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Abstract
We consider the problem of estimating spatially varying coefficients of
partial differential equations from observation of the solution and of the
right hand side of the equation. We assume that the observations are
distributed in the domain and that enough observations are given. A method of
discretization and an efficient multigrid method for solving the resulting
discrete systems are described. Numerical results are presented for

estimation of coefficients in an elliptic and a parabolic partial differential

equation,
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1. Introduction

This paper discusses the problem of estimating spatially varying
coefficients of differential equations using observations of the solution and
the right hand side of the equation, We are restricting the discussion to
distributed observations.

A common estimation procedure is to try to find parameters such that by
solving the equation, the solution is as close as possible (in some norm) to
the observations [1] ("output least squares"). Another approach is to look at
the equation as an equation for the parameters [2]. The approach we are
discussing here is closer to the second one: we seek a solution (for the
coefficients) in the least squares sense. This approach and the first
approach are two special cases of another approach which estimates the
parameters by minimizing a weighted sum of the error between observed and
computed solutions with the residual of the equation. That is, given the
equation

L{(g)V= ¢

one identifies g by minimizing over (g, V)€A the functional

2 2

J(V,g) =V -V +0 0L (g)V - £
where V*,f* are the observed quantities, and A is a set of admissible pairs of
functions.

Let (;(o), ‘2(a)) be the minimum of J. Then o + =, (V(0), E(o))
converge to the solution of the "output least squares'" solution. In the
case o+ 0, (V(o), E(o)) converge to the solution of the minimization

problem discussed in this paper ("equation error approach”).



The disadvantage of using the 'equation error" approach is that one can
treat only problems in which measurements are distributed in the domain and in
which enough measurements are available. Also, this case may be more
sensitive to noisy data than the "output least squares" approach because one
applies L(g) to V*, and if L(g) is a differential operator, a large error may
be introduced even for a small amount of noise in V*.

Section 2 describes the mathematical formulation of the problem and some
basic rules for discretization. A multigrid procedure for solving the
resulting equations is presented in Section 3. In Section 4, we present some
numerical computations in which we estimate coefficients of an elliptic and
parabolic equation. The elliptic case appears in problems involving large

space structures [l1], and the parabolic case arises in oil exploration and

recovery [1].

2., TFormulation of the Problem and Discretization Method

Let L(g) be a differential operator depending on a set of coefficients
g(x) = (gl(g),...,gz(z)). We wish to estimate g from the observed solution

V(x) and a right hand side of the equation

(2.1) L(_g_) V(z) = f(z) xe Q.

The problem is generally ill-posed. In order that gﬂx) will be
identifiable, V(x) must satisfy some necessary conditions. (See [2] for

example.) We assume throughout the paper that the observations V(x), f(x)

are such that:




(Pl1) observations are distributed in ©
(P2) V(x), f(x) are such that g(x) is identifiable

(P3) g(x) depend continuously on V(x), f£(x).

In this paper, we are not discussing éonditions on L(g), V(x), f(x) that
imply (P2) and (P3). Basically, these assumptions imply that the
identification problem is well posed. In a companion paper [5], we discuss
such conditions for the example given in section 4.l. Our approach for
estimating g(x) will be to look for g(x) such that equation (2.1) will be

satisfied in a least squares sense, i.e.,

* x 2
(2.2) min I L(g)v - £ II2
g(x)eA

* %

where V , f are given in at discrete points, and A is a class of admissible
o~k

parameters., The first step is to construct an interpolant V that is

defined everywhere in Qe This will define a problem on the continuous

level. Next we consider the question of discretization.

Let the discrete domain be Qh, on which V*h, f’,‘h are given (by

interpolation from the measurements). Let Ah, A pe spaces of discrete

functions defined on the discrete domains Qh, QH respectively, where

ol C Qh. A" G111 be the set of admissible parameters. The dimension of

At may not be the same as that of AR, The discretization of (2.1) is then

(2.3) Lt @ vh = e, gleall, v gheal



where Lh(gy) is a matrix approximation to L(g). The identification

procedure then takes the form

(2.4) min 1 L v - g a2,

* 2
gFGAH

The method one uses for discretization is a crucial one for the quality of the

estimated quantities. We suggest the following rule:

Discretization Rule: The number of parameters in gﬁ should be less than the

number of equations in (2.3).

The above rule is in accordance with results by others (for example [6]).

This rule seems to guarantee that no spurious oscillations are developed in

gﬁ. In practice, we take gH to be defined on a grid twice as coarse as the

grid on which V*h, f*h are defined.

Let the matrix B(Vh) be defined by

h, H, .h

h H
(2.5) B(V)g =L(g)V .
h, H . h
Note that, although L (g ) is a square matrix, B(V ) is a rectangular one

since 5? involves less parameters than Vh. With the above definition of

B(Vh) , our minimization problem takes the form

(2.6) min 1B (v,Mgh - £,

2 L)
gHEAH

This leads, in the case of linear L, to the following system of equations

“,,m

M“——-m .




(2.7) B v,mT B v g - By, MiT e .

We next describe an efficient algorithm for solving the discrete system

(2.7).

3. Multigrid Procedure

The main element of a good multigrid procedure is a relaxation scheme.
We start by describing this part.

Relaxation. Since [B (VB)]T B (V*h) is symmetric positive definite, it
seems that Gauss—Seidel relaxation will be appropriate. However, for this we

h lie

have to compute [B (V:)]TB(V*h). For general problems where gH, v,
on different grids, this may be too involved. As an alternative, we suggest

Kaczmarz relaxation for

H h
(3.1) B (v,h) gf = £,0 .
From a theorem of Tanabe {[3], this relaxation converges to the least squares
solution plus the projection of the initial approximation onto the kernel of
[B (V*h)]T. Considering the task of programming the algorithm, it is much
simpler to take this route over the one of computing [B (V*h)]T B (V*h).

The i~th step in Kaczmarz relaxation is given by:

For j =1, «¢., n do:

(£ - B(v,Me" |

2 L
g Ibgyl

H H hy _ =
gj < gj + 6i bij where B(v,) (bij) and Gi



We now come to the description of a multigrid cycle. We begin by

describing a two-grid cycle.

Two—grid Cycle

Suppose we are given two grids Qh, QZh where QZhg; Qh. Let

Ag, Aih (i=1,2) be spaces of grid functions defined on Qh QZh

respectively. Assume the Qh—grid equations are

h.h _ ¢h h. /& he 4h
Bg f g Etﬁ, f AZ'

h 2h h 2h _ h |*

Let I, ~ be an interpolation operator from Ai to Ai’ and I ° = (I,) .

Given an approximate solution Eh to the above equation, a two-grid

cycle for improving it consists of performing (A) - (D):

(A) Relax the equation Bhgh = ¢h v, times, starting with

Eh yielding éh.

(B) Solve (approximately) the coarse grid equation

2h 2h _ _2h ,.h _ _h-h,, 2h _ _2h_h_h
B g =1 h (f B g ), B = Ih B IZh’
~2h .
denote by g the (approximate) solution.
(C) Perform the correction
—-h —h h ~2h
g+g+12hg d

—




rorgll

(D) Relax the equation Bhgh = fh v, times, starting with Eh
. ~h
yielding g .
Note that B2R is an operator from Afh to A;h and the definition given

for it is only one possibility.
In order to obtain full efficiency of such an algorithm one solves the
coarse grid equations in step (B) by a similar algroithm using a still coarser

grid. Applying this idea recursively we get the basic multigrid cycle which

is defined next.

Multigrid Cycle

Given a sequence of discretizations with mesh sizes h1> h2 > ...hm, on

k _ k-1 k .
grids 17, where hk = th +1 and Q ca. Let the hk—grld equation
be
(3.3) B¥ gk = fk; kaAg, ngAk,
where B approximates gkl (k < m) and AE (i=1,2) are spaces of
k

functions defined on the hy—grid. Let Ik_1 be an 1interpolation operator

from AE-I to AE, and It-l be a restriction operator from AE to Ag—l.
The algorithm for improving a given approximate solution Ek to (3.3) is
denoted by

(3.4) M (k, B, £

and is defined recursively as follows:



(1) If k = 1, solve (3.3) by several relaxations otherwise do steps (A) -

(D).

(A) Perform v relaxation sweeps on (3.3), resulting in a new approximation

-k
g 3

k~

(B) Starting with E 1=O, perform vy times the following cycle

~k-1 ~k-1 k-1 , .k _ _k=k
g+ MG(k-l,g" ",I " (£ - Bg)),

(C) Calculate

=k + -~k k ~k-1
g g +1 . g

(D) Perform v, additional relaxation steps on (3.3) starting with Ek and

yielding the final Ek of (3.4).

The cycle with vy =1 is called V(vl,vz)—cycle and the one with y = 2

is called W(vl,vz).

Full Multigrid Algorithm (FMG)

In order to obtain full efficiency, it 1is better to start from a good
initial guess. This can be obtained by solving a similar problem on a coarser

level. Applying the idea recursively, we get the following algorithm which is

called full multigrid algorithm and is denoted by N-FMG.

1. Solve (3.3) for k=1 using several relaxations.




———— T —

2. k = ktl

~k _ _k ~k-1
= g

3. Perform the cycle
N times.

4, If k <m, go to 2;

4, Numerical Examples

In this section,

’ “t—l is an interpolation operator.

otherwise, stop.

we demonstrate the effectiveness of the method

described. Results are given for two identification problems. 1In all cases

the grids are finite and the spaces defined them are of grid functions (finite

dimensional), with the 22—norm.
4.1 Elliptic case
Let g = g (x,y); (x,y) € & = [0,1] x [0,1], and
L (g) = %;-g %; + %; g%; .

Determine g(x,y) from observations of V(x,y), f(x,y) which satisfy

L(g) V=f in Q.
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Discretization V, f were discretized on a uniform mesh

o - {(ih, jh), 0 < i, j < N} N+ h-=1,.

g was discretized on a mesh QH, with H = 2h. The discrete equation is

U .~ U, . u, .-1T .
gH ( i+l,j 1’3) _ gH ( i,j i-laJ)
i+ 1/2 s J h2 i- 1/2 s J h2
U, . - U,. v, .- U, .
+ gH ( i,j+l1 iJ) - ( i,] i,J—l) = £
i, j+ 1/2 h2 i,j- 1/2 hz ij i

H H H
where gitlb, i and g',ytHQate glven from the nodal values of g on the

i
grid QZh by linear interpolation. This gives approximately 4 times as many

equations as there are unknowns. At every level of discretization, we
maintained the relation between gH, Uh, i.e., gH is always defined on a grid
twice as coarse as the one for Uh. The lz norm of a function U

defined on a grid Qh is given by

1o, = h Y I |Uh.|2.
(1,3)eq

All interpolation was bilinear and residuals were transferred by the 9-

point averaging operator.

1 2 1
k-1 _ 1
L= (2 4 2| .
1 1
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The following tables summarize the numerical experiments. In all the examples
1-FMG using W(2,1) cycle is shown. The numbers are taken at the end of the 1-

FMG algorithm. 1In all the examples, the identification problem is well-posed.

Example 1 V(x,y) = x(1-x) y(l-y)

gx,y) =1 +x +y

Level # f gh - g*ll2 I residuals "y
1 106 (-4) 370 (-5)
3 324 (-7) 409 (=7)
4 .0 .0 (—9) J
Example 2 V(x,y) = sin(rx) sin(wy)
glx,y) =1l +x+y
h *

Level # lg” - gt, I residualsl,

1 114 <452 (-4)

2 .289 (-1) .322 (-1)

3 694 (-2) .818 (-2)
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Example 3 V(x,y) = sin(nx) sin(wy)
_ Jl+x x € .5
g(x:¥) = 15 X > .5
h *
Level # hg -gl, Iresiduals n,
1 .812(-1) +289(-5)
3 «530(-2) .181(~1)
4 .153(-2) .603(-2)
Example 4
V(x,y) = x(1-x)y(l-y)
- 1 + x, X € .5
g(x,y) |1.5, X > .5
*
Level # f gh -h 1 I residuals ",
2 .536(-2) .256(-2)
4 +750(-3) .314(-4)

4.2 Parabolic Case

Let g = (g(x,y), s(x,y)); (x,y) e Q = [O,l]2 ; and

L(g,s) = -s (x,y) g?-+ g§ gg; + %? g

<1
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Determine s(x,y), g(x,y) from observation of V(x,y,t) f(x,y,t) such that the

following equation holds

L (g,s) V=1¢f (x, yJe g , 0< t< To'

In this problem, we used observed data at a few different times. We
assumed that both V and Vt are given together with f.
Let Qh be defined as in the previous section and FM be defined as

M— . -—
r —{tn. n=1,...,M 0< tn <T0} .

Discretization of V(x,y,t), f(x,y,t), and s(x,y,t) was done on Qh x FM while
that of g(x,y) used QH(H=2h). With such a discretization, the total number

of unknowns is

The total number of equations is n’  times the numbers of time observa-

tions. In our example, five time observations were used.

In defining coarse grids, we maintained the relation between v,f,s,g as
on the fine level, i.e., v,f,s use a grid twice as fine as g uses. We
coarsened in space only, leaving the number of time measurements to be the
same on all levels. Intergrid transfers were exactly as in the elliptic case
(sec 4.1). The relaxation consists of two steps. The first one was a
Kaczmarz relaxation in which both gH and sh were relaxed. The second one was
a pointwise relaxation of sh only. In this relaxation, the points

h

(1,3) € Qh were scanned in lexicographic ordering, and at each point sij was
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changed to minimize

uLh(gH,sh) Vh* - fhu.

The following tables summarize the numerical results. Results are given

for 3-FMG using w(2,2) - cycle.

Example 1
v(x,y,t) = sin(rx)sin(ry) (t+1)
glx,y) =1l +x+y
s(x,y) = 1,
Level # Cycle # ugh-g*u Hsh—s*u Iresidualsi,
1 10 114 8.11 (-5) 3.52 (-5)
2 1 2.75 (-2) 1.17 (-2) 4.64 (=3)
2 2.75 (-2) 5.06 (-3) 4,14 (-3)
3 2.75 (=2) 2.72 (-3) 3.81 (~3)
4 2.75 (-2) 1.98 (-3) 3.54 (-3)
3 1 6.81 (-3) 1.96 (-2) 1.50 (-3)
2 6.79 (-3) 8.75 (-3) 1.38 (-3)
3 6.78 (-3) 3.95 (-3) 1.29 (-3)
4 6.78 (-3) 1.95 (=3) 1.20 (-3)
4 1 1.77 (-3) 3.30 (-2) 2.41 (-3)
2 1.72 (-3) 1.98 (-2) 2.58 (-3)
3 1.70 (-3) 1.20 (-2) 2.67 (-3)

4 1.69 (-3) 7.96 (-3) 2.56 (-3)




Example 2

V(x,y,t) = sin(wrx) sin(ny)(t+l) , s(x,y) =1
_ I+x (x< .5
8(x¥) = 15 x> .5
Level # Cycle # ngh-g*u nsP-s™n Iresidualsll,
1 10 8.19 (-2) 4.49 (-5) 1.93 (-5)
2 1 1.90 (-2) 6.98 (-3) .137
3 5.22 (-3) 6.86 (-3) 4,99 (-2)
4 5.25 (-3) 7.79 (-3) 4.66 (-2)
4 1 1.43 (-3) 1.68 (-2) 2.29 (~2)
3 1.45 (-3) 6.83 (-3) 2.06 (-2)
4,3 Discussion
These numerical examples clearly demonstrate the effectiveness of the

method of discretization as well as the solution process.
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In the elliptic problem, the coefficients converge in a rate of O(hz)
in the smooth case. When derivatives of the coefficients are not smooth, a
slower rate is obtained as one would expect. The multigrid algorithm solves
the problem up to the level of discretization errors in just one multigrid
cycle of the type FMG-W(2,1).

In the parabolic case, the coefficient g(x,y) shows O(hz) convergence
(in the smooth case), and this is obtained after the first cycle. s(x,y)
behaves worse taking more cycles to reach the level of discretization error.
This can be explained as follows: a change of order O(hz) in g(x,y) may lead
to a change of O0(h) in s(x,y). Hence s(x,y) may reach convergence only after
g(x,y) has converged. It is possible that, although s(x,y) has not reached
convergence, g(x,y) will be accurate up to discretization errors if the error
in s(x,y) times Vt(x,y,t) is of the level of truncation errors. The
behavior of the residuals in examples of Section 4.2 is not clear. It goes up
when going from level three to level four, and it seems that it should have

gone down.
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