C$_3$H$_2$ OBSERVATIONS AS A DIAGNOSTIC PROBE FOR MOLECULAR CLOUDS

L.W. Avery
Herzberg Institute of Astrophysics
Ottawa, Canada

Recently the three-membered ring molecule, cyclopropenylidene, C$_3$H$_2$, has been identified in the laboratory and detected in molecular clouds by Thaddeus, Vrtilek and Gottlieb (1985). This molecule is widespread throughout the Galaxy and has been detected by Matthews and Irvine (1985) in 25 separate sources including cold dust clouds, circumstellar envelopes, HII regions, and the spiral arms observed against the Cas A supernova remnant. In addition, Seaquist and Bell (1986) have detected C$_3$H$_2$ in the galaxy NGC5128.

A number of factors suggest that C$_3$H$_2$ may be an astrophysically important molecule. Its large dipole moment ($\mu \approx 3.3$D) and widespread occurrence give rise to relatively strong lines in many sources. In addition, its relatively small moments of inertia and asymmetric top structure result in numerous spectral lines distributed throughout the cm and mm wavelength range.

In order to evaluate the potential of C$_3$H$_2$ as a diagnostic probe for molecular clouds, and to attempt to identify the most useful transitions, I have carried out statistical equilibrium calculations for the lowest 24 levels of the ortho species and the lowest 10 levels of the para species. Because collisional excitation rates for C$_3$H$_2$ are not yet available, the rates computed by Green (1980) for H$_2$O were used. Both H$_2$O and C$_3$H$_2$ have C$_2$V symmetry, with b-type transitions, so their quantum level structure is qualitatively similar, though the energy level separation in H$_2$O is larger because of its large moments of inertia. To compensate for this I have used Green's H$_2$O excitation rates for $T_K=200$K to represent C$_3$H$_2$ at $T_K=10$K. (At 200K, the ratio of the average kinetic energy of H$_2$ molecules to typical H$_2$O energy level separations is comparable to the same ratio for H$_2$ and C$_3$H$_2$ at 10K). Also, the H$_2$O rates were scaled upward by an order of magnitude to reflect the significantly larger dipole moment and size of C$_3$H$_2$.

Many of the sources observed by Matthews and Irvine (1985) show evidence of being optically thick in the $1_{10}-1_{01}$ line. Consequently, the effects of radiative trapping should be incorporated into the equilibrium calculations. This was done using the Large Velocity Gradient approximation for a spherical cloud of uniform density as discussed by Goldreich and Kwan (1974).

Some results of the calculations for $T_K=10$K are given in Figures 1-3. Each figure shows contours of the logarithm of the ratio of peak line brightness temperatures for ortho-para pairs of lines at similar frequencies. The background temperature was taken to be 2.8K. Such line-strength ratios should be relatively free of systematic errors due to effects such as differential beam dilution, telescope efficiencies, atmospheric transmission etc. In each figure n_{H_2} is the neutral hydrogen density, X the C$_3$H$_2$ abundance relative to H$_2$, and dV/dr the velocity gradient in the molecular cloud.

The $1_{10}-1_{01}$ and $2_{20}-2_{11}$ line pair of Figure 1 show a marked density dependence. Over the central range of H$_2$ densities which are appropriate for molecular clouds the $1_{10}-1_{01}$ line is predicted to be in emission and the $2_{20}-2_{11}$ line in absorption against the microwave background. This has been observed in a number of dark clouds by Matthews et al. (1986). In addition, the predicted line strength ratio of this pair exhibits a strong dependence upon n_{H_2} which implies that it may be especially useful as a density probe of molecular clouds.
Figure 1. Logarithm of $T_b(110-101)/T_b(220-211)$.

The line frequencies are 18343 and 21587 MHz. Solid lines on the left represent both lines in absorption; on the right both lines in emission. In the area covered by dashed lines, the 110-101 line is predicted to be in emission and the 220-211 line in absorption.

Figure 2. Logarithm $T_b(321-312)/T_b(211-202)$.

Both lines are in emission at frequencies of 44104 MHz and 46756 MHz.

Figure 2 suggests that the $3_{21}-3_{12}$ ortho line is likely to be quite weak relative to the $2_{11}-2_{02}$ para line at low-to-moderate H_2 densities. However, over certain parts of parameter space, information about both molecular abundance and n_{H_2} would be obtained from this pair.

The $2_{12}-1_{01}, 2_{02}-1_{11}$ ratio in Figure 3 is relatively flat over density. (Note that different contour intervals are used in the three figures.) These lines appear to complement the K-band pair of Figure 1 very nicely in that their relative insensitivity to n_{H_2} yields information about $X/(dV/dR)$, which is necessary for a density determination from Figure 1.

In summary, it appears that the widespread nature of C_3H_2, the relatively large strength of its spectral lines, and their sensitivity to density and molecular abundance combine to make this a useful molecule for probing
physical conditions in molecular clouds. The 110-101 and 220-211 K-band lines may be especially useful in this regard because of the ease with which they are observed and their unusual density-dependent emission/absorption properties. These conclusions, however, are preliminary, and will need to be confirmed when better collisional rate coefficients are available.

REFERENCES