied to a
rectangular body with uniformly distributed vertical pressure on
part of the boundary, under plane strain conditions, see Fig.
3.5. To simulate the semi-infinite region a uniform reaction
force was applied to the bottom part of the plate. The
dimensions of the body are W/b = H/b = 30, where H is the height,
W is the width and b is half the length of the pressure applied.
The poisson's ratio is equal to 0.3, and the applied pressure
load is normalized with the modulus of elasticity, p/E = l.

Two different sets of runs are studied. 1In the first set
linear elements are used, while in the second set the quadratic
elements are implimented. Different number of nodes are used in
each set to analyze the order of convergence of the specific
element type. A mesh generating program was written to
facilitate the input data for the boundary discritazation. The
required inputs are the material properties, the number of major
subdivisions with the number of nodes desired in each one of

them, and finally the coordinates of these major subdivisions.
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The computer program (GENE1) will then generates the coordinates
of the nodes and the element formations, with the proper fixities
and loading conditions. Any loading condition can be implimented
by just changing the loading function in the program.
Coordinates of internal points, if desired, are also generated.
For the above example, nine major subdivisions are chosen, (see
Fig. 3.6), with fixities in the y-direction at coordinates 2 and
6, and in the x-direction at coordinate 4. A uniform traction is
applied between coordinates 8 and 9, and along the bottom plate
from coordinate 3 to 5. The numbers of nodes used in each
subdivision is shown in Fig. 3.6. For the convergence analysis N
in each mesh was 2, 4, 8, 16, 24, and 32 respectivelv.

To study the convergence of each element type, the values of
the stresses at five internal points, picked below the edge of
the uniform load, at distances y = b, and x = b, 2b, 3b, 4b, 5b,
respectively, were compared, (see Fig. 3.6). Table 3.1 shows the
values of the stresses for different mesh size at x = b and y =
2b. Good égreement with the closed form solution is observed for
N = 32, for o] and %ﬂ but for o, the error is much higher

Xy

because of truncation error.

A plot of the average error for the stresses ( 0, 0 , O ),

x’ 'y’ xy

as function of the number of nodes, for the two type of elements
1s shown in Fig. 3.7. The average error of all the stresses for
those five points is obtained from the elastic solution of a

semi-infinite region and the analytical results from the BIEM
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Table 3.1 Variations of the Stresses O Oy» and Oxy' as a
Function of the Mesh Sizes, for an internal point

at x = b and y = 2b of the uniform loaded plate.

o./p oy/p oxy/p

N linear Quad. Linear Quad. Linear Quad.

2 -0.1142 -0.1195 -0.3718 -0.3840 0.1205 10,1326
4 -0.1088 -0.1063 =~-0.4020 -0.4117 0.1338 0.1412
8 -0.1002 -0.0980 -0.4138 -0.4165 0.1479 0.1531
16 -0.0972 -0.0963 -0.4128 -0.4124 0.156! 0.1588
24 -0.0969 -0.0964 -0.4120 -0.4112 0.1573 0.1593

32 -0.0967 -0.0966 -0.4105 -0.4098 0.1586 0.1595

exact ~-0.0908 -0.4092 0.1592
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program. As seen in the figure, the difference between the
linear and the quadratic elements is very small for the same
number of nodes, and both methods converge to the same answer.
This shows that for this problem, the converged solution does not
depend on the element type. The advantage of the quadratic
elements over the linear elements comes into consideration in the
CPU time required to set up the integral equations. Since the
integrals are evaluated over each element, and the number of
elements for the quadratic type is half the number of elements
for the linear one, the time needed is cut in half.

Fig. 3.8 shows the CPU time in seconds required on the CRAY
XMP, for the linear and quadratic elements as a function of the
number of nodes. As seen in the figure the average saving in CPU
time between the quadratic and linear elements is about 33%. The
reduction is only 33% because the CPU time reported is the total
CPU time needed to set up and solve the syster of algebraic
equations, and both element types need the same solving time, for
the same number of nodes. Considering the saving in CPU time,
quadratic elements were used in the application of the BIEM to
the mixed-mode failure of the inner raceway of the high speed

bearings, and in the following examples on the stress intensity

factor calculations.
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3.5 Determination of the Stress Intensity Factors

The next examples relate to the determination of the stress
intensity factors for bodies with cracks using the BIEM. There
1s extensive literature on the numerical determination of the
stress intensity factors. One of the methods which was adopted
from finite elements is the use of a singularity element at the
crack tip, Ref. [39]. The simplest crack singularity element is
the quarter point element, where the mid-point of the quadratic
element at the crack tip is moved to the quater point position,
Ref. [39]. The disadvantage of these elements is that a
transition element is needed and the crack tip should be fixed to
give accurate results for the stress intensity factors. A second
disadvantage is that the length of the crack tip element affects
the result. Therefore, the length of the quarter point element
has to be adjusted until the desired accuracy is achieved. Due
to these disadvantages, this method is not implemented here.

The second method to determine the stress intensity factors
is based on their basic definitions; as the 1limit of the stress
multiplied by the square root of the distance to the crack tip,
for the stress ahead of the crack tip, at a distance of 0.2 of
the crack length to 0.5 of the crack length, (See Eq. 2.3). In
this method the stresses ahead of the crack tip, the tangential
stresses and the shear stresses, are multiplied by the square

root of 2mr and plotted versus r. Curves are then fitted
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throught those points and the values at r = 0, equal the stress
intensity factors, KI and KII respectively. This method 1s also
known as the extrapolation method for determining the stress
intensity fgctors.

Finally the J integral as defined in section 2.3 can be
evaluated along any path around the crack tip, and the values of
the resulting integrals are p;oportiona] to the stress intensity
factors. The extrapolation method and the J integral method are
compared next far a single edge crack under mixed-mode loading
condition.

The single edge crack under uniform tensile load is analyzed
first, with dimensions a/H = 1/15 and W/H = 1, where a 1is the
crack length see Fig. 3.9. The tensile stress, t, is normalized
with the modulus of elasticity E, t/E = 1. The number of nodes
in each subdivision are shown in Fig. 3.9. The number of nodes,
N, along the crack, 1is varied between 20 and 140. The mode I
stress intensity factor, KI’ was calculated using the
extrapolation method using internal points ahead of the crack tip
between 0.2a and 0.5a. For points closer than 0.2a, the values
of the stresses are not accurate. The variation of KI with the
number of nodes along the crack front is shown in Fig. 3.10. An
asymptotic value for the stress intensity factor is reached for
values of N greater than 100. Comparing the asvaptotic value

with the published solutions, Ref. [40], the difference between

the two values 1s less than 1%. The J integral was also
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Crack Front

Path 3

3

L

.11

2a

The Three Paths Considered for

Calculations.

the J Integral
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Table 3.2 Variation of the J integral and the Corresponding
stress Intensity factor for different paths, for

the Pure Mode 1 Loading Condition.

Path J.E K

Eq. 2.13  Eq. 2.14

1 3.8052 2.045
2 3.8115 2.046
3 3.8146 2.047
extrapolation 2.045

Ref. [40] 2.032
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calculated for N equals 100. Three different rectangular paths
were chosen as shown in Fig. 3.11. To determine the values of
ui,l in the J integral formulation, neighboring posints were also
used to determine numerically the values of the derivative of the
displacement. The values of J integral for the corresponding
paths are shown in Table 3.2, based on Eq. 2.13. Also shown is
the corresponding mode I stress intensity factor using Eq. 2.14,
and the results using the extrapolation method as well as the
published solutions from Ref. {40]. As seen fror. Table 3.2, the
results of the three different paths agree well with each other
and also give the same result as the extrapolatior method. Thus,
the J integral and the extrapolation method give the same value
for the stress intensity factor for this pure mode I case.

The second example is for a plate with a crack under shear
mode loading, pure mode II, see Fig. 3.12. The dizensions of the
plate are the same as for the mode I case; a/H = 1/15, W/H = 1.
Two antisymmetric uniform applied pressure loads are located at
equal distance from the crack plane. The distance Yo of the
mid-positions of the pressure load to the crac< plane equals
0.253.‘ The magnitude of the pressure P applied equals 50E, and
acts on a segment of length equals 0.0la. The variations of the
mode II stress intensity factor as a function of the number of
nodes along the crack front, using the extrapolation method, is
shown in Fig. 3.13. An asymptotic value for the mode II stress

intensity factor is reached at values of N greater than 100. The
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J integral method was also calculated using both formulations as
describe in section 2.3, Rice formulation Eq. 2.13 and Bui
formulation Eq. 2.16, for N = 100. For Bui's formulation the

stresses and the displacements along any path hal to be devided

into symmetric and antisymmetric parts:

Displacements:

- 1 -
uI ru + u'
X x X
I =1/2 Svemetric
u u - u'
Ly -y y 4
I -
[y T (u - u'
X x
11 = 1/2 Artisymmetric
]
v Lu +u d
y y y
Stresses: -1 1 r . -
O xx O xx 0 xx
J =1/2 |© + Svzmetric
yy yy yy
1
LOxy. LO'xy dxy_
11 - -
o ] o.. - @
XX XX XX
11 .
o =1/2 |o - d Antisymmetric
yy yy yy
11
+
O xy [Oxy * Ixy]
where the ' indicates the component of the stress or the

displacement at the opposite position, with respect to the crack
plane, of the point under considreration, see Fig. 3.11. Table
3.3 represents the values of the J integrals for the two

formulations: Rice (J, J,) and Bui (JI, J along the three

ll)’

paths given in Fig. 3.11 for the pure mode 11 exaxzple.




Table 3.3 Values of the J integral for the Three Paths, for

the Pure Mode II loading Condition, (p/t = 50).

Rice Bui
Path J]E J2E JIE JIIF
2 2 2
t a t a t a t a
Eq. 2.13 Eq. 2.16
1 0.40877 0.00 0.00525 0.40353
2 0.44304 0.00 0.00168 0.44217

3 0.39522 0.00 0.00074 0.39449
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Table 3.4 Values of The Corresponding Mode Il Stress
Intensity from the J Integral Calculations, and

the Value from Extrapolation method, (p/t = 50).

Rice Bui
Path KI KII KI KII
tva t/a t. A t/a
Eq. 3.23 Eq. 3.24
1 0.00 0.6702 0.07596 0.6659
2 0.00 0.6978 0.04297 0.6971
3 0.00 0.6590 0.02852 0.6584

extrapolation

0.00 0.7414
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The values of the corresponding stress intensitv factors are
determined using the following relations:

For Rice J integral:

K12_= 2 E ( Jl + \f le - J22 Y/ {(1+ V) (k+1)"

' 3.23
K..2=4EJ / {(1+v)(»<+1})} x. 2
II 1 I

For Bui J integral:
KI2 =4EJ;/ {(1+V) (k+1))
3.24
2_

K= 4 E JH/ {(14+V) (k+1)}

where V is the poisson's ratio and Kk is as defined earlier equals
(3-4V) for plane strain condition.

The corresponding values of the stress intensity factors
from thé J integral results are shown in Table 3.4, using
relations 3.23 and 3.24, for Rice and Bui formulation,
respectively. Also shown, the mode II stress intensity factor
using the extrapolation technique. Both J integra! formulations
gave consistent results, which are on the average 9% below the
extrapolation result. But looking at the results for different
paths, the value of K changes by almost 57 betwcen each path.

11

The difference between the two J integral formulations is not yet
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obvious until the mixed-mode loading condition is analyzed.

For the mixed-mode 1loading condition, both cases analyzed
above are combined together, see Fig. 3.14. The same dimensions
and loading conditions are implimented in this example. Table
3.5 summurizes the values of the J integrals from both
formulations for this mixed-mode loading condition. Also shown
are the corresponding stress intensity factors usiag Eq. 3.23 and
Eq. 3.24 for Rice and Bui formulations, respectively, along the
same three paths described above, see Fig. 3.li. While Bui's
formulation gives consistent results with the pure mode cases,
Rice's formulation gives completely different answars, especially
for the KII stress intensity factor. A 337 di‘ference in the
value of the mode 1l stress intensity factor is observed, between
the pure mode II and the wixed-mode case. This drop in the value
of KII is due to the incorrect J2 integral formulation as
discussed by Bui, Ref. [22]. Comparing the values of the mode 1I
stress intensity factor between different paths, there is a 1ll1%
change in the J2 between path 1 and path 3. The values of the
stress intensity factors, KI and KII’ from the extrapolation
method are exactly equal to the pure mode results.

Due to the above controversy, the extrapolation method is
used in the application of the BIEM to mixed-molds failure of the

inner raceway of the high speed bearings.



Table 3.5 Values of The J Integral Results with the

Corresponding Stress Intenéity Factors, for

the Mixed-Mode Loading Condition, (p/t = 50).

Rice
Path JlE JZE
t a tza
Eq. 2.13
1 4,1986 1.8082
2 4.2400 1.7836
3 4,.1938 1.6154
KI KII
tva tva
Eq. 3.23
1 2.0950 0.4742
2 2.1079 0.4649
3 2.1049  0.4217

extrapolation

Bui
JIE JIIE
t2a t a2
Eq. 2.16

3.7951 0.4.35
3.7979 0.--22

3.7993  0.3345

2.0422 0.€£59

2.0429  0.6971

2.0433  0.6384

2.0450 0.7-14



CHAPTER FOUR
APPLIED LOADINGS ON THE INNER RACEWAY OF BEARINGS

As a first step towards attempting to determine the crack
propagation rate and the time to failure of the high speed
bearings, the loading acting on the Inner raceway should be
determined. The most important loadings are the tangential
stresses due to the rotational speed and the press fit, and the
next important loadings are the Hertzian stresses, which alter

the tangential stresses with each passage of the heavily loaded

roller.
4.1 Tangential Stresses

The tangential stresses in the inner raceway are due to the
rotational speed and the press fit of the inner raceway on to the
shaft. Fig. 4.1 shows a simplified bearing configuration mounted
on a hollow shaft. The solutions of the tangential stress in the
inner raceway, modelled as a rotating disk is found to be, from

Ref. [41]:
0ao={(3+\))/8‘ pw?[r12+r02+r12r02/r2_ [(1430)7(3+) SRR

where p is the density of the material, w is the rotational speed
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and r is the radial distance, and T and r, are the inner and
outer radii of the rotating disk. The most critical point for
surface initiated crack propagation is at the outer radius of the

raceway, r = ro. Substituting the value of r for r in Eq. 4.1,

the tangential stress at r = r, equals:

Oge ={(3+v)/4} pu?lr,? + { 1-0)/(3+0)} r 2] 4.2

For typical aircraft engine bearings the ratio b-tween the outer
radius to the inner radius of the inner raceway ezuals 1.13, Ref.
[42]. Subtituting the value of r, as a function of the inner
radius of the raceway, L and making use of the DN value, which
is the product of the bearing bore in millimeter times the shaft
rotating speed in RPM.' The tangential stress at the outer radius

will have the following relation assuming a poisson's ratio of

0. 3:

o = 3.32075 x 102 (DN)? (psi) 4.3

86

where the density p is assumed to equal 0.288 1b/in3. A plot of
the tangential stress versus the DN value is shown in Fig. 4.2.
Also shown is an estimated critical crack length required for
unstable crack growth. This estimate is derived for an edge
crack in a semi-infinite plate with an applied normal stress

equal to the tangential stress at the outer radius of the inner
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raceway.

KIC = 1.12 Oee‘ac'ﬂ' 4.4

where the value of KIc i{s the critical stress intensity factor
for unstable crack growth. The value of KIc used is equal to
17.5 Ksi/In, which is a typical critical stress intensity factor

for M50 bearing steel. As seen from the equation, the critical

crack length is inversly proportional to the fourth power of the

DN value:
a, = 7.047 x 10* (N~ (in) . 4.5

The critical crack length required for unstable crack growth
decreases rapidly for DN values greater than 1.5 million. For a
DN value equals 3 million, the critical crack length is almost
1/3 of the total raceway thickness. However, the effect on this
critical crack length due to the press fit of the inner raceway
onto the shaft ring should be estimated.

The effect of the press fit is to increase the tangential
stresses in the inner raceway causing the critical crack length
to decrease. A typical interference fit of the inner raceway on
the shaft is 0.00233 in (0.059 mm) at O RPM, Ref. [42], causing a
uniform pressure p = 1,974 psi along the interference radius, for

two cylinders having the following dimensions; r, = 2.6 in, T, =
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2.3 in and r'o = 2.3023 in, r'j = 2.0 in. The tangential stress

due to a uniform pressure distribution is given in Ref. [41]:
_ 2 2 2 2,2
Oge = P { Ty /(ro T, Yyl + r, /r” ] 4.6

For r, = 2.3 in and r, = 2.6 1in the tangential stfess is equal to
16,178 ksi at r = ro, the outer radius of the inner raceway. But
at increasing RPM the interference fit is reduced due to the
radial displacement caused by the centripetal acceleration.
Thus, a reduced pressure will develop between the inner raceway

and the shaft which causes the interference fit to decrease with

increasing speed:

s = 0.00233 - 10463 x 107'° 00  (an) 4.7
where énew is the new interference fit at a given DN value.
The pressure that develops from this new interference fit, will
cause a tangential stress at the outer radius of the inner
raceway which is given as:

10 o2 (pst) 4.8

Ogg = 16,178 - 7.265 x 10”7
The net tangential stress at the outer radius of the inner
raceway of the bearing, will be the sum of the two stresses due

to the rotational speed and the press fit at a given DN value,
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given as the sum of Eq. 4.3 and 4.8:
O -9 2 ,
go = 16,178 + 2,59425 x 10 (DN) (psi) 4.9

and the critical crack length for the combined tangential
stresses will be:

a = 7.77x 107/ (16,178+2.59425x10'9 DN2)2 4.10

A plot of the net tangential stress and the corresponding
critical crack length acting at the outer radius of the inner
raceway is shown in Fig. 4.3. The critical crack length
calculated for a DN value of 3x106 is much than the defect depths
which are of the order of 0.004 in. Thus, the only cause for the
crack to grow from a small surface furrow or a debris dent is
through a fatigue process developed by the alternating Hertzian

stress.
4,2 Hertzian Pressure

When two bodies are in contact, special attention must be
paid to the deformation in the contact region. The original
analysis of elastic contact stresses under static loadings was
published by Hertz in 1882 [43]. 1In his honor, the stresses at

mating surfaces of curved bodies are commonly called Hertzian

C-"o~—
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stresses. The actual load-carrying capacity of bocdies in contact
depends upon more than the elastic stress computed from Hertz
equations. Surface sliding, lubricating fluid filzs and surface
roughness should also be considered. In this section only the
elastic solution under ideal surface conditions is assumed.
Hertz's analysis showed that for two spherical bodies in
contact the pressure distribution, which causes a wuniform
displacement field in the contact region, is represented by an
elliptic pressure distribution, see Fig. 4.% having the

following equation:

) . i, i _ 2,2
p-po\jl-x/a - y“/p 411

where Po is the maximum pressure at the center of the contact
region, and a and b denote the major and minor semiaxes of the
contact surface for two spherical bodies in conta:zt. The total

load applied will be equal to:
P =(2/3) Tab Py 4.12
For two cylindrical bodies in contact, (roller bearings), the

major semi-axis, a, goes to Iinfinity and the pressure

distribution will have the following form, see Fig. 4.5:
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Fig. 4,4 Elliptic Pressure Loading for tv: Soheres

in Contact.

Fig. 4.5 Pressure Loading for Two Cylinder: in (ontact.
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resulting in an applied total load which equals:

P=(1/2) "bLp, 414

where b is the minor semi-axis and L is the length of the roller
bearing.

To determine the dimension of the minor semi-axis, b, of the
contact region, the curvature and the material properties of the

two cylinders in contact should be taken 1into consideration.

Following Ref. [44], b equals:

g

b=2\j P((1-v) /E + (l—vz‘) / Ey)

T L ( l/r1 + l/r2 )

where T Vo and Ei are the radius of curvature, the poisson's
ratio and the modulus of elasticity, respectively, for the two
cylindrical bodies in contact.

When the applied load for a given bearing configuration is
known, the Hertzian stresses in the bodies can be easily
determined analytically or numerically. Smith and Liu, Ref. [44]
solved for the stresses for a semi-infinite plate under a
Hertzian pressure distribution using the integral equation

y
in Fig. 4.6, 4.7 and 4.8, respectively. Fig. 4.7 shows the

technique. The stress distributions cx, o , and cxy are given

variation of the tangential stresses with roller position. As

the roller gets closer to the line under consilerations, the
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stresses are highly compressive, and as the roller gets away the
compressive stresses die out quickly. For a surface defect, this
fast variations of the stress state superimposed on the
tangential stresses due to the rotational speed and the press fit
causes an alternating mode I stress intensity factor that can be
a driving force for the fatigue crack growth.

The second crack propagation mode is the shear mode, as seen
in Fig. 4.8. The shear stress increases as the roller gets
closer to the line under considerations, reaches its maximum at
the edge of the loading and then decreases quicklv. While the
normal stresses decay relatively fast for distances of x greater
than 5b, the shear stresses still have some effect at greater
depth.

Friction effect is sometimes superimposed on the normal
Hertzian loadings for sliding contacts. The friction is usually
represented as a fraction of the normal pressure acting in a

direction opposite to the relative motion, given by Ref. [44]:

Nal
]
[aa}
kel
;;_\

16

where f 1s the coefficlent of friction, and p in the normal
Hertzian load. 1In general, in the absence of viscosity effects
of the lubricant, friction changes little with speed. When
viscosity effects comes into consideration, two tvpes of behavior

are observed; for mineral oils friction decrease with increasing
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speed, while for fatty acids the opposite is observed. At high
speed, increase in friction is normally observed, Ref. [45]. The
variations of the stress distributions under the Hertzian
pressure with friction are shown in Fig. 4.9, 4.10, 4.11, for 0>
%, and c*y respectively. The friction coefficient, f, used in
the calculation, equals 0.3. The net effect of the friction is
to alter the symmetry of the normal Hertzian stress components;
increasing the stress when the friction acts in the direction of
the loadings and decreasing it for the other case. The most
important change in the stress distribution is for Oy’ which
becomes positive when the loading is on the left of the line
under consideration. For the shear stress, the negative
component of the stress distribution increases, while the
pssitive component decreases, Fig. 4.11.

The next step in the analysis is to include the effect of
the lubricating film since all high speed bearings are well

lubricated.
4.3 Elastohydrodynamics Lubrication

For the completeness of the analysis the fluid film should
be considered, in the presence of a surface defect or a surface
furrow.

The governing equation for the elastohvdrodvnamic lubri-

cation is based on Reynolds equation, which is a special case of
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the Navier equation for fluid bodies. Assuming ns side leakage,
the two dimensional Reynolds equation is given bv;
3
d ph dp dph

. . = 12 v 4.17
dy n dy dy

where p is the lubricant density
n is the lubricant viscosity
h is the film thickness
p 1s the pressure

v is the mean velocity of the lubricant (v1+v2)/2
The variation of the viscosity with pressure for liquids is:
n=nge &p 4.18

where o is the coefficient of the absolute viscosity at
atmospheric pressure, and £ 1s the pressure-viscosity coefficient
of the fluid.

The density variation with pressure is:
P =py [ 1+ ap/(1+bp) ] 4.19
where o is the density at atmospheric pressure, and where a and

b are pressure—density coefficients.

The film thickness is given by:
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2
h=hg+y /2 (U/r+l/r,)) +u +d 4.20

where ho is the minimum film thickness, r, are the radii of
curvatures of the two bodies in contact, u is the total elastic
deformation and d is the height of the surface defects in the
contact region due to debris dents or surface furrows.

The solution to Reynolds equation, Eq. 4.17, with the given
viscosity and density as functions of the pressure can only be
obtained numerically. The numerical technique used here is the
combination of the finite difference method for the solution of
Reynolds equation and the boundary integral =ethod for the
displacement calculations.

Fig 4.12 shows the flow diagram for the numerical technique
implimented. An initial pressure profile is assumed. Then, the
displacements for the given pressure profile are solved for,
using BIEM program. The film thickness h, froz Eq. 4.20, is
calculated next. The new pressure profile {s now determined
using the finite difference method. Due to the high gradients of
dp/dy and d2p/dy2, a new smoother paramater, ¢ , is introduced,
defined as:

3/2
¢ =ph 4.21
Note that p is small at large values of h and vice versa. This
subsitution also has the advantage of eliminating all terms

containing derivatives of h and p or h and ¢. Therefore, the

Reynolds equation in terms of the new paramter ¢ will be:
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Initial Pressure Profile

Hertzian Pressure

Determine the Elastic Displaceme-t

from BIEM program

Calculate h (Eq. 4.20) 1

Modify ho

Solution of Reynolds Equation for :

Gauss Siedel (Eq. 4.24)

Check convergence on ¢ 2

~T
yJES

Check changes in Pressure

no

¥
YgS
Compare input load to calculated loac '-no—J

yes

Fig. 4.12 Flow Diagram of the Elastohydrodynrz=i: Lubrication
Problem




¢ I
af.d (P d 3 d  Ph? dh dPh
| 4,22

dy' N dy 2 dyl n dyl dy

Using standard finite difference representation, Eq. 4.22 can be

rewritten as:

+ =
a1y % 82,1 oy 33,1 Yie1 T By 4.23
where 3 3
h,'6 h_/ﬁ
81,= 1 e a _=_1 [
s 1 42 n i-% 3,i g2 n i+
3
Ve
h, 2 3 . dh , dh
821=-— e + P - D R e S e
’ a2 | M+ Th-y 2" gy L+l " dy li-1
12 u
bi = ph - ph d = nodal distance
2 d i+l i-1

The system of equation of Eq. 4.23 is solved using the Gauss
Siedel iteration method until ¢ does not vary. The relaxed Gauss
Siedel method of iteration is given by:
(I +w a 1a)cb ={(l-'w)1-‘wa a}¢>"+wa-1b 4,24

2 1 2 3 2
where w Is the relaxation coefficient. The Guass iteration will
continue until ¢ does not vary.

The new pressure 1s calculated and compared with the
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original pressure. 1f the difference is much bigger than a
certain tolerance, a new displacement field will be calculated
using the BIEM program. 1f not, the load generated from the
pressure is measured and compared with the applied load required.
If the two loads do not compare, a new film thickness hO is
estimated and the calculation is repeated until convergence.

The boundary conditions for the Reynolds equation are:

1) p =0, for regions far from the contact area
2) p is reset to zero at any position when the pressure is
negative
The second condition is commonly known as the Reynolds condition,
which is based on obervations that a negative pressure cannot
exist in the contact region.

An initial run was performed using constant viséosity and
density, with and without a surface furrow. The pressure
profiles are shown in Fig. 4.13, for a defect depth equals 0.0030
in. and a Hertzian load of 15001bs. The pressure distribution
drecreases shafply at the tip of the defect and increases to the
original pressure distribution after the defect. As the depth of
the defect increases the pressure in the pocket decreases to
zero. Therefore, one can assume that with the presence of the

surface crack the pressure of the lubricant in the crack can be

taken as zero.
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4.4 Initial Estimate of The Stress Intensity Factors

As a first estimate, the stress intensity factors, KI and
KII’ were evaluated using the superposition method. This method
consists of evaluating the stresses in an uncracked body and then
applying the negative of the stresses for the uncracked body
along the crack faces of the cracked body to determine the stress
intensity factors. Fig. 4.14 represents a schematic diagram of
the superposition method used. Fig. 4.14.a shows a cracked plate
with the tangential stresses and the Hertzian Joading. This is
equated to the sum of a plate with the same loading conditions
but without a crack, Fig. 4.14.b. and a cracked plate loaded only
along the crack faces with the negative stresses of the uncracked
case. The stress intensity factors are then determined by
sumning the effect of every point load using available solutions.

The stress intensity factors are given by:

K, =2/ /37 “j;xx/\f(l - (x/a)? ) F(x/a) dx

KH‘ 2/ Ja 'n'/:) xy/\f(l - (x/f.l)2 )  F(x/a) dx

where F(x/a) is given in Fig. 4.15 from Ref. {<2], for a point

4,25

load along the crack faces at distance x from the crack tip. The
stresses used in this superposition method were the tangential

stresses due to the press fit and the rotationa! speed combined
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Fig. 4.15 Solution for the stress intensiIt- factors for

a point load on the crack face. Ref. [4a0].
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with the Hertzian stresses for a given roller position and crack
length.

Fig. 4.16 represents the variation of the mode I stress
intensity factor as a function of the roller position for
different crack lengths, a/b. The value of the maximum Hertzian
pressure, pg, used in this example, equals 180ksi, with a semi-
major axis, b, equals 0.005 in. The change in the KI stress
intensity factor decreases with increasing crack depth a. For
small crack depths KI is negative, indicating crack closure, due
to the high compressive Hertzian stresses. The variation of the
mode II stress intensity factor with roller position is shown in
Fig. 4.17 for different maximum Hertzian pressures Ppe The
variation of the maximum KII stress intensity factor with crack
depth for Py equals 180ksi is shown in Fig. 4.18. The maximum
mode II stress intensity factor increases sharply for small crack
depths, reaches a maximum value, and then decreases slowly as the
crack depth increases. These results show the variation of the
stress intensity factors with each passage of a roller. As seen
from the figure, the stress intensity factors are well below the

critical stress intensity factor, of M50 bearing steel, for

KIC’
a crack depth less than 0.06 in. Therefore, the only criteria
for the failure of the inner ring from a very small surface
defect 1s through a fatigue process due to the combined
alternating stress intensity factors, A KI and :KII, as shown

in the next chapter.
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Although this method gives accurate solutions for the stress
intensity factors for straight cracks, a more generalized method
should be used to determine the complete stress and displacement
distributions around any arbitrary branched crack. The
generalized method that will be used to determine the stress and
displacement fields as well as the stress intensity factors, for
any arbitrary oriented crack, is the BIEM as will be seen in the

next chapter.
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CHAPTER FI1VE

MIXED-MODE FAILURE ANALYSIS OF THE INNER RACEWAY

OF HIGH SPEED BEARINGS

Chapter One described the different failures observed in the
inner raceway of bearings, and especially the new catastrophic
failure recently detected in test rigs for high speed aircraft
engine bearings. This chapter utilizes the mixed-mode failure
criteria of chapter Two to analyze the causes that lead to the
brittle failure of high speed bearings, using the boundary
integral method described in chapter Three and the major loading
conditions summarized in chapter Four. The interaction of the
Hertzian stresses and the tangential stresses due to the
rotational speed and press fit, in the presence of a surface
defect are first described In terms of the stress intensity
factors, KI and KII' Then, the crack propagation direction is
determined using the different crack growth criteria described in
section 2.4. Finally, the time to failure 1s estimated using

fatigue failure data of M50 bearing steel.

5.1 Stress Intensity Factors

The stress intensity factors are determined for a typical

roller bearing used as a support for the main shaft of aircraft

120
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Table 5.1 Typical Roller Beariangs for Turbine

Engine Main Shaft.

-Roller Diameter 0.5 in.
-Roller Length 0.57322 in.
-No. of Rollers 28
~Shaft Inner Radius 2.0 4in.
Outer Radius 2.30233 1n.
-Inner Raceway Inner Radius 2.300 in.

Outer Radius 2.600 in.

P Tuomnr Dadiua 21
a Peds e s

- ‘ﬂ

Outer Radius 3.35 in.
-Shaft Speed 25,500 RPM
-Load on most heavily loaded roller 500 1bs., 1,000 1bs.,
1,500 1bs., 2,000 1bs.

-Interference fit of inner raceway 0.00233 1n.

onto the shaft at 0 RPM
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engines. The dimensions of the bearing and the shaft are shown
in Table 5.1. A two dimensional analysis is performed assuming a
plane strain condition, representing the mid-section of the inner
raceway. This approximation is assumed sufficiently good to
identify some mechanisms that lead to the catastrophic failure of
the inner raceway. The inner raceway was modelled as a plate
with width equal to the inner raceway thickness and length twice
the width, corresponding to the distance between two rollers.
The curvature of the raceway was ignored since the ratio of the
raceway thickness to the outer radius of the inner raceway is
small.

The tangential stresses applied at the edge of the plate are
calculated from the solution of a rotating disk at 25,500 RPM
superimposed onto the tangential stresses of‘the press fit at the
same rotational speed. The calculated tangential stress at the
middle of the inner raceway was 42,300PSI., The variation of the
tangential stress along the radius was approximated by a linear
curve, decreasing to about 7% of the mid value.

A reaction pressure load was applied at the bottom of the
plate to simulate the contact stresses trahsfered from the inner
raceway to the shaft. The corresponding load of this pressure
will be equated to the applied Hertzian load. Different Hertzian
loading condition are assumed giving rise to different maximum
pressures p and contact lengths b.

Table 5.2 summarizes the four Hertzian loading conditions
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Table 5.2 The Geometry of the Hertzian Pressure
distribution for different loads.

P 1bs. b in. P, ksi.

o Xs81.
500 0.00392 142.
1,000 0.00554 200.
1,500 0.00679 245,

2,000 0.00780 283.
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used in the analysis. Fig. 5.1 shows the geometric modelling of
the 1inner raceway and the number of nodes wused in each
subdivision for BIEM analysis.

The stress 1intensity factors are determined using the
extrapolation method described 1in section 3.5. The shear
stresses axy and the normal stresses oy are multiplied by the
square root of the distance to the crack tip and plotted versus
that distance. Their intercepts with the axis at r equals zero,

are proportional to the stress intensity factors KII and KI

respectively. The stresses used in the extrapolation method were
taken between 0O.Z2a and 0.5a ahead of the crack tip.

To simulate the passage of each roller, the Hertzian loading
is moved incrementally along the top'face of the plate. The
dynamic effect was ignored assuming steady state solution.

A typical variation of the mode I stress intensity factor
with roller position and crack depth is shbwn in Fig. 5.2, for a
Hertzian load equals 1,500 1bs. As seen from the figure, the
compressive stresses of the Hertzian loading cause the decrease
of the constant value of the mode I stress intensity factor due
to the tangential stresses of the rotational speed and the press
fit. For very small cracks, KI is constant and then decreases
rapidly as the roller approaches the crack and increases rapidly
again after the roller moved away from the crack. The negative
KI values observed indicates crack closure. For large cracks the

rapid decrease in KI diminishes and practically disappears since
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the crack tip at these lengths has passed outside the highly
compressive Hertzian stress field.

These variations in KI can result in crack growth for small
cracks. However, there is another stress intensity factor namely
the shear‘mode or mode II, which may play a more important role
in crack propagation. The variation of the mode 11 stress
intensity factor 1is shown in Fig. 5.3 for the same Hertzian
loading condition as above. The value of KII starts at zero when
the roller is far from the crack tip. As the roller approaches
the crack, KII starts to decrease until it reaches a minimum, as
the Hertzian nressure distribhution reacrhes the errack. then
increases rapidly back to zero. When the roller starts to move
to the other side of the crack it changes sign and starts to
increase to the maximum value and then decreases back to zero.

For small cracks the change in KII is very abrupt, but for deeper

cracks, the change in KII is more gradual. The change in KII

persists at greater depths than KI.

The variations of the stress intensity factors with roller
position for different Hertzian loading are shown in Fig. 5.4 and
5.5 for KI and KII’ respectively, for a crack length equals
0.008in. As seen in the plots, the greater the Hertzian load the
greater the change in the stress intensity factors.

Fig. 5.6 represents the maximum absolute value of Kit for
different applied Hertzian 1loads. The wvalues of KII increase

until reaching a maximum at depths which correspond to the
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maximum shear stress and then decrease slowly. This 1is due to
the fact that although the shear stress decreases as we move down
from the surface causing KII to decrease, the increase in crack
length causes KII to increase.

When friction 1s added the stress intensity factors are
modified as shown by the stress distributions given in section

4.4, The variation of the stress intensity factors KI and KII

for different friction factors, f, ( £ = 0.0, 0.05, 0.1, 0.2,
0.3), are plotted in Fig. 5.7 and 5.8, for a crack length equals
0.002in. As the roller approaches the crack the friction forces

act in a direction to close the crack, causing K. to decrease

1
even more, but as soon as the roller passes the crack, the
friction forces act now to open the crack, causing an increase in
KI. As the roller moves further out, the effect of friction
disappears. As for mode II, as shown in Fig. 5.8, KII increases
in absolute value as the roller approaches the crack, and then
decreases as the roller moves to the other side of the crack
since at that point the shear stresses are positive while the
friction forces are still causing a negative shear.

Note that the stress intensity factors for the crack length

considered are below the critical value, K and when K_ is

Ic’ 1
maximum KII is zero and when KII is maximum, KI is almost
minimum. This lower than critical stress intensity factor and

phase shift causes a complex fatigue mixed-mode loaiing condition

that can only be analysed using the crack propagation criteria
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discussed in chapter Two.
5.2 Crack Propagation Directions

a) Static Crack Growth

‘To determine the crack propagation direction, an effective
stress intensity factor should be considered to combine the
mixed-mode loading effect observed with each passage of the
roller. The criterion, that will be mainly emphasized, is the
Ciath caitcusivu {uite wiiiciiun, also Raowa a3 the "Encrgy
Release Rate"”, as discussed in section 2.2. Therefore, the
stress intensity factors for every roller position, will be used
to determine the crack extension forces due to the tangential
stresses, Gee, and due to shear, Gre , for everv angle © around
the crack tip, using Eq. 2.10.

A typical variation of the maximum crack extension forces,
(2eeand Gre’ with roller position, are shown in Fig. 5.9 and Fig.
5.10, respectively, for a crack length equals 0.024in. The crack
extension forces due to the tangential stresses have a constant
value when the roller is far from the crack, (yo/b is large).

Gee starts to decrease with. the approach of the highly
compressive Hertzian stresses, then starts to increase to a new

maximum due to the sharp increase In the mode 11 stress intensity

factors present when the Hertzian pressure is at the edge of the



136

(u1400°0=B) SPEO1 ue1z3i13y ua13j3td
i0j uotarsod 12110¥ 30 uoi3ounj E BB S§33104

uoTsuaixg }oei1d {e13udduel wWnWIXeW 34l 3O uotl

»_\O\A

4 l 0

*sq1 00§
*sSq1 0001
*sqp 0041
*sq1 000<

peo1 ue¥z3i3H

ﬁ 0°¢

eriep 6°G "31d

(-ur--ysd) 9%




137

134

("ur %00°'0 =% )

¢ speO7 UBTZIA3H IU31333FA 10. uo}3ITSO04 12[[0Y jJO uofIduUNng

S

SaD104

UoJSuaINY

joed) 1vays whwiXxer gl jo uojieyaen 01°G 914

._\:>

o

*sq1 00S
*8q1 0001
Ry 0041
*sq1 000Z

pec ue}z3aal

0°0

%°0

8°'0

(A

9 e




138

crack, (yo/b=l.0). When the roller is positione? nn top of the
crack tip, (yo/b=0.0), the shear effect goes to zern, and the
crack is completely closed, causing the crack extznsion forces to
be zero, assuming no lubricant had leacked in the crack. The
same behavior is observed for the crack extensi:n forces due to
shear, as in Fig. 5.10.

With the presence of the Hertzian 1loading, two competing
mechanism exist; 1) due to the compressive Hertz:an stresses, the
crack extension forces are decreased, and 2) due to the shear
stresses, the crack extension forces are increasez.

The angle along which the maximum tangential crack extension
force acts, as a function of the roller position is shown in Fig.

5.11 and 5.12, for the maximum direction of Geeand G

_ re’
respectively. The angle starts at zero for the direction along
which the maximum tangential crack extensist forces acts,
implying KI is dominant, then starts to increase as the roller
approaches, until reaching a maximum value of 7J.53 degrees,
indicating a pure shear mode, at yO/b=1.O. T-e maximum shear
crack extension force acts in the opposite direction; acts along
70 degrees for the pure mode 1 case, for large yo’b, and at zero
degrees for the pure mode Il case, at yo/b=0.0.

Fig. 5.13 shows a comparison of the values of the different
mixed-mode crack propagation criteria; the maxiwtum tangential

stress, the minimum strain energy density factor, and the J

integral approach as defined in section 2.4. The tangential
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stress criterion corresponds exactly to the tangential crack
extension forces, Cee. All the criteria show th: same trend of
decreasing in wvalue as the Hertzian stress approaches and
increase sharpely due to the shear effect. The main difference
lies in the angle along which the maximum values act, as seen in
Fig. 5.14. The minimum strain energy criterion shows a maximum
at 83.61 degrees while the J integral at 0 degree, and the
tangential stress at an angle of 70.53 degrees, at yO/b=1.O.

Note that the maximum mode II stress intensity factor occurs
with negative KI values for small crasks, indicating crack
closure. It had been observed that when mode II is associated
with compressive normal stresses, friction occurs along the
contact crack faces, thus reducing the effective mode 11 stress
intensity factors, Ref. [47]. Swedlow, Ref. [48], proposed a
simple coulomb friction along the contacting faces of the crack,
acting in the opposite direction of the shear anZ proportional to
the normal compressive stresses. Since the crack modelled in the
BIEM mesh has a finite width, the compressive normal stresses on
the crack faces are absent. As a result, the effective mode II

stress intensity factor, KIIeff was approximated bv:

KIIeff = KII + f K1 if KI < 0 and KII 70

- 0
Kiterr = X1 1f kp 2
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where f takes the opposite sign of KII’ since th: friction acts
to the decrease the shear. Although this model is crude, it is a
good first approximation of the friction effect. The effect of
the friction model used on the maximum mode Il stress intensity
factor is shown in Fig. 5.15 as a function of the crack length
for different friction coefficients. KII decreases with

increasing friction factor until the crack length reaches 0.012in

where KI becomes positive, and no variation in K {s observed.

1T

The effect of the sliding friction, (friction between the
roller and the inner raceway), on the crack exrension forces is
shown in Fig. 5.16 and 5.17. Fig. 5.16 represents the variation
of the tangential crack extension forces as function of the
roller position, for a crack length equals 0.27-in. For yo/b
less than zero the crack extension forces increase with
increasing frictions, while decreasing with increasing friction
for yo/b greater than zero. This behavior is due to the friction
forces which act to open the crack on one side of the crack and
to close i1t when it is on the other side. The crack extension
forces due to shear behave in almost the same manner, as seen in
Fig. 5.18.

The third mechanism that also alter the variation of the
crack extension forces, is the lubrication effect when the roller
is on top of the crack, causing a normal stress distribution
along the crack faces. This mechanism can zodify the crack

extension forces 1f the lubricant can penetrate into the crack
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when the roller is on top of the crack tip. This mechanism
involves a complex fluid-solid interaction probliex, which has to
include the viscous-drag and the surface tension forces to
determine how far the 1lubricant can penetrate into the crack.

But as the roller approaches the crack, the normal
compressive stresses, oy, try to close the cracx and push the
lubricant out, before the roller gets on top of the crack. For
longer cracks, the commpressive stresses are limited to a small
distance close to the surface, and at greater depths the
stresses, Oy, are in tension, due to the tensile stresses of the
rotational speed. This effect causes the lubricant to be caught
inside the crack and to pressurize 1t.

A uniform pressure was applied along the crack faces, when
the roller is on top of the crack line, (yO/b=O.O). The pressure
assumed equals the maximum Hertzian pressure, Py The variation
of the mode I stress intensity factor as function of crack depth
is shown in Fig. 5.18, for yO/b=0.O. The values of KI are now
positive, due to the high pressure applied along the crack faces,
as compared to the negative values when no lubricant is assumed
leaked inside the crack. The values of KI increase rapidly with
increasing crack length, and reache the critical stress intensity
factor KIc at a crack depth equals 0.007in. This model is not
realistic since the crack is closed as the roller approaches the
crack line. If the crack is filled with lubricant, the high oy

stresses will push the fluid outside. So assuming that there is
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no lubricant leakage, is a good approximatiop for very thin
cracks.

Note that the results for the crack extension forces and the
crack growth directions are for static loadings at one particular
roller position. The crack extension forces given above are well
below the critical value for unstable crack growth, for crack
length below 0.05 in. assuming no-lubricant leakage. Thus, a
fatigue process has to take place for a small crack to grow from

the surface to the critical crack length.
b) Fatigue Crack Growth

The fatigue process 1is governed by the maximum changes in
the crack extension forces, Aij, and the mean valuelaij, as seen
in section 2.5. For a given crack length, a, the maximum and
minimum values of the crack extension forces are monitored for
every angle §, around the crack tip, as the roller approaches the
crack and moves away from it. The direction, ¢ pax’ which has
the maximum change in the crack extension force, will be the
direction of the crack growth. This model is based on the
assumption that an element oriented in the direction of the
maximum change in AGij’ accumulates the largest amount of damage
with each passage of the roller, making this element the first to

open up and join the main crack.

Fig. 5.19 and 5.20 show the values of the maximum changes 1in
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the crack extension forces,AGre and AGee, as functions of crack
depth. The maximum change in the tangential crack extension
forces . keeps on 1increasing with increasing «crack length,
Fig.5.19, while the change in the shear crack extension force
increases sharply until reaching a maximum value then decreases,
gradually, Fig. 5.20.

The actual directions of the crack growth could be plus or
minus the presented values since we have complete reversal of the
stress intensity factors when the roller créss from one side of
the crack to the other. This symmetry will break down only when
sliding friction is present.

The angle along which the maximum AGee acts, starts at a
constant value of 70.53 degrees for very small cracks and high
Hertzian loads, and then starts to decrease gradually with
increasing crack length, Fig. 5.21. This constant value of the
direction of the maximum AG68 is due to the pure mode II stress
intensity factor associated with negative KI. For very small

cracks and low Hertzian loadings, the change in KI is negligible

1
compared to the change in KI’ due to the high compressive
Hertzian stresses and low shear stresses, causing the maximum
change to occur along zero degrees (as seen in Fig. 5.21 with a
Hertzian load of 5001b. and a crack length less than 0.004 in.).
‘The angle along which the maximum change in the shear crack

extension forces acts, starts at zero and increases gradually

with increasing crack lengths, Fig. 5.22. The crack length where
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the angle starts to deviate from zero increase with the increase
in the Hertzian load.
To determine which mode is the crack driving force, (shear

growth or tensile growth), the values of Ag and AGr are

66 6

compared with the threshold values for the material under
consideration. Fig. 5.23 gives the regions for different crack
growth modes. For values of Acbe greater than 0.49 psi-in, Ref.

[49], the tensile mode is dominant and will control the crack

growth direction and rate. For value of AGeeless than AG

goth’

two regions are considered depending on the value of AGre. For
G

values of A 6 less than AGreth there is no crack growth, while

for values above A the shear mode is the crack driving

Greth’
force.

Taking into consideration the above crack growth regimes, it
is obvious that for crack depths less than 0.002in, the crack
growth is governed by shear, while for a crack depth equal and
above 0.002in the tensile crack growth is dominant.

When sliding friction is present, (friction between the
roller and the inner raceway), the change in the crack extension
forces increases with the increase of the friction factor. The
main effect of friction is to make the crack extension forces
non-symmetric, causing the crack to grow mainly in the direction
opposite to the rolling direction, as observed experimentally,

Ref. [50]. Table 5.3 presents the variation of the crack

extension forces and the directions they act on and a Hertzian
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Fig. 5.23 Crack Growth Mode for M50 Steel.
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Table 5.3 Variation of the Maximum Changes in
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Co0*

and their corresponding angles, for Different

ro

Friction Coefficient for two crack Lengths,

P = 1,500 1bs.

a
0.002 in.

8Ggq S AGre 8
0.81528 71. 0.61152 O,
0.97454 71. 0.73098 O,
1.1424 71. 0.85689 O,
1.5231 71. 1.14247 O.
1.9567 71. 1.46769 O,

a
0.004 in.

BGgg © Mg ©
2.,2626 71. 1.69716 O.
2.5972 71. 1.94813 O.
2.9604 71. 2.22055 O.
3,7565 71, 2.81766 0.
4,6473 71. 3.48578 0.
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Table 5.4 Variations of the Maximum Change ia Ggp

and G Assuming a Coulomb Friction Along the

ro’
Crack Faces, a = 0,004 1in. and P = 1,500 1bs.

f AGee 6 AGre 0
0.000 2.2626 71. 1.69716 0.
0.005 2,2484 71. 1.68649 0.
0.010 2.2342 71, 1.67585 0.
0.030 2,1780 71. 1.63365 0.
0.050 2.1224 71, 1.59198 0.
0.100 1.9867 71. 1.49016 0.
n_20n 1.772RA 71. 1.729AA1 n.
0.300 1.4885 71. 1.11652 0.
0.500 1.0622 71. 0.79672 0.

0.800 0.6758 0. 0.41796 0.
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loading equal to 1,500 1bs., for different friction coefficients.
The effect of friction is to increase the maximum change of the
crack extension forces with the increase in the friction value.
The direction, where the maximum changes in the crack extension
forces occurs, does not change with friction.

Table 5.4 shows the variations of the maximum change, of the
crack extension forces for a crack length of 0.004in. when
friction along the crack faces are considered, as modelled in Eq.
5.1, The effect of friction is to reduce the mode II1 stress
intensity factor when the crack 1s closed. The crack extension
forces decrease with increasing friction, but the crack growth
direction does not change, until large friction is assumed,
causing the shear to stop. This vanishing effect of the shear
mode is observed at a friction factor of 0.8 for a Hertzian load

of 1,5001bs, and a crack length equal to 0.004in.

¢) Crack Kinking

As seen from the above calculations, the crack tries to
change the direction of growth. To simulate this effect, an
original crack, a, of 0.004in., is extended in the direction of
the maximum change of the crack extension forces for three
different new crack ligament lengths, a,, as seen in Fig. 5.24.
The new stress intensity variations are determined along the new

crack ligament, for different roller positions.
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Fig. 5.24 Crack Kinking Geometry.
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Table 5.5 Variation of the Maximum Crack Extension
Forces for Different Hertzian Load and

Kinked Ligament Length.

P 1bs. 92 a, in a, in MGy, 63
0.001 0.61261 20.

500 69 0.004 0.002 0.65259 18.

0.003 0.94323 -3.

0.001 0.57596 21,

1500 ‘ 71 0.004 0.002 0.62055 19.

0.003 1.20560 0.
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Table 5.5 summarizes the 1loading conditions and crack
geometries for the kinked crack for different Hertzian 1loads.
The new crack increment was extended in the direction of the
maximum change in the tangential crack extension forces, AGBG'

Three different crack increments were used,( i.e. a, = 0.001 in.,

2
0.002 in. and 0.003 in.), to determine if the crack increment
length will affect the direction of crack propagation. Figs.
5.25 and 5.26 show the variations of the crack extension forces
as a function of roller position for a Hertzian load of 1,500
1bs. and a kinked ligament of 0.002in., for G

and Gr respec-—

66 8

tively. When tha rnllor {ec far fram the ecrack line the
tangential crack extension force starts out around 0.6 psi-in.,
and decreases to zero when yo/b reaches -2. Due to the high
shear stresses, the value of Gee increases sharply to 0.24
psi-in. and then decreases to 0.11 psi-in and then increases back
up to a value of 0.6 psi-in.

The direction of the maximum G69 starts at 19 degrees then
decreases to 0 degrees. As soon as the roller i1s on the other
side, yo/b is greater than O., the waximum Gee occurs almost in
the original direction then starts to decrease back to 19
degrees.

The maximum changes in the crack extension forces and the
angles they act on are shown in Table 5.5. All the changes of
Ggg are above AGe of 0.49 psi-in. for M50 steel, indicating

gth

aitensile mode growth. As seen from the results the crack tries
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Fig. 5.27 Experimental Crack Profile, Ref. [5i]
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Table 5.6 Variation of the Direction of Crack

Growth with Every Crack Extension

Ligameant, P=1,5001bs.

toa

1 0.004
2 0.002
3 0.002
4 0.002

5 0.002

G
Ab g

2.2626
0.62055
9.1371
2.2293

8.8994

i+1

71.

19.

65.

14,

45.
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Fig. 5.28 Simulated Crack Growth Profile for a
Roller Bearing with a Hertzian equal
to 1500. 1lbs.
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to realign itself in the original direction, going back halfway.
If the crack is extend further (a2 = 0,003in.), the angle of
crack propagation return to zero. We can state that: as soon as
the crack grows from the vertical direction along the maximum
angle of AG 69 ° the loading cycle changes causing the crack to
turn back to its original direction. This may explain the step
like crack growth observed in the experiment of Bamberger at DN
value of three million, see Fig. 5.26 from Ref. [51].

To simulate the experimental crack profile, the crack

geometry was extended along the new maximum change of G for

66’

a constant ligament length, a, equal to 0.002 in. This constant

i
ligament length is arbitrary.

Table 5.6 shows the values of the maximum change in Gee and
the angles where they act on, measured from the vertical,
assuming equal crack increments of 0.002 in. Fig. 5.27 is a plot
of the crack profile from the boundary integral simulation. One
can observe some similarity between the actual crack profile of
Fig. 5.26 and the simulation in Fig. 5.27. Qualitatively, one
can observe the step-like variation of crack orientation with
crack depth.

The next step is to determine the time to failure of a small

induced crack on the surface of the inner raceway of a high speed

bearing, as will be discussed in the next section.
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5.3 Time to Failure

The time to failure of the inner raceway 1s estimated using
the experimental results on the crack propagation rate for M50
steel. Fig. 5.29 shows the crack growth rate as a function of
the stress intensity factor range. The slope equals approximatly
3. The shape of the curve is similar to the last segment of the
da/dN verus AKI curve, or the last stage in the crack growth
rate, (Fig. 1.4).

The time is estimated using Eq. 2.27 for tensile mode
growth. The different contants, n, and c¢, for different values
of n, are shown in Table 5.7, since no exact value of n, is
available. Thg life is estimated at 25,500 RPM starting with an

initial crack of 0.002 in. N is determined by integrating Eq.

2.27 with respect to da:

da 5.2
N = f

The function f(AG 60 R) is approximated using least square of the

values of AG eeas function of crack length a from Fig. 5.19.
The variation of the crack length as function of the number
of cycles 1s shown in Fig. 5.30. The main characteristic of the

curve is the slow propagation phase for small crack length

followed by rapid growth to failure.
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Fig. 5.29 Crack Propagation Rate as a Function of
the Stress Intensity Factor Range for M50
Steel, Ref. [49]
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Table 5.7 Constant used in Eq. 2.27 for M50 Steel

case nl n2 C
-7
1 1.433 0.0 1.5x19
2 0.82 0.5 8.4x10""

3 0.76 1.0 2.3x1578
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The wvariations of the number of cycles necessary to
propagate a crack to failure as a function of the applied
Hertzian load are shdwn in Table 5.8 with and without friction
along the crack faces. The effect of friction along the crack
faces is to increase the life to failure due to the decrease of
the change in the crack extension forces with an increase in the
friction factor. Fig. 5.31 shows the Hertzian load versus number
of cycles to failure for an .original crack length of 0.002 in.
The behavior of the curve, which shows an increase in life for
decrease the Hertzian 1load on Dbearings, 1s similar to
standaralzed >—N Curves.

A direct comparison with the experimental fatigue life of
bearings at DN value of three million was not possible since the
crack growth rate data available are for M50 steel tempered once
while the bearings actualy tested were tempered five times. It
is well known that the crack growth rate changes with the number
of temperings. The second variable that affected the comparison
is the lack of crack growth rate data of the shear crack growth
mode. For very small cracks, the crack driving force, as seen
earlier, 1s the the shear crack extension force, A Gre .
Nevertheless, one can observe the very fast time to fallure of
the inner raceway which is in the order of 10 minutes for a
original crack length of 0.002 in. with a Hertzian load of 1500

1bs. and a rotational speed of 25,500 RPM. This estimate is

found assuming that the maximum loaded roller passes over the
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Fig. 5.30 Variation of Crack Length versus Nuzber of Cycles,
using Eq. 2.27 with nl = 0.764, n, = 1. and

c = 2.2856x10-6, for a Hertzian loz¢ of 1500 1lbs.
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Table 5.8 Number of Cycle to Failure for Differeat
Hertzian loads and friction values, f,

along the crack faces.

P 1bs.
500 1000 1500 2000

case

1 0.946x10° 0.500x10° 0.296x10° 0.199x10°
£=0.0 2 0.796x10° 0.475x10° 0.287x105 0.176x10°

3 0.991x105 0.435x105 0.215x105 0.098x10S

1 0.509%10° 0.306x10° 0.208x10°
£=0.05 2 0.482x10° 0.295x10° 0.177x10°
3 0.443x10°  0.226x10° 0.107x10°
1 0.518x10° 0.318x10° 0.220x10°
£=0.1 2 0.490%10° 0.304x10° 0.187x10°

3 0.451x10° 0.235x10° 0.117x10°
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Fig. 5.31 Hertzian Load Versus Number of Cvcles to Failure
for M50 Steel Using Eq. 2.27 with n, = 0.764,

n,=1. and c = 2.2856x10"6
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crack only once every cycle. This results can explain the fast
crack propagation of an induced surface crack on the inner

raceway of bearing with a DN value of three million.

5.4 Conclusion

The main conclusion to be drawn from the preceeding analysis
is that the alternating mixed-mode loading is the driving force
behind the fast growing crack in high speed bearings. This
alternating mixed-mode 1s due to the superposition of the
Hortrian ctraca fiald anta tho rangantial atreccec due ta the
rotation and press fit. The crack growth direction is shown to
propagate in a step like fashion alternating between the vertical
and an angle approaching 80 degrees as observed experimentally in
Ref. [51].

The maximum change of the crack extension force components,
AGGS and AGreare good measures of the crack propagation driving
forces and direction of crack growth.

The time to failure of a surface defect was determined to be
very short, in the order of 10 minutes, which did not compare
well with the experimental values of 2 hours for ball bearings.

Crack growth rate in the shear mode growth region, ( region
where AGreis dominant) should be available to better predict the
fatigue life of the inner raceway and any other component under a

general mixed-mode loading condition.
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It should be emphasized that many simplifications were made
in the present analysis. In particular the three-dimensional
effects, thermal effects, residual stresses, dynamics, damage
accumulation ahead of the crack tip, and finally the randomness
inherent in the system, were not included. Although the results
may not be the final answer to the fast failure of the inmer
raceway of high speed bearings at DN values above three million,
some more understanding on the mechanism that leads to this new

catastrophic failure was obtained.




CHAPTER SIX
CONCLUSIONS

6.1 Summary

The goal of this study was to analyze the causes that lead
to the brittle failure of the inner raceway of high speed
bearings. The analysis has shown the following conclusions:

~ The critical crack length required for unstable crack
growth is inversely proportional to the fourth power of DN.

- A mixed-mode fatigue crack growth is the cause that leads
a small surface defect to propagate inward until reaching the
critical crack length.

- The mixed-mode loading is associated with the interaction
of the compressive normal stresses and the shear stresses with
the passage of the Hertzian pressure, and is superimposed on the
tensile stresses of the rotational speed and the press fit of the
inner raceway onto the shaft.

- The maximum changes in the crack extension forces (AGee,
AGre) are good measures of the mixed-mode fatigue driving forces.

- Improvement in the fatigue properties of the bearing
materials are needed to increase the threshold values of the

crack extension forces in shear as well as in tension, (increase

and AG ).

the values of AGreth’ soth
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- For very small cracks the shear crack growth is the
dominant crack extension driving force ( AGre)'

- The crack was shown to grow in a step like fashion as
observed experimentally.

- The effect of sliding friction is to make the crack grow
in the direction opposite to’the rolling direction.

- The effect of friction along the cracx faces 1is to
decrease the shear mode stress intensity factor in the presence
of high compressive normal stresses.

- The time to failure was estimated to be very short in the

order of 10 minutes.
6.2 Further work

- A three dimensional analysis for roller bearing as well as
ball bearings should be considered.

-~ The effect of the lubricant should be considered in
greater details with viscosity pressure and temperature
variations.

- Residual stresses and material nonlinearity can be the
cause of crack arrest and slower crack propagation rate as
observed experimentally rather than the very fast growth measured
from the elastic analysis.

- More understanding of the crack growth behavior in shear

growth mode region, where AGre is dominant, is required.
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- Dynamic effect with each passage of the roller should be

considered.
~ The randomness of the surfaces in contact and the loads

and the material propreties should be incorporated 1in the

analytical modelling.
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APPENDIX A
Derivation of the Singular Integral

Because of the singular nature of Kelvin's solution a cut is
made in the body to exclude the point P from the region (where

U,, and T1j + © ) in a Cauchy sense.

13

The 1line integral going from the surface boundary to the
singularity point P is cancelled by the integral coming back
since it can be considered that the same path is being integrated

over but in opposite direction, therefore Eq. 3.7 will be:

where s is the boundary surface of the body and s . 1is the a

circle centered at the singularity point P of radius €.
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Considering the value of the integral at point P as the

radius of s goes to zero (€20 ), and noting that

ds.= € 460

r, = o0y

n, = - cos 6

n, = - sin 6

dr/dn= cos® n + sinf n, = -1
- =0

r,y nj r,j n,

€ Ine >0 ife~>0

The values of the integrals around s. can be evaluated as

follows:

Substituting the value of Uij from Eq. 3.2

|
t, U,, ds =j.—-————-{w—4Wlnes ., -n,n_gt.edb A.2
h I S R > 8TG(1-V) 1] i3] 3
0

Placing € outside the integral:

-1 9 )
—————ieln‘af@i. t1 d® —E/nin. t, de} A.3
8mG(1-v J 3

0 0

and taking the limit as € > 0,

By substituting Eq. 3.6 for T,,, the second integral becomes:

ij




188

6
fu. T, ds_ ='[M {61. + ——Z——nin.}ede A.S
34 e 4m(l-v) U (1-2v) ]
s 0
€
(1-2v) 6 2
+
4T (1-v) / {Gij (1-2v) ”1“3}"9
0
Evaluating the function in matrix form:
-
i 6 ) 0
2
14+ ——— cos? -2 i
‘[ 129 cos“6 do / (1-2v) sind cosf d0
1-2v 0
I I 6
N 2 g 2 20 ¢
4m(1-v) / 1-2v) sinf cosb df /l+(1_2\)) sin‘9 do
0 0
B A6

Integrating each term of the matrix, the above equation

20(1-V)+sinf cosH

X
4T (1-v)

-sin?0

By substituting relations A.4 and A.7 in Eq. A.l one

boundary integral equations
t. U, . ds T,. ds +
j 13

u ij

h|

s s
r _9_+ sinb cos®
2 4(1-v)
Y _ sin20
ﬂ 4 (1-v)

-5in26
29(1-v)-sinBcosh A.7
- A.8
_ sin?®
Z(1-v)
6 _ sinf cosf
2 4(1-v)

gets the
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If the point P is at the interior of the body, § will be equal to
2m, if P is a point at a smooth surface, 6 will be equal to .

The integral equation will have the following general form:

where
r -
S + sin 0 cos0 -sin’H
27 41 (1-v) 4 (1-v)
C,., = A.10
ij
—oiu’l c sint oot
41 (1-v) 21 4w (1-v)
where Cij = 61j for internal points, and Cij =1/2 Gij for

surface points, with smooth boundary.
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