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Abstract
In this paper, we review the development of shock-capturing methods,
paying special attention to the increasing nonlinearity in the design of
numerical schemes. We study the nature of this nonlinearity and examine its
relation to upwind differencing. This nonlinearity of the modern shock-
capturing methods 1is essential, in the sense that linear analysis is not

justified and may lead to wrong conclusions. Examples to demonstrate this

point are given.
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1. INTRODUCTION

In this paper, we describe and analyze numerical techniques that are
designed to approximate weak solutions of hyperbolic systems of conservation
laws in several space dimensions. For sake of exposition, we shall describe
these methods as they apply to the pure initial value problems (IVP) for a

one-dimensional scalar conservation law
(1.1) ut + f(u)x = 0, u(x,0) = uo(x).

To further simplify our presentation, we assume that the flux f(u) 1is a
convex function, i.e., £7“(u) > 0O and that the initial data up(x) are
pilecewise smooth functions which are either periodic or of compact support.
Under these assumptions, no matter how smooth u; 1is, the solution u(x,t) of
the IVP (l.1) becomes discontinuous at some finite time ¢t = t.. In order to
extend the solution for t > t., we introduce the notion of weak solutions,

which satisfy
4 P
(1.2a) e/ udx + flulb,t)) - f(u(a,t)) =0
a

for all b >a and t > 0. Relation (l.2a) implies that wu(x,t) satisfies

the PDE in (1.1) wherever it is smooth, and the Rankine-Hugoniot jump relation
(1.2b)  £Qu(y + 0,t)) - £(u(y - 0,t)) = [u(y + 0,£) - u(y - 0,t)] %

across curves x = y(t) of discontinuity,



It is well known that weak solutions are not uniquely determined by their
initial data. To overcome this difficulty, we consider the IVP (l1.1) to be

the vanishing viscosity limit e+ 0 of the parabolic problem
€ €y _ € € _
(1.3a) (u), + fw) =el) ., u (x,0) = u,(x),
and identify the unique "physically relevant" weak solution of (1.1) by

_ €
(1.3b) u = lime v oY
The 1limit solution (1.3) can be characterized by an inequality that the
values u; = u(y - 0,t), wug = u(y + O,t) and s = dy/dt have to satisfy;
this inequality is called an entropy condition; admissible discontinuities are
called shocks. When f(u) 1is convex, this inequality is equivalent to Lax“s

shock condition
(1.4) a(uL) >8> a(uR)

where a(u) = f“(u) is the characteristic speed (see [20] for more details).
We turn now to describe finite difference approximations for the
numerical solution of the IVP (l.1). Let vjn denote the numerical
approximation to u(xj,tn) where xjy = jh, t, = ot let vp(x,t) be a
globally defined numerical approximation associated with the discrete values
{vj“},w<j<«», n > 0.
The classical approach to the design of numerical methods for partial

differential equations is to obtain a solvable set of equations for {vjn}



by replacing derivatives in the PDE by appropriate discrete approximations.
Therefore, there is a conceptual diffficulty in applying classical methods to
compute solutions which may become discontinuous. Lax and Wendroff [21]
overcame this difficulty by considering numerical approximations to
the weak formulation (1.2a) rather than to the PDE (1l.1). For this purpose,

they have introduced the notion of schemes in comservation form:

n+l _ n_ ., ,F _ - JR | A
(1.5a) v = v A(fj+1/2 fj—1/2) = (B v )j’

here A =1/h and i+ 1/2 denotes

- _ n n .
(1.5b) fi+1/2 = f(vi-k+1’ ceny vi+k)’
?le,...,WZk) is a numerical flux function which is consistent with the

flux f(u), in the sense that
(1.5¢) f(u,u,eeou) = £(u);

E;, denotes the numerical solution operator. Lax and Wendroff proved that if
the numerical approximation converges boundedly almost everywhere to some
function u, then u is a weak solution of (l.1), i.e., it satisfies the weak
formulation (l.2a). Consequently discontinuities in the 1imit solution
automatically satisfy the Rankine-Hugoniot relation (l.2b). We refer to this
methodology as shock-capturing (a phrase coined by H. Lomax).

P - P — al o L PO PR Py - . e A - — a . .
In the following, ist the numerical flux function of various 3-point

Wi

-

schemes (k = 1 in (1.5b)):




(1) The Lax-Friedrichs scheme [19])

(1.6) HORY =% [£a)) + £Quy) - % (w, = ;)]

(ii) Godunov”s scheme [5]
(1.7a) £(w ,w,) = f(V(O;wl,wz));

here V(x/t; w;,ws) denotes the self-similar solution of the IVP (l.1) with

the initial data

v x <0
(1.7b) uo(x) = .
w2 x>0
(i1i) The Cole~Murman scheme [26]:
— 1 —
(1.8a) f(wl’WZ) = 7-[f(w1) + f(wz) - |a(w1,w2)|(w2 - wl)]
where £(w.) - £(w.)
2 1 if +w
w, = w, Y1 2
(1.8b) a(wl,wz) = .
a(wl) if w, =W,

(iv) The Lax-Wendroff scheme [21]:

- 1 Vit
(1.9)  E(wj,wy) = 5 {£(w)) + £(w)) - Xa(——)[£(w,) = £(w)]}.



(v) MacCormack”s scheme [24]:
(1.10) F(wy,w,) =5 {£Ga,) + £ = AL£(w,) = £(uI D}

Let E(t) denote the evolution operator of the exact solution of (l.1)
and let Ej, denote the numerical solution operator defined by the RHS of
(1.5a). We say that the numerical scheme is r-th order accurate (in a
pointwise sense) if its local truncation error satisfies

4
r 1)

(1.11) E(t) e u-E u = 0(h

.
for all sufficiently smooth u; here 1t = 0(h). If r > 0, we say that the
scheme is consistent.

The schemes of Lax-Friedrichs (1.6), Godunov (1.7) and Cole-Murman (1.8)
are first order accurate; the schemes of Lax-Wendroff (1.9) and MacCormack are
second order accurate.

We remark that the Lax-Wendroff theorem states that 1if the scheme 1is
convergent, then the the limit solution satisfies the weak formulation (1.2b);
however, it need not be the entropy solution of the problem (see [11]). It is
easy to see that the schemes of Cole-Murman (1.8), Lax-Wendroff (1.9) and
MacCormack (1.10) admit a stationary "expansion shock" (i.e., f(uL) = f(ug)
with a(up) < a(ug)) as a steady solution. This problem can be easily
rectified by adding sufficient numerical dissipation to the scheme (see [25]
and [10]).

The cardinal problem that is yet to be resolved is the question of

convergence of the numerical approximation.



2. LINEAR STABILITY AND COMPUTATION OF WEAK SOLUTIONS

Let us consider the constant coefficient case f(u) = au, a = const. in

(1.1), i.e.,

(2.1a) u, + au_ = 0, u(x,0) = uo(x),

the solution to which is

(2.1b) u(x,t) = uo(x - at).

In this case, all the schemes mentioned in the previous section, (1.6) -

(1.10), take the form

n+l X n n
(2.2) v, = z CZV'—Q = (Eh e Vv ).,
J 2 =__k J
where Cz are constants independent of j (Cl are polynomial functions

of the CFL number v = ia). We note that in the constant coefficient case
Godunov”s scheme is identical to that of Cole-Murman; the MacCormack scheme is
identical to that of Lax-Wendroff. Since the numerical solution operator
Ey of these schemes in the constant coefficient case becomes a linear

operator, we shall refer to these schemes as essentially linear or just

"linear" schemes.

Next we briefly review the convergence theory of linear schemes; we refer
the reader to [29] for a detailed analysis.

We say that the numerical scheme is stable if



(2.3a) n(Eh)“u <c for 0<not <T, 71 = 0(h).

The constant coefficient scheme (2.2) is stable if and only if it satisfies

von Neumann”s condition:

X -igg
(2.3b) | ¢, e | <1 for all 0< g < .
2 -—_— -_— —
==k
It is easy to verify that all the 3-point schemes (1.6) - (1.10) satisfy

condition (2.3b) under the Courant-Friedrichs-Lewy (CFL) restriction
(2.4) vl = |xa] <1,

and thus are linearly stable. The notion of stability (2.3a) is related to
convergence through Lax”s equivalence theorem, which states that a consistent
linear scheme is convergent if and only if it is stable.

The accumulation of error in a computation with a linearly stable scheme
(2.2) is linear, in the sense that if the local truncation error (l.11) is
O(hr+1), then after performing N = T/t = O(h_l) time-steps, the error is

0(nl), i.e.,
(2.5) u(xj,Nr) - v? = 0(h").

An immense body of work has been done to find out whether stability of
the constant coefficient scheme with respect to all "frozen coefficients"

associated with

the problem

case and in the nonlinear case.



In the variable coefficient case, where the numerical solution operator
is linear and Lax”s equivalence theorem holds, it comes out that the stability
of the variable coefficient scheme depends strongly on the dissipativity of
the constant coefficient one, i.e., on the particular way it damps the high-
frequency components in the Fourier representation of the numerical solution.

In the nonlinear case, under assumptions of sufficient smoothness of the
PDE, 1its solution and the functional definition of the numerical scheme,
Strang proved that 1linear stability of the first variation of the scheme
implies its convergence; we refer the reader to [29] for more details.

Although there is no rigorous theory to support the supposition that
linearly stable schemes should converge in the case of discontinuous solutions
of nonlinear problems, we find in practice that this is true in many (although
not all) instances; when such a scheme fails to converge, we refer to this
case as "nonlinear instability". The occurrence of a nonlinear instability is
usually associated with insufficient numerical dissipation which triggers
exponential growth of the high-frequency components of the numerical solution.

Next we present two shock-tube calculations by the scheme (1.5) with the

numerical flux
(2.6) Y(wl,wz) = %—{f(wz) + f(wl - A[f(wz) - f(wl)]) - %-(w2 - wl)}.

The shock-tube problem is modelled by a Riemann IVP for the one-dimensional

Euler equations of compressible gas:

u x <0

u x>0

(2.7a) u, + f(u)x = 0, u(x,0) = { .



where
(2.7b) = T - T
. u (p, aQ, E) ’ f(u) qu + (O) P qp)
with
= 1 2
(2.7¢) P=( - 1)E-5pq7).
Here P, 4, P, and E are the density, velocity, pressure, and total

energy, respectively. 1In these calculations, vy = l.4 and

(2.7d) u o= (0.445, 0.3111, 8.928), up = (0.5, 0., 1.4275).

The exact solution to this Riemann problem consists of a shock propagating to
the right followed by a contact discontinuity and a left-propagating
rarefaction wave; it is shown by a continuous line in Figures 1 and 2. The
numerical solution of (2.6) is shown in Figures 1 and 2 by circles.

Figure 1 shows the results of the second-order accurate MacCormack
scheme, i.e., 6 =0 in (2.6). Observe the large spurious oscillations at
the shock and at the contact discontinuity -- this 1is a Gibbs-like
phenomenon. Note that although the rarefaction wave is computed rather
accurately, there are some spurious oscillations at its right endpoint due to
the discontinuity in the first derivative there.

Figure 2 shows the results of the first-order accurate scheme (2.6)

with 0 = 1. Observe that now the numerical solution is osciilation—-free.
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However, both the shock and the contact discontinuity are now smeared much
more than the corresponding ones in Figure 1. Note the excessive rounding of
the cormers at the endpoints of the rarefaction wave.

It is important to understand that the Gibbs-phenomenon by itself is not
an instability; this is self-evident when we consider the constant coefficient
problem (2.1) with discontinuous initial data uj. However, in compressible
gas calculations, where both density and pressure are restricted to have
nonnegative values, the Gibbs phenomenon may cause the numerical solution to
get out of the physical domain. Attempting to replace negative values of

density and pressure by positive ones makes the scheme nonconservative and may

result in an exponential growth of the solution.

The comparison between Figure 1 (6 = 0) and Figure 2 (6 = 1)
shows that the Gibbs phenomenon in the second-order accurate scheme can be
controlled by the addition of a numerical viscosity term. To do so without
losing the second-order accuracy, Lax and Wendroff [21] suggested to take in

(2.6) 8 = e(wl,wz) of the form
(2.8) e(wl,wz) = x|a(w2) - a(wl)l;

here a = f°(u) and ¥ is a dimensionless constant; observe that

)

0 in the constant coefficient case.

Numerical experiments showed that as X increases the size of the
spurious oscillations decreases, but at the cost of increased smearing of the
discontinuity. Furthermore, when X is fixed, the size of the spurious
oscillations increases with the strength of the shock. These observations

indicate that the numerical viscosity term (2.8) does not have an approriate
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functional dependence on the parameters that control the Gibbs phenomenon.
Consequently, the choice of a suitable value of X is problem dependent,
and the practical use of the numerical scheme requires several preliminary
runs to "tune parameters".

Ideally, we would 1like to have high-order accurate schemes that are
capable of propagating a shock wave without having any spurious
oscillations. In the scalar case, this can be accomplished by designing

schemes to be monotonicity preserving, i.e., to satisfy

(2.9) v monotone :::é} Eh e v monotone.

Godunov [5] has considered this avenue of design in the constant coefficient
case (2.1) and showed that monotonicity preserving £i{near schemes (2.2) are
necessarily only first order accurate. For some time this result has been
perceived as saying that high-order schemes are necessarily oscillatory. Only
much later was it realized that Godunov®s result applies only to linear
schemes and that it is possible to design nonlinean high order accurate
schemes that are monotonicity preserving (see [1], [22}, [6], [23], [7], [2],
and [30]). Schemes of this type are the "modern shock-capturing schemes"
referred to in the title of this paper.

In the rest of this paper we concentrate on the design and analysis of
such highly nonlinear schemes. Even in the constant coefficient case these
schemes are nonlinear to the extent that does not justify the use of local
linear stability. Therefore, we shall start our journey into the nonlinear
world by

he notion of total variation stabiiity, which is more

suitable to handle this type of schemes.
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3. TOTAL VARIATION STABILITY AND TVD SCHEMES

Glimm [4] has considered the numerical solution by a random choice method
of an IVP for a system of conservation laws with initial data of small total
variation, and proved existence of weak solutions by showing convergence of
subsequences. Following ideas used in Glimm”s convergence proof, we can

formulate the following theorem for convergence to weak solutions.

Theorem 3.1: Let h be a numerical solution of a conservative scheme

(1.5).
(1) 1If
(3.1) TV(v, (+,£)) < C ¢ TV(u,)

where vV( ) denotes the total variation in x and C is a constant

independent of h for 0<t<T, then any refinement sequence h+>0

with 1 = 0(h) Thas a convergent subsequence hj + 0 that converges in

L}OC to a weak solution of (1l.1).

(i1) 1If vV, 1is consistent with an entropy inequality which implies
uniqueness of the IVP (l.1), then the scheme is convergent (i.e., all
subsequences have the same limit, which is the unique entropy solution of the
IVP (1.1)).

We remark that wunlike convergence theorems of classical numerical

analysis, in which one shows that the distance between the solution and its

numerical approximation vanishes as h + 0, the convergence argument in the
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above theorem relies on a combination of compactness and uniqueness; its

relation to an existence proof is quite obviocus (see [8] for more details).
Next we demonstrate the use of Theorem 3.1 to prove convergence of

schemes in conservation form (l1.5) which are monotone, i.e., are of the form

n+l _ n n _ -
(302) Vj - H(vj-k’.."vj"'k) - (Eh v )j,

where H 1is a monotone nondecreasing function of each of its arguments in the

interval [a,b], a = min vg, b = max V?' We note that the schemes of Godunov

(1.7), Lax-Friedrichs (1.6) and the first order scheme (2.6) with 6 = 1,

are all monotone.

We start by observing that the operator E, in (3.2) is order preserving

(3033) UZV é Eh. uZEhOV.

Since Ey is also conservative,
(3.3b) z (Eh . v)j = § v

it follows then from a Lemma of Crandall and Tartar (see [3]) that E, 1is

zl—contractive, i.e., for all u and v in &

(3.3c) IE, e u~E o vi, < Hu- vl

here nuﬁl = h Z {u.l). Taking u to be a translate of v, i.e.,
J
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uj = Vj+1 for all j
we get from (3.3c) that
(3.4a) TV(Eh e v) < TV(v)
where
(3.4b) TV(w) = § le+1 - wj .

It follows then that the numerical solution satisfies (3.1) with C = 1; thus
we have established the convergence of subsequences. To show that all limit
solutions are the same, we can use an argument of Barbara Keyfitz in the
appendix to [11], which shows that (3.3¢) implies that the scheme is
consistent with Oleinik”s entropy condition. This shows that monotone schemes
satisfy the requirements of Theorem 3.1 and thus are convergent.

Unfortunately, monotone schemes are necessarily only first order accurate
(see [11]}). However, once we give up the requirement (3.3a) that E, be an
order preserving operator and consider the larger class of schemes that
satisfy only (3.4), i.e., schemes that are total-variation~diminishing (TVD),
it becomes possible to obtain second order accuracy. Observe that TVD schemes
are necessarily monotonicity preserving (see [7]).

The following theorem provides an almost complete characterization of TVD

schemes (see [7], [8], and [18]).
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Theorem 3.2: Let E, be a numerical solution operator of the form

(3.5a) vn+1 =vD + kgl C (j) A vt = (E, vn)
h| J e 4 j-2-1/2 h i’
2=-k
where
n_.n _ .n
(3.5b) Bit1/2Y = Vil T Voo

and Cz(j) denotes some functional of v% evaluated at j. Then E, is

TVD if (and only if)1 the following relations hold:

k—l(

(3.6c) () + ¢ G- 1 <L

We turn now to consider the important case of k =1 in (3.5), i.e.,

n+l _ n n . n,
(3.7) vyo= g + C—l(j)Aj+1/2" + CO(J)Aj-—l/Zv ;

we refer to (3.7) as an essentially 3-point scheme, because the coefficients

Co(i) and C_;(j) may depend on more than just {v?_l, ve, vt To see

j J+l}'

1 Theorem 3.2 is not a complete characterization of TVD schemes, since the
representation of a given nonlinear scheme in the form (3.5) is not unique.
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the relation between the form (3.7) and the conservation form (l1.5) let us

consider the scheme

n+l n - =
(3.83) Vj = Vj - }\(fj_’_l/z - fj—1/2)

with

- 1
(3.8b) f = E-(fi + f1+1 -

= A vn)
i+1/2 Qi41/2%1+1/27 7

It is easy to see that (3.8) can be rewritten in the form (3.7) with

(3.9a) ) =%«

2 55+1/2 * dy41/9)

'=l— - .
(3.9b) CO(J) 5 (aj-1/2 qj—l/Z)’
- —.n 1
here 3441/2 = a(vi, vi+1), which is defined by (1.8b).
Applying Theorem 3.2 to the scheme (3.8), we get that it is TVD if

(3.10a) 1.

Magyyol £ra54, £
We turn now to outline the modified flux approach for the construction of

second order accurate TVD schemes (see [7]). To simplify our presentation we

choose in (3.10a)

(3.10b) Qj+1/2 = lzj'l-l/zl;
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this makes (3.8) identical to the Cole-Murman scheme (1.8). We observe that
the TVD property of this scheme does not depend on the particular value of

f(u), but only on the CFL-like condition

(3.10¢) ”;ju/zl < 1;

note that this condition involves only the grid values fj. Consequently, if

we apply this scheme to a modified flux f?Od = fj + gj, i.e.,
nt+} n - =

- ! - I3 v n
(3.11]‘)) j+1/2 = 7 [fj + gj + fj+1 + gj+l laj+l/2 + Yj+1/2|Aj+l/2v ]

where

— n
(3.11c) Yiei2 = Bya1 T8 B340V

we can conclude that this scheme is TVD provided that

(3.12) Mayuy o * Yierz2l <10

It is easy to verify by truncation error analysis that if

(3.13a) g; = bo(a)u, + o(n?)
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where
(3.13b) o(x) = %—lxl - alx)),
then

- _ =LW 2

where ?LW is the numerical flux (1.9) of the second-order accurate Lax-

Wendroff scheme.

In [7] we have taken gj to be

— n - n
(3.14a) g; = m(o(aj—l/Z)Aj—l/Zv , o(aj+1/2)Aj+1/2v )
where
s + min(|x]|,]|y]) if sgn(x) = sgn(y) = s
(3.14b)  m(x,y) = )
0 otherwise

Clearly gj (3.14a) satisfies (3.13a) and consequently the resulting
scheme 1s second-order accurate, except at local extrema where the O(hz)
term in (3.13a) and (3.13c) fails to be Lipschitz continuous.

Next we show that due to this particular definition of gj » the modified
flux scheme (3.11) which 1is second-order accurate, is also TVD under the

original CFL restriction (3.10c¢); this follows immediately from the following

lemma.

Lemma 3.3.

(3.15a) (1) Wie1 < 2lo Gyl
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Proof: We note that m(x,y) (3.14b) satisfies |m(x,y)| < min ( |x|, |y]).

Consequently

n n
Igj+1 gJI < ngl + Igj+1| < min ( Ioj_I/ZAj_l/v " |°j+1/2Aj+l/£’ I)

2
n n
+ min ( |°j+]ﬁ§j+]ﬁ? |, |°j+ 3/2Aj+ 3727 R
< 2 |o(a ) s i I

i+ i+ 1y

which proves (3.15a).
It follows therefore from (3.13b) and (3.15a) that
xla+y]| < ja] +aly] < ala] + 2 |o(a)]
=ala]l +alal (1 -aja]) < ala] +1 -2ala] =1,

which proves this lemma.
We remark that the modified flux scheme (3.11), as the Cole~Murman scheme
it 1is derived from, admits a stationary "expansion shock" as a steady

solution. Replacing in (3.10b) by

14172 = 12541721

(3.16) U1/ = max( |a. /2|, e/r), e>0
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results in a modified flux scheme which is entropy consistent (see [28]) and

thus can be shown to be convergent by Theorem 3.1.

The choice (3.14) of gj is by no means unique. Tt 1is easy to check

that changing gj to be

- - n - n

Pl - A .
(3.14a) g; =m (O(aj-]ﬁgAj—]ﬁy , o(aj+]ﬁ2 TNy )
with
_ b 4 if le < Iyl

(3.14b) m (x,y) = y if le 5 IYI
or

(3.14a)"" gy = m( (1—x|5j_1/ ) Aj_]ﬁyn; Vzc(aj) (vjil1 - Vj—ln) ,

- n
-2 o)) Ay

with

(3.14b)°° m(x,y,z) = n(m(x,y),z) ,

does not alter the relations (3.13a) and (3.15a) which makes the modified flux
scheme (3.11) a second-order accurate TVD scheme, under the original CFL
restriction (3.10c).

The modified flux approach is not the only methodology to construct
second order accurate TVD schemes (there are many ways to skin a nonlinear
cat). In the next section, we shall describe the MUSCL scheme of van Leer
[23]; other techniques are described in [30], [27], and [31]. Unfortunately,
all TVD schemes, independent of their derivation, are only first order
accurate at local extrema of the solution. Consequently, TVD schemes can be

second-order accurate in the L; sense, but only first order accurate in the

maximum norm (see [14] for more details).
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4. GODONOV-TYPE SCHEMES
In this section we describe Godunov-type schemes which are an abstraction
of Godunov”s scheme (1.7) (see [5]) due to ideas in [23], [12], and [13].
We start with some notations: Let {I

j} be a partition of the real line;

let A(I) denote the interval-averaging (or "cell-averaging'") operator

(4.1) AC(L) » w = T%T-f w(y)dy ;
I

let Gj = A(Ij) e w and denote w = {Gj} . We denote the approximate
reconstruction of w(x) from its given cell-averages {Gj} by R ( x sw). To

be precise, R(x ; w) 1s a plecewise-polynomial function of degree (r-1),

which satisfies
(4.2a) ( 1) R (x ; w) =w (x) + O(hr) wherever w is smooth

(4.2b) (41) A (Ij) e R (o ;W= Gj (conservation).

Finally, we define Godunov—type schemes by

(4.3a) vj"+1 - A(Ijn+1) .« E(t) » R(e ;v = (E

o _ o ]
(4.3b) vy o= A(Ij ) uy

here {Ijn} is the partition of the real line at time t o and E(t) is the

evolution operator of (l.1l).
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In the scalar case, both the cell-averaging operator A(Ij) and the
solution operator E(r) are order-preserving, and consequently also total-

variation diminishing (TVD); hence
(4.4) TV (Eh e W) < TV (R (o ;3 wW)).

This shows that the total variation of the numerical solution of Godunov-
type schemes is dominated by that of the reconstruction step.
The original first-order accurate scheme of Godunov is (4.3) with the

piecewise-constant reconstruction
(4.5) R (x; w) = Gj , for x ¢ Ij .

Since the piecewise-constant reconstruction (4.5) is an order-preserving
operation, it follows that Eh is likewise order preserving as a composition
of 3 such operations; consequently the scheme is monotone.

The second-order accurate MUSCL scheme of van Leer [23] is (4.3) with the

plecewise-linear reconstruction

(4.6a) R(x; W) =w. + (x —y.) » s, for xe I,
(x; w) J( yJ) 3 5

where sj is defined by

(4.6b) s;=m (Aj- 1y /Aj_ 1,9 Aj+ I/ZW/Aj"' 1/2y) ;
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here yj denotes the center of Ij . It is easy to verify that the particular

form of the slope sj in (4.6) implies that

(4.7a) ™V ®RG; W) =T W ;
hence it follows from (4.4) that the scheme is TVD, i.e.,
(4.7b) v (E - w) < TV (w) .

To simplify our presentation, we assume from now on that the partition

{Ijn} is stationary and uniform, i.e.

n

4.8 I.” = . X, ;

(4.8) TR VLTV

this enables us to express the schemes (4.3) by standard grid notatioms.

The Godunov-type scheme (4.3) generates discrete values {vjn}, which are
r—th order accurate approximations to {Gjn} , the cell-averages of the exact
solution., We note, however, that the operation of the scheme (4.3) also
involves a globally defined pointwise approximation to u(x,t) of the same
order of accuracy which we denote by vh(x,t). The latter is defined for all
X in the time-strips t, < t < to+l by

(4.9) v (o, €+ t) - E(t) « RC*; vl) for 0<% t <1 .

h

We remark that (4.3) is the abstract operator expression of a scheme in

the standard conservation form
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(4.10a) e ¢
with the numerical flux

(4.10b) tn+ t))dt .

h (xj+ l/2’
For r = 1 (Godunov”s scheme), the numerical flux (4.10b) can be expressed

by (1.7). For r » 2, we make use of the fact that

( st t) in

v, (x

h i+ 1p
(4.10b) is needed only "in the small", in order to derive simple but adequate
approximations to the numerical flux (see [16] for more details).

We remark that (4.7a) is sufficient but not a necessary condition for the

scheme Eh to be TVD (4.7b). Other choices of the slope 8 in (4.6), such

as

.6b)” c s, =m(8,_pw, A ¥

(4-60) hoeosy=m (85 1p Bgp10

or

(4.6b) h e s; =m (2Aj-1f¥ ’(wj+l_wj—1)/2’2Aj+]ﬁ¥)

do not satisfy (4.7a); nevertheless the resulting scheme is TVD. This is due
to the helping hand of the cell-averaging operator, which is not taken into
account in (4.4),.

MUSCL-type schemes, as all other TVD schemes, are second-order accurate
only in the Ll-sense . In order to achieve higher—order of accuracy, we have
to weaken our control over the possible increase in total variation due to the

reconstruction step. We do so by introducing the notion of essentially non-

oscillatory (ENO) schemes in the next section.
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5. ENO SCHEMES.

We turn now to describe the recently developed essentially non-
oscillatory (ENO) schemes of [16], which can be made accurate to any finite
order r . These are Godunov-type schemes (4.3) in which the reconstruction

R(x ; w) , in addition to relations (4.2), also satisfies
- - 1+p
(5.1) TV (R(e ; W)) STV (W) +0h- ") , p>O

for any piecewigse-smooth function w(x). Such a reconstruction 1is essentially
nonoscillatory in the sense that it may not have a Gibbs-like phenomenon at
jump-discontinuities of w(x), which involves the generation of 0(1l) spurious
oscillations (that are proportional to the size of the jump); it can, however,
have small spurious oscillations which are produced in the smooth(er) part of
w(x), and are usually of the size O(hr) of the reconstruction error (4.2a).
When we use an essentially non-oscillatory reconstruction in a Godunov-
type scheme, it follows from (4.4) and (5.1) that the resulting scheme (4.3)
is 1likewise essentially nonoscillatory (ENO) in the sense that for all

piecewise—-smooth functions w(x)

(5.2) ™v (Eh e W) K TV (W) + O(h™ 7) , p>0

i.e., it is "almost TVD". Property (5.2) makes it reasonable to believe that
at time t = T, after applying the scheme N = T/t = O(h_l) times, we can

expect

(5.3) ™ (v (¢, T)) S Co TV (u) + omP) .
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We recall that by Theorem 3.1, this implies that the scheme is convergent (at
least in the sense of having convergent subsequences). This hope is supported
by a very large number of numerical experiments. In order to conclude from

(5.2) that for all n> 0 ,
(5.3) w v < v 7™ + 0Py, p>o

we still  have to show that, starting from a piecewise-smooth
uo(x) in (4.3b), v® remains sufficiently close in its regularity to a
piecewise~smooth function, so that (5.2) applies to the following time-steps
as well. Unfortunately, we have not been able as yet to analyze the
regulatirty of vt

Next we describe one of the techniques to obtain an ENO reconstruction.

Given cell-averages {Qj} of a piecewise smooth function w(x), we observe that

- xf'+ Y
(5.4a) h vy = . w(y)dy = W(xj+]ﬁ2 - W(xj_]ﬁg
-
where
(5.4b) Wix) = [Fu(y)dy
X
o

is the primitive function of w(x). Hence we can easily compute the point
values {W(xiﬂ-lg} by summation

/

i
(5.4¢) W(xi+]/) = h .Z. wj .
j=i
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Let Hm(x ; u) be an interpolation of u at the points {yj}, which is

accurate to order m, i.e.

(5.5a) H (yj ; u) = u(yj),
a* a* m+1-L
(5.5b) —H (x ; u) =—u(x) + 0(h ), 0<2<m.
£ m 2
dx dx

We obtain our '"reconstruction via primitive function" technique by
defining
(5.6) R (x; W) = S H (x ; W).
? dx T ’
Relation (4.2a) follows immediately from (5.5b) with L =1 and the

definition (5.4) , i.e.,

d

5 V0 + o(h’)

- d
R(x ; W) =a;Hr(x ; W) o=

= w(x) + 0o(n")

Relation (4.2b) is a direct consequence of (5.5a) and (5.4), i.e.,

Y5+ 1
R | d
A(Ij) R(' b W) _Tl- f HHI(X, W) dx
X,
i= 1%

=1 . - . =1 - =
- F [Hr(xj+ 1/2 ’ w) Hr(xj_ 1/2, w)] h [W(xj+ 1/2) w(xj_ 1/2)] wj'
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To obtain an ENO reconstruction, we take Hr in (5.6) to be the new ENO
interpolation technique of the author [9]. In this case, Hm(x ; u) is a

piecewise—polynomial function of x of degree m, which is defined (omitting the

u dependence) by
(5.7a) Hm (x ; u) = qj+ 1/2 (x) for yj<y<yj+l

where qj+1b is the unique polynomial of degree m that interpolates u at the

m+l points

(5.7b) Sm(i)

Wi oo Yy

for a particular choice of i = 1(j) (to be described in the following). To

satisfy (5.5a), we need

qj+1%§yj) = u(yj) , qj+1ﬁ§yj+l) = u(yj+l) ;

therefore, we limit our choice of 1(j) to
(5.7¢) j-ml < 1(j) < § «

The ENO interpolation technique 1s nonlinear: At each interval
[yj,yj+1], we consider the m possible choices of stencils (5.7b) subject to
the restriction (5.7c), and assign to this interval the stencil in which u is

"smoothest" in some sense; this is done by specifying i(j) in (5.7b).
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The information about the smoothness of u can be extracted from a table

of divided differences. The k~th divided difference of u

(5'83) U[yi, yi+1' sery Yi+k] = U[Sk(i)]

is defined inductively by

(5.8b) u[So(i)] = u(yi)
and
(5.8¢) u[Sk(i)l = (u[Sk_l(iﬂ)] - u[Sk_l(i)])/(yi+k-yi)-

If u(x) is m times differentiable in [yi, yi+m]
then
(5.9a) uls (1)1 =+ o™ () , for some y, < £ < y
m m! ? i i+m
If u(p)(x) has a jump discontinuity in [yi, yi+m] then
(5.9b) uls (D] = o ™P®)] ), 0< p< ml

( [u(p)] in the RHS of (5.9b) denotes the jump in the p-th derivative).
Relations (5.9) show that Iu[Sm(i)]I is a measure of the smoothness of u

in Sm (i), and therefore can serve as a tool to compare the relative

smoothness of wu in various stencils. The simplest algorithm to assign

Sm(i(j)) to the interval [y 1 is the following:

s V...
3> 731’
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Algorithm I. Choose i(j) so that

. _ min .
(5.10) luls, AGNT = 5 hciey e IS,0I1
Clearly (5.10) selects the ‘'smoothest" stencil, provided that h is
sufficiently small (but not smaller than the round-off error of the machine
would permit!).
In order to make a sensible selection of stencil also in the 'pre-

asymptotic" case, we prefer to use the following hierarchial algorithm:

Algorithm IT: Let ik(j) be such that Sk (ik(j)) is our choice of a (k+l)-

point stencil for [yj, yj+1]. Obviously we have to set
(5.11a) i, ) =13

To choose ik+l(j), we consider as candidates the two stencils

L by -
(5.11b) Serp = Sppp @ - D,
. R e (s

which are obtained by adding a point to the left of (or to the right of)

Sk(ik(j)) , respectively. We select the one in which u is relatively

smoother, i.e.,

: . L R
1, -1 if Juls 1] < fuls,, 1

(5.114d) 14103 = { ik(j) otherwise.
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Finally we set 1i(j) = im(j).
Using Newton”s form of interpolation, we see that the polynomials
{qk(x)} , 1 € k< m, corresponding to the stencils Sk = Sk(ik(j)) selected

by Algorithm II, satisfy the relation

(5.11e) Qe () = @ (0 + ol L‘gk(x—y) :

This shows that the choice made in (5.11d) selects to be the one that

1 k+1
deviates the least from 9y - It is this property that makes Algorithm II
» meaningful also for h in the pre—asymptotic range.

In Figure 3, we apply the plecewise polynomial interpolation (5.7) to a
piecewise-smooth function u which has in [~1,1] 3 jump discontinuities in the
function itself and another one in the first derivative. This function is
shown in Figure 3 by a continuous line on which there are 30 circles that
denote the values used for the interpolation. This function was continued
periodically outside [-1,1] (not shown in the picture).

In Figure 3a, we show the 6-th order polynomial (5.7) (i.e., m = 6) with
the predetemined stencil i(j) = j; i.e., the 7-points stencil
{yj, yj+l’ ceey yj+6} = S6(j) is used to define qj+'U§ in [yj’ yj+1]'
Figure 3a shows a highly oscillatory behavior of the interpolation polynomial.

In Figure 3b, we show the same 6-th order polynomial (5.7) except that
now we use the adaptfive stencil which is selected by Algorithm II (5.11).

To wunderstand why this interpolation works as well as it does, we

consider the following two possibilities:

(1) [yj, y...] is in the smooth part of u: For h sufficiently small,

j+i

both Algorithms I and I1 choose a stencil Sm (i(3)) which is also in the

smooth part of the function. In this case, (5.5b) in
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[yj, yj+l] is the standard result for m-th order interpolation of a smooth
function. We observe the qj+-y§ need not be a monotone approximation to u in
[yj, yj+l]; nevertheless, its total variation there cannot be more than

0(hm+1) larger than that of u.

(ii) [yj, yj+1] contains a discontinuity: For h sufficiently small,
the function u near [yj, yj+1] can be thought of as a step—-function. In the
case of a step-function, the particular choice of i(j) is of no importance

since all the stencils Sm(i) with j—m+l < 1 < j lead to a q (x) which is

i+

monotone in (y., y ). This follows from the simple observation that in the

3 j+1
case of a step—function, we have for all 1 < & < m, except & = j-i

(5.12a) w(yy) = v o

and, consequently, also

(5.12b) ) =

Yy 18T 1497 = Y51y Tiagar)

Using Rolle’s theorem, we count in (5.12b) (m—1) roots of d qj+]ﬁ{dx outside

(yj, yj+1) . Since dqj+1ﬁ{dx is a polynomial of degree (m-1), it follows

that these are all its roots. Hence, d qj+_y{dx does not vanish 1in

(yj, yj+1) , which shows that it is monotome there (see [17] and [15] for
more details).

We conclude this section by showing in Figures 4 and 5 the solution to

the shock-tube problem (2.7) by the ENO scheme with r = 2 (Figure 4) and r = &

(Figure 5). Comparing Figures 4~5 to Figures 1-2, we observe a considerable

improvement in performance (see [l4] for more details).
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6. NONLINEARITY, UPWIND DIFFERENCING AND LINEAR STABILITY.
In this section, we consider the constant coefficient case (2.1). In

this case, the Godunov-type scheme (4.3) can be expressed as
(6.1a) A ntl ﬁ(xj- at ; vn) s

where R(x; +) denotes the sliding average of R, i.e.,

_ 1 h/2
(6.1b) R(x; «) =4 [ R(x+tg ;) dE.

-h/2
We note that since R is a piecewise polynomial of degree (r-1), R 1is a
piecewise-polynomial of degree r. Moreover, the conservation property (4.2b)
shows that R(x ; vn) is an interpolation of {vjn}. It is 1interesting to
note that using R which is obtained via the primitive function (5.6), we get

from (6.1) the particularly simple form

n+l 1

— — [3 n - p— . n
(6.2a) vj =% [Hr(xj+-yé atr; V) Hr(xj__ll,2 ar; v 1,

where {Vj+%ﬁ£ is defined at {xj+.y£ by (5.4), i.e.,

(6.2b)

Relation(6.2) directly relates Godunov-type schemes to interpolation.
Clearly, if the interpolation Hr is based on a fixed stencil, then the
resulting scheme is linear; the nonlinearity of the ENO schemes stems from its

adaptive selection of stencil.
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When r = 1, R in (6.1b) 1is necessarily the piecewise-linear
interpolation of {vjn} ; consequently the "upwind shift" (-at) forces the
scheme to be the first-order upwind scheme. We recall however that the
stencil in the ENO scheme is chosen from considerations of smoothness which
have nothing to do with the PDE; the "upwind shift" (-atr) 1is only by one
cell; consequently the resulting ENO scheme (6.2) for r » 2 need not be, and
in general is not, "upwind".

We turn now to study the secoad order accurate ENO scheme (r = 2 in (6.1)
- (6.2)). 1t is easy to see that this scheme is identical to the MUSCL-type
scheme (4.6) with sj defined by (4.6b)°. It is somewhat more surprising to
find that the MUSCL-type scheme (in the constant coefficient case), is
identical to the second order accurate modified-flux scheme (3.11) with the

correspondence
(6.3 . =ho(a) s..
) 8, j

Consequently, all these second-order accurate TVD schemes can be written

as (6.1) with a piecewise-parabolic R(x; v . For a < 0, we get

+ -
(6.4a) vjn 1 _ R(xj - art; v = vjn - a Aj+1ﬁ¥n +-y§a(l+xa) . (sj+l—sj) ,

which is obtained from taking the sliding-average of (4.6a).

We observe that when in (4.6b)~°

6a4b h . . = . n ° =
( ) sJ AJ+]ﬁ¥ , h Sj+l Aj+3/2v
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then (6.4a) is the second-order accurate upwind-differencing scheme. However,

when in (4.6b)"~

(6.4¢) he s, = oh. n

. A, v S, = A, A4
i Timlp j#1 - it lh

then (6.4a) is the central-differencing Lax-Wendroff scheme.
Based on this observation, we see that the MUSCL-type scheme with s

defined by (4.6b) or (4.6b)” satisfies (6.4b) when, as a function of i,
. n

(6.4D) { IAi+1A¥ | } is decreasing,

and it satisfies (6.4c) when

(6.4c)" v?| } is increasing.

{ IAi+ 1/2
This shows that the "popular" reference to the MUSCL scheme and the
modified flux scheme as "upwind differencing” schemes is not justified.

We remark that the scheme (6.4a) is second-order accurate only 1if

(6.5a) S - S

2
j+1 i h U + 0(h*) .

This shows that in addition to

(6.5b) sy = uy (Xj) + 0(h)

we need also the Lipschitz—continuity of the O(h) term in (6.5b). As we have

mentioned earlier, the MUSCL scheme, as well as the modified flux scheme and



~36-

other TVD schemes, fail to have this extra smoothmess at local extrema, which
are the transition points between (6.4b) and (6.4c); consequently, their
accuracy drops to first order at points of local extremum.

The analysis of these second-order accurate nonlinear schemes shows that
the "nature" of the scheme depends on differences of its numerical solution;
therefore, local linearization is not justified. Since the two schemes in
(6.4) are linearly stable, such incorrect linearization would nevertheless
result in a correct statement of stability. This 1is not the case for

r > 2, where, as r increases, more and more of the various cholces of stencil
can be identified as if belonging to a linearly unstable scheme. Since
Fourier analysis is valid only if the same stencil is used everywhere, this
identification 1is not necessarily relevant and may actually be quite
nisleading.

A situation of this type is encountered when we consider the initial-

boundary-value problem (IBVP) in -1<x<1

(6.6) u +u =0 , ulx, 0) =u (x), u(-1,t) = g(t);
x = 1 is an "outflow boundary" and no condition needs to be specified there.
J
We divide [-1,1] into (J+1) interval {I1.}] , Wwhere I, = (x X, )
’ ) i} =0 j =Y T3+l
and
(6'7a) 1.

= —1 =
X 1 » X1+ 1

Given cell averages {Ej} for j = 0, ..., J we define W(x_]ﬁz = (0 and

compute W(xj+lkg’ j=1, «eey, J by (5.4c) with 1, =0; thus W(xj+1A? is
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given also at x = #xl. Next we evaluate Hr(x; w) by Algorithm II, which is
modified so that the choice of stencil in (5.11) is restricted to available

data. Thus, Hr(x;w) is defined for -1<x<1l, and as before we define

.oy =4 . -
(6.6b) R (x; w) = % Hr (x; w) , 1<x<1 .
Using this definition of R(x; w) in [-1,1] , we modify the Godunov-type
scheme (4.3) by

(6.7a) vj“” = AL « E@) - RCG 5 VY ,0< 4 J .

(6.7b) v.o=A(1) e u .
J ] o
Here v (t) = E(t) ¢ R( o ; vn) is the solution in the small (i.e., for

0< t< t) of the IBVP

(6.7¢) v+ £V =0, V(x,0) = R(x;v") , V(-1,t) = gt + t).

This implementation of Godunov-type schemes to IBVP“s is very convenient:
There are no "artificial numerical boundaries", and the prescribed boundary
conditions are handled on the level of the PDE (6.7c). We observe, however,
that near x = -1 the scheme is '"differenced against the wind", which is
linearly unstaBle if done everywhere. Therefore, our experience with linear
schemes may inhibit us from using this approach. Overcoming this inhibition,

we have performed a large numbe of numerical experiments with the so
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modified ENO schemes (two of which are presented in the following) and we are
happy to report that these schemes have been found to be stable in all our
experiments.

In Table 1, we present a mesh-refinement chart for the IBVP (6.6) with
(6.8) u(x,0) = sin tx , u(-1,t) = -sin v (1+t) .

The ENO schemes were used with a CFL number of 0.8, and the results are shown
at t = 2. Table 1 indicates that the ENO schemes with 1 < r < 6 are
convergent in this case; the accumulation of error seems to be 1linear.
Comparing Table 1 to the periodic case (see [g]), we observe that the results
for the IBVP are slightly better in the asymptotic range, which is to be
expected.

Next we consider the IBVP (6.6) with

(6.9a) u(x,0) = e X , u(-1,t) = 't

the solution to which is
(6.9b) u(x,t) = e X*t

We observe that: (i) Iu(k)(x,t)l is a monotone decreasing function of x
for all k and t. Consequently, if we apply Algorithm II to wu(s ,t) we get
i(j) = j in (5.11). (ii) The scheme (6.2) with the fixed choice i(j) = j is
linear and strongly "biased against the wind"; consequently, it is linearly

unstable,
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In Table 2, we present a mesh-refinement chart for the solution at t =1
of the IBVP (6.9) by the 4-th order ENO scheme (r = 4 in (6.6) - (6.7)) with
CFL = 0.4. 1In spite of the previous observations, we find that the scheme
seems to be convergent. This 'paradox" is resolved once we examine the data
in Figures 6 and 7 for J = 80 and 160, respectively. In (a), (b), (c) and
(d), we show the absolute value of the k-th divided difference |v[Sk]l for
k =0, 1, 2, 3, respectively. We see that the numerical solution and its
first divided difference are monotone. However, the second and third divided
differences are oscillatory. This allows the scheme to select i(j) # j in
(5.11). The actual choice of i(j) at t = 1 is shown in Figure 6e and Figure
7e; the straight line in these figures is i(j) = j. Comparing Figure 6d to
Figure 7d, we see that the oscillations in v[S3] , the third divided
difference of v, are uniformly bounded under refinement. Analysis of the

numerical data suggests that
(i) v [S3] —-E—) u(s)(x,t) (in an average sense) as h + 0;
(11) vis,] = u®(x,6) + 003 ®) for k=0, 1, 2.

Finally, we consider the application of the 4-th order ENO scheme to the

periodic IVP

(6.10a) u +u =0, u(x,0) =727 , vj° = (-1)J.

We observe that the mesh oscillation data in (6.10a),
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is the highest frequency in (2.3b), which determines the linear stability of
the constant coefficient scheme (2.2). We note, however, that as h decreases,
the total variation of v° becomes unbounded. Consequently, v® does not
represent a BV function and, therefore, need not be considered when testing
for total-variation-stability in (3.1). In the following, we describe
numerical experiments where we apply the 4-th order ENO scheme to (6.10)
anyhow. The selection of stencil (5.11) is designed to make a sensible choice
only when applied to piecewise-smooth data. In the mesh—oscillation case

|v[Sk(i)][ is constant as a function of i for all k; consequently, (5.11)
results in the arbitrary choice of the uniform stencil i(j) = j—-3 (see Figure
8b). As in the previous case, the ENO scheme becomes a constant coefficient
scheme (2.2) for which linear stability analysis applies. 1In Figure 8c, we

show the amplification factor of the mesh—oscillation mode

(6.10¢) g = 1 D',
2=-k

as a function of the CFL number v = )a. The amplification factor (6.10c)
for the ENO schemes is determined by two competing factors: (i) Increase of
oscillations due to the reconstruction, which 1s based on the highly-
oscillatory interpolation of the mesh oscillation (6.10b); (ii) Decrease of
oscillations due to the operation of cell-averaging on the translated data.
Figure 8c shows that for v < 0.26, the latter wins and the scheme is linearly
stable; for larger values of v the scheme is linearly unstable. In Figures

8d and 8e, we show the numerical solution of the 4~th order ENO scheme with
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v = 0.6 after a single time-step (n=1) and twenty time-steps (n=20),
respectively. Clearly, the numerical solution blows up like (1.67)%

It 1is amusing to realize that this "linear instability" is itself
"nonlinearly unstable" in the sense that any nonuniform perturbation of the
mesh~oscillation data turns the ENO scheme into a stable nonlinear scheme. To
demonstrate this point, we perturb the mesh-oscillation data by a random noise
of the size 10'—6 of the round-off error (see Figures 9a and 9b), and repeat
the previous calculation. In Figures 9d - 9k, we present subsequent ''snap-
shots" of the numerical solution, which show that the numerical solution
decays in both the amplitude and the number of oscillations; observe that the
rate of decay is faster for the highly oscillatory components of the solution
and slower for the smoother ones.

This property enables the scheme to combine '"robustness" with accuracy.
We demonstrate this feature of the ENO schemes in Figure 10 where we apply the
4-th order scheme with v = 0.4 to initial data of sin wx perturbed by
random noise of the size 10_1 ; the squares denote the numerical solution;

the continuous line shows sin wx.

Acknowledgement

I would like to thank Sukumar Chakravarthy, Bjorn Engquist and Stan Osher
for various contributions to this research, and for making my stay at UCLA the
pleasant and fruitful period that it was.

This research was supported by NSF Grant No. DMS85-03294, ARO Grant No.
DAAG29-85-K0190, and NASA Consortium Agreement No. NCA2-IR390-403. The author
was supported by NASA Contracts NAS1-17070 and NAS1-18107 while in residence

at ICASE.



[1]

[2]

[3]

(4]

(51

(6]

(7]

-42-~

References

Boris, J. P. and D. L. Book, "Flux corrected transport. I. SHASTA, a

fluid transport algorithm that works," J. Comp. Phys., Vol. 11 (1973),

ppo 38-690

Colella, P. and P. R. Woodward, '"The piecewise-parabolic method (PPM)

for gas—dynamical simulations," J. Comp. Phys., Vol. 54 (1984), pp. 174-

201.

Crandall, M. G. and A. Majda, "Monotone difference approximations for

scalar conservation laws," Math. Comp., Vol. 34 (1980), pp. 1-21.

Glimm, J., "Solutions in the large for nonlinear hyperbolic systems of

equations," Comm. Pure Appl. Math., Vol. 18 (1965), pp. 697-715.

Godunov, S. K., "A difference scheme for numerical computation of

discontinuous solutions of equations of fluid dynamics," Math. Sbornik,

Vol. 47 (1959), pp. 271-306. (in Russian)

Harten, A., "The artificial compression method for computation of shocks
and contact-discontinuities: III, Self-adjusting hybrid schemes,”

Math. Comp., Vol. 32 (1978) pp. 363-389.

Harten, A., "High resolution schemes for hyperbolic conservation laws,"

J‘ Compo PhyS., Volo 49 (1983), pp' 357-393-




[8]

[9]

[10]

[11]

[12]

[13]

[14]

—43-

Harten, A., "On a class of high resolution total-variation-stable

finite-difference schemes," SINUM, Vol. 21 (1984), pp. 1-23.

Harten, A., "On high-order accurate interpolation for non-oscillatory
shock capturing schemes,'" MRC Technical Summary Report #2829, University

of Wisconsin, (1985).

Harten, A. and J. M. Hyman, "A self-adjusting grid for the computation

of weak solutions of hyperbolic conservation laws," J. Comp. Phys., Vol.

50 (1983), pp. 235-269.

Harten, A., J. M. Hyman and P. D. Lax, '"On finite-difference

approximations and entropy conditions for shocks,”" Comm. Pure Appl.

Math., Vol. 29 (1976), pp. 297-322.

Harten, A. and P. D. Lax, "A random choice finite-difference scheme for

hyperbolic conservation laws," SIAM J. Numer. Anal., Vol. 18 (1981), pp.

289-315.

Harten, A., P. D. Lax and B. van Leer, "On upstream differencing and
Godunov-type schemes for hyperbolic conservation laws," SIAM Rev., Vol.

25 (1983), pp. 35-61.

Harten, A. and S. Osher, '"Uniformly high-order accurate non-~oscillatory

schemes, I.," MRC Technical Summary Report #2823, May 1985, to appear in

SINUM.



(15]

[16]

(17])

[18]

(19]

[20]

~44-

Harten, A., B. Engquist, S. Osher and S. R. Chakravarthy, "Uniformly

high-order accurate non-oscillatory schemes, II." (in preparatiom)

Harten, A., B. Engquist, S. Osher and S. R. Chakravarthy, "Uniformly
high-order accurate non-oscillatory schemes, III," ICASE Report No. 86—

22 (April 1986).

Harten, A., S. Osher, B. Engquist and S. R. Chakravarthy, 'Some results
on uniformly high-order accurate essentially non-oscillatory schemes,"
in "Advances in Numerical and Applied Mathematics, J. C. South, Jr. and
M. Y. Hussaini (eds.), ICASE Report No. 86-18, (March 1986); also to

appear in J. App. Num. Math.

Jameson, A. and P, D. Lax, in "Advances in numerical and applied
mathematics," J. C. South, Jr. and M. Y. Hussaini (eds.) (1986), ICASE

Report No. 86-18; also to appear in J. App. Num. Math.

Lax, P. D., "Weak solutions of nonlinear hyperbolic equations and their

numerical computation," Comm. Pure Appl. Math., Vol. 7 (1954) pp. 159-

193.

Lax, P. D., '"Hyperbolic systems of conservation laws and the

mathematical theory of shock waves,'" Society for Industrial and Applied

Mathematics, Philadelphia (1972).



[(21]

[22]

[23]

[24]

[25]

[26]

{27]

~45-

Lax, P. D. and B. Wendroff, "Systems of conservation laws," Comm. Pure

van Leer, B., '"Towards the ultimate conservative difference scheme.
II. Monotonicity and conservation combined in a second order scheme,"

J. Comp. Phys., Vol. 14 (1974), pp. 361-370.

van Leer, B., "Towards the ultimate conservative difference schemes V.

A second order sequel to Godunov's method," J. Comp. Phys., Vol. 32

(1979), pp. 101-136.

MacCormack, R. W., "Numerical solution of the interaction of a shock
wave with a laminar boundar layer (Proc. 2nd Internmat. Conf. on
Numerical Methods in Fluid Dynamics, M. Holt (ed.), Lecture Notes in

Phys., Vol. 8 (1970), Springer-Verlag, New York, pp. 151-163.

Majda, A. and S. Osher, '"Numerical viscosity and entropy condition,"

Comm. Pure Appl. Math., Vol. 32 (1979), pp. 797-838.

Murman, E. M., '"Analysis of embedded shock waves calculated by

relaxation methods," AIAA J., Vol. 12 (1974), pp. 626-633.

Osher, S. and S. R. Chakravarthy, "High-resolution schemes and the

entropy condition," SINUM, Vol. 21 (1984), pp. 955~984.



[28]

[29]

[30]

[(31]

-46-

Osher, S. and E. Tadmor, '"On the convergence of difference

approximations to conservation laws," submitted to Math Comp.

Richtmyer, R. D. and K. W. Morton, "Difference methods for initial value

problems," 2nd ed., Interscience-Wiley, New York (1967).

Roe, P.L., "Some contributions to the modeling of discontinuous flows."

in Lectures in Applied Mathematics, Vol. 22 (1985), pp. 163-193.

Sweby, P.K., '"High resolution schemes using flux limiters for hyperbolic

conservation laws," SINUM, Vol. 21 (1984), pp. 995~1011.



PRESSURE

VELOCITY

47~

w o)
wn
@
e
[
~
) + +
0.00 12.45 16 .60 20.75 24.90
~
o
x
@+
]
8 . .
.00 12.45 16.50 20.75 24.90
J &
B [ ]
{L .}
= © ®
=T 2 q
[}
- @
lv
g + [}
o eea——
e ——— .%3»
I >
© , ® i
0.00 12.48 16.60 20.75 24.90

Figure 1.

Mac Cormack scheme.



PRESSURE

VELOCITY

DENSITY

1.85

~48~

8.30 12.45 16.60 20.75 24.90

w0
I.D.--
8 L]
'0.00 4.1§ 8.30 12.45 16.60 20.75 24.90
X
T [
[u]
2! S b
]
T ]
m
o i
. [
3 L
[«]
S [v]
G . "
0.00 4.15 8.30 12.45 16.60 20.75 24.90
X
Figure 2. The first order scheme.



49~

1.28 b N
J

0.7508 -

0.280 ~
-0.260 -

|

-0.750 -

-1.28 T

L L] L4 R
-1.00 -0.8C0 -0.200 0.200 0.800 1.00

Figure 3a. H6 (x:u) with a fixed

stencil i(j) = j.



-50-

1.28 -

0.760

0.250

-0.280

~0.7%0

-1.28 v T Y T =
-1.00 -0.000 -0.200 0.200 0.000 1.00

Figure 3b. He (x;U) with an adaptive
stencil (Algorithm II).



DENSITY

1.9

-51-

1.54

.23

VELOCITY

PRESSURE

Figure 4,

My .30 -muuf: s
1.8

1.

313 44*1
La

0.708

° 7 L2

.. -0.900 1.28 3.8

second order ENO scheme.




DENSITY

-52-

. k —ﬁ 1. 4
Q
P
1.08 4 02 E
b
(% S E 213 A
b -t
8
‘ J
s
o.522 h h Z ia :
< 3
-\ . X
o.281 E 0.708 4
ma——
. M T M T M 0. y T 2 r —
-4.90 2.90 -0.%08 1.10 .. 8.0 -4.90 -2.90 -0.908 1.10 3.10 5.10
1.3 3 s
1.2 k
= (X ) b
=
-]
7]
al
- 3
& g
p
0.308 R
0.2192-08 T g v g L—
-4, -2.99 -0.908 1.30 20 .

Figure 5. Fourth order ENO scheme.



7.80

-53-

AU/ h

T
9.200 0.600

-1.00 1.0 1.90 9.600 -0.200 0.200 0.400 100
(a) (b)
0.0
1.50
8.00
2.0
0.0008+00 T —— —r « 9.0 T
-1.00 6.600 0.200 ©.200 0.600 1.00 1.00 0.600 ©.200 0.200 0.600 1.00
(¢)
0.0
“w.0
i
w.0
2.0
(e)

T
0.0008+00 16.0

Figure 6.

T T T
1.0 .0 .0

solution of the IBVP (6.9)
at t=1l with J=8Q.




-54-

- s o] Au/h
150 3.5 J
(a) ®
e | Adv /b
1.%0 - P
Al
AR
.50 e ° )
[

(e)!

(e)

120.

0.000K +00 T .
0.000£+00 2.0 .0

Figure 7. Solution of the IBVP (6.9) at
£=1 witn J=160.

T M .
2.0 1. 160.



(d) = ] (max=-min=1l.67

—r—

Figure 8.

1.00 ‘| 9 9 T 00 7 Ve
(e) 1(j)
(a) n=0 20 -
helr — — — — — i
1.0 I
{
I
1. |
[
om0 |
i
|
0.000K+00 ,l ——
(C ) g(\)) 0.0008+00 0.200 0.400 0.400 0.800 1.00
1.67 -‘ n A Q N n Q n n ! " 0.2708+08 L) (M n " " A n Ql n
0.3 0.13852+08 |

(e) n= 20 (max=-min=2.7x104)

Mesh-oscillation initial data.



-56-~

- n n " n Q L) " Q Q) "

n= 20 1= 0 time= .0.000E+00Q dt= . **
cfl= 0'6885 osni= 4
eps= 0.1 -

. .. X

Y d)z X _M

7 6 -0.950 - .9999999E+00 0000 A

8 7 -0.850 0.1000000E+01

9 7 -0.750 -.9999991E+00

10 7 -0.650 0. 1000000E +01

11 11 -0.550 ~ . 1000000E+01

12 11 -0.450 0.9999993E+00 ]

13 11 -0.350 -.9999991E+00 0.0008+00

14 11 -0.250 0.1000001E+01

15 15 -0.150 - . 1000001E+01

16 15 -0.050 0.9999993E+00

17 15 0.050 - .9999996E+00

18 15 0.150 0.1000001E+01 om0 1

19 19 0.250 - .9999997E+00

20 20 0.350 0.1000001E+01

21 20 0.450 - ,9999995E+Q0

22 20 0.550 0.9999996E+00

23 20 0.650 - . 1000000E+01 1 1 1
24 21 0.750 0. 1000000E +01 deo o o0 020 0.30 0.600 1.00
25 25 0.850 - .1000001E+01

26 26 0.950 0.9999993E+00

(p) uo(x) (n=0)

(a) 1Initial data (numerical values)

0.0 1
0
w0
5.00
° v T T T v
.. 0.0008+00 400 8.00 2.0 1.0 2.0
(e) i(j)
o.87¢
14
N 0.9 1 /X
o.M 1
e
-0.308
0.8
-0.008
167 y v v T e -0.600 -0.200 0.200 0.600 1.00
00 -0.600 -0.200 0.200 0.600 1.0

) (e) ©0=2 (max=vu.174, min=-1.11)
(d) n=1 (max-1.46, min--1.67)

Figure Y. Randomly perturbed mesh-oscillation




0.3748-01

~0.4398-01

=57~

-0.203

-1.00

0.6862-01

0.3408-01 1

-0.2942-01

T T T T
-0.600 -0.200 0.200 0.400 1.t

(f) 1n=20 (max=0.118, min=-0,203

-0.611K-01
-1.00

0.4532-01 7

6.217-01 ]

-0.1762-03

-0.2838-01

-0.4078-02
-1.00

(i)

T T T T
-0.600 -0.300 0.200 0.600 1.00

(n) n=1l-- (max=0.0656, min=-0.0611)

y T T d
-0, 600 -0.200 a. 200 . 800 1.00

0=400 (max=0.0452, min=-0.0487) Figure 9.

°.ll“-°l“
©.%s¢2-01
-0.5442-03
-0.4942-01

-0.9M4E-01
-1,

(g)

0.5142-0%

0.2638-01 ]

-0.3672-01

T
-0.600

n=50 (max=0.0825, min=-0.0934

T T
-9.200 0.200

T
0.600

-0.520K-01
-1.00

(i) 0p=200 (max=0.0514, min=-0.0528)

-]

T
-0.200 ©.200

T

T
0.600

i

0.0008+00
0 Q00«00

Continued

(k)

T T
&= 8.0

i(j) for n=400




-58-

(¢) n = 200 (d) i(j) for m = 200

Figure l0. Initial data of randomly
perturbed sin (mx).




Table 1.

uo(x) = gin nx ; prescribed ata at x = -1, outflow at x =1,

CFL = 0.8 , t = 2.

Mesh-Refinement for ENO Schemes (IBVP)

r. is the "numerical order of accuracy."
J r =2 r. r=3 r. r =4 r. r=2>5 te r =256 L
8 1.602x107! 3.990x1072 1.846x1072 6.652x1073 8.481x1073
8': 1.08 3.12 2.91 5.04 6.28
w e 7.581x10"2 4.593x1073 2.447x1073 2.018x107% 1.091x107%
& 1.12 2.85 2.91 4.98 5.20
32 3.488x102 6.374x1074 3.251x107% 6.386x107° 2.972x1070
1.20 2.93 3.08 4.78 5.11
64 1.519x1072 8.35x107 3.845x107° 2.312x1077 8.620x1078
B 8 1.374x107! 3.378x1072 1.335x1072 8.691x1073 6.632x1073
7 1.68 39 3.43 5,29 6.34
ré' 16 4.299x1072 3.697x1073 1.234x1073 2.227x107% 8.209x107°
) 1.67 o jo.ss 3.66 5.13 6.39
32 1.354x1072 5.166x107% 9.742x107° 6.373x107° 9.807x1077
1.76 2.88 3.76 5.18 6.01
64 3.995x1073 6.994x1072 7.201x1070 1.763x1077 1.524x1078

-6g-
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Table 2. Mesh Refinement for 4=th Order ENO with Exponential Data.
u +u =0, u(x,0) = e u(-1,6) = e ', outflow BC at x=1.
CFL = 0.4 , t =1,
J 20 40 80 160 320 640
L, -error | 5.063x107% | 3.968x107™% | 4.148x107* | 1.986x1070 | 2.648x107% 5.060x10”7
L -error 2.905x107 | 1.664x107% | 9.132x1075 | 9.257x1076 | 9.648x1077 1.737x1078
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