(NASA-CR-171949) A NEW APPROACH TO NON-INVASIVE OXYGENATED MIXED VENOUS ECG (SUBL) 2 Final Report (Vacuometrics, Inc.) 79 p

CR-171949

CR-171949

CR-171949
FINAL REPORT

31 March 1986

Contract NAS9-17516

NASA Lyndon B. Johnson Space Flight Center

CONTENTS

1. Scientific Review: A new approach to non-invasive oxygenated mixed venous PCO_2 1

3. Fisher System Documented 41-42

Appendix A
A NEW APPROACH TO NON-INVASIVE OXYGENATED MIXED VENOUS PCO₂

Joseph A. Fisher, M.D., F.R.C.P.(C)
Department of Anesthesia
The Wellesley Hospital, Toronto
Assistant Professor, Faculty of Medicine
University of Toronto

Clifford A. Ansel
Division of Engineering Science
Faculty of Applied Science and Engineering
University of Toronto

Address reprints to: Dr. J. A. Fisher, Department of Anesthesia
Room 150, Turner Wing, Wellesley Hospital
160 Wellesley Street, Toronto, Ontario, M4Y 1J3
Glossary of abbreviations

C.O. cardiac output

\(\overset{\cdot}{V} \)CO\(_2\) amount of CO\(_2\) exhaled per minute which in steady state equal to the CO\(_2\) production rate

FRC functional residual capacity

\(V_D \) dead space

\(A \) alveolar

\(\text{CaCO}_2 \) arterial CO\(_2\) content

\(\text{CvCO}_2 \) mixed venous CO\(_2\) content

\(\text{PaCO}_2 \) arterial CO\(_2\) partial pressure

\(\overset{\cdot}{V} \text{vCO}_2 \) mixed venous CO\(_2\) content

\(F_I \) refers to fractional concentration of inspired gas

\(F_E \) refers to fractional concentration of expired gas

\(F_{FRC} \) fractional concentration of a gas in the FRC

\(-\text{EI} \) subscript = end inspiratory

\(-\text{EE} \) subscript = end expiratory

\(\overset{\cdot}{V} \) mixed venous concentration

\(\text{D}(\overset{\cdot}{V}-\text{A})\text{CO}_2 \) pulmonary arterial (mixed venous)-alveolar CO\(_2\) concentration gradient
Introduction

The purpose of this study was to develop a clinically practical technique to calculate mixed venous CO₂ partial pressure (PvCO₂) for the calculation of cardiac output (C.O.) by the Fick technique.

The basis of using a Fick approach to measuring cardiac output has been extensively reviewed by Grollman (1). As it applies to CO₂, the Fick principle states that the cardiac output is equal to the CO₂ production (VCO₂) divided by the arterio-venous CO₂ content difference of the pulmonary vessels (GvCO₂ - CaCO₂). Stated in symbols,

\[\text{CO} = \frac{\dot{VCO}_2}{GvCO_2 - CaCO_2} \]

where GvCO₂ is the CO₂ content of blood in mixed venous blood entering the lungs and CaCO₂ is the CO₂ content of arterial blood. Of these, \(\dot{VCO}_2 \) can be measured by analyzing a time collection of expired gas for CO₂. The CaCO₂ can be calculated from arterial partial pressure for CO₂ (PaCO₂). This in turn can be calculated noninvasively from end tidal gases (2) or relatively easily from an arterial puncture. It is the difficulties inherent in the noninvasive estimation of (PvCO₂) that have been the impediment to widespread application of the technique.

A review of the principles involved in the various techniques used to estimate PvCO₂ (for GvCO₂ calculation) is presented by Richards and Strauss (3). They classify these techniques as attempts to "use the lungs as an aerotonometer, in an attempt to bring the lung gases into equilibrium with inflowing venous (pulmonary artery) blood
before recirculation alters the character of this inflowing blood."
These, as well as the more recent techniques depend on data gathered
after certain subject manoeuvres.

1) Breath holding techniques

a) In one method as used by Dubois et al (4, 19) the subjects held
their breath for variable periods of time then exhaled and a
sample of end tidal gas was analyzed. The mixed venous PCO₂
was derived from extrapolation of the end tidal PCO₂ values to
an asymptote at infinite time or by calculating when the amount of
CO₂ added to the lung was equal to 0 (16).

b) Frankel et al (5) had their subjects take a breath to vital
capacity of gas containing either 100% O₂ or 12% CO₂ in
O₂. They held their breath and exhaled 500 ml at 5 seconds and
then again at 15 sec. Assuming the exponential approach of
alveolar PCO₂ to P̄VCO₂, the P̄VCO₂ was calculated by
extrapolating to the same PCO₂ value from above and below.

2) Rebreathing techniques

i) Defares (6) had subjects rebreathe from a closed container and
samples were analyzed after each exhalation. The PCO₂ rose
steadily in an exponential manner towards an asymptote (P̄VCO₂)
which was mathematically and graphically calculated.

ii) Collier (7), and later McEvoy et al (2) and Powles (8)
described a technique where the subjects rebreathe from a bag
containing an amount of CO₂ designed to allow the system to
equilibrate at the mixed venous CO₂ tension.
These techniques have been shown to predict mixed venous PCO₂
extremely well in clinical situations such as patients under
general anesthesia (9), or patients suffering from congestive heart failure (10), severe respiratory disease (11), with hypercapnea (12) and other severe diseases requiring intensive care (13, 14). Yet despite this and despite exhortations to be "less invasive" (15), none of these methods have been widely employed.

The reasons for this are not difficult to discover. The above techniques have 3 major drawbacks.

1) They are cumbersome to perform. They require multiple pieces of equipment and critical manoeuvres. Often they require trial and error to find the proper conditions for a test.

2) They require a patient manoeuvre. The patient must actively perform some manoeuvre or it must be performed on the patient. This may be technically difficult and aesthetically unpleasing to the physician.

3) They require complex data analysis. Some techniques present difficulty in identifying data end points (8). Analysis of complex differential equations and polynomials is a difficult bedside procedure.

This study was undertaken to a) develop another noninvasive method for predicting $P\overline{CO}_2$ that had the advantages of

i) being easy to apply in a clinical setting

ii) allowing the patient to continue to breathe at his own frequency and tidal volume, requiring no rebreathing or breatholding

iii) having a simple linear mathematical approach.

b) to show the feasibility of the method.
A. STUDIES WITH N₂ AS AN "INERT GAS"

Rationale

We assumed the lung to

a) be a single compartment container

b) have instantaneous mixing

c) have a volume "FRC" (functional residual capacity)

d) expand and contract by a constant volume

"V_T" (tidal volume)

Consider a subject breathing spontaneously at rest, equilibrated to a gas such as N₂ which is not absorbed from, or does not elute into, the lung. After normal exhalation the subject inhales a V_T of gas containing a fractional concentration of N₂(F₁N₂) less than the previous equilibrated-to concentration. When he exhales, the end tidal N₂ fractional concentration (F₂N₂) will be less than the equilibrated concentration and greater than the F₁N₂. If the F₁N₂ is 0 then the F₂N₂ will be least. If the F₁N₂ is equal to the equilibrated value then the F₂N₂ will be equal to the F₁N₂. *1

To explore the relationship between FRC, V_T, F₁N₂ and F₂N₂ we conducted the following experiment.

EXPERIMENT 1: Single breath N₂ testing

Method

Six normal healthy male volunteers were studied. Subjects were at rest and were initially breathing through a mouthpiece and a

1* We are ignoring the small fluctuation in concentration caused by the discrepancy in O₂ absorption and CO₂ production.
circuit depicted in Fig. 1. The circuit had two one-way valves allowing inhalation from one limb and exhalation through another. The inhalational limb contained a stopcock which allowed either room air or test gas to enter it. Gas sampling was done through a catheter originating close to the mouth. Expiratory volumes were measured by a rolling seal spirometer connected to the expiratory part of the circuit.

Subjects breathed room air through the circuit until they developed a regular pattern of respiration. At the end of an exhalation, the stopcock was turned so that the next four breaths consisted of test gas. The subject then went back to breathing room air. After a period of at least 5 minutes the process was repeated with another test gas. A total of four test gases containing N₂ concentrations between 2% and 60% were used for each subject.

Continuous gas sampling was done by a Perking-Elmer MGA-1100 Medical gas analyzer which was recalibrated with known gases before each subject was tested. The volume and gas analysis data was digitalized at a rate of 37 samples per second and stored on disk by a Norstar Horizon microcomputer. All volumes were corrected for the sampled gas.

The results of the experiment are tabulated in Table 1. Figure 2 is a bar graph made from the data of H.S. It illustrates the effect of various FİN₂'s on the FËN₂. The minimum FËN₂ occurs at the minimum FİN₂. Fig. 3 shows that the difference between inspired and expired N₂ concentrations bears a linear relationship to the FİN₂.
Discussion

The linear relationship between $F_{E N_2}$ and $F_{I N_2}$ can be explained as follows. Again assume the mechanical characteristics of the lung with respect to N_2 are those of a single chamber with instantaneous mixing of inspired gas (Fig. 4). A breath is taken of a known N_2 concentration of volume V_T. The expired concentration will be the total amount of N_2 in the lung divided by the total lung volume (16),(18). Stated in symbols:

$$F_{E N_2} = \frac{(V_T \times F_{I N_2}) + F_{FRC N_2} \times FRC}{V_T + FRC}$$ \hspace{1cm} (1)

where $F_{FRC N_2}$ is the N_2 concentration in the FRC.

Subtracting $F_{I N_2}$ from both sides,

$$F_{E N_2} - F_{I N_2} = \frac{(V_T \times F_{I N_2}) + (F_{FRC N_2} \times FRC)}{V_T + FRC} - F_{I N_2}$$ \hspace{1cm} (2)

$$= \left(\frac{V_T}{V_T + FRC} - 1\right) F_{I N_2} + \frac{F_{FRC N_2} \times FRC}{V_T + FRC}$$ \hspace{1cm} (3)

Equation 3 is in the form $y = mx + b$, describing the linear relationship between $F_{E N_2} - F_{I N_2}$ and $F_{I N_2}$.

The excellent correlation of these two variables illustrated in Table 1 stems from the constant V_T for each test as measured and the presumed small variation in FRC at the beginning of each test gas series. Clearly, as the V_T is known and the slope of the line
is known, the FRC can be calculated from the slope of equation 3. This is the subject of work in progress at our laboratory.

We conclude that the first breath of nitrogen is distributed over a volume of the lung which behaves as a single chamber with instantaneous mixing. It is this characteristic which gives a linear relationship between F_{EN_2} and F_{IN_2}.

If one had a situation where the F_{FRC} of gas was unknown (and reconstituted between tests) one could use the approach of stimulus (a breath of different concentration gas) and response (F_E) to calculate it. Any two points on an F_E-F_I vs F_I graph would define a line which crosses the abscissa at $F_I=F_{FRC}$, as can be seen from equation 3 by setting the left hand side equal to 0.
B. STUDIES TO EXAMINE THE METHOD FOR DETERMINING THE MIXED VENOUS
PCO₂ (P\text{\textsubscript{v}}CO₂) NON INVASIVELY

Rationale

To predict whether we could expect a similar linear relationship between inspired, expired and FRC concentrations of CO₂, we considered the effect of dilution and diffusion on the F\text{\textsubscript{E}}CO₂.

If we imagine an instantaneous inspiration of Vₜ containing some CO₂, the instantaneous end inspiratory F\text{\textsubscript{FRC}}CO₂ should bear a linear relationship to the F\text{\textsubscript{I}}CO₂ as was shown for N₂ in the previous section, ignoring for the moment any CO₂ diffusion into the lung from blood or tissue stores.

Knowles et al (16), Dubois (19), Fenn and Dejours (18) showed that the change in CO₂ tension in the lung per unit time varies directly as the CO₂ gradient between mixed venous blood and the alveoli. In a regular pattern of respiration the diffusion time is constant. We can expect therefore, the change in CO₂ tension in the lung to be directly proportional to this CO₂ gradient.

Fig. 5 represents a schematic summary of the above events. We assume the mixed venous blood has a partial pressure equivalent to a CO₂ concentration of an arbitrary value "8". Breathing room air (F\text{\textsubscript{I}}CO₂ = 0), the end tidal CO₂ concentration is diluted to "4". This induces a gradient from mixed venous blood to alveoli of "4". In the duration of a breath, carbon dioxide diffuses into the lung in an amount sufficient to return the concentration back to "7".

In experiment 2 in Fig. 5, we assume the events take place before one recirculation time so that the equivalent mixed venous CO₂ concentration stays constant at "8". The subject begins to breathe a
gas containing a $F_I CO_2$ greater than 0 but less than the mixed venous value. At equilibrium, the end inspiratory diluted
$F_{FRC} CO_2$ will be greater than the previous value (when $F_I CO_2$ was 0). The gradient for CO_2 between mixed venous
blood and alveoli is diminished compared to breathing room air. There will be a proportionately smaller amount of CO_2 diffusing into the alveoli. The $F_E CO_2$ will be greater than in expt. 1 but less than the mixed venous value. Similar events occur in experiment 3 and 4 each of which also represents a step change for a subject equilibrated to room air.

In expt. 5 the subject inhales a concentration of CO_2 equal to that of his mixed venous blood. After one or more breaths the CO_2 entering the lungs from the mixed venous blood and inhaled gas bring the alveolar concentration to the mixed venous value and there is no difference between $F_I CO_2$ and $F_E CO_2$ as long as the test time is less than a recirculation time.

Experiment 6 also represents a continuation of this argument for the inhalation of a gas whose FCO_2 is greater than that of the mixed venous blood. The dilution argument holds unchanged. Knowles (16) has also shown that the amount of CO_2 diffusing back into the lung per unit time continues to be directly proportional to the gradient.

In summary, with respect to CO_2, the $F_E CO_2$ is proportional to the amount of CO_2 diffusing into the alveoli which is proportional to the mixed venous - alveolar CO_2 gradient which itself is proportional to the $F_I CO_2$. Therefore, we could expect a linear relationship between $F_E CO_2 - F_I CO_2$ and $F_I CO_2$ (Fig. 6).
Experiment 2: Third breath CO₂ test

Methods

Six normal male volunteers were studied. Subjects were at rest and were breathing through a circuit identical to one described for nitrogen testing (Fig. 1). The test gases consisted of CO₂ in O₂ and N₂ mixtures. The F_I CO₂ varied from 2% to 8%. The F_I O₂ was greater than 30%.

In the test sequence the subject was allowed to breathe through the circuit until a regular pattern of respiration had developed. At the end of a normal exhalation the stopcock was turned and the subject inhaled four breaths of a test gas trying not to change the depth and frequency of his breaths. At the end of four breaths the subject was returned to breathing room air for at least 15 minutes before another test gas was applied. A total of four tests were performed on each subject.

Inspired and expired CO₂ was monitored continuously by a Perkins-Elmer MGA-1100 Medical gas analyzer. The volumes were measured by a rolling seal spirometer. All instruments were recalibrated before each subject was tested. All data were automatically digitalized and stored on disk by a Norstar Horizon microcomputer.

Results

Table 2 lists the results of changes in expired CO₂ concentration resulting from test gases containing different F_I CO₂'s. It also lists the linear regression equation and correlation coefficients for the F_E CO₂ - F_I CO₂ vs F_I CO₂ lines for each subject. Figure 7 graphs F_I CO₂
vs $F_{ECO_2} - F_{ICO_2}$ for subject H.S. ($r=-0.999$). This graph illustrates the linear relationship of the points.

Our hypothesis is that the intercept with the abscissa of this easily generated line is related to the mixed venous PCO_2 (Table III).

Experiment 3: **Comparison of third breath P_{ICO_2} prediction to invasive P_{ICO_2}**

Methods

This protocol was approved by the University of Toronto and St. Michael's Hospital Animal Care Committee. Five mongrel dogs were anesthetized with nembutal 30 ml/kg and pancuronium bromide .04 mg/kg. Both drugs were supplemented as necessary. The trachea was intubated with a cuffed #9 Portex endotracheal tube. One dog was tested during spontaneous ventilation at various depths of anesthetic and 4 dogs had controlled ventilation.

a) Circuit for controlled ventilation: The dogs were ventilated with a Bennet MA1 ventilator with a V_T of 12 ml/kg. The ventilator was attached to a circuit as illustrated in Fig. 8 and 9. The ventilator was found to deliver a constant tidal volume between the rates of 6/min and 30/min. The circuit consisted of a "bag in a bottle" set up. This was initially constructed from two, three litre rubber anesthesia bags inside a 5 litre bottle. The bottle neck had 2 openings. One opening was attached to a mushroom valve which occluded it during the inspiratory phase of the ventilator. The other opening was attached to the circuit by a 3-way respiratory stopcock. The test gas bag was attached to the circuit proximal to the dog by another
respiratory stopcock. Proximal to this stopcock was the inspiratory limb of the circuit with a one way valve allowing gas to enter the circuit but not to waft back into the bag. Exhalation was accomplished through a port proximal to the one way valve. This port was also closed by a mushroom valve during the inspiratory phase of the ventilator. Thus during the control phase of the experiment the inspired volume bypassed the bottle and entered the dog (Fig. 8). For the test phase, the anesthesia bag was prefilled with a test gas containing a CO₂ concentration 0% - 8%. During exhalation the stopcocks were turned so that the next tidal volume from the ventilator entered the bottle (Fig. 9) and displaced an equal volume of gas from the bag into the dog. After 4 breaths the stopcocks were turned to the original position. The dog was again ventilated directly by the ventilator. The bag was filled with a test gas containing another CO₂ concentration. After restoration of equilibrium, the test was be repeated with the new test gas.

Test gases were pre-mixed from 100% CO₂ and 100% O₂ and stored in identical, unlabeled Douglas bags. Their composition was changed throughout the day by adding CO₂ or O₂ to the bags.

b) Vascular lines and monitors

Once anesthetized, the dogs had their femoral artery cannulated. A silastic pulmonary catheter was passed through the external jugular vein. Both catheters were monitored constantly for pressure. Blood was sampled from the vascular catheters and analyzed for hemoglobin concentration, blood gases, and pH. Temperature was monitored by an electronic rectal temperature probe. Tidal PCO₂ was constantly sampled at the mouth and analyzed by an infra-red
capnograph (Beckman model LB2). All values were recorded continuously on a Beckman type RM dynagraph recorder.

c) Protocol

One dog was anesthetised and the trachea intubated. After placement of the vascular catheters, test gases containing 0 - 8% CO₂ were applied via a circuit as illustrated in Fig 1. As the anesthetic began to wear off and the dog's minute ventilation increased, the test gases were again applied.

Four dogs were ventilated throughout the experiment at a constant VT of 10 - 12 ml/kg. The frequency setting on the ventilator was set and the dog was allowed to come to a steady state with respect to his mixed venous PCO₂. This was judged to occur when two successive P'VCO₂ values (aspirated from the pulmonary arterial catheter) aspirated within 5 minutes of each other differed by less than 2 mm Hg. When this occurred a blood sample was drawn from the femoral artery and pulmonary artery catheters and analyzed for pH, PCO₂, PO₂ and Hb. A test consisted of 4 breaths of a test gas containing an amount of CO₂ between 0 and 8%. After 4 breaths the dog again was ventilated directly by the ventilators for 3 - 5 minutes while the anesthetic bag in the bottle was being filled with another test gas. The test gases were applied without consideration of their CO₂ concentration or their previous order of use.

When at least 2 test gases had been applied the ventilator frequency was changed and the dog allowed again to come to a new equilibrium with respect to his P'VCO₂. The above process was again repeated at the new P'VCO₂.
d) Data analysis

i) Calculation of non invasive mixed venous CO$_2$ CONTENT.

The F$_I$CO$_2$, F$_E$CO$_2$ and temperature were read from the previously calibrated strip recorder. The highest end tidal FCO$_2$ of the third breath was taken as the F$_E$CO$_2$. A linear regression equation of the F$_I$CO$_2$, F$_E$CO$_2$ - F$_I$CO$_2$ pairs was computed and the line extrapolated to the point of crossing the abscissa. The fraction of CO$_2$ at the intercept was converted to partial pressure. This value was assumed to be the P$_V$CO$_2$. The pulmonary capillary PO$_2$ was calculated from the alveolar gas equation. The base excess and hemoglobin from the invasive value were used to complete the calculation of CO$_2$. These data were entered into the BASIC translation of a program for converting PCO$_2$ to CCO$_2$ by Olszowka et al. (17).

ii) The invasive CCO$_2$ was calculated in the same way using the measured P$_V$CO$_2$, P$_V$O$_2$, Hemoglobin, and pH.
RESULTS

Results are tabulated in Table 4. Dog 1 was breathing spontaneously from room air. The first test was done soon after induction of anesthesia. The dog was very deeply anesthetised as evidenced by its relative hypotension and respiratory depression. The respiratory rate was 4 per minute and irregular in depth and pattern. We include this point as raw data but it does not fall within the criteria for inclusion in the study. During the subsequent tests the respirations became more regular.

The remainder of the dogs were studied under controlled ventilation.

Dogs 2 and 3 which were being ventilated by the secondary circuit we had constructed initially had a significant drop in their tidal volume when they were switched into the secondary circuit. This drop in tidal volume was caused by the added compliance of the animal-circuit system into which the ventilator delivers its constant tidal volume. Since the control tidal volume was greater than the test tidal volumes for dogs #2 and #3, the room air control value was not incorporated into the calculation of PVCO_2. Theoretically, the remaining test values should still predict the PVCO_2 despite this sudden decrease in V_T. To correct for this problem a smaller "bag in the box device" was constructed giving only a 10-12% drop in V_T in dogs #4 and #5. We therefore incorporated these control values in the mixed venous PCO_2 calculation.

Fig. 10 illustrates data obtained from dog #3. The intercepts of the regression lines with the abscissa are taken as the mixed venous PCO_2.
In Fig. 11 we plot noninvasive vs invasive PCO$_2$. The regression equation for this line is $y = 1.37x + 9.71$ ($r=0.96$). The non invasive PCO$_2$ prediction is that of O$_2$ saturated blood whereas the blood aspirated from the pulmonary artery is O$_2$ desaturated. This could account for the higher noninvasive values (ref 5). Theoretically, however, the content of CO$_2$ should be the same using a P\overset{\circ}{V_{CO_2}}$ calculated from either technique. In Fig. 12 we plot the CO$_2$ content as calculated by the new non invasive against that calculated by the invasive technique. The regression equation for the line is $y = 1.16x - 6.33$. The slope was found not to differ significantly from 1.0 and the intercept was found not to differ significantly from 0 ($p>0.1$ for both).

DISCUSSION

1. **Model rationale**
 a) Single compartment model for CO$_2$.

 Dubois (19) Fenn and Dejours (18) define a term "equivalent lung volume for CO$_2$ "ELV" which includes the air space volume which the breath distributes to as well as the effect of the breath on dissolved CO$_2$ stores such as lung tissue and blood. In this concept the CO$_2$ entering the gas spaces during early parts of the inspiratory cycle come from fast space tissue buffers. If gas is sampled early this would give an apparent greater volume of distribution to a breath of air. This difference in volume of breath distribution between CO$_2$ and N$_2$ is very small but measureable (18). Otherwise, these authors have considered their data and calculations consistent with the model of the lung as having a single compartment. Fenn and
Dejours also showed that a single breath result is not altered by mixing attempts such as rapid rebreathing. In fact all their data as well as ours are consistent with the model of the lung as a single compartment container with instantaneous mixing.

b) The role of $\bar{V} - A$ gradient in determining FECO_2.

In determining the end tidal PCO_2 of a subject breathing room air (0% CO_2), the model assumes that the VT of fresh air dilutes the existing concentration in the FRC, establishing an instantaneous end-inspiratory $\bar{V} - A$ gradient. An amount of CO_2 proportional to this gradient diffuses into the FRC, increasing the FRC concentration to its final value of the FE,CO_2.

Now assume that a test gas containing an amount of CO_2 is breathed for 3 breaths. The resultant FE,CO_2 values will represent a rise towards a new equilibrium value of FE,CO_2 (before a recirculation time). This new equilibrium value is determined by two interacting effects: one a dilution effect, the other a diffusion effect.

The test gas serves to dilute the gas in the FRC, although now the dilution effect is smaller due to the presence of the CO_2 in the inspired test gas. This results in successively higher end inspiratory F_{FRC} values analagous to the "wash in" effect of any test gas. Because the end-inspiratory F_{FRC} values are higher, however, the $\bar{V} - A$ gradient is smaller, so that less CO_2 diffuses into the lung from the venous blood during the fixed period of a breath. It is this reduction in gradient which causes the FE,CO_2 values to level off at a new equilibrium value. These two effects, taken together establish the new FE,CO_2.
The technique to determine \(\overline{F\overline{V}CO_2} \), assumes that if \(\overline{F\overline{V}CO_2} \) were inhaled, the equilibrium \(F_{FRC} \) would rise to \(\overline{F\overline{V}CO_2} \) thereby eliminating the gradient. Thus, no \(CO_2 \) would diffuse into the lung and the expired concentration would also be equal to \(\overline{F\overline{V}CO_2} \) (i.e. the difference between inspired and expired concentrations will be 0).

Using reasoning analogous to that used to develop equation 1 for \(N_2 \), we state the formula for the end inspiratory \(CO_2 \) concentration in the FRC

\[
F_{FRC_{EI}} = \frac{V_T F_I + F_{FRC_{EE}} F_{FRC}}{V_T + FRC}
\]

Where \(F_{FRC_{EI}} \) = Fractional concentration of \(CO_2 \) in the FRC at the end of inspiration

\(F_{FRC_{EE}} \) = Fractional concentration of \(CO_2 \) in the FRC end exhalation

\(V_T \) and FRC refer to the volume in milliliters of the tidal volume and functional residual capacity respectively.

That this is a linear function of the inspired \(CO_2 \) concentration can be shown by simple re-writing of the equation in the form

\[
F_{FRC_{EI}} = \left[\frac{V_T}{V_T + FRC} \right] F_I + \frac{F_{FRC_{EE}} F_{FRC}}{V_T + FRC}
\]
For the sake of formula simplification, let

\[
\frac{m}{V_T + FRC} = \frac{F_{FRC_{EI}}}{FRC}
\]

and

\[
b = \frac{F_{FRC_{EI}}}{V_T + FRC}
\]

The amount of CO₂ diffusing into the lung for a given time (ACO₂) varies directly as the CO₂ concentration gradient between the mixed venous blood and the alveoli:

\[
A \text{ CO}_2 = k \left(F\bar{V} - F_{FRC_{EI}} \right)
\]

where \(F\bar{V} \) = mixed venous concentration. The end tidal CO₂ concentration (\(F_E \)), then must be the sum of the CO₂ in the lung at end inspiration plus the amount diffused in, divided by the net lung volume.

\[
F_E = \frac{V_T \cdot F_I + F_{FRC_{EI}} \cdot FRC + k(F\bar{V} - F_{FRC_{EI}})}{V_T + FRC}
\]

Substituting for \(F_{FRC_{EI}} \) from Eq. 5 and subtracting \(F_I \) from both sides to change the formulation to identify our end point:

\[
F_E - F_I = \frac{V_T \cdot F_I + F_{FRC_{EI}} \cdot FRC + k(F\bar{V} - mF_I - b)}{V_T + FRC} - F_I
\]

\[
= \left(\frac{V_T - km}{V_T + FRC} - 1 \right) F_I + \frac{F_{FRC_{EI}} \cdot FRC + k(F\bar{V} - b)}{V_T + FRC}
\]
As was illustrated in Fig. 5, this formula represents a summation of two lines that we expect to cross the abscissa at F\textsubscript{V\textsubscript{CO}}\textsubscript{2}. As test gases whose F\textsubscript{I\textsubscript{CO}}\textsubscript{2} approach \(v \) values are given, the F\textsubscript{FRC\textsubscript{EI}} rises and the D(\(v-A \))\textsubscript{CO\textsubscript{2}} falls. When F\textsubscript{I\textsubscript{CO}}\textsubscript{2} is equal to the F\textsubscript{F\textsubscript{V\textsubscript{CO}}\textsubscript{2}}, \textsubscript{CO\textsubscript{2}} gas will be added to the F\textsubscript{FRC\textsubscript{EE}} until it is equal to the F\textsubscript{F\textsubscript{V\textsubscript{CO}}\textsubscript{2}}. Subsequent breaths taken before recirculation should reflect the fact that F\textsubscript{I\textsubscript{CO}}\textsubscript{2} = F\textsubscript{FRC\textsubscript{EI}}\textsubscript{CO\textsubscript{2}} = F\textsubscript{F\textsubscript{V\textsubscript{CO}}\textsubscript{2}} = F\textsubscript{FRC\textsubscript{EE}}\textsubscript{CO\textsubscript{2}} = F_{E\textsubscript{CO}}\textsubscript{2}.

d) Expected influences on the F\textsubscript{E}-F\textsubscript{I} vs F\textsubscript{I} curve

i) Dead space (V\textsubscript{D}).

It is expected that the presence of dead space will not affect the determination of F\textsubscript{F\textsubscript{V\textsubscript{CO}}\textsubscript{2}} by this technique.

If the dead space has a long time constant and a low V/Q, one would expect it to have an F\textsubscript{V\textsubscript{D\textsubscript{CO}}\textsubscript{2}} close to that of the mixed venous blood, and to contribute minimally to F\textsubscript{E}.

If the dead space has a short time constant, and thus a high V/Q, the F\textsubscript{V\textsubscript{D\textsubscript{CO}}\textsubscript{2}} can be expected to be close to 0 when breathing room air.

Considering the F\textsubscript{E\textsubscript{CO}}\textsubscript{2} of the first breath, it is possible that an F\textsubscript{I\textsubscript{CO}}\textsubscript{2} lower than F\textsubscript{F\textsubscript{V\textsubscript{CO}}\textsubscript{2}} would yield the result of F\textsubscript{E\textsubscript{CO}}\textsubscript{2} = F\textsubscript{I\textsubscript{CO}}\textsubscript{2}, thus underestimating F\textsubscript{F\textsubscript{V\textsubscript{CO}}\textsubscript{2}}.

The reason for this is that when the first breath of test gas is inhaled, the F\textsubscript{V\textsubscript{D\textsubscript{CO}}\textsubscript{2}} rises slightly from zero to some value below F\textsubscript{I\textsubscript{CO}}\textsubscript{2} while the F\textsubscript{FRC} rises slightly to a value higher than F\textsubscript{I\textsubscript{CO}}\textsubscript{2}. When the subject exhales, these two concentrations may combine to yield F\textsubscript{E\textsubscript{CO}}\textsubscript{2} = F\textsubscript{I\textsubscript{CO}}\textsubscript{2}.
The case for \(F_{ECO2} \) of the third breath is different however. By the third breath, the \(VD \) \(\text{CO}_2 \) approaches \(\text{FI} \text{CO}_2 \), since its time constant is small and \(V/Q \) high. The \(F_{FRC} \) is higher than \(\text{FI} \text{CO}_2 \) since it also contains the \text{CO}_2 that diffuses into the lung. The value of \(F_{ECO2} \), therefore, must be higher than \(\text{FI} \text{CO}_2 \) since it is a combination of the two concentrations, \(VD \) \(\text{CO}_2 = \text{FI} \text{CO}_2 \) and

\[\text{FRCCO}_2 > \text{ICO}_2. \]

The \(FE-FI \) line for a subject with dead space will still pass through \(\text{FI} \text{CO}_2 = Vv \text{CO}_2 \) if \(F_{ECO2} \) of the third breath is considered, since then

\[VD \text{CO}_2 = Vv \] and \[\text{FRCCO}_2 = \bar{V}. \]

The combination of these two equal concentrations to form \(F_{ECO2} \) will still yield \(F_{ECO2} = \bar{Vv} \text{CO}_2 \).

ii) Right to left shunt \((Q_s/Q_T)\)

Shunted blood will alter the arterial \(\text{PCO}_2 \) which in turn will affect the \(\bar{Vv} \text{CO}_2 \). As it is the same \(\bar{Vv} \text{CO}_2 \) that perfuses all areas of the lung, no systematic error in predicting the \(\text{PVCO}_2 \) in predicting the \(\bar{Vv} \text{CO}_2 \) is expected on this basis alone with the technique. The Fick technique is otherwise still valid in the presence of shunted blood.

iii) Cardiac output

The difference in slope between a first breath \(N_2 \) line and the equilibrium \(\text{CO}_2 \) line is related to a "diffusion constant" \(k \) (Eq. 6 and 9) which probably reflects cardiac output influences as well as diffusion. For these experiments and equations we assume a
constant cardiac output during each test. For clinical purposes where P\textsubscript{a}CO\textsubscript{2} is predicted from only one test gas result, it is assumed that C.O. was constant during the 20 seconds or so of the test.

e) Physiologic effect of breathing CO\textsubscript{2}

Fowle and Campbell (21) showed the short term capacitance of the body for CO\textsubscript{2} is 40 ml CO\textsubscript{2}/mm Hg PCO\textsubscript{2}. For an F\textsubscript{I}CO\textsubscript{2} equal to the P\textsubscript{a}CO\textsubscript{2} for 3 breaths over 15 sec. and a CO\textsubscript{2} production of 200 ml/min we can expect 50 ml of CO\textsubscript{2} to be retained by the body. This would give an approximately 1 mm Hg rise in tissue PCO\textsubscript{2}, presumably reflected in the recirculated P\textsubscript{a}CO\textsubscript{2}. If a test gas contains only a fraction of the P\textsubscript{a}CO\textsubscript{2}, only that fraction of the CO\textsubscript{2} can be expected to be retained giving a negligible rise in recirculated P\textsubscript{a}CO\textsubscript{2}. Therefore in situations where pulmonary gas mixing is poor, allowing the test to proceed into the next recirculation time while using low F\textsubscript{I}CO\textsubscript{2} may yield better results on balance.

f) Relation of the technique to previously described techniques.

The technique we describe shares a number of theoretical points with previous techniques which we have used as a foundation. DuBois et al (4) established the concept of an "equivalent alveolar lung volume" or EVL. This was later used by Knowles et al (16) using N\textsubscript{2} as a marker for the distribution of an inhaled volume. In this study we called this the FRC\textsubscript{EI} which is the net volume of distribution of a breath. Although this may or may not be the "FRC" as measured by body plethysmography or inert gas dilution it can be defined as that volume that a known amount of indicator gas is diluted by.
These authors are also credited with being the first to demonstrate the exponential rise of CO$_2$ in the lung during breathholding. This information was later used by Defares (6) and Collier (7) to extrapolate to P_{VCO_2}. Knowles (16) however used this information to demonstrate that the amount of CO$_2$ entering the lung per unit time was a linear function of the pulmonary capillary to alveolar concentration gradient. We used this information to predict the persistent linearity of the F_E-F_I vs F_I curve for CO$_2$.

Despite this agreement on the basics, all of the previous techniques have in common attempts to equilibrate pulmonary gases to P_{VCO_2}. Some methods involve finding conditions where this equilibration occurs (7, 8). The other methods set conditions where equilibration is approached physically and the final value is calculated mathematically (5, 6).

Our technique is based however on stimulus and response. A breath of known concentration of gas is given and from the expired concentration of that gas all calculations are made. Each test in effect gives 2 points. The point from room air ($F_I CO_2=0$, $F_{N_2}=.79$) and the test gas. An extrapolation from a straight line through these two points is all the analysis that is required.

SUMMARY

We presented a technique for estimating mixed venous partial pressure. The technique is based on previously accepted principles of pulmonary physiology. The approach involves applying an inspired concentration of CO$_2$ other than 0 and observing the expired concentration. We developed the theoretical and mathematical basis
for the technique.

Unlike previously described methods, the present technique is simple to perform. The calculation of \(P_{VCO_2} \) requires only the application of three or four breaths of a test gas while the patient continues to breath in his usual fashion. The technique is valid in spontaneous breathing as well as ventilated subjects.

For the calculation of \(P_{VCO_2} \), inspired and expired \(FCO_2 \) is monitored continuously. End tidal \(CO_2 \) for \(F_I CO_2 \) of 0 and the third breath of at least one test gas is noted. Data analysis consists of plotting \(F_E CO_2 - F_I CO_2 \) vs \(F_I CO_2 \) for the control gas (\(F_I CO_2 = 0 \)) and at least one test gas. A straight line is fit through these points and extrapolated to its intersection of the abscissa.

We have demonstrated that this data is easy to obtain, has an easily definable end point and correlates highly with invasively obtained \(P_{VCO_2} \).

The technique shows advantages over previously described techniques and as such shows promise as a basis for a new clinical method for measuring non invasive cardiac output.
REFERENCES

<table>
<thead>
<tr>
<th>Subject</th>
<th>V_T</th>
<th>FIN2</th>
<th>FEN2</th>
<th>DN2</th>
<th>REGRESS. EQN</th>
<th>"r"</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA</td>
<td></td>
<td>77.97</td>
<td>78.61</td>
<td>0.64</td>
<td>$Y = -0.842X + 66.12$</td>
<td>-1.0</td>
</tr>
<tr>
<td></td>
<td>753</td>
<td>55.82</td>
<td>74.64</td>
<td>18.82</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>742</td>
<td>40.42</td>
<td>72.82</td>
<td>32.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>762</td>
<td>22.95</td>
<td>69.40</td>
<td>46.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>725</td>
<td>2.16</td>
<td>66.66</td>
<td>64.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HS</td>
<td></td>
<td>78.03</td>
<td>79.45</td>
<td>1.42</td>
<td>$Y = -0.824X + 65.95$</td>
<td>-1.0</td>
</tr>
<tr>
<td></td>
<td>846</td>
<td>56.45</td>
<td>74.64</td>
<td>20.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>815</td>
<td>40.42</td>
<td>72.82</td>
<td>32.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>838</td>
<td>22.95</td>
<td>69.40</td>
<td>46.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>840</td>
<td>2.16</td>
<td>66.66</td>
<td>64.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JF</td>
<td></td>
<td>78.17</td>
<td>80.20</td>
<td>2.03</td>
<td>$Y = -0.875X + 71.37$</td>
<td>-1.0</td>
</tr>
<tr>
<td></td>
<td>491</td>
<td>57.76</td>
<td>78.92</td>
<td>21.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>511</td>
<td>41.17</td>
<td>76.72</td>
<td>35.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>510</td>
<td>26.76</td>
<td>74.86</td>
<td>48.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>515</td>
<td>5.75</td>
<td>71.19</td>
<td>65.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AO</td>
<td></td>
<td>77.52</td>
<td>77.54</td>
<td>0.02</td>
<td>$Y = -0.903X + 70.58$</td>
<td>-0.999</td>
</tr>
<tr>
<td></td>
<td>742</td>
<td>57.01</td>
<td>76.32</td>
<td>19.72</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>673</td>
<td>41.23</td>
<td>75.76</td>
<td>34.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>815</td>
<td>24.58</td>
<td>71.44</td>
<td>46.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>726</td>
<td>4.69</td>
<td>71.39</td>
<td>66.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE</td>
<td></td>
<td>77.60</td>
<td>80.10</td>
<td>2.50</td>
<td>$Y = -0.845X + 68.86$</td>
<td>-0.998</td>
</tr>
<tr>
<td></td>
<td>566</td>
<td>57.71</td>
<td>79.50</td>
<td>21.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>579</td>
<td>41.30</td>
<td>74.58</td>
<td>33.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>551</td>
<td>25.96</td>
<td>72.74</td>
<td>46.78</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>562</td>
<td>7.28</td>
<td>72.39</td>
<td>65.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HI</td>
<td></td>
<td>77.32</td>
<td>78.18</td>
<td>0.86</td>
<td>$Y = -0.817X + 64.15$</td>
<td>-0.997</td>
</tr>
<tr>
<td></td>
<td>941</td>
<td>56.12</td>
<td>73.6</td>
<td>17.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>850</td>
<td>40.09</td>
<td>71.14</td>
<td>31.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>906</td>
<td>23.04</td>
<td>67.31</td>
<td>48.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>948</td>
<td>3.18</td>
<td>62.93</td>
<td>59.75</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

V_T = inspired tidal volume (ml)
FIN2 = fractional inspired N₂ concentration (%)
FEN2 = fractional expired N₂ concentration (%), first breath of test gas
DN2= FEN2-FIN2
<table>
<thead>
<tr>
<th>Subject</th>
<th>V_T</th>
<th>FICO2</th>
<th>FECO2</th>
<th>DCO2</th>
<th>REGRESS Eqn</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>AO</td>
<td>691</td>
<td>0</td>
<td>4.48</td>
<td>4.48</td>
<td>$Y = -0.771X + 4.64$</td>
<td>-0.997</td>
</tr>
<tr>
<td></td>
<td>729</td>
<td>2.25</td>
<td>5.16</td>
<td>2.91</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>764</td>
<td>4.16</td>
<td>5.91</td>
<td>1.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>729</td>
<td>6.22</td>
<td>6.05</td>
<td>-0.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>762</td>
<td>7.94</td>
<td>6.29</td>
<td>-1.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA</td>
<td>-</td>
<td>0.31</td>
<td>6.34</td>
<td>6.03</td>
<td>$Y = -0.832X + 6.51$</td>
<td>-0.996</td>
</tr>
<tr>
<td></td>
<td>787</td>
<td>2.29</td>
<td>7.01</td>
<td>4.72</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>740</td>
<td>4.15</td>
<td>7.54</td>
<td>3.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>747</td>
<td>6.21</td>
<td>7.39</td>
<td>1.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>751</td>
<td>7.92</td>
<td>7.76</td>
<td>-0.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HS</td>
<td>-</td>
<td>0.21</td>
<td>5.53</td>
<td>5.32</td>
<td>$Y = -0.799X + 5.72$</td>
<td>-0.994</td>
</tr>
<tr>
<td></td>
<td>862</td>
<td>2.30</td>
<td>6.65</td>
<td>4.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>963</td>
<td>4.16</td>
<td>6.43</td>
<td>2.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>857</td>
<td>6.20</td>
<td>6.85</td>
<td>0.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>884</td>
<td>7.99</td>
<td>7.37</td>
<td>-0.62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HTS</td>
<td>813</td>
<td>0.10</td>
<td>5.78</td>
<td>5.68</td>
<td>$Y = -0.81X + 5.89$</td>
<td>-0.999</td>
</tr>
<tr>
<td></td>
<td>908</td>
<td>2.30</td>
<td>6.41</td>
<td>4.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1002</td>
<td>4.17</td>
<td>6.78</td>
<td>2.61</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>880</td>
<td>6.22</td>
<td>7.15</td>
<td>0.93</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>900</td>
<td>7.92</td>
<td>7.25</td>
<td>-0.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HI</td>
<td>782</td>
<td>0.14</td>
<td>5.82</td>
<td>5.68</td>
<td>$Y = -0.798X + 5.60$</td>
<td>-0.9998</td>
</tr>
<tr>
<td></td>
<td>1086</td>
<td>2.26</td>
<td>6.30</td>
<td>4.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>831</td>
<td>4.18</td>
<td>6.63</td>
<td>2.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>839</td>
<td>6.24</td>
<td>7.00</td>
<td>0.76</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>884</td>
<td>7.91</td>
<td>7.44</td>
<td>-0.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JF</td>
<td>-</td>
<td>0.30</td>
<td>5.83</td>
<td>5.53</td>
<td>$Y = -0.868X + 5.77$</td>
<td>-0.9999</td>
</tr>
<tr>
<td></td>
<td>537</td>
<td>2.40</td>
<td>6.05</td>
<td>3.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>490</td>
<td>4.23</td>
<td>6.34</td>
<td>2.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>535</td>
<td>6.26</td>
<td>6.60</td>
<td>0.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>506</td>
<td>7.94</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JS</td>
<td>-</td>
<td>0.13</td>
<td>5.33</td>
<td>5.20</td>
<td>$Y = -0.781X + 5.28$</td>
<td>-0.9997</td>
</tr>
<tr>
<td></td>
<td>586</td>
<td>3.33</td>
<td>6.01</td>
<td>2.68</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>625</td>
<td>4.38</td>
<td>6.17</td>
<td>1.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>473</td>
<td>6.23</td>
<td>6.72</td>
<td>1.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>513</td>
<td>7.97</td>
<td>7.01</td>
<td>-0.96</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Human Subjects Breathing CO₂ Concentrations 28-88
Table 3: "Mixed Venous PCO_2" as Calculated from Data in Table 2

<table>
<thead>
<tr>
<th>Subject</th>
<th>Projected $PvCO_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>AO</td>
<td>6.02 %</td>
</tr>
<tr>
<td>CA</td>
<td>7.82 %</td>
</tr>
<tr>
<td>HS</td>
<td>7.16 %</td>
</tr>
<tr>
<td>HTS</td>
<td>7.27 %</td>
</tr>
<tr>
<td>HI</td>
<td>7.27 %</td>
</tr>
<tr>
<td>JF</td>
<td>6.65 %</td>
</tr>
<tr>
<td>JS</td>
<td>6.76 %</td>
</tr>
<tr>
<td>Dog</td>
<td>Wt.</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>1</td>
<td>27.7</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.00)</td>
<td>4.90)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4: (continued)

<table>
<thead>
<tr>
<th>Dog</th>
<th>Wt.</th>
<th>FI</th>
<th>FE-FI</th>
<th>NIFCO2</th>
<th>NIPCO2</th>
<th>NICCO2</th>
<th>Hb</th>
<th>T</th>
<th>pH</th>
<th>IPCO2</th>
<th>IPO2</th>
<th>ICCO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td></td>
<td>0.00</td>
<td>3.80</td>
<td>4.97</td>
<td>35.58</td>
<td>40.06</td>
<td>13.5</td>
<td>39.8</td>
<td>7.45</td>
<td>34.0</td>
<td>45.0</td>
<td>40.63</td>
</tr>
<tr>
<td></td>
<td>2.45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.78</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.02</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.00</td>
<td>3.57</td>
<td>4.44</td>
<td>31.79</td>
<td>34.75</td>
<td>12.0</td>
<td>39.5</td>
<td>7.43</td>
<td>29.0</td>
<td>44.0</td>
<td>34.53</td>
</tr>
<tr>
<td></td>
<td>4.46</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.57</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.34</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.03</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.00</td>
<td>7.36</td>
<td>10.19</td>
<td>72.96</td>
<td>47.75</td>
<td>11.6</td>
<td>39.5</td>
<td>7.21</td>
<td>60.2</td>
<td>84.0</td>
<td>44.63</td>
</tr>
<tr>
<td></td>
<td>2.45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.34</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.33</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>26.4</td>
<td></td>
<td></td>
<td>11.31</td>
<td>80.97</td>
<td>52.83</td>
<td>13.4</td>
<td>39.8</td>
<td>7.23</td>
<td>67.0</td>
<td>50.1</td>
<td>50.45</td>
</tr>
<tr>
<td></td>
<td>3.14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.94</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.64</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.00</td>
<td>8.05</td>
<td>9.19</td>
<td>65.80</td>
<td>49.19</td>
<td>13.5</td>
<td>40.0</td>
<td>7.30</td>
<td>54.0</td>
<td>53.0</td>
<td>46.69</td>
</tr>
<tr>
<td></td>
<td>2.74</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.71</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.28</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.35</td>
<td></td>
</tr>
</tbody>
</table>
Table 4: (continued)

<table>
<thead>
<tr>
<th>Dog</th>
<th>Wt.</th>
<th>FI</th>
<th>FE-FI</th>
<th>NIPCO2</th>
<th>NIPCO2</th>
<th>NICCO2</th>
<th>Hb</th>
<th>T</th>
<th>pH</th>
<th>IPCO2</th>
<th>IPO2</th>
<th>ICCO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>21.8</td>
<td>0.00</td>
<td>4.54</td>
<td>6.25</td>
<td>44.75</td>
<td>45.6</td>
<td>14.0</td>
<td>39.0</td>
<td>7.36</td>
<td>46.8</td>
<td>51.0</td>
<td>47.59</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.23</td>
<td>0.93</td>
<td>3.70</td>
<td>2.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| | 0.00 | 3.24 | 4.70 | 33.65 | 41.7 | 14.0 | 39.0 | 7.46 | 34.1 | 47.0 | 43.04 | |
| | 3.77 | 0.86 | 7.55 | -2.14 | | | | | | | | |

| 5 | 16.4| 0.00| 4.64 | 6.28 | 44.96 | 47.53 | 14.0 | 38.5 | 7.42 | 38.6 | 46.0 | 45.67 |
| | | | | 1.73 | 3.15 | 7.10 | 0.60 | 3.72 | 1.95 | | | |

	0.00	3.43	4.50	32.22	41.08	14.0	38.5	7.47	31.9	44.0	42.07	
	3.67	0.74	6.12	-1.22								
	6.85	-1.71										
	3.57	0.48										

Wt. - weight of dog in Kg
NIPCO2- noninvasive PCO2 in mm Hg
NICCO2- noninvasive CO2 content in mlCO2/100 ml blood
T- dog temperature in degrees Celsius
Figure 1. Schematic diagram of circuit used to deliver a test gas during spontaneous ventilation.
Figure 2. Inspired and expired nitrogen concentrations for subject H.S.
Each experiment consisted of breathing one breath at normal tidal volume of a gas with a N_2
concentration less than room air. The subject equilibrates with room air between tests.
H.S. FE-FI VS FI : N2
Figure 4. A. Illustration of a lung model whose volume is "FRC" and the gas concentration it contains is F_{FRC}.
B. The lung expands by volume V_T and takes in concentration F_I.
C. These gases are instantly mixed (by the propeller) and the model exhales concentration F_E.
Figure 5. SCHEMATIC REPRESENTING THE RATIONALE USED FOR PREDICTING PVCO₂
Figure 8. Schematic diagram of circuit used to ventilate dogs and apply the test gas. Control phase depicted.
Figure 9. Test gas phase. Ventilator injects its volume into the bottle and displaces an equal volume of test gas from the bag.
Figure 10. $F_E - F_I$ vs F_I values for one dog whose $PvCO_2$ was changed by altering frequency of the ventilator while keeping the tidal volume constant. Theoretical considerations would predict a series of parallel lines intersecting the abscissa at the mixed venous PCO_2 values.
Figure 11. A plot of the value at intercept with the abscissa of lines as generated in Figure 10. Circled points were generated in the dog breathing spontaneously at various depths of anesthesia.
Figure 12. Carbon dioxide content as calculated using invasive and non invasive calculated PCO₂ are graphed. Circled points represent spontaneous ventilation.
Startup Procedure

Refer to Figure 6.

1. Insure that gas tanks are attached and secured tightly.

2. Insert FISHER SYSTEM Program Disc into the disc drive and close the drive door.

3. Turn gases on. Second stage of the gas regulator should indicate approximately 5 PSI.

4. Insure that patient mouth port is sealed for the initial delay measurement.

5. Turn main power switch to ON position. The FISHER SYSTEM program will load itself and auxiliary subroutines. The program will start the delay measurement function (see section on MAIN MENU) and upon completion, will return to the main menu.

6. Calibrate the Andros CO₂ Analyser as per instructions in the calibration section.

Calibration of Andros CO₂ Analyser

The Andros CO₂ analyser must be calibrated after the system has been on for at least 10 minutes to allow for a stable operating temperature. To calibrate the meter, select option #1 from the FISHER SYSTEM MENU. The monitoring display will appear on the screen (figure 2), showing continuous measurements of %CO₂ concentration and tidal volume both numerically and graphically.
Zero Setting

To zero the signal, use the "ZERO" knob on the front panel (see figure 6) and observe the numerical % CO₂ display only. Turn the knob in the appropriate direction (UP indicated by "U", DOWN indicated by "D" on the front panel) until the meter reads some value slightly greater than 0% (for example 0.01%). This slight offset will not affect CO₂ measurements within the specifications of the analyser and is necessary for the following reason. The Andros analyser output signal, although nominally 0-10V, can give a signal at negative voltage for zeroing procedures when used with analog systems. The FISHER SYSTEM, however, digitizes this signal using an A/D converter for computer data acquisition and analysis. The A/D converter responds to positive voltages only. Thus, a reading of exactly zero on the monitoring screen may correspond to an offset (negative) signal of any amount, which would affect any subsequent CO₂ value measured.

Span Setting

Once the zero has been set, test gas *1 is used to complete the two point calibration. (It is suggested that this procedure be carried out infrequently, as a sizable volume of gas is used.) Ensure that the patient port is closed for proper calibration. Press "C" on the keyboard as per the instructions appearing on the monitor. The valves will open to let test gas *1 flush past the sampling port. Allow 15-20 seconds for the gas to flush out any gas that was in the tubing prior to calibration. Using the SPAN knob on the front panel, adjust the meter until the numeric display shows the concentration of test gas *1 (which may be read from
the cylinder). When this is set, press <RETURN> to turn off gas and return to the main menu.

The FISHER SYSTEM MENU

The FISHER SYSTEM is “menu driven”. This means that any one of its functions can be performed in any order desired (with some restrictions to be mentioned) or redone as often as desired, just by selecting the appropriate action from the menu. The main menu is a list of actions that may be performed by the system and is returned to at the end of each action. It appears on the screen as below.

FISHER SYSTEM MENU

1) CALIBRATE/MONITOR
2) COMPUTE DELAY
3) VC02/VE/END TIDAL
4) TEST GAS #1 (OR TEST GAS #3)
5) TEST GAS #2 (OR TEST GAS #4)
6) PLOT E-I
7) CONVERT P/CCO2 AND CARDIAC OUTPUT
8) CHANGE GASES TO 3 & 4 (OR 1 & 2)
9) RESTART
10) ARTERIAL PCO2

Some of the lines may be printed in inverse mode. These are the functions that have already been performed. Any one of these may be repeated, with the effect of replacing the data from the first measurement with that of
the second. A description of each function will now be given.

1. **CALIBRATE/MONITOR**

 The calibration procedure has already been described. In addition, this may be used to monitor the patient's tidal volume and end tidal PCO₂ to see if the patient is in a steady state.

2. **COMPUTE DELAY**

 This function measures the inherent response delay of the Andros CO₂ analyser due to the fact that the sample cell which performs the analysis is distal to the sampling port near the patient port. This is necessary for accurate computation of VCO₂ by integration of the volume and CO₂ waveforms. The volume measurements are transmitted to the computer electrically and are thus instantaneous. This function is performed automatically after power up of the system, to insure that the delay is measured. It can be remeasured by the user if the sampling flow rate for the Andros pump is changed.

 Before selecting this function, insure that the patient port is closed. The system will fill bag *1 with test gas *1. The gas will then be flushed through the exhalation port. The system then calls a subroutine to measure the delay and returns to the main menu. **WARNING: SHOULD THE USER SELECT THIS FUNCTION WHILE THE PATIENT IS ATTACHED (VENTILATED), THE PROGRAM MUST BE TERMINATED TO PREVENT POSSIBLE INJURY. SEE SECTION ON TERMINATION FOR THE CORRECT PROCEDURE II**
3. **VCO₂/VE/ END TIDAL**

This function measures minute CO₂ production (VCO₂), minute ventilation (VE), and end tidal PCO₂. The screen monitor will appear after selection of this function. The system will record the volume and CO₂ data for 5* breaths. A subroutine will be called to integrate the data for computation of VCO₂. The CO₂ waveform will appear on the digitization screen. Use the following keys to move the pointer to the desired value for end tidal PCO₂:

- **H** - cursor left, 5* columns per key depression
- **J** - cursor left, 1 column per key depression
- **L** - cursor right, 5* columns per key depression
- **K** - cursor right, 1 column per key depression

The numerical value of PCO₂ will be shown on the screen. Once the desired value for PCO₂ is pointed to by the cursor, press **<I>** to select the value and proceed. The digitization process is repeated so that another end tidal PCO₂ value may be chosen (from a different breath). The reason for this is that there is a small fluctuation in end tidal PCO₂ over successive breaths. Both these values will be used in determining PvCO₂.

*see section on changeable program parameters

4. **TEST GAS #1** (or **TEST GAS #3**)
FISHER SYSTEM USERS MANUAL

This function administers test gas #1 (or #3) to the patient and allows selection of the F_I and F_E values by the user. Upon selection of this function, the monitor screen will appear. The system will fill bag #1 with the test gas. Excess gas is used to flush any gas remaining in the tubes connecting the bag to the patient via the green "pop-off" valve located near the patient manifold (see figure 1). This insures a constant inspired concentration of gas. Once the bag is full, the system waits for the patient to expire.

Upon expiration, the valves are opened so that the patient inspires from the reservoir bag of test gas. Due to the limited size of the bag, the system must intermittently pulse gas into the bag, while the patient is exhaling. In order to do this, the system measures the time taken for the patient's last exhalation and fills the bag for a fraction of this time. During the refilling, however, the patient cannot inspire as the inspiratory limb is occluded to prevent the filling gas from flowing past the sampling port (see section on Changeable Parameters for information on Frequency Response). Since only three breaths of the test gas are given, the maximum tidal volume allowable should be ≈ 600 cc.

After the test gas is administered, the valves are turned so that the patient is breathing room air. The digitization screen (see figures 3 and 4) will appear with the CO_2 data from the test. The user should use the cursor (see cursor instructions in previous section) to select F_I where the inspired concentration is constant. This concentration should be roughly equal to the concentration on the gas tank but not necessarily exactly equal to this number due to possible mixing of the test gas with gas from
the tubing prior to the test. Once F_I is selected, use the cursor to select F_E from the third breath. This should be the maximum value of the expired wave for $F_E>F_I$ (see figure 3) or the minimum value of the wave for $F_E<F_I$ (see figure 4). When this is completed, the system will return to the main menu.

5. **TEST GAS #2 (or TEST GAS #4)**

This function administers test gas #2 (or #4) to the patient exactly as described previously with test gas #1.

6. **PLOT E-I**

This function computes the regression statistics for the F_E-F_I vs F_I line to determine $PvCO_2$ from the x-intercept. The slope, correlation coefficient and $PvCO_2$ values will be displayed, followed by a graph of the regression line. Press <RETURN> to return to the main menu when finished viewing graph. **NOTE:** This function may be performed only after measuring end tidal PCO$_2$ and administering 2 or 4 test gases.

7. **CONVERT P/CCO2**

This function calls a subroutine to convert PCO$_2$ to CCO$_2$ (by Olszowka et. al. 1982). The user must enter the following patient parameters: base excess (if known) or pH, hemoglobin, PO$_2$, and temperature. The CO$_2$ content and O$_2$ content of the mixed venous blood will be printed on the screen. This function must not be selected until the plotting function has
been selected.

8. **CHANGE GASES TO 3 & 4**

This function allows the user to add two test gases to the system for a five point determination of P_{vCO_2}. Gas tanks must be changed by the user. The main menu reflects the change. Once selected, the plotting function may not be selected until both of these gases have been administered at least once.

9. **RESTART**

This function erases all patient data. Calibration procedure and delay measurement need not be repeated at this time.

Termination of Program

Should the program at any time need to be terminated by the user while performing any of the system functions (i.e., not in the main menu mode), the following procedure should be followed for ventilated patients. Press <CONTROL> and <RESET> buttons on the APPLE keyboard simultaneously. This terminates the program and resets all valves to the off position as indicated by the front panel LEDs being off. **Using the manual override switches on the front panel (figure 5), turn BV4 and BV5 to the ON position**. This insures that the ventilator volume will be delivered directly to the patient.

Changeable Program Parameters

As this version of the FISHER SYSTEM and its software are prototypes...
only, certain features of the system as well as program parameters were left manipulable for testing and development purposes. The following is a list of variables which may be changed as the user sees necessary, with explanations of the parameters and the line numbers where they should be changed.

1. **MEMORY LOCATION 4105** - the contents of this location is an indicator of the frequency response of the system for volume measurements in the following way. The routine which detects end of expiration counts the time for which the propellor in the flow meter does not turn and matches it against this number. The higher this number, the greater is the confidence that a true end expiration has been detected. The lower this number, the faster is the detection and phase change flag (respiratory phase is indicated on the monitor screen beside the word EXPIRING. A 1 indicates expiration, a 0 indicates inspiration. See Figure 2.)

The system initializes this value to 60 on line number 1140. This may be raised or lowered by the user.

2. **Eliminate Gas Pulsing** - the gas pulsing to refill the bag with test gas between breaths may be eliminated for suitable tidal volumes and respiratory frequencies. To do this, insert as line 4144 the following:

```
4144  GOTO 4160
```

3. **B1** - this variable is the number of breaths used in the measurement of VCO₂ and end tidal PCO₂. The maximum number of breaths allowable by the memory size is 8 (minimum is 1). A more accurate VCO₂ is measured with more breaths, and this also allows better
determination of end tidal PCO₂ since there are more values to choose from. The system sets this variable to 5 initially on line 7025. This may be changed by the user.

3. Cursor speed - change 5 on lines 4485 and 4495 to a higher number (<10) for faster movement.

Performing the Test

To perform the test to determine PvCO₂, the following functions must be performed at least once. Before starting the user should select

9) RESTART

to insure that old patient data is erased. Once this is done, the following should be performed in any order.

3) VCO₂/VE/END TIDAL

4) TEST GAS #1 (OR TEST GAS #3)

5) TEST GAS #2 (OR TEST GAS #4)

Once these have been performed, repetition of any of these functions is optional. In addition, for greater accuracy, the user may want to obtain additional data by attaching two additional gases. This may be performed by selecting

8) CHANGE GASES TO 3 & 4

attaching the gases and then performing

4) TEST GAS #3

5) TEST GAS #4
Once all of the data points have been obtained, the user should select

6) PLOT E-I

to determine P_{vCO_2}. Should the user require $CvCO_2$ for determination of
cardiac output, the user should first select

10) ARTERIAL PCO2

and then select

7) CONVERT P/CCO2 AND CARDIAC OUTPUT

For further information about each function see the section on the MAIN
MENU.

Trouble Shooting

The following is a list of possible problems that may be encountered
with the system and the appropriate corrective actions which should be
taken.

1. All front panel lights on simultaneously - $+5V$ supply fuse has blown. Turn power off. Replace (see figure 6) with MDL 250V/ 2.5 A fuse.

2. Patient has difficulty breathing test gas - patient may be trying to breathe against closed valve due to pulsing. Patient may decrease respiratory rate or pulsing may be omitted. Frequency response may be adjusted (see section on Changeable Parameters).

3. Error messages when converting P/CCO_2 - entered parameters out of range. Insure that all requirements of a minimum test have been performed including Plotting. Reselect this function. Check that entered parameters are correct.

4. Inspired test gas concentration not constant - check gas system for
leaks including ballon valves. These may be tested by opening and closing using the manual switches on the front panel.
System Schematic

FIGURE 1.
FIGURE 2. DISPLAY SCREEN

FIGURE 3. DIGITIZATION SCREEN
(FE>F1)
FIGURE 4. DIGITIZATION SCREEN
(FE<FL)

FIGURE 5. FRONT PANEL INDICATORS
AND SWITCHES
FIGURE 6. THE FISHER SYSTEM
FLOW TRANSDUCER MAINTENANCE

The Kozak Modular Flow Transducer SC-520 consists of the flow transducer body and a removable SC-521 turbine cartridge. All SC-521 cartridges are interchangeable. We recommend you keep a spare cartridge on hand. The transducer body comprises the infrared opto-electronics, and is not submersible. All the cartridges are shock proof, immersible, and sterilizable. Moisture, condensed vapor, or saliva expelled by the patient will not affect the operation or accuracy of the flow transducer. It will provide long and reliable service if regularly cleaned by rinsing the cartridge in water after use, or cold chemical sterilization to prevent the drying-out and hardening of the saliva or disinfectant deposits inside the turbine cartridge.

To remove the cartridge from the transducer body for inspection or cleaning, simply apply moderate axial pressure to the black rear part of the cartridge, and it will pop out easily. Secure the white front end of the cartridge with the other hand to prevent the cartridge from dropping on the floor while removing it. NEVER clean the cartridge by using a cue tip or similar cleaning probe inserted into the turbine cartridge, as this will damage the turbine blade and/or the pivot assembly. ALWAYS keep the transducer clean and use the proper disposable mouthpieces, such as the VACUMED #1026. Improper mouthpieces may cause air leakage, or may not otherwise work properly. To clean the transducer body, use a lint free dry cloth, and do not apply any pressure to the optical lenses inside the body. Always keep it dry.

The accuracy of the SC-520 flow transducer is given only by the mechanical dimensions of the turbine and the impeller. Because the dimensions are constant and consistent, (precision production technology and components), calibration or recalibration is not needed. The operation of the transducer is strictly digital. It transmits electric pulses and the pulses are counted as volume increments. This is the principle of 100% drift free operation and long term stability. The only and essential condition for consistent accuracy is the proper function of the impeller, i.e., its unobstructed rotation capabilities. Therefore, a very simple test of flow rotation sensitivity is a reliable accuracy indicator. The electronic components of the flow transducer - the infrared emitter and the photo transistor - do not have any influence on the accuracy. Any malfunction of the opto-electronic system will result in loss of the electric output signal.

SENSITIVITY TEST: Take the turbine cartridge in your hand so that you are facing the rear black end of the cartridge. Start walking with a speed of about half to one mile per hour, watching the impeller rotate inside the cartridge. If the impeller does not rotate freely, it indicates a malfunction of the jewel bearing suspension system, caused mainly by the saliva deposit buildups as a result of insufficient maintenance. In such a case, the cartridge should be immersed in water for a few hours, and then rinsed to remove dissolved deposits. The most efficient rinsing method is to apply a moderate stream of water into the cartridge input opening (the white end) directly from the water tap. If any malfunction persists, the turbine cartridge should either be sent to the factory for inspection, or replaced.

(Ref: E/FLOWTRAN)

3/86
FISHER SYSTEM DOCUMENTATION

<table>
<thead>
<tr>
<th>ITEM</th>
<th>Description</th>
<th>Drawing No.</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Bill of Material</td>
<td>------</td>
<td>A 1 & 2</td>
</tr>
<tr>
<td>2.</td>
<td>List of Standard Commercial Components</td>
<td>------</td>
<td>A 3</td>
</tr>
<tr>
<td>3.</td>
<td>Block Diagram</td>
<td>1147-6</td>
<td>A 4</td>
</tr>
<tr>
<td>4.</td>
<td>Interconnection Diagram</td>
<td>1147-7</td>
<td>A 5</td>
</tr>
<tr>
<td>5.</td>
<td>Valve Driver Interface</td>
<td>1147-8</td>
<td>A 6</td>
</tr>
<tr>
<td>6.</td>
<td>VDAS Computer Interface</td>
<td>1147-9</td>
<td>A 7</td>
</tr>
<tr>
<td>7.</td>
<td>Turbine Electronics Schematic</td>
<td>1147-10</td>
<td>A 8</td>
</tr>
<tr>
<td>8.</td>
<td>Turbine Electronics Parts List</td>
<td>------</td>
<td>A 9</td>
</tr>
<tr>
<td>9.</td>
<td>Apple Interface Schematic</td>
<td>1147-11</td>
<td>A 10</td>
</tr>
<tr>
<td>10.</td>
<td>Gas Valve System Schematic</td>
<td>1147-3</td>
<td>A 11</td>
</tr>
<tr>
<td>11.</td>
<td>Patient Interface, Block Diagram</td>
<td>Fig 1</td>
<td>A 12</td>
</tr>
<tr>
<td>LN#</td>
<td>PART NUMBER</td>
<td>DESCRIPTION</td>
<td>QTY</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>-------------</td>
<td>-----</td>
</tr>
<tr>
<td>1</td>
<td>X7200-01</td>
<td>PATIENT MANIFOLD</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>X7200-03</td>
<td>BAG CYLINDER</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>X7200-04</td>
<td>VALVE IV</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>X50401</td>
<td>VDAS PCB POPULATED</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>.01021</td>
<td>STRIP PRINTER</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>.01022</td>
<td>EXTENDER CARD:VECTOR 3400</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>.04001</td>
<td>CIRCUIT BKR 30A 2 POLE</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>.07003</td>
<td>HOOP GRADE LINESCORD</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>.08190</td>
<td>VERTICAL CABINET</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>.08191</td>
<td>SIDE PANEL KIT</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>.08192</td>
<td>SET OF 4 CASTERS</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>.08193</td>
<td>CABINET SHELF</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>.08194</td>
<td>REAR DOOR</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>.08176</td>
<td>INTERFACE CABINET</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>.08200</td>
<td>CARD CASE</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>.07005</td>
<td>PCB EDGE CONNECT 22-44 SE</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>.07022</td>
<td>HOOP GRADE AC PLUG</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>.07021</td>
<td>CONN TURBINE CHASSIS 2-PIN</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>.12003</td>
<td>AC RECEPTACLE ROUND SOLE</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>.12002</td>
<td>TURBINE MCT CHIP PC BOARD</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>.13000</td>
<td>CO2 ALAYLZER MODULE</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>.11008</td>
<td>FUSEHOLDER 1/8"</td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>.17001</td>
<td>LED MOUNT LNS-300</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>.17002</td>
<td>B BASE SUPPORT BRACKET</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>.17003</td>
<td>FEEDTHRU 1/8" PANELHOLD</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>.17004</td>
<td>AIR PUMP MOUNTING BRACKET</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>.11000</td>
<td>CARRIER SLIDES LATCH</td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>.11001</td>
<td>BLANK MONITOR/CLOCK PANEL</td>
<td>1</td>
</tr>
<tr>
<td>29</td>
<td>.11002</td>
<td>VISSA ANALYZER BOX</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>.13001</td>
<td>BASEPLATE W CASE CUTOOUT</td>
<td>1</td>
</tr>
<tr>
<td>31</td>
<td>.13003</td>
<td>CARDCASE CLUTCH BRACKET</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>.13003</td>
<td>DRAINER SHELF</td>
<td>1</td>
</tr>
<tr>
<td>33</td>
<td>.13001</td>
<td>TWIN TUBE BODY</td>
<td>1</td>
</tr>
<tr>
<td>34</td>
<td>.13012</td>
<td>TWIN TUBE INSERT</td>
<td>1</td>
</tr>
<tr>
<td>35</td>
<td>.13003</td>
<td>BODY PANEL MOUNTING</td>
<td>1</td>
</tr>
<tr>
<td>36</td>
<td>.13004</td>
<td>INSERT</td>
<td>1</td>
</tr>
<tr>
<td>37</td>
<td>.19006</td>
<td>FISHERS VALVE MANIFOLD</td>
<td>1</td>
</tr>
<tr>
<td>38</td>
<td>.13009</td>
<td>HOSE FITTING FOR 1/4" ID</td>
<td>1</td>
</tr>
<tr>
<td>39</td>
<td>.18010</td>
<td>HOSE BARE FOR 1/4" ID</td>
<td>1</td>
</tr>
<tr>
<td>40</td>
<td>.20000</td>
<td>12 HOSE FIT</td>
<td>1</td>
</tr>
<tr>
<td>41</td>
<td>.20075</td>
<td>FLOWMETER 1/4 TO 1 LPM</td>
<td>1</td>
</tr>
<tr>
<td>42</td>
<td>.20076</td>
<td>FLOWMETER INSERT</td>
<td>1</td>
</tr>
<tr>
<td>43</td>
<td>.20016</td>
<td>ELECTRIC QUIET STRIP</td>
<td>1</td>
</tr>
<tr>
<td>44</td>
<td>.20017</td>
<td>MARKER BOARD</td>
<td>1</td>
</tr>
<tr>
<td>45</td>
<td>.20022</td>
<td>TUBING FEEDER 7/16" ID</td>
<td>1</td>
</tr>
<tr>
<td>46</td>
<td>.20048</td>
<td>TUBING SUPPORT 3"H</td>
<td>1</td>
</tr>
<tr>
<td>47</td>
<td>.22001</td>
<td>M M FIT PLUGBOARD 5072</td>
<td>1</td>
</tr>
<tr>
<td>48</td>
<td>.24004</td>
<td>POWER SUPPLY 27/50V, 15W</td>
<td>1</td>
</tr>
<tr>
<td>49</td>
<td>.24007</td>
<td>POWER SUPPLY 12V (FISHERS)</td>
<td>1</td>
</tr>
<tr>
<td>LINE</td>
<td>PART NUMBER</td>
<td>DESCRIPTION</td>
<td>QTY</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>------------------------------------</td>
<td>-----</td>
</tr>
<tr>
<td>00</td>
<td>43001</td>
<td>IAWAP AIR PUMP</td>
<td>1</td>
</tr>
<tr>
<td>01</td>
<td>44604</td>
<td>VAR RESISTOR 10K 107</td>
<td>2</td>
</tr>
<tr>
<td>02</td>
<td>44302</td>
<td>FDT 53K TRIM 22T FRONT</td>
<td>1</td>
</tr>
<tr>
<td>03</td>
<td>48002</td>
<td>SWITC OOGLE SPDT</td>
<td>2</td>
</tr>
<tr>
<td>04</td>
<td>46100</td>
<td>LEN CAP, WHT, PW Switch</td>
<td>1</td>
</tr>
<tr>
<td>05</td>
<td>48004</td>
<td>14-PIN IC SOCKET</td>
<td>1</td>
</tr>
<tr>
<td>06</td>
<td>62002</td>
<td>PLASTIC HOSE 1/16" ID BLK</td>
<td>10</td>
</tr>
<tr>
<td>07</td>
<td>66001</td>
<td>PRESSURE RELIEF VALVE</td>
<td>1</td>
</tr>
<tr>
<td>08</td>
<td>66002</td>
<td>VALVE 3-WAY SOLENOID 12V</td>
<td>1</td>
</tr>
<tr>
<td>09</td>
<td>68004</td>
<td>TUBING PLAST 1/4" ID (50)</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>1048</td>
<td>SILICON TUBING, 20 FT</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>1175</td>
<td>D-L BR. 24G NIP RIG TUBE</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>1407</td>
<td>COUPLER, 22mm OD:8mm ID</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>1409</td>
<td>SILICON CONNECTOR 22MM</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>21001</td>
<td>DISC DESICCATOR COLUMN</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>30417</td>
<td>PRINTER EPSON LX-80</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>30427</td>
<td>PRN0 PRINTO INTERFACE</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>30432</td>
<td>REAL TIME CLOCK (MTN 1200)</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>30438</td>
<td>SINGLE DISK DRIVE (APPLE)</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>30444</td>
<td>TRACTOR FRED EPSON LX-80</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>50456</td>
<td>RELAY DRIVER, ELECT-MECH</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>50500</td>
<td>APPLE/A2 84K COMPUTER</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>50506</td>
<td>APPLE CRT CABLE</td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>50507</td>
<td>17" MONITOR</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>50512</td>
<td>CLEAN-BOR TUBE 12"</td>
<td>2</td>
</tr>
<tr>
<td>25</td>
<td>50513</td>
<td>CLEAN-BOR TUBE 18"</td>
<td>2</td>
</tr>
<tr>
<td>26</td>
<td>50519</td>
<td>CLEAN-BOR TUB 18"</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>60-520</td>
<td>COMB PLOW SENSOR</td>
<td>1</td>
</tr>
</tbody>
</table>

ORIGINAL PAGE IS OF POOR QUALITY
<table>
<thead>
<tr>
<th>Component System</th>
<th>Vacumetrics Part No.</th>
<th>Vendor/Address</th>
<th>Vendor Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2 Analyzer</td>
<td>.13003</td>
<td>Andros</td>
<td>10606</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2332 Fourth St., Berkeley, CA 94710</td>
<td></td>
</tr>
<tr>
<td>Computer</td>
<td>50500</td>
<td>Apple</td>
<td>A252064</td>
</tr>
<tr>
<td></td>
<td></td>
<td>904 Caribbean Dr., Sunnyvale, CA 94086</td>
<td></td>
</tr>
<tr>
<td>Diskdrive</td>
<td>50429</td>
<td>Charlie Apple</td>
<td>A2M1044</td>
</tr>
<tr>
<td></td>
<td></td>
<td>904 Caribbean Dr., Sunnyvale, CA 94086</td>
<td></td>
</tr>
<tr>
<td>CRT Monitor</td>
<td>50519</td>
<td>Bell Industries</td>
<td>SANSON</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2377 E. Main St., Ventura, CA 93003</td>
<td>EPSON</td>
</tr>
<tr>
<td>Printer</td>
<td>50417</td>
<td>Clayton Controls</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1829A De Havilland Dr., Thousand Oaks CA 91320</td>
<td>LX-80</td>
</tr>
<tr>
<td>Valve Manifold</td>
<td>.19006</td>
<td>CLAYTON CONTROLS</td>
<td>MACK-12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2925 College Ave., Costa Mesa, CA 92626</td>
<td></td>
</tr>
<tr>
<td>Turbine Flow Sensor</td>
<td>SC-520</td>
<td>KL ENGINEERING</td>
<td>SC-520</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13000-6 San Fernando Rd., Sylmar, CA 91342</td>
<td></td>
</tr>
<tr>
<td>Turbine Electronics</td>
<td>.13002</td>
<td>KL ENGINEERING</td>
<td>S-310</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13000-6 San Fernando Rd., Sylmar, CA 91342</td>
<td></td>
</tr>
<tr>
<td>Computer Interface</td>
<td>X50401</td>
<td>VACUMETRICS, INC.</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Drawing No. 1147-9</td>
<td></td>
</tr>
<tr>
<td>Valve Driver</td>
<td>50456</td>
<td>VACUMETRICS, INC.</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Drawing No. 1147-8</td>
<td></td>
</tr>
<tr>
<td>GP Apple Interface Board</td>
<td>Part of X50401</td>
<td>VACUMETRICS, INC.</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Drawing No. 1147-11</td>
<td></td>
</tr>
<tr>
<td>Patient Manifold</td>
<td>X7200-01</td>
<td>HANS RUDOLPH INC.</td>
<td>112260</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7200 Wyandotte St., Kansas City, MO 64114</td>
<td></td>
</tr>
<tr>
<td>Power Supply +/-15V, +5V</td>
<td>.34004</td>
<td>POWER ONE, INC.</td>
<td>HDCC-150W-A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>751 E. Daily Dr., Camarillo, CA 93010</td>
<td></td>
</tr>
<tr>
<td>Power Supply 12V</td>
<td>.34005</td>
<td>POWER ONE, INC.</td>
<td>HE12-10.2-A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>751 E. Daily Dr., Camarillo, CA 93010</td>
<td></td>
</tr>
<tr>
<td>ITEM NO.</td>
<td>QTY</td>
<td>PART NO.</td>
<td>CODE IDENT</td>
</tr>
<tr>
<td>---------</td>
<td>-----</td>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>MC 14093</td>
<td>HOT</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>MC 14520</td>
<td>HOT</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>8749</td>
<td>INTEL</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>MC 14050</td>
<td>HOT</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>MC 14538</td>
<td>HOT</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>MC 14527</td>
<td>HOT</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2N 3904</td>
<td>NPN TRANSISTOR</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td>RESISTOR, METAL OXIDE</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td>RESISTOR, CARB Film</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td>15K</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td>3K3</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1OK</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>470Ω</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>EUN-36C</td>
<td>PANASONIC</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>10K</td>
<td></td>
</tr>
<tr>
<td>ITEM NO.</td>
<td>QTY</td>
<td>PART NO.</td>
<td>CODE IDENT</td>
</tr>
<tr>
<td>---------</td>
<td>-----</td>
<td>----------</td>
<td>------------</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>ECJ-...</td>
<td>PITCH</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>PNCR</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>NXC-2</td>
<td>PIMA</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>KTC-2</td>
<td>K L ENGINEERING</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>DRD-10-RA</td>
<td>MCM, AUGAT</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>DIP SWITCH, BCD</td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
- PARTS LIST
- PCB ASSEMBLY - KTC-3
- TURBINE COMPENSATOR KTC-3
- K L ENGINEERING CO.
13000-6 San Fernando Road
SYLMAR, CALIFORNIA 91342
- ORIGINAL. POOR QUALITY