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CHAPTER ONE

INTRODUCTION

The problem of failure in rolling and sliding contacts goes

back to the period when roller bearings, gear, and railroad

wheels were first used. Even though many failure modes had been

analyzed and empirical rules were formulated to guide designers

against these failures, a new catastrophic failure for bearings

was recently detected in test rigs for high speed engines. This

failure mode can be described as a fast growing crack that

initiates from the surface of an inner raceway of a high speed

bearing. Fig. 1.1 shows a typical split ring ball bearing used in

such high speed tests. This type of failure was encountered at

DN values of three million (where D is the bearing bore in

millimeters and N is the shaft speed in RPM). These high DN

values are needed to meet the future requirements of high

performance aircraft engines. This research investigates this

failure mode using fracture mechanics theories and numerical

stress analysis techniques.

1.1 Failure in Bearings

Rolling contact devices such as rolling bearings may have

various causes for failure. The most common causes are plastic

1



2 



indentation, heat imbalance, wear and rolling contact fatigue,

see Ref. [1].

Plastic Indentation :

The raceway under a rolling or even under a stationary

contact undergoes plastic deformation when solid debris is caught

in the contact region or when the system is overloaded. This

case produces surface defects that can initiate a fatigue crack

failure. Fig. 1.2.a shows some typical plastic indentations

grooves on inner raceway of bearings.

Heat Imbalance :

Since all loaded moving contacts generate heat, and on some

occasion heat is brought into a bearing from the outside, this

can evaporate the lubricant and soften the contact material,

which can lead to the gross failure of the bearing. Thermal

energy must be removed by cooling the bearing to avoid excessive

temperatures.

Wear :

A]] machined surfaces have asperities that are large

compared with molecular d_menslons. When two surfaces slide over

each other, the softer asperities either fracture or deform. The

rate at which these asperities are removed _s kno_ as the wear

rate which usually depend on the Initial surface roughness, the
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OF POOR QUALITY

a) Plastic Indentation

b) Wear

c) Contact Fatigue

Fig. 1.2 Typical Surface Defects



applied load, the lubricant and the mechanical properties of the

asperities. Typical surface wear is seen in Fig. 1.2.b.

Contact Fatigue (Spa]ling) :

It is well known that many metals, among them steel, some

non-metals (ceramics) react to repeated application of the same

load by gradually building up a fatigue crack. In this failure

mode a small crack forms in the subsurface, normally associated

with stress raiser such as void, non-metallic inclusion, or

carbide. The crack after repeated loading propagates outward to

form a spa]]. But with advances in bearing materials and

processing techniques, subsurface initiated fatigue is rarely

encountered. Instead a surface initiated fatigue spalling is

more likely, where a small crack develops from a debris dent or

an oxidation pit and propagates inward. These cracks that

originate at the surface propagate at an acute angle toward the

bore of the raceway until they meet deformation bands. Here they

are diverted back toward the surface in the direction the ball

travels forming a spall. In Fig. 1.2.c, a typical spal], which

was initiated around a surface furrow is shown.

While spalltng is undesirable, it is a relatively gradual

fatigue process that can be detected by vibrat_on monitors, chip

detectors and other oil system monitors. Consequenly the

affected components can usually be removed before more serious

secondary damage is incurred. However, at increased rotational
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speed, (a high DN value), rapid fracture occurs prior to

significant spalling, and consequently no warning is received

before the complete failure of the bearing, causing extensive

damage to the engine. At high DN values, a crack will develop

from the surface defect of the inner raceway and propagate inward

at a rate higher than the spalling rate and to a greater depth

than regular spalltng, causing a catastrophic failure.

1.2 Literature Review

A large number of investigations have been carried out to

clarify the mechanism of rolling contact fatigue. However,

contradiction still persist on the driving force that causes a

contact fatigue crack.

From the metallurgical viewpoint it may be considered that

the process of fatigue consists of two stages; crack initiation

and crack propagation. The propagation stage has been explained

so far by two different mechanism. The first mechanism takes

into consideration the pressure of the lubricant seepage into the

crack. This mechanism is based on experiments presented by Way

in 1935, Ref. [2], where he demonstrated that lubricants must be

present if fatigue crack propagation is to take place. The

second mechanism is just due to surface traction, where no

lubricant is present. Fleming and Sub, Ref. [3], were the first

to analyze crack propagation in sliding contact, under an



asperity contact. The tangential hoop stresses due to the

centrifugal load were completely ignored. Linear fracture

mechanics was applled using approximate solution for the stress

intensity factors. Recently, Rosenfleld [4] dld the same

ana]ys_s with an added feature. He included _n his model the

effect of the frlctlon on the two crack faces under shear, due to

the high compressive normal stresses. Keer and his coworkers ,

[5] [6] [7], analysed the surface crack as well as the subsurface

crack, under general HertzJan ]oadings. They also determined the

crack propagatlon angles using the maximum tangential stress

around the crack tip. They determined that the edge crack will

most llkelly grow _n a dJrect_on of -69 degrees from the

horlzenta]. In a preceding paper, [6], Keer added extra features

in modell_ng the crack propagation of an edge crack Inclined at

65 degrees from the horizontal. In that analysis, the friction

effect for the cracked faces and the lubricant effect were

included. A uniform pressure on the open part of the crack faces

was applied to model the lubricant effect. The variations of the

stress intensity factors and the angles of maximum tangential

stresses were described in great detail. But, the _nvestlgatlon

was not carried further to see what will happen to the angle of

propagation after the first kink (i.e. crack tip change Jn

dJrectlon of propagation). All the above investigations were

based on a two dimensional model of a semi infinite region, and

not until Murakami et al., Ref. [8] was a three dimensional model



presented.

ignored.

The friction effect on the crack surfaces was

It was determined that fatigue crack propagation is

accelerated predominatly by the hydraulic pressure effect, and

the direction of crack growth is fixed by the direction of the

initial crack formed.

Not until recently were the hoop stresses due to rotational

speed taken into consideration in the fatigue crack growth.

Clark, Ref. [9], was the first to suggest that at high rotational

speed the driving force for crack propagation is the alternating

mode I stress intensity factor, due to the significant tensile

hoop stresses. He qualitatively stated that the superposition of

the Hertzian stress field upon the tensile hoop stress field

causes an alternating mode I stress intensity factor which leads

to a rapid crack growth in the raceway. He basically ignored the

high alternating shear stresses introduced by the Hertzian

loading as the roller passes from one side of the crack to the

other.

Experimental investigations on the endurance and failure

characteristic of high speed bearings at three million DN values

were performed by Bamberger, Zaretsky and Signer, [10]. Groups

of 30, 120 mm bore ball bearings, made of M50 high speed steel,

were endurance tested at two speeds (12,000 and 25,000 RPM)

corredponding to 1.44x106 and 3.00xlO 6 DN, respectivally. Initial

bearing failure at 12,000 RPM was by classical surface rolling

element fatigue of the inner race. However, continuous running
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after a small surface crack had occurred at 3.0XI0 6 DN resulted

in a destructive fracture of the bearing because of the high hoop

stresses present due to centrifugal forces. Closer investigation

of the fracture surfaces showed that the fracture had several

distinct steps. The initial fracture was normal to the surface

until it reached the first plateau where it changed direction and

propagated parallel to the surface in the direction of the ball

travel. It then, once more, changed direction and propagated

radially inward until it changed direction for the third time.

This pattern was observed on several bearings tested, Fig. 1.3.

This experimental evidence basically contradicts the earlier

conclusions of Murakami assuming that the crack growth direction

is fixed by the initial crack direction.

With the above experimental evidence, one is forced to

analyze the fatigue crack propagation under the combined tan-

genttal hoop stress due to rotation and the Hertzian load that

introduces a high alternating shear stresses, as well as high

compressive stresses as the roller crosses the crack plane. This

loading condition introduces a complex stress state that leads to

a mixed mode stress intensity factor. But very little

information on mixed-mode fatigue crack growth under mixed

loading conditions is available. The early research on the crack

propagation direction and time to failure was confined to one

dimensional ]oadings. In 1980, Sih, Ref. [11], proposed an

expression for the mixed mode fatigue according to his strain



11

energy density factor theory:

AS - 2(a K AK + a (_ _X
min l] I I 12 I II II I 2_ II II

&_a - c ¢as }n

Where atj

3

AK.
3

C,n

= functions of the angle , e

= mean stress intensity factor

= stress intensity factor range

= materla] constants

max mxn
= - S

A Sml n Smi n rain

max

Smi n = Maximum Strain Energy Density Factor

min

Sml n = Minimum Strain Energy Density Factor

in the Direction, 8

S = Strain Energy Density Factor = r dW/dV
rain

dW/dV= Strain Energy Density

If one considers the crack propagation rate versus the cyllc

stress intensity factor range in a double logarithmic

presentation, three we]] known regions of crack _rowth rate are

observed, Fig. ].4, [12]. If the stress Intensity range is below

the threshold range, A Kth , crack growth is not _bserved. In

region II, the rate of crack propagation varies linearly with the
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stress intensity range on a logarithmic scale. In region III,

the crack growth rate reaches a very high speed since the maximum

stress intensity factor is approaching the critical stress

intensity factor for unstable crack growth Kic. The most general

analytical equation for mode I fatigue crack growth rate is due

to Forman and coworkers [13], where they took into consideration

all the ranges of the experimental curve, refer to Fig. 1.4:

4a [AK] - A_thlni
_C

dN I(I_R}_I C _ AKI ] n 2

where R = Klmin/Kimax

There are only a few papers in the literature dealing with

stable crack propagation under mixed loading. One reason is that

crack growth in the second region apparently occurs under mode I

conditions, (Fisher [12]), and the main regime for mixed mode

occurence is region I. This region is the most important for

fatigue crack initiation and propagation in rolling contact

fatigue. This may explain why Murakamt had to include the

influence of the lubricant to increase the stress intensity range

above the threshold range for mode I.

1.3 Dissertation Outline

The aim of this study is to analyze the causes that lead to

the brittle failure of high speed bearings. The object is to
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provide bearing designers with the tools necessary to cross this

new barrier for future engines operating at DN values of three

million and above.

In order to accomplish this aim, the loadings that are

significant for the creation of the fast growing cracks should be

quantified. Aside from the obvious normal Hertztan load across

the contact interfaces, surface parallel forces also arise from

friction at the contacts. Also, the centrifugal forces of the

inner raceway cannot be ignored since they can play an important

role in the propagation of fast cracks.

With the external loading being defined, the stresses in the

inner raceway of a bearing will be calculated numerically using

the boundary integral equation method (BIEM). The first

objective of this research is to describe the interaction between

the Hertz stress field and the centrifugal hoop stress in the

presence of a surface defect like a pit or a crack in terms of

stress intensity factors, K I and KII. The parameters which

determine the stress fields generated by the rolling contact

loads are the elastic constants of the bearing materials, the

design geometries of the raceway and the roller , the

mlcrogeometry of the surface roughness, the film forming

parameters of the lubricant, and the geometry of the crack.

The second objective is to determine the crack growth rate

and its orientation under this complex loading c_ndltion. To

accomplish this, the major driving forces for fast zrowing cracks
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should be identified. It is assumed that combined alternating

mode I and mode II loadings are behind the step like crack growth

observed at 3 million DN value. The alternating mo_e I (crack

faces moving normal to the crack plane) is associated primarily

with the oscillation of the high tangential stress due to the

centrifugal loads from each passage of a heavily compressive

loaded roller. The a3ternating mode II (crack faces moving

parallel to the crack plane) is associated with the change in the

direction of the shear stress when the roller moves from one side

of the crack to the other.

In Chapter Two, the different mlxed-mode crack growth

criteria, for static and dynamic loadings, are presented and

compared. The crack extension forces are divided into two parts:

first the region for shear mode growth governed by the shear

crack extension forces, Gr0, second the tensile mode growth

region governed by the tangential crack extension forces, G
_0"

This crack extension criteria will be used in the analysis of the

mlxed-mode failure of the inner raceway of high spee_ bearings.

Chapter Three is dedicated to the derivation and the

implementation of the boundary integral equation method in

fracture mechanics.

In chapter Four, the loadlngs applied on the inner raceway

of a high speed bearing are quantified. The tangential stresses

due to the rotational speed and press fit are calculated as a

function of the DN value. The Hertzlan pressure distribution are
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estimated wtth and without lubrication.

Chapter Five gives the variation of the mixed-mode stress

intensity factors as function of the Hertztan load, crack length,

and roller position. Crack extension forces along the crack tip

are presented as well as the angles of crack propagation, which

are determined along the direction of the maximum change of the

crack extension forces. Finally, the life to failure of the

inner raceway ts estimated from crack propagation rate data of

M50 bearing steel.

Chapter Stx revtews the results and conclusions of the study

and outlines needs for future research on the mixed-mode failure

tn general and the inner raceway of high speed bearings in

particular.



CHAPTER TWO

MI_D_O_ C_CK _OWTH

The bulk of fracture mechanics work to date has been

concerned with slngle-mode loading. Many practical situations

are mlxed-mode, but pure mode I loading is usually assumed in

order to obtain easy so]utlons. This assumption often leads to

unsafe design. Conversely, neglecting the effects of mlxed-modes

may lead the designer to be over-conservatlve in an attempt to

compensate for his lack of knowledge. In this cha_ter different

mlxed-mode crack growth criteria will be presente_ and compared

and the appropriate ana]ysls will be used for the crack

propagation studies of the inner raceway of the h_h speed engine

bearings.

2.1 Linear Elastic Fracture Mechanics

Linear elastic fracture mechanics theory is based on an

analytical procedure that relates the stress an_ displacement

fields in the vicinity of a crack tip to the applied load, to the

structure, to the size, shape and orientation of the crack, and

to material properties. To determine the stress an_ displacement

fle]ds in a cracked body, it is important to define the three

basic modes of crack-surface dlsp]acements, see Fix. 2.1. Mode

17
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I, opening mode, corresponds to normal separation of the crack

surfaces under the action of the remote applied tensile stresses.

Mode II, in-plane sliding mode, corresponds to the crack faces

moving parallel to the crack plane and normal to the crack

bottom. Mode III, tearing mode is the out-of-plane shear mode.

Of the three modes, mode I is technically the most important to

crack propagation in brittle solids, and has the largest fracture

tests reported on it for different materials. In this

investigation, the mixed-mode fracture considered is a result of

mode I and mode II. This is an in-plane loading condition, and

the out-of-plane loading, mode III, will be ignored.

The stress and displacement fields for a semi-infinite

region containing a sharp crack, as given in Ref. [14], have the

following forms, see Fig. 2.2:

Mode I:

°r0J

K I

(2wr) ½ e21ocos _- (l+sin

/ cos 3___ _-)

/ . _ 2 0
lSln _- cos -_-
L

2.1 "a

u r

ue

KI

2E _ 1
(l+v) 9(-(2_+l)sin- F + si=_ _

2.1 .b
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21

Mode If:

o
rr

oeo

KII

0 28
sin-_-(]-3 sin -_-)

- 3 sln_
e

cos 2
-T

o _e
cosy (I-3 sin-_-)

2.2 .a

u
r

I

|

u 0 -

(l+V)(-(2K-1)sin 0_ + 3sir. 3 O)
2 2

0 + 3cos 3 0)
(1+_) (-(2K+1)cos _ __

2.2 .b

Where E is young's modulus, v is polsson' s ratio, and

for plane stress

for plane strain

K I and KII are defined as the stress intensity factors, for mode

I and mode II ]oadings respectively.

The above field equations show that the stress and

displacement fields in the vicinity of the crack tip are

functions only of the stress intensity factors and material

properties. Consequently, the stress intensity factors are

parameters that represent a measure of the applied stress, crack
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shape and size, and structural geometry. One sho.ld be made

aware that the above solutions are valid only for small distances

from the crack tlp. For larger distances from the crack tlp

higher order terms should be Included to match the outer boundary

condl tlons.

Since the principle of superposltlon applies to linear

stress and displacement fields, Eq. 2.1 and 2.2 are added

together to determine the mlxed-mode stress and displacement

fields.

As seen from the above stress fields, the stresses tend to

infinity as r goes to zero, but the tangentla] stress and the

shear stress mu]tlplled by the square root of r go to constant

values KI and KII , respectively, for e= 0:

lim Oe_ _ = KI

r÷0 2.3

lim O
r8 = KII

r-_O

As a result the stress intensity factors are measures of the

intensity of the elastic stress fields ahead of the crack tip.

Therefore, the stress intensity factors, KI and KII, quantify the

intensity of the stresses for brittle materla]s, such as the hlgh

strength steel used In bearings, under mlxed-mode loading

conditions.



2.2 Crack Extension Force
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The crack extension force, also known as the 'Energy Release

Rate", G, is basically derived from the change in the work of

external loads and the strain energy as the crack grows by an

amount da, see Fig. 2.3.

G = d (- UE + WL ) / d a 2.4

where UE is the elastic energy and WL is the work performed by

the external forces. This definition is based on the Grifflth

Energy criterion for fracture.

The above criterion assumes self-slm_lar crack growth, the

crack extends in the same direction as the main crack. For

mlxed-mode ]oadlngs, the possibility for the crack to change

direction is more likely, as seen in most mlxed-mode experiments

[18], [19]. Therefore, the formulation for crack extension under

mlxed-mode loadlngs, should be able to measure the crack

extension force at any angle 0 around the crack tip. An

alternative definition is shown next based on the mechanical

energy required to close a small crack tip extension along an

angle 0 measured from the original direction of the main crack.

The crack extension force, G, can be derived from the energy

required to open an increment CC' of the crack tip, see Fig. 2.4.

This definition is taken from Ref. [14] for a self-similar crack,
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Fig. 2.3 Body with Incremental Crack Extension da.
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but here it is extended for any kinked crack, to account for the

poss_billty that the crack can change direction under mlxed-mode

conditions. The crack extension force is equal to the work that

would be done by the forces along CC' to close the crack

increment along any angle 0.

Therefore:

6

G= lira 216 f0 ½{(°00(r) u (8-r)+Or@(r) Ur(6-r)} dr6+0 2.5

The 2 is necessary because of the upper and lower surfaces. The

I/2 accounts for the proportionality between tractions and

dlsp]acements. In this equation only mode I and mode II are

considered; mode III can be easily added as I/2 Cz$ uz. The

relevant stresses to be considered from Eq. 2. l.a and 2.2.a, are

those across CC' prior to crack extension but in opposite

direction since a negative force is required to close the crack

extension CC'.

KI KII

@ @ cos2_cos 3 _ + 3 sin
OeO = (2_r)½ (2_r) ½

KI @ 2 @ KII @ e

O = - -- sin cos _ cos _ (l-3sin 2
rO (2_r)_ _ 2 (2_r) 2 _)

2.6

The dlsp]acements are those across C'C prior to crack closure

and are based on the new geometry of the crack. As an
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approximation, it is assumed that the displacements for the

kinked crack have the same general solution as for a straight

crack, which correspond to the new crack tip C'; therefore the

dlsp]acements for the kinked crack have the fol]owing form, based

on relations in Eq. 2. l.b and 2.2.b for 0 equal to_:

' _-r )½
Ur = KII / (2E) ( --2_ (l+_))(2K+2)

' 6-r 2.7.a
u@ = KI / (2E) ( 2_ )½ (l+l))(2<+2)

where K' I and K'II are the new stress intensity factors for the

kinked crack.

To find K' I and K'II above, a large number of investigators

tried to determine the stress intensity factors for a kinked

crack as function of the stress intensity factors of the main

crack with no kink. Some of those investigations include the

works of Husslan, Pu and Underwood [15], Wu [16], and Hayashl and

Nemat-Nasser [17]. Husslan et al., Ref. [15], found a

dlscountlnulty in the solution as the kinked crack ]ength goes to

zero. Wu [16] and Hayashi's [17] results were in agreement

with each other and they concluded that by taking the limiting

case, where CC' goes to zero, the corresponding relation for K'
I

and K'II are as follows, (see Ref. [17]):
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' 0 0 0

K I : K I cos 3 _ - 3 KII sin _- cos 2

, @ @ @

KII = KI sin _ cos 2 _ + KII cos _ ( 1

f_

- 3 sin 2 2 )

2.7.b

Substituting Eq. 2.6 and 2.7.a into Eq.

relations 2.7.b, the crack extension

fol]owlng form:

2.5, by making use of

force will have the

G -- (I+_) (K+I)
4E (KI cos

O 2 0

(KI sin _ cos _i KII(]_3sin 2 2@__) )2

r_["i- r/_
* lim I/6J0_ r/_ dr

_-_0

3 0 @ @ )2
- 3KII sin _ cos 2 _ +

0
cos _ 2.8

Evaluating the integral by making the following substitution

!
= sin2## ; then dr = 2 6 sin_ cos_ d_ , gives

6

11

1 56J I-r/6 dr = ; _ 2 cos2 _ d_
rl_ o

2

_/2

sin 2 tb )
4

o

Substituting the value of the integral into Eq. 2.8, one gets the

crack extension force for mixed-mode loadings at any arbitrary

angle 0 measured from the original crack direction:
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G= 4E 8 q 2(l+_)) (k_+1) (KI cos s _8-3Kllsin _ cos _ _ ) 2.9
2

0 0 e
+(Klsin _ cos 2 _ + Ell cos

)2}(l-3sin2 _ )

Equation 2.9 is divided here into two parts: first, the

crack extension force due to the tensile opening displacement

mode, fu o oe0 dr, called herein the "tangentla] crack extension

force": GO@; and second, the crack extension force due to shear

opening displacement mode, ;UrOor dr, called herein the "shear

crack extension force": Gr0. This separation of the energy

release rate, G, is based on the fact that there are

fractographlca]ly two types of crack growth, i.e. the shear mode

growth and the tensile mode growth (Ref. [19]), which are

controlled by two different driving forces, i.e. G and G
re eo

respectively.

The separation of the two driving forces for the crack

growth is given in the following equation for the crack extension

forces, Ge0 and Gre:

GO (l+v)(<+l) (KI cos a_- 3KII sln _ cos _ )

= 4E

• 0 2e O 2.10

sln_ cos + KllC°S_ 2

tGrOJ t(Kl _ (i-3 sin _))2

When 8 is zero, i.e. looking at the extension forces ahead of the

crack tip in the direction of the main crack, Eq. 2.10 reduces

to:
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2.11

Taking a closer look at the tangential crack extension force

due to the tensile opening mode, G80 , it can be shown that it is

similar to the maximum tangential stress theory proposed by

Erdogan and Sih [18] for determining the angle of crack

propagation under mixed-mode loadings.

Otsuka et al. [19] ran experiments on fatigue crack growth

under mixed-mode conditions and observed two different

fratographlcal modes of failures; the shear mode growth region

(controlled by Gr@ ) and the tensile mode growth region

(controlled by GB0) , as seen in Fig. 2.5. For given stress

intensity factors, K I and KII , the dominant mode of failure can

be determined from the crack extension forces. For very low

values of the stress intensity factors, i.e. low values of K I and

KII , there is no crack growth. The experimental data points of

no crack growth are shown as hollow circles. For intermediate

values of K I and KII , the crack growth is governed by the shear

crack extension force, GrB. The experimental data points of

shear mode growth are shown as triangles. For high values of K I

and KII , the crack growth is governed by the tensile crack

extension force, Gee . The experimental data points of tensile

mode growth are shown as solid circles.

Therefore, below a threshold value of the shear crack

extension force, Gr e th' there is no crack growth. Above this
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threshold value, the shear mode growth is observed. Above a

critical tensile crack extension force, CO.h, tensile mode

growth is observed.

Another method to account for the crack extension force is

through the path independent integral, known as the J integral.

As will be seen in the next section, the d integral is defined

for self-similar crack extension, i.e. crack extension in its

original direction.

2.3 The J Integral

The J integral is often used as an alternatlve form to the

energy release rate, G, when the nonlinear material ahead of the

crack tip cannot be ignored. As first defined by Rice [20], the

J integral has the form:

J = ; ( W n 1 - t t ui, 1 ) ds
s

2.12

where s is a path surrounding the crack tlp, W is the strain

energy density, and ti is the traction conponent on s, and ds is

an element of s, see Fig. 2.6. Since Rice, theoretical studies

have been undertaken to investigate the fundamental mathematical

characteristics of the J integral, and Sternberg [21] has shown

that the J integral is a vector of path-lndepende_t integrals,

defined as follows:
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Jk = fs ( W n k- t t U i,k )
ds 2.13

This concept of the J integral may show much promise for mixed-

mode loadlngs. Eq. 2.13 defines the extension forces in three

different directions. Substituting the solution of the stress

and displacement fields from 2.1 and 2.2 into the J integral, one

gets, for mode I and mode II only:

(l+xO (_+1) KI KII
= 4E

-2 K I Kll

2.14

To determine the crack extension at any arbitrary angle, a

simple trigonometric relation is used to give:

J@0 = Jl cos @ + J2 sin @

(I+_)(K+I) _ 2J@9 = 4E ( (K + KII) cos@ 2.15

- 2 K I KII sin0 )

Note that for pure mode I or mode II, (KI = 0 or KII = 0), the

maximum crack driving force is in the direction of self-similar

crack growth. This observation contradicts some basic pure mode

II tests where the angle of crack propagation was observed at 70

degrees from the original crack plane.

Bul, Ref. [22], showed that J2 defined in Ec. 2.13 is not



35

path independent and that Eq. 2.13 is incorrect. He proposed a

new approach to calculate the integral by dividing the stress and

displacement fields into symmetric and anttsymmetric parts:

J = Jl + Jll 2.16.a

where: Jl = fs { WI nl - tli uIi,l } ds 2.16.b

and Jll = Is { WII nl -tlIi ui,lll} ds 2.16.c

I I

where ui and ti are the symmetric displacement and traction

II II

fields and u i and ti are the antisymmetric displacement and

traction fields. Substituting into Eq. 2.16, the closed form

solutions of the stress and displacement fields around a crack

tlp, one gets:

(1+,_,)(_+I)
= 4E

Jll LK211 )

2.17

which correspond to the crack extension force for @= 0, in Eq.

2.11. As seen from the above definition of the new approach to

the J integral, only self-slmilar crack extension is measured,

and the J integral is an alternative method to determine the
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stress intensity factors using far away stresses and

displacements, and not as a crack extension force for any

arbitrary angle.

2.4 Mixed-Mode Crack Propagation Criteria

Many theories had been proposed to predict the angle of

initial crack growth under m_xed-mode loading conditions. The

most important criteria are the maximum tangential stress [18],

the minimum strain energy density factor [23], =he J integral

approach [24], the pure mode I theory [25], and the crack

extension forces, as defined earlier. All the cethods predict

almost the same direction of crack propagation for near mode I

loadings, but when mode II become dominant each method points to

a different direction. A brief description of each of the above

methods is given next with a comparison of the first three and

the crack extension forces over a wide range of mixed-mode

loadings.

Maximum tangential stress:

This criterion is based on the direction of the maximum

tangential stress around a crack tip [18], which also corresponds

to the maximum tangential crack extension force, G_ in Eq. 2.11.

It can be seen that whenO00 in Eq. 2.l.a is maximu=, Cr@ is equal

to zero. This criterion is based on the observation that the

crack will grow in the radial direction from th_ crack tip and
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perpendicular to the maximum tangential stress when the shear

stress is zero. The direction of crack propagatlon based on this

crlterion Is given by [26]:

tan(e/2) -- I/4 KI/KII + I/4 _ (KI/KII)2 + 8 2.18

l_tntlu_ Strain Energy Release Rate:

Sih [24] has advocated the idea that the local strain energy

density factor, S = r dW/dV, should be the governing quantity for

the fracture process direction, (where r is the distance from the

crack tip and dW/dV is the strain energy density). The strain

energy density factor is given by:

2+2 + 2
S -- all K I a12 KIKII a22 KII 2.19

all 16
((I +cosO) (_- cosO))

_--((sin 0 (2cos O- K+ I))
a12 = 1_

_----((K+ 1) (1 -cosO) + (1 + cos O)(3cos £- 1))
a22 = 1_

where 13 is the shear modulus, equals E/(2(I+V)) and K is as

defined earlier equals (3-4v) for plane strain condition.

The crack will propagate In the direction of the minimum
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strain energy density factor given by: dS/de = 0. It can be seen

that the angle of crack propagation will depend on the polsson's

ratio, _, in this theory as opposed to the rest of the criteria.

J Integral Theory:

This theory is based on the generalized J integral developed

by Sternberg [21], and the crack will propagate in the direction

of the maximum J as defined in Eq. 2.15. The dlrectton of the

crack propagation based on the J integral theory is glven by:

2 2

tan 0 = - 2 KIKII / ( K 1 + KII ) 2.20

Pure Mode I Theory:

The pure mode 1 criterion, from [25], is based on the idea

that material separation in the process region ahead of the crack

tip takes place in pure mode I, the opening mode. When this

criterion is applied, a number of tentative extensions of the

crack in different directions have to be studied. The direction

to be chosen has to fulfill the criterion, KII 0. This

criterion corresponds, to some extent, to the maximum tangential

stress, where 000 is maximum and Or0 is zero. The maximum

tangential stress criterion tries to predict the new stress

intensity factors for the kinked crack from the original crack

(crack with no kink), while the pure mode I case actually extends

the crack in the direction for which KII equals zero. The pure

mode I theory is more accurate, but needs a large number of



trials before the direction of KII = 0 is known.

Crack Extension Forces Criterion:

The crack growth direction based on the crack extension

forces criterion depends on the direction along which the crack

extension forces are maximum. When the value of the tangential

crack extension force is less than a threshold value G88th , the

shear crack extension force is the crack driving force. The

direction of the crack propagation will be governed by the

direction of the maximum shear crack extension force, CrS. For

values of the tangential crack extension force greater than the

threshold value, the direction along which the maximum tangential

crack extension force acts, is the direction of propagation, (see

Fig. 2.5).

A comparison of the direction of crack propagation for the

first three criteria and the crack extension forces criterion is

given in Fig. 2.7 for different ratios of mlxed-mode loadings.

The arc-tangent of the ratio of the stress intensity factors,

KI/KII , is plotted versus the predicted crack propagation angle

-I
for the above criteria. For near pure mode I loadings, tan

KI/KII greater than 60 degrees, good agreement of the three

methods is observed, but for near pure mode II loadings a huge

discrepancy is observed.

For pure mode II, the maximum tagential stress theory as

well as the maximum tangential crack extension force criterion

predict an angle of 70.53 degrees, the minimum strain energy
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density factor theory gives an angle of 83.61, wh_le the J

integral approach gives a zero angle. The difference between the

J integral and the other criteria can be explained from the wrong

J2 definition as seen earlier in section 2.3.

For pure mode II, based on the crack extension force

criteria, the propagation direction will be zero degree if the

shear crack extension force is governing and 70.53 degrees if the

tangential crack extension force is dominant.

The crack extension force criteria will be used to determine

the crack growth rate and direction in the failure analysis of

the inner raceway of high speed bearings.

Knowing the crack extension forces and the fracture

criteria, a crack propagation law can be formulated to predict

the crack propagation rate under mixed-mode loadings.

2.5 Fatigue Crack Propagation Law for Mixed-Mode

Under cyclic loading the crack propagation occurs at lower

stresses than it does for static loading. For typical fatigue

fracture of brittle materials, macroscopic plastic deformation is

not involved. Instead, submicroscopic sllp lines developed ahead

of the crack tip, that can intensify and broaden with each cycle.

Those sllp lines are developed along unfavorable oriented grains.

But these sllp bands cannot cause fracture in themselves, since

their effect is to harden the material. When a material work-
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hardens, it will be vulnerable to the tangential stresses around

the crack tip, which try to open up the defects causing the

increase in mlcrocrackings with Increasing number of cycles. The

formation and the growth of these microscopic cracks ahead of the

crack tip represent the damage accumulation. This damage

accumulation is the cause of the weakening of the material ahead

of the crack tip, and the decrease of the crack resistance force.

The crack resistance force should be a decreasing function with

increasing number of cycles, and how fast the crack resistance

force decays is a function of the maximum range of G or K. But

the crack growth is not continuous since experimental evidence

has shown that the crack growth stops or slows down to a level

where no crack growth is observed. After N numbers of cycles

when the crack resistance ahead of the crack tip is decreased,

the crack will grow instantaneously a distance _, and then stop.

At this position the crack tip has reached a region where the

damage accumulation is non-existent or is so low that more cycles

are required before the crack can grow. This explalne the

experimental observed jump llke growth of fatigue cr=cks.

Generally, one can find the formulation of the fatigue crack

growth as follows, Ref. [27]:

d a(t) = F (a(t), P(t), d(t), t) d t 2.21

where a(t) is the length of the dominating crack, p(t) is the
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stress load and d(t) includes the damage accumulation and

material properties.

A simplified version of Eq. 2.21 was given by Paris [28],

where the damage accumulation was ignored and the load and crack

length were combined together as a function of the stress

intensity factor. Thus, Eq. 2.21 reduces to, [28]:

da / dN = C (AK)n 2.22

Eq. 2.22 is based on experimental results, for mode 1 loading

condition, and basically describe region II, in Fig. 1.4. But

more careful experiments had shown that the mean stress has an

effect on the fatigue crack growth, and Eq. 2.22 was therefore

modified to the following form, Ref. [29]:

da / dN = C (AK) nl ( K )n2
max

2.23

Recently, Forman et al., Ref. [13], have provided a general

expression which takes into account all the regions of Fig. 1.4;

da I dN = C ( AK -AKth )nll((I-R) Klc -LK) n2 2.24

where R is the stress ratio, and equals to Kmin/Kma x.

All the above equations are based on pure mode I loadings,

and must be generalized to include the mixe_-mode loading
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conditions and the damage accumulation.

The first mlxed-mode fatigue crack growth equation was

derived by Slh [II], based on his strain energy density factor,

where fatigue crack growth occurs in the direction of the maximum

change in the strain energy factor, and the fatigue growth

equation becomes:

da / dN = C ( ASmln )n 2.25

where A Sml n is given by [Ii]:

Smi n = 2(all K I AK I + al2( KII AK I + KI AKII)

+ a22 KII A KII) 2.26

J

where Kj is the mean stress intensity factor, AKj is the stress

intensity factor range, the ali's are functions of the angle of

crack propagation for which ASmi n is a maximum and are given in

Eq. 2.19.

Alternatively, one can easily extend the crack propagation

to the mixed-mode loadings, by making use of the crack extension

forces along any angle 0, instead of the mode I stress intensity

factor in the equations on page 43. By substituting relations

2.10, for the crack extension forces in Forman's equation, the

crack growth rate will be equal to:

For Tensile Mode of Crack Growth:
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(AGeo - AGe0th)nl
da = C

dN 2.27

( (I_R)Go0 c _ AGO0 )n_

For Shear Mode of Crack Growth:

( AGro - AGrOth)nl

da= C

dN ( (I_R)Gr0 c _ AGr0 )n 2 2.28

Therefore, depending on the mlxed-mode loading con_Itlons, one

must choose the proper mode of failure. Eq. 2.27 would be valid

for the tensile mode of fatigue crack growth whlle Eq. 2.28 would

be valid for the shear mode of fatigue crack propagation. The

_Gijthis the threshold crack extension below which no crack

propagation is observed.

To determine the dominant crack growth mode, the values of

the maximum changes of the crack extension forces are compared

with the threshold values. Fig. 2.8 represents the boundary for

different crack growth modes. For values of AG_ greater than

_G00thtension mode is observed and Eq. 2.27 Is valid. For values

of AG001ess , two regions are observed; a) no crack growth region

for AGr0 less than £G b) shear mode growth for value of AGrer0th'

greater, and Eq. 2.28 is valid.

This separation of the growth modes can easily explain the

different crack growth directions observed in pure mode II tests

ran by Buzzard et al., Ref. [52]. For very small cracks the
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crack extension forces are so small that the shear mode is

dominant causing the crack to extend in the original direction.

For larger cracks, where the tangential crack extension are

higher than the threshold AG the crack changes direction
ooth'

and propagates along 70.53 degrees, in the direction of the

maximum change in Gee , indicating a tensile growth mode.

Thus, the crack growth direction will be deterTnlned from the

angle e along which the change in the crack extension forces are

maximum. The crack will keep on growing In this dlrectlon until

a new loading combination changes the direction of the maximum

change of Gt_.

The crack extension forces criteria will be used In

analyzing the mixed-mode failure of the inner raceway of the high

speed bearings. But before determining the crack growth

direction and rate under mixed-mode loadlngs, the stress and

displacement fields have to be determined first using the

boundary integral equation method for any arbitrary crack

geometry and orientation, and loading conditions as will be seen

In the next chapter.



CHAPTER THREE

Boundary Integral Equation Method

3.1 Introduction

Methods of analysis In elasticity, and In most other

scientific and engineering fields, have been revo]utlonlzed with

the advance of computers. Most of the solutions, two dimensional

or three dimensional, had been obtained for Infinlte or semi-

infinite bodies using the stress functions technlques, which

satisfy the desired boundary conditions near the orlgln and have

the properties that the stress and/or displacement vanish or

remain bounded as the boundary at infinity Is approached. Wlth

the advance of computers, solutlons for finite geometries and

mixed boundary conditions were attainable by numerical

techniques. First, the finite difference method was used, by

replacing the differential equations by their classical finite

difference equivalent. More recently, the finite element method,

which makes use of the variational statement of the original

differential equations to obtain solutions, has gained

popu]arlty. In both methods, finite difference and finite

element, the continuum Is discretlzed, making the accuracy of the

solution a function of the fineness of the discretlzatlon.

Another method of analysis, recently rediscovered by Rlzzo in

48
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1967, Ref. [311, the boundary Integral equations method, BIEM,

offers an attractive alternative. The boundary _ntegra] method

Involves the transformation of the partla] differential equations

describing the behavior of the unknowns Inside and on the

boundary of the domain to _ntegral equations over the boundary,

i.e. the Integrals are functions of the boundary data only; thus

enabling the reduction of the dJmenslonal_ty of the problem.

Closed form solutlons can be obtalned for simple flnlte

geometrles and ]oadlng condltlons, when the Integral equatlons

are solvable. The resulting solution ls the exact solution of

the differential equatlon for the given boundary condltlons. For

complicated geometrles and ]oadlngs condltlons, the Integral

cannot be solved analytlcally and approxlmatJons have to be

introduced. Therefore, In the BIEM, _naccurac_es arlse from

numerical lntegratlon procedures, which means that by refining

these approximatlons any degree of precision 1s theoretically

achievable. By the approxlmatlon of the Integratlon, the

Integral equation wlll be transformed to a set of linear

algebraic equatlons. The resulting system of equatlons Is

smaller by an order of magnltude than those for the flnlte

dlfference or the flnJte element methods, but are fully-

populated, whereas In other methods the matrices are symmetric

and most of the tlme banded.

The boundary Integral equation method has seen Increaslng

popularity In recent years because of the some of the advantages
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listed below, Ref. [32], 133}:

i) a smaller set of algebraic equations to solve, li) simple data

preparation to run the problem, only boundary discretlzatlon is

needed, Ill) infinite and semi-lnflnlte problems are properly

modelled, iv) accurate solution of selective internal stresses

and displacements, and v) good reso]utlon for stress concen-

tration problems.

In view of the above advantages, the bouc_ary integral

equation method was used herein to analyze the stress and

displacement fields around a surface crack of the inner raceway

of the hlgh speed bearing.

A review of the two dimensional plane straie elastostatlc

solution by the boundary integral equation method is given next,

with its Impllmentatlon in a general computer program. The three

dlmenslona] derivation is slml]ar to the two dlmens_onal and its

Imp]Imentatlon can be found In Ref. [34].

3.2 Mathematical Derivation

The most direct derivation of the boue_ary integral

equations is based on a singular solution of the Navler

equations. The Navler equations of equilibrium (in terms of

displacements) for two dimensional problems in elasticity are,

Ref. [32]:
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Fig. 3.1 Displacement Field along a Surface S, due to

a Point Load P in an Infinite Region .:
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V2 u I + I/(I-2_) e,i - 0

O = uj,j i,J = 1,2

3.l.a

where u. are the displacements, v Is Polsson's ratio and the
3

usual tensor notation is used, where a repeated subscript

indlcates summation over its range and a comma indicates partial

differentiation. The Navier equations can be written in another

form as:

ul,jj + I/(l-2v) Uk,ki ffi0 3.l.b

A solution to these equations can be obtained by making use

of Kelvin's singular solution due to a single unit concentrated

force acting In the interior of an infinite body [35] (see Fig.

3.1).

The displacement field at any point Q at distance r from the

point P, where the force is applied is given by Ref. [35} :

or

U_ I {--I/[8_G(I--_)}}{(3--4_ ) Inr _j- r|_ r|j 1 .j 3.2.a

= uiju i e 3.2.b3

where e. are the unit base vectors, and
J

Ui j = t-I/[8_G(I-\,)] / /(3-4_)) lnr _lj - r,i r,j
3.2.c
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where r is the distance betweena fleid point Qwith coordinates

(xtQ) Pand the point of load application P with coordinates (xj );

_-- {(xiQ- xiP) (x_q - ,hP)} 3.3

For plane stress, polsson's ratio v is replaced by v /(i+_), in

all the equations, Ref. [32].

If we consider the fie]d point Q to be on the boundary of a

body cut out of the infinite region, then the traction forces can

be determined on this boundary by

t. = 0.. n. 3.4
I 13 3

where n. is the component of the outward normal in the j
3

direction at the surface of the body. Expressing the stress

tensor in terms of dlsp]acements [35]

- + g (uj + ui ) 3.5Oij {2GX)/(I-2'_)} 61j uto,m ,i ,J

where G is the shear modulus, differentiating Eq. 3.2 and

substltut]ng in Eq. 3.5, Eq. 3.4 becomes:

or

-r,l nj + r,j n I } ej 3.6.a

t I = TIj e. 3.6.b3
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where

- r i nj + r,j ni} 3.6.c

We now make use of Betti's reciprocal theorem [36] whlch

states: If an elastic body is subjected to two systems of surface

tractions tj and t j, then the work that would be done by the

first system tj in acting through the displacement u j of the

second system is equal to the work that would be done by the

second system t . acting through the displacement u.
3 3

of the

first system, i.e.;

tj u j ds = t j uj ds 3.7

where s Is the boundary surface of the body, and de 1¢ an element

of surface area.

Suppose we now choose the second system of traction and

dlsp]acement ( t j and u j ) to be the one produced by a single

• to correspond to
unit concentrated load, and the system uj , t3

the solution we are seeking. Since we know the solution to the

unit concentrated load (Kelvin solution), we can solve for any of

the unknown traction and displacement (tj, u.) by substituting

Eq. 3.6 and 3.2 for t j and u , respectively and solving thej

integral, Eq. 3.7. Because of the singular nature of Uij and Tij

at r = O, it ts necessary to employ a limtttng process as shown

In Appendlx A, resulting In the following equation, known as the



boundary integral equation:

3_

fs t_ Ujl ds = I T. ds - C 3.8.a

t"

e i uj
e

u i e IJ _S jl t jl

or in another form

Cij uj = _ UIj tj ds - _ Tij u.j ds 3.8.b

where
Ci j = 51j for interior points and C.Ij = _ij/2 for boundary

points with smooth tangents. Eq. 3.8 is also known as

Somlgllana's identity. For very slmple geometries and boundary

analytical solutlons, but for complex bodies a numerical solution

is necessary and iS dlscussed Jn the next section.

Once the unknown traction and dlsp]acement are determined on

the boundary, internal displacements and stresses can be

calculated as functions of the boundary dlsp]acements and

tractions. For Internal displacement, Eq. 3.8 is used with Cij

= _j, however for internal stresses Eq. 3.8 is differentiated

and substituted in Eq. 3.5, to get [32]:

°lj = fs Uij k tk - Tij k uk ds 3.9

where

Uijk = I(l-2v)/14_(l-V)r]l _ik r + _ r - : r,j jk i i_ ,k

+ 2 r r r /(I-2\')
,i ,j ,k
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Tijk = {G/[2n(l-V)r2]} {2 dr/dn l(l-2X') 5 rij ,k

+ 6jk r,i - 4 r,i r,j r,k]

+ n i ( 2 vr,j r,k + (l-2V) 6jk)

+ nj ( 2 X)r,i r,k + (1-2_) 5tk)

+n k 12(I-mo) r,i r,j - (I-4v) 6ij]}

,4- ; r

"Ik ,J

Thus, the displacements and stresses at any interior point, if

needed can be obtained by integrating numerlcallv the boundary

equations, Eq. 3.8 and Eq. 3.9, respectively with clj = 61j,

from the solutions of the stresses and displacements at the

boundary.

3.3 Reduction of the Integral Equation to a set of linear

Simultaneous Equations

The first step in solving the boundary integral equations is

to reduce them to a set of linear simultaneous algebraic

equations, if the integral are unsolvable in close_ form. The

boundary of a body to be analyzed is divided into M surface

elements. Those elements can be linear or curved to map the

boundary geometries, as seen in Fig. 3.2. Eq. 3.8 can then be

rewritten as:

M M

=E fsm Utj tj dsm - Z fsm Ttj u
CIj uj b=l b=l J

ds- 3.10

A_ an approximation the traction, t. and dlsp]acement, u. are
3 J
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assumed constant or to vary linearly or quadrat_caly over each

element, as seen in Fig. 3.3. Thus, the tractions and

displacements in each element can be approximated by:

ti(x) = Nk(x) ti

ui(x ) = Nk(x) ul 3.11

For constant elements:

k = I and N=I 3.12

Here the traction and displacement are approximated as a constant

having the values at the m_d-polnt.

For linear elements, Ref. [37]:

k = 1,2

N I = (I-x)/2 N 2 = (l+x)/2 3.13

J(x) = (x2-xl)/2

where J(x) is the Jacoblan that transfers the _ntegral from the

global to the local coordinate system, where xl and x2 are the

In-plane coordinates of the nodes.

For quadratic elements, Ref. [37]:

k = 1,2,3

N 1 = x(x-l)/2 N 2 = x(x+1)/2 N 3 = (x+l)(l-x)

J(x) - (x2-xl)/2 + x(xl+x2 - 2 x3) 3.14

If the surface is represented by M elements, then the _ntegra]

equations become:
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M n

Ctj uj(P)+EE uj(Q bk) fTij(P,Q bk) Nk(x) jb(x)dx =
b=l k=l

b

M £ tj(Qbk)fZ Utj(P,Qbk) Nk(x) jb(x) dx
b=l k=l

3.15

where n b is the total number of nodes in element b. jb is the

Jacobian function for the bth element. The terms, uj(Q bk) or

tj(Qbk), are the nodal values of the displacements and tractions,

respectively, for the kth node within the bth element. Eq. 3.15

should be repeated N times, corresponding to the total number of

nodal points. The total integral equations can be written as:

b

Mn /-
,_a. ,_a. _"_"_ . bk, __

__"iJ '_ ' _J'_ '"/-_l-_J TM '3 "iJ '_ "_
a=l b=l k=l

b
N M n

.a hk. k. b. )

!

3.16

The expression in Eq. 3.16 represents a set of 2N equations which

can be written in matrix form as:

[Cija +_7_fTijabk Nk jb dx] {uja}=[ 7- zfuljabk Nk jb dx]Itj a} 3.17

b
where l,j = 1,2, a = I,N, b = I,M, and k = l,n

or in general form
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The integrals in Eq. 3.17 are easily solved numerically or

in closed form over the domain of each element. For Qbk _ pa an

eight point gausstan quadrature formula ts tmplimented in the

computer program, while for Qbk = pa, closed for= solution for

the lnr singularity is calculated.

For the case of a traction problem where the t's are known,

or the case of a displacement problem where the u's are known,

Eq. 3.18 reduces to the form

Eq. 3.19 represents a set of 2N linear algebraic equations which

are to be solved by Gauss Elimination method. Ia case of mixed

boundary value problem, where some values of both t and u are

specified, it is necessary to interchange the colu=ns of matrices

A and B (in Eq. 3.18), so that all the unknown quantities are

contained in the column vector u and the known values are

contained in t, before reducing the equation to the form of Eq°

3.19.

By placing the nodes at the corners of elements two

difficulties become apparent:

1) The possibility exists for nodes to be placed at sharp

edges of the body rather than at flat surfaces° Clj, in Eq°

3.16, is equal to 1/2 _ for flat surfaces. For nodes at edge
tj

discounttnutties Ctj can be computed in two ways. One uses a

limiting process as derived in Appendix A. The second method is

based on rigid body motion, as explained tn Ref. [38], and is
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given below:

N

Clj(P'Q) " -Eb=l fTij(P,Q) dx for P # O b 3.20

In the computer program, all Cli. terms are comp,ited using Eq.

3.20. The value for Cij on flat surfaces was computed by the

above equation and it was found to be exactly equal to 1/2 _ij as

predicted by the analytical formulation of Appendix A. The

second method was impltmented in the computer program merely as a

check to the numerical integrations.

2) Placing nodes at corners of elements assures the

continuity of displacements and tractions. However, in modelling

real problems a step change in traction may exist. To assure

discontinuity of applied tractions, the Input values of traction

are associated with the element they act on instead of the nodes.

As an example, consider two adjacent elements which lie in two

different planes ( see Fig. 3.4). Element 1 is under uniform

tension t while Element 2 is traction free. If the traction is

associated with node A directly, an extra shearing traction

exists in Element 2 varying from zero at node C to t at node A.

By assigning the traction to a node of a specific element, in

this example to node A of Element 1, the problem of adding extra

traction is avoided. Alternatively, one can place two distinct

nodes between elements 1 and 2, Fig. 3.4.b, but this method is

not implemented here.
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Some simple examples are shown next to test the boundary

integral equation computer program written for the CRAY-XMP at

NASA Lewis Research Center.

3.4 Uniform Distributed Load

The computer program of the two dlmenslona] Boundary

integral equation method (BIEM2), is first applied to a

rectangular body with uniformly distributed vertical pressure on

part of the boundary, under plane strain conditions, see Fig.

3.5. To simulate the semi-lnflnlte region a uniform reaction

force was applied to the bottom part of the plate. The

dimensions of the body are W/b = H/b = 30, where H is the height,

W is the width and b is half the length of the pressure applied.

The polsson's ratio is equal to 0.3, and the applied pressure

load is normalized with the modulus of e]astlclty, p/E = I.

Two different sets of runs are studied. In the first set

linear elements are used, while in the second set the quadratic

elements are impllmented. Different number of nodes are used in

each set to analyze the order of convergence of the specific

element type. A mesh generating program was written to

facilitate the input data for the boundary dlscritazation. The

required inputs are the material properties, the number of major

subdivisions with the number of nodes desired in each one of

them, and finally the coordinates of these major subdivisions.
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The computer program (GENEI) will then generates the coordinates

of the nodes and the element formations, with the proper fixities

and loading conditions. Any loading condition can be Impllmented

by just changing the loading function in the program.

Coordinates of internal points, if desired, are also generated.

For the above example, nine major subdivisions are chosen, (see

Fig. 3.6), with fixities in the y-directlon at coordinates 2 and

6, and in the x-directlon at coordinate 4. A uniform traction is

applied between coordinates 8 and 9, and along the bottom plate

from coordinate 3 to 5. The numbers of nodes used in each

subdivision is shown in Fig. 3.6. For the convergence ana]ysls N

in each mesh was 2, 4, 8, 16, 24, and 32 respectively.

To study the convergence of each element type, the values of

the stresses at five internal points, picked below the edge of

the uniform load, at distances y = b, and x = b, 2b, 3b, 4b, 5b,

respectively, were compared, (see Fig. 3.6). Table 3.1 shows the

values of the stresses for different mesh size at x = b and y =

2b. Good agreement with the closed form so]utlon is observed for

but for o the error is much higher
N = 32, for Oxy and _, X

because of truncation error.

A plot of the average error for the stresses ( ox, Oy, Oxy) ,

as function of the number of nodes, for the two type of elements

is shown in Fig. 3.7. The average error of all the stresses for

those five points is obtained from the elastic solution of a

semi-lnfinite region and the analytical results from the BIEM
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Table 3.1 Varlatlons of the Stresses Ox, Or, and _xy' as a

Function of the MeshSizes, for an Internal point

at x = b and y = 2b of the uniform loaded plate.

N

Ox/p Oy/p Oxy/p

linear Quad. Linear Quad. Linear Quad.

2 -0.1142 -0.1195 -0.3718 -0.3840

4 -0.1088 -0.1063 -0.4020 -0.4117

8 -0.1002 -0.0980 -0.4138 -0.4165

16 -0.0972 -0.0963 -0.4128 -0.4124

24 -0.0969 -0.0964 -0.4120 -0.4112

32 -0.0967 -0.0966 -0.4105 -0.4098

0.1205 0.1326

0.1338 0.1412

0.1479 0.1531

0.156! 0.1588

0.1573 0.1593

0.1586 0.1595

exact -0.0908 -0.4092 0.1592
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program. As seen in the figure, the difference between the

linear and the quadratic elements is very small for the same

number of nodes, and both method_ converge to the same answer.

This shows that for this problem, the converged solution does not

depend on the element type. The advantage of the quadratic

elements over the linear elements comes into consideration in the

CPU time required to set up the integral equations. Since the

integrals are evaluated over each element, and the number of

elements for the quadratic type is half the number of elements

for the linear one, the time needed is cut in half.

Fig. 3.8 shows the CPU time in seconds required on the CRAY

XMP, for the linear and quadratic elements as a function of the

number of nodes. As seen in the figure the average saving in CPU

time between the quadratic and linear elements is about 33%. The

reduction is only 33% because the CPU time reported is the total

CPU time needed to set up and solve the system of algebraic

equations, and both element types need the same solving time, for

the same number of nodes. Considering the saving in CPU time,

quadratic elements were used in the application of the BIEM to

the mlxed-mode failure of the inner raceway of the high speed

bearings, and in the following examples on the s_ress intensity

factor calculations.



69

E

| | | I I

,J

0

_J

>

0

_' O
O

E

_Z

< O

O

O
"_ O



7O

| I I

spuo_as uT 'amTi

i

0

fldD

Z

E

=
Z

-.._.

r3

U

QJ
.E
AJ

E
O

O

4J

O

..I= QJ

O
l., Z
O

O

¢J I._

._..O
: E

Z

¢J t_
E

"_ O

._= O
,iJ

_-_ O
O "_

U
O r"

;:> {tl

OO



/I

3.5 Determination of the Stress Intensity Factors

The next examples relate to the determination of the stress

intensity factors for bodies with cracks using the BIEM. There

is extensive llterature on the numerical determination of the

stress intensity factors. One of the methods which was adopted

from finite elements is the use of a singularlty element at the

crack tip, Ref. [39]. The simplest crack singularity element is

the quarter point element, where the mid-polnt of the quadratic

element at the crack tip is moved to the quater point position,

Ref. [39]. The disadvantage of these elements is that a

transition element is needed and the crack tip should be fixed to

give accurate results for the stress intensity factors. A second

disadvantage is that the length of the crack tip element affects

the result. Therefore, the length of the quarter point element

has to be adjusted untll the desired accuracy is achieved. Due

to these disadvantages, this method is not implemented here.

The second method to determine the stress intensity factors

is based on their basic definitions; as the llmlt of the stress

multiplled by the square root of the distance to the crack tip,

for the stress ahead of the crack tip, at a distance of 0.2 of

the crack length to 0.5 of the crack length, (See Eq. 2.3). In

this method the stresses ahead of the crack tip, the tangential

stresses and the shear stresses, are multiplied by the square

root of 2_r and plotted versus r. Curves are then fitted
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throught those points and the values at r = 0, equal the stress

intensity factors, K I and KI3 respective]y. This method ts also

known as the extrapolation method for determining the stress

intensity factors.

Finally the J integral as defined in section 2.3 can be

evaluated along any path around the crack tip, and the values of

the resu]tlng integrals are proportlona] to the stress intensity

factors. The extrapolation method and the J integral method are

compared next for a slng]e edge crack under mlxed-mode |oading

condition.

The single edge crack under uniform tensl]e load is analyzed

first, with dimensions a/H = 1/15 and W/H = I, where a is the

crack length see Fig. 3.9. The tensile stress, t, is normalized

with the modulus of elasticity E, t/E = I. The number of nodes

in each subdlvls:ion are shown _n Fig. 3.9. The number of nodes,

N, along the crack, is varied between 20 and 140. The mode I

stress intensity factor, KI, was calculated using the

extrapolation method using internal points ahead of the crack tip

between 0.2a and 0.5a. For points c3oser than 0.2a, the values

of the stresses are not accurate. The variation of K I with the

number of nodes along the crack front is shown in Fig. 3.10. An

asymptotic value for the stress intensity factor is reached for

values of N greater than I00. Comparing the asymptotic value

with the published so]utlons, Ref. [40], the difference between

the two values is less than I%. The J Integral was also
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I Crack Front

.... _ _ u _
I

Fig. 3.11 The Three Paths Considered for the J Integral

Calculations.
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Variation of the J integral and the Corresponding

stress Intensity factor for different paths, for

the Pure Mode I Loading Condition.

Path Jl E KI

t2a t cra-

Eq. 2.13 Eq. 2.14

1 3.8052 2.045

2 3.8115 2.046

3 3.8146 2.047

extrapo]atlon

Ref. [40]

2.045

2.032
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calculated for N equals 100. Three different rectangular paths

were chosen as shown in Fig. 3.11. To determine the values of

ui, 1 in the J integral formulation, neighboring points were also

used to determine numerically the values of the derivative of the

displacement. The values of J integral for the corresponding

paths are shown in Table 3.2, based on Eq. 2.13. Also shown is

the corresponding mode I stress intensity factor using Eq. 2.14,

and the results using the extrapolation method as well as the

published solutions from Ref. [40]. As seen from Table 3.2, the

results of the three different paths agree well with each other

and also give the same result as the extrapolation method. Thus,

the J integral and the extrapolation method give the same value

for the stress intensity factor for this pure mode I case.

The second example is for a plate with a crack under shear

mode loading, pure mode II, see Fig. 3.12. The dimensions of the

plate are the same as for the mode I case; a/H = 1/15, W/H = 1.

Two antisymmetric uniform applied pressure loads are located at

equal distance from the crack plane. The distance Y0 of the

mid-positions of the pressure load to the crack plane equals

0.25a. The magnitude of the pressure P applied equals 50E, and

acts on a segment of length equals 0.01a. The variations of the

mode II stress intensity factor as a function of the number of

nodes along the crack front, using the extrapolation method, is

shown in Fig. 3.13. An asymptotic value for the mode II stress

intensity factor is reached at values of N greater than 100. The
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J integral method was also calculated using both formulations as

describe in section 2.3, Rice formulation Eq. 2.13 and Bui

formulation Eq. 2.16, for N = 100. For Bui's formulation the

stresses and the displacements along any path had to be devided

into symmetric and anttsymmetric parts:

Di sp] acement s :

Stresses:

Ix

Iy

1iI x

Y

xx

yy!
Oxy J

= 1/2

= I/2

= I/2

7
u + u' I
x x

JO -- U t

Y Y

U -- U !

X X

u + u'

Y Y

+ '
0 xx 0 xx

YY YY

- d
xy x

Symmet rl c

An __isymmet ri c

Syr_ne t r i c

II

0 xx

i yy

i. ° xy

= 1/2

(_XX XX

o YY YYJ
Oxy + dxy

Anti symmetric

where the ' indicates the component of the stress or the

displacement at the opposite position, with respect to the crack

plane, of the point under considreration, see Fig. 3.11. Table

3.3 represents the values of the J _ntegra:s for the two

formulations: Rice (Jl' J2) and Bui (dI' JII )' a:ong the three

paths given in Fig. 3.11 for the pure mode II exa=?le.



Table 3.3

^.

Ol

Va]ues of the 3 integral for the Three Paths, for

tile Pure Mode II loading Condition, (p/t = 50).

Ri ce

Path J1E J2 E

2 2
t a t a

Eq. 2.13

1 0.40877 0.00

2 O. 44304 O. 00

3 O. 39522 O.O0

Bu i

JI E JiI E

2 2
ta ta

Eq. 2.16

0.00525

0.00168

0.00074

0.40353

0.44217

O. 39449
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Values of The Corresponding ModeII Stress

Intensity from the J Integral Ca]cu]atlons, and

the Value from Extrapolation method, (p/t = 50).

Path

I

2

3

Rice But

KI KI I KI KI I

t ¢K t ca- t _- t/g

Eq. 3.23 Eq. 3.24

0.00 0.6702 0.07596 0.6659

0.00 O. 6978 0.04297 O. 6971

0.O0 0.6590 0.02852 0.6584

extrapolation 0.00 0.7414
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The values of the corresponding stress Intensity factors are

determined using the following relations:

For Rice J integral:

2KI2 -- 2 E ( Jl + 312 - 32

KII2= 4 E Jl / {(l+X0(<+l ) } -K I

)/ {(l+ v)(,<+l ))

3.23

For Bul J integral:

KI2 = 4 E Jl / {(I+_)(_+I)}

KII 2= 4 E Jil / {(I+_)(_+i)}

3.24

where _ is the polsson's ratio and K is as defined earlier equals

(3-4_) for plane strain cond]tlon.

The corresponding values of the stress intensity factors

from the J integral results are shown Jn Table 3.4, using

relations 3.23 and 3.24, for Rice and Bui formulation,

respectlve]y. A]so shown, the mode II stress intensity factor

using the extrapolation technique. Both J Integra2 formulations

gave consistent results, which are on the average 9% below the

extrapolation result. But looking at the results for different

paths, the value of KII changes by almost 5% betv6en each path.

The difference between the two J integral form.]ations is not yet
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obvious until the mixed-mode loading condition Js analyzed.

For the mixed-mode loading condition, botk: cases analyzed

above are combined together, see Fig. 3.14. The same dimensions

and loading conditions are tmpltmented in this example. Table

3.5 summurizes the values of the J integrals from both

formulations for this mixed-mode loading condition. Also shown

are the corresponding stress intensity factors using Eq. 3.23 and

Eq. 3.24 for Rice and Bui formulations, respectively, along the

same three paths described above, see Fig. 3.]i. While Bui's

formulation gives consistent results with the p_re mode cases,

Rice's formulation gives completely different answers, especially

for the KII stress intensity factor. A 33% difference in the

value of the mode II stress intensity factor is oSserved, between

the pure mode II and the mixed-mode case. This drop in the value

of KII is due to the incorrect J2 integral formulation as

discussed by Bui, Ref. [22]. Comparing the values of the mode II

stress intensity factor between different paths, there is a 11%

change in the J 2 between path 1 and path 3. TEe values of the

stress intensity factors, K I and KII, from the extrapolation

method are exactly equal to the pure mode results.

Due to the above controversy, the extrap0_ation method is

used in the application of the BIEM to m_xed-mo_e failure of the

inner raceway of the high speed bearings.
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Values of The J lntegral Results with the

Corresponding Stress Intensity Factors, for

the Mixed-Mode Loading Condition, (v/t = 50).

Path

l

2

3

Rice Bui

Jl E J2E Ji E Jl! E

2 2 t2 -t a t a a t a

Eq. 2.13 Eq. 2.16

4.1986 1.8082 3.7951 0.4_35

4.2400 1.7836 3.7979 0.a-22

4.1938 1.6154 3.7993 0.3_5

KI KI I K! KI 1

t _a t _aa t_Taa t,_

Eq. 3.23 Eq. 3.24

2.0950 0.4742 2.0422 0.6659

2.1079 0.4649 2.0429 0.6_71

2.1049 0.4217 2.0433 0.65B4

extrapolation 2.0450 0.7414



CHAPTER FOUR

APPLIED LOADINGS ON THE INNER RACEWAY OF BEARINGS

As a first step towards attempting to determine the crack

propagation rate and the time to failure of the high speed

bearings, the loading acting on the inner raceway should be

determined. The most important loadings are the tangential

stresses due to the rotational speed and the press fit, and the

next important loadlngs are the Hertzian stresses, which alter

the tangentla] stresses with each passage of the heavily loaded

roller.

4.1 Tangentla] Stresses

The tangential stresses in the inner raceway are due to the

rotational speed and the press fit of the inner raceway on to the

shaft. Fig. 4.1 shows a simplified bearing configuration mounted

on a hollow shaft. The solutions of the tangential stress in the

inner raceway, modelled as a rotating disk is found to be, from

Ref. [41]:

where P is the density of tile material, _ is the rotational speed

87
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Roller

Outer raceway

Shaft

Inner raceway

Fig. 4.1 A Simplified Bearing Conflguratien.
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and r is the radial distance, and r i and r 0 are the inner and

outer radii of the rotating disk. The most critical point for

surface initiated crack propagation is at the outer radlus of the

raceway, r = r . Substituting the value of r 0 for r in Eq. 4.1,
O

the tangential stress at r = r equals:
O

2°++ o++l,-,:'+t ('-+)](+++)}'o J 4.2

For typical aircraft engine bearings the ratio b=tween the outer

radius to the inner radius of the inner raceway e:uals 1.13, Ref.

[42]. Subtituting the value of r0 as a function of the inner

radius of the raceway, ri, and making use of the DN value, which

is the product of the bearing bore in millimeter times the shaft

rotating speed in RPM. The tangential stress at the outer radius

will have the following relation assuming a poisson's ratio of

0.3:

OeB = 3.32075 x 10-9 (DN) 2
(psi) 4.3

where the density p is assumed to equal 0.288 ]b/in 3. A plot of

the tangential stress versus the DN value is sho_m in Fig. 4.2.

Also shown is an estimated critical crack length required for

unstable crack growth. This estimate is derived for an edge

crack in a seml-lnfinite plate with an applied normal stress

equal to the tangential stress at the outer radius of the inner
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Fig. 4.2 Tangential Stress in the Inner Raceway zrl Critical
Crack Length versus DE Value in Millicr
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_rz

Kic = 1.12 o00¢raa w 4.4
c

where the value of K I is the critical stress intensity factorc

for unstable crack growth. The value of Klc used is equal to

17.5 Ksl i_/m_, which is a typlca] critical stress intensity factor

for M50 bearing steel. As seen from the equation, the critical

crack length is Inversly proportional to the fourth power of the

DN value:

a = 7.047 x i0 zq (DN) -4 (in) 4.5
c

The critical crack length required for unstable crack growth

decreases rapldly for DN values greater than 1.5 million. For a

DN value equals 3 million, the critical crack length is almost

I/3 of the total raceway thickness. However, the effect on this

critical crack length due to the press fit of the inner raceway

onto the shaft ring should be estimated.

The effect of the press fit is to increase the tangential

stresses in the inner raceway causing the critical crack length

to decrease. A typical interference fit of the inner raceway on

the shaft is 0.00233 in (0.059 mm) at 0 RPM, Ref. [42], causing a

uniform pressure p = 1,974 psi along the interference radius, for

two cylinders having the following dimensions; ro = 2.6 in, r i =
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2.3 in and r'o = 2.3023 in, r' i = 2.0 in. The tangential stress

due to a uniform pressure distribution is given in Ref. [41]:

2/r2= 2-rt2) } [ 1 + r ] 4.6°00 P { rt2/(ro o

For r I -- 2.3 in and r ° = 2.6 in the tangential stress is equal to

16. 178 kst at r = r the outer radius of the inner raceway. But
O,

at increasing RPM the interference fit is reduced due to the

radial displacement caused by the centripetal acceleration.

Thus, a reduced pressure will develop between the inner raceway

and the shaft which causes the interference fit to decrease with

increasing speed:

= 0.00233 - 1.0463 x 10 -16 (DN) 2 (in) 4.7
new

where 6 is the new interference fit at a given DN value.
new

The pressure that develops from this new interference fit, will

cause a tangential stress at the outer radius of the inner

raceway which is given as:

O00 = 16,178 - 7.265 x 10 -10 (DN) 2 (psi) 4.8

The net tangential stress at the outer radius of the inner

raceway of the bearing, will be the sum of the two stresses due

to the rotational speed and the press fit at a given DN value,
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given as the sumof Eq. 4.3 and 4.8:

°00= 16,178 + 2.59425 x 10-9 (DN) 2 (psi) 4.9

and the critical crack length for the combined tangential

stresses wlll be:

a = 7.77x 107/ (16,178+2.59425xi0 -9 DN2) 2
c

4.10

A plot of the net tangential stress and the corresponding

critical crack length acting at the outer radius of the inner

raceway is shown in Fig. 4.3. The critical crack length

calculated for a DN value of 3xi06 is much than the defect depths

which are of the order of 0.004 in. Thus, the only cause for the

crack to grow from a small surface furrow or a debris dent is

through a fatigue process developed by the alternating Hertzlan

stress.

4.2 Hertzlan Pressure

When two bodies are in contact, special attention must be

paid to the deformation in the contact region. The original

analysis of elastic contact stresses under static loadlngs was

published by Hertz in 1882 [43]. In his honor, the stresses at

mating surfaces of curved bodies are commonly called Hertzlan
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stresses. The actual load-carrying capacity of bodies in contact

depends upon more than the elastic stress computed from Hertz

equations. Surface sliding, lubricating fluid films and surface

roughness should also be considered. In this section only the

elastic solution under ideal surface conditions is assumed.

Hertz's analysis showed that for two spherical bodies in

contact the pressure distribution, which causes a uniform

displacement field in the contact region, is represented by an

elliptic pressure distribution, see Fig. 4._, having the

following equation:

I

P = PO _ 1 - x_/a _ -y_/b _

4.11

where PO is the maximum pressure at the center of the contact

region, and a and b denote the major and minor semiaxes of the

contact surface for two spherical bodies in conta:t. The total

load applied will be equal to:

P = (2/3) Tra b P0
4.12

For two cylindrical bodies in contact, (roller bearings), the

major semi-axis, a, goes to infinity and the pressure

distribution will have the following form, see Fig. 4.5:

P = PO _I -y2/b2
4.13
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Fig. 4. 4 Elliptic Pressure Loading for t_ 5_heres
in Contact.

Fig. 4.5 Pressure Loading for Two Cylinder÷ in Contact.
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resulting in an applied total load which equals:

P = (1/2) n b L PO
4.14

where b is the minor semi-axis and L is the length of the roller

bearing.

To determine the dimension of the minor semi-axis, b, of the

contact region, the curvature and the material properties of the

two cylinders in contact should be taken into consideration.

Following Ref. [44], b equals:

P ( (l-Vl 2) / m I + (I-_ 2 ) / E2)
b = 2 4.15

L ( I/r I + I/r 2 )

where rl, _, and E l are the radius of curvature, the polsson's

ratio and the modulus of elasticity, respectlve]y, for the two

cylindrical bodies in contact.

When the applied load for a given bearing configuration is

known, the Hertzlan stresses in the bodies can be easily

determined analytically or numerically. Smith and Liu, Ref. [44]

solved for the stresses for a seml-lnflnlte plate under a

Hertztan pressure distribution using the integral equation

technique. The stress distributions Ox, Oy, an_ axy are given

in Fig. 4.6, 4.7 and 4.8, respectively. Fig. 4.7 shows the

variation of the tangential stresses with roller position. As

the roller gets closer to the line under considerations, the
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stresses are highly compressive, and as the roller gets away the

compressive stresses die out quickly. For a surface defect, thls

fast variations of the stress state superimposed on the

tangential stresses due to the rotatlona] speed and the press fit

causes an a]ternatlng mode I stress intensity factor that can be

a driving force for the fatigue crack growth.

The second crack propagation mode is the shear mode, as seen

in Fig. 4.8. The shear stress increases as the roller gets

closer to the llne under considerations, reaches its maxlm°um at

the edge of the loading and then decreases quickly. While the

normal stresses decay relatlvely fast for dlstanceq of x greater

than 5b, the shear stresses still have some effect at greater

depth.

Friction effect is sometimes superimposed on the normal

Hertzlan loadlngs for sliding contacts. The friction is usually

represented as a fraction of the normal pressure acting in a

direction opposite to the relative motion, given by Ref. [44]:

q = f p 4.16

where f is the coefficient of friction, and p in the normal

Hertzlan load. In general, In the absence of viscosity effects

of the ]ubrlcant, friction changes little with speed. When

viscosity effects comes into consideration, two types of behavior

are observed; for mineral ol]s friction decrease with increasing
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speed, while for fatty acids the opposite is observed. At high

speed, Increase tn friction ts normally observed, Ref. [45]. The

variations of the stress distributions under the Hertzlan

pressure with friction are shown in Fig. 4.9, 4.10, 4.11, for o
X'

0 and 0 respectively. The friction coefficient, f, used in
y xy

the calculation, equals 0.3. The net effect of the friction is

to alter the symmetry of the normal Hertztan stress components;

Increasing the stress when the friction acts in the direction of

the loadfngs and decreasing tt for the other case. The most

Important change in the stress distribution is for Oy, which

becomes positive when the loading is on the left of the line

under consideration. For the shear

component of the stress dlstrlbutlon

posltlve component decreases, Fig. 4.11.

stress, the negative

lncreases, while the

The next step in the analysis Is to Include the effect of

the lubricating film since all high speed bearings are well

lubricated.

4.3 E]astohydrodynamlcs Lubrication

For the completeness of the analysis the fluid film should

be considered, In the presence of a surface defect or a surface

furrow.

The governing equation for the elastohydrodynamic lubri-

cation is based on Reynolds equation, whlch Is a specla] case of
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the Navler equation for fluid bodies. Assuming no side leakage,

the two dimensional Reynolds equation is given by;

3
dph

12 v 4.!7

dy

where p Is the lubricant density

n is the lubricant viscosity

h is the film thickness

p is the pressure

v is the mean velocity of the lubricant (Vl+V2)/2

The variation of the viscosity with pressure for liquids is:

_P 4.18
rl =rlO e

where n,0 is the coefficient of the absolute viscosity at

atmospheric pressure, and _ is the pressure-viscosity coefficient

of the fluid.

The density variation with pressure is:

P = PO [ 1 + ap/(l+bp) ]
4.19

where p0 is the density at atmospheric pressure, and where a and

b are pressure-density coefficients.

The film thickness is given by:
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h = h 0 + y2/2 (l/rl+l/r 2) + u + d 4.20
x

where h 0 is the minimum film thickness, r i are the radii of

curvatures of the two bodies in contact, u is the total elastic
x

deformation and d is the height of the surface defects in the

contact region due to debris dents or surface furrows.

The solution to Reynolds equation, Eq. 4.17, with the given

viscosity and density as functions of the pressure can only be

obtained numerically. The numerical technique used here is the

comblnatton of the finite difference method for the solution of

Reynolds equation and the boundary integral _ethod for the

displacement calculations.

Fig 4.12 shows the flow diagram for the numerical technique

impltmented. An initial pressure profile is ass_ed. Then, the

displacements for the given pressure profile are solved for,

using BIEM program. The film thickness h, from Eq. 4.20, is

calculated next. The new pressure profile is now determined

using the finite difference method. Due to the high gradients of

dp/dy and d2p/dy 2, a new smoother paramater, _ , is introduced,

defined as:

3/2

=ph 4.21

Note that p is small at large values of h and vice versa. This

subsltution also has the advantage of eliminating all terms

containing derivatives of h and p or h and _. Therefore, the

Reynolds equation in terms of the new paramter ¢ will be:
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l

3/2d 0 d _ 3 d Oh _ dh dOh

h .I I_ _ f I = 12u

dy_ 13 dy J 2 dy [ n dy I dy
4.22

Using standard finite difference representation, Eq. 4.22 can be

rewritten as:

al,i _t-1 + a2,i _bi + a3,i _i+l = b i 4.23

where

½
hi OI i

[ a39al,i = d2 n i-½ i d2 n i+½

= I _P + Pa2, i _½- i+½ dy i+l" p- h½n dy i-I

b 12u{ls)- ph - ph
i 2 d i+l i- 1

d = nodal distance

The system of equatlbn of Eq. 4.23 is solved using the Gauss

S_edel Iteration method untl] _ does not vary. The relaxed Gauss

Siedel method of iteration is given by:

(I + w a2 -I al)_b n+l = {(l-w)l-wa2 -I a3}_n + w a2 -I b 4.24

where w is the relaxation coefficient.

continue until _does not vary.

The new pressure is calculated

The Guass iteration wl]]

and compared with the
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original pressure. If the difference is much bigger than a

certain tolerance, a new displacement field will be calculated

using the BIEM program. If not, the load generated from the

pressure is measured and compared with the applied load required.

If the two loads do not co,pare, a new film thickness h 0 is

estimated and the calculation is repeated until convergence.

The boundary conditions for the Reynolds equation are:

1) p = O, for reglons far from the contact area

2) p is reset to zero at any position when the pressure is

negative

The second condition is commonly known as the Reynolds condition,

which is based on obervations that a negative pressure cannot

exist in the contact region.

An initial run was performed using constant viscosity and

density, with and without a surface furrow. The pressure

profiles are shown in Fig. 4.13, for a defect depth equals 0.0030

in. and a Hertztan load of 15001bs. The pressure distribution

drecreases sharply at the tip of the defect and increases to the

original pressure distribution after the defect. As the depth of

the defect increases the pressure in the pocket decreases to

zero. Therefore, one can assume that with the presence of the

surface crack the pressure of the lubricant in the crack can be

taken as zero.
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4.4 Initial Estimate of The Stress Intensity Factors

As a first estimate, the stress intensity factors, K I and

KII , were evaluated using the superpositlon method. This method

consists of eva]uatlng the stresses in an uncracked body and then

applying the negative of the stresses for the uncracked body

along the crack faces of the cracked body to determine the stress

Intensity factors. Fig. 4.14 represents a schematic diagram of

the superpositlon method used. Fig. 4.14.a shows a cracked plate

with the tangential stresses and the Hertzian loading. This is

equated to the sum of a plate with the same loading conditions

but without a crack, Fig. 4.14.b. and a cracked plate loaded only

along the crack faces with the negative stresses of the uncracked

case. The stress intensity factors are then determined by

summing the effect of every point load using available solutions.

The stress intensity factors are given by:

K I = 2/ a_/--a--_fxx/_(I - (x/a) 2 )

KII _ 2/ _}xy/_(1 - (x/a) 2 )

F(x/a) dx

F(x/a) dx

4.25

where F(×/a) is given in Fig. 4.15 from Ref. [_], for a point

load along the crack faces at distance × from the crack tip. The

stresses used in this superpositlon method were the tangential

stresses due to the press fit and the rotational speed combined



113

_TTTT _

.r--)

J. i i, iJ.

,i-i

t.-"

° -I-
0
Z

II

_ITTT

C_
I

t_ff

E

_D

0

_J

t"+ U

.+,-I

o+..,+

<_ ..,

m u

m

,.C

0

0

> .'_

.i-i

Z <

.,p..l

r'
0

0

r_

I



114

0

1.4

I I+]P' I
).110

u. _2

. i ,, ,..

0.2 0.4 O.&

Fig. 4. 15 Solution for the stress intensi:" factors for

a point load on the crack face. ;el. [40].
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with the Hertzlan stresses for a given roller position and crack

length.

Fig. 4.16 represents the variation of the mode I stress

Intensity factor as a function of the roller position for

different crack lengths, a/b. The value of the maximum Hertzlan

pressure, P0' used In thls example, equals 180ksl, wlth a seml-

major axis, b, equals 0.005 in. The change in the K I stress

Intensity factor decreases with Increasing crack depth a. For

small crack depths KI is negative, Indicating crack closure, due

to the high compressive Hertzlan stresses. The variation of the

mode II stress Intensity factor with roller position is shown in

Fig. 4.17 for different maximum Hertzlan pressures P0" The

variation of the maximum KII stress intensity factor wlth crack

depth for P0 equals 180ksI Is shown In Fig. 4.18. The maximum

mode II stress intensity factor increases sharply for small crack

depths, reaches a maximum value, and then decreases slowly as the

crack depth increases. These results show the variation of the

stress intensity factors with each passage of a roller. As seen

from the figure, the stress Intensity factors are well below the

critical stress Intensity factor, KIC, of M50 bearing steel, for

a crack depth less than 0.06 In. Therefore, the only criteria

for the failure of the Inner ring from a very small surface

defect ts through a fatigue process due to the combined

alternating stress Intensity factors, 5 K I and _KII, as shown

in the next chapter.



ll6

Although this method gives accurate solutions for the stress

intensity factors for straight cracks, a more generalized method

should be used to determine the complete stress and displacement

distributions around any arbitrary branched crack. The

generalized method that will be used to determine the stress and

displacement fields as well as the stress intensity factors, for

any arbitrary oriented crack, is the BIEM as will be seen in the

next chapter.
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CHAPTER FIVE

MIXED--MODE FAILURE ANALYSIS OF THE INNER RACEWAY

OF HIGH SPEED BEARINGS

Chapter One described the different failures observed in the

inner raceway of bearings, and especially tile new catastrophic

failure recently detected in test rigs for high speed aircraft

engine bearings. This chapter utilizes the mlxed-mode failure

criteria of chapter Two to analyze the causes that lead to the

brittle failure of high speed bearings, using the boundary

integral method described in chapter Three and the major loading

conditions summarized in chapter Four. The interaction of the

Hertzlan stresses and the tangential stresses due to the

rotational speed and press fit, in the presence of a surface

defect are first described in terms of the stress intensity

factors, K I and KII. Then, the crack propagation direction is

determined using the different crack growth criteria described in

section 2.4. Finally, the time to failure is estimated using

fatigue failure data of M50 bearing steel.

5.1 Stress Intensity Factors

The stress intensity factors are determined for a typical

roller bearing used as a support for the main sh3ft of aircraft

120
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Table 5.1 Typlca] Roller Bearings for Turbine

Engine Main Shaft.

-Roller Diameter

-Roller Length

-No. of Rollers 28

-Shaft Inner Radius

Outer Radius

-Inner Raceway

-O_utar P.aa away

0.5 in.

0.57322 in.

2.0 In.

2.30233 in.

Inner Radius

Outer Radius

Outer Radius

2.300 in.

2.600 in.

q 1 4_

3.35 in.

-Shaft Speed 25,500 RPM

-Load on most heavily loaded roller 500 lbs., 1,000 lbs.,

1,500 Ibs., 2,000 Ibs.

-Interference fit of inner raceway 0.00233 in.

onto the shaft at 0 RPM
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engines. The dimensions of the bearing and the shaft are shown

in Table 5.1. A two dimensional analysis is performed assuming a

plane strain condition, representing the mld-section of the inner

raceway. This approximation is assumed sufficiently good to

identify some mechanisms that lead to the catastrophic failure of

the inner raceway. The inner raceway was modelled as a plate

with width equal to the inner raceway thickness and length twice

the width, corresponding to the distance between two rollers.

The curvature of the raceway was ignored since the ratio of the

raceway thickness to the outer radius of the inner raceway is

small.

The tangential stresses applied at the edge of the plate are

calculated from the solution of a rotating disk at 25,500 RPM

superimposed onto the tangential stresses of the press fit at the

same rotational speed. The calculated tangential stress at the

middle of the inner raceway was 42,300PSI. The variation of the

tangential stress along the radius was approximated by a linear

curve, decreasing to about 7% of the mid value.

A reaction pressure load was applied at the bottom of the

plate to simulate the contact stresses transfered from the inner

raceway to the shaft. The corresponding load of this pressure

will be equated to the applied Hertzian load. Different Hertzian

loading condition are assumed giving rise to different maximum

pressures Po and contact lengths b.

Table 5.2 summarizes the four Hertztan loading conditions
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The Geometry of the Hertzian Pressure

dlstrlbutlon for different loads.

P Ibs. b in. -P-oksl.

500 0.00392 142.

1,000 0.00554 200.

1,500 0.00679 245.

2,000 0.00780 283.
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used in the analysis.

the inner raceway and the number

subdivision for BIEM analysis.

The stress intensity factors

extrapolation

stresses o
xy

Fig. 5.1 shows the geometric modelling of

of nodes used in each

are determined using the

method described in section 3.5. The shear

and the normal stresses o are multiplied by the
Y

square root of the distance to the crack ttp and plotted versus

that distance. Their intercepts wtth the axis at r equals zero,

are proportional to the stress intensity factors KII and K I

respectively. The stresses used in the extrapolation method were

taken between 0.2a and O.5a ahead of the crack tip.

To simulate the passage of each roller, the Hertzian loading

Is moved incrementally along the top face of the plate. The

dynamic effect was ignored assuming steady state solution.

A typical variation of the mode I stress intensity factor

with roller position and crack depth is shown in Fig. 5.2, for a

Hertzian load equals 1,500 lbs. As seen from the figure, the

compressive stresses of the Hertzlan loading cause the decrease

of the constant value of the mode I stress intensity factor due

to the tangential stresses of the rotational speed and the press

fit. For very small cracks, K I is constant and then decreases

rapidly as the roller approaches the crack and increases rapidly

again after the roller moved away from the crack. The negative

KI values observed indicates crack closure. For large cracks the

rapid decrease in KI diminishes and practically disappears since
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the crack tip at these lengths has passed outside the highly

compressive Hertzian stress field.

These variations in K I can result in crack growth for small

cracks. However, there is another stress intensity factor namely

the shear mode or mode II, which may play a more important role

in crack propagation. The variation of the mode II stress

intensity factor is shown in Fig. 5.3 for the same Hertzian

loading condition as above. The value of KII starts at zero when

the roller is far from the crack tip. As the roller approaches

the crack, KII starts to decrease until it reaches a minimum, as

th_ Hertz]nn nr_R_uro AiRtr|h,_t 4nn ronehp_ tho rrnek, thpn

increases rapidly back to zero. When the roller starts to move

to the other side of the crack it changes sign and starts to

increase to the maximum value and then decreases back to zero.

For small cracks the change in KII is very abrupt, but for deeper

cracks, the change in KII is more gradual. The change in KII

persists at greater depths than KI.

The variations of the stress intensity factors with roller

position for different Hertzfan loading are shown in Fig. 5.4 and

5.5 for K I and KII, respectively, for a crack length equals

O.008tn. As seen in the plots, the greater the Hertzian load the

greater the change in the stress intensity factors.

Fig. 5.6 represents the maximum absolute value of KII for

different applied Hertzian loads. The values of KII increase

until reaching a maximum at depths which correspond to the
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maximum shear stress and then decrease slowly. This is due to

the fact that although the shear stress decreases as we move down

from the surface causing KI1 to decrease, the increase in crack

length causes KII to increase.

When friction _s added the stress intensity factors are

modified as shown by the stress distributions given in section

4.4. The variation of the stress intensity factors K I and KII

for different friction factors, f, ( f = 0.0, 0.05, 0.1, 0.2,

0.3), are plotted in Fig. 5.7 and 5.8, for a crack length equals

0.002in. As the roller approaches the crack the friction forces

act in a direction to close the crack, causing K I to decrease

even more, but as soon as the roller passes the crack, the

friction forces act now to open the crack, causing an increase in

K I. As the roller moves further out, the effect of friction

disappears. As for mode If, as shown in Fig. 5.8, KII increases

in absolute value as the roller approaches the crack, and then

decreases as the roller moves to the other side of the crack

since at that point the shear stresses are positive while the

friction forces are still causing a negative shear.

Note that the stress intensity factors for the crack length

considered are below the critical value, Klc, and when K I is

maximum KII is zero and when KII is maximum, K 1 is almost

minimum. This lower than crltlca] stress intensity factor and

phase shift causes a complex fatigue mlxed-mode loading condition

that can only be analysed u_Ing the crack propagation criteria
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5.2 Crack Propagation Directions

a) Static Crack Growth

To determine the crack propagation direction, an effective

stress intensity factor should be considered to combine the

mlxed-mode loading effect observed with each passage of the

roller. The criterion, that will be mainly emphasized, is the

• ' f ............. =Lc ..... rgy

Release Rate", as discussed in section 2.2. Therefore, the

stress intensity factors for every roller position, wi]] be used

to determine the crack extension forces due to the tangential

stresses, G0e , and due to shear, Gre , for every angle 8 around

the crack tip, using Eq. 2.10.

A typical variation of the maximum crack extension forces,

G6e and Gr8 , with roller position, are shown in Fig. 5.9 and Fig.

5.10, respectively, for a crack length equals 0.004in. The crack

extension forces due to the tangential stresses have a constant

value when the roller is far from the crack, (Y0/b is large).

G88 starts to decrease with the approach of the hlghly

compressive Hertzlan stresses, then starts to increase to a new

maximum due to the sharp increase in the mode II stress intensity

factors present when the IIertzian pressure is at the edge of the
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crack, (Y0/b=l.0). When the roller is posltlone_ on top of the

crack tip, (Yo/b=0.0), the shear effect goes to zero, and the

crack is completely closed, causing the crack extension forces to

be zero, assuming no lubricant had leacked in the crack. The

same behavior is observed for the crack extension forces due to

shear, as in Fig. 5.10.

With the presence of the Hertzlan loading, two competing

mechanism exist; 1) due to the compressive llertz!an stresses, the

crack extension forces are decreased, and 2) due to the shear

stresses, the crack extension forces are tncreasel.

The angle along which the maximum tangential crack extension

force acts, as a function of the roller position is shown in Fig.

5.11 and 5.12, for the maximum direction of G and G ,
ee r0

respectively. The angle starts at zero for the direction along

which the maximum tangential crack extension forces acts,

implying K I is dominant, then starts to increase as the roller

approaches, until reaching a maximum value of 70.53 degrees,

indicating a pure shear mode, at Yo/b=l.O. _te maximum shear

crack extension force acts in the opposite direction; acts along

70 degrees for the pure mode I case, for large y_'b, and at zero

degrees for the pure mode II case, at Y0/b=0.0.

Fig. 5.13 shows a comparison of the values of the different

mlxed-mode crack propagation criteria; the maximum tangential

stress, the minimum strain energy density factor, and the J

integral approach as defined in section 2.4. The tangential
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stress criterion corresponds e×actly to the tangential crack

extension forces, G . All the criteria show the same trend of
00

decreasing in value as the Hertzlan stress approache_ and

increase sharpely due to the shear effect. The main difference

lies in the angle along which the maximum values act, as seen in

Fig. 5.14. The minimum strain energy criterion shows a maximum

at 83.61 degrees while the J integral at 0 degree, and the

tangential stress at an angle of 70.53 degrees, at Y0/b=l.0.

Note that the maximum mode II stress intens_y factor occurs

with negative K I values for small cracks, in_icatlng crack

closure. It had been observed that when mode II is associated

with compressive normal stresses, friction occurs along the

contact crack faces, thus reducing the effective mode II stress

intensity factors, Ref. [47]. Swedlow, Ref. [_8], proposed a

simple coulomb friction along the contacting faces of the crack,

acting in the opposite direction of the shear an_ proportional to

the normal compressive stresses. Since the crack modelled in the

BIEM mesh has a finite width, the compressive normal stresses on

the crack faces are absent. As a result, the effective mode II

stress intensity factor, Kiief f was approximated by:

Kiief f = KII + f K l if KI ( 0 and KII # 0

KiIef f = KII if k I > 0

5.1
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where f takes the opposite sign of KII , since the friction acts

to the decrease the shear. Although this mode] is crude, it is a

good first approximation of the friction effect. The effect of

the friction mode] used on the maximum mode II stress intensity

factor is shown _n Fig. 5.15 as a function of the crack length

for different friction coefficients. Kil decreases with

increasing friction factor until the crack length reaches O. 0121n

where K I becomes positive, and no variation in KII Is observed.

The effect of the sliding friction, (friction between the

roller and the inner raceway), on the crack extension forces is

shown in Fig. 5.16 and 5.17. Fig. 5.16 represents the variation

of the tangential crack extension forces as function of the

roller position, for a crack length equals 0.C_-in. For Y0/b

less than zero the crack extension forces increase with

increasing frictions, while decreasing with increasing friction

for Y0/b greater than zero. Th_s behavior is due to the frlct_on

forces which act to open the crack on one side of the crack and

to close _t when it Is on the other side. The crack extension

forces due to shear behave In almost the same manner, as seen In

F_g. 5.18.

The third mechanlsm that also alter the variation of the

crack extension forces, Is the ]ubrlcat_on effect when the roller

_s on top of the crack, causing a normal stress distribution

along the crack faces. This mechanism can modify the crack

extension forces if the lubricant can penetrate into the crack
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when the roller is on top of the crack tip. Thls mechanism

involves a complex fluld-solld interaction problem, which has to

include the vlscous-drag and the surface tenslon forces to

determine how far the lubricant can penetrate into the crack.

But as the roller approaches the crack, the normal

compressive stresses, Oy, try to close the crack and push the

lubricant out, before the roller gets on top of the crack. For

longer cracks, the commpresslve stresses are 11mired to a small

distance close to the surface, and at greater depths the

are In tension, due to the tensile stresses of the
stresses, Oy,

rotational speed. Thls effect causes the lubricant to be caught

inside the crack and to pressurize It.

A uniform pressure was applied along the crack faces, when

the roller is on top of the crack llne, (Y0/b=0.0). The pressure

assumed equals the maximum Hertzlan pressure, P0" The variation

of the mode I stress intensity factor as function of crack depth

Is shown in Flg. 5.18, for Yo/b=0.0. The values of K I are now

positive, due to the high pressure applied along the crack faces,

as compared to the negative values when no lubricant Is assumed

leaked inside the crack. The values of KI increase rapidly with

increasing crack length, and reache the critical stress intensity

factor KIc at a crack depth equals 0.O071n. This model is not

realistic since the crack is closed as the roller approaches the

crack line. If the crack is f111ed with lubricant, the high oY

stresses wlll push the fluid outside. So assuming that there is
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no lubricant leakage, is a good approximation for very thin

cracks.

Note that the results for the crack extension forces and the

crack growth directions are for static loadings at one particular

roller position. The crack extension forces given above are well

below the critical value for unstable crack growth, for crack

length below 0.05 in. assuming no-lubrlcant leakage. Thus, a

fatigue process has to take place for a small crack to grow from

the surface to the critical crack length.

b) Fatigue Crack Growth

The fatigue process is governed by the maximum changes in

the crack extension forces, AGIj, and the mean value Gij, as seen

in section 2.5. For a given crack length, a, the maximum and

minimum values of the crack extension forces are monitored for

every ang]e 0, around the crack tip, as the roller approaches the

crack and moves away from it. The direction, 0 max' which has

the maximum change in the crack extension force, will be the

direction of the crack growth. This model is based on the

assumption that an element oriented in the direction of the

maximum change in AGIj , accumulates the largest amount of damage

with each passage of the roller, making this element the first to

open up and join the main crack.

Fig. 5.19 and 5.20 show the values of the maximum changes in
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the crack extension forces, AGr8 and AG00 , as functions of crack

depth. The maximum change in the tangential crack extension

forces keeps on increasing with increasing crack length,

Flg.5.19, while the change in the shear crack extension force

increases sharply until reaching a maximum value then decreases,

gradually, Fig. 5.20.

The actual directions of the crack growth could be plus or

minus the presented values since we have complete reversal of the

stress intensity factors when the roller cross from one side of

the crack to the other. This symmetry will break down only when

sliding friction is present.

The angle along which the maximum A Gs0 acts, starts at a

constant value of 70.53 degrees for very small cracks and high

Hertzlan loads, and then starts to decrease gradually with

increasing crack length, Fig. 5.21. This constant value of the

direction of the maximum AG88 is due to the pure mode II stress

intensity factor associated with negative K I. For very small

cracks and low Hertzlan loadlngs, the change in KII is negligible

compared to the change in K I, due to the high compressive

Hertzlan stresses and low shear stresses, causing the maximum

change to occur along zero degrees (as seen in Fig. 5.21 with a

Hertzlan load of 5001b. and a crack length less than 0.004 in.).

The angle along which the maximum change in the shear crack

extension forces acts, starts at zero and increases gradually

with increasing crack lenHths, Fig. 5.22. The crack length where
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the angle starts to deviate from zero increase wlth the increase

in the Hertzlan load.

To determine which mode Is the crack driving force, (shear

growth or tensile growth), the values of AGee and AGre are

compared wlth the threshold values for the materla] under

consideration. Fig. 5.23 gives the regions for different crack

growth modes. For values of A Gee greater than 0.49 psl-ln, Ref.

[49], the tensile mode is dominant and wlll control the crack

growth direction and rate. For value of AGeeless than AGegth ,

two regions are considered depending on the value of AGre. For

values of AGre less than AGreth there Is no crack growth, whl]e

for values above AGreth , the shear mode Is the crack driving

force.

Taking Into consideration the above crack growth regimes, It

is obvious that for crack depths less than 0.0021n, the crack

growth Is governed by shear, while for a crack depth equal and

above 0.0021n the tenslle crack growth Is dominant.

When slldlng friction Is present, (friction between the

roller and the inner raceway), the change In the crack extension

forces increases with the increase of the friction factor. The

maln effect of friction Is to make the crack extension forces

non-symmetrlc, causing the crack to grow malnly In the direction

opposite to the rolllng direction, as observed experlmentally,

Ref. [50]. Table 5.3 presents the variation of the crack

extension forces and the directions they act on and a Hertzlan
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Fig. 5.23

Shear Mode Growth
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No Crack Growth

Tensile Mode Growth

0.49
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Crack Growth Mode for M50 Steel.
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Table 5.3 Variation of the Maximum Changes in Gee ,

Gr6 and their corresponding angles, for Different

Friction Coefficient for two crack Lengths,

P = 1,500 ibs.

f

0.00

0.05

.I

.2

.3

a a

0.002 in. 0.004 in.

AGee 0 AGr8 e

0.81528 71. 0.61152 O.

0.97454 71. 0.73098 O.

1.1424

1.5231

1.9567

71. 0.85689 O.

71. 1.14247 O.

71. 1.46769 O.

_Go_ e ACr_ e

2.2626 71. 1.69716 O.

2.5972 71. 1.94813 O.

2.9604 71. 2.22055 O.

3.7565 71. 2.81766 O.

4.6473 71. 3.48578 O.
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f

0.000

0.005

0.010

0.030

0.050

O.I00

f% 9(10

0.300

0.500

0.800

Table 5.4 Variations of the Maximum Change in GOO

and Gr@ , Assuming a Coulomb Friction Along the

Crack Faces, a = 0.004 in. and P = 1,500 ibs.

AG e AG e
0e r6

2.2626 71. 1.69716 0.

2.2484 71. 1.68649 0.

2.2342 71. 1.67585 0.

2.1780 71. 1.63365 O.

2.1224 71. 1.59198 O.

1.9867 71. 1.49016 O.

1.4885 71. 1.11652 0.

1.0622 71. 0.79672 O.

0.6758 0. 0.41796 O.
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loading equal to 1,500 lbs., for different friction coefficients.

The effect of friction is to increase the maximum change of the

crack extension forces with the increase in the friction value.

The direction, where the maximum changes in the crack extension

forces occurs, does not change with friction.

Table 5.4 shows the variations of the maximum change, of the

crack extension forces for a crack length of 0.004in. when

friction along the crack faces are considered, as modelled in Eq.

5.1. The effect of friction is to reduce the mode II stress

intensity factor when the crack is closed. The crack extension

forces decrease with increasing friction, but the crack growth

direction does not change, until large friction is assumed,

causing the shear to stop. This vanishing effect of the shear

mode is observed at a friction factor of 0.8 for a Hertzian load

of 1,5001bs, and a crack length equal to 0.004in.

c) Crack Kinking

As seen from the above calculations, the crack tries to

change the direction of growth. To slmulate this effect, an

original crack, al, of 0.0041n., is extended in the direction of

the maximum change of the crack extension forces for three

different new crack llgament lengths, a2, as seen in Fig. 5.24.

The new stress intensity variations are determined along the new

crack llgament, for different roller positions.
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!

!

Fig. 5.24 Crack Kinking Geometry.
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Table 5.5

P Ibs. e2

500 69

Variation of the Maximum Crack Extension

Forces for Different Hertzian Load and

Kinked Ligament Length.

a I in a 2 in A G88 83

0.001 0.61261 20.

0.004 _ 0.002 0.65259 18.
I
_0.003 0.94323 -3.

1500 71 0.004

.O01 0.57596 21.

.002 0.62055 19.

.003 1.20560 0.
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Table 5.5 summarizes the loading conditions and crack

geometries for the kinked crack for different Hertzlan loads.

The new crack increment was extended in the direction of the

maximum change in the tangential crack extension forces, AG00 .

Three different crack increments were used,( i.e. a2 = 0.001 in.,

0.002 in. and 0.003 in.), to determine if the crack increment

length will affect the direction of crack propagation. Figs.

5.25 and 5.26 show the variations of the crack extension forces

as a function of roller position for a Hertzlan load of 1,500

Ibs. and a kinked ligament of 0.0021n., for G00 and Gr0 respec-

tangential crack extension force starts out around 0.6 psi-in.,

and decreases to zero when Y0/b reaches -2. Due to the high

shear stresses, the value of GO0 increases sharply to 0.24

psi-ln, and then decreases to 0.11 psl-ln and then increases back

up to a value of 0.6 psl-ln.

The direction of the maximum GO0 starts at 19 degrees then

decreases to 0 degrees. As soon as the roller is on the other

side, Y0/b is greater than 0., the maximum Gee occurs almost in

the original direction then starts to decrease back to 19

degrees.

The maximum changes in the crack extension forces and the

angles they act on are shown in Table 5.5. All the changes of

G00 are above AG of 0.49 psl-ln, for MS0 steel indicating
0eth

aatensile mode growth. As seen from the results the crack tries
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Fig. 5.27 Experimental Crack Profile, Ref. [51]
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Table 5.6 Variation of the Direction of Crack

Growth with Every Crack Extension

Ligament, P=l,5OOlbs.

i ai AGee 9i+ I

I 0.004 2.2626 71.

2 0.002 0.62055 19.

3 0.002 9.1371 65.

4 0.002 2.2293 14.

5 0.002 8.8994 45.
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a 2

0S
a 4

a5

05

a

a I

Fig. 5.28 Simulated Crack Growth Profile for a

Roller Bearing with a Hertzian equal

to 1500. ibs.
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to realign itself in the original direction, going back halfway.

If the crack is extend further (a 2 = 0.O03tn.), the angle of

crack propagation return to zero. We can state that: as soon as

the crack grows from the vertical direction along the maximum

angle of AG 88 ' the loading cycle changes causing the crack to

turn back to Its original direction. This may explain the step

like crack growth observed in the experiment of Bamberger at DN

value of three million, see Fig. 5.26 from Ref. [51].

To simulate the experlmental crack profile, the crack

geometry was extended along the new maximum change of Gee ' for

a constant ligament length, aI equal to 0.002 in. This constant

ligament length is arbitrary.

Table 5.6 shows the values of the maximum change in G and
ee

the angles where they act on, measured from the vertical,

assuming equal crack increments of 0.002 in. Fig. 5.27 is a plot

of the crack profile from the boundary integral slmulatlon. One

can observe some similarity between the actual crack profile of

Fig. 5.26 and the simulation in Fig. 5.27. Qualitatively, one

can observe the step-llke variation of crack orientation with

crack depth.

The next step is to determine the time to failure of a small

induced crack on the surface of the inner raceway of a high speed

bearing, as will be discussed in the next section.
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The time to failure of the inner raceway is estimated using

the experlmental results on the crack propagation rate for M50

steel. Fig. 5.29 shows the crack growth rate as a function of

the stress intensity factor range. The slope equals approxlmatly

3. The shape of the curve is similar to the last segment of the

da/dN verus AK I curve, or the last stage in the crack growth

rate, (Fig. 1.4).

The time is estimated using Eq. 2.27 for tensile mode

growth. The different contants, n i and c, for different values

of n 2 are shown in Table 5.7, since no exact value of n 2 is

available. The llfe is estimated at 25,500 RPM starting with an

inltlal crack of 0.002 in. N is determined by integrating Eq.

2.27 with respect to da:

N= / da
f (AGo@ , R)

5.2

The function f_G 8_ R) is approximated using least square of the

values of AG 88 as function of crack length a from Fig. 5.19.

The variation of the crack length as function of the number

of cycles is shown in Fig. 5.30. The main characteristic of the

curve is the slow propagation phase for small crack length

followed by rapid growth to fal]ure.
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Table 5.7 Constant used in Eq. 2.27 for M50 Steel

case n I n 2 c

1 1.433 0.0 l.Sxl0

2 0.82 0.5 8.4xi0 -7

3 0.76 1.0 2.3xi0 -6
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The variations of the number of cycles necessary to

propagate a crack to failure as a function of the applied

Hertzlan load are shown in Table 5.8 with and without friction

along the crack faces. The effect of friction along the crack

faces is to increase the llfe to failure due to the decrease of

the change in the crack extension forces with an increase in the

friction factor. Fig. 5.31 shows the Hertzlan load versus number

of cycles to failure for an .original crack length of 0.002 in.

The behavior of the curve, which shows an increase in llfe for

decrease the Hertzlan load on bearings, is similar to

stanaaralzea _-_ curves.

A direct comparison with the experimental fatigue life of

bearings at DN value of three million was not possible since the

crack growth rate data available are for M50 steel tempered once

while the bearings actualy tested were tempered five times. It

is well known that the crack growth rate changes with the number

of temperlngs. The second variable that affected the comparison

is the lack of crack growth rate data of the shear crack growth

mode. For very small cracks, the crack driving force, as seen

earlier, is the the shear crack extension force, A G .
r0

Nevertheless, one can observe the very fast time to failure of

the inner raceway which is in the order of I0 minutes for a

original crack length of 0.002 in. wlth a Hertzlan load of 1500

Ibs. and a rotational speed of 25,500 RPM. This estimate is

found assuming that the maximum loaded roller passes over the
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Table 5.8 Number of Cycle to Failure for Different

Hertzlan loads and friction values, f,

along the crack faces.

case

1

f=0.O 2

3

P Ibs.

500 I000 1500 2000

0.946xi05 0.500x105 0.296xi05 0.199xi05

0.796xi05 0.475xi05 0.287xi05 0.176xi05

0.991xi05 0.435xi05 0.215xi05 0.098xi05

1

f=0.05 2

3

0.509xi05 0.306xi05 0.208xi05

0.482xi05 0.295xi05 0.177xi05

0.443xi05 0.226xi05 0.107x105

!

f=0.1 2

3

0.518xi05 0.318xi05 0.220xi05

0.490xi05 0.304xi05 0.187xi05

0.451xi05 0.235xi05 O.l17xlO 5
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crack only once every cycle. This results can explain the fast

crack propagation of an induced surface crack on the inner

raceway of bearing with a DN value of three million.

5.4 Conclusion

The matn conclusion to be drawn from the preceedlng analysis

is that the alternating mixed-mode loading is the driving force

behind the fast growing crack tn high speed bearings. This

alternating mixed-mode is due to the superpositlon of the

rotation and press flt. The crack growth direction is shown to

propagate in a step llke fashion alternating between the vertical

and an angle approaching 80 degrees as observed experimentally In

Ref. [51 ].

The maximum change of the crack extension force components,

AGo0 and AG are good measures of the crack propagation drivingr0

forces and direction of crack growth.

The tlme to fallure of a surface defect was determined to be

very short, In the order of I0 minutes, which did not compare

well wlth the experimental values of 2 hours for ball bearings.

Crack growth rate In the shear mode growth region, ( region

where _Gr01S dominant) should be available to better predict the

fatigue llfe of the inner raceway and any other component under a

general mixed-mode loading condition.
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It should be _',,,l)hasizedthat many slmpllficatlons were made

in the present analysis. In partlcu]ar the three-dimenslona]

effects, thermal effects, residual stresses, dynamics, damage

accumulatlon ahead of the crack tip, and flnally the randomness

inherent in the system, were not included. Although the results

may not be the final answer to the fast fal]ure of the inner

raceway of high speed bearings at DN values above three ml]lion,

some more understanding on the mechanism that leads to this new

catastrophic failure was obtained.



CI_.PTER SIX

CONCLUSIONS

6.1 Summary

The goal of this study was to analyze the causes that lead

to the brittle failure of the inner raceway of high speed

bearings. The analysis has shown the following conclusions:

- The critical crack length required for unstable crack

growth is inversely proportional to the fourth power of DN.

- A mlxed-mode fatigue crack growth is the cause that leads

a small surface defect to propagate inward until reaching the

critical crack length.

- The mlxed-mode loading is associated with the interaction

of the compressive normal stresses and the shear stresses with

the passage of the Hertzlan pressure, and is superimposed on the

tensile stresses of the rotational speed and the press fit of the

inner raceway onto the shaft.

- The maximum changes in the crack extension forces (AGo0,

_G ) are good measures of the mlxed-mode fatigue driving forces.
r0

- Improvement in the fatigue properties of the bearing

materials are needed to increase the threshold values of the

crack extension forces in shear as well as in tension, (increase

the values of AGroth , and AGooth).

179
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- For very small cracks the shear crack growth is the

dominant crack extension driving force (AGro).

- The crack was shown to grow in a step like fashion as

observed experimentally.

- The effect of sliding friction is to make the crack grow

in the direction opposite to the rolling direction.

- The effect of friction along the crack faces is to

decrease the shear mode stress intensity factor In the presence

of high compressive normal stresses.

- The time to failure was estimated to be very short in the

order of 10 m_nutes.

6.2 Further work

-A three dimensional analysis for roller bearing as well as

ball bearings should be considered.

-The effect of the lubricant should be considered in

greater details with viscosity pressure and temperature

variations.

- Residual stresses and material nonlinearity can be the

cause of crack arrest and slower crack propagation rate as

observed experimentally rather than the very fast growth measured

from the elastic analysis.

-More understanding of the crack growth behavior in shear

growth mode region, where /_G is dominant is required.rO
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- Dynamic effect with each passage of the r_ller should be

considered.

- The randomness of the surfaces in contact and the loads

and the material propreties should be incorporated in the

analytical modelling.
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APPENDIX A

Derivation of the Singular Integral

Because of the singular nature of Kelvin's solution a cut is

made in the body to exclude the point P from the region (where

UIj and TIj ÷ _ ), in a Cauchy sense.

The llne Integral going from the surface boundary to the

singularity point P Is cancelled by the integral coming back

since it can be considered that the same path is being Integrated

over but in opposite direction, therefore Eq. 3.7 will be:

ftj UI. as ;fu +fu3 UIJ _ J TIJ J rlJ

S S S S
c

where s is the boundary surface of the body and s c

circle centered at the singularity point P of radius E.

A.I
E

is the a
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Considering the value of the integral at point P

radius of s_ goes to zero ( g-_O ), and noting that :

n 1 = - cos 0

n 2 = - sin 0

as the

dr/dn =cosO n 1 +stnO n 2 = -1

r,t nj - r,j n i = 0

InE+ 0 If _+ 0

The values of the integrals around sg can be evaluated as

follows:

Substltutlng the value of Uij from Eq. 3.2

t. U.. ds =fO3 _3 E

s 0

1 t{(3-4_)] ng _lj nlnj t.E
dO A.2

8_G(I-u) 3

Placing _ outside the integral:

-i

8_G(
f°

1-_))_ J i3 tj dO-_ ntn j
0 0

t.3 dO} A.3

and taking the llmlt as _-> 0,

ft. = 0 A.4
U. ds

3 lj

s
g

By substituting Eq. 3.6 for TIt, the second Integral becomes:
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/o {uj TIj ds E = (i-2_)) _ij
E 4_ (l-x))

s 0
E

I2

+ njnj_1 cd 0
(l-2x;)

A.5

(1-2x0 0 2 t
47T(1-_)) / {_lj + (1-2_) nlnj dO)

0

Evaluating the function in matrix form:

(l-2v)

4_(1-v)

i i

@ 0

2 /2+ (I-2_) c°s2O dO (I-2_) sinq cosO dO

o
0 0

L 2 / 2 20(1-2_) sin0 cos0 d0 l+(l_2v) sin dO

i

A.6

Integrating each term of the matrix, the above equation

1 12O(l-v)+sinO cos0 -sin2@ 1
= 4_(i-_) L_sin2 @ 2@(l-_)-sin@cos@

A.7

By substituting relations A.4 and A.7 in Eq. A.I one gets the

boundary integral equations :

tj Utj ds = f uj TIj ds +

s s

@ sin@ cosO

T + 4 (l-u)

U.

3

71

sinZO

4 (1-_)

sin20

4(I-_)

sin0 cosO

4 (i-_)

A.8



If the point P is at the interior of the body, 0 will be equal to

2_, if P is a point at a smooth surface, O will be equal to _.

The integral equation will have the following general form:

Cij uj +/uj Tij ds = /tj Uij ds

S S

A.9

where

O sin 0 cos0 -sin2O
+

2_ 47 (l-v) 4_ (l-v)

4_ (l-v) 2_ 4_ (l-v)

where Cij = 61j for internal points, and Cij

surface points, with smooth boundary.

A.10

= I/2 6 for
_j
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