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CHAPTER 1
INTRODUCTION
I. Two-Dimensional Thrust Reversing and Vectoring Nozzles

Two-dimensional nozzles have many advantages for
fighter aircraft over conventional axisymmetric nozzles.
Two-dimensional nozzles can be more easily faired to the
airframe and their use, on twin engine aircraft, eliminates
the high aft end drag from the "gutter" region between
axisymmetric nozzles. 1In addition, two~dimensional nozzles
can be adapted to thrust reversing and/or thrust vectoring
with less weight penalty than conventional axisymmetric
nozzles.

Thrust reversing and thrust vectoring capabilities are
likely to be required of future fighter aircraft. The use
of thrust reversal on landing reduces landing roll and the
use of thrust vectoring for propulsive lift can reduce both
takeoff and landing rolls. This short takeoff and landing
capability is important for operation from bomb damaged

runways.

Thrust vectoring and reversing may also be used during




flight to increase the aircraft's maneuverability. Thrust
reversing can modulate the thrust with no spool-up delays,
and thrust vectoring on aircraft with aft mounted nozzles is
an effective alternative pitch control. This latter
capability is important because experimental studies have
shown considerable loss of elevator effectiveness on some
configurations when in-flight thrust reversing is used.

The design of two-dimensional thrust reversing and
thrust vectoring nozzles requires considerable understanding
of nozzle internal flow fields. For example, if theré were
large variations in nozzle discharge coefficients during
thrust reverser deployment it could adversly affect the
engine performance by causing a mismatch between the choked
turbine entry area and the effective area of the choked
main nozzle. Currently, most thrust reversing nozzles are
designed experimentally. This dissertation
describes computational procedures developed for the

analysis of thrust reversing and thrust vectoring nozzles.

II. Nature of Flow Field

There are many types of two-dimensional nozzles under
investigation. The most common of these are convergent
divergent (CD) nozzles, wedge nozzles, and single expansion
ramp nozzles (SERN). This investigation deals with thrust

reversing and thrust vectoring of two-dimensional convergent




divergent nozzles (2DCD).

A typical 2DCD nozzle with thrust reversing and thrust
vectoring is depicted in Figure 1l.1. The gas enters the
nozzle subsonically and accelerates to transonic speeds as
it enters one of the three exit ports. The gas then leaves
the nozzle in a supersonic jet which interacts with the
ambient flow. Furthermore, there is often a separation
bubble located on the forward wall of the reverser ports
near the sharp corners.

Within two-dimensional nozzles the flow is confined by
the nozzle sidewalls. There are three-dimensional affects,
due primarily to the boundary layers on the nozzle
sidewalls, but these can generally be neglected when the
nozzle is of high aspect ratio. Once the flow exits the
nozzle, however, it is no longer confined in the lateral
direction and the resulting expansion can significantly
affect the flow within the jet. These three-dimensional
effects are small near the nozzle exit but will become more
significant as the distance from the exit increases.

The principal concern of this investigation is the flow
within the nozzle. However, for many nozzle geometries the
flow at the exit plane is subsonic and the nozzle internal
flow is dependent on the external flow. In these cases the
external flow field must be calculated. For all cases the

flow is assumed to be two-dimensional. This is a good



assumption for the internal flow and external flow near the
nozzle exit. This assumption, however, will cause
inaccuracies in the external flow far from the nozzle.
Since the results near the nozzle exit are fairly accurate
the two-dimensional assumption is believed to bé acceptable
for modelling the effect of external flow on the internal
flow.

Since the flow is transonic and contains boundary layer
separation the effects of both compressibility and
viscosity must be included in the mathematical model. For
this reason the two-dimensional compressible Navier-Stokes
equations are solved. These equations are given in Chapter

2, Section I.

III. Related Research

There have been many experimental studies of 2DCD
nozzles with thrust reversing and thrust vectoring. Most
are concerned with gross performance parameters such
as discharge coefficient and thrust. Two examples are the
work of Re and Leavitt (Reference 1) and Carson, Capone, and
Mason (Reference 2). Re and Leavitt studied the static
internal performance of fully deployed thrust reversing
nozzles, as well as non-reversing nozzles. Caréon, Capone,
and Mason studied the aeropropulsive characteristics of

partially and fully deployed thrust reversing nozzles




including one partially deployed nozzle with thrust
vectoring.

More information concerning the flow field within a
thrust reversing nozzle is obtained from the measurements of
Putnam and Strong (Reference 3). They measured static
pressures along the sidewall, the blocker, and the flap
(including the forward wall of the reverser port) of a fully
deployed thrust reversing nozzle. The measurements were
made with an external ambient Mach number of zero for a
range of nozzle pressure ratios, from two to eight.

Several computer programs have been written to solve
the Navier-Stokes equations for flow within conventional
nozzle configurations. Cline (Reference 4) developed a
computer program, VNAP, which solved the two-dimensional or
axisymmetric Navier-Stokes equations using the 1969
MacCormack explicit finite difference method. This program
divides the mesh into two zones so that the mixing of two
streams can be calculated. Unfortunately, one set of mesh
lines must always remain vertical, thus limiting the amount
of geometric turning which may be calculated. VNAP is not
applicable to thrust reversing nozzles since such nozzles
invariably have large turning angles.

Peery and Forester (Reference 16) developed a finite
volume computer program which also used the 1969 MacCormack

explicit method. This program utilizes three zones and a




generalized nonorthogonal mesh to calculate the mixing of
three streams. While this code could, in principle, be
applied to thrust reverser flow fields, no attempt has been
made to do so.

Both of the above computer programs solve the Navier-
Stokes equations using an explicit time marching method.
Explicit methods are limited by stability to very small time
steps which are proportional to the smallest mesh spacing
used. For viscous flow problems the mesh must be refined
near the wall to resolve the boundary layer profile. As a
result, explicit methods become very inefficient for viscous
problems because tens of thousands of time steps are
required to obtain steady state solutions. Recently,
implicit methods have been developed which overcome this
time step limitation.

Goldberg, Gorski, and Chakravarthy (Reference 5) have
developed a computer program for axisymmetric afterbody
flows. This program utilizes a new implicit method which is
similar to the method presented in this dissertation. The
program uses an implicit upwind method, with line Gauss
Seidel relaxation, to.solve the Navier-Stokes equations on
a single 2zone mesh. Since this program does not have
multiple zone capability it would have limited application
to thrust reversing nozzles.

No previous investigators have attempted to solve the




Navier-Stokes equations for flow with a thrust reversing

nozzle.

IV. Contributions of this Research

A typical thrust reverser flow is very demanding of a
numerical method. Thrust reverser flows, by nature, involve
very large turning angles (greater than 90 degrees) and
rapid expansions. Also, since the thrust reverser is a
secondary configuration, thrust reversers often contain
sharp corners where two sections of the baseline forward
thrust nozzle wall join. Near these sharp corners the rapid
expansion (with pressure ratios up to five) and 1large
turning angles lead to numerical difficulties comparable to
(or worse than) those encountered while capturing strong
shock waves. The contributions of this research are
identifying and overcoming these difficulties.

For reasons given in the previous section, it was
decided at the start of this investigation that an implicit
method was required if the resulting program was to be
efficient. 1In theory implicit methods have no time step
restrictions. However, implicit methods require the
approximate solution of a very large system of linear
algebraic equations. Conventional implicit methods
approximately factor the coefficient matrix for this system

into the product of two or more simpler matrices whose




systems may be efficiently solved using direct methods.
This approximate factorization leads to an error which is
small for most flows but significant for thrust reverser
flows. Our attempts to use various approximate
factorizations all 1led to wunacceptable time step
restrictions. The first contribution of this research is
identifying the approximate factorization as the cause of
this time step restriction. This problem was overcome by
solving the system iteratively using line Gauss-Seidel
relaxation.

The next contribution concerns adapting the solution
procedure to the complex solution domain found in thrust
reversing nozzles. Efficient implementation of the line
Gauss~-Seidel relaxation requires computationally simple
meshes (meshes that may be mapped into a rectangular
domain). Unfortunately, a single simple mesh cannot easily
be generated for thrust reverser flow fields like that in
Figure 1.1. The solution is to break the flow field into as
many as four zones, each of which is descretized by a simple
mesh. With a zonal approach such as this, care must be
taken to insure that the solution procedure is consistent
across zonal boundaries. This author believes that this is
the first time a zonal procedure has been utilized with a

Gauss-Seidel implicit method.
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V. Outline of this Research

The goal of this research effort was to develop a
computer program to calculate the viscous compressible flow
through a two-dimensional convergent-divergent thrust
reversing and thrust vectoring nozzle like that shown in
Figure l.1. This requires the solution of the compressible
Navier-Stokes equations which are presented in integral
form in Chapter 2, Section I. These equations are modified
for time varying meshes in Section II so that the transient
flows due to the nozzle reconfiguration may be studied.
Section III presents the algebraic eddy viscosity model used
to model turbulent flows.

The solution of the Navier-Stokes equations requires
considerable computer time and an inefficient solution
procedure may result in such long run times that its use is
impractical. For this reason an implicit method was chosen
over explicit methods. Chapter 3 presents the solution
procedure used.

Implicit methods generally require that the mesh be
such that it can be mapped into a rectangular domain.
Unfortunately, it is very difficult to generate one such
mesh for the entire flow field in a thrust reversing nozzle
(Figure 1.1). The alternative is to divide the flow field
into zones for which simple meshes can be generated. The

solution procedure is applied to each mesh individually and
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the zonal solutions are coupled at the zonal interfaces.
The overall mesh topology and the mesh generation procedure
for each zone are described in Section II of Chapter 3.

Section III through V of Chapter 3 present the implicit
finite volume method used in the interior of the flow field.
Sections VI and VII discuss the treatment of the boundary
conditions. Section VIII of Chapter 3 discusses the
solution of the large system of linear algebraic equations
resulting from the implicit finite volume method. This is
one area where this work differs significantly from most
previous research. Most previous investigations used
approximate factorization to solve this large system of
algebraic equations. 1In Section VIII of Chapter 3, it is
shown that the standard approximate factorization method
performs poorly for the thrust reversing nozzle flows. As a
result, the linear system of equations is solved using a
line Gauss~-Seidel relaxation method which is shown to
perform dramatically better than the standard approximate
factorization,

In Section IX of Chapter 3, the accuracy and stability
of the method is analyzed for the model equation. When
explicit, it is shown to be second-order accurate. When
fully implicit it is shown to be first-order accurate in
time, second-order accurate in space, and unconditionally

stable.
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In Chapter 4 , the results are presented for five
nozzle test cases. In Section I the results for a fully
deployed nozzle are presented and compared with the
experimental results of Re and Leavitt (Reference 1) and
Putnam and Strong (Reference 3). The calculated discharge
coefficient compares very well with the experimental results
with the largest error being four percent. The calculated
pressure field also compares well with the experimental
results, except near the forward wall of the reverser port
where the pressure is overestimated. This discrepancy
causes the amount of reverse thrust to be underestimated by
nearly 15 percent of the ideal thrust when the calculation
is second order accurate. Numerical dissipation, the
turbulence model, and three dimensional effects are all
believed to contribute to this discrepancy.

In Sections II and III of Chapter 4, results are

o
and

presented for a 549 petCent deployed nozzle with both @
15° of vectoring. Results are compared with the
experimental data of Carson, Capone and Mason (Reference 2).
In both cases a coarse mesh was used and the resulting
numerical dissipation led to an underestimation of the
discharge coefficient. Both calculations were initially
first-order accurate which resulted in errors of 21 percent

in the discharge coefficient. The unvectored case was then

run second-order accurate and the error was reduced to seven
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percent. In both cases, the normalized thrust compares
surprisingly well with experimental data.

Section IV presents the results for a transient change
in thrust vectoring angle and Section V the results for a
transient change'in thrust reverser deployment. No

experimental data is available for these cases, but the

results look qualitatively correct.




13

1304

o ‘PIaTIMO
212zZON buriojzoap 3Isnay] pue bUISIaAdY ISNIYY, Hmoﬁmﬂ\%e I°1 eanhbryg

1J0d J3SJIAIY JOA0T]

A\

\J3%3018

Arepunog

-
04

ISNJYL pIeals MO JU]
A@%&/\Q\\\
/ o1
S/ /

— uorjesedag Jake] Asepunog

1304 JasJaAay Jadd()




CHAPTER 2
Mathematical Model

I. Navier-Stokes Equation

The two-~dimensional Navier-Stokes equations are a set
of four coupled nonlineér partial differential equations
that model the flow of viscous, compressible heat-conducting
fluids., These equations are derived by application of the

principles of conservation of mass, momentum, and energy.

The equations can be written in integral form,

d = - ~
Hﬁdv+ ﬁ-nds—ﬁ,

v S (2.1)

where V is an arbitrary volume, S is the surface surrounding

V, and n is the unit vector outward normal to S. Also

P=F Ix + G 1y (2.2)
where _ _
P
U = pu
pv
. E (2.3 a)
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F = pu2 + P + 7T and
XX !
puv + Txy
I (E + P + ‘rxx)u + rxyv * a4y (2.3 b)
G = pvu + Tyx
2
vi + P + T
P Yy
u+ (E+ P+ T v + .
] Tyx ( YY) qX_ (2.3 c)

The variables p, u, v, P, and E are defined below.

p - density

u - component of velocity in x-coordinate direction
v - component of velocity in y-coordinate direction
P - pressure

E - volume specific total energy
The volqme specific total energy, E, is related to the mass
specific internal energy e, the density p, and the velocity
by the following equation.

E = ple + 8.5(u + v?)] (2.4)
The pressure is related to the density and specific internal
energy by the equations of state,

P =P(p,e), (2.5)
which is taken to be the ideal gas law.

P = p(y-1l)e (2.6)

The gas is also assumed to be calorically perfect so that

specific internal energy is proportional to the temperature,
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T, with the constant of proportionality being the specific

heat at constant volume.

e = ¢C
vT

(2.7)

The specific heat at constant volume, Cyr is assumed to be a

constant equal to 4290.0 ftz/szoR, and the ratio of specific

heats, Y, is assumed to be a constant equal to 1l.4.

To facilitate the development of the solution

procedure, the contributions to the fluxes from the inviscid

terms , FI,

separately.

F = FI + FD

GI + GD

(9]
]

pu

F_ = pu2 + P G, =

puv

[(E+P)u

(2.8 a)

D XX D

TXy

+ +
R Txxu Txyv q

(2.9 a)

Xd

The variables LI Txy' Tyx' and

and the diffusion terms, F

D’ are considered

pv
pvu

pv2 + P

_(E+P)v

-

(2.8 b)

2
T
¥X

TYY

+ T .V +
| TyxM vy dy_

(2.9 b)

Tyy are viscous stress
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terms which are defined in terms of the derivatives of the

velocity components.

= ou T

TXX = -2 “TX- - AVV (2.190 a)

v T

- —2 —— - .V L]

ryy M 3y AV (2.16 b)
_ - Ju av

TXY = TYX = “(_ay + ——ax) (2.18 c)

= _ odu av
Vv = 3% N (2.19 4)

The variables dy and qy are heat flux terms which are given

in terms of derivatives of temperature.

q, = - k %% (2.11 a)
aT

= - k — . b

qy 3y (2.11 b)

The viscosity coefficients,X and u, are related through

the bulk viscosity, K.

_ 2
K—§“ + A

The bulk viscosity is negligible except in the study of the

(2.12)

structure of shock waves so
_ 2
A = - 3“ (2.13)
The coefficient of viscosity, pmw, 1s related to the

temperature by Sutherland's empirical formula for air,

4 _ (T,3/2T.+ 198.6)

T~ T, T + 198.6

where the temperature is expressed in degrees Rankine and
u_ is the reference viscosity at the reference temperature,

TO. The coefficient of thermal conductivity, k, is obtained

from the expression for the Prandtl number,

Pr = %’—“ (2.15)

where Pr is assumed to be a constant equal to 0.72 for

(2.14)
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laminar flow.

Il1. Modified Form for Moving Mesh
For problems with moving meshes it is convenient to use
a modified form of these equations. By the Reynolds

Transport Theorem the first term in equation 2.1 is expanded

as follows.

2 ) au . _
at [U dv = /atdv * fU Vsurface °19s

v v S (2.16)

Substituting this into the integral form of the Navier-

Stokes equations (eduation 2.1) gives

U , - —
fﬁ av + ﬁp + v Vsm:face)'n ds = D

v S (2.17)

where Vsurface is the velocity of the surface in the
direction of the unit outer normal, n. Defining a moving
mesh flux function,

Py =P+ UV | face , (2.18)

Y S (2.19)
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I1II. Turbulence Model

For turbulent flow calculations the mass-weighted
Reynold's averaged Navier-Stokes equations are used
(Reference 6). These are the standard equations obtained by
writing the variables in the Navier-Stokes as the sum of a
time averaged quantity and a fluctuating quantity. The
resulting equations are then averaged and the Boussinesqg
approximation is applied to the resulting Reynolds stresses.
The result is a set of equations identical in form to the
equations in section I except that the viscosity and heat
conduction coefficients become the sum of their laminar
values with new turbulent coefficients.

B= Bt B

k = k;, + k
Here e is called the eddy viscosity and kt is called the
turbulent conductivity.

For wall boundary layers, the eddy viscosity is
obtained from an algebraic two-layer eddy viscosity model
developed by Baldwin and Lomax (Reference 7). In the

model, the eddy viscosity, My is given by

: ]
( “t) lnner Y 5 Y crossover

]
( u_ ) outer y' >y crossover

t
(2.20)

where y' is the normal distance from the wall and
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Y crossover .S the smallest value of y' for which ( g )inner

= ( ﬂt)outer.

For the inner layer the Prandtl-van Driest formulation

is used.
( u)inner = p12|w| (2.21)

In this equation p is the density, 1 is a length scale, and

w is the vorticity.

2u _ v
3y % (2.22)

The length scale is give by

@ =

1 =k y'[1l - exp(—y+/A+)] (2.23)
where y+ is given in terms of density, shear stress, and

viscosity at the wall.,

+ _VPwTw y'
y = T (2.24)

In the outer region the eddy viscosity is calculated

with the following formula.

- ]
( ut)outer K CCP P FunkE FKLEB(Y ) (2.25)
Here K is the Clauser constant and FWAKE is obtained from
_ 2
Fuake = MIN{Yyay Fuaxs Cux Ymax Uprre’/Fuax!- (2.26)
The terms YMAX and FMAX are obtained from
F(y') = y' |w| [1 - exp(-y'/a")] . (2.27)

where FMAX is the maximum value of F(y') in the boundary

layer profile and YMax is the value of y' at which FMAX

occurs. The term Uy .. is simply the square of the maximum

total velocity, UiAx' for boundary layer flows. Finally,

the function FKLEB(Y') is the Klebanoff intermittency
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factor.
C y' -1
Feppp(¥') = (1 + 5.5 ( KLEB__ 6
, Yumax (2.28)

The constants used in the above formulas are those

recommended by Baldwin and Lomax (Reference 7).

at = 26

CCP =1.6
CkLep - 2-3

k = 0.4

K = @.0168

The above turbulence model is implemented for each of
the interior walls of the nozzle as well as the exterior
nozzle surfaces. For application to an interior wall the
testing for UMAx and Fyax OCcurs along a column of cells as
shown in Figure 2.1. This testing occurs from the wall to
the point half way to the opposite wall (half way in terms
of number of cells). The spacial derivatives of u and v in
the expression for the vorticity are calculated using a
numerical transformation described completely.in the
discussion of the diffusion terms in Chapter 3, Section IV.

The Baldwin Lomax model is also used for the jets

emanating from each nozzle exit port. For the jets the

outer formulation is used with
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2
wk%max” |9l max

&)
|

WAKE = C (2.29 a)

and

Fergg = 1 - (2.29 b)

Equations 2.29 are utilized with equation 2.25 to obtain the
eddy viscosities for the jet at each station downstream of
the nozzle exit.

In the external flow the results from the jet
turbulence model must somehow be blended with the results
from the wall turbulence model. This is done by giving each
model a domain which it influences as shown in Figure 2.2.
At the nozzle exit the jet model is used for only those
cells adjacent to interior cells. Fér the rest of the cells
in this column the eddy viscosities are obtained from the
wall turbulence model. At each successive column of cells
outward from the nozzle the domain for the jet model widens
by two cells (one on either side of the jet). After six
columns the spreading of the jet model increases by four
cells per column. The wall turbulence model dominates near
the nozzle (except at the nozzle exits) and the jet model
dominates far from the nozzle.

Once the eddy viscosity is known turbulent conductivity

is obtained from

kt = M Cp/Prt (2.30)




where Pr

t
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is the turbulent Prandtl number. As recommended by

Baldwin and Lomax (Reference 7) the turbulent Prandtl number

is taken as 8.9.
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Figure 2.1 Domains of Influence for Each Wall Turbulence
Model.
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CHAPTER 3
SOLUTION PROCEDURE

I. Preliminary Comments

This chapter describes the numerical procedure
developed for solving the Navier-Stokes equations for thrust
reversing and thrust vectoring nozzle flows. Thrust
reversing nozzle flows provide difficulties not encountered
with more conventional nozzles. Typically thrust reversing
nozzles have sharp corners resulting from the separating of
the smoothly faired walls present in the cruise
configuration. Near sharp corners the mesh must be refined
in two nearly perpendicular directions. This leads to
unacceptable time step restrictions for conventional
implicit finite difference methods. The numerical
procedures presented in this chapter were developed to
overcome these difficulties.

Section II describes the mesh topology and mesh
generation procedure. The mesh is broken into as many as
four zones to facilitate the application of boundary

conditions and make efficient use of computer memory.
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Section III evaluates the time derivative using a
predictor-corrector method and presents the basic finite
volume equations. These equations require the evaluation of
the fluxes through each of the four faces surrounding an
arbitrary quadrilateral finite volume. Sections IV through
VI consider the approximate evaluation of these fluxes.

Section VII presents the application of the boundary
conditions. Section VIII discusses the solution of the
large system of linear algebraic equations that result from
the implicit difference method. It is shown that the
popular approximate factorization method yields unacceptable
results for thrust reverser flows and a line relaxation
procedure is adopted. Finally, Section IX provides an
accuracy and stability analysis for the solution procedure

applied to a linear scaler wave equation.

II. Discretization of the Flow Field

The flow field under consideration is discretized into
a large number of finite volume cells. 1In two dimensions
these finite volumes are arbitrary quadrilaterals which are
described completely by the x,y-coordinates of their four
corner points. Within the computer program, the mean value
of the conservative variables, U, within a cell and the
corner point coordinates are stored in terms of indices i

and j. Cell i,j, containing U, 30 is defined by the x,y-

’
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coordinates with indices i,j, i+1,j, i,3j+1, and i+l,j+1l.

On a larger scale, the mesh for the thrust reversing
and thrust vectoring nozzle program is divided into as many
as four zones--one zone for each of three possible internal
flow ports and a zone for the exterior flow as shown in
Figure 3.1. The mesh is generated such that mesh lines are
continuous across the zonal interfaces. A single set of i
and j indices are used to specify cell locations within all
the internal zones as shown in Figure 3.1 b stacked on top
of one another. Each must have the same number of columns,
given by the i index. The mesh cell locations in the
external flow zone are specified by a separate set of
indices, ie and je. The outer zone mesh lines must be
continuous with the internal zone, but the external zone is
not required to have the same number of columns as the
internal =zones.

The mesh for each interior zone is generated from cell
coordinate data input along the lower and upper boundaries
of the zone and, optionally, also along an arbitrary
dividing line extending from the inflow boundary to the
outflow boundary. 1If the zone has a dividing line, the line
divides the zone into two regions for mesh generation
purposes. Otherwise the zone is a single region. An
example region is shown in Figure 3.2. The mesh 1is

generated for this region using a simple algebraic process:
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1) all corner points for agiven i-index within a region
lie along a line segment connecting the points input for
that i-index on the upper and lower boundaries, and

2) the position of an i,j corner point along the 1line

segment is given by the relation

- L (3.1)

where 1, L, 11, and LI are defined in Figure 3.2.

The mesh for the external zone is generated somewhat
differently. The external 2zone can also be broken into two
regions as with an internal zone. However, the dividing
line for the exterior mesh becomes an ie=constant mesh
line, whereas the dividing line for the interior zone
becomes a j=constant mesh line. Also, for the interior
zones, corner point coordinates are given along only three
of the boundaries of a region where, for the exterior =zone,
corner point coordinates are given for all four boundaries
of a region., 1In this case the mesh is generated for each
region using a modified algebraic process:

1) all corner points for a given Jje index within a
region lie along a line segment connecting the points input
for that je index along the inner and outer boundaries of
the region, and

2) the position of an ie,je corner point along the line

segment is given by the relation
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1 1
L a u

>l
-
o

where a is the arclength along the inner boundary of the
region to point je, A is the total arclength of the inner

boundary of the region, and 1, L, 1 L

v Lpe lu’ and Lu are all

defined in Figure 3.3.

ITI. Approximation of the Time Derivative

The Navier-Stokes equations, when applied to a finite

volume cell, become

du. .
1.,] .38 D.8) =
( I ) Voli'j + D, (p.-S) + Dj (P-S) ) (3.3)
where
D, (P-8) = P-Si+l/2'j P'Si-l/z,j (3.4 a)
Dj (P-8) = P’Si,j+1/2 - 'Si,j¥1/2 (3.4 b)

and the surface vectors are always oriented in the positive
i or j directions as shown in Figure 3.4. If the mesh is
mov ing the equation is the same. except that P is replaced by
§M as defined in Chapter 2, Section II.

The time derivative is approximated with MacCormack's

predictor-corrector method (Reference 8).

Predictor
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Corrector
n+l n n+1l
. = 9.5 . .+ UL
Ull] ¢ UllJ 1,3

FoT——) [p; ®-5)° + b, (@5}
ted (3.5 b)

Note the superscripts p and c¢c on the flux terms. These
indicate that the fluxes may be evaluated differently on the
predictor and corrector steps. In fact, the way in which
the fluxes are evaluated in terms of the U, j determines the

14

type of method that is used.

IV. Explicit Contribution
Equations 3.5 do not specify how the fluxes are to be
evaluated. 1If the values of the conservative variables were
known at the surface of each cell (e.g. at i+1/2), the flux
could be obtained simply from equations (2.2) and (2.3).
Unfortunately, only the mean value of the solution within
each cell is known. The flux through a surface must
therefore be approximated from the mean values of the
solution within neighboring cells. 1In general the flux is
evaluated using both the solution at the current time level,
nc, and the solution being sought at the new time level, nn.
This section considers the explicit contribution - the
contribution from the current time level.

The inviscid terms and diffusion terms contribute

substantially different characteristics to the Navier-Stokes
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equations. In the limit as the Reynolds number goes to
infinity the inviscid terms dominate and the equations are
hyperbolic in time. 1In this case information concerning a
disturgance in the flow field is propagated at a finite rate
in a manner described by the theory of characteristics. It
is therefore appropriate to incorporate the theory of
characteristics into the approximation of the inviscid flux
through a surface. 1In the limit as the Reynolds number goes
to zero the diffusion terms dominate and the equations are
parabolic in time., The approximation of the surface flux
due to the diffusion terﬁs should reflect the parabolic

naturé of these terms. This section will consider the

treatment of the inviscid terms first followed by the

treatment of the diffusion terms.

Inviscid Surface Fluxes

The inviscid flux is evaluated using a second-order
flux vector splitting which is based, ultimately, on the
1969 MacCormack method. Three approximations to the surface
flux are presented here; the 1969 MacCormack method, its
extension to first-order flux vector splitting, and its
extension to second-order flux vector splitting.

1969 MacCormack Method

In the 1969 MacCormack explicit method (Reference 9)

the fluxes are evaluated at the latest known time level

using, alternately, the value of P on either side of the




-t T

surface. For the i+l1/2 and j+1/2 surfaces

i _ snc
(P-5)i41/2 = Pii,;
=nc

S
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i+l/2

i,33°%3+1/2

where nc is the current time level,

either i or i+l, and 3jj

is an index which

(Figure 3.4)

(3.6 a)

(3.6 b)

ii is an index which is

is either j or

j+l. These indices run through a cycle every four steps as

shown in table 3.1.

For a subsonic flow, where information can travel in

either direction, the 1969 MacCormack method violates the

physical domain of dependence on the predictor and corrector

steps individually, buf satisfies the physical domain of

dependence collectively.

n ii 33 np nn

1 Predictor i+l j+1 n n+l
Corrector i i n+l n+l

2 Predictor i j+1 n n+l
Corrector i+l | n+l n+l

3 Predictor i+l 3 n n+l
Corrector i j+l n+l n+l

4 Predictor i J n n+l
Corrector i+l j+1 n+l n+l

Table 3.1 Cycle of Indicies
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First-Order Flux Vector Splitting

In general the surface flux should be some nonlinear
function of the solution on either side of the surface. To
determine an appropriate approximate function it is
instructive to look at the eigensystem of the Jacobian

matrix. First of all, the flux vector is homogeneous of

degree one in the elements of U.

= =, _ r98(P-8) _
(P:-S) = [—a—[-]—] = AU (3.7)

The Jacobian can be diagonalized by a similarity

transformation

a = g7 lsTlA s R T |S] (3.8)

where S,R, and T are matrices given in appendix A, A is a

diagonal matrix containing the eigenvalues of the Jacobian

matrix

A = u'+c (3.9)

and u' is the component of velocity in the § direction.

The eigenvalues of the Jacobian matrix are the speed at
which information is propogated in the S direction and a
negative sign indicates propagation of information in the
direction opposite to §. Figure 3.5 illustrates the

propagation of information in the § direction for both
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subsonic and supersonic flows. The arrows are the local
time-dependent characteristics whose slope are given by the
eigenvalues of A, Following Steger and Warming (Reference
19) the Jacobian matrix is taken as the sum of two matrices,
one containing the positive eigenvalues and the other the

negative eigenvalues.

at = rIr7 sl At s koD (3.10 a)

2" = tIr7ls™l AT s kT (3.18 b)
+ . + + + +

A = diag ( kl, kl, x3, k4) (3.11 a)
l\- - dlag \ J\I, 1\1, ;, l;) (3.11 b)
+ _ Ak + || - _ A - Ak

)\k = 2 r kk - 2 (3011 C,d)

The flux is then evaluated approximately by multiplying the
matrix of posi@}!gieigenvalues, A+, by the solution to the
left of the face, and the matrix of negative eigenvalues,

A", by the solution to the right of the face.

= = + _.nc - ..nc
(P.S)i+l/2 = A Ui,j + A Ui+l,j (3.12)
. + - i nc P
The Jacobians, A and A , are calculated using Ui 3 where
’

nc and ii go through the cycle in table 3.1.

=.a)EFS _ +,nc n -, nc nc
= =,FS +.nc nc -, nc nc

. . = . .. U, . + (A . .. UL 3.13 b
(P S)J+l/2 (& )1,33 i,] ( )1,33 i,3+1 ( )
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Note that both the positive and negative Jacobians are
calculated alternately using the values of the solution on
either side of the surface (i and i+l for the i+l1/2 surface,
or j and j+1 for the j+1/2 surface). This is in contrast to
the flux vector splitting of Steger and Warming, (Reference
16), where A" is evaluated using U, . and a% is

i+1/2 , 3 i+1/2

evaluated using Ui+l,j' As shown in Figure 3.6, the Steger
and Warming splitting results in five characteristics
converging on a shock wave and only three characteristics
converging on a sonic point., Thus the flux at a shock wave
is overspecified and the flux at a sonic point 1is
underspecified. Calculating both Jacobians using the same
value of U eliminates this problem.

An additional advantage of this approach is that it
allows a convenient extension of the 1969 MacCormack scheme

to flux splitting. The 1969 MacCormack fluxes through the

i+1/2 face, equations 3.6, may be rewritten as follows.

—i. (5.3y1969 _ snc ¢ - +,nc¢ -, nc nc
ii=i: (P s)”l/2 Pi’j si+l/2 [(a )i,j+(A )i’j]Ui,j
(3.14 a)
_ . 5 =,1969 _ snc =
1i=i+l: (P+S)7 175 = Piyy, 551412
_ +,nc -, nc nc
= [(A )i+l,j + (A )i+1,j]Ui+l,j (3.14 b)

Comparing these equations to equations 3.13 reveal that
the fluxes for first-order flux vector splitting may be

written as the 1969 MacCormack fluxes plus a second-order
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smoothing term.

Ce_ 5.3, FS 5.3y1969 -.n n _ 0
ii=1 (P S)i+l/2 (P S)i+l/2 (A )i,j[Ui+l,j Ui,j
(13.15 a)
CL 5.3, FS - (5.3y1969
+.n+l n+l n+l
(A )i+1,j[Ui+1,j - Ui,jl (13.15 b)

Clearly, the first-order flux splitting is more
dissipative than the 1969 MacCormack method. As a result
the first-order flux splitting is considerably more robust
than the 1969 MacCormack method,vbut less accurate. The
first-order accurate method has other numerical advantages
when used in an implicit method. These will be discussed
later.

Second-Order Flux Vector Splitting

The accuracy of the flux split method can be improved
to second-order by using better approximations for U at the
surface. As shown in Figure 3.7, first-order flux vector
splitting is equivalent to a zeroth-order extrapolation of
the solution, U, from the neighboring cell centers to the
surface. Second-order accuracy 1is obtained by using a
linear extrapolation instead (for simplicity the Jacobians

are evaluated as they were for the first-order flux

splitting).

FS2
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= FS2 +,nc¢ - nc +
(P-S). (a’), .. (U ). + (A ), .. (U,
j+l/2 i,33 j*+l/2 i,33 3*1/2 (3 14 p)
where
-, nc _ .nc - nc _ ,nc
(U )ie/2 = Ui,y * $i:1/2 (Ui,j Ui-l,j) (3.17 a)
+,nc _ ..nc + nc _ phc
(U )i+l/2 - Ui+1,j * ¢i+1/2 (Ui+l’j Ui+2,j) (3.17 b)

As with the first-order flux vector splitting this 1is

obtained as terms that are added onto the 1969 MacCormack

method.
. _:. (3 =yEFS2 _ (3 =,1969 -,nc nc _ poc
ii=i: (P S)i+l/2 = (P S)1+1/2 + (A )i,j[ iv1, 3 Ui,j]
- +,nc nc nc
t b2 5005 - Uy ]
+ ~-.nc nc nc
912 ) 5105 5 T Ui, 5] (3.18 a)
.. = = FS2 = =,1969
+.nc nc nc
- A0 305,57 Y]
- +,ncC nc nc
%12 Vi51,3095,5 - Yoy, 4]
+ -.nc nc nc
%iv1,2® Vis1,30%41,5 7 Yisz, ] (3.18 b)
. . - +
For a mesh with constant spacing ¢i+l/2 and ¢i+l/2

are both #.5. For a mesh without constant spacing there is
a choice. The extrapolation can be carried out in physical
(x,y) space where the extrapolation would depend upon the

stretching, or it may be carried out in computational (i,j)

-

+
space where the values of ¢i+l/2 and ¢i+l/2

The latter case is much simpler and is used here.

remain 0.5.

Use of the second-order method presented above will
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result in oscillations near shock waves, rapid expansions,
and mesh discontinuities. These oscillations lead to
instabilities near the sharp corner of the thrust reversing
nozzle when large time steps are taken. A commonly used
method for eliminating these instabilities is flux limiting.
Wwith flux limiting the magnitude of the second-order
contribution is reduced'in regions of large gradients. The
flux limiter used here reduces the coefficients ¢;+l/2 and

¢+ by a term proportional to the first and second

i+l1/2
differences of pressure

¢;+1/2 = max(8.0,80.5 -~ CLIM ) (3.19 a)
¢;+1/2 = max(6.6,0.5 - CLIM') (3.19 b)
where
cLIN = [Pjyy =~ 285 + Byl 1Py - By
Py, + 2P + Py o) (Pyy + Py (3.26 a)
et - [P,y = 225, * Byl . IPiyy = Pyl
(Pi,p * 2P;, + By) (P + Py) (3.20 b)

This form of flux limiting is equivalent to adding a fourth-

order smoothing term to the second-order flux split method.

Diffusion Surface Fluxes

The viscous stress and heat conduction terms for a cell
surface, equations 2.9, require the evaluation of spacial
derivatives of velocity and temperature. These derivatives

may be obtained from a generalized transformation.
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[2u ax  ay | [au

&l . ¥ & ax (3.21)
au 9% 3y ou

on an aIn oy

- -1

au 2% ay au 2u

oxy . f% % o - {Ej 3 (3.22)
oy 29X 9y oy ou

3y an  om an an

Here { and n are the coordinate directions for a non-
orthogonal coordinate system with £ running in the i-
direction andn running in the j-direction. The components

of an can easily be evaluated numerically. For the i+l/2

surface,
oX - -
o8 = P25, 5017 %1, 3e1 X0, 578, ) (3.23 a)
LI -
T = Xitl 401 - Xisl,3 (3.23 b)
oY - - -
Y3 ﬁ.ZS(yi+1'j+l yi-l,j+l+yi+l,j yi—l,j) (3.23 ¢)
) A -
am = Yisl, 541 " Yi+l, (3.23 d)
Also,
gu _ 3
sz ui+l,j ui,j (3.24 a)
- - -
a1 = 0-2500y a1 T Yie1,g-1 T %, ge T V4,500 (3-240R)

The spacial derivatives of v and T are evaluated in the same

mannercr.

V. Implicit Contribution

All of the methods presented so far are explicit and
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are limited to small time steps by the following numerical

stability criterion:

At <
= J_u_L+LLL+C[_1_+L]1/2

sz Ay2

(3.25)
When solving the Navier-Stokes equations it is necessary to
have a very fine mesh near walls so that the velocity
gradients within the boundary layer are adequately resolved.
Unfortunately, this required that Ax or Ay, and therefore
At, be very small. In this case the equations are said to be
stiff and thousands of time steps are required to solve
interesting problems.,

The difficulty with explicit schemes for Navier-Stokes
solutions arises because explicit schemes require that the
time step be smaller than the smallest time scale in the
problem. Look at the mesh near a wall whereAy 1is the
direction normal to the wall. Since 1 is much larger-than

Ay

%; the equation for the time step becomes

At < —['V‘?‘XTC (3.26)
Physically this means that the time step must be smaller
than the time required for an acoustic wave to cross the
width of the narrowist cell. This time step is unreasonably
small for two reasons:

1) The mesh was refined to this degree to resolve

velocity gradients within the boundary 1layer, not

accoustical waves.
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2) Any inviscid effects this deep in the boundary
layer should be completely overwhelmed by the viscous
stresses. The term that limits the stability of the method
is not even important physically.

The use of implicit methods can eliminate this time step
restriction,

The basic idea of implicit methods is to evaluate the
fluxes using not only the latest known value of the soiution
as with the explicit methods, but also the unknown solution
currently being sought. In particular, use a weighted

average of the fluxes at these two time levels.

_ _ 55, 0C s z,0n
iv1/2 = Q=% /0 @8yl 0801 /2P- SV iy,

(3.27)
Here fi+l/2 is the degree of implicitness which varies from
zero (fully explicit) to one (fully implicit) as a function

of the local CFL number for the surface.

- 9.5
fi+l/2 = MAX { g’l_EFf } (3.28)

As with the explicit methods the flux terms are still

evaluated differently between the predictor and corrector

steps.

First-Order Flux Splitting

The fluxes for first-order flux splitting are
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= =, FS - - +, nc nc -, nc nc
(p-s)“l/2 = (1 fi+1/2)[(A )“’j Ui,j + (A )ii’j i+1'j1
+.0nn nn -.nn nn
YEire UG 505t By 50, )
' (3.29 a)
= =, FS _ _ +,nc nc -, hc nc
+.nn nn -.nn nn
+ f. . ..U, .+ (A A § R
j+l/2 [(a )1,3301,3 ( )1,3301,J+l]
(3.29 b)

where nc is the current solution, nn is the new solution
being sought, and ii goes through the cycle in table
3.1. Substituting these fluxes into equations 3.5 leads to
a nonlinear algebraic system of equations which must be
solved on each predictor or corrector step. This 1is
impractical, so the system is linearized. For example, take

the two implicit terms for the i+l1/2 surface when ii=i.

+ nc
(at)on ynn (a*t)0¢ ghC . 4 ol (a )irjUi,j] | 5U +
i,3%i,3 i,371,3 30 5 i,
’ (3.38 a)
- nc
(a")00 PP o (aT)hC gC 0L(a )y, 50541,5! | 5U. .
1,371+1,7 i,37i+1,7 an,j i,j
- nc
. al(a )i,jui+1,j] | 50
30,1 5 1+1,3 (3.30 b)
r
_ ,On _ .nc
where 8Ui,j = Ui,j Ui,j'

These flux vectors are not homogeneous of degree one so
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al(a™y .

1

R
e 0] 4 (A+)i’ (3.31)

Uy 5

j

but the true Jacobian is expensive to calculate so the

following is assumed.

INCAS I -
4 [4 = (A . ,
i,3
an,j (3.32 a)
ol (A )i'j Ui+l,j] .
an,j (3.32 b)

Substituting into equation 3.29 gives

(8.5135, /5 = (@] 0%+ AT Ui

fEi NS seuy g @S Seuy L, ) (3.33 a)
(B850 y2 = L5508 ¢ 4D 175500 5]

+ fj+l/2[(A+)?fjﬁ sU; 4 * (A‘)?fjj 8U; 5,11 (3.33 b)

Substituting theése fluxes into equations 3.5 leads to a 4x4

block linear algebraic relationship between §$U. . and the
14

§U in four neighboring cells.

D. . &0

: .+ B, .
1,3 1+l,] 1,3 8

. + . .
1,3+1 1,3 1,3

+ R 1 + .o . .= AU, . 3.34
Cll] b llJ'l Elr] 5U1_llj a 1,] ( )

where 8Ui

is the time difference of Ui 3 obtained from the
’

’
explicit first order flux split method, and

- At -, nc
Di,j h fi+1/2 Voli,j ( )ii,j (3.35 a)
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Ei,5 =~ ftiv12 vﬁl,g CASFETRY , (3.35 b)

5,5 " fye1/2 o113 A1, 53 (3:35 )

Ciy = - 5.1/ Torrs A1y (3.35 d)
A5 = T 4gorry i 2®DE5 - £y @5

+ fj+l/2(A+)ri]fjj - £y ,@0 %5 ) (3.35 e)

This relationship is ‘expressed more compactly as

follows.
LI°(su; ) = AUy | (3.36)

The subscript I indicates that this is an inviscid
relationship and the superscript FS indicates that it is
first-order flux vector splitting.

When equation 3.36 is applied to each interior cell in
the finite volume mesh it leads to a large linear system of
block algebraic equations. To complete this system-a block
algebraic relationship must be provided for each boundary
cell as well. The boundary cell relationships are developed
in Section VII of this chapter. The algebraic relationships
within this system are grouped so that the equétion for the
(i,j) cell is below the equation for the (i,j+1l) cell and
above the equation for the (i,j-1) cell. Thus each column
of cells is grouped together with equations for the i+l
column being higher in the grouping than the equation for
the i column, as shown in Figure 3.8.

The coefficient matrix for this system of algebraic
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equations is large, sparse, well structured, and diagonally
dominant. For example, a 50x50 mesh will result in
10,000x10,0008 coefficient matrices with only 800,000 non-
zero elements out of 100,000,008 total elements.
Furthermore, the non-zero elements of the coefficient matrix
are all contained within 5 bands of 4x4 block matrices, with
3 of these bands clustered near the main diagonal. The
principle difficulty with implicit methods is solving this
large system of equations efficiently. In this
investigation these systems are solved iteratively using a
Gauss~-Seidel line relaxation method. The motivations for
using this method, and the details of this method are
discussed in Section VIII of this chapter.

Second-Order Flux Splitting

The fluxes for the implicit, second-order flux vector
splitting method are obtained from equations 3.33 by

U

replacing all GUi,j by 501+1/2 = i,3 + ¢i+l/2

(80; , = 8U;_; ;) and 8U;,, 5 by su‘;ﬂ/z = U5, 5

%11/2 (8U;41,5 = 8Yi42,5)

“—"S)ﬁf/z = 1,5 (U i3 * 912 Wy, 7 Ui, j”
+ (A—)ii’j ‘U1+1,3 + ¢1+1/2(U1+1 57 Yisa, J))]
C iy TADET 50805 5+ 67 (805 5 - 80 )
#ATTT 5 (BUGL) gt i, 80y g - UL, )]

(3.37 a)
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= = FS2  _ + -
(83172 = LDy 55 Wi5 * 450200 ,5 7 U, 5200
+ (a7 - U ))17¢

+
i,95 Ui, 541 * ®541/2 Ui, 541 i,9+2
+,NncC

Fiensa TR 55 84,5 ¥0500/50805 5 = 895 500

-, nc +
+ (A ) i,37 (8Ui,j+1 + ¢j+1/2 (zsui an'j+2))]
(3.37 b)

+

p3+1

Substituting these fluxes into equations 3.5 yields a 4x4

block linear algebraic relationship between 6Ui i and the §U
14

in cells (j+1,3), (i+2,3), (i-1,3), (i-2,3), (i,j+1),

(i,j+2), (i,j-1), and (i,j-2).

+ B U + B 6U

D2;,380442,5 * i, 380441, * B2y 58U4 50 * By 5805 5i
+ A. .80. . + C. .8U. . + C2. .8U. . + E. .8U. )
1.38 i,] 1,38U1,J+l ¢ 1,35 1,j+2 1,35 i+l,]
+ E2. . . . = AU. . 3.38
21138U1+213 a 1,] ( )

where,AUi . is the time difference of Ui 3 obtained from the
’ 14

explicit second order flux split method, and

D2; 4 = v%%;;; [-£5,1/2 %is1/2 BT 5] (3.39 a)
Pi,5 'V'%T,—j (£1,1,2 @+ 8,1, @07
+ £y, S0 0 ] (3.39 b)
B2, 5= varTs [fio1/2 %1120 000, 5] (3.39 ¢)
Bi,3 = Tz%tlTJ £5_ 1,0 * 81,007
- fi1/2 ¢;+l/2(A+)rili,j] (3.39 d)
B2; | v§§T75 (-£5,1, 801280055 (3.39 e)
Bi,j = ‘\7%51‘?3' (£5,1,21 +¢;+1/2)(A_)T:jj
tEyl1/2 651,270 551 (3.39 f)
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i3 7 Torr3 Mii1/2 6512 )55
5,5 VeTtrs ["fio1/2 * #5120 B350
£iv1/2 $341/2 (A+)?fjj] (3.39 h)
Bi,j ~ I+ V%%TTE [(£i4,,2 G +¢;+l/2)(A+)?§,j

- £

c2 = At

] (3.39 q)

+ -, nc
ic1y2 3 F 051,20 A5 5
- +, 1nc
Eivr/2% 051,00 (B 55
(1 + ¢f

-, nc .
£51/2 fi1y2) AT (3.39 1)

+

This relationship is expressed more compactly as follows.

FS2
Lp (805 4 i,3

The subscript I indicates that this is an inviscid

) = AU (3.40)
relationship and the superscript FS2 indicates that it is
second-order flux vector splitting.

The coefficient matrices for this system of algebraic
equations is large, sparsé, and well structured as in the
first-order case. The example 50x58 mesh yields
10,000x106,000 coefficient matricies with 1,440,000 nonzero
elements out of 100,000,000 total elements. The nonzero
elements of the coefficient matrices are all contained
within 9 bands of 4x4 block matrices, with 5 of these bands
clustered near the main diagonal. Unlike the coefficient
matrices from the first-order flux split method, these
matrices are not necessarily diagonally dominant. This is
unfortunate because diagonal dominance is a sufficient

condition for convergence of the Gauss Seidel 1line

relaxation method.
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Diffusion Terms

The implicit contribution to the viscous stress and

heat conduction terms is obtained using a thin-layer
approximation, To obtain the thin-layer approximation the

equations are written in Cartesian coordinates aligned with

the cell face. Iff’is the coordinate normal to the surface,
and n is the cordinate along the surface then the

contribution to the fluxes from the diffusion terms is

p.gPIFF . of Sy - réf s, 15|
T:En S, t "E' sy
B uy é + v' T%n + q' i (3.42)
where
of = - (7\+2p)%3$l -3z (3.43 a)
Teh = - u (B +58L£' | (3.43 b)
q' = -k%—'z : (3.43 ¢)
u' =qu+Syv = Velocity normal to surface
v' = -Syu+sxv = Velocity tangent to surface

The thin-layer approximation is obtained by neglecting

all derivatives in the n direction.

L= - Su’

of - (k+2u)5z (3.44 a)
ov'

n = - H/— 3.44 b

The thin-~-layer diffusion fluxes can then be written.
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1)
p.gT-le - _ (x+zp)%%l s -p%%l s, H
ugz S, * (x+2p)%2' y
B (x+zu)3%— 5, + v,‘gz LN g;_ (3.45)

10 0 o] [o g o 0 2%?
| sesy 8 (a+20) 0 8 %%l H

8 s, 8, 0 o g § 0 %%l

Lg o 0 %_ _z u' (A\+2p) pv' k- I %%_ (3.46)

The first matrix above rotates from the (f,n) coordinate
system to the (x,y) coordinate system,R-l. The second is
the matrix of diffusion coefficients, M. The vector on the
right contains a set of non-conservative variables in the

rotated coordinate system, V'. The fluxes may be written in

a more compact notation.

- - - ' -
5.5TeLe _ _ g1 \ @V 1

- vV =

M S| = - R "MR =<z |S (3.47)
YLl % 151

I1f £is in the i-direction we can approximate the derivative

as follows.

ov _ Viv1,3 7 Vi, 2[8;,1/2]

= v, -V
& aé (Vol; 'y + Vol ) Visr,; i3
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Likewise, if & is in the j-direction

2185412l

v _
of (VOli,j + VOli,j+l

- V. )

V. .
Vi, 341 1,3 (3.49)

)

Substituting into equation 3.47 gives

- ZT.L 2|§i+1/2|2 -1
PrSi4172 T 7 Tl - rver; o (B MR 100,57y, )
rJ L (3.5 a)
- 2
2|8, |
= ZT.L. _ _ j+1/2 -1 )
PeSyi1/2 = TWol. -, +vol7 (R MRy n (Vi 5417V, 5)
trd+l 1e) | (3.50 b)

The purpose of the thin-layer approximation is not to
get the complete diffusion terms but to provide a simplified

implicit contribution to the diffusion terms.

- = (DIFF) _ oo . .
P Si+l/2 = (Explicit Contribution)
2
2|s, |
i+l/2 -1
Fiv1/2TWeT, | o + VoI, TR MR 520 Vi, 57 Yy, )
rJ v (3.51 a)
- =(DIFF) _ L . .
P.S j+1/2 = (Explicit Contribution)
2
2|s. |
j+1l/2 -1 _
Eiv1/ 2ol T 7 vor 7 ® MRy ,20 Vi 5017 Yy, 5)
1,3+1 1,] y
(3.51 b)

The explicit contribution is the full diffusion terms, with
no thin layer approximation, as given by equation 2.9, 3.23,

and 3.24.

The above equations may be written in terms of the

change in the conservative variables using the
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transformation matrix, N.

8V = N§U (3.52)
Then
= = (DIFF) _ . . .
PeS it1/2 = (Explicit Contribution)
+ -
+ (AD )i+1/2 5Ui'j + (AD )i+1/25Ui+1,j (3.53 a)
= =(DIFF) _

P'Sj+1/2 = (Explicit Contribution)

. -
* (BDT) gy 80Uy 5+ (BD )y 5805 44 (3.53 b)
where
- 2
2f . |S. I
+ i+l/2'7i+1/2 -1
i+1/2 (Vol, s+ voliii, ) i+1/2714 (3.54 a)
= 2
2f . |S. |
- i+1/2'7i+1/2 -1
(aD7) = - (RT"MR) . N,
i+1/2 (VoI 5+ Vol ) i+17274+1 (3 54 1)
- 2
2f . |5. |
+ - J+l/2 J+l/2 -1
j+l/2 (VOli,j + V°li,j+1) j+1/273 (3.54 c)
2
2f . |s. |
- 1/2'73+1/2 -1
(aD”) . = - Jt (R""MR) .. N.
j+1/2 (Vol; y * Voly 541) J+1/7273+1 (3 54 q)

The sum of the flux from second-order flux splitting,
equations 3.37, and the flux from the diffusion terms,
equations 3.53, are substituted into equations 3.5. The
result is a block linear relationship of the same form as

that discussed in section V. This relationship may be

written compactly as




LFS2  (su.

I l,j) + LD(GU. ) = AU, . (3.55)

1,] 1,]

where the explicit diffusion flux is included in AU, The

i,3°

diffusion operator is expanded to be a block linear

relationship between 8Ui 3 and §U in the four neighboring
14

cells.
L . .) = D, . . . + B, . .. + A° .s8U. .
D(sul’J) 1'3801+1'J 11380113+l Alrjsulrj
D D
+ . 80U, . + E. . . . 3.56
€i,3%%1,51 i,5%Y%i-1,5 ( )
where
D _ At -
Di,5 = fi+1/2 VoI 1,3 (aD )i+1/2,j (3.57 a)
D = - At +
Bi,3 =~ fic1/2 vorr,3 AP )i_1/2, (3.57 b)
D At -
Bi,j = f3+1/2 Vort;3 BD )i, 4+1/2 (3.57 c)
D At +
€i,i fi-1/2 Vo11,3 P )i,j-1,2 (3.57 4)
D At + -
Ai,5 7 Voii3 [Mfivrz2 PP )42, = fic1/2 P )50,0,54

+ -
*Ejaz2 BRIy qu1/2 T Eyl1/2 D)y 5oy 0]
(3.57 e)

When the block linear relationship of equation 3.55 is
applied to each interior cell in the finite volume mesh it
yields a large linear system of block algebraic relations
which are ordered in the same manner as the case of second-
order flux splitting alone. The resulting coefficient
matrix has nine nonzero block diagonals with five of these
clustered near the main diagonal. This system of equations

may be solved in the same manner as the system for the
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inviscid terms alone. If the thin-layer approximation had
not been used for the implicit contribution to the diffusion
terms the resulting system of eguations would have been more
complicated. For the problems considered in this
investigation, treating only the thin layer terms implicitly

has proven to yield a stable solution procedure.

Vi. Smoothing Terms

A second difference of pressure smoother is included to
allow large time steps during the transient phase of steady
state calculations. The smoothing is based on simple second

order smoothing of the conservative variables.

LUy 50 = V811,254, 5 i,5) i-1/294,57Y%-1, 5

*VSSL 0 (U5 501 7 Ug,5) T VS5 (U5 5 7 Uy )

(3.58)

- U - VS

The coefficient for the smoother is proportional to the

second difference in pressure.

| P, - 2p. + P, |
DDP = i+3/2 i+1/2 i-1/2

( 2

(3.59)
* Pi1/2)

Pisv3/2 Pir1/2

The pressure at a surface is taken to be the average of the

pressures in the cells adjacent to the surface. This gives
P. . = P, . = P, . + P. .
DDP 2 | i+2,3 i+l,3 i,J 1—1,]l (3.60 a)
i+1/2 :
(Piy2,i ¥ 3Pier,5 * 3P 5+ Py, 5)
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P. . - P, . - P, .+ P, .
DDPy /2 = ST S VS B BV MY 1 (3.60 b)
j+1/2 *
( Pi'j+2 + 3Pi,j+1 + 3Pi,j + Pi,j_l)
VS“_I/2 = max(ﬂ,(CS)(DDPi+l/2) S) (3.61 a)
VSj+1/2 = max(ﬂ,(CS)(DDPj+l/2) - 8) (3.61 b)

Since the second difference of pressure is proportional
to the square of the mesh spacing this smoothing is actually
fourth order.

The smoother is treated fully implicitly so that the
U's in equation 3.58 are at the nn time level. Written in

delta law form the smoothing contribution becomes

smoothing = oy 5V, /(015 5 - U%5y)

- VS; 1, (070, - 0T )

*VSiy2 (U5, 501 - UGy

- VS;_ 1/, (U?fj - U?fj_l)

*US gy (8UGLy 5 - 80y )

- VS; 1,y (8U; 5 - 805y )

tVS5.1/2 (5Ui’j+l - 5Ui,j)

= V84 1/, (805 4 - 80 4 )] (3.62)

The first four lines above are the explicit contribution
from the pressure smoothing and are added into AU. The
remaining four lines are the implicit contribution which
. .), between the
1,]
five cells with indices (i,j), (i,j+1), (i,j-1), (i+1,3),

form a block algebraic relationship, LS(5U
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and (i-1,3).
When the smoothing in equation 3.62 is added onto

equation 3.55 the following relationship results.

LI(5Ui'j) + LD(8Ui,j) + Ls(aui’j) = AUi'j (3.63)

In this relationship the first four lines in equation 3.62

are included in au 5t The form of this relation, and the
r

resulting system of algebraic equations, is the same as it

was before the smoothing terms were added.

VIiIi. Boundary Conditions

Explicit

With the finite volume method the boundaries of a zone
are placed at cell interfaces and a layer of boundary
cells surrounds the zone. The only purpose of the boundary
cells is to satisfy the boundary conditions. For the domain
considered there are five possible boundary conditions;
solidwall, plane of symmetry, inflow, outflow, and zonal
interface.

At solid adiabatic walls the pressure and temperature
gradients are assumed to be zero and a no slip (zero
velocity at the wall) boundary condition is applied. To
resolve the boundary layer the mesh must be refined near the
wall so that the cell nearest the wall is deep within the

boundary layer. In this case, boundary layer theory shows
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that pressure gradient normal to the wall is a higher order
effect and can be neglected. Similarly, for adiabatic walls
the temperature gradient normal to the wall deep within the
boundary layer is negligable. These boundary conditions are
satisfied by setting the pressure and internal energy in
each boundary cell equal to the pressure and temperature in
the interior cell adjacent to the boundary. The no-slip
condition is satisfied by setting the velocity in the
boundary cell equal and opposite to the velocity in the
adjacent interior cell.

The plane of symmetry is a horizontal line at y=8. At
the plane of symmetry the gradients of pressure, density,
temperature and x-components of velocity are all zero.
These conditions are satisfied by setting the pressure,
density, internal energy, and x-component of velocity in the
boundary cell equal to their values in the adjacent interior
cell. The y-component of velocity is zero at the plane of
symmetry. This condition is satisfied by setting the y-
component of velocity in the boundary cell to the negative
of the y-component of velocity in the adjacent interior
cell.

The treatment of the inflow boundary conditions is
guided by the theory of characteristics. A locally one-
dimensional flow has four characteristic equations with

slopes u, u+c, u, and u-c. 1If the flow field is supersonic
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then all four characteristic eguations are propogating
intormation in the positive x-direction. In this case all
data must be specified at the inflow boundary. If the flow
is subsonic at the inflow boundary, then one of the
characteristics, the u-c characteristic, has a negative
slope and it propogates information from the interior
upstream to the inflow boundary. 1In this case only three
items may be specified at the inflow boundary and the fourth
item must be allowed to vary as the solution progjresses.
For the case of subsonic inflow, the stagnation
pressure, stagnation temperature, and flow angle are
specified. These quantities are related to the static

pressure and static temperature by the following equations:

_

P . |y - 2% vy (3.64)
Py T+ a,

2
T o y-1 (v
R )] (3.55)
V — —
o Tan(oIF) = (Constant) (3.66)

The first two equations above are simply the isentropic
relations written in terms of the total velocity, V, and the

speed of sound at a sonic throat, a The speed of sound at

% *

a sonic throat is calculated from the specified stagnation
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temperature.

2 _ 2
(a,)® = 377 RT: (3.67)

Equations 3.64, 3.65, and 3.66 are a system of three
equations in four unknowns: p, T, u, and v. To complete the
system another equation is needed. For all cases considered
the flow angle at the inflow boundary is zero so equation
reduces to v=0 and the total velocity, V, is equal to the x-
component of velocity, u.

The last equation to close the system 1is the
characteristic relation carrying information upstream to the

inflow boundary.

)

iel

Su  _ op 6u

[+ ]

t
This equation is forward differenced.

_ (u-c)At - _ _ n

6py - pcéuy = A% [pI Pg pc(uI uB)] (3.69)

The subscripts I and B indicate the first interior cell and
the inflow boundary cell, respectively. The prefix )
indicates the forward in time difference of the variable

following it.

The algebraic equations 3.64, 3.65 and 3.66 can be
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placed in delta law form by considering incremental changes

in the variables p, T, and u.

1
Sp, = - ? Peu 1 - I-L(e 7 (3.70)
B Y+l a, Y+1l\a, a,
su
- _ 5Y-1 u_ B
8Ty = - 2977 a, &, (3.71)
ov =490 (3.72)

Equations 3.70, 3.71, and 3.72 are three algebraic
equations in the three unknowns SpB, STB, and SuB. They are
solved directly for each inflow boundary cell and the
pressure, temperature, and velocity are updated.

The delta law formulation of the isentropic
relations, equations 3.70¢ and 3.71, simplifies the
implementation of the inflow boundary. Unfortunately, the
linearization error allows the stagnation pressure and
stagnation temperature to vary from the specified values.
To overcome this problem the static pressure and static
temperature in each boundary cell is recalculated from
equations 3.64 and 3.65 using the updated velocity.

The treatment of outflow boundary conditions is also
guided by the theory of characteristics. If the flow normal

to the outflow boundary is supersonic then all




61

characteristics have positive slopes and no information
propogates upstream from the boundary cell to the interior
cell. In this case the four locally one dimensional
characteristic equations are used to update the solution in
the boundary cell. If the flow normal to the outflow
boundary is subsonic then the u'-c characteristic propogates
information upstream from the boundary cell to the interior
cell. In this case, one item must be specified at the
boundary cell.

For subsonic outflow the static pressure is
specified. The remaining variables in the boundary cell are
calculated using the three downstream running characteristic
equations. As with the variables specified at the inflow
boundary, the requirement of constant pressure at the
outflow boundary is written in delta law form.

dpp = 0 (3.73)
This equation is combined with the three characterisic

relations.

1 u', At|s| 1
opg 2% - Vol lpg - pp * CT(pB - PPl =Ry
(3.74 a)
5 . - _ (U'+C)At|§1 _ v ' =
Pg * pcou’y VoI, [py - Py +pclu’'y - u )] R,
{(3.74 Db)
5y u'I At Igl [ ' o1 o
v = mreere—— v - =
B vol, B I 3 (3.74 c)
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The above three equations, along with equation 3.73 are four
linear algebraic equations in the four unknowns 84y r 8u'B,
5V'B,and 8pB. This system is solved directly and the
boundary cell solution is updated.

At the interzone boundaries the solution in the
boundary cell is set equal to the solution in the

corresponding cell in the adjacent zone.

Implicit

The explicit boundary conditions described previously
use the solution at the latest known time level. Implicit
boundary conditions, however, depend on the solution at the
unknown time -level being sought. This means that the
solution in the boundary cells is obtained simultaneously
with the solution in the interior cells. Since the implicit
boundary conditions are generally linearized in the same way
as the interior solution procedure the implicit boundary
conditions will simply be contributions to the large linear
system of algebraic equations described earlier. The goal
of this section is to develope implicit versions of the
boundary conditions described in the previous section and
write them as block algebraic equations relating the
solution change in the boundary cell to the change in the

solution in the adjacent interior cells.
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The first boundary condition considered is for solid
walls. For viscous flows the velocity at the wall is zero.
To impose this boundary condition it is advantageous to
treat the inviscid fluxes separately from the viscous
fluxes, in the same manner as these boundary conditions are
treated explicity. To enforce zero net flux through the
wall 8U in the boundary cell is set by reflecting the §U
from the first interior cell; this in effect is the
treatment used for free-slip wall boundary conditions. The
treatment of the viscous fluxes is simply to set the
velocity components in 86U in the boundary cell to the
negative of the velocity components in §U of the first
interior cell. Separate treatment of the inviscid and
viscous fluxes at the wall assures that no excessive
dissipation or spurious numerical fluxes of tangential
momentum occur., Details of boundary condition treatment are
described below.

The inviscid flux treatment for the no-flow through the
wall boundary condition is satisfied by the equation for the
boundary cell which relates the change in the solution
within the boundary cell to the change in the solution in
the adjacent interior cell, The viscous flux treatment for
the no-slip boundary condition is implemented by altering
the viscous Jacobians in the equation for the adjacent

interior cell.
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First consider the application of the no-flow boundary

condition. This condition is satisfied by the following

relation

8Ué = E§U; (3.76)

where §U' is the change in the conservative variables based
on velolcities components normal to the boundary, u', and
tangent to the boundary, v'. The conservative variables
based on the global coordinate system are obtained from the
conservative variables based on the local coordinate system

by multiplying the latter by the inverse of the rotation

matrix

§U0 = R “ 80" . (3.77)
This yields
§U_ = RER'lau . (3.78)
B I
The E matrix is a reflection matrix:
1 2 2 2
E = g -1 2 /] (3.79)
@ 2 1 ?
g 2 2 1

The coefficient matrices for this block algebraic equation
are loaded into the global coefficient matrix at the
position corresponding to the i,j location of the boundary

cell. For instance, at j=1, i=3 the coefficient matrices
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are written:

- Rer"? (3.80)

o o)
[

A =1 (3.81)

and all other coefficient matrices for this cell are zero.
The no-slip boundary condition for the viscous fluxes

is satisfied by altering the viscous Jacobians. This is

possible because the dependence of the solution in the

boundary cell on the solution at the adjacent interior cell

is known.

sU; = E' U, (3.82)
where
1 ¢ 6 o
NS - 2 -1 0 @ (3.83)
6 0 -1 @
5 o 6 1

Now consider the block algebraic relation for the first
interior cell and expand it so that the multiplications by

the viscous and inviscid Jacobians are separate terms.
...+(A')aUI+(AD')SUI+(A+)60B+(AD+)5UB+... (3.84)

Use equation 3.82 to write the last term of the above

equation in terms of GUI.

...+(A')5UI+(A')GUI+(A+)5UB+(AD+)ENSSUI+... (3.85)
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This approach eliminates the dependence of the implicit
viscous flux on the change in the solution within the
boundary cell. The coefficient matrices for the global

matrix are then modified as follows for j=2.

c. . = At +, N

i, 3~ fj—l/2 Vol . (B )i,jj-l (3.86 a)
1,3
- .__ At -.n
Ai,j - I 'V'O'l. . [o..+ fj"l/z((A )i,jj—l
1,7
-y 0 + NS
+ (AD )i,j-l/Z + (AD )i,j—l/ZE )1 (3.86 b)

At a plane of symmetry the inviscid terms are treated
the same as they are at a solid wall (free-slip). The
viscous terms are treated in a manner similar to that for a
solid wall, the only difference being the reflection matrix.

For the plane of symmetry

FS

U, = EFU8U, (3.87)
where
1 ¢ o @
\ 5 1 © 8
gfS - 6 6 -1 0 (3.88)
6 ¢ 0 1

The plane of symmetry can be located only at j = jl - 1/2 in
the interior zones or ie = ile -1/2 in the exterior zones.

Consider only the plane of symmetry at the j = jl - 1/2

surface.
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At the interior cell adjacent to the plane of symmetry

boundary the two modified coefficient matrices for the block

algebraic relation are

At -, n

B. . = £, —(B .

i,jl1-1 jl-1/2 v°li,j1—l( )1,3-1 (3.89 a)

At

A. . = ] - e— [eee + £,

i,jl-1 V°1i,j1—l jl-1/2

+ + - FS
((a )i':.'l_1 + (AD )i’jl_l/2 + (AD )i,jl—-lE ) +eee] (3.89 b)

This is completely equivalent to what was done in the no-
slip case except the reflection matrix is different.

To treat the inflow boundary condition implicitly the
differencing of the characteristic relation carrying
information upstream must be done implicitly. This is done
by evaluating the spacial differencing using a weighted

average of the difference at the known time level, nc, and

the unknown time level, nn.

N (u-c)At _ _ nc
Spy - pc&uB = —(l—f3/2) A [pI Pg c(uI uB)]
(u-c) At nn
- f [(p, - py) -pclu. - u_)]
3/2 AX I B I B (3.90)

This equation is rewritten.
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8Py - pcbuy = - L‘% [ p; - Pg - pclu; - uB”nc
(u-c) At
-f —= [ sp, - 8p, - pc(bu, - bu.)l
3/2 Ax ! B I BT (3.91 a)
(u-c)At (u-c)At
(1 - f3/2—T ) [5PB = PcsuB] + f3/2—-A"'x—" [5PI = pcauI]
- _ (u-c)at _ _ _ nc
= - — Ip; Py c(u, ug)l

(3.91 b)

This equation is the implicit equivalent of equation 3.69.
Provided that 6pI and 5uI are known this equation, in
combination with equations 3.76, 3.71, and 3.72 can be
solved for 5pB, STB, EuB, and v .

Equation 3.91 b above is used at the inflow boundary
for the interior zones. For the inflow boundaries in the
exterior zone a simplified equation is used. This equation

is obtained by neglecting the second term of equation 3.91b.

(u-clAt _
1 - f3/2 _Z_x—_) [épg - pcdugl =
(u-c)at nc
- Ax Py - Pg - pclup - up)l

(3.92)
The second term of equation 3.91 b is responsible for
coupling the inflow boundary condition to the interior
solution during the solution of the linear system. The
a

simplified relationship above neglects this coupling. As

result, the modified boundary condition can be applied as if
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it were an explicit boundary condition. Yet it retains the
unconditional stability of an implicit boundary condition.
The advantage of this approach is simplicity.

The outflow boundary conditions are made implicit by
evaluating Rl' RZ' and R3 in equations 3.74, and wusing a
weighted sum of the solution at the known time level nc and

the unknown time level nn. The result is

1 1 _ gn
(1 + dl)(épB + ;76pB) - dl(SpI + ;559I) = Ry (3.93 a)
_ .n
(1 + d,) (6py + pc&ué) - d2(6pI - pc8ui) = R, (3.93 b)
(1 + d))8vy - d,8vy = Rg (3.93 c)
n .
(1 + d4,) (§p, - pcdu') - 4,(8p, - pcdu!) = R, - supersonic
4 B B 4 I I 4 (3.93 d)
8pB = 0 - subsonic (3.93 e)
up At |s|
where 4, = ——— , (3.94 a)
1 VolI
(ur+c) At |s|
d. = , and (3.94 b)
2 VolI
(up-c) At |s]
d4 = Vol . (3.94 c)
I

These are four equations relating the change of the
nonconservative variables in the boundary cell to the change

of the nonconservative variables within the fi;st interior
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cell. This block:- linear algebraic relationship 1is
incorporated into the global system of equations when the
external zone is not included.

When an external zone is included the terms coupling
the exit boundary solution to the interior solution are
neglected. The equations for the outflow boundary condition

then become

(1 +d)) (8py + ooy = &} (3.95 a)
C

(1 +d,) (8py + pcdup) = R’Z‘ (3.95 b)

(1 +d)sv') = Rg (3.95 c)

(1 + d4) (6pB - pcaué) = RZ - supersonic (3.95 d)
8pB =0 - subsonic (3.95 e)

Since these equations are uncoupled from the global system
they are solved first, as if an explicit boundary condition
were being used.

The zonal interface boundary conditions along the lines
dividing the interior zones are satisfied by simply removing
from the global coefficient matrix the rows and columns
corresponding to the zonal interface boundary cells. This
causes the solution in the cell on one side of the dividing
line to interact directly with the solution in the cell on
the other side of the zonal dividing line.

The zonal boundary conditions for the dividing lines
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between the interior and exterior zones is handled
differently. Since the exterior zone uses a different set
of indices it is more convenient to solve it as a separate
set of equations. The systems of equations for the interior
and exterior zones are then approximately solved separately
and are coupled together through interation by mearly
setting the U within this boundary cell equal to its latest
value in the corresponding interior cell of the adjacent
zone. Since the systems are solved using an interative
method, this zonal coupling procedure is implemented in a
manner that is consistent with the overall solution
procedure,. More details concerning interzone boundary

conditions will be provided in Section VIII.

VIII. System of Linear Algebraic Equations

The implicit method presented here requires the solution
of a large linear system of algebraic equations on both the
predictor and corrector steps. This system is sparse and
well structured as shown in Figure 3.81. In particular,
this system is composed of 9 bands of 4X4 matrices with 5
of these bands clustered near the main diagonal. The -system
could be solved directly using a Gaussian elimination
procedure. Unfortunately, this system has a large bandwidth
and a Gaussian elimination procedure, or variation thereof,

would fill all of the elements out to the outermost
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diagonal. For a 59X58 mesh this would require storage for
8,000,008 floating point numbers, even though only 360,000
numbers were 1initially nonzero. Clearly this storage
requirement is unacceptable.

The inefficiencies inherent in the direct methods force
the use of approximate solution procedures. These methods
generally attempt to approximate the solution of the
original system by solving a series of simpler systems to
which direct methods can be applied efficiently. Two
approximate solution procedures were investigated for the
linear system of Figure 3.8. 1In the first, the coefficient
matrix for the linear system is approximately factored into
the product of two simpler matices. This approach was
pioneered by Beam and Warming (Reference 11) and Briley and
McDonald (Reference 12) for schemes based on central
differencing. The second procedure approximately solves the
system using line Gauss-Seidel relaxation.

The approximate factorization approach is to write the
coefficient matrix for the system as the product of two
simpler matrices as shown in Figure 3.9. In this case the
coefficient matrix in Figure 3.8 is factored into a block
pentadiagonal matrix and a matrix that may be rearranged by
row and column operations to become a block pentadiagonal
matrix. The B, B2, ¢, C2, D, D2, E, and E2 elements

indicated in Figure 3.9 are the same as those defined
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previously. The AI and AJ matrices are new and are defined

below.
= At - +.nc
Aly,y = 1 ¢ Voli,j [fi+1/2 1+ ¢i+l/2)(A )ii,j
+ -,nc
Eic12 @401 ,0 A4 5 (3.96 a)
= At - +.nc
A,y =1 * voli,j [fj+1/2 (1 +¢j+l/2)(A )i,jj
+ -.nc
fj—l/z (1 + ¢j—l/2) (A )l,]j (3.96 b)

where the A" and A" Jacobians are defined in equations 3.18
and the ii and jj indices go through the cycle in table 3.1
presented before. The two resulting block pentadiagonal
systems are solved consecutively using the block
pentadiagonal solver described in Appendix B.

There 1is an error associated with the approximate
factorization because the product of the two component
matrices results in a matrix which is different than the
desired coefficient matrix. The difference of these two
matrices is the approximate factorization error matrix.
This matrix is shown in Figure 3.10 for first order flux
splitting. Each term of the error matrix involves the
product of an i-direction Jacobian with a j-direction
Jacobian. Since these Jacobians are proportional to the CFL
numbers in the i- and j-directions respectively the product
of these Jacobians is proportional to the product of the CFL

numbers in the i- and j-directions. 1In general, then, the
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approximate factorization method should perform well when
one or both of the i- or j-direction CFL numbers is small,
and perform poorly when both the i- and j-direction CFL
numbers are large. Unfortunately, thrust reversing nozzles
often contain sharp corners and, near a sharp corner, the
CFL numbers in both the i- and j-directions are generally
large. For these cases the approximate factorization method
has an unacceptable limitation on the time step size.

The line Gauss-Seidel relaxation method reduces the
bandwidth of the system by taking either the upper or lower
off diagonal terms, multiplying them by the solution at the
previous iteration level, and subtracting the result from
the right hand side of the equation. This effectively
applies the contribution of the choosen off diagonal terms
as a deferred correction. Define IT as the iteration level.
On the even iteration levels (IT even) the lower off
diagonal terms are defered and on the odd iteration levels
(IT odd) the upper off diagonal terms are deferred. 1If the
coefficient matrix is such that the line Gauss-Seidel
relaxation method converges, the approximate solution will
approach the correct solution as the number of iterations
becomes large. For first-order flux vector splitting the
coefficient matrix is diagonally dominant and the line
Gauss-Seidel relaxation procedure is guaranteed to converge

(diagonal dominance is a sufficient condition for
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convergence of a Gauss-Seidel relaxation procedure). For
second-order flux vector splitting fhe coefficient matrix is
not diagonally dominant. Despite this, the line Gauss-Seidel
relaxation procedure has not diverged for any of the
problems attempted.

The implementation of the line Gauss Seidel method is
best understood by dividing the coefficient matrix into a
large number of submatrices as shown in Figure 3.8. Each
row of submatrices is a linear block algebraic equation

relating the solutions within five adjacent columns of

cells.

(D2C)GUCi+2 + (DC)SUCi+l + (AC)&UCi + (EC)&UCi_l

+ (E2C) sUC, , = AUC, (3.97)

There is one such relationship for each column of cells with
the submatrix, AC, being a block pentadiagonal matrix and
the submatrices DC, EC, D2C, and E2C being block diagonal
matrices. Defining IT as the iteration level the line Gauss
Seidel method is implemented as follows.
For IT oddq:

1) Set the implicit outflow boundary condition at the
right boundary (viewed in the computational plane).

2) Sweep upstream applying the relationship for each
column. For the i-column multiply the DC matrix by aucifl,

IT IT-1

the D2C matrix by 5UC1+2, the EC matrix by 6UCi_1 , and the
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g?;l. Then subtract the sum of these

E2C matrix by §uUC
products from the right hand side and solve the block
pentadiagonal system for suciT. Repeat this until the left
boundary is reached.

For IT even:

3) Set the implicit inflow boundary condition at the
left boundary (viewed in the computational plane).
4) Sweep downstream repeating the process in step 2

except that DC and D2C now multiply 5UC§III and 8UC§$;1, and

T
1 -2°

5) Repeat the process until the desired iteration

EC and E2C now multiply 5UC§T and 8UC£
level has been reached. It was found that only two to four
iterations were required to achieve stability and that
overall convergences of the time marching procedure was not
improved by additional iterations.

The line Gauss-Seidel relaxation procedure was adopted
because the time marching scheme based on approximate
factorization exhibited undesirable instabilities. For
example, one of the test cases is the symmetric, fully
deployed thrust reversing nozzle shown in Figure 4.1. The
key feature of this nozzle is the sharp corner at the
intersection of the 1lower flap wall with the forward
reverser port wall. The initial conditions for the solution
are stagnation conditions within the nozzle, a low static

pressure at the exit, and zero velocity everywhere, A
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physical device that might provide these conditions is a
diaphram at the nozzle exit plane which is broken at time
t=f. When the diaphram is broken an expansion wave travels
upstream through the nozzle until the inflow boundary is
reached., The inflow boundary conditions then begin pumping
enough air through the inflow boundary to keep the
stagnation pressure and temperature at the specified values.,
When approximate factorization is used an instability occurs
shortly after the expansion wave has passed the sharp
corner,

To determine the cause of the instabilities a numerical
experiment was performed using first-order flux vector
splitting. The implicit coefficient matrix (for the
predictor step), based on the transient flow field shown in
Figures 3.11 through 3.13, was solved using both approximate
factorization and line Gauss-Seidel relaxation with 2, 3, 4,
5, 6, and 20 iterations. Figure 3.14 shows the resulting
solutions as a function of the CFL number for the normalized
time difference of density, 8p/p , in the first cell after
the corner near the wall. It is clear that the approximate
factorization procedure gives poor results in this case but
that the line Gauss-Seidel relaxation gives very good
results if 3 or more iterations are used, Figure 3.15
shows similar results for the normalized time difference of

total energy. While of limited scope, this comparison
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provides substantial evidence that the Gauss-Seidel
relaxation procedure 1is superior for flows with sharp
corners.

The time marching scheme based on the line Gauss-Seidel
relaxation procedure has been successfully applied to this
fully deployed thrust reversing nozzle. Details of these
calculations are given in Chapter 4, Section 2, but it is
significant to note that this method was stable with CFL
numbers an order of magnitude larger than the CFL number at

which the approximately factored method was unstable.

IX. Accuracy and Stability Analysis for Model Equation

The solution procedure presented in the preceeding
sections is a two-step explicit-implicit method. This
method locally varies the degree of implicitness so that the
procedure is explicit in regions where the explicit
stability criterion is satisfied, and fully implicit when
the explicit stability criterion is exceeded significantly.
In this section the accuracy of this method is analyzed at
its two extremes (explicit and fully implicit) for the

following simple model equation (the linear wave equation).

ut + Xux = 0

Also in this section, the fully implicit method is shown to

be unconditionally stable.
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Accuracy

First consider the two-step explicit method, with

spacially second-order upwind differencing, applied to the

wave equation.

n+l _ n _ 3.n _4n l.n
ust o= oug c(zui 5901 +2ui_2) (3.98 a)
ntl _ 1 n 1 n+tl 1 3 n+l _ 4 n+ 1 1
u i = E-Ui + -2—u i §C('2-u i -Z-Ui_ + =u _2) (3.98 b)
_ AAt
where c = Ax

This two-step scheme may be combined to form a single-step

scheme in the linear case.

n+tl _ n 3.n 4 n l n
I P L i S L U R LY
2
c” ,9 n 24 n 22 n 8 n 1l n
t @8y 7 TgYie1 Y TV T 7%i-3 Yli-g) (3499)

To evaluate the accuracy of this method the values of u at
positions other than (i,n) are approximated using Taylor
series expansions about point (i,n). Proceeding in this
manner, it is found that the second term on the right hand
side of equation 3.99 is a second-order accurate

approximation to the first partial derivative of u with

respect to x.

n 1l n - _ 1.3 5,,n
i +oFug = [AX u, §Ax I 0 (Ax )]i (3.120)

|
N
ot

N w
c
-

Likewise, the last term is a second-order accurate

approximation to the second partial derivative of u with

respect to x.
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9 n 24 n 22 . n 8 n l n
79 T TgY%i-1 Y TgY%i-2 T 7Yi-3 T 7Yi-g
_ 2 2, .4 5,0
= [Ax u .. - gAx I g (Ax )]i (3.191)

Equations 3.100 and 3.101 are substituted into equation

3.99, along with a Taylor series expansion for unzl . The

result is

- _ At Y- A 2
u, + kux = 5 [utt X uxx] + 3 Ax“u + H.O.T.

XXX (3.182)

The leading term in the truncation error is eliminated by
differentiating equation 3.102 with respect to t and

subtracting A times the derivative of equation 3.182 with

respect to x.

2 _ At _ 2 3
upp - Moo= 7 [Bppe = Ny = Nup, o+ Nug, ]+ HoOLT.
(3.183)
Substituting into equation 3.182 yields:
at? 2 3
g + Au, =+ 4 [uttt AT X Upgx * A uxxx]
A, 2
+ §AX Uy ¥ H.O.T. (3.104)

The first term of the truncation error in equation 3.184 can
be eliminated in a similar manner. The reduced equation is

the wave equation with the leading term being of order sz.

= AA 2
u, + u o= 3Ax Uy oy (3.185)
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The two step explicit method with second order upwind
differencing is therefore second order accurate in both

space and time.
Now consider the fully implicit procedure with

spacially second order upwind differencing.

n+l _ n 3 n+l_ 4 n+l 1 n+l

n+2 _ n+l 3. n+ 4 n+2 1l n+2
u,t o= ut - c{iu T 3% + 5ui_2} (3.106 b)
n+tl _ 1, n n+2

ut. v o= —2—{ui tuy } (3.106 c)

Equation 3.166 may be combined, in the linear case, to

form a single step scheme.

ot - - [g IR SR S
2ol - 4 L
+ §[9u. - 24u] | + 22u)_, - 8u_ 5 + uj_,]
- ——[9 n+l - 24u?ti + 22u?+§ - 8u?t§ + u?ti]

(3.167)
For this equation it is best to expand the Taylor series
about the point (i,n+l). The results for the four terms

following the equals sign in equation 3.187 are given below.

3 .n 4 n 1l n - _ n+l
Su; - 5951 + 3y _, = [Ax u 3AtAX utx]i + H.O0.T.
(3.188 a)
3
3 n+l 4 n+l 1 n+l _ _ AX n+l
7Y T3 Y2 T [axu, T Uxx i t H.O.T.

(3.108 b)
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9 24 n 22 n 8 n 1l n
79 T %1 Y TEYi-2 T Yi-3 Y 7V
_ 2 2 n+l
= [AX Uy 4AtAX utxx] i + H.O.T. (3.188 c)
9 n+l 24 n+1 22 n+l 8 n+l 1 n+l
9 T TF%i-1 Y TEY%i-2 T 7Yi-3 t 7Yi-g
_ 2 2. .4 n+l
= [AX u .- §Ax uxxxx]i (3.108 4)

Equations 3.108 are substituted into equation 3.107, along

. . . n
with a Taylor series expansion to ;.

, _ 32
et kux) = _7(utt 6)\utx A uxx) + H.O.T. (3.109)

This equation is reduced in the same way that equation 3.182

is reduced. The resulting reduced equation is
2 2 2
u, + kux = 3AtA u . + B (Aat”,Ax7) (3.118)

The fully implicit method with spacially second order upwind
differencing is second order accurate in space, first order
accurate in time.
Stability

The stability of the fully implicit scheme is studied
using a Von Neumann stability analysis. The analysis
consists of writing the solution as a Fourier series and

searching for frequencies for which the error grows

exponentially.

u(x,t) =me(t)eikmx (3.111)
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Since the model equation is linear, it is sufficient to

consider an arbitrary term of the Fourier series:

u_(x,t) = bm(t)eikmx (3.112)

This allows the solution at the point (i-1l,n) to be

conveniently written in terms of solution at the. point

(i,n).
um(xi—l'tn) = um(xi,tn) e—iB (3.113)

where f=km x is a frequency parameter.

Apply the analysis to equations 3.186

n+l _ n
ut, v o= gy uy (3.114 a)
n+2 _ n+l _ n
u " =g,u ;7 =gy 9, u; (3.114 b)
n+l _ 1 n _ n
utt o= 3 {1 + 9, gz} u; = gauy (3.114 ¢)
where
91 7 92 F 1
3 _ 4 -ip 1 -if
1 + c[7 5 + ze ]

(3.115)

For the scheme to be stable the modulus of amplification
factor, I3r must be less than or equal to one. This 1is
equivalent (equations 3,114 c and 3.115) to requiring the

modulus of 9, to be less than or equal to one. Thus the
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modulus of the denominator of equation 3.115 must be greater

than or equal to one.

1 3 4 -1i 1 -i2
|_|=|1+c[5—7e6+7e- ﬁ]lzl (3.116)

Expand equation 3.116 in terms of the trigonometric

functions and multiply by its conjugate.

2
1 3 4 1 2
|§—] ={1+cl5-35cosp + 35 cos2fl}
+ c?[3sing - 3sin2g 1° (3.117 a)
1 2 2 2
|=—| = (Re)® + (Im) (3.117 b)
9

The term (Im)2 is always greater than or equal to zero,
therefore having (Re)2 greater than or equal to one is/
sufficient for the stability of the scheme. Expand cos2f in

equation 3.117 a using the double angle formula.

(Re)

1+ c[% - %cosﬁ + cos%3 - %] (3.118 a)

(Re) = 1 + c( 1 - cosf)? (3.118 b)

From equation 3.118 b it is clear that (Re) is always

greater than one. The fully implicit method is therefore

unconditionally stable.
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Figure 3.4
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Finite volume cell.
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Subsonic Flow (u'>0)

It

S direction

Supersonic Flow (u’'>0)
it

- e

Figure 3.5

S direction

Propagation of Information Along Locally One-
Dimensional Time Dependent Characteristics.
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Figure 3.6 Characteristics Resulting from Steger and
Warming Flux Splitting.
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First Order Fluxes

AU
u. *
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: | | :
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: : : . S
1-1 i 1+1 1+2 i+1/2

direction

Second Order Fluxes
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Figure 3.7

direction

Extrapolations to the i+1/2 Surface for Pirst-
and Second-Order Flux Splitting.
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CHAPTER 4
Results and Conclusions

I. Preliminary Comments

The computer program described in Chapter 3 has been
applied to five thrust reversing nozzle configurations. The
first configuration, described in Section II of this
chapter, is a fully deployed thrust reversing nozzle with a
flow turning angle of 138 degrees. The second
configuration, described in Section II1I, is a 56% deployed
thrust reversing nozzle. The third configuration, described
in Section IV, is a 50% deployed thrust reversing nozzle
with the forward thrust port vectored downward 15 degrees.
The final two configurations are transient flow problems.
In Section V, a calculation of a rapid change in thrust
vectoring angle is described and in Section VI a calculation
of a rapid change from partial to full thrust reverser
deployment is described.

In Sections II through IV the computed results are
compared with available experimental data. In all three

cases the discharge coefficients and normalized thrusts are
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compared. The discharge coefficient is the mass flow divided
by the ideal mass flow and the thrust is normalized by the
ideal thrust. Formulas for the ideal mass flow and ideal

thrust are given in Appendix C.

I1. Fully Deployed Thrust Reversing Nozzle

The first test case used during this investigation is
the fully deployed thrust reverisng nozzle depicted in
Figure 4.1. This configuration was choosen because
considerable experimental data is available for it. Re and
Leavit (Reference 1) have measured the variation of thrust
and discharge coefficient with nozzle pressure ratio (NPR)
and Putnam and Strong (Reference 3) have made wall static
pressure measurements for a series of nozzle pressure
ratios.

The internal flow field for this nozzle was calculated
using first-order flux splitting for a range of nozzle
pressure ratios from 2.8 to 7.0. The calculations were
performed using the 32x27 single zone mesh in Figure 4.2,
This mesh is divided into two regions for mesh generation
purposes. The lower region is generated to keep the mesh
nearly orthogonal to the wall. The mesh is refined along
the flap and forward reverser port wall to resolve the
boundary layer. No attempt has been made to resolve the

boundary layer along the blocker. Since the boundary layer
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along the blocker is embedded in a highly favorable pressure
gradient it should be very thin and not significantly effect
the flow.

A typical convergence history for these calculations is
shown in Figure 4.3. This plot shows the variation of mass
flow error with time step for a nozzle pressure ratio of
three. The first-order accurate solution required 48 time
steps to converge. The maximum CFL number for these
calculations was set to 50,000 for the first four steps,
100,800 for the next four steps, and 150,000 for the forty
remaining time steps.

The flow within this nozzle was also calculated for
NPR=3.0 using second-order flux vector splitting and the
mesh shown in Figure 4.4. The internal mesh is the same as
that in Figure 4.2 and an external mesh was added to
estimate the effect of the external flow. The second-order
flux splitting is less robust than first-order flux
splitting and the CFL number must be set lower. In this
case the maximum CFL number was set to 2,800. Starting from
a first-order solution 368 time steps were required to get a
converged second-order solution.

The adequacy of the mesh refinement within the
turbulent boundary layer is presented in Figure 4.5 for the
second-order calculation with NPR=3.0. This plot gives the

distribution of the law of the wall coordinate, y+, for the
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mesh points closest to the wall. The variable on the
abscissa, I, is an index which varies from one at the inflow
boundary, to 15 just before the sharp corner, to 31 at the
outflow boundary. Baldwin and Lomax (Reference 7) state
that a y+ of less than two for the mesh point nearest the
wall, is adequate to resolve the turbulent boundary layer.
As shown in Figure 4.5, the y+ for the mesh point nearest
the wall is less than two everywhere except at the entrance
and near the sharp corner. The y+ at the entrance is close
enough to two that the resolution should be sufficient.
Near the corner the flow is rapidly accelerated and the
boundary layer becomes very thin. In this case, the
equilibrium assumption inherent in the Baldwin Lomax model
is questionable. In any case this region is very small (two
points with y+ significantly greater than two) and it is
not likely to adversely affect the flow. Overall, the mesh
ref inement near the wall is considered adequate.

Pressure contours in the region of the exit port for
nozzle pressure ratios of three, and five are given in
Figures 4.6 and 4.7, respectively. The pressures, obtained
using the first-order method, are normalized by their
respective specified stagnation pressures and all cases had
the same exit pressure.

The pressure contours, obtained from the second-order

method for a nozzle pressure ratio of three, are shown in
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Figure 4.8, 1In all three figures the high gradients near
the corner are evident. The second-order contours, Figure
4.8, are nearly the same as the first-order contours (Figure
4.6) for pressures greater than half the stagnation
pressure. However, there are considerable differences along
the forward wall of the reverser port with the second-order
method giving lower pressures than the first-order method.

Mach number contours in the region of the exit port for
nozzle pressure ratios of three and five are given in
Figures 4.9 and 4.10, respectively. Note that the NPR=3.0
case has a small region of supersonic flow near the exit,
and the NPR=5.8 case has a much larger region of supersonic
flow in the reverser port. The Mach number contours,
obtained from the second-order method with NPR=3.8, are
shown in Figure 4.11. The second-order method yields higher
Mach numbers than the first-order method (Figure 4.%9). It
also appears that the boundary layer separation bubble, on
the forward wall of the reverser port, is larger in the
second-order case than the first-order case.

Velocity vectors are also given in the region of the
exit port. Figure 4.12a shows the velocity vectors for
NPR=3.0. A thin layer of separation is evident on the
forward wall of the reverser port. This separation is shown
more clearly in Figure 4.12b. Figures 4.13a and 4.13b show

the velocity vectors for NPR=5.8. The separation region is
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smaller than that calculated for NPR=3.0. For comparison,
the velocity vectors, obtained from the second-order method
with NPR=3.8, are shown in Figure 4.14a and 4.14b. The
boundary layer separation obtained from the second-order
method, Figure 4.14b, is more extensive than that obtained
from the first-order method, Figure 4.12b. In the first-
order solution the separation covers 31 percent of the
forward wall of the reverser port wall and in the second-
order case it covers 45 percent of the wall.

The calculated variation of discharge coefficient with
nozzle pressure ratio is given in Figure 4.15. Also shown
are the discharge coefficients obtained experimentally by Re
and Leavit (Reference 1). It is seen that the analysis
overestimates the discharge coefficient by two to four
percent. This is to be expected since the effect of the
sidewall boundary layers is neglected. The side wall
boundary layers will reduce the effective throat area and
hence the mass flow. Also shown in Figure 4.15 is the
second-order calculation af NPR=3.8 (single point). The
discharge coefficient from the second- order calculation is
slightly higher than from the first- order method. The
comparison with the experimental is good for discharge
coefficient.

The calculated variation of thrust with nozzle pressure

ratio is compared with the experimental results of Re and
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Leavitt in Figure 4.16. The first-order results indicate a
lower amount of reverse thrust than the experimental results
with errors ranging from twenty-nine percent of the ideal
thrust at NPR = 2.0 to eleven percent at NPR = 7.0. Also
shown in Figure 4.16 is the thrust obtained from the second-
order method. This thrust compares better with experiment,
the error being 14.6 percent of the gross thrust compared to
a 22.9 percent error from the first-order method.

The errors in thrust warrant some discussion. The
error is related to the size of the separation bubble
calculated on the forward wall of the reverser port. In the
calculations the size of the separation bubble seems to be
underestimated and the pressure on this surface is
overestimated. This hypothesis is substantiated in part by
the improved results obtained from the second-order method.
As mentioned earlier, the separation bubble is larger in the
second-~order results than in the first-order results. This
hypothesis is also supported by the pressure field within
the nozzle.

Figures 4.17 through 4.19 compare the calculated
pressure field with sidewall pressures measured by Putnam
and Strong for NPR=3.8. All three figures are for lines,
parallel to the blocker wall, passing from the plane of
symmetry to the exit plane. The line for Figure 4.17 is

0.203 cm from the blocker wall. At this location the
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pressures calculated with the second-order method compare
very well with the measured sidewall pressures. The
pressures calculated with the first-order method also
compare well with the experimental results, but not as well
as the second-order results. Since this line is close to
the blocker it is an indication that the blocker pressure
distribution is accurately predicted. Since the
contribution to the thrust from a surface is approximately
the integral of the pressure over the surface area, the
contribution to the thrust from the blocker is also
accurately predicted.

The line for Figure 4.18 is #.838 cm from the blocker
wall, or approximately half way to the forward wall of the
reverser port. Again both first-order and second-order
solutions compare well with the experimental results over
most of the line. However, the calculated and experimental
results differ considerably within the exit port.

The line for Figure 4.19 is 1.437 cm from the blocker
wall, or nearly to the forward wall of the reverser port.
Here the sharp corner is identified by the rapid drop in
pressure. Both the first- and second-order results do well
up to the corner, but smear out the expansion and miss the
minimum pressure. The second-order solution is better than
the first-order solution, missing the minimum pressure by 12

percent of the stagnation pressure as opposed to a 29
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percent discrepancy with the first-order solution.

The final comparison, Figure 4.20, of calculated
pressures with experiment is for pressures along the flap,
rounding the sharp corner, and down the forward wall of the
reverser port. These pressures are plotted in terms of the
arclength along the wall from the inflow boundary. The
experimental results from four lateral stations are also
plotted. Note that there is considerable variation amongst
the experimental results, particularly near the exit plane.
This variation indicates the magnitude of the three
dimensional effects. It is interesting to note that two
pressure distributions, both lying within the range of
experimental pressures presented in Figure 4.20, can yield
thrusts varying by up to six percent of the ideal thrust.
The most that can be expected of a two-dimensional solution
is for it to be within this range.

Unfortunately, the calculated pressures do not lie
within the range of pressures measured by Putnam and Strong
(Reference 3). Both the first- and second-ordetr
calculations do well before the sharp corner, but predict a
recompression along the forward wall of the reverser port
before it is indicated by the experiment results. Thus,
both the first- and second-order calculations overestimate
the pressure, and hence force, on the forward wall of the

reverser port, This accounts for the low calculated reverse
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thrust compared to the thrust obtained by Re and Leavitt
(Reference 1). It should be noted that the second-order
results are considerably better than the first-order
results. This indicates that the discrepaﬁcy between
calculation and experiment is, in part, due to numerical
dissipation. The amount of numerical dissipation present in
a calculation depends on the refinement of the mesh and the
skewness of the grid, as well as the order and type of
method used. A coarser or more highly skewed mesh has
greater numerical dissipation than a finer or nearly
orthogonal mesh. Unfortunately, the complex geometries
considered force some degree of skewness to the mesh. The
refinement, however, is controlled by the user. To obtain
an accurate solution all features of the flow must be
resolved. Examination of the velocity vectors in Figure
4.14b shows that the shear layer at the edge of the
separation bubble is in a region of coarse mesh. Refining
the mesh in this region should substantially reduce the
amount of numerical dissipation in this region, and improve
the solution. Unfortunately, this calculation was not
possible due to limited computer resources.

Another item which might contribute to the error in the
pressure distribution along the forward wall of the reverser
port is the forward wall of the reverser port in the

turbulence model. An overestimation of the eddy viscosity
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could reduce the size of the separation bubble and cause the
early recompression seen in Figure 4.206. The Baldwin Lomax
turbulence model, described in Section III of Chapter 1, has
been shown to yield satisfactory results for some separated
flows (Reference 7) but has never been tested on a problem
as complex as the thrust reversing nozzle.

Finally, the flow does have significant three-
dimensional effects as mentioned earlier. The spanwise
variations in flap pressure distributions (Figure 4.20) are
probably due to large scale vorfices present in the reverser
port. How these vortices interact with the boundary layer
separation is not clear. It is possible that the separation
bubble is enlarged by the vortices. If this is the case an
accurate prediction of thrust for this geometry can never be
obtained from a two-dimensional calculation. In any case,
the two-dimensional calculation does provide good
quantitative results for the discharge coefficient and

reasonable qualitative results for the thrust.

III. Partially Deployed Thrust Reversing Nozzle

The second test case is the partially deployed thrust
reversing nozzle shown in Figure 4.21. This nozzle
geometry, tested by Carson, et.al. (Reference 2), is based
on a realistic multifunction nozzle design presented by

Stevens, Thayer, and Fullerton (Reference 13). The
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experimental results include discharge coefficients and
thrust for a range of nozzle pressure ratio and ambient
external Mach number. A calculation is presented for this
nozzle with a nozzle pressure ratio of two and an ambient
external Mach number of zero.

The calculation was performed using the mesh shown in
Figure 4.21. Due to limited computer resources, this mesh
is very coarse and none of the wall boundary layers are
adaquately resolved.

The resulting discharge coefficient is .89 compared
to .993 from the experiment of Carson, et.al. There is
evidence that the mesh is inadaquate for accurately
calculating the mass flow. The problem was run to
convergence using the first-order accurate results and then
switched to second-order accuracy. The first-order result
for discharge coefficient is only .78 compared to .89 from
second-order accuiacy. If the mesh were sufficiently fine
the difference would be less dramatic.

It should be noted that the areas of the reverser ports
for the model tested by Carson, et.al. are somewhat larger
than for the nozzle used in the calculation. the combined
areas of the three exit ports in the experiment were 36.11
cm” as opposed to 34.89cm2 for the calculation (based on two
nozzles, each with a width of 7.77 cm). Carson, et.al.

based their ideal mass flow calculation on the throat area
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of the baseline forward thrust nozzle, 34.24 cmz.
Correcting the calculated discharge coefficient (by simply
multiplying by the ratio of areas) yields a discharge
coefficient of 6.92.

The calculated thrust is found to be slightly higher
than the measured thrust. The calculated thrust, normalized
by the ideal thrust based on the measured mass flow, is
8.253, whereas the measured thrust, normalized by the ideal
thrust based on the measured mass flow, 1is @.23. This
comparison is suprisingly good considering the coarseness of
the mesh.

The pressure contours, Mach number contours, and
velocity vectors for this nozzle are given in Figures 4.22
through 4.24. It is clear from Figure 4.23 that the flow
remains subsonic until it leaves the exit port. Thus, the
internal flow is influenced by the external flow and the

external zone is needed.

IVv. Partially Deployed Thrust Reversing Nozzle with
Vectoring

The third test case, shown in Figure 4.25, is the same
50% deployed thrust reversing nozzle discussd in Section III
with the forward thrust port vectored 15° downward. This
nozzle was also tested by Carson, et.al., and the discharge

coefficient and thrust.were obtained for a range of nozzle
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pressure ratios and two free stream Mach numbers. The
calculation was made at a nozzle pressure ratio of two with
an ambient free stream Mach number of zero.

As with the unvectored case the calculation was
performed using a coarse mesh. The mesh is composed of four
zones: three internal zones and an external zone. The
dimensions of the mesh for all three internal 2zones is
21x18. For the external zone the mesh dimensions are
17x1@7.

The calculation was run to convergence first order
accurate (64 time steps). The resulting discharge
coefficient is 6.77, which is consistent with the results
for the unvectored case. The calculated thrust, normalized
by the ideal thrust, is 0.146 and the normal force,
normalized by the ideal thrust is 8.065 Note that the ideal
thrust is based on the measured mass flow (Appendix C).

The thrust and normal force normalized by the ideal
thrust based on the calculated mass flow are 0.19 and 0.085.

The experimental results for this case had considerable
asymmetry. The thrust was measured for vectoring of 15°
both upward and downward. With nozzle flow vectored
downward the normalized thrust was 0.18 whereas it was ©.34
when vectored upward. The computed normalized thrust is at
the lower end of this range. Likewise, the computed jet

turning angle of 24° lies between the experimental results
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of -5° and 45°.

The calculated pressure contours, Mach number contours,
and velocity.vectors for this case are shown in Figures 4.26
through 4.28. It appears, from the Mach contours in Figure
4.27 that there is no supersonic flow. The results for the
unvectored nozzle, however, indicate small regions of
supersonic flow just outside each exit port when second-
order accuracy is used. It appears that the first-order
accuracy, in combination with the coarse mesh, has resulted
in excessive total pressure loss. This seems to be the
reason for the low discharge coefficient. If this
calculation was done using second-order accuracy, or the
mesh was rxefined, the calculated discharge coefficient would

be much closer to the measured discharge coefficient.

V. Transient Change in Thrust Vectoring Angle

A calculation was made of a transient change in thrust
vectoring angle. The nozzle was initially unvectored and
the vectoring angle was changed from 8° to 36° over a period
of .3 msec. The actual wall velocity followed a cosine
function of time with the maximum velocity being nearly half
the speed of sound. This very fast change was necessary for
transient effects to be observed. The initial solution is
shown in Figures4.29 through 4.31. The mesh uses three

internal zones with the lower and upper zones having
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dimensions 23x16 and the middle zone having dimensions 23x8.
The nozzle pressure ratio is 5.0.

The effects of the moving wall are seen by comparing
the pressure contours during the final stages of the
reconfiguratibn, Figure 4.34, with the pressure contours
after the reconfiguration is complete, Figure 4.37. The 0.2
contour in Figure 4.34 extends from the exit of the rear
port half the distance to the corner. 1In Figure 4.37 this
contour has relaxed so that it connects to the wall near the
exit port and intersects the exit plane at a higher

position. No experimental data is available for this case.

VI. Transient Change in Thrust Reverser Deployment

A calculation was made of a transient change in degree
of thrust reverser deployment. The nozzle was initially 70
percent deployed with the rear port width being 0.85 ft.
The rear port was then closed, as the reverser ports were
opened, over a period of .3 msec.

The results, shown in Figures 4.38 through 4.46,
indicate much more dramatic transient affects than the
transient thrust vectoring case. As shown in the pressure
contours, (Figure 4.43) the closing rear port compresses the
air near the port to much greater than the stagnation
pressure at the inflow boundary. As the port closes the

pressure becomes large enough that the flow near the
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entrance to the port reverses direction and the air flows
back into the nozzle as shown in Figures 4.42a and 4.42b.

There is no experimental data available for this case.

VII. Conclusions

An implicit finite volume program has been developed
for the calculation of two-dimensional thrust reversing
nozzle flows. Thrust reversing nozzles typically have sharp
corners, and the rapid expansion and large turning angles
near these corners lead to unacceptable time step
limitations when conventional approximate factorization
methods are used. In this investigation these limitations
are overcome by replacing the approximate factorization with
a line Gauss-Seidel relaxation. This method is implemented
with a zonal mesh so that flows through complex nozzle
geometries can be efficiently calculated.

Results are presented from calculations using both
first- and second-order fully upwind differencing. In most
cases, the second-order method compared better with the
experimental results than the first-order method. The
second-order method was limitted, by stability, to lower CFL
numbers than the first-order method. The lower CFL numbers
resulted in longer run times for the second-order method.
(Typically, 360 time steps for the second-order method

compared to 48 time steps for the first-order method).
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Despite this limitation, the second-order method still
requires two to three orders of magnitude fewer time steps
than an explicit method when turbulent boundary layers are
adequately resolved.

The comparisons of the calculated results with
experiment were mixed. For the fully deployed nozzle
{Section II of this chapter) the calculated discharge
coefficient compared well with experiment but the amount of
reverse thrust was underestimated. Conversely, for the two
partially deployed nozzles (Sections III and 1IV) the
calculated thrust compares well with experiment but the
discharge coefficient 1is underestimated. The
underestimation of the discharge coefficient for the
partially deployed nozzles is undoubtably due to the coarse
mesh used for the calculation. The underestimation of the
reverse thrust for the fully deployed nozzle is thought to
be caused by a combination of insufficient mesh density,
limitations of the turbulence model, and three-dimensional
effects in the experiment which cannot be predicted with a
two-dimensional model (see Section II of this chapter).

The computer program is robust, efficient, and capable

of calculating the complex flows within thrust reversing

nozzles.
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Figure 4.29 Mesh for Steady State Flow Field Calculation
Prior to Thrust Vectoring Angle Change.

Time
Thrust Vector Angle

1.36 msec.
0.0 deg.
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Mesh for Transient Flow Field Calculation
During Thrust Vectoring Angle Change.
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28.90 deg.
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Figure 4.34

Transient Flow Field P/P. Contours During
Thrust Vectoring Angle Change.

1.66 msec.

Time
28.90 deg.

Thrust Vector Angle
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Figure 4.40 Steady State P/P. Contours Prior to Transition
from Partial to Full Thrust Reverser

Deployment.,
Time = 1.44 msec.
Rear Port Width = 0,0500 ft.
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Figure 4.41 Mesh for Transient Flow Field Calculation

During Transition from Partial to Full Thrust
Reverser Deployment.

Time = 1,70 msec.
Rear Port Width = 0.,0048 ft.
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Transient Flow Field Velocity Vectors During
Transition from Partial to Full Thrust

Reverser Deployment

Time
Rear Port Width
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Detail of Transient Flow Field Velocity
Vectors Near Entrance to Rear Port (Boxed
Region on Previous Plot).

Time
Rear Port Width

1.70 msec.
0.0048 ft.
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Transient Flow Field P/P_, Contours During
Transition from Partial to Full Thrust
Reverser Deployment.
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Figure 4.44 Mesh for Transient Flow Field Calculation
After Transition from Partial to Full
Thrust Reverser Deployment.
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Rear Port Width
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APPENDIX A
Diagonalization of the Jacobians for the Inviscid Fluxes

The inviscid fluxes through a surface of arbitrary

orientation are

pq
51- S = pug + P s_ |5
pvg + P sy
(e+p)q (a.l)
where g = us  + vsy and Sy and sy are the components of a

unit vector normal to the surface.

The flux in equation a.l is a homogeneous function of
the conservative variables U. So
PI-S = AU
where A is the Jacobian of §I-§ with respect to U.
Following Warming et.al., (Reference 14) the Jacobian

matrix, A, may be diagonalized by a set of three similarity

transformations.

1! g ls7IAs R T |S|

A =
Here T is a matrix which transforms incremental changes in
conservative wvariables to incremental <changes 1in
nonconservative variables, R rotates from the global
reference frame to a local reference frame with axis normal
and tangent to the surface, and S transforms from

incremental changes in the nonconservative variables to

incremental changes in the characteristic variables. The
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diagonal matrix,
A= diag [u', u', u'+c, u'-c]
contains the eigenvalues of the Jacobian matrix, A.

The transformation matrices, and their inverses are

given below.

1 ] @ ]
-u/p 1/p 0 2
T =
-v/p 0 1/p 2
a(v-1) -u(7-1) -v(v-1) (v-1)
pam— *
1 ) ] 2
u P ] ("]
7l -
v ] p 2
1
a pu pv G-D
1 [} ] B
] s -S @
R = Y X
] sx sy ]
| 2 g ] %_4
B 1 @ ) )
R_l i @ sy S, )
] -sx sy ]
- )] %] /] %-4




1 ]
] 1
S =
] ]
] ]
1l ]
] 1
sl =
)] ]
] ]

In the above matrices

a= ﬁ.S(u2 + v2

and ¢ is the speed of sound.

174

pc

1/2c2

1/2pc

1/2

)
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APPENDIX B
Block Pentadiagonal Solver

The block pentadiagonal system of linear algebraic
equations, Figure B.l, is solved using a block LU
decomposition. The matrix is factored into two matrices, a
block lower tridiagonal and a block upper triangular with
identity matrices on the diagonal as shown in Figure B.2.

The LU decomposition and inversion of the L matrix is

done in one sweep in the direction of reducing the j index.

D) Ajy Ay ory T AGCu 8 = A By
2V Bypor T Byior Rqia T Ayia T BjiaTh
[j1-1 = A51-1 (€501 - Byioy Oy

_oaal T )
©51-.1 7 A41-1F51-17 Yy1-1 T Ay1-1(Ry1-1 © Byioa¥gy!

BBy By 0y Ty
DR RS RUEAE S Se b LN
5) Fj = A—; [ch BjGJ+1], @j = A'jEj,
vy = A5 [Ry = Byyy,y = Pyvy,,)

6) repeat steps 3 - 5 for j = jl-3 to 1l

In the above equation the vector [y] is equal to [L]—l[R].

All that remains is to solve the equation
(o] [ Ul = [yl

by sweeping in the direction of increasing j index.

7) 8Ul =¥,
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8) 8U2 =Yy, - I} 6U1
9 U.
) 8 3

. - . . - . U.
vy - Ty 805, - O 805,

19) repeat step 9 for j = 3 to jl
This algorithm requires the inversion of a 4x4 at each j

location. This is done using a Crout decomposition

(Reference 15).
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APPENDIX C
Ideal Mass Flow and Thrust

The formula for the ideal mass flow is derived from

R * * %
m = ulA = a A (c.l)

where the * indicates the value of the quantity at a sonic

throat. Using the isentropic relations

T
TE =1 + 1%l M2 and
(c.2)
p X
ﬁg = [1 + 7;1 M2]‘1—1
(c.3)
the definition of the speed of sound
a2 = YRT , (c.4)
the equation of state
(c.5)

P = pRT ,

and the fact that the Mach number is unity at a sonic throat
gives

. _ t 2 ,Y-1 27 1/2 _*
m, — [—] [TTTRTt] A (c.6)
The formula for the ideal thrust is obtained from

F = mhue (c.7)

where ue is the flow at the exit of a ideally expanded

nozzle (pe = P )+ The formula for ug is obtained from

u?t = a2M2 (c.8)
e e e

and equations c.2 - c.5. The result is
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7-1
_ 27 _ P 1/2
9 = GIIRTUL - G 1) .o

Before substituting ug from equation c.9 into equation
c.7 it should be decided which mass flow, h, to use. 1In the
experimental results of Re and leavitt (Reference 1) and
Carson, et.al., (Reference 2) the measured mass flow is used
in the calculation of the ideal thrust. To be consistent,
we Will also use the measured mass flow when making
comparisonsl with experiment.

-1

P, 74—
I _ e Y 1/2
F, =0 {7 RT_ [1 (Ez) 1} (.10)
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