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Abstract

A time accurate approximate factorization
(AF) algorithm is formulated for solution of the
three dimensional wunsteady transonic small-
disturbance equation, The AF algorithm consists
of a time linearization procedure coupled with a
Newton iteration technique. Superior stability
characteristics of the new algorithm are
demonstrated through applications to steady and
oscillatory flows at subsonic and supersonic
freestream conditions for an F-5 fighter wing,
For steady flow calculations, the size of the
time step is cycled to achieve rapid conver-
gence. For unsteady flow calculations, the AF
algorithm is sufficiently robust to allow the
step size to be selected based on accuracy
rather than on stability considerations.
Therefore, accurate solutions are obtained in
only several hundred time steps yielding a
significant computational cost savings when
compared to alternative methods.

Nomenclature
c airfoil chord
cp wing reference chord
Cp pressure coefficient
*
Cp critical pressure coefficient
Cp unsteady pressure coefficient

normalized by oscillation amplitude

f function defining position of wing

K reduced frequency, wcp/2U

M freestream Mach number

t time, nondimensionalized by freestream
velocity and wing reference chord

U freestream velocity

ag mean angle of attack

ay amplitude of pitch oscillation

Y ratio of specific heats

r circulation

at nondimensional time step

R fractional semispan

A leading edge sweep angle

9 disturbance velocity potential

w angular frequency

Subscripts

J index of grid points in spanwise
direction

J index of grid point at wing root

k index of grid points in vertical
direction

TE trailing edge

Introduction

Presently, considerable research 1is being
conducted to develop finite-difference computer
codes for calculating transonic  unsteady
aerodynamics for aeroelastic applications.! The
computer codes are being developed to provide
accurate methods of calculating unsteady
airloads for the prediction of aeroelastic
phenomena such as flutter and divergence. The
most fully developed U.S. code for transonic
aeroelastic analysis of isolated planar wings is
XTRAN3S, The code uses an alternating-
direction implicit (ADI) finite-difference
algorithm to calculate steady anrd unsteady
transonic flows in a time-marching fashion,
Several terms of the ADI algorithm are treated
explicitly, though, which leads to a time step
restriction based on numerical stability
considerations, Experience with the code has
shown that for applications to practical wings
with moderate to high sweep and taper, very
small time steps are required for the algorithm
to be numerically stable,3”® This stability
restriction typically results in thousands of
time steps required to obtain converged
solutions, which generally is many more time
steps than is necessary to resolve the physics
of the problem, Such  solutions are
computationally expensive, and thus, aeroelastic
applications of XTRAN3S have generally been
Timited. An algorithm 1is therefore desired
which 1is robust in comparison with the ADI
algorithm to allow for efficient application to
aeroelastic problems.

The purpose of this paper is to describe
the development of a time-accurate approximate
factorization (AF) algorithm for solution of the
unsteady transonic  small-disturbance  (TSD)
equation. The AF algorithm involves a local
time linearization procedure coupled with a
Newton iteration technique which is based on
work recently reported by Shankar, Ide,
Gorski, and Osher’ and Shankar and Ide.® In
Refs. 7 and 8, these concepts were developed for
the full-potential equation and the resulting
algorithm was shown to be very robust for
application to either steady or oscillatory
transonic flow problems. The objectives of the
present research were to: (1) develop a similar
AF algorithm for solution of the unsteady TSD
equation, (2) validate the new algorithm by
making comparisons with available experimental
data as well as with results computed using the
XTRAN3S AD! algorithm, and (3) investigate the
robustness and efficiency of the new solution
procedure, The paper presents a description of
the AF algorithm along with results and
comparisons which assess this new capability.



Governing Equations

In this section the equations governing the
flow are briefly described including the TSD
equation and boundary conditions. Details of
the coordinate transformation to map the
physical domain into the computational domain
also are given,

TSD Equation

The flow is governed by the modified TSD
equation which may be written in conservation
law form as

of of of of
—_—t —= p — ¢ == = (1)
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where
fo 2 . A°t - B@x (2a)
fl = Eo F@E + wa (2b)
f2 = @y + wafy (2¢)
fy= 0, (2d)

The coefficients A, B, and E are defined as

2 2

A=M,8=M,E=1-M (3)

Several choices are available for the
coefficients F, G, and H depending upon the
assumptions used in deriving the TSD equation,
In this study, the coefficients are defined as

F = -‘% (v + l)M2 (4a)
6 =5 (v -3m (4b)
W= - (v - 1M (4c)

Boundary Conditions

Boundary conditions imposed upon the flow
field are

Far upstream: ¢ =10 (5a)
Far downstream: oty = 0 (5b)
Far above and below: v’ = 0 (5¢)
Far spanwise: ?y =0 (5d)
Symmetry plane: ¢y = 0 (5e)

"

Trailing wake: [¢z] 0 (5f)

[0 + 0l =0 (59)

where [ ] indicates the jump in the indicated
quantity across the wake. The wing flow-
tangency boundary condition is

*

*
o, = f +fy (6)

which is imposed at the mean plane of the wing.
The plus and minus superscripts indicate the
upper and lower wing surfaces, respectively.

Coordinate Transformation

The finite-difference grids in both the
physical and computational domains are contained
within rectangular regions and conform to the
wing planform, Regions in the physical domain
such as the swept and/or tapered wing are mapped
into rectangular regions in the computational
domain using the shearing transformation

£=6(x,y)y, n=y, ¢=12 (1)

where ¢, n, and ¢ are the nondimensional
computational coordinates in the x, y, and z
directions, respectively. The TSD equation
(Eg. (1)) may then be expressed in computational
coordinates as
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Alternating-Direction Implicit Algorithm

An alternating-direction implicit algorithm
was developed in Ref., 2 for solution of the
modified TSD equation (Eq. (1)). This algorithm
forms the basis of the XTRAN3S computer code
which can be used to calculate steady and
unsteady transonic flow fields about planar
wings including aeroelastic deformation
effects. The program is capable of treating
either forced harmonic or aeroelastic transient
type motions. Details of the algorithm
development and solution procedure are given in
Ref. 2. The original XTRAN3S code used a simple
global shearing transformation which restricted
applications to wings with mild sweep and taper,




Alternative coordinate transformations?™S were

subsequently developed to allow application to
practical wings. Although the code now can be
applied to more general planforms, several of
the terms of the TSD equation are treated
explicitly in the ADI algorithm which leads to a
time step restriction based on numerical
stability considerations. For- application to
wings with moderate to high sweep and taper,

very small time steps are required for the
algorithm to be numerically stable, For
example, a summary of selected time steps and

number of steps per cycle is listed in Table 1,
the values of which are taken from Refs. 3.6,
Cases are tabulated for three wings which
include the F-5 wing,%»* the RAE tailplane,?
and the B8-1 wing.6 (The calculations for these
wings were performed using different
computational grids and different coordinate
transformations.) As shown in the table, the
stability restriction typically results in
thousands of time steps required to obtain
converged steady-state solutions and thousands
of steps per cycle of forced harmonic or
aercelastic motion, These solutions are
computationally expensive, and thus, aeroelastic
applications of XTRAN3S have generally been
limited.

To investigate the stability problem of the
ADI algorithm, a numerical stability analysis
was performed for the F-5 wing, Shown in Fig, 1
are the resulting stability boundaries
calculated using the algorithm started from an
initial undisturbed flow. The boundaries were
determined by first selecting a step size of at
= 0,05 and running the algorithm until the
solution diverged causing program failure. The
step size was then successively reduced and the
calculations repeated until the boundary was
determined, The analysis was performed for
freestream Mach numbers of M = 0.6, 0.8, 0,9,
and 0,95, As shown in the figure, the ADI
algorithm is unstable in the region above and to
the right of the boundaries; the algorithm is
stable in the region below and to the left, The
stability boundaries indicate that a very small
step size is required to obtain stable solutions

Table 1

using the ADI algorithm, In fact, this step
size is excessively small as demonstrated by the
following example. The number of steps per
cycle N, for oscillatory flow, is determined for
a given time step by

N (9)

If the maximum allowable time step is 0.01 and
the reduced frequency k 1is 0.1, then Eq. (9)
indicates that over 3000 steps per cycle are
-required for numerical stability. This is an
order of magnitude more steps than is necessary
for accurate aeroelastic calculations,

To further investigate the problem,
stability boundaries were obtained for several
leading edge sweep angles by shearing the F-S
planform aft. Values selected for the sweep
angle include A = 32°, the actual sweep of the
F-5 wing, and A = 45° and 60°. Shown in Fig., 2
are the resulting stability boundaries for the
freestream Mach number of 0.9, The boundaries
indicate that as the sweep increases,
smaller time steps are required for numerical
stability. For the A = 60° case, for example,
the maximum allowable time step is approximately
0.002.

Approximate Factorization Algorithm

An approximate factorization algorithm was
developed as an alternative solution of the
modified TSD equation (Eq. (1)). In this
section, the AF algorithm is described in detail
including the mathematical formulation,
finite-difference discretization, boundary
conditions, and solution procedure.

General Description

The AF algorithm consists of a time
linearization procedure coupled with a Newton

Summary of selected time steps and steps per cycle using

the XTRAN3S ADI algorithm reported in Refs, 3-6.

Reference | Wing | Leading | Taper | Aspect Steady Unsteady
edge ratio ratio
sweep At total case steps/cycle
angle steps
3 F-5 31.9° 0.28 3.16 0.01 2000 40 Hz, pitch 1200
4 F-5 31.9° 0.28 3.16 0.01 4000 20 Hz, pitch 2160
5 RAE 50.2° 0.27 2.4 0.0075 1500 70 Hz, pitch 1000
33 Wz, pitch 2000
not
6 B-1 67.5° 0.38 1.85 0.002 reported | aeroelastic 6000
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Fig. 1 Numerical stability boundaries of the
ADI algorithm computed from an initial
undisturbed flow past the F-5 wing.
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Fig. 2 Numerical stability boundaries of the
ADI algorithm computed from an initial
undisturbed flow past the F-5 wing for
various sweep angles.

iteration technique, For unsteady flow
calculations, the solution procedure involves
two steps. First, a time linearization step
(described below) is performed to determine an
estimate of the potential field. Second,
Newton iterations are performed to provide time
accuracy. More specifically, the TSD equation
(Eq. (1)) is written in general form as

n+1)

R(¢ =0 (10)

where oml represents the unknown potentials at
time level {n+l)., The Newton iteration solution
to Eq. (10) is then given by the first order
Taylor series

R(6™) + () L =0 (11)

3
* =0

R
In Eq. (11), ¢ 1is the currently available value

n+l n+l * .
of ¢ and A¢ = ¢ - ¢ . During convergence
of the Newton iteration procedure, a¢ will
approach zero so that the solution will be given

n+l *
by ¢ = ¢ . In general, only one or two

iterations are required to achieve acceptable
convergence since the Newton iteration process
1s quadratically convergent., For steady flow
calculations, Newton iterations are not used
since time accuracy 1is not necessary when
marching to steady-state.

Mathematical Formulation

The AF algorithm is formulated by first
approximating the time derivative terms (o4t
and ¢yt terms) by second-order accurate
finite-difference formulae. By substituting

*

$ = ¢ + 4¢ into the TSD equation and neglecting
squares of derivatives of ap (which s
equivalent to applying Eq. (l1) term by term),
each term of Eq. (1) may then be rewritten as

* - -
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Summing these four terms and rearranging gives
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The right-hand side of Eq. (13) is simply the
TSD equation which may be evaluated using

* -
known potentials ¢ , o", @" 1 , and ¢" - . The

left-hand side of Eg. (13) consists of terms
containing A¢ and its spatial derivatives, At
*

convergence ¢ approaches ¢"+1 so that a¢
vanishes and the left-hand side becomes zero.

Equation (13) is transformed into
computational coordinates using Eq. (7) and is
rewritten in conservation form for solution by
approximate factor1zat10n. Each term s
multiplied by at 2/(2A) and the left-hand side
is approximately factored into a triple product
of operators yielding

- * n n-l1 n2
Lelolo a0 = -R(e, 0, 070 o) (14)
where
L=1+3§£ Ata—-E tza_Fa_ (15a)
3 3R 3 2A 3E "1 ¢
L= 1 -8 t23—v= K (15b)
n - 28 3an "2 9n
Loe1.g 202 ¢ 2 (15¢)
14 S 5% 2K 3¢ '3 3¢
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Fuo= E&, + 2FE0p + 268 (¢ °e + ¢ )
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Fpmg (1+ HE, 0 ) (15e)
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Fy =% (15F)
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Equation (18) is solved using three sweeps
through the grid by sequentially applying the
operators Lg, Lp, and L as

£ - sweep: LE A = - R (16a)
n - sweep: L_ 2o = A} (16b)
¢ - sweep: L ¢ = 2% (16¢)

Spatial Discretization

Central difference formulae are employed
for all of the derivatives on the left-hand
sides of Eqs. (16) except for the second term in
the L¢ operator (from the ot term) which is
backward differenced to maintain stability and
the third term in the Lg operator which is
split into streamwise and spanwise components.
The resulting terms are centrally differenced at
subsonic points and the streamwise terms are
upwind biased at supersonic points using the
Murman?® type-dependent mixed difference
operator. The terms on the right-hand side of
the & - sweep are also approximated using
central -difference operators except for the
¢xt term which is backward differenced and for
terms in the streamwise direction which are
upwind biased at supersonic points, For
example, the term

g— (eg og + Fezogz + 6(¢ °s + ¢ ) ] (17a)

is rewritten as

* 2 ﬁ'z * * 2
D, [E 0, + FE o + Gs (&, 0¢ + ) ]

5 [8y(s,0; + 0)%] (1)




streamwise and
constant G,

where Gg and Gy are the
spanwise  components of the
respectively, defined as

=1 -, Gy 7 (r-1) M (18)

—

G

In Eq. (17b), &g 1is a «central difference
operator and Dg is the Murman® type -dependent
mixed difference operator that depends upon the

sign of E + 2F¢:.

In the present coding of the AF algorithm,
the time-derivatives are implemented for
variable time stepping to allow for step-size
cycling to accelerate convergence to
steady-state. In these calculations the step
size 1is cycled wusing a standard geometric
sequence, Also, since the Lg, L,, and L¢
operators only contain derivatives in their
respective coordinate directions, all three
sweeps may be vectorized. This is in contrast
with the ADI algorithm where only the streamwise
sweep is vectorizable,

Time-Linearization Step

An initial estimate of the potentials at
time level (n+l1) is required to start the Newton
iteration process. This estimate is provided by
performing a time-lineartization calculation,
The equations governing the time-linearization
step are derived in a similar fashion as the
equations for Newton iteration, The only
difference is that the equations are formulated
by linearizing about time level (n) rather than
the iterate level (*). So by substituting

o = ¢"+ 8¢ into the TSD equation (Eq. (1)) and

neglecting squares of derivatives of 4¢, the
time-linearization step may be written as

N n .n-1 n=2
be Ly Lo de = = R{sT, o770, 9777) (19)
where the operators Lg, ns and are
defined by Egs. ({15a), (15b), and ilSc),
*

respectively, with replaced by ¢ in
the definitions of F; and Fp (Eqs. (15d) and
15(e)).

Boundary Conditions

The boundary conditions are numerically
imposed by redefining the Lg, Lp, and L
operators in Eq. (14) as well as the right-han
side R, at the appropriate grid points. The
equation to be solved at boundary grid points
may then be written symbolically as

L. L L 4 =-R (20)

where the "tilde" indicates that the quantity
has been modified or rewritten to account for

the boundary conditions, In the following
subsections, the numerical treatment of each of
the boundary conditions is described in detail.

Wing. - The wing flow-tangency boundary
condition (Eq. (6)) 1is imposed within the

«
differencing of the a(¢;)/a; term which appears

in R (Eq. (159)) on the right hand-side of Eq.
(14) and within the Ly operator in the time-
linearization step for unsteady calculations.

Ip general, the a(cc)/ac term is approximated by

D (0 o2 (e, =e. ) (2)

T2 = — 7 4
2 A T Vi B S V-

where the derivatives on the right-hand side are

written about half-node points, The wing is
located equidistantly between grid lines so that
in the plane directly above the wing the
*

Yok .1/2 derivative in Eq. (21) is replaced

by (f: + ft)n+1 and in the plane below the wing

L . . : .
the PLr1/2 derivative in Eq. (21) s
£ )n+1

replaced by (f; + fy
modified in the time-linearization step since a¢

is defined then to be equal to ¢ o ¢n.

. The LC operator is

*
Analogous to the a(q>C Y/3z modifications, the

Apck 1/2 term in L, is replaced by

n+l +

n
S (F 1)

plane above the wing, and the A¢Ck+1/2 term

(f + f ) at grid points in the

in L. is replaced by (f; + ft)n+1 - (f; + ft)n
at grid points in the plane below the wing,
Since these terms are known quantities, they are
brought to the right-hand side of Eq. (l6c)
which results in a bidiagonal ¢ - sweep
equation.

Wake, - The wake boundary condition (Egs.
(5f) “and (5g)) is similar to the wing
flow-tangency boundary condition in that it is

 J
imposed within the a(pC )/3; term and the

right-hand side of the ¢ - sweep. The wake
circulation T is calculated from Eq. (5g) which
is equivalent to

r +r, =0 (22)

Starting from the trailing edge value given by
Trg = Q;E - ¢;E’ the circulation is convected
downstream by integrating Eq. (22) wusing
second -order accurate finite-difference
approximations for [y and Tg. The wake
circulation is incorporated within the solution
procedure by requiring that the perturbation
velocity in the vertical direction be continuous




across the wake (Eq. (5f)). This condition is
satisfied by defining

O* (¢* F*).
- +

o, =Skl (23a)
k-1/2 % = %A1

at grid points in the plane above the wake, and
by defining

* * [ ]

[ ] (¢k+1 -T ) - ¢k
b = R
k+1/2 k+1 k

(23b)

at grid points in the plane below the wake.
Similar substitutions are made for terms in the

*
LC operator by replacing ¢ in Egs. (23) by a¢

* »*
and by replacing T in Egs. (23) by P+l r.
Since the circulation terms are  known
quantities, they are brought to the right-hand
side of Eq. (16¢c) which results in a modified
¢ - sweep equation,

Symmetry plane, - The symmetry condition
(Eq. (5e)) is Tmposed at the plane of the wing
root j = J by requiring that

* * * +*
(3y¢i + Qn)J-l/Z 2 - (§y¢€ + ¢n)d+1/2 (24a)

and
* *
(€y°£ + ¢n)J =0 (28b)

Equations (24a) and (24b) affect terms which
appear on the right-hand side of Eq. (14).
Equation (24b) causes two terms in Fp (Eq.
(15d)) to vanish, The L, operator (Eq. {15b))
is also modified at j = J by requiring that

3 = 3 =
(Fp 37 80)5.172 = - (Fp 37 2954102 (25)

which results in an upper bidiagonal n - sweep
equation at the wing root. The condition at the
far spanwise boundary (Eq. (5d)) is identical to
the symmetry condition (Eq. (5e))} and thus is
treated similarly.

Farfield. - The farfield boundary
conditions (Eqs. (5a), (5b), and (5¢)) are
imposed by writing finite-difference
approximations for these equations, casting them
in the form of Eq. (20), and including them with
the system of simultaneous equations which
results from Eq. (14) for solution,

Results and Discussion

Calculations were performed for the F-§
wing to assess the accuracy and efficiency of
the AF algorithm, The wing has a full-span
aspect ratio of 3.16, a leading edge sweep angle
of 31.9°, and a taper ratio of 0.28, The
airfoil section of the F-5 wing is a modified
NACA 65A004.8 airfoil which has a drooped nose
and is symmetric aft of 40% chord. The AF
results are compared with parallel calculations
performed using the ADI algorithm, In these
calculations identical grids and coordinate
transformations (Eq. (7)) were used to allow for
a direct comparison between AF and ADI results.
The grid and transformation were identical to
those used in Ref, 4, Furthermore, the results
are compared with the experimental data from an
F-5 wing model tested by Tijdeman, et al,!% {n
Ref. 10, steady and oscillatory pressure
distributions were measured at eight span
stations along the wing, The stations were

located at n = 0.18, 0.36, 0.51, 0.64, 0.72,
0.82, 0.88, and 0.98. In this paper,
comparisons are presented at the first, third,
fifth, and seventh span stations. The tests
covered the Mach number range from M = 0.6 to
1.35. 1In this study, two Mach number cases were
selected for application of the new algorithm,
The first case, herein referred to as Case 1,
was chosen to have the same freestream
conditions as investigated in Refs, 3 and 4, In
Case 1, the freestream Mach number was 0.9 and
the mean angle of attack was 0°, At these
conditions, both steady and unsteady results
were obtained. The unsteady calculations were
performed for the rigid wing pitching
harmonically about a line perpendicular to the
root at the root midchord. The second case,
herein referred to as Case 2, was chosen to
assess the performance of the AF algorithm for
supersonic freestream conditions. In Case 2,
the freestream Mach number was 1.1 and the mean
angle of attack was 0°, No AD! calculations
were attempted for this case since the algorithm
is unstable for supersonic freestream cases for
swept wings.

Case 1: M = 0,9 and a, = 0°

for Case 1, steady «calculations were
performed using both the ADI and AF algorithms,
The ADI results were obtained using a constant
step size of at = 0.01 which is the same as that
reported in Refs. 3 and 4. These calculations
were performed for a total of 4000 time steps.
The AF results were obtained by cycling the step
size through a range of values between At = 0.05
and 5.0. A total of 400 time steps were run, A
comparison of steady-state convergence between
the ADI and AF algorithms is shown in Fig. 3.
After 4000 time steps, the maximum laol in the
ADI solution has been reduced to approximately
10-6.5 whereas the AF solution has achieved
similar convergence in less than 400 steps. The
total 1ift and moment in the AF solution were
converged after approximately 100 steps. Steady
calculations were also performed for the high
sweep case of A = 60°, to further assess the
convergence characteristics of the two
algorithms, The ADI results were obtained using
a constant step size of at = 0.002 and the AF
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Fig. 3 Comparison of steady-state convergence
between the ADI and AF algorithms for
the F-5 wing at M = 0.9 and o9 = 0°,
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Fig. 4 Comparison of steady-state convergence
between the ADI and AF algorithms for
the F-5 wing sheared to A = 60° at
M=0.9 and o4 = 0°,

results were obtained by cycling the step size
through a range of values between At = 0.05 and
0.5. A comparison of the steady-state
convergence histories between the two algorithms
is shown in Fig. 4, The ADI solution converges
very slowly such that after 4000 steps, the
maximum JA¢ has been reduced to only
approximately 10-5. The AF solution, however,
has_ converged very quickly to maximum |Ao‘ <
10-7 in only 250 steps.

A comparison of the ADl and AF steady
pressure distributions for the F-5 wing is shown
in Fig. 5. These opressure distributions
indicate that there is an embedded supersonic
region on the wing upper surface and the flow is
slightly supercritical along the lower surface.
The AF pressures are nearly identical to the ADI
pressures and both sets of results are in good

——AD/ algorithm
----- AF algorithm

Experiment

O upper surface
O lower surface

Fig, 5 Comparison of F-5 wing steady pressure
distributions at M = 0.9 and o5 = 0°,

general agreement with the experimental data.
The AF algorithm thus produced the same
steady-state solution for this case as the ADI!
algorithm, at one-tenth of the computational
cost.

Unsteady results were obtained using both
algorithms for the wing oscillating with
amplitude ap = 0.109° at a reduced frequency
of k = 0.137, for <comparison with the
experimental data. The ADI calculations were
performed using 2000 steps per cycle of motion
which corresponds to a step size of at = 0.0115,
(In Ref, 4, similar calculations were performed
using 2160 steps per cycle with a step size of
at = 0.0106.) For unsteady calculations with
the ADI algorithm, the step size is typically
selected based on numerical stability
considerations rather than on accuracy. Because
of the stability restriction inherent in the ADI
algorithm, this generally leads to using many
more time steps per cycle than is necessary to
resolve the physics of the problem. The AF
algorithm, however, allows the step size to be
selected based on accuracy rather than on
stability. Consequently, a convergence study
was performed wusing the AF algorithm to
determine the largest step size (fewest number
of steps per cycle) that would produce converged
answers. Unsteady results were obtained for
100, 200, 300, and 400 steps per cycle which
required at = 0.2293, 0.1147, 0.0764, and
0.0573, respectively. Only one Newton iteration
per time step was required to satisfy the
convergence criteria of maximum JAQJ < 10-6
for the latter three cases. For the 100 steps




per cycle case, two Newton iterations per time
step were required during approximately 60% of
the cycle of motion., Selected results from this
convergence study are plotted in Fig., 6 for 200
and 300 steps per cycle, The unsteady pressure
coefficients along the upper surface are shown
in Fig. 6(a); the unsteady pressure coefficients
along the lower surface are shown in Fig. 6(b).
These coefficients are plotted as real and
imaginary components corresponding to the
in-phase and out-of-phase unsteady pressure
distributions normalized by the amplitude of
motion. The calculation for 100 steps per cycle
of motion produced reasonable results but fairly
large differences were observed in comparison
with the 200 steps per cycle calculation. As
shown in Fig. 6, the results for 200 and 300
steps per cycle are very similar with the
largest differences occurring near the leading
edge and in the shock pulse region on the upper
surface, The pressure distributions computed
using 400 steps per cycle are identical, to
plotting accuracy, to those computed using 300
steps per cycle and therefore are not shown, A
converged solution hence requires approximately
300 steps per cycle of motion for this case,
although the results computed using 200 steps
may be acceptable for engineering purposes.

Figure 7 shows a comparison between the ADI
and AF unsteady pressures for Case 1 along with
the experimental data. Upper surface pressure
distributions are shown in Fig. 7(a); lower
surface pressure distributions are shown in
Fig. 7(b). The two sets of calculated results
are very similar, and both sets generally agree
well with the experimental data. The AF
algorithm (using 300 steps per cycle and one
Newton iteration per time step) thus produced
approximately the same unsteady solution for
this case as the ADI algorithm {(using 2000 steps
per cycle), at 30% of the computational cost.

Case 2: M = 1.1 and e, = 0°

For Case 2, calculations were performed
using only the AF algorithm. The steady results
were obtained by cycling the step size through a
range of values between at = 0.01 and 1.0. The
total 1ift and moment were converged after
approximately 150 steps and the potentials were
converged to approximately 10-6.5 after 400
steps. The resulting steady pressure
distributions are compared with the experimental
data in Fig, 8, For this supersonic freestream
case, the upper and lower surface pressure
levels are well predicted except near the
leading edge. In general, the pressure
distributions computed using the AF algorithm
are in good agreement with the experimental
data.

Unsteady results were obtained using the AF
algorithm for the wing oscillating with
amplitude ay = 0.267° at a reduced frequency
of k = 0.116. A convergence study was performed
using 100, 200, 300, and 400 steps per cycle
which corresponds to at = 0,2708, 0.1354,
0.0903, and 0.0677, respectively, Unsteady
pressure distributions for 200 and 300 steps per
cycle are plotted in Fig. 9 along with the
experimental data. The upper surface pressures
are shown in Fig., 9(a) and the lower surface
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Fig. 6 Convergence study using AF algorithm for
F-5 wing unsteady pressure distributions
due to wing pitching at M = 0.9,
a9 = 0°, ap = 0.109°, and k = 0,137,
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Fig. 7 Comparison of F-5 wing unsteady pressure
distributions due to wing pitching at
M=0.9, ag = 0°, a1 = 0.109°, and
k = 0.137.

—— AF algorithm
Experiment [

O  upper surface W
O  lower surface

o.© *

E A =0.88 P

Fig. 8 Comparison of F-5 wing steady pressure
distributions at M = 1.1 and o = 0°,

pressures are shown in Fig, 9(b). Similar to
the unsteady pressures of Case 1, approximately
300 steps per cycle are required in Case 2 for
convergence. Along the upper surface, the AF
pressures generally compare well with the
experimental data except in the real part near
the leading edge. Along the lower surface, the
AF results again compare well with the data and
the calculation predicts the large change in the

real part near 10% chord at n = 0.51, 0,72, and
0.88. Therefore, the Af algorithm is accurate
and efficient for application to supersonic as
well as subsonic freestream cases,

Concluding Remarks

A time-accurate approximate factorization
(AF) algorithm has been developed for the
solution of the wunsteady transonic small-
disturbance equation, The new algorithm was
developed as an alternative solution procedure
to the alternating-direction implicit (ADI)
algorithm, The AF alqorithm consists of a time
linearization procedure coupled with a Newton
iteration technique. For unsteady flow
calculations, the solution procedure 1involves
two steps. Ffirst, a time linearization step is
performed to determine an estimate of the
potential field. Second, Newton iterations are
performed to provide time accuracy. In general,
only one or two Newton iterations are required
to achieve acceptable convergence. For steady
flow calculations, Newton iterations are not
used since time accuracy is not necessary when
marching to steady-state,
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Fig. 9 Comparison of F-5 wing unsteady pressure
distributions due to wing pitching at
M= 1,1, ag = 0°, a1 = 0.267°, and
k = 0.116.
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The AF algorithm has been used to calculate
steady and oscillatory transonic flows at
subsonic and supersonic freestream conditions.
These calculations were performed for the F-§
wing and comparisons were made with experimental
data to assess the accuracy of the algorithm,
The results were further compared with pressure
distributions computed using the ADI algorithm
for the subsonic freestream case. In general,
the steady pressures calculated using the two
algorithms were nearly identical and both sets
of results compared well with the experimental
data. The ADI results were computed using 4000
time steps whereas the AF results were computed
using only 400 time steps to achieve similar
convergence. The new algorithm therefore gives
an order of magnitude decrease in computational
cost for steady-state calculations, Unsteady
pressures due to harmonic wing pitching were
very similar for the two algorithms and again
both sets of results agreed well with the

experimental data. The ADI results were
computed using 2000 steps per cycle with a time
step based on numerical stability

considerations. The AF results, however, were
computed using only 300 steps per cycle since
the step size is selected for accuracy rather
than for stability, Hence for application to
unsteady flow problems, the AF algorithm again
yields a significant decrease in computational
cost.,

For a supersonic freestream case, the
pressure distributions computed using the AF
algorithm were 1in good agreement with the
experimental pressures for both steady and
oscillatory flows. (An ADI solution for this
case was not obtained since the algorithm is
unstable for swept-wing cases with supersonic
freestream conditions.} Similar to the subsonic
freestream case, the steady-state AF results
were obtained using only 400 time steps and the
oscillatory AF results were obtained using
only 300 steps per cycle. Therefore, the AF
algorithm  is robust and efficient for
application to steady or unsteady transonic
flows with subsonic or supersonic freestream
conditions, The new algorithm can provide
accurate solutions in only several hundred time
steps yielding a significant computational cost
savings when compared to the ADI method.
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