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PROTOTYPE SUPERCONDUCTING GRAVITY GRADIOMETER



PREFACE

This report describes research on the superconducting gravity gradiometer
program performed at the University of Maryland from July 1980 to July 1985
under NASA Contract NAS8-33822.

This report consists of three main parts: Parts 1 and 2 describing the
theoretical and experimental work on a prototype superconducting gravity
gradiometer, respectively, and Part 3 discussing the design of a new advanced
model of superconducting gradiometer. These three parts represent three
separate papers being submitted for publication. In addition, two published
papers, one reporting a null test of the gravitational inverse square law
performed with the prototype superconducting gradiometer and the other dis-
cussing space applications of the advanced three-axis instrument, are attached
as appendices.

An advanced three-axis superconducting gravity gradiometer, designed
along the line proposed in Part 3 of this report, is being developed under
new NASA Contract NAS8-36165. An associated instrument, a six-axis super-
conducting accelerometer, is under development with support from AFGL under
Contract F19628-85-K-0042. Electronic control of the gradiometer has been

supported in part by Army Contract DACA-72-84~C-0004.
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SUMMARY

A sensitive and stable gravity gradiometer is needed for precision tests
of fundamental laws of physics and for moving-base gravity survey and inertial
guidance. Through the five years of research and development at the University
of Maryland we have demonstrated the feasibility that superconducting tech-
nology can be utilized not only to lower the intrinsic noise of the instrument
but also to meet many practical challenges of operating a sensitive gravity
measuring instrument in a noisy environment.

A relatively simple prototype single-axis superconducting gravity gradi-
ometer has been constructed to investigate the basic physics of a superconduct-
ing gradiometer. At the same time, a detailed analysis of the instrument
dynamics has been carried out including extensive error modelling. Thorough
experimental tests of the instrument have shown that the superconducting device
closely follows the analytical model. The performance level of 0.3 ~ 0.7

9 =2 , . ., ,
s ") achieved with this instrument in the laboratory

EHz /21 E = 107
without any active control or compensation represents the best reported sensi-
tivity of any gradiometer to date. The instrument has already been used
successfully to perform a new null test of the gravitational inverse square
law.

Based on the experience obtained with this first instrument and additional
superconducting technologies developed to improve the performance of the super-
conducting gradiometer, an advanced design of a three-axis superconducting
gravity gradiometer has been produced. Incorporated into the new design are
the concepts of a '"suverconducting negative spring'", "three-dimensional
residual common mode balance" and a "six-axis superconducting accelerometer."

Various feedbacks will be applied to control the instrument and the platform.

This second generation superconducting gravity gradiometer should be able to

-1-
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meet the instrument noise goal, 3 x 10 'E Hz , defined for NASA's Gravity
Gradiometer Mission (GGM).

Part 1 of this report discusses the theory of the superconducting gravity
gradiometer. Although the particular superconducting circuit used for the
prototype is analyzed here, the method and results are quite general and can
be readily applied to the new model. Part 2 reports details of the design,
fabrication, and various tests of the single-axis gradiometer. Calibration
experiments performed by using gravity gradient signals are described here.
Part 3 contains the design and theoretical analysis of the new gradiometer.
It is found that the improved common mode rejection characteristic and the
ease of g-nulling in the new instrument would enable its operation in a more
hostile terrestrial moving-base environment. A null test of the inverse
square law by use of the superconducting gradiometer is reported in Appendix
I. Finally, the basic concept of GGM is discussed in Appendix II.

The Maryland superconductiﬁg gravity gradiometer project has served as
an excellent training ground for physicists. A strong Ph.D. thesis was
produced on the development of the prototype gradiometer and the test of the
inverse square law (Chan, 1982). Another Ph.D. thesis is nearing completion
on the development of the six-axis accelerometer. A third student is test-
ing a transducer concept for the cryogenic gravitational wave detector,
which came as a spin-off from the gradiometer project. The many challenges
that one has to overcome to realize the fabulous sensitivity of the space-
borne gravity gradiometer, orders of magnitude beyond the state of the art,
and the exotic new technologies being invented to meet them have been inspira-

tional to the scientific team of the Maryland gravity gradiometer project.




PART 1

THEORY OF A SUPERCONDUCTING GRAVITY GRADIOMETER




SUPERCONDUCTING GRAVITY GRADIOMETER FOR SENSITIVE GRAVITY MEASUREMENTS:
I. THEORY*
H.A. Chan and H.J. Paik

Department of Physics and Astronomy,
Univeristy of Maryland, College Park, MD 20742

Due to the Equivalence Principle, a global measurement is necessary to
distinguish gravity from acceleration of the reference frame. A gravity
gradiometer is therefore an essential instrument needed for precision tests of
gravity laws and for applications in gravity survey and inertial navigation.
Superconductivity and SQUID (Superconducting QUantum Interference Device)
technology can be used to obtain a gravity gradiometer with very high
sensitivity and stability. A superconducting gravity gradiometer has been
developed for a null test of the gravitational inverse square law and
spaceborne geodesy. Here we present a complete theoretical model of this
instrument. Starting from dynamical equations for the device, we derive
transfer functions, common mode rejection characteristic, and an error model
of the superconducting instrument. Since a gradiometer must detect a very
weak differential gravity signal in the midst of large platform accelerations
and other environmental disturbances, the scale factor and common mode
rejection stability of the instrument is extremely important in addition to
its immunity to temperature and electromagnetic fluctuations. We show how
flux quantization, the Meissner effect and properties of liquid helium can be

utilized to meet these challenges.

*Work supported by NASA under contract No. NAS 8-33822.
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I. INTRGDUCTION

Highly censitive gravity gensors are needed to investi
properties of gravitation and to improve accuracies of gravity survey and
lnertial navigation. Torsion balances have been used over two centuries for
sensitive gravity experiments ({1]. Spring-nass, pendulum, and free-fall type
gravimeters [2] have been developed as survey instruments as well as a
superconducting version of the first type [3]. Research to develop detectors
for gravitational waves of extraterrestrial origin has started over two
decades ago [4]. Cryogenic mass—quadrupole type and laser interferometer type
detectors are under vigorous development ([5]. The last two decades have also
seen dedicated efforts to develop room temperature gravity gradiometers [6-8]
for moving base survey applications. Superconducting gravity gradiometers
have emerged more recently as an outgrowth of the suberconducting transducer
work for low temperature gravitational wave detectors [9].

The extremely weak nature of gravitational interaction poses a challenge
to the state of the art technology for signal transduction and amplification
as well as isolation of environmental noise. To compound the problem, the
gravitational field cannot be distinguished in a local measurement from

acceleration of the reference frame by the Equivalence Principle. 1In order to

separate gravity from frame accelerations, one must resort to a second order

measurement using the tensor nature of gravitational field gradient or
"gravity gradient”, When the platform is undergoing a linear acceleration, a
differential measurement over a baseline between two proof masses will cancel
out the acceleration noise, leaving gravity to be detected as the signal.
Likewise, an angular acceleration can be taken out by combining signals from
four proof masses as we will see in Section II. Thus, unlike in

electromagnetism, where a single test charge can be used to determine the




field uniquely, a tidal force sensor or a "gradiometer” 1is the fundamental
instrument in gravity which is capable of measuring its field, independent of
platform motion. True acceleration measurement, in turn, requires removal of
gravity nolse which again calls for the use of a gravity gradiometer. It 1is
therefore not surprising to find that instruments employed in most precision
gravity experiments, such as torsion balances and Weber-type gravitational
wave detectors, have actually been special types of gradiometers.

The acceleration difference along the direction j per unit separation
along the direction 1 is defined to be the ij-component of the gravity

-

gradieunt tensor I':

2 >
ry e = - SR W

1)

where ¢(;,t) is the gravitational potential. A very weak gradient of 1 nm s_2

per m is equal to one E¥tvis (E) unit, defined by
1 =109 72, (2)

Many ground—based survey applicatiouns call for such high sensitivity. Geodesy
application in space réquires even higher sensitivity at the level of 10"4 E
Hz"1/2 {10]. The extreme weakness of gravitational interaction and the
practical difficulties associated with balancing out the acceleration noise to
a sufficient degree have limited the sensitivity of room temperature gradio-
meters to a level of 1 ~ 10 E Hz—l/2 [10]. Major improvements in sensitivity
and stability are expected of the superconducting devices under development.
It appears that a superconducting gravity gradiometer of a relatively compact

design will have a sufficient sensitivity for space applications.




Besides possessing low thermal noise and low mechanical drift as direct
& cryogenic temperature, the new gradiometer takes advantage
of many exotic properties of superconductivity. Quantized magnetic flux is
used as an extremely stable tool to achieve transducer action and common mode
balance. Operating at liquid helium temperatures, SQUID (Superconducting
QUantum Interference Device) serves as the most sensitive amplifier of today.
Superconductivity can be used to make a nearly perfect electromagnetic shield
and superfluid helium can provide a stable, gradient-free temperature environ-
ment. Flux quantization can further be used to accomplish stable levitation
of proof masses against gravity in a terrestrial environment and to enhance
the gradiometer sensitivity by means of a "superconducting negative spring”

[11]0

Two schemes (current-differencing and displacement-differencing) of

superconducting gravity gradiometer have been demonstrated by Paik et al [12].
Error models were analyzed by Wang [13]. Mapoles [14] has extended the de—v
velopment of a displacement-differencing gravity gradiometer. In this work,
we have chosen the current-differencing scheme. One advantageous feature of
the current-differencing gradiometer is the remote coupling of the two dif-
ferencing acceleration transducers independent of their separation and their
respective orientations. Therefore, three in-line (or diagonal) component
gradiometers can be combined together by mounting all three pairs of accelera-
tion transducers on the six faces of a common cube, with the sensitive axes
normal to the surfaces of the cube, to form a three—axis in~1line component
gravity gradiometer. Construction of cross (or off-diagonal) component
gravity gradiometer is feasible by orienting the sensitive axes of the
acceleration transducers perpendicular to the direction of the baseline., A

tensor gravity gradiometer to measure all the six Fij components has been




proposed [15] as a combination of the in-line and cross component gradio-
meters.

While developing a three—axis gradiometer for precision gravity experi-
ments in Earth's orbit [16], we have completed, with our colleague, a proto-
type single—axis in-line component gradiometer. This instrument has been used
to perform a laboratory null test of the gravitational inverse square law
[17]. The details of this gradiometer development are described in Ref. 18 in
which the theory of the gradiometer has been given a new formulation with
generalization and more rigor than the preliminary analysis in Ref. 13. This
paper (I) is a modified version of this new theoretical analysis with an
extended error model of the instrument. Paper II preseants the construction
and test results of the gradiometer., Although we confine ourselves to the
discussion of an in-line component gradiometer with a particular
superconducting circuit chosen, the methods developed in these papers could
easily be adapted to cross—component gradiometers and different

superconducting circuits.




II. PRINCIPLE (F GRAVITY GRADIENT DETECTIMN

section we briefly review the basic principle of separating
gravity signal from dynamical variables and set a basis for the error model
developed in Section V. Let the instrument platform be moving with respect to
an inertial frame with an instantaneous angular velocity §(t) and linear
acceleration ;(t). Then, the accelerations of a proof mass observed in the
two codrdinate systems are related by the well-known equation [19]:

2>
T

2> >
(;:iqin = (;ZEJPQ +3x @ xr) + 28 x (Eg)pk + (Equl

x T +a .(3)

Here the subscripts in and pl represent the inertial and platform coordinate
systems in which respective measurements are made. The second and third terms
on the right-hand side are the centrifugal and the Coriolis accelerations, re-
spectively, If ¢(¥,t) is the gravitational potential in the inertial frame,

the resulting acceleration of the proof mass with respect to the moving plat-

form is given by

>, > d2¥
g'(ryt) = ('—'—)
dt2 PR

>
- > > dr dﬁ > >
= -V oE,t) ~8x@x71) -8 x (T - (@pp xF-30) . (B
The Coriolis term produces a force perpendicular to the velocity in the plat-
form coordinates and therefore drops out when the proof mass is confined to
move Iin a single direction. The quantity E'(;,t) is what is measured by an
accelerometer or a gravimeter undergoing an acceleration.

It is clear from Eq. (4) that the linear acceleration term, - a(t), can

be eliminated by a differential measurement over a spatial coordinate Xy




>
og; (r,t) . a20(F,0) _ @

,@ . ) - szi]

ox. dx, Ox, ox,
J i3 h|
-1 e :ik } :zl . (5)
k,2 P i

Substituting bxl/axj = 62j, and introducing the notations of Eq. (1) and

dg!(r,t)
v (2 - 1
Fij(r’t) - ax' 9 (6)
ko
ak(t) = (-d't—')pz s (7)

one finds
' > = > _ - 2
Fij(r,t) Pij(r,t) (gigj Q 6ij) + E € ik o (t) . (8)

Notice that the angular acceleration term is antisymmetric whereas the
first two terms in Eq. (8) are symmetric tensors. Therefore, one can further

drop (t) by symmetrization of rij.

dg! dg
'—'l .__i_' —J_ = > - -— 2
(1 )(r t) =5 (a J axi\ Fij(r,t) (Qin Q 51j) . (9

The centrifugal acceleration term can be taken out in principle by taking
another spatial derivative: 1.e., by means of a third order gravity gradio-
meter. In practice, one measures B with the aid of gyroscopes and removes the
effect of the centrifugal acceleration by actively stabilizing the platform or
by compensating the induced error.

The diagonal component of the tensor, T 1, can be measured by

(11)

detecting the relative acceleration along the in-line direction between two

-10-




proof masses, separated in the x; direction., The off-diagonal components

Lo
~(13)

zation. The relative accelerations inm the cross directions in two pairs of

(i # 1), however; requires four proof masses because of the symmetri-

accelerometers, which are separated in the xy and X directions, respectively,
can be added to yield inj)' Notice that one can instead subtract these two

signals to determine the antisymmetric component:

] > = l‘_ — - -—
Triy1(mt) = 3 (6xJ. 3%, 12 €k % (E) - (10)

The angular acceleration of the platform can be obtained by inverting this

equation:

ak(t) = eijk F'[ij](-;,t) . (11)

A time integration of this vector then gives an alternative means of
determining the angular velocity o .

A tensor gravity gradiometer with common mode readouts is therefore self-
sufficient for true gravity detection [15]. On the other hand, the device can
measure true linear and angular accelerations of a moving platform by removing
gravity-induced errors. Equation (4) shows that the gravitational field -§¢
remains as the fundamental error in linear acceleration measurement after
removing dynamical error terms. The gravity gradiometer comes to the rescue.
The gradient output T can be integrated over a spatial coordinate to determine
-$¢. Therefore, a true accelerometer requires an aid from a gradiometer.

The symmetrization technique discussed above has been incorporated in the
rotating gravity gradiometers [6, 7] whereas, in the floated gradiometer which

has only two proof masses [8], the angular motion of the gradiometer is

-11-




attenuated by floating the proof masses in a liquid., 1In the rotating
gradiometers, the common mode acceleration E' is further rejected by its
frequency characteristic. The gradient f, being a tensor of ramk 2, is
modulated at the second harmonic of the rotation frequency whereas the
acceleration E' is modulated at the fundamental frequency by its vector nature
[6]. A side benefit of this heterodyne detection is the translation of signal
bandwidth away from the 1/f noise region of the instrument in frequency space.
The mechanical rotation, however, brings in a penalty: additional,
dynamically induced errors. From Eq. (8) one can clearly see, for example,
the devastating effect of the angular velocity error 6Q, which now contributes
a first order term O(QSQ) to the measurement.,

For the prototype superconducting gravity gradiometer, we have chosen a
non-rotating configuration. The extreme stability of the supercqnducting
sensing circuit, combined with the low noise of the SQUID amplifier down to
low signal frequencies, permits a very high degree of common mode rejection
without rotation. For orbital applications, however, the superconducting
gradiometer could be rotated to its advantage by spinning the entire satellite
quietly.

The symmetric nature of Pij has been used to construct a gravity
gradiometer. Further, the trace of this tensor is constrained by the Poisson

equation:

T ryy (F.0) = - v2(T,t) = - 416 o(F,0), (12)

i
which is a consequence of the inverse square law of the gravitational force.
This leaves five independent components for the gravity gradient tensor Fij'

With a three—axis diagonal component gravity gradiometer, the validity of Eq.

-12-




(12) could be tested by summing the three outputs and compariang the result
with the local mass density p. This experiment has been proposed as a
precision null test of the inverse square law [20], and an early result of
such an experiment has been reported [17]., In an actual experiment, the

measured quantity 1is the trace of F'(ij)’
J Tt g0)(F,8) = = 416 o(F,£) + 2 @%(e). (13)
i

It is therefore important to suppress or separate out the centrifugal

acceleration term carefully in such an experiment.

-13-




III. DYNAMICS OF THE SUPERCONDUCTING GRAVITY GRADIOMETER

The superconducting gravity gradiometer consists of a pair of supercon-
ducting acceleration transducers and a superconducting inductive load which is
connected to a SQUID amplifier. The coupling between the transducers and the
output load is provided by flux quantizationm.

The principle of one acceleration transducer element is first discussed
and its equation of motion is then derived. Each transducer communicates to
the rest of the superconducting circuit only through one current component
that flows through the transducer. 1In a coupled circuit of a pair of trans-—
ducers and a load, flux quantization imposes constraints to the supercon-

ducting circuit. For detection purposes, the currents at the load, rather

than the current through the transducers, are the observable quantities at the
output. The complete dynamical equations are then linearized and expressed in
terms of these currents, the respective displacements of the proof masses, to-
gether with the applied common and differential acceleration signals [21].
Because the gradiometer is a differential accelerometer over a finite base-
line, the gradiometer must reject common acceleration signals., The conditions
for a common mode balance is derived. The parameters used to accomplish the
balance are the persistent, but adjustable, currents stored in various super-
conducting loops. Further, a wideband common mode balance is shown to be
possible by iteratively adjusting at least two curreant components, After
balancing the common accelerations, only differential acceleration will be
detected at the load. The transfer function of an applied differential
acceleration to the corresponding current output at the load 1s derived.
Throughout the remainder of this paper, a variable with time or frequency
dependency will be written explicitly as such functions, whereas the average

values of these variables will be denoted by the same notation as the

-14-




function, but with the functional dependency deleted.

A, Principle of a Superconducting Acceleration Traunsducer

The principle of the superconducting acceleration transducer is illus-
trated schematically in Fig. 1. Analysis of this device as a resonant trans-
ducer for a gravitational wave antenna and as a sensitive accelerometer has
been éiven previously in a different format [9]. A superconducting proof
mass, which is suspended by spring and is confined to one linear degree of
freedom, responds to an acceleration signal with a displacement relative to a
sensing coil., The inductance of the coil is then modulated, due to the
Meissner effect, by the superconducting plane of the proof mass. The coil 1is
connected to an output inductor through a superconducting path and a quantized
magnetic flux is stored in the superconducting loop formed by the sensing and
output inductors. The current flow through the output inductor is modulated
as a result of the inductance modulation of the sensing coil. The persistent
current provides the stability of the transducer scale factor. A low noise
SQUID amplifier is then used as a dc curreat-to-voltage power amplifier to

produce a readout.

B. Analysis of a Single Acceleration Transducer

The transfer of mechanical energy to electrical energy is accomplished at
the sensing coil. In order that the sensing coil converts a displacement to a
current more linearly within a transducer, a symmetrical pair of "pancake"
coils are utilized. The coils are located on the opposite faces of the proof
mass and are counected in parallel (Fig. 2). Each having winding density ny,
and area A;, the coils are at mean distances of da and dy, from the respective

superconducting planes of the proof mass. If the displacement of the proof
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Fig. 2. Superconducting circuit and its current variables of a single

acceleration transducer.
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mass from its average position is x(t), the inductaances of the coils are given

by
L,(t) =A [d, + x(t)] = L, + A x(¢t), (14a)
Ly(t) = A [dy - x(£)] = Ly - A x(t). (14b)
Here
NS, “i Ar, (15)

where o is the permeability in free space and
L, = <La(t)> s Ly = <Lb(t)>, (16)

as was noted earlier concerning notation.

Two current components are needed to characterize the electromagnetic
state of the two sensing coils. One obvious choice of variables [9, 13] is
the currents I, (t) and I (t) which flow through each of the two coils, so that

the electromagnetic energy in the two coils is
1 1
Vgy = 3 Ly() L(02 + 3 1(e) Tp(e)2, ¢%))

However, in order to make the analysis simpler, a different choice [18] of the
two current variables can be made with the aim that the expression for the
electromagnetic energy has as simple a denominator as possible. Such a way of

choosing variables is a classical analog of the renormalization procedure in
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quantum field theory.
Before making the cholice, we make two observations. The first

observation is that the series inductance of the sensing coils is a coastant

[9]:
Lg(t) = L,(t) + L (t) = L, + LIy = L. (18)

Consequently, the current I through the superconducting loop of these two
inductors in series is also a constant because the trapped flux ®,p 1in this
loop is quantized. The second observation is that the parallel combination of
the two sensing coils has a constant denominator in the expression for its
inducﬁance:

| La(®) Lo 1 2.2
L(t) = L(0 7 1O = T+ I, [LLy - (L, - L) A x(t) - A%x“(t)].

(19)

In fact, even the numerator of this parallel inductance will also be a
constant up to the first order if the mean spacings da and dy, are matched so
as to make L, = Ly. The nonlinearity of the inductance modulation is
exhibited by the second order term in Eq. (19).

Expressed in terms of one parameter ®ap and one current variable i(t),
which flows through the parallel combination of L,(t) and L,(t), the

electromagnetic energy has a constant denominator and has thus acquired a

"renormalized" form:

2
d
1 ab 1 2
T g 2 Tple) 1. (20
a

VM
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It is straightforward to show that the expressions in Eqs. (17) and (20) are
equivalent to each other [18].

The only variable i(t), once the parameter I or &, is fixed, possesses
all the dynamical information in the electromagnetic system of the transducer.
As the inductances La(t) and Lb(t) are wmodulated by the displacement of the
proof mass, the current i(t) must always split between the two inductors
according to the inverse ratio of the respective inductances in order to pro-
duce equal and opposite magnetic flux contributions to the superconducting
loop formed by the series inductor L, + L. The net curreats I,(t) and I,(t)

through L,(t) and Ly(t) are therefore the following linear combinations of I

and 1i(t):
L, (t)
Ia(t) = ET—:fET'i(t) -1, (21a)
a b
L, (t)
Iy(e) = 7= (o) + L. (21b)
a b

The force due to magnetic field pressure on the proof mass is given by

2 2
Y @a(t) . éb(t) |
EM ©  3x -2 La(t) 2 Lb(t) ®_ %y
-2 2o - Lol , (22)

where & (t) and ®,(t) denote magnetic fluxes in Lh(t) and Ly (t), respectively.
In terms of T and i(t), this force can be rewritten as
L (t) - L, (¢)

Fgy =~ A [I+3 L1, 1(t)] i(e). (23)
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The total force acting on the proof mass consists of this magnetic force
together with a reetoring force of the mechanical epring suspension of the
proof mass and any externally applied force, f(t), on the proof mass relative
to the platform of the sensing coils. We will ignore the effects of damping

term for the time being. When the proof mass m is approximated as a point

>
mass located at its center of mass r, the external force becoumes
~ >,
f(t) =mn e g'(r,t) , (24)

where n is the unit vector along the direction of the sensitive axis, and
E'(;,t) is the specific force given by Eq. (4). The equation of motion for

the proof mass in the platform frame can now be written as

1 La(t) - Lb(t)
2 La + Lb

x'(6) +up k() + A1 s

1(6)] 1(e) = n + 2'(E,0) ,(25)

where Wy is the angular resonance frequency of the mechanical spring. An
alternative derivation of this equation, in which an electromechanical
Lagrangian approach is used for the superconducting transducer, is found in

Ref., 18,

The dc component of Eq. (25) defines the equilibrium position, x

o Of the

proof mass, This position is shifted from the relaxed position of the

mechanical spring by Earth's gravity, EE’ and by a dc magnetic force. Substi-

tuting

x'(t) = x, + x(t), (26a)

g'(F,0) = g (B) +g(F,0) (26b)
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into Eq. (25), we find

g cos en A 1L - L b
A & ae-n L L 27)
Wy ey, a Lb

in the general case where i1 = <i(t)> # 0. Here 8, is the angle that the

sensitive axis makes with the upward vertical., The local vertical is defined

by Earth's gravity vector which is found from Eq. (4) as
> > > >
2, (D) = - ¥ o -8 x Bx R, + DI, (28)

where ¢E(;), §E and ﬁE are, respectively, Earth's gravitational poteantial,

spin angular velocity, and the geocentric position vector of the coordinate

origin,

The linearized equation of motion for the ac part, after Fourier trans-

formation, can be readily shown as

2.2 ,
(= +ud + 20 x + A 1) - g (29)

s

where g(w) is the Fourier transform of

g(t) = 0+ B,(F,0) (30)
and
- L
b
I' = 1+ 2>2—214, (31)
L,

There are two independent superconducting loops in the circuit. The flux
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quantization condition in the loop Ly(t) + L,(t) has already been used in

T ,- T
L

- = A e B

- - A - 1322 _
ad d LuudsiLalite all auu L L LUigc

equation comes from the flux quantization condition in the loop Lb(t) + Ly
Ly () Ip(t) + Loi(t) = 3. (32)
The first order equation becomes, after Fourier transformation,
AL'x(w) = (L, + L) 1(w). (33)
Simultaneous equations (29) and (33) determine the dynamics of a single

transducer completely. In particular, the acceleration-to-current transfer

fuanction can be shown to be

1 AL
2L +L °
~w o P

Hyy () = — (34)
w

o

Here, w, is the resulting angular resonance frequency of the transducer due to

the addition of spring constant to mwﬁ by the superconducting circuit:

2 _ 2 p%4? A212

oY T twT v (35)
S o P

c. Dynamical Equations for the Gradiometer

The gradiometer, shown in Fig. 3, consists of a pair of the above
acceleration tranducers and a superconducting inductive load. The coupling
among these elements is through flux quantization in the superconducting

circuit which has four independent superconducting loops.
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The dynamical equations for each transducer is analogous to Eqs. (29) and

799N Lok nl oV n mmmat A
\JJ) LOT a S1iigi€ allerels

k =1 or 2, (36)

is now used for the respective variables and parameters to distinguish between
the two transducers. With this subscript, the linearized equations of motion
for the proof masses 1in the transducers, being similar to Eq. (29), are

written as

Azii AT!

) x, (w) +—mI:— 1 (@) =g (w) . (37)

2 2
(_w + Yiem * kaks
Here, the geometries of the sensing coils are again assumed to be identical so
that they can be represented by a single parameter A defined by Eq. (15).
Also, the two flux quantization constraints in the superconducting loops Ina t
Iy have again been used in deriving Eq. (37). Two more constraints, similar
to Eq. (33), are obtained by using flux quantization conditions in two other
independent superconducting loops such as Ikb(t) + L,. However, a generaliza-
tion from Eq. (33) is needed here because the curreant through L, is now the
sum of the current outputs from each traunsducer, The linearized constraints

are therefore given by
1 .
AT ox, (0) = Lkp LW + L (W + 1,(] . (38)

Notice that these two equations are coupled through i;(w) and 1i,(w).
The dynamics of the gradiometer, governed by the four coupled equations

(37) and (38) in the four variables xy(w) and iy (w), has two degrees of

-25-




freedom. Each of the two transducers couple to the rest of the circuit

through one single current signmal, il(w) or iz(w). Depending on the signature

of the applied acceleration components, these current modulations can add or
subtract at the output inductor L. It is therefore convenient to use a new
set of current variables id(w) and ic(w) defined by the sum and half of the

difference of the two transducer currents. In terms of {4(w) and ic(w), the

transducer currents 1i,(w) and i5(w) can be expressed as

L) = 3 g + (DX 1), (39)

Likewise, the applied accelerations gl(t) and go(t) at the proof masses m; and

my can be expressed in terms of their differential and common accelerations,

gq(w) and gc(w), as
g(w) = (-DF 1 g4(w) + gc(w). (40)

Notice that {j(w) is the actual current flowing through L, and detected by the
SQUID.
With the change of variables in Eqs. (39) and (40), the dynamical

equations (37) and (38) become

2,2
A ik AT! Alk

(-2 + ) X (w) + 14(w) + (-1D¥ == 1 _(0)
O g m L k “‘kzdw m et?

= (-Dk gd(w) + g.(w), (41)
+ 2L
x (0) = L—“{—q—ﬂ-zl- 19(w) + (-D¥ %{- i(w). (42)
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Upon eliminating the displacement coordinates, we obtain

2, b 2y L
(-o? + u ) —L“L—OZ fa(w) + (-DF (w? + w ) AIE 1,(w)
= (DX 2 gg() + g (@) = g W), (43)
where
22 2.2
wi = wiM + —l-(A & + il ), (44a)
: DA
2,2 2.2
wid z uiM + —l-(A i + ! Ik+ 5 ) . (44a)
O
Solving Eq. (43) for the signal current, we find
14(0) = K, @) gq(w) + B, () go(w), (45)

where Hd
g

respectively, to ij(w).

by
| -— ]
1 A12 . 1 AL
2 2 I..2 2 2 L
w, =W P w, - lp
d 2c lc
Hog(w) = = 3 7
de W 2Lo + LZE, W) 4 ) 2L° + L1
2 2 2 2
Wy, ~ @ sz Wy, W Llp
] - T
2( 1 AL 1 AI )
2 2 L 2 2 L
w, =-w 2p w 1
c 2¢ le
Hgi(w) T2 2 2L + wz wz 2L + L
2 " Y L 14 !
2 2 L 2 2 L
Wy, ~ W 2p Wy, "W 1p
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i(w) and H;i(w) are the transfer functions from g4(w) and g.(w),

These transfer functions of the gradiometer are given

. (46a)

. (46b)




Thé four parameters w4 and w, . are, in general, not the two resonances
of the gradiometer. Nevertheless, comparing the expressions for these para-
meters with Eqs. (34) and (35) suggests intuitive meaning to these nonobserv-
ables. Thus, Wy, can represent the angular resonance frequencies that the two
transducers would separately have if they were each connected to a short-
circuited load. A short-circuited load arises in these models because, when
143(w) =0 in the gradiometer circuit, the two transducers are driving the
current i.(w) in a push-pull manner, contributing zero impedance to each
other. Likewise, Weq can represent the angular resonance frequencies that the
two transducers would separately have if they were each loaded with an
inductance of 2Lo but were otherwise decoupled from each other. The
appearance of 2L, here is due to the equal contributions of currents %-id(w)
to the signal at Lj. Thus, under the restriction 1,(w) = 0, the flux
modulation produced by each transducer at L, as seen by the transducer itself
is doubled by the presence of the other transducer. The transfer functions of

these separated model accelerometers are given from Eq. (43) as

a1 (-D*A1
6gk i 2L+ Ik 2 _ 27
c ) Py ~w
a1 (-1)%A1y
a1, = . (47b)
8 4 Lkp w, = -

D. Common Mode Balance and Gradiometer Transfer Function

For operation as a gradiometer in the presence of common accelerations,
the transducers need to be tuned such that H;i(w) = 0, No qommon acceleration
signal will then appear at the output load L,, and the coupled acceleration

transducers are said to operate in a "gradiometer mode"”. On the other hand,
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parameters can be chosen such that Hgi(m) vanishes instead. Then, the output

will respond only to common accelerations and the system is said to operate in
an "accelerometer mode". The accelerometer mode operation is a powerful means
of obtaining a precise calibration of the gradiometer. A detailed discussion

of the accelerometer mode is found in Section IVB of Paper II. From Eq.

(46b), the common mode balance is obtained when

-AT!? '
AI1 AI2
2

2
2c w") L2

= . (48)
(wic - wz) Llp (w >

This balance condition can be satisfied at any single frequency by adjusting
only one persistent current parameter. Balancing over a small frequency range
near dc appears sufficient for normal low-frequency use of the gradiometer in
which w << Wjes Wy s In the terrestial environment, however, the
environmental vibrations occur in a wideband and are very large compared with
the extremely weak gravitational signals. A wideband balance will help to
immunize the gradiometer against such environmental vibrations.

The four curreat components, I, I, i}, and i;, do provide more than

sufficient degrees of freedom to tune for wideband balance. In principle, Eq.

(48) becomes an identity if

Wie = W (49a)
and
- —L—— = —— ([}Qb)
are simultaneously satisfied. However, direct matching of Wy 1s not
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practical because these equivalent resonances are observable only when the
output load is shorted and when the two transducers are also decoupled
mechanically [18]. 1In the experiment, a wideband balance can be achieved
instead by iterating the balance at two frequencies. Tuning I; or I, to
balance out an applied common acceleration at a high frequency (w >> Wles wzc)
will achieve the condition (49b). This adjustment is followed by tuning of i

or i, for balance at a low frequency (0 <K Wy wzc), yielding

] |
T S 49¢)
R ) L, ° (49¢
wlc Ip w2c P

The latter operation will, in general, affect the previous balance (49b), and
iteration between the two balance procedures 1s needed. When the counditions
(49b) and (49c) are both satisfied, the condition (49a) follows. This fre-
quency-independent balance has been applied in the experiment and is reported
in Paper II.

Upon substitution of Eq. (48) into Eq. (46a), Hgi(w) assumes a simple

form:

1
L +=%L L ++% L
d -1 ,2 2 %7 2 2, % "7 Mp

Notice that the transfer function of a balanced gradiometer becomes the
harmonic mean of the transfer functions of the two separated model
accelerometers, given by Eq. (47a).

When the common mode balance 1s not precise, Hgi(w) # 0 constitutes an
error coefficient., This error, which will be discussed in Section V, is

obtained from Eqs. (46) as
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] - '
e AL}
wz _ 2 L, w2 wZ Llp
c d 2¢c lc
H  (w) = H _ (w) : —— . (51)
gi gi 1, 1 A12 . 1 AII\
242 ct by W2 - 2L,
2¢c P e P

In the foregoing analysis, the transducer has been approximated as a linear
system. The dynamical equations (25) and (32), however, are nonlinear in
nature so that the response current id(w) must contain nonlinear terms in
general, in addition to the linear terms shown in Eq. (45). These nonlinear
terms ﬁay not drop out even when H;i(w) = 0, The scale factor nonlinearity
therefore constitutes an important error source, which will be discussed in

Section V of this paper and in Appendix B of Paper II.

E. Equivalent Accelerometer Representation

With two coupled acceleration transducers in the gradiometer, only the
differential acceleration is the measured signal at Lb' The common accelera-
tion drops out upon balance. Therefore, a convenient representation of the
gradiometer is a single (differential) accelerometer which converts a dif-
ferential acceleration into a signal current. Such a representation involves
identification of the gradiometer transfer function with the parameters of a

single accelerometer, as discussed in Section IIIB. These parameters include

a resonance frequency, a mass and the parameters of a superconducting circuit.
The two normal mode resonance frequencies of the gradiometer are some
weighted average of the parameters W), and wy, for the common mode and also
some other weighted average of wyq and w4 for the differential mode. In the
particular case of wideband balance, W1e and wo. are equal to each other and
hence equal to the common mode angular resonance frequency, denoted by We e

The differential mode angular resonance frequency, denoted by w., is then

0,
defined from the singularity of Hgi(w) in Eq. (50)., In practice, the gradio-

meter need only be balanced at a limited frequency band of the signal. Then,
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Eq. (50) is only valid in this limited frequency band. Therefore, the exact
differential mode resonance is determined from the singularity of Hgi(w) in
the more general equation (46a). Yet, as far as signal transduction within
the limited signal frequency band is concerned, we can still use Eq. (50) to
define w,.

By defining equivalent circuit parameters to satisfy

1 1

L + L L +5 L L +5 L
o p- o 2 1p + 0 2 2p (52)
II - _..II Il bl
1 2
we can convert Eq. (50) into the form of Eq. (34):
d - AT’ 1
O S A B i (53)
o Puw, ~w
where the effective resonance frequency, w,, is related to wid by
Ll 5 _ L*tgly Lo+%-L2p 2
2 __ P =z % < P L < P
I % eI “ra ¥ I3 Waq * (54)

While there is freedom in defining the individual circuilt parameters
which appear on the lefthand side of Eq. (52), one natural choice is to

identify L, with the load inductance and Lp with the output inductance of the

superconducting circuit:

1 1 1

P lp 2p

Then, the current parameter I' is defined by Eq. (52). With the aid of Egs.

(49b) and (55), this definition of I' in Eq. (52) simplifies to
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ot (56)
under wideband balance condition.

The transfer function in Eq. (53) has only characterized the overall
signal transduction of the gradiometer. The intrinsic noise of the gradio-
meter will be given in Section IV in terms of Brownian motion noise and
amplifier noise. For a single spring-mass system, the Brownian motion depends
on the mass and the fluctuating force of the spring. Therefore, once the

effective mass in the equivalent accelerometer representation is determined,

the Brownian motion of the two coupled acceleration transducers in the dif-
ferential mode can be derived using this equivalent single spring-mass model.
This effective mass requires a unique definition in order to give the correct
Brownian motion nolse of the gradiometer and must therefore be derived from
the dynamics of the gradiometer.

Dynamically, the gradiometer consists of two coupled masses connected to
the platform and to each other by three springs. Thus, the homogeneous
equations of motion of the two proof masses are obtained by eliminating 1k(w)

from Eqs. (37) and (38):
wlm x (@) = Kexge (@) + Kppxg e (0), (57)

where the three spring constants Kk and K12 are given by

2.2 \2
2 A1 (AIk) (L0+Llﬂ2)

I A A S LT+ Ly (58)
(-AIDAIDL
1 2’70
Kiog = . (59)
12 (Lo + Lp)(Llp + sz)
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Now, we need to find out what displacement variable, xd(w), cause the signal
current id(w). Thus, we break up the signal transduction into two
intermediate steps: gd(w) to xd(w) and then xd(w) to 1d(w). From Eqs. (41)
and (42), we obtain

2

(w2 + w) xg(w) = gg(w), (60)

id(w) = Z;A%Lf; xd(w), (61)

where

L Ié —Ii
xg(w) = 7% [$— %) - = x ] (62)
2p 1

p
The effective mass is therefore the inertia for the coupled spring mass system
of Eqs. (57) - (59) towards the motion x4(w) of Eq. (62).
We next note that a simple scaling of the two separate displacement

variables,

k

L (-1) Ié
0 (©) = F —— x (W), (63)
Yep
simplifies x4(w) into the form:
xq(w) = xé(w) - xi(w). (64)

The corresponding scaling required for the masses and spring constants are

m = (q‘f)z ., (65a)
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ve (X2 g, (65b)
Ke = M
K]'.Z = ;('—X;Klz’ (65c¢)

because, under these scaling, the dynamical equation (60) is invariant in form
and both the kinetic and potential energies (within the frequency range of
common mode balance) remain unchanged.

Now, the effective mass corresponding to x4(w) of Eq. (64) is just the
reduced mass of mi and mé. By using Eqs. (63) and (65a), this effective mass,

denoted by m, can be shown to satisfy a simple formula:

2 2 2
L L
P _lp “2p . (66)
I'2m I'zm 1’2
1™ 2 ™

In Section IVA, the effective mass defined here will be used in
conjunction with the equivalent accelerometer representation for finding the

Brownian motion noise of the transducer.
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IV. NOISE AND COPTIMIZATION

In the light of the equivalent accelerometer model given in Section IIIE,
the fundamental noise terms of the gradiometer will be derived by treating the
gradiometer as a single accelerometer. In this section, we introduce damping

and consider its effects.

A. Transducer Brownian Motion Noise

The fundamental noise source of a spring-mass system at a temperature T
is the Brownian motion of the harmonic oscillator at that temperature. The
force of the spring on the proof mass undergoes random fluctuations. The
spectral density of such force fluctuations at the resonance frequency w, of
the oscillator is related, by the Fluctuation-Dissipation Theorem, to the
damping of the oscillator at resonance.

In applying the Fluctuation-Dissipation Theorem, emphasis is made here
that measurement of relaxation time t(w,) or quality factor Q(w,) = woT(wy)
gives information on the force fluctuations only at w,. The Langevin equation
is a modification of the equation of motion in Section III by including a

damping term and an acceleration noise gz(w) term:

2 _ T
+w ] x(w) = g (w. (67)
Thus the energy of the oscillator at a temperature T:
m o’ <x2()> = kg T (68)
o B ™

where
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<x2(t)> = f“o" x(w) () dw, (69)

is dominated by its spectral density at resonance. Use of Eqs. (67) - (69)

gives the Nyquist formula:

T,y .2
Sg(wo) T n kBT mt(wo) ’

(70)

where S;(wo) is the spectral density [22] of the acceleration noise g: at wye

The force or acceleration fluctuations at a signal frequency w << Wy is
in general different from that at Wy because the noise could have a compli-
cated frequency dependence which is governed by the nature of the loss

mechanisms in the spring. The noise at w due to force fluctuations in the

spring is obtained from Eq. (70) with t(w,) replaced by t(w):

1

2
kgT mt (w)

T =
Sg(w) =7 5 . (71)

A direct measurement of t(w) requires shifting the resonance frequency from W,
to w. In principle, one can increase the mass m or use a "negative spring”
[11] so that the new spring-mass system indeed resonates at w and therefore
the Q factor of this new system can be measured. From a knowledge of the new
mass used or of the loss in the negative spring, the dissipation in the
original spring can be determined.

The Q factor of the accelerometer depends on both the mechanical and the
electrical parameters because the electromechanical spring of the accelero-
meter has contributions from a mechanical spring and two electromagnetic
springs, in the ratio given by the three terms in Eq. (35), for the total

spring constant and hence for the stored ac energy at w The power loss in

ol
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each of these constituent springs is then proportional to this ratio of stored
ac energies in these springs divided by a certain relaxation time at w,.
Therefore, the following relationship for the relaxation times results from

the obvious observation that, at wg,, the total ac power loss is the sum of the

power losses in the respective springs:

1 _1-y-8,_x + 8 .
r(wo) 1M(wo) 1i(mo) TI.(wo)

(72)

Here Ty(w,), T4 (w,) and 11.(wo) are the relaxation times that each spring
would have if it is separately resonated at w,, and ¥y and B are the transducer

energy coupling coefficients via i and I' defined by

2.2
y = Azi , (73a)

mw L

0O S

2,2
gz —21 . (73b)

In order to reduce dissipation in all the comstituent springs, choice of
material and geometry, material treatment, surface preparation as well as

choice of electrical parameters must be optimized.

B. SQUID Amplifier Noise

A SQUID can be modelled as an ideal current-to-voltage amplifier having
an input inductor L; and two noise generators for its voltage and current
noise with spectral densities Sy(w) and S;(w), respectively, at the amplifier
input (see Fig. 4a) [23].

The optimum source impedance, (SV/SI)I/Z, is much smaller than the para-

sitic impedance wL; unless L; is tuned out (at one frequency) to noise match
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the input impedance. Therefore, when the SQUID is used as a wideband ampli-
fier, the noise is dominated by Sy and can be characterized by an “input

energy sensitivity”:

Ep(w) = 3 Ly Sy(w). (74)

In a practical gradiometer design, the transducer output inductance Lp is
usually larger than L; and a superconducting transformer is desired to bridge
between Lp and Lj. The equivalent load, representing L; and the transformer,

seen by the transducer is an inductor L,:

2
L, = bt 0K by L (75)
- .
0 L, + L

where k., Ly and Lyy are the magnetic-field coupling constant, the primary and
the secondary inductances of the transformer. The ratio of the power being
detected in Ly to the power sent from Lp to L, is the forward power transfer

fuanction H;’II

(w) of the transformer and can be shown to be given by a fre-

quency-independent expression:

2 Iy
ke 1
(LTI I1 . 76)
P L 2. 1y
(-L——-+ 1 - kt)(i——'i' 1)
IT IT

The equivalent current noise for SI(w) seen by the transducer is therefore

given by

Ly sI(w) 2 EA(w)

L gL Il | gL II
o P o p

an

St (w) =

Now, the circuit in Fig. 4a can be represented by an equivalent circuit with
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the transducer connected in series with L, and a current-to-voltage amplifier
wnich tas the equivaleat current aoise Si(w), as shown in Fig. 4b.

The quantity of ianterest is the equivalent (differential) acceleration
noise at the transducer that would correspond to the amplifier noise of Eq.

(77). The conversion from current noise to differential acceleration noise is

made by use of the transfer function of the transducer, Eq. (53):

2 2
(wo w )(Lo + Ib) ) 2 EA(w)
AT I,IT °

LH
°op

Sg(w) = (78)

For w << w,, substitution of Eq. (73b) reduces this amplifier noise term to

2

A _4 Y
Sg(w) = E'EEH-EA(w) s (79)

where
L
= o) I, II

n = L + L Hp (80)

o P

is the fraction of electrical energy coupled to the amplifier. The product B8n
represents the fraction of the total electromechanical energy coupled to the

SQUID input, or the "SQUID energy coupling coefficient”,

There are three factors to optimize, The transfer function (75) is

optimized when the transformer secondary is

(Lropt = TN (81)
/(1= k)

yielding
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2
wb Iy o ke

PPt eva -

(82)

From Eqs. (75) and (81), the transformer primary is chosen according to

LO
= . (83)

/(1 - kt)

(LI)opt =

The impedance factor Lo/(L0 + Lp) in Eq. (80) is maximized by choosing L, >

Lp. Finally, the frequency factor assumes a minimum:

“i 2
(38)min = 9 > (84)

when I' is chosen such that 8 = 1/2: namely,

2,2

AT 1 2
m(L + L) 7Y% - (85)
o P

This last optimization is applicable only when the amplifier noise is

dominating.

C. Potential Sensitivity

The fundamental noise of the gradiometer is the sum of its Brownian
motion noise and SQUID amplifier noise. In terms of an equivalent gravity
gradient noise Pn, the spectral density of the gradiometer noise is

Sp@) = 5 (52 + s (86)

2

where £ 1s the length of the baseline between the two proof masses.

Substitution from Eqs. (71) and (79) gives the one-sided noise spectral
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density:

4 kB T wi
Sp(f) = 2 =& 7am Ea(O)] (87)

where a factor 21 has been dropped from Eq. (71) by going from the angular
frequency domain to the frequency domain. Here, the numeral 4 will become 8
if my ié used instead of the reduced mass m,

In the usual case when TM 2 Tt the optimum value for I1' satisfies an

inequality:

A21r?

opt 1 2
O<W<2wo. (88)

Toward the lower bound, the power coupled to the SQUID tends to zero. Toward
the upper bound, the Brownian motion noise term increases hecause of the rela-
tively short Tyre If the amplifier noise dominates, the choice is made at the
upper bound. 1If this bound is exceeded, the electromechanical spring has be-—
come so stiff that a given acceleration signal applied to the proof mass is
producing less displacement, thus making it more difficult for the supercon-
ducting circuit to measure.

The SQUID input energy sensitivity E,(f) is usually a white noise plus a
1/f noise at very low frequencies. 1In addition, a dc drift can be caused by a
temperature drift of the gradiometer [l14]. The drift changes the penetration
depth and hence the inductances of the superconducting circuit [24]. Tempera-
ture related drifts can be suppressed by regulating the temperature or be
balanced out with an improved circuit [25]. This and other errors are the
subject that will be considered in Section V. The noise given in Eq. (87)

represents the fundamental noise of the gradiometer which can be reached only
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when other instrument errors are suppressed sufficiently. However, having
very low fundamental noise in the gradiometer itself is a prerequisite for

achieving the desired high sensitivity.
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V. ERROR MODEL OF THE INSTRUMENT

As we have seen in Section II, the gradiometer measures in general a
differential gravity signal superposed with specific pseudoforces such as
centrifugal acceleration and angular acceleration. In addition, the large dc
gravity bias is modulated by the motion of the platform, resulting in error
signals which compete with the ac signals under investigation. Thermal and
electfomagnetic fluctuations of the enviromnment can also be coupled to the
gradiometer. It is important to have a complete error model of the instrument
because, for many applications, errors could dominate over the gravity
gradient signals and therefore must be compensated for to recover the true
signals. We start this section with a derivation of general expressions for
the driving accelerations gd(t) and gc(t). We will then elaborate on specific
error sources. The kinematic and dynamic error mechanisms discussed in this
section are independent of the particular electrical circuit chosen for the
superconducting gradiometer. Hence our results have general applicability

beyond the specific instrument discussed in this paper.

A. Geometrical Metrology Errors
Let us consider the case in which the gradiometer is used to measure a
time-varying in-line component gravity gradient at T in the direction of a

-~

unit vector n fixed in the laboratory frame:
. 2
Tan (F5t) = = (0« D o(F,0) . (89)

> >
Let r, and r, represeat the actual position vectors for the centers of mass of

the two proof masses m and my, and n, and n, be the unit vectors represeating

the actual sensitive axes of the two component accelerometers, as indicated in
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Fig. 5. Let E and I represent the average proof mass position vector and the

baseline vector of the gradiometer, respectively, so that

> _» 3
rls p - '2— ’ (908)
> _> X
r, Ept3. (90b)

Ideally, one wants 3 = ;. In general, one has a gradiometer position

>
error 8p:

PET 460 . (91)

~

Likewise, in an ideal gradiometer, n, 0, and % = I/R are perfectly
aligned to each other and are oriented along n. 1In a practical gradiometer,

however, there are various alignment and orientation errors. The axes

alignment errors consist of the misalignment between the sensitive axes of the

two accelerometers:

(92)

and the misalignment between the average direction of the sensitive axes and

the direction of the baseline & = I/l:
A l A ~ A
5n ., ==~ (n, + n,) - % . (93)
+2 2 2 1

These alignment errors will be shown to cause coupling to the gravity gradient

output from the common linear acceleration component along the &n_ direction
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Fig. 5. Position, orientation and sensitive axes alignment of the

gradiometer.
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and from the angular acceleration component along the &n , x n direction. The

gradiometer orientation error is due to the directions £ and (n2 + nl)/2 being

misoriented from n by 6% and 6§ n ., respectively:

+n
L=n+ 88, (94a)
l A ~ _ A )
7(n2+n1)=n+6n,\, (94b)
+n

and will be shown to cause coupling from the differential acceleration
component along the éi + 5; . direction. Notice that only one of the two
quantities 6i and 63 ~ in cZEjunction with the misalignment 6; . in Eq. (93)
is sufficient to defzze the misorientation of the gradiometer.+xIntroducing
additional notations in Eqs. (94), however, have the advantage of simplifying
expressions for misorientation errors by avoiding explicit reference to the
misalignment parameters, defined within the gradiometer hardware.

In order to find the specific forces acting on m; and my, Egs. (90) are
substituted into Eq. (4). After Taylor series expansion in I, one finds

I} 1

pELo--tn-dehetdon-2d ol 660

- 80 x B(v) x @ -%)1 -a(e) x (@ -%) -ae),  (95@)

- 8(e) x B(e) x ¢ +-§-)1 - a(e) x (@ +§> -3(e) ,  (950)
where we dropped the Coriolis terms assuming a rectilinear compliance of the
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proof mass suspension. In general, 3 and  are also time-varying due to the
translational and rotational motions of the platform with respect to an
inertial frame.

In Section IIIB, we defined as the acceleration signal the time-varying
part over the coanstaat background gravity of Earth. Since we are now
interested in the mechanisms which modulate the Earth's bias to produce error
signals, we consider in this section the response of the gradiometer to the

total accelerations:

~

gi(e) = o« B'(F,0 =g (6) +a - gD . (96)

We return at the end to the signal variables gk(t) to connect back to the
analyses presented in earlier sections., With Earth's gravity vector EE(;) as
defined by Eq. (28), the last equality in Eq. (96) can be viewed as a rigorous
re—-definition of gk(t). Here a point-mass (or a spherical-mass) approximation
of the proof masses has been used to avoid volume integration of E'(;k,t) over
the finite dimensions of the proof masses.

The total common and differential accelerations for the gradiometer,

defined in a similar fashion as gc(t) and g4(t) in Eq. (40), can now be shown

to be

~ ~ 1 .° > >
g'(t) = (n+6n,) g (p,t) ++6n_ e g (p,t) , (97a)
¢ +n CI 4 DI

g() =8n_+ 3 B0+ +on )« B G0, (97b)

CI +n DI

where E' (g,t) and E'I(s’t) are the total true common and differential
C D

accelerations acting at 3 + $/2:

-49-



1 3

ARCOEERLES KX D+ 6B - 3B, (98a)
. .

E'E(g’t) (¢ (% e 0 -3 x @ x D - & x 1.(98b)
. .

Here ;(3) is the total linear acceleration experienced at 3:

>, >

a(p) = 3 x (5 X 3) + ; e 3 +a, (99)

and the time dependencies have been omitted on the righthand side of Eqs. (98)
for notational simplicity.

Equations (97) through (99) are in the platform frame representation. It
is straightforward to convert these equations into the laboratory frame
representation by substituting Eqs. (91), (93) and (94). The relative
uncertainties between the two frames, 63, 6; . and éi, then constitute new

+n
error sources., Thus, it can be shown that Eqs. (97) become

gl(t) = (n+6n.) « §'(F+85,t) +5 60« F'(F+83,6) + (n+80)
+n

5n_ + & x (n + 5L) + bg - (100a)
c,

-2
%

gi(t) = bn_« E'(F + 85,6) + & (n +8n ) « TU(T +55,0) + (n + 8D)
+n

-28n,.saxn+b8g _ . (100Db)

Here E' and T' are the specific force vector and the specific force gradient

tensor defined in Eqs. (4) and (8); &g and &g are the finite size terms
c, d,
given in Eqs. (Al). Equation (100b) shows that the "sensitive axis of the
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gradiometer” can be defined by the average of (n1 + nz)/2 and 2.

B. General Description of Errors

The accelerations in Eqs. (100) contain two types of error sources. The
first type is iuntrinsic error sources due to angular motions as given in Egs.
(4) and (8), the second type is in geometrical metrology. Further error
sources arise from non-ideal behaviors of the mechanical and electrical
springs, scale factor mismatch, incorrect calibration, and residual coupling
of the gradiometer to temperature and electromagnetic fluctuations of the

environment, etc. Equation (45) can therefore be generalized as
1q(w) = B () go(w) + HO (0) ggw) + HSS(w) G, .(w) + HI9(w) Gqq(w)
d gi c gi d Gi ce Gi dd
+ 189w) 6 qCw) + B, () T.(0) + O, (w) Ti(w) + (101)
Gi cd Ti c Ti d te0

where G..(w), G44(w) and Goq(w) are the Fourier transforms of

Geolt) = [g.(£)12, (102a)
Gqq(t) = [gg(t)12, (102b)
Geq(t) = go(t)gyg(t), (102¢)

and T,(w) and Td(w) are the Fourler transforms of the common and differential
temperature fluctuations, T.(t) and T4(t), over the two transducers, defined
in Eqs. (A26). The coefficients in front of these functions represent the

transfer functions for the signal variables that they are multiplied with.
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The centrifugal acceleration and the linear and angular accelerations, which
are coupled to the gradiometer due to its metrology errors, appear in Eq.
(101) through errors in gc(w) and gd(w) that they cause,

Notice that Eq. (101) contains the original signal variables, gc(w) and

gd(w), which are identical to gé(w) and gé(w) due to the relationships:
go(t) = gl(t) = n » (), (103a)
gq(t) = g3(t) , (103b)

which follow from Eq. (96). Equations (103) imply that the errors in the

unprimed variables are given by the errors in the primed variables:
6g.(t) = g (t) , (104a)
8ga(t) = égé(t) . (104b)
It is also clear that the Fourier components of the errors are also

identifical between the two sets of variables. Equations (100) and (103) can

be combined to obtain the unperturbed acceleration signals:

Beo(®) = g1 ) =0+ () - 33wl , (105a)
Bdo(@) = g} @ =20+ FFw) -T Wl +n, (105b)

where E(;,w), ;(;,w), f(;,w) and C (w) are the Fourier transforms of
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BE,0 = - Vo, 0) = - Vo (F,0) - Fo (D), (106a)

a(r,t) = ZP(?,t) + §E X [ﬁE x (KE +7)], (106b)
F(r,t) = - Wo(E,t) = - W%(?,c) - W¢E(?) , (106¢)
T (t) = 8e) BCe) -%(e) 1. (106d)

Here ¢E(;), Qg and Rg are Earth's variables introduced in Eq. (28); ¢P(;’t)
and ;P(;,t) are the gravitational potential and the linear acceleration
measured relative to Earth; and ¢ (t) is the "centrifugal accelerator tensor.”
The dyadic notation is used in Eqs. (106) to represeat rank-2 tensors. The
first term in Eq. (105b) is & times the gravity gradieat signal Pnn(;,w) to be
measured.

It is useful to divide Eq. (101) by & Hgi(w) to obtain an equation of the

form:

[T (F,0)]

> 1
measured = [Pnn(r’m)]true + I‘Z 6gd,i(w) ,» (107)

where bgd 1{w) is the equivalent error in the differential acceleration gd(m)
bl
due to the i-th type error source. Derivation and discussion of 5gd i for
1]
various error sources are given in Appendix, Equation (107) can be converted

into another convenient form:

8Tng (o) = T e ) T, G + T e ) Con(@ + 1 € () a,(F,0)
2,m L,m - 2
+ E eil(w) QP,R(w) + e:(w) Tc(w) + eee (108)
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in which dominant error sources have been shown explicity. Here the
laboratory has been assumed to be stationary with respect to Earth and §P(w)
is the angular velocity of the platform in the laboratory frame. The first

two error coefficients can be identified from Eqs. (A6b) and (Al9):

el () = 8980 80p(w) + (1 = 8yp) Ba (80« + 8Ly 5 (1092)

~

€S, (W) = = 8y 8.,800(w) - (1 = 8yp) San(6n » + 82), , (109b)
where Sop(w) and 8op(w) are the (dimensionless) calibration error coefficients
for f(;,w) and C (w), respectively. It is assumed that the zeroth order part
of C (w) has been measured independently and removed_from the gradiometer out-
put. Otherwise, 80.(w) must be replaced by unity. The common acceleration
error coefficient is read off Eq. (A21):

e () = - b 7 80g(@) = (1 = b)) § (8n), , (109¢)

where 80g(w) is the (dimensionless) scale factor mismatch between two
constituent accelerometers. The coefficient for the first-order angular

velocity induced error is obtained from Eqs. (Al0) and (Al2):

Q 1 .
Eag (@) = (1= 8g) W ¢ - 75 kX (1 = Byp) Eiegm (Bn1)y 8 o(F)

,m

+ 3w ) (1 = 8pn) £rgn (50 Dy s (1094)
k +2

where 5§P = §P has been assumed and € g is the totally antisymmetric tensor

of rank 3.
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Unlike in some conventional gravity gradimeters, matching of proof masses
and spring coustants are ot necessary in the superconducting device because
the balance is achieved by tuning persistent currents. However, the alignment
of the sensitive axes of the proof masses is still important,

The temperature error coefficient can be determined from the results of
Section H of Appendix. Depending on the relative magnitude of the two
competing thermal effects, the error coefficient can be written as

ez(w) = %—h

e (®) > (109e)

where th(w) is given by Eq. (A42a), or by

1 dE

T =1 air
en(w) =1 bog(w) gp cos O, E(TY a7 °

(109e")
where E(T) is the Young's modulus of the spring material at temperature T.

In Paper II, we discuss the observed values or limits of these major
error coefficients. Once these error coefficients have been determined ex-
perimentally, the relevant dynamic variables can be measured simultaneously
along with the gravity gradient by independent instrumentation and the respec-
tive errors can be compensated for by using the error model derived in this
section and Appendix. In a three-axis gradiometer, it is possible to suppress

several error sources by using the geometrical properties of the device [18].
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VI. SUMMARY AND CONCLUSION

A gravity gradiometer is a fundamental instrument which can separate
gravity from frame accelerations. A sensitive temsor gravity gradiometer
needs to be developed to carry out precision tests on gravity as well as for
applications in gravity survey and inertial navigation. Since a large common
mode background has to be removed in gradiometry by differencing signals at
two or more proof masses, extreme stability is required for the sensitive axis
orientation and for the scale factors of the component accelerometers. We
have shown how these challenges can be met at low temperatures by utilizing
the stability of persistent currents, the enhanced mechanical stability of
materials and the sensitivity of SQUID amplifiers. An accompanying penalty is
of course the inconvenience of having to keep the instrument in liquid helium.
The liquid helium environment, however, can be used further to isolate the
gradiometer from the fluctuations in the ambient temperature and electro-
magunetic fields.

In this paper, we have analyzea a superconducting current-differenciag
gravity gradiometer. Complete dynamical equations have been derived from the
first principles. Transfer functions, common mode balance conditions and
procedures as well as a rather extensive error model have been developed from
these equations. The complicated differential instrument has been reduced to
an equivalent accelerometer which simplifies the noise analysis and the
electronic control of the device. 1In Paper II, we report the performance of
the superconducting gradiometer in the laboratory, which verifies details of
the theory developed here. Although our analysis has been confined to a
specific instrument reported in Paper II, the theoretical methods presented in
this paper will be a useful guide in analyzing other superconducting inertial

instruments that may be developed in the future,
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APPENDIX: DERIVATION OF VARIQUS ERROR COEFFICIENTS

A, Finite Size Effects
There are two error sources related to the finite dimensions of a

practical gradiometer: (1) the finite volume of the proof masses and (2) the

finite baseline of the instrument. The first effect can be minimized by

choosing a nearly spherical geometry for the proof masses, whereas the second
effect is reduced when the baseline length £ = || is shortened. The finite
baseline effect has been taken into account in Eqs. (95) by the Taylor expan-
sion in . The finite volume effect has been ignored in the previous analysis
because of its high order nature. The departure from a spherical geometry
gives a nonvanishing quadrupole moment to each proof mass or a small octupole
moment to the gradiometer. Since this will couple at best to the fourth order
derivatives of ¢(3,t), which is generally small except when the source is
extremely close to the gradiometer, this error can be ignored in.most situa-
tions. Clearly, the finite volume error is always smaller than the finite

baseline error.

The dominant gravity error terms arising from the finite baseline are

obtained from Eqs. (97) and (98).

2

g (1) = -G+ e@,0) (Ala)
e,k
13 ° 4 >
5g EE(t) = -5 @+ D7 e, . (Alb)
d, ‘

When ¢(3,t) varies with a characteristic length R, these errors become
O(lz/RZ) of the signal. Therefore, the finite baseline error can also be

ignored when /R <K 1.
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B. Misposition of the Gradiometer

The acceleration errors duc to the misposition of the gradiometer are

obtained from Eqs. (4) and (100):

bg () =-n-+ e +33 -0%T) + 65 -n - &x 65, (A2a)
c,p

sg () =-2 (n+ Ve Fo®) + 5], (A2b)
d,p
to the leading order in 53. These errors are usually negligible because of
the higher order gradients involved. The displacement 63(:), produced by the
linear acceleration z(;,t), modulates the large dc gravity of Earth and

produces errors that compete with ac signals:

() =0 (éﬁi&l gE) , (A3a)

c,p %

5g (t) =0 (2L or ), (A3b)
> RF E
d,p A
where gp = 9.8 m s_2, Tg 2 3.1 x 103 E and Rg = 6.4 x 10% o are the vertical
gravitational acceleration, the vertical gravity gradient and the radius of

Earth. It is clear that these errors can be ignored in general because

5p(t)/Rg << 1.

C. Misalignment and Misorientation of the Gradiometer

The acceleration errors caused by the misaligoments, &n_ and én ., and
+2

the misorientations, 6n ., and 8%, are obtained from Eqs. (100):
+n

8g . A(6) =bn . « §'(F,0) + 3 (Bu_+61) « F'(F,0) +n
c,n+l +n
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- %-Gn e axn , (Ada)

g . A(t) =8n_ -« E'(;,t) + 2(5; .+ Gi) . Fr(T,t) - ;
d,n+2 +n

-28n.caxmn, (A4b)

+2

A

to the leading order in én_, 6n ., 6n .. It follows from the definitions (92)

-t 4 - n
- (94) that, in the limits |6n_|, |60 .|, |6n .|, |62] , <K 1,
+2 +n
sn_, bn ., bn ., 8L L . (A5)

+2 +n

Hence these errors cause the cross components of the common acceleration and
the acceleration gradient to couple to the gradiometer. Written out

explicitly, Eqs. (A4) become

88 .« (1) = =60 .« Do) + 3B - F (ba_+ 80 + (o) + &) « n
c,ntl +n

- %—6;_ xne , (A6a)
g . .(t) =-5n_* {6 +3@)] -2 (bn . + 60 « [0 + &) « n
d,n+l +n

-2 60 . xn-* u. (A6b)
+2

In Eq. (A6b), the misalignments within the gradiometer are expressed in

terms of the misalignment dn_ of the accelerometer axes with respect to each

other and the misalignment &n . between the average accelerometer axis
A A +R‘ ~
(n1 + n2)/2 and the baseline direction 2., These errors cause coupling to
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pared with acceleration gradient signals oi iLaterest. The combined crror
6; .t éi appearing in the second term of Eq. (A6b) represents the mis-
orzzntation of the gradiometer sensitive axis relative to the theoretical
direction ; fixed to the laboratory frame, which is used for interpretating
the data. This misorientation produces coupling to cross gradients.

Tﬁe coupling to the gradiometer from the dynamic variables of the plat-
form, 3(3,:), §(t) and E(t), are revealed in Eqs. (A6). Since i and 5ﬁt are
time-varying in general due to B(t), the large dc gravity of Earth, ¢E(3),

will be modulated to produce errors at the frequency of interest. This

important error mechanism will be studied in detail in the next section,

D. Angular Motions of the Platform

The centrifugal acceleration appears without attenuation in Eq. (105b) in

direct competition with the gravity gradient signal. This problem is funda-
mental in any second-order gradiometer, in-line or cross component, as is
evidenced by Eq. (9), and therefore does not depend on the particular design
of the instrument. This makes the attitude coatrol or detection as the most
formidable task in precision gravity gradiometry. Ome can easily compute the
required attitude rate (ﬁ) accuracy from Eq. (105b) for a given sensitivity of
.

When the instrument 1s in a laboratory rotating at an angular velo-

city ﬁo(t) with respect to an inertial frame, it is convenient to define
&(t) = ZSO(t) + §P(t) . (A7)
If uncertainties in §o(t) and §P(t) are 6§o(t) and 6§P(t), respectively, then
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the error in the differential acceleration due to centrifugal acceleration is

obtained from Eqs. (105b), (106d) and (A7) as

% E(c)=—2x[{n-(§o + G Hae (88 +68,)1 - + &) (s +80)].
(48)

If the gradiometer platform is wmoving with a velocity 3(:) with respect
to Earth and the gradiometer is in a local geographic orientation, then §o(t)

is given by
& (0) =G + R;z kox (o), (A9)

where §E and ﬁE are the angular velocity and radius vectors of Earth, intro-
duced in Eq. (28). In the case when the platform is stationary with respect

to Earth; i.e. v(t) = 0, Eq. (A8) reduces, after Fourier transformation, to

5g () = =2 [(a + B ){n » 88, () - 8
c

; s ¢ 8,01, (Al0)

where we have assumed the condition Qp K Qp = 7.27 x 107 rad s—l, which is
not difficult to satisfy for a stationary platform.

In a terrestrial laboratory, the modulation of Earth's gravity bilas by

the tilt of the sensitive axes is another important error mechanism, as was
pointed out in Section C of this Appendix. Since the common mode errors in
Eq. (A6a) produce second order errors in the differential signal when

multiplied by the common mode balance error H® according to Eq. (51), these

gi
errors will, in general, be dominated by the errors in Eq. (A6b), which is

d
multipled by Hgi’
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When the platform moves at an angular velocity §P(t) with respect to the
terrestrial laboratory, the misaiignment and misorientation vectors are

modulated according to

d -
& =4wxi, (Al1)
where A stands for én_, &n ., 6n . and 8%. Equation (A6b) becomes, upon
+2 +n
Fourier transformation,
N W) BN . R - ¢ S
g . (w) = —bn_ X gE(r) - 2(8n , + 8R) o x [PE(r) * nj
d,n+ J +n
-2 8n , xn-* [ju ﬁp(w)] , (A12)

+2

where EE = —$¢E, fE = —§3¢E and 2(w) = jw ﬁP(w) were substituted. The term

arising from the angular modulation of 8n , produces a second order effect in
+2
ﬁp(w) and therefore has been dropped. 1In the case when

~ A . XFE
|6n_| > |6n . + 82 x — , (A13)
+n

g
the second term in Eq. (Al2) can be ignored. The third term becomes

negligible compared to the first term at sufficiently low signal frequencies:

A

8. 1/2 %" 172
o < (Y2 ==Y

. (Al4a)

én .
+2

Comparing Eq. (Al2) with Eq. (Al10), one finds that the time-varying tilt noise

is the dominant source of angular motion induced errors in the frequency range
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gE -
w < m |6n_| , (Al4b)

even when 6§P = §P » the worst case for the centrifugal acceleration error.
In Paper II, we will see that the angular motion noise given by Eq. (12) is
indeed the dominant error mechanism for our prototype superconducting gravity
gradiometer.

The foregoing discussion clearly reveals the advantage of operating a
sensitive gradiometer in space where the gradiometer platform is freely
falling., If an Earth-pointing reference frame 1is chosen so that ﬁo(t) coin-
cides with the orbital angular velocity of the satellite, then Eqs. (A8) and

(A6b) reduce respectively to

68 - (@)]gpace = 72t [n © 8+ s () -8« s, (] ,(AL5)
8 (w)
~ ~ P - + ~
[égd rAhk;l(w)lspfm = - (5n+; +80) + 5o x (fp(@) - 3,81 ¢ n
-2 80 . xa-e [l W, (A16)
+2

where fE(;) is the gravity gradient tensor of (spherical) Earth. Comparison
of Eqs. (A15) and (Al6) leads to a conclusion that the centrifugal accelera-
tion error could be dominant in most practical cases.

One can see from Eq. (A8) that_&g J(t) has a minimum when the gradio-
meter is in an inertial orilentation; i?;?, 50 = (), The worst situation for
the centrifugal acceleration error is the case when the gradiometer is rotated
at a frequency high compared to the signal frequency for heterodyne detection
of the gravity signal. 1In this case, §o is the spin angular velocity which is

large compared to § One advantage of the superconducting gravity gradio-

EO
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meter is that the heterodyne detection is not necessary, unlike in some con-

ventional devices, because of its low drift and excellent low frequency noise
characteristics. The superconducting gradiometer therefore permits complete
freedom in orientation: 1inertial, earth-pointing, or spin-stabilized [26].
Hence, an optimum orientatiomn, which minimizes the overall error budget, is
available to the superconducting instrument although the angular motion in-
duced errors are fuandamental.

In Eqs. (A10) and (Al5), we considered only the first order errors in
5§P(w). This is justified when 5§P(w) is bandwidth limited. The Fourier
transform of [6§P(t)]2 down-converts the centrifugal acceleration noise from
high frequencies to the vicinity of dc, the signal bandwidth. A low-pass
filter for angular vibrations of the platform is therefore needed to suppress

this error.

E. Scale Factor Errors

There are two types of scale factor errors in a gradiometer: (1) a rela-

tive error, which comes from the mismatch of the scale factors of the com-
ponent accelerometers, and (2) an absolute error, which is the error in the
calibration of the gradiometer transfer function. Since the scale factors are
determined by persisteant currents in the superconducting gradiometer, extreme
stability is expected in the scale factor match and calibration. The passive,
iterative, common mode balance procedure described in Section IIID allows in
principle an arbitrarily precise match of scale factors in one direction inde—
pendent of signal frequency. In practice, however, H;i(w) is not precisely
zero in Eq. (101), thus producing a common mode rejection error, and Hgi(m)
also contains a calibration error 6Hgi(w).

Let us define the (dimensionless) coefficients for scale factor mismatch
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and gradiometer calibration error by

Hci(m)
508(“‘)) = 3 , (Al7a)
Hgi(w)
6Hdi(w) 58
Sop(w) = — - (A17b)
) H , (w)
gi

and for the centrifugal acceleration calibration error by Sop(w), which is
usually different from 8op(w) because independent instruments, such as gyro-
scopes, are used to measure and compensate the effect. The error arising from
the use of an inaccurate value of £ in the recovery of an(;,t) from gdo(t) in
Eq. (105b) is represented by the second term in Eq. (Al7b)., With the aid of
Eqs. (105), the equivalent differential acceleration errors due to scale

factor mismatch and calibration errors can be written as

58q,5(w) = bog(w) 0+ [F(F,0) - 3F,0] , (A18)
b8 c() = 2 0+ [sop(w) F(F,w) - bog(@) Ew] + n . (A9

The platform motion terms usually dominate over the ac gravity terms in these
equations., The second term in Eq. (Al9) constitutes an additional rotation
induced error which must be added to the list considered in the previous
section. The linear acceleration term in Eq. (Al8) will be discussed in the
following section along with other translation induced error sources.

Now, we briefly discuss 8og(w) which arises from the failure to apply the
wideband balance procedure. If the balance is attempted at a single frequency
wy, Eq. (48) must be violated in general. Substituting Egs. (46) into Eq.

(Al7a) and expanding it in a Taylor series, one finds
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2 2
2(w, = w) w, (w, - w7 )
b 22+ Soglup), (A20)

(02 - D) (e - ud)
1C D LC D

5os(w) =

where 6cs(wb) is a residual balance error at wpe Although not essential, a
highly symmetric gradiometer is convenient because Wyo * Wy, and, therefore,
the wideband balance can be achieved with only two persistent currents I, and

I, = I} while keeping 1, =1, = 0.

F. Linear Motions of the Platform

Although several sources of linear motion induced errors have been shown
in the previous sections, it is instructive to combine these effects here.

The linear velocity dependent Coriolis force term has been dropped in Egs.
(95) on the assumption that the proof masses are confined to move along the
linear directions ;l and ;2. A non-vanishing residual compliance in the
directions perpendicular to the sensitive axes would allow the proof masses to
respond to the transverse components of accelerations, thereby contributing to
a velocity dependent error. It is therefore important to design the
suspension spring with high stiffness for all undesired degrees of freedom
while obtaining a very weak spring in a linear direction. We will see in
Paper II how this condition is met in the actual design of the superconducting
gradiometer.

It has been shown in Section B of this Appendix that the modulation of
Earth's gravity by a time~varying displacement error Gz(t) can be ignored
because of the higher order gradients involved. The dominant mechanisms which
convert the linear vibrations of the platform into gradiometer errors are
therefore (1) the sensitive axes misalignment 5;_, which couples the cross
component accelerations, and (2) the scale factor mismatch Gcs(w), which

couples the in-line component acceleration to the gradiometer output.,
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Combining proper terms in Eqs. (A6b) and (Al8), one finds

5g ,(w) = - [6n_ + 8og(w) nl + a(F,0) . (A21)
d,a

The two terms in this equation are related by the condition of the common mode
balance. The balance is obtained in the real instrument by requiring

5g *(wb) = 0 for a given applied acceleration, say, in the z-direction:
d,a

a(?,wb) = a(wb) zZ . (A22)

Substitution of Eq. (A22) iuto Eq. (A21) leads to

n_ + z
ne z

which can be substituted, in turn, into Eq. (A20) to obtain Sog(w). Notice
that, even with a wideband balance, 8dg(w) = Sog(wy,) # O due to the
misalignment of the sensitive axes and the residual balance error dogn. The
impossibility of obtaining a balance with an applied acceleration normal to ;,
or (;1 + 32)/2 to be rigorous, is indicated by the divergence of Eq. (A23),

A ~

which occurs when n *» z = 0,

G. Scale Factor Nonlinearity and Dynamic Range

A nonlinear behavior of accelerometer scale factors arises from departure
of the acceleration response of the mechanical suspension springs from the
linear behavior predicted by Hooke's Law, higher order terms in the modulation
of the pancake coil inductances, L, and Iy, higher order terms in the magnetic

force Fgy» and, finally, nonlinearity in the current-to-voltage traunsfer
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function of the SQUID electronics. In Egqs. (14), we assumed perfect 1linearity
L, &
rigorous because of the grain structure of the pancake coils and edge effects.
The higher order terms in Fpy, which are appareat in Eqs. (23) and (25), have
been ignored in our attempt to linearize the circuit equations. Therefore,
even if the mechanical springs and the SQUID electronics are constructed with
sufficient linearity, the response of each accelerometer will be somewhat non-
linear due to the inevitable higher order response of the electrical circuit.

In analogy to Eqs. (Al7), we define the nonlinearity error coefficients

h (), hyq(w) and h.q(w) by dividing the nonlinearity transfer functions

1SS (w) Hdd(w) and HCd(w) iatroduced in Eq. (101), by Hd (w). Then the equi-
61’ Mai Gi ¥ . ’ gi ¥’ Squis
valent differential acceleration error due to scale factor nonlinearity can be

written as

5gd,N(w) = hcc(w) Gcc((ﬂ) + hdd(w) Gdd(w) + hcd((.t)) ch(w). (A24)

Now, in most practical situations, the gravity terms are small compared to the

platform motion terms in Eqs. (100) so that

Goo(t) = 3 Gol1?, (A25a)
Gaq(t) = 22 [{n » B(e)? - 22(0)12, (A25b)
Gog(t) = 2 e 3 (2,0]0Ha * 32 - ()] (A25¢)

It is clear that the Fourier traunsformation of these nonlinear functions of

dynamic variables will down-convert the wideband platform noise to the

-69-




vicinity of dc, where the gravity gradient signal is to be detected. There-
fore, it is imperative that the vibration and jitter noise of the apparatus be
low-pass filtered before they reach the gradiometer. Detailed analysis of the
nooise down-conversion process will be given in Paper II.

It is difficult to determine the nonlinearity error coefficients analyti-
cally. They can however be measured from the departures of the transfer
functions H;i(w) and Hgi(m) from the linear behavior. In principle, the non-
linearity in the two component accelerometers could also be matched. This
would not, however, reduce all three error coefficients in Eq. (A24) to zero.
A more powerful and practical approach to the problem is the linearization of
the system by means of an electromechanical feedback. A feedback force, which
is equal and opposite to the detected external force, can be applied to each
proof mass so that the total force, the "error signal” for the feedback loop,
is reduced by the inverse of the feedback gain. The reduction of the driving
accelerations limits the actual displacement of each proof mass to a small
amplitude, thereby reducing égd’N(w). The error coefficients h(w)'s have
therefore been effectively reduced. The average and differential feedback
forces are direct measures of gc(t) and g4(t). The gradiometer thus measures
the specific force instead of the resulting displacement. The negative feed-

back comes with another important advantage: increase in the dynamic range of

the device. This so-called “"force rebalance"” feedback has been successfully
applied to conventional inertial navigation instruments [27] and gravity
gradiometers [7], although it is yet to be applied to superconducting gravity
gradiometers.,

One of the parameters responsible for the high sensitivity of the super-
conducting gradiometer is the low damping coefficient of the electromechanical

springs. The low dissipation is necessarily accompanied with high Q
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resonances of the modes which tend to amplify the acceleration noise at the
resonance {requencies. Aun elegani way Lo take care of this probiem is an
active damping method [28] by which the Q's are effectively lowered without
increasing the Brownian motion noise level. The gradiometer response is
narrowband filtered around the resonances, phase shifted by 90°, and fed back
to the proof masses to actively drive down the resonant motions. This "cold

damping” has been successfully demonstrated in superconducting gravity gradio-

meters [13, 14],

H. Nonmechanical Noise of the Eavironment

It has been pointed out in the Introduction that superconductivity can be
used to make a nearly perfect electromagnetic shield. 1In a practical super-
conducting shield with impurifies, the Meissner effect does not exclude the
magnetic field completely, but instead “"freezes" some trapped magnetic field,
thus providing a "perfect" shield against time~varying fields. One can
combine high permeability shields with superconducting shields to attenuate
both dc and ac electromagnetic fields as well as radiatlon very effectively,
Therefore, the electromagnetic susceptibility of the superconducting
gradiometer can be made negligible.

The thermal fluctuations of the enviroument could also be shielded by
immersing the apparatus in superfluid helium, the Bose condensate phase of He4
below 2,17 K. The infinite heat conductivity and the large heat capacity of
the superfluid provides a stable, gradient free, thermal environment. Even
normal fluid helium can provide an excellent thermal environment provided its
vapor pressure 1s regulated. When the attenuation of the temperature fluctua-
tions of the environment is not sufficient, one will have error terms that

couple the temperature noise to the gradiometer output, as shown in Eq. (101).
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The fluctuation in the gradiometer temperature can cause error signals through
its ianteraction with (1) the mechanical part and (2) the superconducting
circuit.

In analogy to Eqs. (40), the temperature modulations of the two accelero-
meters, T;(w) and Ty(w), are expressed in terms of their common and

differential temperatures, Tc(m) and Ta(m):

T, (0) = To(w) = 5 Ta(w), (A26a)

1 :
Tz(w) Tc(w) + 7 Td(w). (A261)
The mechanically coupled temperature-induced error could arise simply from the

thermal expansion of the baseline:
8 - (1) 1y(w), (A27)

where a(T) is the thermal expansion coefficient of the gradiometer body at the
ambient temperature T. However, a(T) is extremely small for solids at liquid
helium temperatures so that the dimensional change 52 (w) is negligible in any
practical situation [l14]. For the same reéson, alignment changes éat(w)
resulting from temperature fluctuations are negligible, demonstrating the

mechanical stability of the cryogenic gravity gradiometer.

There is a more subtle coupling mechanism of the temperature noise
through the mechanical part of the system. It is through the temperature
dependence of Young's modulus E(T) of the mechanical spring [29]. Since the
stiffness of the suspension spring changes as a function of temperature, a

temperature fluctuation will cause a displacement modulation when the spring
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is under stress elther by gravity or by an unbalanced magnetic pressure. This

N /neN\ [~ - - P e e S e - -~ -~
can be seen in EBye. (25) for an accelerometer, Whem n ° BE\T hat

- = - -
oV Liiauw Ao Ead

0, the temperature induced modulation of wﬁ produces a first order effect in
displacement. 1Tt is convenient to move this term to the righthand side of REq.

(25) and define an additional effective driving acceleration:
5gT(t) = - [T + 8T) - w(D)] x (A28)
M M o*

The proportionality of the spring constant mwﬁ to E(T) can be used to rewrite

Eq. (A28) as

1 dE

8g™(t) = - wy(T) x, g I 6TCL). (A29)

Substitution of Eq. (27) into Eq. (A29) and Fourier transformation leads to

L -
gT(w) = [gg cos 6, + = (1 *%iiT‘fli' 1 1] grry 55 T@. (A430)
a

It is clear from this equation that this effect can be eliminated by choosing
1 such that the quantity in the square bracket vanishes; i.e., by compensating
the gravitational force with a magnetic levitation force.

In the actual operation of the gradiometer reported in Paper II, 1 = 0
was chosen so that the magnetic pressure term in Eq. (A30) was negligible.

The temperature effect on the gradiometer can be found then by adding

T 1 dE

gc(w) = gg cos en E-(_T—)- T Tc(w) ’ (A31a)
T 1 dE

Sd(w) = gg cos en 'E—(—T-)— T Td((n) (A31b)
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to gc(w) and gd(w) in Eq. (41). It is assumed here that the two suspension
springs of the proof masses have an identical Young's modulus E(T). The

temperature-induced current output can be written as

T c d
1(w) = Hpy(0) To(w) + Hy, (w) Tg(w), (A32)
where
c c 1 dE
HTi(w) = Hgi(w) gg cos en E—(—TS' 3T ° (A33a)
d | v 1 dE
HTi(w) = Hgi(m) gg cos 0, BT 4t ° (A33b)

Notice that the common temperature fluctuation Tc(w) is balanced out to the

same degree as the common acceleration. For a properly balanced gradiometer,

therefore, this effect is expected to be negligible as long as i = 0.

1

The second effect of the temperature noise, which acts on the supercon-
ducting circuit directly, comes from the temperature dependence of the

"penetration depth” A(T) of the magnetic field in the superconductor:

A (0)
1 - (T/To)

NT) =

4]1/2 , (A34)

where T, 1s the critical temperature for the superconductor. For niobium,
A(0) =5.0 x 1078 m and T, = 9.2 K. The variation of A(Ty) of the proof mass
and pancake coils due to a temperature fluctuation 8T (t) of the k-th

acceleration transducer,
= dA
6K(Tk) = K(Tk + 5Tk) - K(Tk) * 3T 8Ty » (A35)
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modulates the superconducting inductances of Eq. (14) according to

Lea(t) = Ly + ACL +8) 8M(T) + A x (1), (A36a)
Lep(t) = Ly + ACL + £) 8M(T) - A x(t) . (A36b)

Here,
0<t <1 (A37)

is the modulation efficiency of the penetration depth of the pancake coils.
Approximation is made here that the sensing inductances are reasonably well
matched so that distinction of { for each of these coils is not necessary. In
Eqs. (A36), xE(t) is the dynamic displacement produced in self-consistent
response to the current modulations resulting from the temperature-induced
inductance modulations. Given the penetration depth modulations, the dis-
placement response x:(t) and the current respoase ig(t) are solved from the
dynamical equations of the gradiometer. The dynamical equations and their
solutions are modifications of those given in Section III,

Modifying Eqs. (18) and (19), the series and parallel inductances of the

sensing coils Lea and L p now becomes

Lig(£) = Lg + 2 AL + T) BM(Ty), (A38)

2 2

+ -
Lkp(t) = Lkp + EEQE;-EEE,A(I +2) GX(Tk) - EEE___EEE.A XE(
]

Yes

t). (A39)
Flux quantization through the loops Lyg + Iyxp &lves
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2A(1 + ) 6K(Tk)

Lxs

Ik(t) = Ik [1 - ]o (A40)
Substituting Eqs. (A38) - (A40) into the flux quantization condition for the
loops L(t) + L,, which is generalized from Eq. (32), and taking Fourier
transformation, one finds a modified version of Eq. (42):

+ 2L
x (@) + @ (1 +8) AT (w) = 1—“LM—.k—-°- Ll + (DS ;‘;i 17wy, (asD)

where the coefficients ag are defined by

T _ Lka " Lkb
SR

« (A42)

ﬂf‘

e
A

The homogeneous part of Eq. (25) generalized for k = 1, 2 is then solved using

Eqs. (A38) - (A40) again, resulting in

2.2

A A A
9 . 2 I Ile e p
(- 0 + WM + kaks) Xk(w mk i (w) + (- 1) _E; 1c( w)
2
AS(L + 1) 4
= (1 + 1) 5T, (w)), (A43)
™ Ly k

which are identical to Eqs. (41) with the driving gravity signal replaced by
the SA(T,) term on the right hand side.

The relationships between the currents and 8A's are obtained by
eliminating x: from Eqs. (A41) and (A43). The resulting pair of equations are
the same as Eq. (43) on the lefthand side and have equal coefficieats of
i:(w) due to the common mode balance condition of Eq. (48). Therefore, the

i: terms are readily eliminated, yielding
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13(0) = B @)L+ D) g Gy = 0°) SMT,(@)) = apCan, = 67) BA(T, )],
(A4t)
where
2.2 2
A" AL + L) 1
o = ol et
kks e R

The temperature induced output current can now be expressed in the form of Eq.

(A32) with the identification:

H;i(w) Hgi(w) hro(w), (A46a)

By (@) = () hyg(w), (A46Db)

where the temperature error coefficients are obtained from Eqs. (A26), (A35)

and (A44) as

2 a

hpo(w) = [ag(ng -w’) - af(wix - W)+ ) T ° (A47a)

2

Lo-edla ) B (wy)

1 T, 2 2 T
th(w) = 5—[a2(w2x - w7) + al(w

In terms of these error coefficients, the equivalent differential acceleration

error due to temperature sensitivity is

6gq,1(w) = hp (w) T(w) + hyy Tg(w). (A48)

It 1s apparent from Eqs. (A42) and (A47a) that the effect of T (w) is
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partially balanced by the match between pancake coil inductances, Loy and Iyy,
and by the common acceleration balance condition (48), On the other hand,
Td(w) is usually negligible because the good thermal conductivity of the
gradiometer body keeps the entire instrument in thermal equilibrium.

It has been pointed out [18] that an exact common temperature balance
could be achieved by adjusting the fourth persistent current i, with respect
to I;, Iy and i; that are used for the wideband common acceleration balance.
The adjustments are iterated such that both the common acceleration balance
condition (48) and the common temperature balance condition,

2y, (A49)

aT(wz - wz) = aT(w2 -w
2 72\ 1Y
are simultaneous satisfied. 1In practice, it will be easier to couple a
separate superconducting loop, which senses only temperature, to the SQUID and
adjust the persistent current in this loop to obtain the temperature
balance. The advantage of the latter scheme is that the temperature and
acceleration balances can be performed independently.

A slowly varying temperature of the environment, if uncompensated, can be
an important source of a dc drift of the gradiometer. Such a drift, however,
does not produce a random walk of the output, but the error is bounded because
the dc level of the output is locked to the temperature of the gradiometer

which 1s self-regulated to a large exteat by the liquid helium itself,
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PART 2

DEVELOPMENT OF A PROTOTYPE SINGLE-AXIS
SUPERCONDUCTING GRAVITY GRADIOMETER
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SUPERCONDUCTING GRAVITY GRADIOGMETER FOR SENSITIVE GRAVITY MEASUREMENTS :
II. EXPERIMENT*
H.A. Chan, M.V, Moody and H.J. Paik

Department of Physics and Astronomy
University of Maryland, Collge Park, MD 20742

A sensitive superconducting gravity gradiometer has been constructed and
tested. Coupling to gravity signals is obtained by having two superconducting
proof masses modulate magnetic fields produced by persistent currents. The
induced electrical currents are differenced by a passive superconducting
circuit coupled to a SQUID (Superconducting QUantum Interference Device). The
experimental behavior of this device has been shown to follow the theoretical
model closely in both signal transfer and noise characteristics. While its
intrinsic noise level is shown to be 0.07 E Hz~1/2 (1 E=1079 s_z), the
actual performance of the gravity gradiometer on a passive platform has been
limited to 0.3 ~ 0.7 E Hz"1/2 due to its coupling to the environmental noise.
The detailed structure of this excess noise is understood in terms of an
analytical error model of the instrument. The calibration of the gradiometer
has been obtained by two independent methods: by applying a linear accelera-
tion and a gravity signal in two different operational modes of the instru-
ment. This device has been successfully operated as a detector in a new null
experiment for the gravitational inverse square law. In this paper, we report
the design, fabrication and detailed test results of the superconducting
gravity gradiometer. We also present additional theoretical analyses which
predict the specific dynamical behavior of the gradiometer and of the test

platform, and compare the results with experiments.

*Work supported by NASA under contract No. NAS 8-33822.

-83-



I. INTRODUCTION
The Equivalence Principle prohibits distinction of "gravity” from
"acceleration” by a local measurement. The same principle, however, implies

that a sensitive accelerometer, or a gravimeter, can be used as an approximate

detector of gravity in an environment where the platform accelerations are
small., Thus, gravimeters, which measure absolute and relative magnitudes of
the gravitational acceleration vector, usually from a stationary platform,
have been employed as geophysical survey instruments [1]. This method of
measuring gravity can be extended to a moving platform by independently
determining and compensating for the platform accelerations with the aid of a
geodetic navigation device such as the Global Positioning System (GPS)
satellite network [2]. The latter measurement is clearly of a global nature.
An alternative, more direct, approach to a rigorous determination of the

gravitational field is by means of a gravity gradiometer, which measures com-

ponents of the tidal force or the Riemann tensor [3]. Here an almost local

measurement is made by monitoring relative motions of proof masses separated
by a short, but finite, baseline, With the torsion balance as the predeces-
sor, several advanced types of gravity gradiometers have been developed
recently [4].

The superconducting gravity gradiometer, to be discussed in this paper,
has been developed with the primary motivation being to perform precise tests
of gravitational theories in both terrestrial and space laboratories. A pre-
liminary version of a null test of the gravitational inverse square law has
been carried out with this instrument [5]. While the instrument has served as
a prototype for a three-axis superconducting gravity gradiometer [6] which is
under construction, the system has undergone a thorough theoretical and ex-

perimental analysis to test the physics of the instrument. The results could
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easily be adapted to a more complicated device.

In Paper I, a detailed theoretical analysis of the current-differencing
gravity gradiometer was presented. This paper (Paper II) discusses the
design, construction and test results of the actual instrument. These test
results demonstrate that the physical device is described by the theoretical
model in great detail. In addition, we discuss here the principle and
operation of two elegant experimental techniques, which have been applied to
the superconducting gravity gradiometer: (1) accelerometer mode calibration
and (2) vibration isolation by means of pendulum action. Also, the error
model of the ianstrument developed in Paper I is extended and applied here to
the specific instrument configuration chosen. Paper II represents an
extension of the experimental work reported in Ref. 7.

The gravity gradient signal sought for is usually a small fluctuation
over a relatively large background of the Earth's gravity and the seismic
activity of the platform. Therefore, precise mechanical alignment of com-
ponents and extreme stability of scale factors, as well as high sensitivity,
are required for a practical gravity gradiometer. Advantages of a super-
conducting instrument in these regards have been pointed out in Paper I. In
this paper, we show how quantum~mechanical properties of superconductors are
utilized specifically, along with careful mechaniecal design, to meet the
challenge of constructing a highly sensitive gravity gradiometer.

Notations employed in Paper II follow those of Paper I, unless explicitly

stated otherwise.
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II. DESIGN AND FABRICATION OF THE SUPERCONDUCTING GRAVITY GRADI(METER.

A. Gradiometer Hardware

The gradiometer consists of two accelerometers, each with a proof mass, a
suspension structure, and seunsing coils. The suspension structure consists of
mechanical springs which confine the proof mass motion along the desired
direction.

A folded cantilever suspension has been employed to produce a suspension
with a linear spring constant which is weak, in the direction of motion, yet
relatively rigid for other degrees of freedom. This type of suspension was
suggested by Prof. Daniel DeBra at Stanford University and has been employed
in the displacement-differencing gravity gradiometer [8]. The design contains
eight folded cantilevers in an 8m symmetry (to be defined later) to suspend
the proof mass at the center (Fig. 1). Each cantilever consists of three
joined diaphragm strips, of length XS and thickness tg, formed at the bottom
of one radially oriented groove. The "fold” of the cantilever is at the
radially outward ends of the strips. The radially inward ends of the strip

are the ends of the spring. The middle strip of width bg holds the center

1
2

a solid continuation of the outer rim of the suspension. This design allows

moving mass. The other two strips of width bS link to a bulk mass which is

the cantilevers to undergo pure bending without stretching in order to achieve

linearity in the spring constant. There are four folded cantilevers on each
of two parallel planes with 2n/8 rotation plus inversion symmetry (8m
symmetry). Thus, motion of the center mass is linearized along the
cylindrical axis.

The entire suspension structure is machined out of a single piece of

niobium (Nb) in order to insure mechanical precision and to obtain a high
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quality factor of resomance. Eight grooves, four from each side, are first
milled out, leaving a thick diaphragm at their opposite sides. The metal is
then stress-relieved at 800°C. The grooves are then electric-discharge-
machined (EDM) to thicknesses of (0.35 + 0.01) mm. Next, the suspension
structure is chemically polished with a mixture of hydrofluoric acid (HF),
phosphoric acid (H3PO,) and nitric acid (HNO3) in an ultrasonic cleaner.
After the polishing, the Nb is partially recrystalized by annealing in a
vacuum oven at 1100°C. The designed pattern of slots is then cut with a wire
EDM. Finally, the finished proof mass suspension structure is chemically
polished again.

The ceanter moving mass of the suspension is loaded with two mushroom-
shaped Nb masses which screw into opposite ends to form one proof mass. This
added load serves to increase the mass m, lower the suspension frequency fyy,
and provide two superconducting planes which modulate the inductances of the
sensing coils. The mechanical suspension frequency of the proof mass is de-

rived from the formula for a loaded beam and is given by

wfm= (mko)2 -8 8 8 . (1)

Here E; = 1.03x10!! N n3 is the Young's modulus of Nb and ng = 8 1is the

number of springs used. Also, tg = 0.35 mm, &, = 19 mm, by, = 2.5 mm, and m =

s
0.40 kg, giving fiy = 20 Hz.

The sensing inductors are "pancake-shaped” coils wound out of thin (0.076
mm in diameter) Nb wire in a single layer. The coil form is made of machin-
able glass-ceramic, Macor (Corning Glass Works, Corning, New York), whose

thermal expansion coefficient matches closely with that of Nb down to cryo-

genic temperatures. A continuous length of insulated Nb wire is wound uni-
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formly on the flat coil form in a spiral shape. Low viscosity, transparent,
TRA-CON, Ine., Medford, Massachusetts) is used to bond
the Nb wire. The coil winding procedure used here is a modification of that
described in Ref, 9,

Two such pancake coils are located next to the two plane surfaces of the
proof mass in each accelerometer. To a high accuracy, the inductance for each

pancaké coil,

L(t) = pg 03 A [d+ x(D)] (2)

changes linearly according to its average spacing from the superconducting
ground plane, and is insensitive to any rocking or transverse modes of the
proof mass., The coil forms are mounted rigidly on Nb holders using Nb screws
and GE 7031 varnish. The two Nb holders are mounted rigidly to the outer rim
of the proof mass suspension using titanium (Ti) screws to form a shielded
accelerometer., Ti 1is closely matched in thermal expansion coefficient with
Nb. The spacing between the coil and the proof mass is adjusted by adding Nb
spacers cut out of Nb sheet. Parallelism between the coil and proof mass
surface is desirable to allow the use of a small spacing between them.

Two accelerometers are mounted on the opposite faces of a precision Ti
(TL V4 AR6 alloy) cube to form a single—axis gradiometer (see Fig. 2). The
surfaces of the cube have parallelism and orthogonality within 50 ppm. The
same degree of parallelism is kept for the mating surfaées of all the gradio-
meter parts., The Ti material at the center cube is countinued down to an
aluminum-to-titanium joint. An aluminum (Al) base is tight fitted onto the Ti
at room temperature, Differential countraction tightens the joint further as

the assembly is cooled down. A similar joint is made at the upper end. The
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baseline of the gradiometer, which is defined by the distance between the
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For most of the tests reported in this paper, one triagonal axis of the
mounting cube is aligned with the vertical, as 1s shown in Fig. 2, so that the
sensitive axis of the gradiometer is tilted by an angle

9, = tan”! /T (3)

from the vertical., This "umbrella orientation” has the advantage of allowing
measurements in three orthogonal directions to be made by rotating the gradio-
meter around the vertical axis by 120° increments. The fact that the large dc
gravity bias is matched along the sensitive axes is an important scientific
reason to prefer this orientation when a careful three—axis measurement is
called for. The above procedure has therefore been used for the null test of
the gravitational inverse square law [5], which will be discussed in Section

VI.

B. Superconducting Circuitry

The superconducting clircuit for the gradiometer is shown in Fig 3. Ligs
L1y, and Lyas Loy are pancake coil inductors for the two proof masses, m; and
m), respectively. S1as Sips Soas Sgp and S; are curreat leads from the
current supply outside the cryostat. H;, H5, Hy, and Hyg are shielded heat-
switch resistors. When currents are sent through these resistors, appropriate
sections of the superconducting path are switched into their normal state.
R;s and Ryg represent extremely low resistance current paths (3XI0_9 Q. Ly
is the input 1inductor of the SQUID amplifier. L1 and Lyy are, respectively,

the primary and secondary of a high coupling transformer.
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The curreant I; can be stored in L, + Lip by turning H; on and then off
while the current is sent across S;, and Sipe The inductance L;, + L} can be
determined by measuring the flux trapped in it after a known current has been
stored. The flux is measured by the time integral of the voltage decay across
the leads S;, and Sy, as H; is turned on. This method has been described in
Ref. 9. There is also a heat—-switch, Hg, between Lyy and L; that will be
turne& on in all operations involving curreant changes. This heat-switch
serves to protect the Josephson junction of the SQUID ring against any surge
current induced in the input coil L;. The currents I, and I, in the two
sensing loops can be fine tuned by letting the stored flux leak very slowly
across an ultra low resistance path after a section of the superconducting
path has been turned normal. If the heat-switch Hys 1s turned on, the current
I in 1y, + Lyp, will decay across Rys with a decay time 1t = (Lp, + L2b)/R25 =
3 x 104 s, which is extremely long. This current will rise or decay even more
slowly if a second current, slightly greater or smaller than I,, is being sent
across the leads S;, and Spy while Hypg is kept on. An additional current iy
can be added in the loop formed by a parallel combination LLa//le and Ly (see
Fig. 3 of Paper I) by turning both Hys and Hyg on and then off while a curreant
is sent across S1 and either Sja or Syp. The decay of I, and I, during the
time required to store 1, is negligible because of the long decay time t. The
directions of these persistent currents are as defined in Fig. 3 of Paper I.

The superconducting circuit is shielded inside Nb., The outer surfaces of
the Nb holders for sensing coils are shielded with additional Nb covers to
form junction boxes. Circuit components such as superconducting joints, a
superconducting transformer, shielded heat-switches and ultra low-value
resistors are mounted in these junction boxes.

The superconducting joints and transformers are similar to those used in
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References 9 and 10. A pair of Nb lead wires to be joined are twisted
together, wrapped around a brass screw, sandwiched between two Nb sheets, and
clamped together under a brass washer. They are clamped hard by tightening
the brass screw into a plece of insulated brass block., The Nb wires are
chemically cleaned with concentrated HNO4 before they are joined. Flatness
and parallelism of the brass block surface relative to the screw head surface
is found helpful for making very tight joints without breaking the thin Nb
wires. A fresh section of the lead wire is used to make the joint. Joints
made this way consistently have critical currents in excess of 3 A through
several thermal cycles [l11]. The transformer makes use of a Nb sheet to guide
the magnetic field through the primary and secondary coils.

Shielded heat-switches are made with a small cyliundrical Nb cup which
shields the superconducting circuit from the noise of the heater resistor.
The heater element is a small 500 Q Allen-Bradley resistor which is glued with
GE 7031 varnish inside the Nb cup. Shielding from the resistor is continued
with superconducting lead-tin (PbSn) tubing which starts from inside the Nb
cup to enclose the lead wires of the heater. The sections of Nb wire to be
affected by the heat-switch are wound non-inductively on the outside surface
of the Nb cup and are glued with the GE varniéh. The cup is then glued on a
piece of fiberglass which is held rigidly inside the junction box. The Nb
wires from the heat-switches are heat-sunk to the Nb mass of the junction box.

The shielding of the heat-switches provides significant improvement in
preventing electrical pickup and rf interference at the input of the SQUID
amplifier. The shielding has a drawback, though, in possessing a higher heat
capacity which prolongs the response time of the heat-switch. By making the
heat—switch compact, we managed to obtain an on/off response time of about 0.2

s with 4 mW supplied to the heater.
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The ultra low-resistance heat-switch makes use of the radial conduction
across a very thin cyiindrical walli of copper. We simply solder iwo leungihs
of copper-clad Nb wires together with PbSn solder. The copper coating gives
extremely low resistance between the superconducting PbSn on its outside wall
and the Nb wire inside. The resistance between the two Nb wires comes from
two such resistors connected in series. This resistance is given by the

formulé:

pcu(4.2 K) oy
8§ T m X in r * (4)
Cu Nb

We used Nb wire of diameter 2ry, = 0.128 mm with copper coating which gives an
overall diameter of 2rp, = 0.166 mm. The resistivity of copper at 4.2 K is
Oy = 1072 Q m. Therefore, when a wire of length L5, = 10 mm is used, we
obtain Rg = 10"8 Q. This resistance has been verified in a decay time
measurement of magnetic flux. The other two ends of the copper-clad Nb wires
have their copper layer removed with concentrated HNO3 so that superconducting
joints can be made there. 1In the rest of the superconducting circuit, Nb
wires without copper coating are used to avoid ac losses due to eddy currents
9.

In the original circuit used for tests, an additional SQUID was coupled
to the superconducting circuit to measure the common acceleration simul-
taneously. Two identical superconducting transformers were inserted into the
paths that connect the two sensing loops to Ly (A and B in Fig. 3), with one
on each accelerometer side. The primaries of these transformers completed the
gradiometer circuit. Their secondaries were connected in series with the in-
put coll of the second SQUID. The current induced in this loop was propor-

tional to the sum of the signal currents from the two accelerometers, per-
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mitting a simultaneous readout of the common acceleration in the "gradiometer
mode”. Although such a readout is useful for error compensation and active
vibration isolation [12], we have omitted, for simplicity, this additional

circuit in the later tests in favor of the basic circuit shown in Fig. 3.
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III. CONSTRUCTION AND PERFORMANCE (F TEST APPARATUS

A. Mechanical and Thermal Design of Experimental Space

The superconducting gravity gradiometer is operated in a very quiet cryo-
genic vacuum space with a stable temperature. A low boil-off liquid helium
(He) dewar was designed and constructed with great care. Radiation shields
with superinsulation are used in preference to a liquid nitrogen (Nz) shield,
because boiling liquid N, is a much noisier source of vibration than boiling
liquid He. Pressure pads are sandwiched near the bottom of the dewar between
the fiberglass inner tube and the sturdy outer Al wall, The relatively weak
laner tube 1is then damped against swinging motions. The inside dimensions of
the dewar are 0.378 m in diameter and 1.778 m in height,

A low heat-leak insert has been constructed to complement the dewar. An
Al vacuum can is supported by three equally spaced fiberglass tubes and one
center fiberglass tube which permits access to the vacuum space from the dewar
top., The vacuum space is 0.33 m in diameter by 0.61 m in height. The can
remains totally submerged for one week with 60 liters of liquid He. A long
hold-time of He is needed for an uninterrupted operation of sensitive
measurements. The low boil-off rate is also important for lower boiling noise
from the He and for lower thermal drift of the experiment,

For most of the experiment, the gradiometer assembly was suspended inside
vacuum by means of a fiberglass rod from the room temperature end of the dewar
insert. All the lead wires are heat-sunk in liquid He before they enter thé
vacuum space through specially made feedthroughs. In this setup, long term
temperature variations of the gradiometer assembly over many weeks average
about 10 wK, In a time scale of several hours, the temperature variations are

within the 2 mK resolution of a germanium (Ge) resistance thermometer mounted
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on the gradiometer. The heat capacity of the gradiometer and the weak thermal
coupling to the He bath form a low-pass filter for the temperature fluctua-
tions between the gradiometer and the He bath. The response time is estimated

to be on the order of minutes.

B. Electromagnetic Shielding

External magnetic field fluctuations and electrical pickup can produce a ;
high noise level in comparison with the very weak gravitational force. Rf ‘
interference will also deteriorate the noise performance of the rf SQUID and }
can unlock the SQUID feedback loop. The first stage of magnetic field isola- J
tion is provided by a double wall mu-metal shield which surrounds the cryo- |
stat., Two additional superconducting stages of magnetic shielding are pro-
vided by a 1 um lead (Pb) film evaporated on the inner wall of the vacuum can,
and by the Nb body of the gradiometer itself. Also, the Al walls of the dewar
and the vacuum can aid in shielding high frequency electromagnetic radiation.

The success of the electromagnetic shielding is evidenced by the achieve- |
ment of the optimum SQUID amplifier noise when the SQUID input 1s coupled to
the gradiometer at full sensitivity. The magnetic shielding has also been
tested when the gradiometer is balanced. A magnet producting 600 Gauss being
flipped just outside the dewar produced a response less than an equivalent
flux change of 2x1073 &  or 4x107!® Wb at the SQUID inmput.

Each current lead for storing a supercurrent has an inductive choke
inside the vacuum can. The choke is a high-impedance path to attenuate the
electrical noise that the wire can pick up outside the Pb shield and
especially outside the dewar. The other leads pass through two stages of rf
filters, one inside the Pb shield and the other outside it., The outside one

is an RC low-pass filter with the manganin wire down the dewar providing the

-98-—-




resistance and the inside one 1s a capacitor in parallel with the load.

C. Vibration Isolation

Vibration proved to be the most troublesome source of noise. The test of
the gradiometer has therefore been conducted in a deep underground laboratory,
which is secluded from the traffic of people. The most critical noise data
have been obtained in the evenings to minimize the mechanical and electrical
disturbance of the experiment. In spite of these precautions, the gradiometer
required careful mechanical isolation from the environment.

The vibration isolation system consists of a three stage low-pass filter
schematically shown in Fig. 4. The gradiometer assembly is suspended by a
fiberglass rod and a length of latex rubber tubing in vacuum which form the
first stage of vibration isolation. The vacuum is extended above the top of
the dewar insert by means of a thick-wall plexiglass tube. The rubber tubing
laside this plexiglass tube hangs from a connecting rod which is attached to a
massive brass plate that seals with the plexiglass at the top. The height of
the connecting rod can be adjusted from outside the vacuum so that the gradio-
meter can be lowered to the bottom of the vacuum can to short out the filter.
When the gradiometer is suspended by the rubber tubing, the vertical resonance
frequency is 0,9 Hz.

The fiberglass and rubber also give wideband isolation from tilt noise.

The gradiometer suspended by a long fiberglass rod comstitutes a peudulum. A
natural property of a pendulum is its tendency to align itself along the
direction of gravity. The gradiometer is therefore decoupled from a crucial
error source: the ground tilt, which would cause an error signal due to
modulation of Earth's gravity for a hard-mounted gradiometer.

Another important property of the pendulum is that the mass at the end of
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the rod is under a two-dimensional "free fall" in the horizontal plane. An
accelerometer iouated on the peudulum bob therefore cannot experience any
horizontal acceleration relative to the platform to the first order. A
gravity gradiometer can, however, couple to the angular velocity and the
angular acceleration which result from the pendulum response to the horizontal
acceleration (see Section V and Appendix A for detailed discussions of the
pendulum action)., The net effect of the pendulum action for the horizontal

vibration is that of a low-frequency filter, in series with a wideband

attenuator.

Additional resonant modes of the suspension structure can deteriorate
vibration isolation at the resonance peaks., In spite of these limitations, we
have chosen the pendulum suspension for the gradiometer because of its isola-
tion characteristic for low frequency horizontal acceleration and its simpli-
city in construction. The pendulum frequency (swinging mode) is approximately
0.3 Hz and the rubber tubing gives a torsional mode at 0.08 Hz. In addition,
the massive gradiometer suspended by the long and therefore bendable fiber-
glass rod gave a troublesome high—Q peak at 2.5 Hz. This peak was the result
of a rocking mode of the gradiometer assembly around a horizontal axis.

The massive brass top of the plexiglass column is suspended with a set of
rubber tubings. The bottom of the plexiglass column is connected to the top
of the dewar insert by a flexible vacuum bellows. The rubber tubing and this
bellows form the second stage of the filter with a vertical resonance fre-
quency of 2.8 Hz. This filter can be shorted out by connecting clamps across
the bellows.

The third stage of the filter is fo:med by three sets of rubber tubings
that 1lift the dewar off the floor. The dewar is suspended from a framework by

these rubber tubings and has a vertical resonance frequency of 0.5 Hz and a
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swinging frequency of 0.3 Hz. The upper joints of the rubber tubings in this
suspension are adjustable so that the dewar can be levelled. Again, this
filter can be eliminated by loweriang the dewar to the cart.

The advantages of using latex tubing as a passive filter are its high
elasticity and low Q. A latex tubing of initial length L4 can be extended to
a final length % which is a few times i+ The cross—-sectional area will
decrease from Ay to Ag = Ai(lillf) in order to keep the volume constant. We
assume that the modulus of elasticity is approximately constant even with such
large extension. One can easily show then that the vertical resonance
frequency 1s

1
f——z-i(————— (5)

2. - li

g L
E )1/2 (}%91/2 ,
f f

where ¢ is the new length determined by gravity gg acting on the load. The
factor (li/lf)l/z corrects for a change in the cross-sectional area as the
rubber elongates., By having large éxtension L¢ = %4, a low resonance fre-
quency is obtained. The low Q provides self damping of the own resonance of
the filter. Our latex tubing suspending the gradiometer in vacuum has Q = 10.

The disadvantages of rubber are in relaxation and drift which worsen as
the latex extends. A compromise is to keep L¢  2%;. We used ¢ = 1.6 24 for
the rubber inside vacuum. Over a period of three months under load, it

stretched by an additional 3 cm.
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IV. GRADIMMETER PARAMETER MEASUREMENTS AND CIRCUIT QPTIMIZATION

A.  Determination of Geometric Asymmetry

The main asymmetries between the two component accelerometers in a
gradiometer come from the spacings of the sensing coils and mechanical spring
constants. A high degree of matching for these parameters was not attempted
because the mismatch can be compensated for by supercurreuts. As can be shown
from Section III of Paper I, the low frequency common mode balance condition

in the small stored current limit with only two currents I, and I, reduces to

2
Lyp/ /Ly, Wy L

2 T ¢ (6)
Lip/ /Ly, @iy 1

The currents I, and I, can therefore be adjusted to compensate for the
mechanical asymmetry, and the ratio 12/I1 thus obtained measures the original
asymmetry before it was balanced. We shall determine the ratios on both sides
of Eq. (6) to check against the theory. This check will also indicate how
good a "symmetric component-accelerometer approximation” is. Such an approxi-
mation shall often be used later for simplicity.

The parameters measured in a particular cool-down are summarized in Table
1. The uncoupled mechanical frequencies of the proof masses were measured at
4.2 K with the gradiometer assembly firmly attached to an effectively infinite
mass platform. This platform is simply the dewar and the ground. We have
measured ng/wa = 0.92, and the mass ratio mz/ml is estimated to be close to
unity. Therefore, the ratio of the measured mechanical frequencies reflects
the mismatch in the spring counstants for the two proof masses.

The experimental values of the various inductances shown in the circuit

diagram of Fig. 3 can be measured only when the system becomes superconduc-
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Parameter Symbol Value

Mass of each proof mass e 0.40 kg
Mass of gradiometer assembly M 7.7 kg
Mass ratio my /M 0.052
Mechanical proof mass frequency EkM 19 Hz
Mechanical spring constant ratio ng/w%M 0.92
Gradiometer Baseline 7 2 0.16 m
Pancake coil area A, 2019 mm2
Pancake coil wire demnsity np 11 mm~!
Inductance per spacing A= g ni AL 0.306 H m™ 1
Coil-to-proof-mass spacing EL 0.14 mm
Inductance of one coil L 42 pH
L,, - L
Measured coil spacing le T Lla 0.15
1b la
agsymmetries L2b - LZa
ir——:fi;;— 0.34
2b a
L,, //
Sensing loop asymmetry 132—77—;&3 0.91
1b la
2
L,, // L, w
Geometric asymmetry factor L2b 77 L2a gM 0.83
1b la I

Table 1. Experimental parameters of the gravity gradiometer
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ting. The method of stored flux measurement described in Section IIB was em-

ployed to measure varione loop inductances. The measured series inductances
Lip + Ly, and Ly + Ly, agree with the inductances calculated from Eq. (2).

In order to measure the individual inductances or the parallel inductance

Lka//Lkb’ we used an acceleration-response method to measure the ratios

le/Lla and L2b/L2a' This method does not require knowledge of the behavior
of Ly. A very small stored current is used so that negligible shifts are pro-
duced in the equilibrium position of the proof mass and in the proof mass
resonance frequency. When a current is stored on only one side, say on side

one, the accelerometer sensitivity is proportional to the effective current:

S Ml U b Ta That J
1 1 L + L 1 L + L ’
1b la

as can be seen from Eqs. (34) and (46a) of Paper I. The accelerometer sensi-
tivity is first measured with Ila =1, L= 0; and is then remeasured with
I,, =0, Ijp = I, The ratio of these two sensitivities is le/Lla by Eq.
(7). The asymmetry factors (Ljy = L1,)/(Ljy + Ly,) and (Loy = Ly,)/(Loy +
L2a) are then found to be 0,15 and 0.34, respectively, and the ratio of

Lyp/ /Ly, to Lip//L, is 0.91. The geometric asymmetry factor can now be

calculated as

2
Lyp/ /Ly Woy

)
Lip//ly, iy

= 0,83 .

The supercurrent ratio, —12/11, required to compensate for this asymmetry is
found to be 0.84, so that the two measurements are in agreement within the

errors.
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B. Accelerometer Mode and Gradiometer Mode

In the gradiometer mode, the supercurrents are stored such that only

differential accelerations at the two component accelerometers will produce
signals. A common acceleration is "current-differenced” out before detection.
If the relative polarity between the supercurrents at the two component
accelerometers are reversed, the differential acceleration signals will then
be current-differenced out. The gradiometer is, thus, activated in a "common

accelerometer mode”. Being an identical electromechanical system, the

accelerometer mode has the same characteristics toward common accelerations as
the gradiometer mode has toward differential accelerations.

In the experiment, the application of a pure acceleration is much easier
than that of an acceleration gradient, Interchangeability of the roles
between common and differential accelerations therefore provides us with an
alternate method to evaluate and calibrate the gradiometer. Thié method 1is
highly sensitive because a known acceleration can be applied with a much
higher amplitude than a gravity gradient,

In each mode of circuit operation, the two coupled component accelero-

meters have two degrees of freedom and will have two normal modes of motion.
The two proof masses move with the same phase in one mode at a frequency w,
and with opposite phases in the other mode at a frequency w_. These normal
mode frequencies and Q's can be measured experimentally and provide informa-
tion on the gradiometer parameters. We will first show how they are related
to the gradiometer parameters. .
The equations of motion and their constraints have been given in Egs.

(41) and (42) of Paper I. Strictly speaking, the normal mode frequencies wy.
and w_ are obtained as eigenfrequencies of these equations. This can be done

by first eliminating the current coordinates id(w) and ic(w). For free
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oscillations, i.e., when gd(w) = gc(w) = 0, the dynamical equations become

(o + [ 1] x4 (w0 B2k =0 ,(8a)
M 2,2 1 am” 2 %
A°T A“I!T
1 . 172
L, m (L,+L, dm
(-w2+w2 )--—O—lx +(-u)2+oo2 )[-——0——2-2—2—+ 1] x, = 0 ,(8b)
w2 % M T2 2 2
A“1iLS A1

where fhe frequency dependence of x; and x, have been omitted for simplicity.
The resulting eigenfrequencies are given in Ref. 10. We shall obtain approxi-
mate solutions in simpler forms to illustrate the physics.

The two component accelerometers in our gradiometer are partially matched

geometrically. We use the symmetric component-accelerometer approximation:

m o=m , (9a)
Wiy = WM » (9b)
Lig = Ing » (10a)
Lip = Loy « (10b)

In this case, a wideband balance could be achieved without introducing 1, and

ip. If we now take I, = -I, in the gradiometer mode, the eigenfrequencies are

just given by

Wy = Wy = Wy (11a)

w_ = wld = U)Zd ’ (llb)
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to the leading term in the above approximation. 1In the accelerometer mode in

which I, = Iy, the frequencies are reversed:

LO+ = (Dld = O)Zd ) (lZa)

W_ = W], = Wyo o (12b)

The frequencies Wy e and w4 are effective frequencies for the
"complementary” current (i.) and "additive" current (ig) modes, as is
evidenced from their definitions in Eq. (43) of Paper I, and are theoretical
parameters for describing the operation of the gradiometer, The normal mode

frequencies of motion, w, and w_., on the other hand, are physically measurable

quantities that provide us with approximate values of w,, and w.4.

When the gradiometer assembly 1s suspended by a weak spring.system of a
low resonance frequency Q, the gradiometer platform has a finite mass M and
will couple with the pair of masses. The three frequencies, Q, w,, and w_,
will all be shifted, and the equations of motion are modified. If we denote
the platform position by X and measure the proof mass coordinates relative to

it, the kinetic energy of the system is

1 2 ° . 2 o . 2
T 5 MX© + ml(X + xl) + mZ(X + XZ) ], (13)
and the potential energy V has an additional term %-MQZXZ. The linearized

equations of motion, Eq. (37) of Paper I, are then modified into

—wz [(M + ml + mz)X + m; X + m2x2] + MQZX =0 , (143)

-108-




r%12
2 ' 1
—wzml(X + Xl) + ml(wlM + oL ‘ xl + AIi il(w) =0 > (lab)
171s
2 2 Azig
- mZ(X + Xz) + mz(LOZM + msz ) XZ - AIé 12((1)) =0 , (14C)
s

These equations are subject to the constraints given by Eq. (38) of Paper I.

We again make the approximation of Eqs. (9) and (10), along with i; = i,

= 0. In the gradiometer mode (I; = -I,), the eigeunfrequency of the "out-of-
phase mode” (xl = ~x5) of motion is unchanged:
2 _ 2 .
Wo = Wpq 3 (15a)

whereas, the "in-phase mode” (xl = xz) eigenfrequency is shifted to

2
2 e, 2
W = (1 + =) o . (15b)

Here we have made an approximation based on wiM > Q2. 1In the accelerometer

mode (I; = I,), we find

2 2
Wy = W s (16a)
2
2 e, 2
wA+ (1 + m ) wkd . (16b)

The parameters mz and w2 are functions of Ii:

ke kd
2212
¢ kakp
2 2 ht T,
. = + (17b)

W, ’
kd kM mk(Lkp + 2L0)
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as obtained from Eqs. (44) of Paper I.

The shifted frequencies, fo-» fo+s fp- and fo+, measured as functions of

I,, are presente n ge o e intercepts to = are given
. d in Fig. 5. The 1 2 2 0 are given by

2 2 2

£2_(0) = £2_(0) = £, , (18a)
£2 (0) = £2.(0) = (1 o e Ky g2 (18b)
G+ T A+ - M kM °

Taking the ratio of the two intercepts enables a measurement of the mass
ratio. We obtain mk/M = 0,052 + 0,006, which is in agreement with the value

given in Table 1,

2 2

A+ (.I)G_, wG‘l‘ versus Ii are

The slopes of the graphs for wi_, w

_Ai » (1% 2:k> (AZ 2Ly (A2+z y > (A —2!:1[() A o
nL, m (#2021 ™ hep
respectively. From these, we obtain an inductance ratio:
2
2o ssrous. (20)

"kp

This result indicates that the output impedance has been chosen sufficiently
large. Using the value of A = 0.306 H m™! calculated from Eq. (15) of Paper
I, we find Ikp = 23 pH, which is cqnsistent with inductance values in Table
1. Also, we obtain Iy = 18 pH., Consistency in the measurements indicate that
the symmetric component accelerometer approximation is sufficiently good for
diagnostic purposes.

The output inductance Ly is the equivalent inductance at the transformer

primary when the secondary is loaded by the SQUID input of approximately 2 pH.
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The transformer has a turns ratio of 69:19 with calculated inductances of 42
pH and 3.2 pH, respectively, to a 20 % accuracy. Ly can then be calculated
from Eq. (75) of Paper I, and would have the above measured value of 18 pH if

we take the transformer coupling factor to be ki = 0,93. However, the power

II_6.51 +0.10,

transfer function of the transformer would then only be H;’
as one can see from Eq. (76) of Paper I. The transformer has not been
optimized in the past assembly, but this is not a problem until one reaches

the amplifier-limited sensitivity. The resultling value of the effective

electrical energy coupling to the SQUID is nn = 0.31.

C. Circuit Optimization and Trausfer Functions

Equation (53) of Paper I shows that the gradiometer transfer function,
Hgi(m), of an equivalent accelerometer is proportional to I'/winin the low
signal-frequency limit. In the symmetric component-accelerometer mode, Wo is
identified with Wi *

In Fig. 6, we plot a measured curve of |Ik|/f§ versus IIkl to indicate
the functional dependence of the differential—-acceleration-to-response~current

transfer function on the stored current 'Ikl’ This plot shows that the

gradiometer sensitivity first increases as IIkI is increased from 0, and then

slows down due to an increase in f_ caused by an increasing |Ik . The gradio-

meter is expected to reach its maximum sensitivity when fi = 2f§M at |Ik| = 2

A. However, this maximum is very smooth so that a smaller current can be used
without a substantial reduction in seasitivity.

If the gradiometer sensitivity is SQUID noise limited, optimizing the
above transfer function yilelds a maximum signal-to-noise ratio for the gradio-

meter. However, if the sensitivity is limited by the Brownian motion noise,
1/2

one would have to maximize the function Q |Ik|/f§ instead, where Q_ is the
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quality factor of the out-of-phase mode: f; = f

o.
In Section III of Paper I, we used the response current in Ly to define

transfer functions in harmony with the model of a reduced equivalent accelero-

meter, Here we prefer using the response cutrrent at the SQUID input Li, a

quantity which can be directly calibrated using the SQUID transfer function.

The in—-phase mode of motion has the following parameters:

X, + X
2 1

In the calibration experiment, a common acceleration is provided by applying a
sinusoidal displacement X(w) to the gradiometer assembly. 1In this case, Egs.

(14) can be solved to obtain

Hi

(-u? + ) % (w) = uPX(w) = g (W), (23)

This acceleration produces a response curreant 1+(w) which is proportional to

X9 + x| = 2x,. The displacement-to-current transfer function is

i+(w) 21+

x, (w) - (x2 + xl)+ '

A -
Hxi(w) = (24)

At a low frequency w << Wo s the acceleration—-to-current transfer function is

i
)=+ =2+ (25)

The parameters for the out-of-phase motion are
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’ (26)

X_ = Xp < X| . (27)

Notice that m_ is the effective mass m of the gradiometer defined in Section

ITIE of Paper I. 1In the gradiometer mode, a differential acceleration gd(w)

produces a differential proof mass displacement x_ with

2 4 mi) x_(w) = g4q(w). (28)

(~w
The response current i_(w) is proportiomal to just X9 — X} = X_. The dis-
placemént—to-current transfer function is therefore

e 1i_(w) i
Hxi(w) =

The gravity-gradient-to-current transfer function for w << W, is

i_(w)

I'(w)

G R
B, (@) = = —, (30)
w
o
where & is the baseline and I'(w) = g4(w)/%.
If the same magnitudes of stored curreats are used in the two modes of
circuit operation, the following equality is obeyed by the two equivalent

circuits:

i_ i,

Gy = %) 5y # X,

31)

The transfer functions in the two circult modes are therefore related by
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My () = 3 HY () (32)

This simple relationship follows because Eqs. (25) and (30) contain the same
resonance frequency w,, as is expected from Eqs. (11b) and (12a).

The function Hgi(w) is measured by applying a sinusoidal acceleration
go(w) = wZX(w) to the gradiometer assembly at w below 1 Hz. The response
current is measured with the SQUID amplifier which has a current-to-voltage
transfer function of 0.20 V uA-l. The acceleration is applied to the gradio-
meter in the vibration isolation system described in Section IIIC. An
electromagnetic shaker is coupled with a weak latex tubing from one side to
the other of a vibration isolation stage (see Fig. 4) to provide a vertical
acceleration to the gradiometer, The weak tubing acts as an attenuator,
permitting a good signal-to-noise ratio without degrading the vibration
isolation. The platform acceleration produced by the shaker has been
calibrated by measuring its displacement and later confirmed with a commercial
accelerometer.

Figure 7 shows the calibration of the accelerometer mode measured in
terms of the current response i, at the SQUID input as a function of the
applied acceleration 8.+ Very small stored currents are used because of the
extremely high sensitivity of the accelerometer. From the graph, we obtain a
transfer function of (1.55 + 0.05) mA per m s72 for the accelerometer with
only I, = 1 mA stored on each side. The transfer function should be linear
with the stored currents for low current values. that produce negligible shifts
of proof mass frequencies. This linearity is confirmed by Fig. 8, which is a
plot of the measured acceleration-to—curreant transfer function as a function
of Ij.

At high currents, the calibration curve in Fig. 7, which takes into

-116-




@
O

(o))

O
|
l

N

O
|
]

ACCELEROMETER CURRENT
OUTPUT, i{{uA)
H
O
|
|

0 I ! ! 1
O 0 20 30 40 &0

APPLIED ACCELERATION, g¢ (mms?)

Fig. 7. Calibration in the accelerometer mode with 1 mA stored currents.

-117-




14
s 430 —
Z0
x P25 =
&
L £20} -
W =
Z a5 -
3
<5 | —
0510
P
£ SO9 i
EE ts | | | |
w =00
450 5 10 5 20 25
3 STORED CURRENT, I,(mA)
<
Fig. 8; Sensitivity scaling in the accelerometer mode as a function of the

stored current.

-118-




meagurements. We than obtain
HA (w) = 1+(w) = (1.6 £ 0,1) A (m s_z)_1 (25")
gi g.(w) )

for a near optimum current value of I, = 1.5 A. Converting this value to the

transfer function in the gradiometer mode, we have

1 (w)
HS, () = T g.20m L84 . (0.13+0.01) nael, (320

1ms

The SQUID amplifier noise, when loaded with the fully charged gradio-
meter, was measured to be SII/Z(f) = 8.9 pA Hz—l/z, which corresponds to E,(f)

= 7,9x10729 j yz~1/2 for Ly = 2 pH, at a high frequency (> 60 Hz) where the
praof mase dienlacement naice hercamac negligibla_ Thic noiece laval wranld
correspond to an amplifier-limited gravity gradient noise of 0.069 E Hz-l/z.
This value is in close agreement with the theoretical sensitivity of 0.068 E
Hz_l/2 which is obtained by directly substituting the measured SQUID noise and
the measured values of = 0.31 and B = 0.53 into Eq. (79) of Paper I. In our
tests, the gradiometer noise at low frequencies was limited by seismic noise
at 0.3 ~ 0.7 E Hz'l/2 level. Therefore, we would not lose sensitivity by
using a somewhat smaller gain. Stored currents of 0,55 A were used in the
tests reported in Section VI, The transfer function deduced from the
accelerometer mode calibration gives 62 pA El at this current level, 1In

Section VIA, we will check this value with the direct calibration of the

gradiometer which employs gravity gradient signals.
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V. INVESTIGATION OF INSTRUMENT NOISE AND ERRORS

A. Environmental Noise and Common Mode Balance

Vibrations were found to be the most serious environmental noise. Our
early tests with the gradiometer rigidly mounted inside a liquid N, shielded
He dewar have encountered a vibration noise energy of 10"8 J at the proof mass
resonance frequency of 19 Hz. Such a noise level correspoands to an equivalent
Brownian motion at a noise temperature of 7 x 1014 K, which is 107 times the 4
K Brownian motion in vibration amplitude!

When the gradiometer is balanced against common accelerations, its
response to the vibration noise is greatly reduced. In the experiment,
however, the gradiometer can be balanced only if we can use its acceleration
response as a guide. Sufficient vibration isolation to achieve a noise level
of the unbalanced gradiometer well within the amplifier dynamic range is
therefore essential. A minimum of 60 dB isolation is required at the proof
mass resonance frequencies in ordef to be able to operate at the full
sengitivity of the accelerometers.

If vibrations have a white acceleration spectrum, the low frequency nolse
will be Q times less than that at the proof mass resonances; thus, this noise
will not overload the amplifier. Therefore, we chose to start with vibration
isolation at higher frequencies where the SQUID amplifier was being over-
loaded. This isolation would enable us to balance the accelerations and
obtain a working gradiometer,

If the proof mass acceleration noise amplitude can be reduced by four
orders of wmagnitude, one will be able to observe the actual Brownian motion at
the resonances in a gradiometer with a 60 dB balance. Although such an obser-—

vation may not improve the acceleration noise at the low frequency end, it
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could prove to be very informative. This observation would determine the
BRrownfan motion level of the instrument, and show whether the observed
acceleration nolse comes from the environment or from the intrinsic noise of
the instrument.

Although an electronic "cold dampilag” technique [8,10] could have been
applied to selectively filter the vibration noise at the proof mass
resonaﬁces, there were other modes in the eaviroument which require wideband
isolation. Therefore, we chose to develop a passive vibration isolation
system with which the gradiometer can be tested in its simplest form,
Satisfactory vibration isolation of the gradiometer was an essential step in
leading to a successful demonstration of its performance and the operation of
the device as a detector in the inverse square law experiment [7,5]. Various
combinations of low-pass vibration filters were tried to isolate the noise
coming from the ground and the dewar. Filters were improved in steps with the
guidance of vibration data obtained in each step.

With the three-stage vibration isolation system described in Section
IIIC, the noise at the proof mass resonance decreased to 2x104 K, corres-
ponding to a displacement of 5 x 10'12 m. The achieved improvement at 20 Hz
was therefore better than 100 dB. At frequencles above 60 Hz, the spectrum
indicated the SQUID-limited noise level.

We now turn to the wideband common mode balance method described in
Section IIID of Paper I. In this method, calibrated sinusoidal acceleration
signals are provided in the vertical direction by means of an electromagnetic
shaker, Two out of the three stored curreuts Li, I, and 12 are iteratively
adjusted for balance at 0,9 Hz (KK wo/Zw) and 70 Hz (O> wO/Zﬂ) in turn. This
is a painstaking procedure since a balance point is searched for in a two-

dimensional parameter space and sufficient time should be allowed after each
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adjustment of curreants for the mechanical disturbance of the system to damp
down.

Figure 9a shows the 0 - 50 Hz noise spectrum of the gradiometer balanced
in the wide band to 1 part in 103. The transfer functions are obtained from
the accelerometer mode calibrations using the relationships discussed in
Section IV, This procedure gives [chi(m)]—1 = wix_/i_ =1.29m s 2 AL, The
gradiometer is less sensitive to external common accelerations now. Shown in

the spectrum is the differential mode of the masses at £, = wo/2n = 24,8 Hz of

an rms amplitude wix_ = 2,75 om s"2, The noise temperature for this mode is
given by
m
L5 o x® = 45K . (33)
kB 2 o -

Thus, this spectrum represents the observation of the Brownian motion of the

proof masses in the differential mode at the 1liquid He temperature. All other
peaks are attenuated by about 103, which is the degree of balance obtained.
This data confirms that the observed noise is almost entirely environmental
and is not intrinsic to the gradiometer.

Figure 9b shows the 0 - 10 Hz spectrum. The vertical scale of the plot
has been calibrated by using the accelerometer mode, and confirmed by a direct
calibration with a known gravity gradient signal which will be explained in
Section VI. The noise in the 5 - 10 Hz baand reaches below 1 E Hz_l/2 but the
background seems to be close to 0.3 ﬁ Hz—l/z. Excessive vibration noise has
degraded the spectrum at several peaks. The noise in the 1 - 4 Hz range is
heavily contaminated by the rocking mode of the gradiometer (f.) at 2.5 Hz and
other modes assocliated with the vibration isolation system. The 0 - 1 Hz

spectrum shown in Fig. 9c exhibits the swinging modes (f fg9) around 0.3

sl
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Hz, the vertical dewar suspension mode (fvl) at 0.5 Hz, the vertical gradio-
meter rubber suspension mode (f,) at 0.9 Hz, and a torsional mode (f,) at
0.08 Hz,

Our low-pass filters introduced numerous peaks at thelr own resonances.
These filters were needed initially to prevent the SQUID from overloading at
the higher frequency peaks. After the common mode balance, the gradiometer
became intrinsically insensitive to the environmental noise. Therefore, in
the gradiometer mode, the filters could be reduced to a minimum. We found a
single-stage filter provided by the rubber tubing inside the vacuum was
sufficient for a balanced gradiometer and eliminated many undesirable peaks

from the signal bandwidth.

B. Gradiometer Noise

Figure 10 shows the noise spectra of the gradiometer obtained with the
single-stage filter. The upper trace is the noise spectrum measured with the
gradiometer in the accelerometer mode. The lower trace is the gradiometer
output after the common mode balance to 3 parts in 10° has been achieved
toward an applied acceleration at 0,18 Hz. The SQUID noise limit of 0,069 E
Hz"1/2 gith the associated 1/f noise is plotted by a dotted line. The
vertical scale shows both the acceleration and gradient noise calibrations,
which are related by Eq. (32). The ratio of the two spectra at any frequency,
therefore, represents the actual reduction of noise outputs at that particular
frequency as a result of the balance.

First, comments are due for the measured acceleration noise spectrum (top
trace). The general structure of this spectrum, which contains a broad peak
around 0.25 Hz and a dip around 0.1 Hz, and the noise level of approximately

2.5 x 1077 m 72 Hz"1/2 at 0.5 Hz are obtained consisteantly from run to run
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after waiting sufficiently long for resonances in the gradiometer platform to
damp down. This noise data has been reproduced by using conventional
accelerometers mounted at the room temperature end of the pendulum suspension
and on the laboratory floor, with the exception of the dip at 0.1 Hz for which
the room temperature accelerometers did not have enough resolution. Since the
data represents the residual acceleration noise of a deep underground

laboratory, the upper curve in Fig. 10 must reflect geophysically significant

seismic activity, except for the broad peak near 1 Hz which is due to the low-
Q vertical mode of the rubber suspension. It 1s noteworthy that, while
acceleration noise spectra measured at the top end of the pendulum in the
vertical and horizontal directions looked similar, the noise output of the
superconducting accelerometer correlated closely (> 90%) with the vertical
acceleration. This correlation indicates that the horizontal agceleration is
indeed attenuated by the pendulum action, as has been predicted by the
analysis shown in Appendix A, Since the gradiometer is pointing at an
umbrella angle 6, = tan™l /7 = 54.7°, the noise spectrum of Fig. 10 should
then be raised by a factor of sec Gu = /3 to obtain the proper calibration of
the vertical acceleration noise at College Park, Maryland.

The lower trace of Fig. 10 represents a typical residual noise spectrum
of a balanced gradiometer, with the exception of the 0.1 Hz peak of the
torsional mode which disappears iato the background noise in the quietest
situations. Unlike the torsional mode, however, the swinging mode at 0,32 Hz
is always present with its peak at around 100 E Hz_l/2 level. Also
persistently present is the low frequency excess noise below 0.1 Hz, The
noise level 1s approximately 0.7 E Hz—I/2 between 0,5 and 0.9 Hz and reaches a
minimum value of 0.3 E Hz_l/2 in a narrow window around 0.15 Hz, Comparison

of the two traces reveals that the noise was reduced only by a factor of 3 x
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103, which represents a discrepancy of a factor of 10 from the value expected
from the common mode balance. Another noticeable teature is that, although
the general structure of the background spectrum of the balanced gradiometer,
with the resonance peaks removed, appears similar to the shape of the
acceleration noise, the two spectra are not well correlated. Therefore, the
residual noise of the gradiometer must be coming from a source other than
vertiéal acceleration,

It 1s desirable to determine the Browian motion noise level of the
instrument. The power spectral density of the thermal noise of the gradio-

meter is given in Eq. (87) of Paper I:

kT
8 B
Sp p(f) = —— . (34)
P’B m122 T(f)

it 1s ditfficult to measure the eifective damping time T(f) at I << T,

directly. If one assumes the "white acceleration noise model”, t(f) in Eq.
(34) can be replaced by the measured quantity, x(fo). The measured Q values

are of the order of 5 x 104 and are probably pressure limited., This implies

1/2
T,B

the other hand, the effective Q is assumed to be independent of frequency, the

T(f) = 3.2 x 102 71 and s (£) = 0.01 E H"1/2 for our gradiometer. If, on

Brownian motion noise would become frequency dependent:

1/2

ra(e) =0.01 € Hz"1/2 (2—]”2 . (35)

(o]

S

In either case, the thermal noise would be negligible compared to the SQUID
noise level of 0.069 E Hz 1/2,
We therefore conclude that the observed nolse spectrum is extrinsic to

the instrument and is due to error mechanisms which couple environmental noise
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into the gradiometer output. Error sources responsible for the observed
residual noise of the gradiometer are identified in the following section with

the aid of Appendices.

C. Instrumeant Errors

The dynamics of a platform suspended as a pendulum is analyzed in
Appendix A. The pendulum decouples the gradiometer from angular motions of
the external world. The horizontal acceleration transmitted to the gradio-
meter is almost exactly cancelled by the modulated Earth's gravity which is
caused by the induced tilt of the instrument. It is found, however, that the
resulting angular velocity and angular acceleration can couple to the gradio-
meter through centrifugal acceleration and through the misalignment of the
effective gradiometer sensitive axis with respect to the baseline. Since the
vertical component of linear acceleration is balanced out to a sufficient
degree, the horizontal acceleration can produce a limiting instrument error by
driving a secondary angular motion.

Experimentally, the noise of the unbalanced gradiometer correlates with
the external acceleration in the vertical direction. This correlation and the
absence of a pronounced resonance peak at the pendulum frequency fp = 0,32 Hz
in the upper trace of Fig. 10 prove that the horizontal vibration isolation by

the pendulum action really works for an accelerometer. A close examination of

the nolse spectrum reveals a barely visible resonance peak at fp above the

background noise. This result renders a remarkable proof for the theory
developed in Appendix A. According to Eqs. (Al3), the horizontal acceleration
sensed by an accelerometer under the pendulum suspension should be peaked at
its resonance with a net gain of unity. Since the measured frequency spectra

of the horizontal and vertical accelerations agree within 10 dB, the supercon-
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ducting accelerometer pointing at an umbrella angle should measure a hori-
zontal acceleration with a maximum amplitude of approximately 3 times that of
the vertical acceleration at fp. Therefore, the horizontal acceleration peak
sticks out barely above the vertical acceleration background,

The analysis in Appendix A also leads to a prediction that, for a
gradiometer, the overall effect of the pendulum action is that of a wideband
atteanuator for a horizontal acceleration, with its attenuation improving as
the frequency approaches dc. In particular, when o > QE/léa .|, the dominant
coupling mechanism for the horizontal acceleration is the ingfced angular
acceleration, as given by Eq. (24). Below this frequency, the centrifugal
acceleration error dominates. The cross—over frequency is 1072 Hz when
|6; A = 1073, The frequency response of the angular acceleration, |h+(w)|,
has+§een plotted in Fig. A2. One can see a strong resemblance betweenathis
curve and the gradiometer output, the bottom trace of in Fig. 10, above 0.2
Hz. 1In fact, the agreement improves when the spectrum of the driving back-
ground acceleration is taken into account. In Fig. 11, we plot typical ob-
served spectra for the vertical (top dotted line) and horizontal (top dashed
line) accelerations Kz(w) and Kh(w) as well as the gradiometer noise output
(solid 1ine). The residual vertical acceleration expected from the vertical
common mode balance of 90 dB is plotted by the bottom dotted lime. The bottom
dashed line is a fit obtained by multiplying the spectrum for Xh(w) with its
transfer function through the angular acceleration. The misalignment error
required for this fit is |6; ~| 27 x 10"4, which is in close agreement witﬁ
the value determined from th:xobserved centrifugal acceleration: |5; il =6 x

+

1074 (see Appendix B). Notice that the gradiometer noise above 0.2 Hz is

completely accounted for by this single error mechanism: the horizontal

acceleration coupled through the induced angular acceleration.

-129-




GRADIENT NOISE (E Hz "?)

10 R SRIReS Lo 7
\ J )
2| v Te (w) /

102} .
>(~f\ RESIDUAL A, (w)
[ | | i | 1 | 1

OO0 02 04 06 08 (.0
FREQUENCY (Hz)

Fig. 11. Various error contributions to the gradiometer noise spectrum.
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The value of 6; ~ (the misalignment of the average sensitive axis of the
gradiometer with resgict to the baseline vector I) found above is rather
large in view of the fact that the parallelism of the mating surfaces of the
mechanical components of the gradiometer was specified to 5 x 10_5. This
mechanical precision implies that the experimental value of 6;_ (the relative
misalignment between the sensitive axes of the component accelerometers) is of
the order of 10—4. A similar value could have been obtained also for 6; . if
the center lines of the two accelerometers had been located within 10”2 ;i
from each other, which is certainly feasible. However, without realizing the
seriousness of the induced angular acceleration problem, we had left the
centering of the accelerometers to crude positioning by the mounting screws.
This must have produced a mismatch of the center lines by approximately 0.1
mm, causing the observed misalignment |5; AI =6 x 10_4.

We now turn our attention to the echﬁs noise below 0.1 Hz, seen in Fig.
10. During the experiment, the SQUID electronics was shielded against rf
Interfarance ro avoid electronics drift. Although instrument drift can be
caused by relaxation of trapped magnetic flux [13], the observed low frequency
noise did not decrease significantly when the ambient magnetic field was

reduced by a factor of 103 by adding mu-metal shields. With these electrical

sources of low frequency noise eliminated, we suspect the temperature drift

and various nonlinear effects as the most likely sources for the observed

excess noise., As has been discussed in the Appendix of Paper I, the supercon-
ducting gradiometer can be rather sensitive to temperature noise and
nonlinearities in the system can down-convert the wideband vibration noise to
a gradient noise near dc. These low frequency error mechanisms are analyzed
in detail in Appendix B of this paper. Owing to the limited resolution of the

Ge thermometer used to monitor the temperature of the gradiometer assembly,
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the low frequency noise spectrum due to temperature fluctuation is computed
from an independent measurement of the temperature noise of a liquid He bath
of a different experimental setup [8] with the aid of a model for heat
conductivity between the He and the gradiometer. The resulting spectrum is

found to be
[sp ()12 = 1.0 x 1072 & we71/2 (21 H2)2 (36)

The scale~factor nonlinearity is computed from the second order circuit
equations for component accelerometers, generalized from Eqs. (29) and (33) of
Paper I. The low frequency noise expected from this 1s of comparable
magnitude as the temperature effect at 0.1 Hz, but has a slightly different

frequency dependence:
1/2 -2 -1/2 (0.1 Hz\3/2
[SP,cc(f)] L1 x10°E Hz (———7;——) . (37)

The effect of the ceutrifugal acceleration is found to be about two orders of
magnitude smaller than this value.

The temperature noise of Eq. (36) is plotted in Fig., 11 by a dash-dot-dot
line. The actual low frequency noise, denoted by X(w), is about 30 times
larger than this calculation. Since the temperature drift of the He bath de-
pends on the exact geometry and thermodynamics of the particular cryostat in-
volved, and on account of additional uncertainties in the thermal model of the
instrument, the discrepancy by a factor of 30 does not exclude a possibility
that the observed low frequency noise is due to temperature fluctuations.
However, because a comparable level of noilse is also predicted from the non-

linearity of the instrument, we cannot be conclusive, without further experi-
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mental investigations, as to the origin of the observed excess noise below 0.1
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€ experimenis, tue temperaiure of the He bath will be regulated,
and the gradiometer will be linearized by means of a force rebalance feedback
with a hope to eliminate the low frequency excess noise,

Another ianteresting error mechanism discussed in Appendix B is the
second-harmonic generation by the ceutrifugal acceleration. This effect has
been observed for large resonance peaks when the system is disturbed
mechanically (Fig. B2). During the quiet operation of the instrument, how-
ever, no second harmonics were observed above the background noise spectrum of

the gradiometer.

-133-



VI. GRAVITY GRADIENT MEASUREMENT AND SENSITIVITY CALIBRATION

We shall now describe the gravity gradient calibration with the observa-
tion of signals in two types of experiments. A precise calibration of the
iastrument can be obtained by using a periodic gravity gradient generator and
averaging the signal over a number of periods. For such an ac experiment,
however, any electrical pickup or mechanical cross coupling at the signal fre-
quency must be eliminated. A "dc" experiment, in which a compact object 1is
brought near the gradiometer aund removed, fares better in this regard.
Although the use of signal averaging to improve signal the signal-to-noise
ratio is less applicable here, any cross coupling problem will appear as a
transient which can be distinguished from the dc shift in the gradiometer
output caused by the gravity signal. We have performed both experiments
successfully, as well as an inverse square law test in which the gradiometer

outputs in three orthogonal orientations of the sensitive axis are summed.

A. AC Gravity Gradient Experiment

The ac calibration of the gradiometer was obtained with a large M= 1,6
X 103 kg) Pb pendulum. The Pb sphere was located approximately in the same
horizoatal plane with the gradiometer at an average distance r of 2.3 m away.,
The gradiometer sensitive axis was at an angle of cot"1 /2 with respect to the
horizontal plane and was in the plane of swing of the pendulum. The gradio~-

meter thus measured a gravity gradient component given by

2

1

Ty = -3 i'[l + 3 cos (2 cot™l v2)} = - . (38)

"
le 2

When the pendulum swung by Ar(w), it generated a change in the gravity

gradient by
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ATy (w) = ég%-Ar(w). (39)
r
The SQUID amplifier output was measured with a spectrum analyzer.,

In order to assure that the observed signal was truly gravitational,
various precautions were taken. When all three vibration isolation stages
were used, excess signals at various harmonics of the pendulum frequency were
seen, Correlation studies indicated that a strong second harmonic was
generated by an alr current driven by the swinging pendulum. This effect was
eliminated by shielding the entire apparatus with a wooden enclosure and by
using only one rubber filter which was inside the vacuum (see Fig. 4). The
possibility of direct mechanical coupling between the pendulum and the gradio-
meter has also been investigated. With the gradiometer charged in the
accelerometer mode and the pendulum swinging at its full amplitude +30°, we

............... gnal at the peadulum frequency above the giuuud
noise. The problem of such mechanical coupling has been alleviated by several
factors. The pendulum was suspended from the 2 m thick concrete ceiling;
whereas the dewar sat on a firm floor, 12 m below the ground level, in the
basement of the building. Furthermore, the gradiometer was balanced against
common accelerations, and the pendulum suspension used for the gradiometer
gave isolation of tilt at all frequencies. In order to avold electrical
pickup at the signal frequency, a pneumatic driving mechanism was developed
for the Pb pendulum and a natural resonant oscillation was used for most
tests,

The rms voltage measured at the pendulum frequency of 0.228 ﬁz is plotted
in Fig. 12 against the calculated rms gravity gradient generated by the
pendulum. This plot gives a calibration of 58 pPA £l and agrees with the

accelerometer mode calibration, reported in Section IVC, to within 7 %. This
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Fig. 12. AC calibration of the gradiometer.
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agreement 1is within our errors. The distance and orientation measurements in

either calibration were not intended for high precision.

B. DC Gravity Gradieat Experiment

The noise spectrum of Fig. 10 indicates that the noise is lower below the
0.3 Hz swinging mode of the platform. In order to perform a dc experiment, we
put in active low-pass filters which filtered off the peaks above 0.16 Hz from
the amplifier output. The response function of the filters to a step dc
voltage change is shown in Fig. 13a., The characteristic rise time and ripples
of the filters will be seen when a step fuuction, gravity gradient signal is
applied.

We then moved a Pb brick in and out manually near the dewar at 10 ~ 15 s
intervals, The brick weighed 12 kg and was brought to 0.17 m from the gradio-
meter. The gravity gradient generated was about GM/r3 =~ 40 E, with a geome-
trical factor of the order of unity which depends on the exact source-detector
orientation.

In Fig. 13b, the Pb brick was moved in, out and then in again, roughly in
the horizontal plane of the gradiometer. The times and directions of the
movement of the Pb brick are indicated by arrows. The line of sight of the
source was approximately at an angle of cot:'1 VY2 from the gradiometer axis.
The expected signal is then

2

GM 13 2 .
:3'(1--7-2—:5)—37 E. . (40)

The 22/r2 term is the finite baseline term of the gradiometer. Here the Pb
brick has been approximated as a point mass. Its actual geometry and size

should be taken into account for a precise calibration. The measured peak-to-
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peak dc curreat change is 2.3 nA. This current corresponds to (38 + 2) E, in
good agreemeut with Eq. (40), if the accelerometer mode calibration of Section
IVC is used.

For Fig. 13c, the brick was moved in the same way but along a direction
roughly perpeadicular to the gradiometer axis. The expected signal, if the Pb

brick were a point mass and were located accurately, is given by
) = =34 E, (41)

The value measured from Fig. 13c is (~25 * 2) E. An error of 10 Z in r and in
angular orientation could produce this gradient error of 30 %. The brick has
a long rectangular shape so that a substantial amount of its mass was at other
orientations and at larger separétions relative to the gradiometer.

The experiments have been qualitatively repeated at a few other orienta-
tions relative to the gradiometer axis. The results agree with what we expect
from the tensor property of the single-axis gradiometer., The validity of a

gravity signal has therefore been substantiated.

C. Inverse Square lLaw Experiment

The most impressive demonstration that the gravity gradiometer output is
a genuine gravity gradient signal comes from the inverse square law data [5,
7] in which the angular pattern of the gravity gradient tensor is checked.
For this experiment, the sensitive axis of the single-axis gradlometer was
turned into three orthogonal directions by rotating the entire experimental
cryostat on a turn table incrementally by 120° around the vertical axis while
the gradiometer was suspended in the umbrella angle. The resulting three

outputs and their sum are plotted in Fig. 14 after signal-averaging over 500
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pendulum periods. The peak—-to-peak amplitudes of the three outputs agree with
the theoretical formula:
GM 3Ar

ATy = =5 5 cos 20y, (42)

2]

where r = 2,3 m is the average distance between the Pb sphere and the gradio-
meter,'Ar = 0.84 m is the peak-to-peak amplitude of swing, and ¢; = 120°(1i -
1) - 3.7° is the angle that the projection of the i-th sensitive axis onto the
horizontal plane makes with the line of sight between the detector and the
source,

The sum of the righthand side of Eq. (42) over { = 1 to 3 vanishes as ex-

pected from the Poisson equation for Newtonlan gravity, Eq. (12) of Paper 1I:

The sum of the three orthogonal measurements, the bottom trace of Fig. 14,

verifies this condition within experimental uncertainty:
J ATy = (+0.15 £ 0.23) x 1070 72, (44)
i

The signal and noise 1in this result have been analyzed carefully and published

as a null test of the gravitational inverse square law [5]. Within the

inverse square law, the mutual cancellation of the signals in three arbitrary
orthogonal directions is strong proof that the instrument is really measuring
genuine gravity gradient signals since it will be highly unlikely that other

error signals also satisfy the condition (43).
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VII. SUMMARY AND CONCLUSION

A superconducting gravity gradiometer has been constructed and evaluated
very carefully. Both the signal transfer and noise characteristics of the de-
vice agree closely with the theoretical model. Practical error sources have
been identified experimentally as well as analytically. Although the instru-~
ment has only been tested on a passive platform without any feedback or error
compensation, it has shown a performance level of 0.3 ~ 0.7 E Hz'l/z, which
surpasses the value achieved in a sophisticated room temperature gravity
gradiometer [14] by three orders of magnitude in power. Further reduction of
noise should be possible by improving the alignment of component accelero-
meters or by actively stabilizing the gradiometer platform against horizontal
accelerations. The temperature of the He bath could also be controlled to
reduce the low frequency noise of the instrument.

The instrument has been used to carry out a preliminary null test of
Newton's inverse square law of gravitation. The successful operation of the
superconducting gradiometer in a rather simple setting demonstrates that the
macroscopic quantum mechanical phenomenon exhibited in superconductivity can
be taken advantage of to meet many practical challenges posed by sensitive
gravity measurements., The careful modelling of the instrument and its experi-
mental confirmation establishes the feasibility of constructing a more ad-
vanced superconducting gravity gradiometer and carrying out precision gravity
experinents.

Guided by the theoretical and experimental work reported in Papers I and
II, we are 1in the process of constructing a three—axis superconducting gravity
gradiometer of an advanced design [6, 15]. The new gradiometer incorporates
additional technical innovations such as a "superconducting negative spring”

and a "three-dimensional residual common mode balance” as well as the cold

~-142-




damping and force rebalance feedbacks to achieve an instrument noise level of

camh =112
U " B Hz '~

[i6]. Such a sensitive and stable gradiometer willi find
important applications in inertial navigation and geophysical survey as well
as in fundamental physics experiments. A series of precision inverse square
law tests as well as tests of general relativistic effects are planned with
this instrument both in the terrestrial laboratory and in space [17, 18]. The

work presented here lays the ground work for further development of supercon-

ducting technology for gravity and acceleration measurements.
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APPENDIX A: VIBRATION ISOLATION BY PENDULUM ACTION

Isolation of horizontal vibrations by pendulum action has been analyzed
in Ref. 7 by treating the angular motion of the pendulum in time domain. Here
we treat the problem in frequency domain. For a platform suspended in a
stationary laboratory, the angular amplitude of the pendulum is of the order
of 1076 rad at its resonance frequency. Effects that arise from second order

contributions in angle will therefore be negligible in general,

l. Vibration Isolation of an Accelerometer

We first consider a single accelerometer mounted on a platform suspended
by a szggetric pendulum of effective length lp, the distance between the pivot
point and the "center of percussion” of the platform (see Fig. Al(a))., The
eftective length of the pendulum is defined from Y the degenerate (angular)
resonance frequency of the swinging mode, by

- 2
L, = gE/wp . (Al)

Let the center of mass of the accelerometer proof mass be located at a
vertical distance 2, below the pivot point with its sensitive axis defined by
;. We further assume a "perfectly rigid™ pendulum in which the pendulum mass
and the suspension rod form a perfectly rigid body and the pivot is perfectly
rigid for linear motions while it is perfectly soft for angular motions. Tﬁis
condition could be approached in practice by designing the pendulum with the
resonance frequencies of unwanted modes high compared to the swinging mode
frequency w_.,

p

Under these assumptions, the accelerometer platform is completely iso-
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R B

lated from the angular motions of the ceiling from which the pendulum is sus-—
pended. This isolation is independent of frequency although, in practice,
finite rigidity for the torsional mode tends to make the pendulum a low-pass
filter for the torsional jitter of the external world. No attenuation is ex-
pected for vertical vibrations. Since linear accelerations can bhe balanced
out in one direction 1n a gradiometer, our interest i{s in the extent to which
horizontal acceleratiouns Zh(t) can be rejected by means of the pendulum
action.

Let us denote the horizontal displacements of the pivot point and the
center of percussion of the platform by ﬁh(t) and ;h(t)’ respectively. Then,
the equation of motion of the pendulum can be writtea as

3+ 1;1(¥h -k w§(¥h - &) =o. (A2)

Taking a Fourier transform of this equation, one finds

?h(w) == P 5 E = ﬁh(w). (A3)

-1
w_+ jwt
> L2 - P p
3, (W) = —w? T, () 5 - & (W), (A4)
w_ ~w + jwt
P
where Kh(m) = - 2 ﬁh(w) represents the external acceleration.

The resulting angular displacement of the platform in the Earth

coordinate system is given by
=1 - 2
@p(m) = 1p [rh(w) §h(w)] Xz, (A5)
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to the first order in ép' Substitution of Eq. (A3) into Eq. (A5) leads to

ép(w) == 2— L Kh(w) Xz, (A6a)
w -w + JmT
p P
8 (@ = Jo b W =~ e AXwxz, @b
w. —-w + jwur
P p
2 )
& () = w? 8w = A K@ xz . (a6e)

W, - w + jor
P P

Notice here that §p(w) represents the angular velocity of the platform with

respect to Earth,

The total specific force acting on the accelerometer proof mass is
' = - L ] * -— +
g'(t) = n(t) » [g; - 3 (O], (A7)

where zho(t) is the horizontal acceleration of the platform at the proof mass,

which is given by a weighted average of Kh(t) and zh(t):
*()-(1—l—°> ()+-%2*'(t) (A8)
P 1%
The Fourier transform of Eq. (A7) is
~ > ” >
glw) = §p(w) Xne g, -n° aho(w), (A9)

to the first order in @p, where the vector identity (All) of Paper I has been

utilized to obtain n(w) and

-1
N w4 jwt T - (1 -2 /1 ) W’
3, (@) = PP k(o). (A10)

w =-w + qw
p Ju !
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Substitution of EE = - gg 2z into Eq. (A9) gives the form:
gw) =n -+ [g; 6 () x 2 - 2 ()] (A11)
E "p ho *

Now, we substitute Eqs. (A6a) and (Al0) to obtain

2
(1 - Ro/ip) w =

-1
wr N
glw) = P_,. Kh(w), (A12)

wp ~w + jthl
where the main contributions to the two terms in Eq. (All) have cancelled each
other by Eq. (Al)., Wamely, the horizontal acceleration of the proof mass is
almost exactly balanced out by the modulation of Earth's gravity which results
from the tilt of the platform,

According to Eq. (Al2), residual errors in the horizontal vibration iso-

Tation aricea fram twn enurcecs micnnadtian Af +ha annnlarmamna A A c
A Ffun courcag: micnoeition of

A AL L L Lw L VMGG AL Wad D

(20 # Xp) and damping (Qp = w,T, < @), When L = lp is chosen, the attenua-

tion obtained by the pendulum action goes as

(w/wp) Q;I , w <« Wy s (Al3a)
o ACIN 1, w=u, (A13b)
n - Ah(w)

(wy/0) Q;I 0> (Al3¢)

At resonance, the platform is actually driven to an amplitude Qp times larger,
as can be seen from Eq. (Al0), and the pendulum action balances the horizontal
acceleration to Q;l so that the net gain will be unity. Away from resonance,

the horizontal acceleration is attenuated by Q;l times a frequency factor
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which helps the isolation further. Thus, we have proved that the peadulum
suspension indeed provides wideband isolation of an accelerometer from
horizontal accelerations as well as tilts except in the immediate vicinity of
its resonance frequency.

We have assumed symmetry of the peandulum frequency in two horizontal
directions for simplicity. Equation (Al2) shows that this assumption 1s not
necessary for the operation of the pendulum action. Since the accelerometer
is not sensitive to a horizontal acceleration perpendicular to 3, the fore-
going analysis will be valid as long as 20 is chosen to be equal to the effec-

tive length of the pendulum Rp in the vertical plane which includes n.

2. Vibration Isolation of a Gravity Gradiometer

We now turn to a gradiometer mounted on a platform under pendulum suspen-—
sion (Fig. Al(b)). In general, the two component accelerometers have slightly
different sensitive axes, ;1 and ;2, and are located at different distances,
%, and %5, from the pivot point. The distance between the pivot point and the
center of percussion, which is near the midpoint between the two proof masses,
is denoted by lo. Since a very small differential acceleration signal 1is
sought for in general, errors coupled through misalignments of the sensitive
axes will have to be examined carefully. The result of a general analysis of
the misalignmeat errors is given by Eq. (A6b) of Paper I, which can be written

in the form:

8T, (t) =

sn_ » [3 - 3(0)]
n+l

o

+ (6; .t 63) . [fE - 3(t) 8(e)] - a - 55 ~ X n e alt), (Al4)
+n +2
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A A

where % is the baseline of the gradiometer, and 6;_, én ., 6n ,, Gi are the
misalignment and misorfentation vectore defined hv ¥ " tn
I. The gravity gradient (fE) term can be ignored in comparison with the
gravity (EE) term, and the correction term to centrifugal acceleration can be
dropped since the full centrifugal acceleration is regarded as a separate

error source in Paper II.

Upon Fourier transformation, Eq. (Al4) becomes, to the first order in 8 R

5T, (w) = %—6n_ . [gEg (W) x z - zho(w)] +680 ,.%xn - o (w),(Al15)
n+l p +2 P

where appropriate quantities for the pendulum suspension have been substituted

into the linear and angular accelerations. Here zho(w) is the horizoatal

acceleration of the midpoint between the two accelerometers. In deriving Eq.

(A15). use has been made of the r@Tar{nnghip hetwoaen th

ancalaratinne at tha

two accelerometers, 3hk(w), and ;ho(w):

Iz (;)l b sha O
*_&__ = -Q—k. = L m , (A16)
aho(w) o sin [61 - (~1)" 4]

to obtain a perfect balance of the accelerations along the direction &:
>
i [ahz(w) - zhl(w)] = apy(w) sin(8y = ¢) - ap;(w) sin(8y + ¢) = 0. (Al7)

The angles 6y and ¢ are defined in Fig, Al(b). 1In addition, we have assumed

L, >> & to approximate

A

>

%-Gn_ © la,(w) + zhl(w)] = 6;_ . Zho(w) . (A18)

-151-~




Substitution of Eqs. (A6) and (A10) into Eq. (Al5) results in

(1 - 10/1p) w? - jwt—l

1 ~
5T, (w) = ——2F- ~ 8n_ « K (w)
n+l wz - wz + jwr 1 A Kh
P p
wz 1 ~ A ~
+ 7 i I—-&n ~Xne Kh(w) X z . (A19)

2 -
w - w + jur +L
P J P P

i.e.,

The first term in Eq. (Al19) is again minimized by choosing 2, = lp;
by locating the center of the gradiometer at the center of percussion of the
platform. In this case, however, the horizontal acceleration couples in
through the second term which represents the effect of the induced angular
acceleration. In order to balance out Kh(w) in the two terms, %, should
rather be chosen to satisfy

S § ~ ~ A A A A A

(—B—I——gq Sn_+ (n e+ z)6n , - (6n . ° z) n =0, (A20)

+2 +L
Since there are three independent c§mponents in this equation, it is impos-
sible in general to satisfy this equation by adjusting a single parameter £,
even if 6;_ and 5n . are predetermined. Therefore, in order to obtain a wide-
band rejection of ::e horizontal accelerations in a gradiometer by means of
the pendulum suspension, a sufficiently small value of 5; ~ 1s required.
An additional error term is generated through the ceZirifugal accelera~-

tion of the gradiometer proof masses induced by Kh(w). This error is given by

Eq. (Al0) of Paper I:
5T _(w) = =2[(n « &) {n + & (0} - &, + & ()], (A21)
C E P E 'p
where §E 1s the constant angular velocity of Earth., Substitution of Eq. (A6b)
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into this equation yields

C w. - w + jwr P
P P

[(n e 8 n - d,) + k(0 x z. (A22)

Combination of Eqs. (A19) and (A22) gives the total residual error arising

w26n ~xn+ jw 2[(n . §E) ; - §E]
ST, (w) = +2 . 1
hl®w/ = 2 2 . -1 [
w_ - w + jwt P
P P

Kh(m) X ; .(A23)

Equation (A23) shows that the pendulum works as an attenuator with an attenua-
tion factor proportional to (X/RP) |6n .| and (l/lp)(QE/w), respectively, for
+2

each error term, plus a high-pass filter with the cut-off frequency Wp «

Therefore, for a gradiometer, the pendulum action attenuates the horizontal

accelerations at _all fregquencies, with the isolation becoming perfect as the

signal frequency approaches dc. This is usually sufficient because the signal

bandwidth satisfies w < Wp in most applications of a gradiometer. It is truly

remarkable that the pendulum action accomplishes a nearly perfect, passive

vibration isolation in two dimensions near dc because vibration isolation
below 1 Hz is very difficult to achieve by means of conventional spring-mass

isolators.

In the frequency range w > QE/|5n AI, the centrifugal acceleration term
+2

can be ignored in comparison with the angular acceleration term so that

GFh(w) = h+(w) Ei-ﬁn A XN e Kh(w) Xz, (A24)
a p *L

where
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wz

h—)(w) = -
a W, - w + jot
p P

i (A25)
is the normalized traansfer function for coupling of Kh(m) through induced
angular acceleration. The absolute value of this function is plotted in Fig.

A2 (solid 1line) for parameter values of wp/Z% = 0,32 Hz and Qp = = 300.

“pTp
Also plotted in the figure (dotted line) for comparison is the absolute value
of the transfer function for direct transmission of Kh(w) to the pendulum
mass :

w2 + jwt-l

he(w) = -5 L, (A26)
w_ =w + jurt
P . P

which is read from Eq. (A4). Thus, the pendulum itself responds to the
horizontal acceleration as a low—-pass filter with a frequency characteristic
given by Eq. (A26). Equation (A6a) shows that the induced angulér displace-
ment has an almost identical frequency response which cancels the direct
transmission term to approximately Q;l. What is left over after this cancel-
lation is the frequency characteristic of a high-pass filter given by ‘Eq.

(A25).
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APPENDIX B: LOW FREQUENCY NOISE OF THE GRADIOMETER

Gravity gradient signals of interest are usually at very low frequencies
(10—4 ~ 1 Hz). Excess low frequency noise (red noise), which raises the
overall instrument noise above the Brownian motion noise, is therefore of
great concern in constructing a sensitive gravity gradiometer. Red noise in
the gradiometer output can be generated by thermal and mechanical drift of the
gradiometer, nonlinearities in the instrument, centrifugal acceleration of the
platform, the 1/f noise and drift of the detecting electronics, etc. One way
of overcoming certain types of such low frequency noise 1is an up-conversion of
the gravity gradient signal by rotating the instrument followed by a
heterodyne detection of the modulated signal [19]. The rotation, however,
increases the centrifugal acceleration and introduces additional dynamically
induced noise sources. In this Appendix, we analyze how various error
mechanisms contribute to the excess low frequency noise for a non-rotating

gravity gradiometer.

1. Temperature Drift

Temperature coefficients of the superconducting gravity gradiometer have
been derived in Appendix of Paper I, It has been found that the dominant
effect comes from the functional dependence of the penetration depth A(T) on
temperature T. The good thermal conductivity through the gradiometer body
makes the differential temperature fluctuation Ta(m) negligible compared to
the common temperature fluctuation T ,(w). The temperature-induced error can

therefore be written as

884, 7(w) = hy.(w) T (w), (B1)
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where

2
2\

2
A

dr

ol
w)] (1+C)dT’

by (w) = [ug(w - w?) - af(w

and ag, mix are defined by Eqs. (A42) and (A45) of Paper I, respectively, and
€ £ 1 is the modulation efficiency of the penetration depth for the pancake
coils,
In the experiment, i, = 0 was chosen so that
T . Lka _ Lkb
A (B3)
Lis
Wex ¥ Wiy (B4)
OCichmnted eeted ae e T DO slin mmam.iemn cenaTlicnm Af Llhhcamn ~avmarmabasn 12 ntnd 2
Uuual.&l—u\--l—'ls iV U\i. \Vay Wil T UuCaouL cau VQALUCOD AN AL O HGLQIII\;LCLO B S AV S AlL
Table I and
Y
@ .20 &7 = 947 x 10710 w/x (B5)
o [ -(1/T)"]
for Nb at T = 4,2 K, one obtains
\
Tw) =L hp () = - 2.9 x 104 & &} « (86)
A Ty (AL s WA Uy o

, for the present gradiometer.

Thus far the temperature-induced error has been analyzed in the frequency

domain. Although this description is complete, it is often convenient to

measure and compensate for the temperature effect in real time. Notice that

hp.(w) becomes independent of w when w << wep e Therefore, for a slow drift
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with t > w;i, one expects a linear relationship:
bgq, (t) = hye To(t) , (87)
where
hpe 2 hp, (0w =0) . (38)

The observed noise T.(t) in time domaln can be related to the power
spectral density S;p(f) by a standard formula for the digital FFT (fast Fourier

transform) [20]:

sp(f) = <2 | [P0 ey eI 4|25, (39)

where T is the sample length., For a linear drift,

T.(t) = at, (B10)
this equation yilelds
T <a2> 1
ST(f) =5 T35 f ’>V1—t—1,: . (B11)
4n £

Notice that the result depends on the choice of t. Combination of Eqs. (Bl)
and (B9) leads to
T <a2>

Sp p(f) = (el)? T (B12)
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Thus, a linear temperature drift causes a 1/f2 power spectrum at the gradio-
In the experiment, the gradiometer was thermally isolated from the He

bath through vacuum. The large heat capacity of the gradiometer body and the

low conductivity through the electrical leads and the residual He gas formed a

low-pass RC filter for heat flow with a transfer function:

1

he(E) = T g

(B13)
where tp 1s the filter time constant. In high vacuum, Tp exeeded 103 s. In
fact, we had to maintain a pressure level of approximately 10_4 mm Hg to bring
the gradiometer assembly into thermal equilibrium with the He bath in a
reasonable time after turning on heat-switches on the gradiometer. A typical
Tespouse tiie used was vp 500 s. A Ge thermometer was mounted on the
gradiometer assembly to measure Tc(t). However, the thermometer did not have
enough resolution to track the stable temperature of the gradiometer. All we
could determine directly is a rough estimate of the experimental upper limit,

2 x 1074 K hr™l, for dT./dt so that
a___ < 5.6 x 108Kk 7L, (B14)
rms ~ ~°

Substituting © = 125 s, the sampling time used for the spectrum analyzer, and

Eqs. (B6) and (Bl4) into Eq. (Bl2), we obtain
[sp (112 ¢ 2.9 x 1072 £ wp71/2 (2102, (BL5)
’
In a separate experiment [8], the temperature of the He bath was measured

-159-




by dipping a "superconducting penetration depth thermometer" of the type
similar to the one described in Ref. 21 into a storage dewar. The Fourier
analysis of this data is shown in Fig. Bl. This data indicates that, in the
frequency range of interest between 1072 Hz and 107! Hz, the spectrum can be

described by

1/2

_ -4 ~-1/2 (0.1 Hz
pach = 1ol x 107 K Hz (————=). (B16)

[Sp(£)] -

Since the exact behavior of the temperature noise should depend on the
characteristics of the dewar and the insert as well as the barometric pressure
fluctuation in the laboratory, this data should be interpreted as an order-of-

magnitude estimate for the temperature noise in our experiment. Combining Eq.

(B16) with Eqs. (B6) and (Bl13), one finds

1
ZﬁfTF

1/2
Bath

= 1.0 x 1072 £ uz"1/2 ( Q2L H2y2 (g7

[sp (£)11/2 = -

T
en [ST(f)]
This estimate falls within the approximate limit given by Eq. (Bl5).

2. General Consideration of Nonlinear Effects
Since nonlinearity is a higher order effect, the most important error
coupling mechanisms will involve the second order nonlinearity. Thus we

restrict our discussion to a nonliqear behavior of the form:
8gq n(t) = f:, hy(t - t') g2 (') de'. (B18)

The driving acceleration g(t) could be either g (t) or gg(t). 1In this

section, we wish to obtain a relationship between the Fourier components g(w)
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and égd’N(w), and investigate specifically how the wideband noise g(w)

contributes to a low frequency divergence in 5gq n(w) through the squaring
b

process.

The Fourier transform of Eq. (B18) is
684, n(w) = hy(w) G(w), (B19)
where G(w) is the Fourier transform of
6(t) = g¥(t). (B20)
In experiments, one usually measures one-sided power spectral densities as

functions of £ = w/2n > 0 rather than w. Equation (B19) implies a

relationship for such power spectral densities:
Sp N(E) = ;—é— Ihy(£) |2 Sg(E), (B21)
where hy(f) = hy(w) and S;(f) is related to Sg(f) by a convolution [22]:
8,6 = [7, 8 (£) B (£ - £1) df'. (B22)
The tilde (~) represents two-sided spectral densities with a property:
3(-f) =36 =3 5(6) , £> 0, (B23)

For a sinusoidal fuuction with random phase,
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g(t) = g cos (ano t +9), (B24)

it is straightforward to show [23]
B (6) = 7 g2I5(E - £5) + 8(5 + £)], (B25)
B () = 1o g4 I8(F - 2£0) + 48(€) + 5(f + 2£)]. (B26)

In practice, the §-functions in these equations are replaced by continuous

functions with finite peaks and widths due to the finite sample length t used

in the computation of the spectral densities, Denoting this narrowband
response function with a subscript t, the one-sided spectral densities can be

written as
s, (£) =1 g2 5‘ (£ - £) (B27)
g 2 T o’
Sg(f) = %-g4[261/2(f) * 89(F = 2601, (B28)

where the line broadening by a factor 2 that takes place in the squaring
operation [22] has been indicated by t/2. Notice that the factor 1/2 in front

of g2

comes from the assumption that the phase 8 of the signal is random. For
a signal in phase with the reference signal, g2/2 must be replaced by g2 in
Eqs. (B27) and (B28).

The exact line shape §.(f) depends on the window function employed in the

Fourier analysis. A simple box-car shape window yields

B
8,(£) = 82(f)

©/2  _-j2nft _ sin (nfx)
[220 e de = £ (B29)
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In the experiment, a Hanning window function [23] with the characteristic
Hoey 2 LaBe oLy o LgBrgy o LgBeg o L
61(f) =7 61(f t) + 3 61(f) + 3 GT(f + t) (B30)
was used. Substitution of Eq. (B29) into Eq. (B30) leads to

sin (nf1) 1
2nf 1 - (ft)z

H =
6t(f) = 6r(f) = . (B31)
Notice that the Hanning filter produces a tail that goes as f_3.

In the frequency range 2/t § f { f_, Eq. (B28) can now be approximated as

b

sg(f) = £ — . (B32)
2nt £

In the general case when Sg(f) is countinuous, g2/2 must be replaced by an

integral of Sg(f) over all frequencies so that
Se(f) = —2= —& [[™ s (£') af'12, (B33)
G agl g3 0 8

Substituting this into Eq. (B21), one obtains the final result:

~ 2 1/2 1 1 ' '
sp (0112 = B2 2 E§7§-|hN(f)| [7 sg(£') df'.  (B34)

Notice that SP,N(f) can be reduced by increasing the sample length <.

The nonlinearity coefficient IhN(f)I can be measured by driving the

system with a sinusoidal acceleration at the frequency f/2:

gp(t) = gp cos (nft + Op), (B35)
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and observing the resulting gradient at its second harmonic f:

Ig(t) = %-gs cos (2nft + 8g). (B36)

From the foregoing analysis, it is easily seen that
1 2
8g = 7 Iby(E)] gp - (B37)

The value of ]hN(f)| obtained from this relationship could then be substituted

into Eq. (B34).

3. Nonlinearities of the Instrument

A general expression of the nonlinearity errors was given in Paper I:
6gd,N((") = hcc(“’) Goolw) + hyq(w) Ggq(w) + hcd(w) ch(w), (B38)

where G, (w), Gqq(w) and G.q(w) are the Fourier transforms of [gc(t)]z,
[gd(t)]2 and g (t)gg(t). The derivation of the nonlinearity coefficients in
this equation requires knowledge of experimental detaills,

We divide nonlinear mechanisms into three classes: 1) the instrument
scale factor nonlinearity internal to the gradiometer, 2) dynamical nonlinear
effects in which second order terms are produced by the finite compliance of
the gradiometer structure in undesirable directions, and 3) nonlinear effects
of the platform. The first class of nonlinearity can be overcome by
linearizing the gradiometer by means of a‘"force rebalance"” feedback; i.e. by
operating the gradiometer as a null detector in a feedback circuit, This

method, however, will not suppress the latter two classes of nonlinearity
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errors inasmuch as these nonlinear effects are produced external to the
instrument. In the pendulum-suspended platform, the third class of non-
linearity is produced by the centrifugal acceleration of the platform. In
this section, we discuss the first two classes of nonlinearity, deferring the
treatment of the third class to the following section.

The scale factor nonlinearity can come from a failure of Hooke's law in

the mechanical front end (dx/3g), from a nonlinear response of the transducer
(d31/dx), and from nonlinearity in the gain of the amplifier (3v/di) (see Fig.
1 of Paper I). Since the SQUID operates in a negative feedback mode, it is a
highly linear device and dV/d1 can be regarded as a constant. Further, the
"cantilever" suspension spring for the proof masses has been specially de-
signed to achieve a high degree of linearity along the sensitive axis. How-
ever, the transfer function d1/dx of the superconducting transducer 1is
intrinsically nonlinear, as can be seen in Egs. (19), (25), and (32) of Paper
I. The second order terms in the transducer traansfer functions vanish if L, =
L, (symmetric coils) and 1 = 0 (absence of symmetric current). The first
condition, however, is difficult to satisfy in practice because the spacings
between the coils and the surfaces of the proof masses are not easily matched.
In order to obtain relationships between the nonlinearity coefficients of
the component acceleration transducers and of the gradiometer, we expand the
curreat responses 1k(t) of individual transducers as functions of driving

accelerations gy (t):
= k k 2 see = k N 2 eee
1, (t) hgi g (t) +h,, g (t) + z hgi [g(t) + ¢ g (t) + ]. (B39)

Here an instantaneous response of the circuit has been assumed because of the

low frequency nature of the signals under investigation. The coefficients of
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the linear terms are matched by the common mode balance of the gradiometer so

that the gradiometer output can be written as

83(6) = gg(6) + (C) =€) [g2(e) + 7 g5(0)] + () + ¢ g ()gyt) + vev.
(B40)

The transition from Eq. (B39) to Eq. (B40) is approximate because the
electrical coupling between the two component transducers affects Cg, as they
are combined into a gradiometer. Taking the Fourier transform of this

equation and comparing it with Eq. (B38), one can identity

hee(w) = dhgq(w) = ¢ - ¢ , (B41a)
- NN
heglw) = Cp + C, (B41b)

Notice that nonlinearity arises in the gradiometer even when the nonlinearitv
coefficients of the individual acceleration transducers are matched: i.e.,
CT = Cg. The only way to eliminate the nonlinearity from the gradiometer
scale factor is by making CT = Cg =0,

In the low frequency limit, one can derive an approximate relationship:

& s L A Lka-LkbE(l La )
wiM Lkp * 2Lo Lka + Lkb wﬁ EL La + Lb k

(B42)

where EL 1s the average coll-to-proof-mass spacing. Substituting values
listed in Table 1, we find CT =~ 7.5 x 1072 (m s72)7! ang Cg 2
-1.7 x 107! (m §72)"1 4o that
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hcc(w) = 4hdd(w) = -1.0 x 107! (m s-z)_l, (B43a)
hcd(w) x -2.5 x 1071 (m 3_2)_1. (B43b)

These values must be considered only as order—of-magnitude estimates in view

of the approximations used in the derivation.

The dynamic nonlinearity of the instrument arises from the finite com-

pliance of the gradiometer structure which allows the misalignment angles 63_
and 5; . to be driven by external accelerations 2(t) or alt). From Eq. (A6D)
of Pap:: I, it is clear that a nonlinearity error arises if 6;_ or 6; ~ 1s
proportional to ;(t) or Z(t). A bending mode of the structure can be+:xc1ted
by the perpendicular component of a(t) or 2(t) applied to the midpoint between
the two accelerometers. The symmetry of the induced motion is such that the
sensitive axes of the component accelerometers, ;1 and ;2, go out of alignment
with respect to the baseline vector i, with opposite signs for ;(t), and with

an equal sign for a(t). Therefore, the induced misalignments have functional

forms given by

sn_(t - t') =h_(t-t') & ("), (Bbéa)
aa

fn .(t -t =h (£ -t ("), (B44D)
+2 aa

where the history dependence of the coupling coefficients has resulted from

the resonant response. Equation (A6b) of Paper I is then generalized into

bgq N(t) = - f° [on_(t-t') « A(t') + 2 6n .(e-t') x n » Ae)] de'. (B4S)
+,
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The general form (B18) is obtained if Eqs. (B44) are substituted into Eq.

(B45). The corresponding equation for frequency domain is

Sgd’N(w) = h;;(w) Gz;(w) + h&;(w) Gza(w), (B46)

where G__(w) and G*’(w) are the Fourier transforms of ai(t) and ai(t),
aa oa
respectively.

The coefficient h+*(w) has been computed [24] for a circular tube that
aa
connects the two accelerometers. We only quote the result here:

|h, (@) = == 1 + L (92]1/2 gy, (B47)
3 w? Q3 B wg
where
£(r) = [(1 - r2) + ng 21172, (B48)

Here wp and Qg represent the (angular) resonance frequency and the quality

factor of the bending mode involved. A similar result 1s expected for

h*+(w)
aa

Experimentally, the mounting cube for the gradiometer was made rather

rigid so that wB/Zn 2, 300 Hz. This gives upper limits for the nonlinearity

error coefficients:

14

In,, ()] = |h, @] 47 x 100 (s, w<ug  (B49)
aa aa

This is completely negligible compared to the coefficients of the scale factor

nonlinearity, evaluated in Eqs. (B43). Unlike the latter, however, the former
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cannot be reduced by means of feedback operation of the instrument. It can
therefore become a dominant source of nonlinearity when a very sensitive
gradiometer is operated in the force rebalance mode. Further, larger values
of h _ (w) and h __(w) may arise under certain conditions from undesirable modes
of t:: suspensi:: springs of the proof masses which are much more compliant
than the mounting structure of the gradiometer,

Experimental values for the scale factor nonlinearity coefficients can be
obtained in principle from the curvature of the calibration curve of the
instrument. In the calibration data displayed in Figs. 7 and 12, however, the
stochastic measurement error was too large to determine a systematic departure
from a linear response. Only an upper limit for CT + Cg can be obtained fronm

Fig. 7. For an applied acceleration g, = 4x 1072 n 5—2, the curreant response

lies within 5 % from the linear fit of the data. FEquation (B39) then implies
1 2
7 (€] + C)) g2 < 0.05 g, (B50)
or
-1 _ -24-1
C? + Cg‘s 0.1 g, 2.5 (m s°)" ", (B51)

The predicted value for CT + Cg, given by Eq. (B43b), is an order of magnitude
smaller than this experimental limit.

Using the nonlinearity coefficiénts predicted by Eqs. (43), one can com-
pute the contribution of the scale factor nonlinearity to the low frequency

nolse spectrum of the gradiometer. The total common acceleration measured in

the experiment is approximately
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[ sg(e") ag' < 10710 (m s72)2, (B52)

Substituting this and Ihcc(f)l = 0.1 (ms2)7l, 2 =0.16 m, © = 125 s into Eq.

(B34), we find
[Sp oo ()12 ¢ 1 x 1072 & /2 (221 H2)372, (853)

Effects coming from terms involving gd(t) can be shown to be many orders of

magnitude smaller.

4, Centrifugal Acceleration

Here we consider nonlinear effects of the platform which convert external
accelerations into low frequency acceleration noise of the platform, which
than ecnannlee intn the gradiameter hy the Tinear transfer function of the
instrument. A well-known nonlinear mechanism of the platform is its angular
motion driven by an external acceleration. The resulting centrifugal
acceleration is a second order effect,

An accelerometer mounted on the pendulum-suspended platform will ex-
perience a centrifugal acceleration zc(t), in the radial direction away from

the pivot point, with a magnitude:

2
ac(t) le Qp(t). (B54)
For sinusoidal motions:

Qp(t) =Q, cos (wt/2 + 8q), (B55)
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apg(t) = ag cos (wt +6,) + acys (B56)
the amplitudes are related by

1 2

By using Eqs. (A6b) and (Al2), Qp can be related to the apparent acceleration

gr measured by the accelerometer at the fundamental frequency f/2:

Q
: 2 g, (BS8a)

[n e (@ x z)| Tpp

P

where Q = §p/9p is the unit vector along the direction of §p and &, = Rp has
been assumed. Likewise, ac can be related to the acceleration gg measured by
the accelerometer at the second harmonic f:

= e g (B58b)

a
¢ .z

Substitution of Eqs. (B58) into Eq. (B57) leads to Eq. (B37) with the identi-
fication:

2

Q

Ihy(e)] = —lop2l 2 (B59)
N [n o (@ x z)|2 g

where Eq. (Al) has been used. The quantity |hN(f)| is the coefficient of

apparent nonlinearity of an accelerometer suspended by a pendulum,

When R, # lp for the accelerometer, Eq. (B58a) must be replaced by

1
[n e (@ x 2)

1
Q = g (3583')
P 1 - L L £ °F
| ( 2./ p) LER
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so that

- - 2f
lng(£)| = = o s 2| 5 b fp)Z . (859")
In« @x2)|° ( - 1,720 8g

Therefore, the magnitude of apparent nonlinearity coefficient depends on how
well the horizontal acceleration is rejected by the pendulum action.
For a gradiometer mounted on the same platform, lp should be replaced by

L in Eq. (B54) so that
1
aC = —2' 2 Q . (B60)

With the aid of Eqs. (A6b) and (Al9), Qp and a; can be related to the apparent

differential acceleration signals gp and gg at f/2 and f, respectively:

1 1
p lén A' nif
+2
1
aC = Y Y gs, (B61b)
1 -(n e 9)2

where 20 = kp is assumed so that the second term dominates in Eq. (Al9). Sub-

stituting Eqs. (B61) into Eq. (B60), we find

~ 2R 2f
INCIEE —I(? .IQ) it fp)z . (B62)
én . E

+2

This 1is the coefficient of apparent nonlinearity of a gradiometer suspended by

a pendulum,
We now evaluate IhN(f)l numerically for the gravity gradiometer in the

umbrella orientation for three modes of operation: 1) common accelerometer

-173-



mode, 2) single accelerometer mode, and 3) gradiometer mode. For the particu-
lar orlentation chosen, one finds n * z = 1/¥Y3, n « R =0, n + (Q x z) = ¥2/3.
The condition %, = Xp is satisfied for the common mode and the gradiometer

mode. For the single accelerometer mode, one can show that

h-2l=ta.np-L2, (B63)
P p 2/3 7p

Substituting 2 = 0.16 m, lp = 2.4 m, Qp = 300, and |6n il =7 x 1074 into Eqs.
+
(B59), (B59'), and (B62), we obtain the following theoretical predictions:

8.0 x 103 (m 3_2)-1, common accelerometer,

2f
IhN(f)Ith = (2.4 x 102 (m s72)"! (—?BJZ, single accelerometer, (B64)
2f
3.0 x 100 (n s72)71 (-?BJZ, gradiometer.

In the experiment, we were able to observe |hy(f)| at f = 2f, by de-
tecting the second harmonic amplitudes for the swinging mode of resonance fre-—
quency fp = 0.32 Hz. Figure B2 shows the data for the common accelerometer
mode (crosses), the single accelerometer mode (dots), and the gradiometer mode
(triangles). The experimental values of IhN(pr)I are determined from these

graphs with the aid of Eq. (B37):

5.6 x 103 (m s—z)—l, common accelerometer,
IhN(ZfP)Iex = ( 4.6 x 102 (n s-z)-l, single accelerometer, (B65)

4.4 x 10% (m s"z)'l, gradiometer.
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Notice that all three of these values agree with the corresponding theoretical
values within a factor of 2.

This excellent agreement gives us confidence that the observed second
harmonics are indeed the centrifugal acceleration of the platform. Since only
one parameter, |53 il’ is relatively unknown in Eq. (B62), one can use this

+

equation and the measured value of IhN(pr)I for the gradiometer to obtain a

more reliable value of the misalignment:

|6n .| = 6 x 1074, (B66)
+2

This represents a better measurement of |8n .| than the estimate 7 x 1074
+2
obtained from the observed wideband noise spectra im Section VC,
We now compute the low frequency noise of the gradiometer which 1is

geunerated by the ceuntrifugal acceleration., The formalism developed in Section

B2 of this Appendix can be directly applied to the nonlinear equation:

sg _(t) =201 - (a » 21 Q%(b). (B67)
d,¢c P

Substituting L[l - (n o 9)2] 8(t = t') into hy(t = t') and Qp(t) into g(t),

one finds the power spectral density of the centrifugal acceleration error:

s () =10 -(ne®% -2 L[ s. e a2, (B68)
r,C ' il £ ° 3

where Sﬁ(f') is the power spectral density of §p(t).

For the gradiometer under pendulum suspension, Eq. (A6b) leads to

-1 2

T T w
[ s (£') df' = —B- [© au P - S (=) , (B69)
° 3 ani ° (wi - wz)z + sz wz X 2m
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where S+(f) is the power spectral density of the horizontal acceleration Zh(t)
A

of the pivot point. Thus, the pendulum acts as a narrowband filter centered

at fp so that S*(w/Zn) can be evaluated at fp and taken out of the integral.
A
The integral then has the well-known value 7/2 so that

T
fo Sﬁ(f') ag' = ;—;12’- SK(fP). (B70)
p

A

Substituting this and n * Q@ = 0 into Eq. (B68), we obtain

T
1 ,'py2 1 (1 2
S _(£) = =— (B 1 =5 (£,)1%. (B71)
r,G 8t " 7t f3 22 x P
p
When the experimental values Tp T 150 s, T = 125 s, lp = 2.4 m, and SK(EP) =
7 x 10713 m2 574 Hz7! are substituted, this yields
(s (0112 =2 x 107 £ w1/2 21 22)3/2, (872)

r,C

The derivation of this spectrum does not involve a detailed model for the
apparent nonlinearity coefficient IhN(f)l. Neither does it depend on the
estimate of integrated acceleration noise such as Eq. (B52), since the high
frequency part of SX(f) is cut off sufficiently fast by the pendulum. There-
fore, the resulting formula (B72) must give a reliable estimate of the low

frequency noise generated by the centrifugal acceleration.
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PART 3

DESIGN OF AN ADVANCED THREE-AXIS
SUPERCONDUCTING GRAVITY GRADIOMETER
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A SUPERCONDUCTING GRAVITY GRADIGMETER FOR SPACE AND TERRESTRIAL APPLICATIONS

M.V. Moody, H.A. Chan and H.J. Paik
Departument of Physics and Astronomy,
University of Maryland, College Park, MD 20742

A three-axis superconducting gravity gradiometer with a potential sensi-

tivity better than 103 Eotvos az~1/2

is currently under development for
applications in space. Though such a high sensitivity may be needed for only
a limited number of terrestrial applications, superconductivity offers many
extraordinary effects which can be used to obtain a gravity gradiometer with
other characteristics necessary for operation in a hostile wmoving-base envi-
ronment, Utilizing a number of recently devised techniques which rely on
certain properties of superconductqrs, we have produced a design for a sensi-
tive yet rugged gravity gradiometer with a high degree of stability and a
common mode rejection ratio greater than 109. With a baseline of 0,11 m, a
sensitivity of 0.1 E;tvgs Hz“l/2 is expected in an environment monitored to a
level of 1072 m s~2 Hz"!/2 for 1linear vibration and 7 x 1076 rad s7! mz"1/2
for angular vibration. A conventional stabilitized platform can be used at
this level. The intrinsic noise level, which is two orders of magnitude
lower, could be achieved by monitoring the attitude with a superconducting
angular accelerometer which is under development. In addition, the new

gradiometer design has the versatility of adapting the instrument to different

gravity biases by adjusting stored dc currents.

~-182-




|

I. INTRODUCTION

The Equivalence Principle of Einstein makes it impossible, evea in
principle, to separate gravity and acceleration by a local measurement. How-
ever, by making a differential measurement over a baseline, one can cancel out
acceleration and detect gravity without being confused by platform motion.
Although torsion balances have been used to detect gravitational force
gradients for over two centuries, only in the most recent two decades have we
seen serious efforts to develop moving-base gravity gradiometers.l’z’3 Re-
search on superconducting gravity gradiometers started more recently as an
outgrowth of the superconducting transducer work for low temperature gravita-
tional wave detectors.4

In a superconducting instrument, the inconvenience of cryogenic operation
is offset by the opportunity of utilizing many exotic properties of supercon-
ductors to improve the eencitivity and stobility of zravity sensors. I addi-
tion to the obvious reduction of the thermal noise of the instrument, the
quantization of magnetic flux can be used to obtain "perfectly" stable means
of signal transduction, scale factor matching, and proof mass levitation. The
availability of SQUIDs (Superconducting QUantum Interference Devices) at
1liquid helium temperatures is another important factor that makes the super-
conducting device attractive. SQUIDs are highly seasitive flux measuriag
devices which are based on the concepts of Josephson tunneling and fluxoid
quantization in superconducting loops.5 The commercial SQUIDs we employ are
coupled to input coils for measuring small currents. The sensitivity of these
{nstruments 1s 1.5 x 10712 A Hz"1/2 and the dynamic range is 108,

A three-axis superconducting gravity gradiometer with a potential sensi-
tivity better than 1073 E Hz~1/2 (lE=1 Eotvos = 1072 s72) is currently

under development at the University of Maryland.6 This instrument has been
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designed primarily for applications in space. However, a seansitive gravity
gradiometer would also have a number of terrestrial applications if a satis-
factory method of rejecting the high levels of enviroumental noise can be
found. This paper describes a design for a superconducting gravity gradio-
meter which incorporates several new features to help deal with the problems
of a dynamically noisy environment. This design maintains a high sensitivity
along with the convenience of a short base line. A versatile magnetic levita-
tion 1s applied to the proof masses so that the same hardware can be operated
in any gravity environment from 0 gg to 1 gg (gE is the earth's gravitational
acceleration) by adjusting persistent currents in a number of supetrconducting
coils.

Although the analysis in this paper will be confined to an in-line (i.e.
a gradiometer which 1s sensitive to the diagonal components of the gravity
gradient tensor, Fii) component gradiometer, it can be extended to a cross-
component gradiometer (i.e. one which is sensitive to an off-diagonal

component of the gravity gradient tensor, Fij’ j# i),

II. PRINCIPLE OF OPERATION

An in-line component superconducting gravity gradiometer consists of a
pair of spring-mass accelerometers coupled together by a superconducting
circuit to measure differential acceleration.7 Each accelerometer consist of
a superconducting proof mass confined to move along a single axis and a spiral
superconducting sensing coil located near the surface of the proof mass (see
Fig. 1). An acceleration will cause a displacement of the proof mass which,
because of the Meissner effect, will modulate the inductance of the coil at
frequencies down to dc. The sensing coil is counnected to the input coll of a

SQUID amplifier forming a closed superconducting loop. Since the flux in this
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loop must remain constant, the change in the inductance of the sensing coil
results in a current change through the SQUID input coil. In this maaner very
small accelerations can be detected.

In the present design, each proof mass 1is confined to move along a single
axis by a pair of low-loss cantilever spring systems, In practice, the
dynamic axes of the proof masses cannot be perfectly aligned and this mis~
alignment can cause varlous error signals to couple to the gradiometer output.
These effects will be discussed in Section VI, As in any two-mass system with
only one degree of freedom, the motions of the proof masses can be decomposed
into a common mode (i.e. the displacements of the proof masses are in the same
direction) and a differential mode (i.e. the displacements are in opposite
directions). By coupling the two proof masses together by persisteat currents
I4; and Iyo, flowing in the closed superconducting loops shown by the solid
lines in Fig. 2, and adjusting the ratio of I31 to Igo, the sensitivity of the
system to common-mode accelerations can be balanced out. By using a similar
design, a balance of 2 parts in 10S has been demonstrated.8 Though this
degree of balance should be sufficient in a low noise space environment, a
higher degree of rejection to common-mode noise is necessary for terrestrial
applications and ground tests of the instrumeunt,

By incorporating additional superconducting coils, shown by the dotted
lines in Fig. 2, into the circuitry, the frequency of the common-mode
resonance can be increased and the resonance peak passively damped without
affecting the differential-mode res&nance. This effect may be understood by
noting that the flux in each of these loops, must remain constant. The

electromagnetic energy in these two loops is given by,

2 2
o P
cl + c2 (1)

E =
2(L1 + L2) 2(L3 + L4) ?
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Fig. 2. Circuitry for a superconducting gravity gradiometer.
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where ch and ®,, are the trapped fluxes. In a zero-g enviroument, o1 2 Q2
is chosen. In the earth's gravity environment, one of these fluxes can be
greater than the other. When the gradiometer experiences a common-mode
acceleration, the two inductances in each loop change in a like manner re-
sulting in a change in E. However, during a differential acceleration, the
changes in the two inductances cancel and E remains constant, Increasing the
common-mode frequency decreases the sensitivity of the gradiometer to common-
mode accelerations while making 1isolation of the common-mode resonance peak
from environmental noise a simpler task. This isolation, along with the
passive damping, limits the amplitude of the signal produced by the common-
mode peak at the input of the SQUID amplifier and allows greater dynanmic
range,

The upward shifting of the common-mode spring constant not oanly increases
the rejection to common-mode accelerations, but it also increaseé the
linearity of the gradiometer by confining the motions of the proof masses.
Though the springs are designed for a high degree of linearity, the spring
constant still contains higher order terms which may become significant for
large displacements.

A conventional approach to the linearity and dynamic range problem of an
inertial iastrument is to use an active feedback network which senses and
cancels the response of the proof mass. One disadvantage of this approach is
the possible introduction of a significant noise source from the feedback
signal, Since the circuit discussed'above is passive and superconductiag,
there are no additional noise sources to Increase the fundamental noise level
of the gradiometer. If necessary, active "force rebalance” feedback can of
course be applied to both common and differential modes in addition to the

simple passive circuitry.
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III. DYNAMICS OF THE INSTRUMENT
The inductance of a spiral coil located at a distance d from a supercon-

ducting plane is given by
L = pn?A d, (2)
where n is the turns density and A is the area of the coil. With damping

ignored, the equations of motion for two proof masses, m; and my, coupled by

the superconducting circuits of Fig. 2 are

L L L
- 2 1 10 .2 30 2 50 .2 _
x,(t) + wlo[xl(t) + x09] - Zn'; —a—l— Icl(t) - —(—1-3— I ,(t) + _d; I;(0)) =g (),
(3a)
. 2 1 M0 2 Lo 2 Y60 2 ~
Xz(t) + wzo [Xz(t) + XZO] - 5;2- jd—z Icl(t) - ——&Z' Icz(t) + -—d—g Idz(t)] = gz(t),
(3b)

where w;g and wyg are the uncoupled (angular) resonance frequencies of the
proof masses and x;; and X,y are their equilibrium positions. The driving
specific forces for the two proof masses are denoted by g (t) and g,(t).
Also, d; is the equilibrium spacing between the i-th coil and the proof mass,
and Lyg = uonzAidi.

The requirement that the flux in a closed superconducting loop must re-—

main constant imposes four constraints:

{Lig[l + x;(€)/d;] + Lyl + xp(e)/dyl} Ipy(e) = @, (4a)

{Lyg[1 = % (£)/d3) + Lygll = xp(£)/d411 Top(t) = &y, (4b)
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{Lso[1 + %1 (£)/d5] + 1g} Ty - Ig Igy = oy,

The constraint equations give, to the first order in x/d,

Lio xl/d1 + Ly, xz/d2

I = I (1 - ))
cl cl0 LlO + L20
T~ La, xl/d1 + Ly x2/d4)
- ’
c2 c20 L30 + L40 j

Lso(leg * Lg) x;/dg + (L50/T414) LeoLgX,y/dg |
2 ’
(L50 + LS) (L60 + LS) - LS
_ Lgollsg + Lg) xp/dg + (I414/T490) Lsglgx, /ds

1.
2
(L50 + LS) (L60 + LS) - Lg

Ig1 = Iqp0ll -

Ijp = Tgpoll

(4c)

(4d)

(5a)

(5b)

(5¢)

(5d)

Upon substitution of these results into the equations of motion, one

finds

1 Lso

X

+ Ef (R &)DM2 + (Rgr,IV/2 + (k5ke)/2] x,

b0 1 Mo2 o2 oo =g
m, 10 2m1 dl cl0 d3 c20 d5 d10 1
X, + —l-[K + + + K (1 + Eégo]
*2 T m, ot Kt K, 6 IR

1 1/2 1/2
* gy (KK 2 4 kgrV2 + (ksg)?) x,
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K L L L
20 1 20 _2 40 _2 60 _2
+ — %, - [=1 -—1 +—=—17.1=g¢g,, (6b)
m, “20 2m, " d, “cl0 d, “c20 d, d20 2
where
2 2 2 2
I L I
Kl = — cl0 10 , K2 : — cl0 20 , (7a,b)
d) (L + Lyg) Ay Ly + Iy
2 2 2 2
_ Teaolyo . Teaolag
K3 = 2 ’ K4 = ) ’ (7C,d)
3(L3g 0 dy(Lgg + Lyg)
2 2 2 2
I L L
KS = : d50 750 , K6 - d60 60 . (Te,f)
d5(LggLeg/Lg + Lgg * Lgp) at 6(Lsoleo/Ls * Lsg + Lgg)
Equations (6a) and (6b) can be rewritten in a simpler form:
v v
. 1 3 2
x1+;l—xl+‘—ﬁ—1-x2+w10 X100 ~ €1 = 81> (8a)
v v
2 3 2
Xz + ;‘;XZ + g Xl + (020 XZO - C2 = gz, (Sb)
by defining
vi 2 Kjg + K} + K3 + Kqg (1 + L60/LS), (9a)
v3 = (K K)DV2 + kg2 + (RskgIV/2, (9¢)
and
L L
1t ofo2 o2 Pso 2
°1 % Tm; ( a, Te0 TG To * KN T10) » (10a)
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1

L L L
- 20 .2 40 _2 60 .2
g = (F 15 - — 17+ —17, ). (10b)
2m2 d2 cl0 d4 c20 d6 d20
Thus the equilibrium positions are given by
2
x19 = (eg + go)/wiy » (11a)
2
X9 = (C2 + 820)/w20 , (11b)

where £10 and 8o are coustant bias forces., The solutions to Eqs. (8a) and

(8b) are of the form:

X) = Aeivt X9 = Belwt, (12)
Making these substitutions gilves
2 101, V2 Vi V2.2 4V§ 1/2
wlzn"z'{a_""—tl’(’fn_—'") +m ] }9 (13)
’ 1 ™ 1 ™ 1™
where the general solutions are
ifw;t ~iw,t 1wyt -iwyt
X) = Aje 1=y A_ye 1= 4 Aje 2" A_je 2 s (14a)
iwlt -iwlt iwzt "iwzt
Xg = Ble + B-l‘e + Bze + B_2e . (14b)

As we will show later, if wyo and wyn are small, the amplifier noise is
negligible and the coupling to the amplifier can be reduced. In this case Ij,
and Iy, are small and the terms involving Kg and K¢ can be neglected. By

combining Eq. (13) with Eq. (6a) or (6b), one can show that the eigenvalues
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approach x; + Xy and x9 - x) only if

N

K K
2 3 4
, N == a;-~ E; and wjg * Wyge (15)

Blhﬁ

Thus in order for the coupled resonance frequencies to correspond to the true
differential and common modes, the coll geometries of Ly and Ly, and L3 and L,
as well as the masses and the uncoupled resonance frequencies must be matched.

Under these conditions, the differential-mode resonance frequency is given by

_ 2 2
Woa =7 (Wp * wyg)s (16)

and the common-mode resonance frequency 1is

2 2
=W

2

The eigenvalues are then

‘iwodt

1w, 4t
Xd = Xy =X = 2(Ade od™ A_ge ), (18a)

iw .t ~-iw, .t
X, = l-(xl + xp) = Z(Ace oc” 4 A_.e oc

c =3 ). (18b)

The equations of motion can now be rewritten in the form of two simple

harmonic oscillators:

.o 2 .
Xd + wod (Xd - Xdo) = gd’ (198)
K, + 0l (Xg = Xeo) = B (19b)



where

1]

gq(t) = go(e) - gy (t), (20a)

go(t) = 1 [g;(8) + gy(0)]. (200) |

Since the displacement of a driven harmonic oscillator at frequencies below
the resonance frequency is inversely proportional to the square of the

resonance frequency, the seasitivity to common-mode acceleration is reduced by

2 2
a factor of woc/wod.

The signal through the input coil of the SQUID is, from Eqs. (5¢) and

(54d),
I,.. I
420 Iaio
T2 = Iq1 = Tg20 ~ Lgq10 * [(‘ag—" ‘3;') X4
g (2410, Ta20y Lo L, 1y (21)
d dg ¢ " 5% Ly Lgg

Thus the sensitivity to common-mode excitations may be further reduced by
matching Id20/d6 and 'Idlo/dS' In fact, in this simple model, perfect common-
mode rejection may be obtained in principle by adjusting Ij,q and Idio; how-
ever, experimentaily it is often easler to match several sets of parameters to

moderate accuracy than to match one set to very high accuracy.

IV. SUPERCONDUCING NEGATIVE SPRING
A description of the superconducting negative spring has been presented
9

in a previous paper’. That paper, however, gave only a numerical solution.

In this section, after a discussion of its application to the gradiometer, we
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preseat an analytical solution which allows the data to be more easlly related

to other geometries.

The noise power spectral density of the gradiometer can be expressed10 as

8 wid
SP(f) = ;;5 [2nf kBT R(f) + T EA(f)], (22)

where m, R, EA(f), and Bn are, respectively, the mass of each proof mass, the
baseline, the amplifier noise energy (called the "input energy resolution”),
and the energy coupling factor for the amplifier. The function R(f) is a
frequency-dependent damping féctor, which becomes equal to the inverse of the
quality factor at the resonance frequency f = wod/Zn. The first term on the
right hand side of Eq. (22) 1is due to the Brownian motion noise and the second
Lerw on the right is due to the noise ot the amplifier. This version of the
sensitivity equation is different from the version which appeared in Ref.

10, 1In its present form, the equation has been modified to include the fact
that the magnitude of the force fluctuations at the signal frequency f is, in
general, different from that at the resonance frequency. Namely, the Brownian
motion noise has a frequency dependence which is governed by the nature of the
loss mechanism in the spring.

The superconducting gravity gradiometer at present has its fundamental
noise limited by the amplifier noise rather than the Brownian motion noise.S
Equation (22) indicates that one of the most obvious ways to Increase the'
resolution of the gradiometer is to lower its resonance frequency Wod *
Lowering the mechanical spring constant while maintaining rigidity along the
nonsensitive axes is a difficult task. One method of overcoming this dilemma
for a superconducting gradiometer has been previously demonstrated.? This

method uses a superconducting negative spring to counteract the positive
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mechanical spring. Each negative spring consists of a disk with a semi- |
circular edge located in a solenoid with a length less than the thickness of
the disk. The proof mass 1s shaped to contain several of these "disks" (see
Fig. 2). The negative spring constant can be adjusted by changing the per-
sistent curreat I, in the solenoid. The lower limit for the resonance fre-
quency will be determined by a number of factors. These factors include the
required bandwidth of the gradiometer, the 1/f noise of the SQUID amplifier,
and the magnitude of the higher order terms in the spring constant.

When two large spring constants are balanced to obtain a low frequency
spring, the stability and linearity requirements for each of these springs can
become much more important. In the preseat design, the stability of the
spring constants is maintained by a number of beneficial features which are
available at liquid helium temperatures. These features include the stability
of materials, the stability of persistent currents in superconducting loops,
and the stable temperature environment. The linearity requirement is substan-
tially decreased by the common-mode rejection coils which confine the motions
of the proof masses. Also, if necessary, the stability and linearity of the
system can be further enhanced by standard feedback techniques.

To estimate the negative spring constant (see Fig. 3), we approximate
that the field between the solenoid and the superconducting surface is cons-
tant for a given displacement. Then, the change in the magnetic field energy
with displacement is due to a change in the effective volume of the solenoid.
The volume as a function of displacement x is

1

V(x) = 3w [L(d, + R) - R%0] = V, - 5 wDR?O, (23)

N

where
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l——D = Disk diameter —

L)
Ll

Fig. 3. Diagram for negative spring calculation showing the edge of a

disk and a section of a solenoid.
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= tan-! (L2 +x -1 (/2 - x
8 = tan (do TR ) + tan (do TR )° (24)

Here, D, L, R and d, are defined in Fig. 3., The magnetic potential energy is

¢2 @i
E(x) = 57 = — . (25)
2p n V(x)
)
Expanding E(x) in powers of x gives
2
E(x) = %—ponz In (Vo - clx2 + c2x4 + ee0), (26)
where
2
c DR L (27)

1 = .
2R +d) [+ (WDH/®R +d )1
Dropping the higher order terms and differentiating twice with respect to x

leads to the spring contant:

2
dE _ _ 2 2
T 2T T h

Cy (28)
3 1

For the geometry in the aforementioned demonstration, this expression gives

k, = - 1100 N m_l, which 1s in good agreement with the experimental value of

- 1180 N oL,

V. A PRACTICAL DESIGN

If the effect of the resonance frequency is excluded, the determining
quantities for the Brownian motion and amplifier noise terms of Eq. (22) are

R(f) and E,(f), respectively. Presently, the most sensitive commercially
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available SQUID!! has an energy resolution of E,(f) = 3 x 10730 3 uz"1/2 goum
to 0.1 Hz at which point 1/f noise becomes important. The damping factor of
the proof mass motion contains contributions from both the mechanical and
electromagnetic spring coanstants with the latter generally dominating for
large coupling between the electrical and mechanical systems. Though dif-
ficult to obtain, R(f) 1070 has been observed in the superconducting coils
of similar design near 1 kHz.12 For the purpose of our sensitivity calcula-
tion, we assume that R(f) = 107% can be achieved at low frequencies (f {1
Hz).

With the above values in mind, and keeping with the objectives stated in
the introduction, we propose the following parameters for a practical design:
a differential-mode resonance frequency of 1.6 Hz, a baseline of 0.1l m, and a
hollow niobium (Nb) proof mass 0.038 m in diameter by 0.029 m long with a mass
of 0.1 kg. This design would give a sensitivity of 2 x 1072 E Hz"l/2, The
dimensions can be reduced further if the sensitivity goal is set at a more
moderate level of 0.1 E Hz }/2,

For the common-mode rejection (CMR) coils and negative spring coils, the
primary limitation is the critical field of the proof mass material. For
Stanford grade niobium at 4.2 K, the critical field is 0.12 Wb m—2.13 A
second limitation is the minimum spacing between the superconducting coils and
the surface of the proof mass. These coils have been made in the past with
niobium wire. With a wire coil, the minimum spacing is about 1 x 10-4 m. One
should be able to reduce this value substantially using thin-film coils.

For the CMR coils, the field value at the surface of the proof mass
should be kept approximately 10% below the critical field value. This pre-
caution would allow the gradiometer to withstand a common-mode acceleration of

up to twice the earth's gravity without the field exceeding the critical value
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and trapping flux in the superconductors. In order to maintain the correct
spacing between the proof mass and the coils, two CMR circuits (containiag
persistent curreats I.,4 and 1,5, respectively) with one coil on each side of
each proof mass are necessary (see Fig. 2). For vertical orientation, 1210 =
0.8 1220 to compensate for the earth's gravitational field. Then, with
bonloyo = 0.10 Wb m~2, woalyyg = 0.11 Wb w2, d =1 x 107 m and A =

1.1 x 1073 mz, and with Eqs. (17) and (7), the common-mode resonance frequency
is 230 Hz. With this increased stiffness, Eqs. (19) and (21) imply that a
total CMRR (common-mode rejection ratio) of 1 x 10? is achievable, if the
gradiometer is balanced to two parts in 105.

For the negative spring coils, the field strength can be near the
critical value giving nI, = 0.9 x 10° A ml. The expression in Eq. (27) has a
maximum value of 0.27 at L/(R + d,) = 2//3. If 12 disks with a diameter of
3.8 x 1072 u are used, one obtains k, = - 4,3 x 103 N m-l, which can
compensate a mechanical resonance frequency of 33 Hz at 4.2 K. By lowering
the temperature to 1.1 K, the critical field will increase by 25% allowing the
mechanical resonance and the common-mode frequencies to be increased to 40 Hz

and 300 Hz, respectively.

VI. ENVIRONMENTAL NOISE AND INSTRUMENT ERRORS

In order to realize an operational sensitivity of 2 x 1073 g Hz‘llz with
a CMBR of 1 x 107 and a baseline of 0.11 m, a linear acceleration noise level
better than 2 x 1072 gg Hz—l/2 is required. The seismic noise level in a
relatively quiet place is less than 10-6 8g Hz-l/z; consequently, the passive
CMR will be sufficient for a stationary platform. For a moving base applica-
tion, however, the platform vibration level can be as high as 10"3 &g

Hz~1/2, with this vibration level, a sensitivity of 0.1 E Hz"1/2 would still
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To extend a moving base system to 107~ E Hz—l/z, the platform vibrations would
have to be monitored to a level of 10-5 gg Hz_l/2 to compensate the common-
mode errors of the gradiometer. A vector measurement of the platform
acceleration with this resolution could be made by using a triad of coaven-
tional accelerometers. Alternatively, in a three—axis gradiometer, an addi-
tional SQUID could be coupled to the MR circuit of each component gradiometer
to obtain a simultaneous reading of the three linear acceleration components
of the gradiometer.

With the common—mode error removed, the second most important error

source is the angular motion of the gradiometer with respect to an inertial

frame. Angular motion about an axis other than its own sensitive axis pro-
nale even in a2 parfactly aligned gradiometer thranch rhe
centrifugal acceleration, which is indistinguishable from an in-line component
gravity gradient. In order to suppress this error to a level of 2 x 1073 E
Hz-l/z, for a vertical or horizontal orientation, the attitude rate of the
gradiometer must be known or controlled to l.4 x 10_8 rad s_1 Hz—l/z. For 0.1
E Hz-l/z, this value becomes 7 x 1076 rad s7! Hz"1/2, The requirement for the
0.1 E Hz_l/2 instrument could be met with conventional gyroscopes mounted to
the platform. The measurement of the attitude rate at the level of 10"8 rad
s—1 Hz_l/2 may be difficult for a conventional gyroscope. A superconducting
"six-axis” accelerometer, which measures three linear and three angular
acceleration components simultaneously with high sensitivity is under develop-

ment14

and could be used for this purpose.
Up to this point, this paper has dealt with a gravity gradiometer in
which the sensitive axes of the component accelerometers are perfectly

aligned. 1In a gfadiometer whose sensitive axes are misaligned, linear and
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angular motion will generate additional errors in the gradiometer output.
Linear motioun orthogonal to the direction along which a single—axis gradio-
meter is balanced would couple directly to the gradiometer output at a level
proportional to the degree of misalignment. Aungular motion can couple in
through axis misalignment in one of two ways. First, in the earth's field, an
angular displacement will result in a change in the dc bias level for the two
accelerometers. When the two sensitive axes are misaligned with respect to
each other, the change in the bias level will be different for the two
accelerometers. Second, the misalignment of the average sensitive axis with
respect to the baseline will result in a direct coupling of angular accelera-
tion to the gradiometer output. We summarize below the error model associated
with these misalignments.

The gradiometer axis alignment errors can be described in terms of a

misalignment between the sensitive axes of the component accelerometers:
(29)

and a misalignment between the average direction of the sensitive axis and the
direction of the base line:

én . = %-(n2 + nl) -2 . (30)
+2

A

In these equations, ;1 and n, are the unit vectors in the direction of the

sensitive axes of the two component accelerometers and i is the unit vector in
the direction of the baseline. 1In addition to causing a gradiometer orienta-
tion error, these alignment errors cause coupling to the gravity gradient out-

put from the common-mode acceleration component along the 8n_ direction and
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from the angular acceleration component along the 8n ., x n direction.
+2 R
In a terrestrial environment, a common-mode acceleration along the &n_
direction is generated not only by linear motions, but also by angular motions

which modulate the earth's gravity field EE' The error term along the 5;-

direction is then given by

8r. (f) =
n

1 .7 > >
Ton - [g x3 (6) +3 (D], (31)
where En(f) is the angular displacement noise and Zn(f) is the linear

acceleration noise. The error term along the n ., x n direction is given by
+2

A ~

8T, (f) =6n , x n * ;n(f) . (32)

+
n, L

where En(f) is the angular acceleration noise., A detailed derivation of Egs.
(31) and (32) will be published elsewhere.

Using ordinary machining techniques and taking care to relieve stress in
the mechanical components, the alignment errors 5;_ and 6; ~ can be reduced to
the level of 10-4. One possible method of improving the m:ihanical alignment
is through the use of piezoelectric crystals. In such a system, a set of
three or four piezoelectric crystal stacks would be used to adjust the rela-
tive angle of the sensitive axes of the two accelerometers in a single-axis
gradiometer, An alignment of one part in 108 for both 6;_ and 6; ~ appears
feasible by using this method. =

A second method for reducing the alignment error 6;_ requires a three-
axis gradiometer. In this method, additional supercoanducting circuits which

are sensitive to the common-mode components of the acceleration along two axes

are coupled to the proof masses of the third "orthogonal” axis. By adjusting
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the persistent currents in these circuits, in a manner similar to the one-

dimensional balance discussed in Sections II and III, the residual coupling

between common-mode accelerations and the gravity gradient outputs due to axis
i
misalignment is balanced out. Thus a rigorous three~dimensional balance {
against sensitivity to linear accelerations is obtained. However, the angular1
acceleration error caused by the misalignment 6; . must be compensated for
+
separately. *

Equations (31) and (32) determine the requirements for the attitude and :
attitude acceleration control/knowledge for a gravity gradiometer with a given%
sensitivity. In order to achieve 2 x 1073 E Hz_l/z, 8,(f) and a,(f) must be
controlled or known to 2 x 107® rad Hz"!/2 and 2 x 1074 rad s2 Hi_l/z, re-
spectively, if 6;_ and 6; ~ can be reduced to the level of 10_8. For 0.1 E
Hz”l/z, these requirementzlbecome 1074 rad Hz"1/2 and 1072 rad s72 Hz_l/z, re-
spectively. Conventional gyroscopes could be used to satisfy these require-
ments., If the alignment errors cannot be reduced sufficiently below 10_4, the
gradiometer may be integrated with the superconducting six—axis accelerometer,
which will have orders of magnitude improvement in attitude resolution over
the conventional gyroscopes.

We are also investigating a "pendulum suspension"10 for the gravity
gradiometer. If properly designed, a pendulum suspension can provide isola-
tion in the three angular and two of the three linear degrees of freedom.

Since the gradiometer can be balaﬁced in the remaining linear degree of
freedom, rejection of acceleration noise in all six degrees of freedom is
achieved. Details of the pendulum isolation will be presented in a forth-
coming paper. |

The extreme sensitivity of the gravity gradiometer requires careful iso-

lation of the device from the thermal and electromagnetic fluctuations of the
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environment as well. Below the lamda point (Tc = 2,17 X), the liquid helium
provides a stable and a gradient-free thermal environment. Also, the sensi-~
tivity of the instrument to temperature drift can be tuned out by employing a
method similar to the common-mode acceleration rejection technique discussed
in Section II.6 The superconductor itself is a nearly perfect shield against
fluctuating magnetic and electric fields. Thus, the superconducting gravity
gradiometer can be isolated very effectively from the thermal and electro-
magnetic noise, leaving the mechanical noise mechanisms discussed above as the

most important error sources.

VII. CONCLUSIONS

The necessity of operating a very sensitive gravity gradiometer in an
environment with a large common-mode acceleration background requires extreme
stability in the acceleration-to-current transfer functions of component
accelerometers and a reliable means of balancing out the common-mode sensiti-—
vity. The perfect stability of quantized magnetic flux in superconductors can
be used to obtain a very sensitive gravity gradiometer with a high CMRR. Com-
bining experiences obtained with a prototype superconducting gravity gradio-
meter and new technological innovations, we have produced a design which gives
a sensitivity of 2 x 1073 E Hz71/2 and a MR in excess of 1 x 102, A three-
axls in-line component gravity gradiometer, which incorporates many of the
features discussed in this paper, is under construction for space applica-
tions. This instrument has been designed for a relatively quiet environment
and has been scaled up slightly to deliver a sensitivity of 1074 E Hz—l/2

The new design utilizes magnetic levitation of the proof masses to null
out the gravity bias, permitting operation of the instrument in an arbitrary

orientation on the earth and in space. The low temperature environment gives
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an opportunity to isolate the instrument from thermal and electromagnetic
fluctuations in the survey vehicle. The inherent sensitivity of all gravity
gradiometers to angular motion induced errors makes the attitude control of
the gradiometer platform a challenge. However, superconducting techniques can
again be employed to monitor the linear and angular motions of the platform
with sufficliently high sensitivity and stability. The feedback and error com-
pensation techniques which have been developed for conveutional inertial
navigation systems and gravity gradiometers could be adapted to the cryogenic

instruments discussed here.
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