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ABSTRACT

A new Petrov-Galerkin finite element formulation has been proposed for transient

convection-diffusion problems. Most Petrov-Galerkin formulations take into account the

spatial discretization, and the weighting functions so developed give satisfactory

solutions for steady state problems. Though these schemes can be used for transient

problems, there is scope for improvement. The schemes proposed here, which take into

account temporal as well as spatial discretization, provide improved solutions.

Electrophoresis, which involves the motion of charged entities under the influence of

an applied electric field, is governed by equations similiar to those encountered in fluid

flow problems, i.e., transient convection-diffusion equations. Test problems are solved

in electrophoresis and fluid flow. The results obtained are satisfactory. It is also expected

that these schemes, suitably adapted, will improve the numerical solutions of the

compressible Euler and the Navier-Stokes equations.
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CHAPTER 1

INTRODUCTION

In recent years finite-element methods have been applied to problems of fluid dynamics,

and various other transport problems. Some of their advantages over other methods are

the following: ease in modelling intricate geometries and consistent treatment of the

boundary conditions. However, problems with convection dominated flows have not

been solved as successfully as problems in solid mechanics, structures, and heat

conduction. The reason being that symmetric positive-definite operators - which are

dominant in differential equations governing solid mechanics problems - lead to a "best

approximation" of the exact solution by the f'mite-element method. On the other hand,

problems in fluid mechanics( and some other transport problems )are governed by both,

symmetric positive-definite operators and nonsymmetric operators( convection terms).

Thus, in convection dominated flows, the "best approximation" property of the Galerkin

finite element is lost and spurious oscillations are observed.

It is well known that "upwind" differencing in finite-difference schemes may produce

a wiggle-free solution, but in most cases the side effect is loss of accuracy due to overly

diffuse solutions. Efforts to improve the results by adding artificial diffusion terms to the

differential equations may again result in unacceptable levels of amplitude error or

smearing of discontinuities. This artificial diffusion concept has been the subject of

substantial controversy and criticism [1,2,3]. Various "upwind" finite-element schemes

have been proposed, such as those by Christie et al.[4], Heinrich et al. [5], Hughes[6],

and Hughes and Atkinson[7]. These methods are based on modified weighting

functions, modified quadrature rules, and variational principles, which yield satisfactory

results for one-dimensional problems. However in multi-dimensional cases the solutions

are overly diffuse especially in the presence of transient or source terms.

It has been demonstrated that the above mentioned problems can be avoided by using

proper Petrov-Galerkin (PG) schemes [8,9]. As opposed to regular Galerkin

formulations, PG formulations involve trial and weighting functions from different

spaces. Such schemes have been applied to various fluid dynamics and convection-

diffusion problems by Brooks and Hughes [10], Hughes and Tezduyar[11], Hughes et

al. [12], and Hughes, Mallet and Franca[13]. These schemes have been developed to

obtain steady state solutions, and though they have been tested for transient cases, it was

felt that there was considerable scope for improvement.

Chapter 2 highlights the development and testing of new weighting functions which

improve the performance of transient schemes. The underlying philosopy in
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conceptualizingsuch functions is the belief that in addition to dependingon spatial

discretization,the weightingfunctionsmustalsodependon the temporaldiscretization.

Johnsonet al. [14] havealsoapproachedtheproblemwith a similiar objectivein mind.

1.1 APPLICATIONS

FLOW FIELD SIMULATION Simulation of flow fields has become exceedingly

important today with the advent of the space age and the increasing demand for

understanding of other related properties. Although the governing equations ( i.e., the

full Navier-Stokes equations ) would require tremendous computational resources,

depending on specific problems, simplifications can be made leading to feasible models.

In this thesis a two-dimensional, incompressible flow model has been assumed which

has a wide range of applications.

The governing equations are the two momentum equations and the continuity

equation[ 15] which can be solved numerically[ 16]. However by further simplifications,

the number of transient equations can be reduced to one and the number of unknowns to

two. This is possible by introducing new variables, the vorticity and the stream

function[17]. This approach, known as the vorticity-stream function approach, has been

adopted in Chapter 3.

ELECTROPHORESI$ SEPARATION SIMULATION Electrophoresis involves

motion of dissolved or suspended material under the influence of an applied electric

field. The entities may be simple ions, complex macromolecules, colloids, or living

cells. The rate of migration depends on factors such as the amount of charge, the size

and shape of the entity, and the solvent properties.These properties are conveniently

combined into a single factor, termed the "particle mobility". Thus, when particles of

different mobilities are subjected to the same electric potential, they tend to move at

different speeds and thus separate out. This is the basic principle of electrophoresis[18].

Electrophoresis, particularly in gels, affords a higher resolving power for biopolymers

than any other method, and is therefore universally used for the analysis of protein

preparations[19]. Figure 1.1.1 shows the electrophoretic pattern of blood serum

proteins of normal and diseased people which is useful as a clinical tool.

However, current methods in electrophoresis separation suffer from disadvantages

like complicated design, construction, and operation of apparatus, low production



capacity,precipitationof proteinsat high concentrations,etc.Evidently moreresearch

hasto bedoneto makeelectrophoresiscommerciallyviable. Hencesimulationof this

phenomenoncanaidin furtherdevelopment.

Specifically,thefollowing goalscanbeaccomplished:

• Simulation can be used to correlate mobility/dissociation data with experimental data.

A typical problem in this field is the general lack or inaccuracy of data. Using

computational models can help to narrow-down inaccuracies.

® Computational models reveal details of boundary structures like concentration, pH,

and conductivity not easily amenable to direct experimental observation.

o Simulations can be used to develop new techniques which are not yet available

experimentally. This may be used to develop commercial high volume production

techniques.

e Numerical models can provide a rational basis for understanding many separation

techniques. Existing theories are too restrictive in the sense that one theory can only be

used to explain a particular technique. However, a mathematical model based on the

governing equations can be simulated and can predict all techniques ( as will be

illustrated in Chapter 4 ). :

Briefly, the thesis outline is as follows:

Chapter 2 gives details on the d_evelopment and testing of Petrov-Galerkin schemes.

Chapter 3 outlines the algorithrn used for flow field simulation along with test cases.

Chapter 4 gives a detailed description of various electrophoretic techniques and their

simulation.

Chapter 5 gives the conclusions for Chapters 2, 3, and 4.
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CHAPTER2

DEVELOPMENT OF PETROV-GALERKIN SCHEMES FOR

CONVECTION-DIFFUSION PROBLEMS

In this chapter a new Petrov-Galerkin finite-element formulation has been developed for

transient convection-diffusion problems. Most Petrov-Galerkin formulations take into

account the spatial discretization and the weighting functions so developed give

satisfactory solutions for steady state problems. Though these schemes can be used for

transient problems, there is scope for improvement. Basically the weighting functions

used for the steady state problems are obtained by perturbing the functions which would

otherwise lead to a Galerkin formulation. These perturbations are dependent only on the

spatial discretization. However, for transient problems it was felt that this perturbation

should also depend on the temporal discretization. The schemes proposed here, which

take into account temporal as well as spatial discretization, provide improved solutions.

In view of the generality of the differential equation being solved, these schemes can be

used to solve any physical problem which is governed by the transient convection-

diffusion equation.

2.1 PROBLEM STATEMENT

The transient convection-diffusion equation in nsd space dimensions is given as

C_,t + tl*V_ = Vo(K,V_) + I onf_ (2.1.1)

where q_= _ ( x,t ) is the dependent variable, a function of the spatial position x _ f_

c 9l nsd and time t _ ] 0,T [ where T > 0. The velocity field u = u ( x ) is given,

and x: is the conductivity matrix. The source term is given as f = f ( x ). The

boundary F of the domain f_ is assumed to have the following decomposition:

F = Fg u F h (2.1.2)
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where F
g

Hence,

= I'g t'3 I" h ,2.1.3)

and 1-"h represent the Dirichlet and Neumann type boundaries, respectively.

¢(x,t) = g(x,t) V x _ I'g, t _ ]0,T[ (2.1.4)

n(x)*tc.Vqb(x,t) = h(x,t) _' x E Fh, t _ ]0,T[ (2.1.5)

where n is the unit normal vector to the boundary, and g

functions.

The initial condition is

¢(x,O) =.%(x) x f2

and h are prescribed

(2.1.6)

where _0 is a given function.The initial/boundary-value problem is to find qb= qb(x,t)

which satisfies eqs. (2.1.1) and (2.1.4)-(2.1.6).

2.2 FINITE-ELEMENT FORMULATION

Consider a discretization of _ into element subdomains _e, e = 1,2 ..... nel where nel is

is the number of elements. Let F e denote the boundary of _e. We assume

nel _2e= u (2.2.1)
e=l

ne 1

O = ('3 _2 e (2.2.2)
e=l

The interior boundary is def'med as

nel

Fint = u F e - F (2.2.3)
e=l

Let V and S denote the finite-dimensional variational and trial-solution spaces such that
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V={wlw_ Hl(ff2), w(x) = 0

S={_l_ HI(_), _(x)= g(x)

V x _ F } (2.2.4)
g

V x _ F } (2.2.5)
g

It is also assumed that both the spaces consist of the typical C O finite-element

interpolation functions.

The discrete variational form of eq. (2.1.1) and the associated initial condition in eq.

(2.1.6) are

I {wCP,t + wH,,Vq) + Vw * (K ,,VcP) } dr2
f_

•.b e=ln_l !e P{_,t + U,V_ - V ,, (K *, V_) -f } d_

=IwhdF+ I wfdn

F h _'2

(2.2.6)

I w(q)-_ 0) dfl = 0 (2.2.7)

where p is a C -1 perturbation to the weighting function w. The Euler-Lagrange equation

corresponding to eq. (2.2.6) is

,_le=a_e _{q)'t + U.Vq) - V.(_:.Vq))-f } d£2

+ I w{ n*lo, V_- h } dr'+ I w [ n*K*,V_] d_

Fh Fin t

= 0 (2.2.8)

where [ ] is the "jump" operator.

Remarks

(1)

/

w is obtained by perturbing the weighting function w which when

unperturbed leads to Galerkin formulation, i.e., the modified weighting function

is given by



(2)

(3)

(4)

w = w + p (2.2.9)

The perturbation component weighs only on the element interiors and hence

does not affect the boundary term h.

Brooks and Hughes [10] have shown that for rectangular elements the

perturbation term does not affect the weighting of the diffusion term and it is

expected that for reasonable element shapes the contribution is negligible.

The unknown ¢ is interpolated with multilinear isoparametric interpolation

functions.

A consistent finite-element spatial discretization of equation (2.2.8) leads to the

following set of ordinary differential equations:

O

M d + C d = F (2.2.10)

where M, C, and F are the mass matrix, stiffness matrix, and the generalized force

O

vector respectively; and d and d represent the dependent variable and its temporal

derivative at the nodes.

This initial value problem is solved by a family of Predictor/Multi-corrector algorithms

proposed by Hughes et al. [20].

The proposed weighting functions are the following:

SUPG - a modified version of Streamline Upwind/Petrov-Galerkin formulation

proposed by Brooks and Hughes[10].

TW - a scheme based on Transport Weighting proposed by Hughes et al.[ 12].

SW - a scheme based on Sigma Weighting proposed by Hughes et al.[12].

For all the above schemes the weighting function associated with

number a is expressed as

1_a = N a + z I:Sa

element node

(2.2.11)

where N a is the multilinear weighting function (associated with node a) leading to
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Galerkinformulation.

TheparameterzdependsontheelementPecletnumberandis given[10] as

eft3 0 < 0t < 3z = (2.2.5)
1 cx>3

where ot _ [ 0,_o ) is the element Peclet number( = muh / 2k, where u is the flow

velocity, h the element length along the advection direction, and k the diffusivity). This

expression for z is a doubly asymptotic approximation of the form which leads to

nodally exact solutions in one-dimensional steady state problems [ 10]. For convection-

dominated flows z = 1 as cz -+ _.

The perturbation function Pa for steady state cases is given as

Pa = P2

where

(2.2.13)

_1, Jl,

Pa = Na - Na (2.2;14)

'It

Here N a is the weighting function for pure convection (i.e., for z = 1). The Streamline-

,t,

Upwind/Petrov-Galerkin formulation given in [10] defines Pa as

II,

Pa = (h/2) soVN a (2.2.15)

where h is the element length along advection direction s.

Jl,

The Transport Weighting formulation proposed in [12] defines N a as follows:

N:( x ) = Na ( x ), x _ f_ (2.2.16)

x = x + es , e>0 (2.2.17)

Here x represents the intersection with the element boundary of the line emanating from

x in the direction s.
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TheSigmaWeightingformulationproposedin [12] definesN a as follows:

N a = _a/lJ , x_ _e (2.2.18)

a a = < s " VN a > (2.2.19)

o = _en Oa (2.2.20)
a=l

where nen is the number of element nodes, f_e is the element domain, and < • > is the

Macauley bracket ( i.e., <y> = y if y > 0, else <y> = 0 ).

Note that Pa for SW and TW is derived from eq.(2.2.14).

For SUPG, 1:7a is given as

Pa = T u®VNa (2.2.21)

where I: is a parameter having the dimension of time [10]. Based on "c, an

"algorithmic Courant number" [11] can be defined as

C2, _ = ( 2'_ )II U It

h

For transient problems, we propose

(2.2.22)

]:'a = C2x P: (2.2.23)

where C2x , in general, is selected to be different from unity. For Steady state problems,

SUPG formulation has Czx = 1. Hughes and Tezduyar[11] have used

Czx = CAt (2.2.24)

for various problems governed by hyperbolic equation systems where CAt is the element

Courant number based on the time step, i.e.,

CAt= (At)llull

h

(2.2.25)
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whereAt is thetimestepof thetransientalgorithm.In thenextsectionaNeumann

stability/accuracyanalysisis cardedout. This analysis is useful in arriving at estimates

for the algorithmic Courant number C2_.

Remark

Combining eqs. (2.2.11), (2.2.14), and (2.2.23), we obtain the expression,

1'_a = ( 1 - z C2z ) N a + z C2x N*a , (2.2.26)

which is convenient for implementation purpose especially for weighting functions SW

and TW because, unlike SUPG, for these weighting functions there is no explicit

definition for Pa"

2.3 STABILITY AND ACCURACY ANALYSIS

Tezduyar and Hughes [21] have performed a detailed phase accuracy and damping ratio

analysis for one-dimensional transient pure advection. In this analysis, the exact

solutions were assumed to be of the form:

qb( x,t ) = e-(_+ic°)t e -ikx (2.3.1)

and approximate linear finite-element solutions are of the form:

- (_ + io_ ) nat - i k xA

qb(XA,t n) = e e (2.3.2)

where _ and _ represent exact and approximate algorithmic damping ratios (ADR)

respectively; co and m represent the exact and approximate frequency ratios(FR);

and k denotes the wave number (k = 2n/'L where )_ is the wavelength). A dimensionless

wave number can be def'med based on k and the element length h as follows:

q = k h (2.3.3)
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TheADR isrelatedto theamplitudedecayof awavewhile theFR indicatesthepresence

of trailing or leadingwaveswhich areseenasoscillations. A good schemeshould

display minimum damping with a FR close to unity. Using theseattributesas the

guidelinesandusingtheanalysisin [21] ,variousplotswereobtainedfor ADR vs q and

FR vs q for a set of elementCourantnumbers,different weighting functions, and

various formsof C2_:.The optimalvalueof C2_for a givenCatwasretained,andfrom

this optimaldata,C2.cwasconstructedasafunctionof Cat.

Figure2.3.1 showsvariousweightingfunctionsfor one-dimensionallinearelements

usingvariousforms of C2,_( for z = 1andCat= 0.5 ).

Figures2.3.2to 2.3.7 showtheADR andFR characteristicsof various forms of C2. _

for SUPG and TW(or SW) weighting functions.

Remarks

(1) The various forms of C2_ are expressed as polynomial functions of Cat, i.e.,

" , 1

C2, = a + (1-a)CVat

where a and n are constants to be determined.

(2) The forms C2_ = 1 and C2, = CAt have been extensively studied in [21].

(3) TW and SW weighting functions are identical in one-dimensional cases;

for C2, = 1 they correspond to the Pad_ finite-difference approximation [22].

Implicit Algorithms

(1) Although algorithmic damping is zero for Galerkin formulation ( i.e., C.2_ = 0 ),

a rapid departure of FR ( not shown ) from unity predicts oscillations in

numerical solutions.

(2) For the SUPG weighting function, the best FR response is for the form,

C2, = 2/_/15 + ( 1 - 2/',115 ) Cat, 0 _< CAt < 1 (2.3.4)
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(3)

(4)

with a reasonable ADR. As Ctu approaches zero, this scheme reduces to the

one which has fourth-order phase accuracY [23] for the semi-discrete equations.

For the SUPG formulations, the forms C2x = 2/_/15 and C2x = C_xt lead to

satisfactory FR response. However, the corresponding ADR is not as good as

for the case mentioned in remark (2).

For the TW( or SW ) weighting function of the form

4

C2x =1/4 + (1-1/4)CAt, 0<CAt<I (2.3.5)

yields superior FR response. This form satisfies the unit CFL condition[24].

Explicit 1-pass Algorithms

(1)

(2)

(3)

(4)

Galerkin ( not shown ) is unconditionally unstable.

SUPG ( C2x = CAt ) is second-order accurate.

SUPG ( Czx = 1 ) and TW ( C2_ = 1 ) are identical.

4

TW ( C2t = 1/4 + ( 1 - 1/4 ) CAt ) is conditionally stable; the stability limit is

CAt -_- 0.253.

Explicit 2-pass Algorithms

(1)

(2)

(3)

Galerkin ( not shown ) is unconditionally unstable.

All algorthms are second-order accurate.

4

TW ( C2x = 1/4 + ( 1 - 1/4 ) CAt ) is conditionally stable; the stability limit

is CAt _ 0.303.

2.4 NUMERICAL EXAMPLES

In an effort to verify the improvements made in the weighting functions, a number of

standard test problems were solved for convection dominated flows in one and two

dimensions for various combinations of the weighting functions, algorithmic Courant

number ( not to be confused with the element Courant number which is based on At),

and the element Courant number. For one-dimensional problems even though the results
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shownin figuresarefor CAt= 0.6,therelateddiscussionsandconclusionsalsoaccount

for differentvalueof CAt.Theproblemsareclassifiedasfollows: .........

Advection of a Cosine-wave in One Dimension

This consists of a cosine-wave initially on the extreme left and Neumann type boundary

condition on the extreme fight. The diffusion is set to zero, and the mesh and the

convection velocity remain fixed. Tests were conducted for various time steps (i.e., for

different element Courant numbers ). The exact solution consists of pure advection of the

initial condition to the fight. Solutions are compared at the end of the same time interval.

Figure 2.4.1 depicts the results for various weighting functions, various forms of C2_,

and a fixed value of CAt. Since weighting functions TW and SW are identical in one

dimension, only TW has been shown. Moreover, when C2_ = 0, all weighting

functions lead to Galerkin formulation.

For SUPG for all forms of C2z, the peak amplitudes are comparable, and only trailing

waves are observed. When CAt is decreased, all forms of C2_ yield comparable

solutions, and exhibit both leading and trailing waves. When CAt is increased, the peak

amplitudes are comparable; however, for the C2z = 2/_/15 + ( 1 - 2/_]15 ) CAt form

the trailing wave amplitude is halved compared to the other forms. For SUPG

formulation, the form C2_ = 2/_/15 + ( 1 - 2/_115 ) CAr. performs better for high or low

Courant numbers, while for medium Courant numbers, all forms of C2x perform

similarly.

For TW (or SW) the form C2x =1 produces leading oscillations; for other forms of

C2x the solutions are reasonable and comparable. A similiar trend is observed when the

Courant number is decreased. With increasing Courant number all forms of C2. c give

better results, and when CAt = 1, the solutions are identical. For TW(or SW) formulation

4
the forms C2_ = CAt and C2x = 1/4 + ( 1 - 1/4 ) GAt provide satisfactory results for
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awide rangeof Courantnumbers.

Advection of a Discontinui _tyin One Dimension

This is similiar to the previous problem of one-dimensional cosine-wave advection

except that the initial profile has a discontinuity spread over one element. The exact

solution again consists of pure advection of the initial profile to the right. Figure 2.4.2

shows these results for Cat = 0.6. For the SUPG formulation, all forms of C2x provide

comparable solutions (the peak overshoots are 7-9.5% of initial peak value and the

undershoots are 0.7-2% of the initial peak value).When the Courant number is decreased

the overshoots are higher for the C2_:= Cat form, and oscillations occur. This is not

surprising because as Cat tends to zero the scheme approaches Galerkin formulation.

As the Courant number is increased, the solutions converge and become identical for

Czx t = 1 for all forms of C2x. For the SUPG formulation all forms of C2. c yield

reasonable solutions for medium to high Courant numbers. For low Courant number,

the forms Czx = 1 or C2.c = 2/'/15 + ( 1 - 2/'/15 ) CAt perform better.

For the TW( or SW) formulation, C2x = 1 produces severe leading oscillations, while

for the Czx = CAt the undershoot is too high. However, much less overshoot and

undershoot occur for the form Czx = 1/4 + ( 1 - 1/4 ) C4r For TW( or SW) the form

4

C2x = 1/4 + ( 1 - 1/4 ) Cz_tPerforms optimally for the entire range of Courant

numbers.

Translation of a Cosine-hill in Two Dimensions( Translating Puff )

The domain is a square region of size lxl in the positive xl-x 2 plane with 30x30

elements. A cosine-hill initial profile, distributed over 12 elements, is centered at

coordinates ( 0.27, 0.50 ). The diffusion is set to 10 6. The velocity is unity in the

xl-direction and the time step is adjusted to give Cat of approximately 0.25 at the tip of

the hill. All boundaries are of Dirichlet type and homogeneous except at x 1 =1.0 which is

of Neumann type and homogeneous. The problem was run for 120 time steps, in which

time the hill should be transported out of the region with minimal amplitude loss and

minimal oscillations in front or in the wake.
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Figures2.4.3,2.4.4,and2.4.5showtheresultsfor different weightingfunctions and

variousforms of C2_.

For SUPGformulationat step80it is observedthat thepeak amplitudeis 99.2%( as

a percentageof the initial peak amplitude ) for C2_= CAt, 96.8% for C2x = 1, and

97.9% for the C2x = 2/_15 + ( 1 - 2/_/15 ) CAtform. The trailing wave amplitudes

are comparable ( < 2% ).

For the TW (or SW) formulations and all forms of C2_ the solutions are vastly

superior to those obtained by using SUPG formulations( Peak height drop is less than

1% while trailing wave amplitude is less than 0.01%). Notice, however, that for C2. c = 1

the solution is marred by the presence of leading oscillations.

For cosine-hill advecfion in two dimensions, the TW( or SW ) formulations perform

4
quite well when the form C2x = CAt or C2_ = 1/4 + ( 1 - 1/4 ) CAt is used.

Rigid Rotation of a Cosine-hill in Two Dimensions( Rotating Puff )

The setup conditions are the same as in the previous problem of two-dimensional

cosine-hill advection except that the velocity field is rotational with respect to the center

of the domain ( i.e., u 1 = -x 2 and u2 = x 1 ), and all boundaries are of Dirichlet type and

homogeneous. The problem was run for 200 time steps during which period the hill

should perform one complete rigid body rotation.

Figures 2.4.3, 2.4.6, 2.4.7, and 2.4.8 show the results for different weighting

functions and various forms of C2_.

For the SUPG formulation the form C2_ = CAt is apparently superior in terms of peak

amplitude which drops less than 2% after 200 steps. For C2x= 2/_/15 + ( 1 - 2/x/15 ) CAt

form, the peak amplitude drop is less than 5% for the same trailing wave amplitude

(<2%).

For the SW formulation, the forms C2_ = CAx and C2x = 1/4 + ( 1 - 1/4 ) C4zxt

give comparable results( the peak amplitude drop is only 2% and trailing wave amplitude

is less than 2% after 200 steps). However, C2z = 1 fails totally for this problem, which
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is not surprisingin view of theone-dimensionalproblemresults.
For the TW formulation, the results are comparable to those of the SW formulation

except that the form C2_ = 1 does not fail totally; however, the latter form produces

leading waves with an amplitude of 9.5% which is quite unacceptable.
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CHAPTER3

APPLICATION TO FLOW FIELD SIMULATION BY VORTICITY-STREAM

FUNCTION APPROACH

Flow field simulations for two-dimensional incompressible flows are generally based on

either the primitive variable approach or on the vorticity-stream function approach. By

using the vorticity-stream function formulation, the number of unknowns and transient

equations are reduced, simplifying the problem for computational purposes. Since the

governing equations involve transient convection- diffusion terms, the Petrov-Galerkin

schemes developed in Chapter 2 were used for this formulation.

3.1 VORTICITY-STREAM FUNCTION FORMULATION

The fundamental equations for two-dimensional, incompressible flow of a Newtonian

fluid with no body forces, and constant properties are the two momentum equations

(Navier-Stokes) and the continuity equation [15],

Du/_t + u Du/3x + v Du/_y = - 1/p DP/_x + v ( D2u/_x2 + D2u/Dy2 ) (3.1.1)

_v/_t + u Dv/Dx + v Dv/_y = - 1/p 3P/_y + v ( 32v/3x2 + D2v/Dy2 ) (3.1.2)

_u/_x+ _v/Dy = 0 (3.1.3)

These equations are in the primitive variable form involving velocity components, u,

v and pressure P, and the fluid properties of mass density, p, and kinematic viscosity, v.

The equations have been written in an Eulerian frame of reference and although it is

possible to obtain numerical solutions from these equations[16], they can be further

simplified both in terms of the number of dependent variables, and the number of

transport equations being solved. This simplification leads to the vorticity-stream

function formulation which has been used successfully for numerical simulations. By

appropriate vector and algebraic operations on eqs.(3.1.1), (3.1.2), and (3.1.3), and

introduction of vorticity and stream function as the new variables, the above three

equations reduce to the following equations:
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Vogicity Transport Equation

to't + U*Vto = V V2to on _2

where co is the vorticity, and u is the velocity vector.

The boundary F is assumed to have the following decomposition,

Hence,

F = Fgvo F E u F s

_= rec_ r_, _=r_n rG, _=rc c_ r_

m(x)=g(x) V x _ Fg

vn(x),Vto(x)=g(x) V x e r h-

(3.1.4)

(3.1.5)

(3.1.6)

(3.1.7)

(3.1.8)

Nothing can be specified about the vorticity on the no-slip boundary, F c . Here n is the

unit normal vector to the boundary, and ff and/'_ are prescribed functions.

The initial condition is

t0(x,0)=to0(x ) x efl (3.1.9)

Remark

Vorticity is defined as V x u, a vector quantity. In two dimensions it reduces to a

single component and can be treated as a scalar.

Poisson's Equation for the Stream Function

V2_p + to = 0 on f_

where W is the stream function.

The boundary r is assumed to have the following decomposition,

(3.1.10)

r=r_u rhura

o=r_n rh,o=rsn ra, o=ra n r h

(3.1.11)

(3.1.12)
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Ue(x) =g(x) V x e r'g

n,VW(x)=h(x) V x e F h

(3.1.13)

(3.1.14)

•IJ(x ) = G (x)

/ v x r o
noV_(x) =n(x) )

(3.1.15)

Remark

The stream function W is defined such that u = bW/0y and v = -bW/0x. Thus in

eq.(3.1.15), H is the wall velocity parallel to the boundary 1-"G .

It is required to find 03 = o3(x,t) and • = _(x,t) for the two coupled partial differential

equations.

The flow is thus governed by the nonlinear vorticity equation, which is parabolic in

time, and the elliptic Poisson equation for the stream function. For steady state solutions,

which are of interest in many cases, the temporal derivative can be eliminated. However,

interestingly, most numerical studies concerning steady state flows are based on the

time-dependent equations, the steady state solution being obtained as an asymptotic limit

of the unsteady state equation. This procedure allows the treatment of steady flows as

parabolic in time, so that the solution marches in time to the steady state result.

Frequently, the elliptic stream function equation is also treated as a time-dependent

problem, with the steady state solution obtained for large time steps[25].

It is also worth noting that the vorticity transport equation serves as a model for many

other transfer processes and the techniques used to solve it can be extended to application

for processes including compressible flow.

3.2 BOUNDARY CONDITIONS

On no-slip boundaries both components of the velocity vector are specified. Hence it is

necessary to specify boundary conditions for vorticity which are consistent with the

stream function boundary conditions. Figure 3.2.1 shows the wall details at a

boundary. If W is expanded by a Taylor series out from a wall which is parallel to

x-direction and where the values are denoted by tI'/1, we get
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_It2 -" _I/1 + (_qJ/_Y)1 Ay + 1/2( _2_/_y2 )1 AY2 +

+ O[ (Ay) 4 ]

1/6(_3_/_y3 )1 AY 3

(3.2.1)

From the no-slip condition specified at the wall in eq.(3.1.15), (_/_y)1 "-H, and

bv/ax = 0 .

Also _u/ay = b2W/ay2. Thus for a

H, the vorticity is

-co I = bu/_y - bv/ax = (2/h 2) ( W z -

wall moving along x direction with velocity

(3.2.2)
tI'tl -H h)+O[h] ,

where h is the normal distance from the wall node to the adjacent node. Higher order

forms have also been implemented though they tend to cause instability at high

Reynolds number[26]. For stationary walls, eq.(3.2.2) reduces to

co1 = 3u/_y - bv/Ox = (2/h 2) ( _I-t2 - _IJ 1 ) + O[ h ] (3.2.3)

Remarks

_1)

(2)

(3)

On no-slip boundaries the boundary value of the vorticity depends on the stream

function values and thus are time-dependent.

The above derivation is based on element boundaries normal to the no-slip

boundary. This restricts the type of elements which can be used adjacent to the

boundaries. The boundary conditions on vorticity can be imposed in a more

consistent way within the finite-element context by a proper weak formulation of

the problem. We were reminded of this by Glowinsld[27].

On outflow boundaries, a homogeneous Neumann boundary condition is

usually specified for m and _. Such a "traction-free" boundary condition,

although suitable for Navier-Stokes equations, is not the best one for the

vorticity-stream function formulation. A more appropriate "absorbing" boundary

condition has been proposed by Glowinski[28].
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3.3 FINITE-ELEMENT FORMULATION

Consideradiscretizationof _2into element subdomainsf_e,e = 1,2,.... nel ,

wherenelis thenumberof elements.Let 1TM denote the boundary of _e. We assume

%1 _e (3.3.1)_=u
e_l

nel
O = n f2 e (3.3.2)

e=l

The interior boundary is deemed as

nel
I'in t = k.) 1TM- F (3.3.3)

Weak form of the Vorticity Transport Equation

Let "_ and S denote the finite-dimensional variational and trial solution spaces such that

V = {wlw _ Hl(ff2), w(x) = 0 V X E l'g, 1-'G} (3.3.4)

_={031co e Hl(f_),03(x)= g,(x) V x e r'g,

o3(x)= fO G(x) V x e F G} (3.3.5)

where fOG represents the value attained by vorticity on boundary F a .

The variational form of eq. (3.1.4) and the associated initial condition in eq.(3.1.9)

are

{w03,t + wu.Vw + v VwoV03}d.O +

e=l _e

f
= J wkTdl-" dF

rx

Vwe V (3.3.6)

S w (co-coo)df_ = o
f_

Vwe ",¢ (3.3.7)
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wherep is a O 1perturbationto theweighingfunction w, i.e., themodifiedweighting

functionis givenby ..........

w = w + p (3.3.8)

TheEuler-Lagrangeform of theaboveequationcanbederivedandis similiar to the

onederivedin Chapter2, i.e.,

_el _ W{o3't-4- U'VO3 VV 2- o3 }df2
e,=l t_0

+ fw{vn*Vo3-/_}dF+ _wtv n*Vo3]df2 = 0 (3.3.9)

rf rim

where [ ] is the "jump" operator.

Weak Form of the Poisson's Equation

Let V and S denote the finite dimensional variational and trial solution spaces such that

V={wlw

S={ l e

H'(f2),w(x) = 0 V x _ I'g, F G} (3.3.10)

g(x)V x r e ,

W(x)= G(x)V x e Fal (3.3.11)

The variational form ofeq. (3.1.10) is

SVw*VWdf2 = Swo3d_ +IwhdF Vw e V

a f_ Fh

where w is the weighting function leading to Galerkin formulation.

(3.3.12)



3.4

23

MATRIX FORMOFTHE DISCRETIZEDEQUATIONSAND THE
ALGORITHM

A consistentfinite-elementspatialdiscretizationof eqs.(3.3.8)and(3.3.12)leads

to thefollowing setof ordinarydifferentialequations:

+

K_= F - Md

(3.4.1)

(3.4.2)

where/rCI and M are the mass matrices, K and K stiffness matrices, _' and F the

$

generalized force vectors, d and d the vorticity and its temporal derivative at the nodes,

and W the stream function at the nodes. Note that the mass matrices in eqs.(3.4.1) and

(3.4.2) are not identical since the weighting functions used for the equations come from

different spaces.

Predictor/Mulfi-Corrector Algorithm

The algorithm used to solve eqs. (3.4.1) and (3.4.2) is a modified version of the

Predictor/Multi-corrector algorithm used by Hughes and Brooks[20] and is shown

below:

(1) Predictors

(0) •

dn+ 1 = d n + At(l-y) d n

• (o)

dn+ 1 = 0

Set i = 0 and go to step (2a) or (2b)

Predict the vorticity at next time step based on the current step.

(2a) Solution alternative I

(i) e e (i) e

CWn+ a = A { f - m (dn+l) } Stream function
e calculation

(i) (i)

(dG)n+l = L Wn+ 1 Update vorticity boundary
condition
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(5)Convergencecheck

If thevorticity equationresiduenormis within thetolerablelimit, thenincrement

n by 1andgo to step(1).Elseincrementi by 1andgo to step(2a)or (2b).

If thevorticity hasconverged,thengo to next timestepelsekeepcorrectingit.

Remarks

(1)

(2)

(3)

(4)

(5)

(6)

At is the time step chosen and 7 is the Euler parameter chosen between 0 and 1,

while subscript n represents time levels and superscript i represents the iteration

level. Symbol A represents assembly over the elements e-- 1,2,..her

M* is defined as follows:

M = _¢I + At 7 _[ for implicit solutions

M* = M L for explicit solutions

where M L is the lumped mass matrix.

For step (2a), if N is not large enough the solution diverges. From practical

experience it is seen that convergence is slow with step (2a) and hence step (2b)

is used.

Weighting functions developed in Chapter 2 are used for the vorticity transport

equation since they have good stability/accuracy characteristics.

Matrix L is obtained from eq. (3.2.3) which relates the wall yorticity(riG) with

the stream function.

Since matrices 1VIand K for the vorticity equations depend on the spatial and

temporal discretization besides the flow field they are reformed every iteration

within each time step. However matrices M and K for the stream function are

formed only once in the fh-st iteration of the first time step since the weighting

function depends only on the spatial discretization.
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3.5 NUMERICAL TEST CASES

Flow Past Step

This is a relatively stringent problem for testing the algorithm because of sharp

boundaries which result in steep gradients of variables. Convergence in this problem is

thus not expected to be as good as for problems involving smooth geometries like flow

past a cylinder.( The latter case and associated phenomenon of vortex shedding is

currently being studied by Glaisner[29], and, results obtained are in strong agreement

with those obtained by Fornberg[30], Smith and Brebbia[31], and Brooks and

Hughes[32]). Figure 3.5.1 gives a problem description and the appropriate boundary

conditions used. This problem was solved using a crude(210 elements) mesh and a fine

mesh (804 elements) for Re = 200. The mesh was not refined near the walls in order to

study the effects of a uniform mesh.

The solutions obtained for Re = 200 cases are shown in Figures 3.5.2 and 3.5.3.

Results obtained compare quite well with those obtained by Hughes et al.[32] using a

penalty formulation. However, in our computations the Dirichlet boundary values are

allowed to reach the full values after 10 time steps. Thus solutions obtained should be

compared with caution.

The following observations can be made:

(a) As the mesh is refined, the time step has to be reduced even for the implicit

calculation because of the evolving vorticity boundary condition on the walls, which is

proportional to 1/h 2. This is a limitation because an accurate solution obtained by a fine

mesh would take more time steps to compute.

(b) In general, the viscous effects dominate at the walls resulting in high wall vorticity.

Away from the walls the flow dominates and convects away the vorticity. This suggests

mesh refinement near the walls.

(c) For Re = 200, a fine mesh with low time-step results in a region, of recirculation

downstream of the step which develops further in time. This is in agreement with the

solution obtained by Hughes, et al.[32].

Driven Cavity Problem

This, like the step problem is a stringent test for the algorithm and is described in Figure

3.5.4 with the appropriate boundary conditions. A uniform mesh of 20x20 elements was

chosen and the solutions were obtained for Re = 100, 400, and 800. In all the cases, the

time step was fixed at 0.2 and the problem was run for 40 time steps. Transient results
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areshownfor Re= 100in Figure 3.5.5,andthelast stepresultsfor Rc = 400, and 800,

in Figures 3.5.6 and 3.5.7. The solution can be compared with Hughes et a1.[32] who

used 20x21 elements. Figure 3.5.8 shows the results obtained by Hughes et a1.[32].

The following observations can be made:

(a) Initially, the vorticity is generated by the top moving wall and is transported to the

adjacent walls by the flow developed. However, as a consequence of this generation and

transportation of vorticity, a circulating flow develops in the cavity. At steady state, the

vorticity diffusion is balanced by the vorticity convected and recirculated.

Co) As a result of the circulating flow in the cavity, two small regions of recirculation

develop on the lower corners.These grow with Reynolds number until Re = 800.

(c) In general, agreement is good for low Reynolds number with solution obtained by

Hughes[32]. Note that both vorticity and stream function are practically constant after

40 steps for low Reynolds number.
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CHAPTER4

APPLICATION TO SIMULATION OF ELEC'YROPHORESIS SEPARATION

PHENOMENA

Before actual simulation of any process it becomes necessary to identify the governing

equations (PDE's, ODE's, algebraic equations, etc.) based on certain basic laws (mass,

momentum, energy, charge balance, etc.) and also to understand the

limitations/assumptions made in arriving at the equations. Electrophoresis simulation

also requires the following:

• Development of special techniques to solve problems in convection dominated

flows. Successful separation of particles is based on large differences in mobilities and

low diffusion rates of individual species. Evidently, as explained in Chapter 1,

convection dominated flows need Petrov-Galerkin formulations which have been

developed in Chapter 2. Thus the schemes developed in Chapter 2 have been used in

electrophoresis simulation.

• Prior knowledge of the external flow field (i.e., the velocity of the solvent in

which the charged particles have been dissolved). In Chapter 3, a method has been

developed to model the flow field based on the vorticity-stream function

formulation.This formulation can be used to solve for the external flow field.

However, it must be noted that in most electrophoretic separations the external velocity is

kept at zero to avoid remixing of the separating species.

4.1 CLASSIFICATION OF SEPARATION TECHNIQUES

Although there are several classification of separation techniques the three distinct

categories studied by us are listed below:

zone electrophoresis ( ZE )

moving boundary electrophoresis ( MBE )

isotachophoresis ( ITP )

The above methods differ in the applied initial condition which leads to a different

separation mode.
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In ZE, the whole separation column is filled with a single basic electrolyte system with

a specific conductivity. The mixture of substances to be separated is injected at a certain

location in the column and the passage of current mobilizes the substances at different

rates and thus zones are created. Figure 4.1.1 illustrates this process schematically. The

shape of the individual zones are influenced by the potential gradient. If the electrolyte is

such that its conductivity is not affected by the substances to be separated, then the

potential gradient remains constant and it is the most common type of ZE ( this is the

case simulated). In some cases the conductivity does change and the potential gradient is

not a constant. Thus, when the species enters a region of high potential gradient

(absolute) it speeds up, leading to a spreading of the front boundary. When it exits, the

boundary sharpens. The opposite is true for the back boundary. A similiar deduction can

be drawn for species entering or exiting low potential gradient( absolute ) regions.

Some characteristic features of ZE are the following: :_

(i) particles with either sign can be separated.

(ii) concentrations decrease permanently.

(iii) zone boundaries can sharpen, or spread.

(iv) zone velocities are different for different species.

MBE resembles ZE closely and is characterized by separation of the column into three

parts. Both sides are filled with the same basic electrolyte; the middle contains the

mixture to be separated. Since the middle width is comparable to the column length,

complete separation into individual zones cannot be accomplished. In yet another

variation of this method, the compartment may be divided into only two regions - one

containing the basic electrolyte and the other containing both the electrolyte and the

mixture to be separated. Figure 4.1.2 shows the latter mode schematically. In the

simulation, both species A and B are positively charged with A having a higher mobility.

Therefore theleading zone contains only A followed by a zone containing both A and B.

Only species A can be fully separated.

Some characteristic features of this method are the following:

(i) practically used to separate particles of one sign.

(ii) only one species is fully separated, others are mixed.

(iii) boundaries may sharpen or spread.

(iv) zone widths increase or decrease permanently.

(v) zone velocities are different for different substances but remain constant.
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ITP is characterized by the fact that a cation/anion nfixture cannot be separated by this

method. The separation column is divided into three unequal parts. One part is riffled with

a leader electrolyte, followed by the mixture to be separated, and finally, the terminating

electrolyte. If the mixture has anions to be separated, then the leader anions must have

the highest mobility and the terminator the lowest in the column. On passing current, the

mixture separates completely into individual substances with the anions arranged in the

order of mobilities. The leader is in the front followed by the species to be separated, and

finally the terminator. After steady state has been achieved, all the boundaries move with

the same constant speed. Figure 4.1.3 depicts this method schematically.

Some characteristic traits of this method are the following:

(i) complete separation of species is achieved after steady state is reached.

(ii) concentrations can increase or decrease during transient phase.

(if) concentrations are constant after steady state achievement.

(iv) zone widths increase or decrease during transient phase.

(v) zone widths are constant after steady state achievement.

(vi) zone velocities are same and constant after steady state achievement.

The above 3 separation techniques are used in one-dimensional separation. In two

dimensions, there is a different classification,

zone electrophoresis - similiar to one-dimensional ZE

cross electrophoresis - oppositely charged species are made to cross each other so

that a chemical interaction produces a new species.

diagonal electrophoresis - basically ZE along first direction followed by a chemical

treatment of separated species, followed by ZE along second direction.

cross flow-through electrophoresis - an external bulk velocity is applied along

one direction and the electric current perpendicular to it. Separation is achieved

continuously along each electrode.

Remark Although there are several other criteria used to classify separation processes

(amount separated, high/low voltage, continuous/batch etc.), the above classification

methods are more amenable to mathematical modelling since they provide definite

information regarding domain, initial concentration profiles, etc.
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4.2 ASSUMPTIONS

The governingequationsarederivedwith thefollowing assumptions: : _

Fully ionized species - while charged or uncharged species can be easily handled by the

model, the charged species are usually in equilibrium with their neutral counterpart. This

represents a chemical reaction which complicates the model and is currently not being

studied.

Individual species do not affect each other - the basic assumption made in deriving the

flux equations is that flux of one species does not depend on the other. This is accurate

only in dilute solutions.

Incompressible flow, since, in electrophoresis, one is dealing with common liquids at

low velocities, this assumption is valid. However, if a chemical reaction changes the

densities spatially and temporally, this assumption would have to be scrutinized.

Electrical heating effects negligible - the passage of an electric current induces heating of

the liquid column which can in turn, induce thermal convection currents and remix the

separating species. For this reason the separation column cross-section is kept low.

Electro-osmotic flow negligible - this flow is generated when an electric field is applied

to the system and the charge in thediffuse part of double layer of the wall moves to the

oppositely charged electrode. This drags particles close to the double layer along with it

thus producing a net flow.

Electroneutrality - i.e., the sum total of all charge at a point (at the c6ntinuum level ) is

zero. Most fluids satisfy this property except in a region very close (.100 Angstroms) to

the electrodes.
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4.3 GOVERNING EQUATIONS

The flux of each dissolved species is given by[33]

N l = -z i u i F c i V_ - D i V c i + c i v

electromigratory diffusive convective

flux flux flux
where

c i = unknown concentration of the ith species

( 4.3.1 )

= unknown electric potential

z i = signed valence of the ith species

u i = mobility of the im species

F = Faraday's constant

v = bulk fluid velocity

D i = diffusion coefficient for the ith species

R i = rate of generation of the ith species

A material balance yields

_C_
1

= -VeN 1 + R i
Ot

( 4.3.2 )

Substituting eqs. ( 4.3.1 ) in ( 4.3.2 ) and using the incompressible flow assumption

( Vev = 0 ), we get

_C i

+ veVc i = ziuiFVe(c ivo ) + Ve(D ivc i) + R i
Ot

or on simplification,

(4.3.3)

_C i 2 2

+(v-ziuiFV_)eVc i = ziui Fc iv(]_ + D iVc i + R i
_t

(4.3.4)



Moreover the current density is given by

i = F _ ziN i
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(4.3.5)

On multiplying eq.(4.3.2 ) with ziF and summing over all species, we get

-- F _ zic i = -V o F Y_ ziN 1 + F Y. ziR i
Ot i " i

(4.3.6)

Using the principle of electroneutrality and charge conservation

Y, z i c i = 0 respectively ) gives

i

( _ ziR i =0

i

and

i = -F2V_ Y, Zi2UiC i - F ]_ ziDiVc i
i i

(4.3.7)

Voi =0

Further assuming a constant current density, we see that

(4.3.8)

- V • = i/_: + F/k _ ziD i Vc i
i

(4.3.9)

If electroneutrality is imposed explicitly, we get

- V • = ihc + F/_: Y, zi(Di-Dn) VC i
i_'n

(4.3,10)

where

K = F 2 )". zi2uic i
i

If electroneutrality is imposed explicitly, we have

(4.3.11)

1( = F 2 Y_ ZiC i(ziui-Znun)

ion

(4.3.12)
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Thusthe equationsto besolvedarethefollowing •

_c i

+(V-ZiUi FVc:I_)*Vc i = ziuiFciV2_ + D iV2c i + R i
bt

(4.3.13)

where the electric potential is evaluated from

- V_ = i/_: + F/_: Z zi(Di-D n) VC i (4.3.14)
ion

and the conductivity from

-- F 2 ]_ zic i (ziui-ZnUn) (4.3.15)
i_n

Remarks

The above eqs. (4.3.13), (4.3.41), and (4.3.15) are thus used to evaluate the

concentrations of n-1 species and the n th species concentration can be evaluated from

electroneutrality, i.e.,

ZnCn = Y_ ZiCi (4.3.16)
i_n

4.4 STRONG FORM OF THE PROBLEM

The strong form of the problem based on the equations derived in previous section can

now be written as follows ( similar to the ones derived in the previous chapters except

that there are n unknown species concentrations to be evaluated at a given node):

_c i

_t
+ ( V - ziuiF V(I)),Vc i = ziuiFciV2¢:I_ + D iv2ci + R i

on f_ and i= 1,2 .... n-1 (4.4.1)
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-V_ = i/_: + F/_: Y_ zi(Di-Dn)VC i (4.4.2)

and

1_ = F 2 _ zic i (ziui-ZnUn) (4.4.3)
ion

The boundary 1-" of the domain _2, is assumed to have the following decomposition,

l-" = Fgi k..) l"hi
(4.4.4)

0 = l"gi ¢'3 I"hi (4.4.5)

where F i
g

Hence,

and Fhi represent the Dirichlet and Neumann type boundaries, respectively.

Ci( X,t ) = g i( x,t ) V x e Fgi,t e ] 0,T [ and i = 1,2 .... n-1 (4.4.6)

n( x ) oVCi( X,t ) = h i( x,t ) V x e I"hi, t E ] 0,T [ and i = 1,2 .... n-1 (4.4.7)

where n is the unit normal vector to the boundary, and g i and h i are

functions.

The initial condition is

prescribed

C i ( X,0 ) = Ci0 ( X ) X e _2, i = 1,2 .... n-1 (4.4.8)

where ci0 is a given function.The initial/boundary-value problem is to find Ci = Ci(X,t)

which satisfies eqs. (4.4.1), and (4.4.6)-(4.4.8). It is assumed that the current density

is known, i.e., i = i ( x,t ) is specified.
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4.5 FINITE-ELEMENTFORMULATION AND THE ALGORITHM

Adopting a procedure similiar to one in Section 2.2, a consistent finite-element

spatial discretization of eq(4.4.1) leads to the following set of ordinary differential

equations:

M _1 + K d = F (4.5.1)

where all the symbols have their usual meaning.

However solving this set of ODE's is different because the convection velocity induced

due to the electric field has to be evaluated. In other words, these ODE's can be solved

only if the potential gradient is known at each time step.

Thus the scheme used to solve this system is similiar to the Predictor/Multi-corrector

algorithm used by Hughes and Brooks[20], except that several corrections are required

to evaluate concentrations and the potential gradient.

The potential gradient is evaluated at nodes based on a 2 na order finite-difference

scheme, i.e., in evaluating Vq_ from the expression,

- V¢ = i/_: + F/K _¢n zi(Di-Dn) VCi (4.5.2)

a 2 nd order finite-difference scheme based on nodal concentrations is used to

approximate the VC i term.

Remarks
-,

(1) Since a finite-difference scheme is used to evaluate derivatives based on nodal

concentrations, it restricts the usage to elements with boundaries parallel to the

X and Y-axis.

(2) Depending on the spatial position and time, the flow for a particular species

might be convection dominated and for another species diffusion dominated.

This situation is possible because the convection term for each species is

governed by the potential gradient (common to all species and a function of
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spaceandtime),andits particularvalenceandmobility.

A Courantnumberbasedon "electro-migration"canbedef'medwhichwill beuseful

in stability/accuracyanalysis,

(ECAt) i = (Fz iu iVy) At
i = 1,2, .... n-1 (4.5.3)

h

Here (ECAt)i is the "Electro-migrative Courant Number" for the ith species based

on time step At, and element length h, along electromigation direction.

4.6 NUMERICAL TEST CASES

Although it is not possible to predict beforehand the course of separation process, in

1897 Kohlrausch established a general principle for understanding the general features

which can be stated as follows:

" The passage of an electric current through an electrolyte system causes

changes only where the system is nonhomogeneous."

Consequently,

(i) the passage of electric current through a homogeneous solution leaves the

concentrations unchanged.

(ii) the passage of an electric:current causes the boundary between two ionic species to

advance and either degrade or self-stabilize in time.

(iii) concentration gradients are largely unaffected, but flatten out as a result of diffusion.

A review of numerical simulations indicates a paucity of work done in the field of

electrophoresis. The models developed in [34] and [35] are specialized for either MBE or

ITP in one-dimensional steady state cases. The general approach to electrophoresis

presentedby Bier et a1.[36] does explain all methods in one dimension. In two

dimensions, surprisingly, no work seems to have been done - this despite the fact that

two-dimensional electrophoresis is a dominant method in resolving proteins. The

algorithm developed by us has the following advantages:

(i) has good stability and accuracy characteristics as demonstrated in Chapter 2.

(ii) can handle several species. ::
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(iii) canhandleexternalflow fields.

(iv) canhandleirregulardomains(however,seeremark in Section 4.5).

One-dimensional simulations Based on the classification given in Section 4.1,

one-dimensional simulations have been done for ZE, MBE, and ITP. The results have

been compared with those of Bier et al.[36], and Fidler et a1.[34]. However, Bier's

simulations take into account chemical dissociation equilibrium which can affect the

solution obtained depending on the dilution.

In all the simulations the two species to be separated are denoted by A and B, and the

basic electrolyte in which they are introduced consists of P+ ( or L + and T +) and Q- ions.

Zone Electrophoresis in One Dimension

The initial condition consists of a uniform concentration distribution of P+ _and Q-) ions

and a cosine-hill for both A ÷ and B" bearing opposite charges.

On the application of an electric field, each species migrates a distance proportional to

its mobility and charge. In this way the species separate. The problem was run for 150

time steps ( At =0.02 ).The temporal evolution of A +,B- ,P÷, and potential gradient (Vqb)

are shown in Figure 4.6.1. Broadening of the leading boundaries of A ÷ and B- indicates

that the absolute value of Vq_ is high off center .This is consistent with the Vq_ plots.

Since the potential gradient is a function of the current density, concentrations and

concentration gradients, adding the mixture S will disturb the existing uniform potential

of the electrolyte. This is seen as a cosine-hill hump in the potential gradient initially.

However as the species separate, it attains a much more complicated profile than is

shown for this simple case.

On comparing this with the results obtained by Bier et a1.[36] there is a similar trend

observed except that the species to be separated has a sharpened leading boundary and

smeared trailing boundary. This is because in [36] the species is an ampholyte ( i.e., its

mobility is a function of other species) and the electromigration velocity is thus

dependent on the V_, as well as the variable mobility. This was also simulated by

making the mobility of A ÷, a variable dependent on P+ ion concentration in our

computation ( not shown ).

Moving Boundary Electrophoresis in One Dimension

The initial condition were chosen to compare the result with those of Bier et a1.[36]. This

initial condition is not the same as shown in Figure 4.1.2. The problem was run for 250
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time stepsand sinceB+ hasahighermobility thanA+, the latter separatesout fully as

expected.This is to becontrastedwith theexampleshownin Figure4.1.2wherespecies

A+ with highestmobility separatesout fully. This indicatesthatthe initial conditionand

particlechargeplay asignificantrole in thefateof separation.Moreover,theboundaries

cansharpen( self stabilize)ordeteriorate( diffuse), asshownfor thetwoboundaries.

The temporalevolutionof A+,B+, P+,andV_ areshownin Figure 4.6.2 at regular

intervalsof 25steps.SpeciesA+ is not affectedtoomuchby thecurrentbecauseit has

alow mobility andhence,tendsto diffuse.SpeciesB+ on theotherhand,showsclearly

theeffectsof electromigrationwith someinitial profileadjustments.P÷showsatendency

to reach spatial peakswhich spreadout in time. The potential gradient undergoes

changeswhicharedifficult to predictbut showsplateausin regionswhereconcentrations
aremoreor lessconstant.

Theseresultsarein generalagreementwith thoseof Bieret al.[36] for thedescending
armcase.Howeverthecomparisonis qualitative,basedonprofiles.

Isotachophoresis in One Dimension

The initial condition for ITP is depicted in Figure 4.6.3. The mixture is introduced

between the leader L + and terminator T + such that

U L > U A , UB > U T

Also note that the terminator T + is no_.Atstrictly separated from the mixture which is not

in general compliance with the requirements of ITP mentioned in Section 4.1.

On passing current the species separate out in the order of their mobilities and finally,

the separated species move as a single system. This problem was run for 1750 time

steps and an intermediate and final condition are shown in Figure 4.6.3. Except for the

leader, all other species undergo significant changes in zone width and peak

concentrations. Moreover as a result of numerical smearing, the boundaries tend to

overlap.

The temporal evolution of A ÷, B ÷, T ÷, L +, and Vq_ are shown in Figure 4.6.4 at

regular intervals of 150 steps. For T +, in the initial stages the concentration levels off to

zero. However later it levels off to a positive value signifying approach of a steady state.

Species B + follows a complicated evolution with increases, decreases, and plateaus in

the concentration levels until it flattens out at steady state.

Species A + follows a complicated evolution with increases, decreases, and plateaus in

the concentration levels until it flattens out at steady state. However the steady state

concentration level is higher than B + while the width is less.



40

The leaderL+ showsrelatively little changeexcept for an initial boundary profile

adjustment.

Thepotentialgradientfollows aninitial periodof adjustmentuntil the speciesseparate.

After steadystateis attainedit developslocal plateauswhich correspondto theplateaus

of eachspecies.

On comparingthis simulationwith that of Zidler et a1.[34]thefollowing differences

emerge:

(i) Theinitial concentrationlevelsof A+ andB+ arenotequalin [34].

(ii) Initially, theterminatorT+ is strictly separatefrom themixturein [34].

The steadystateresultsasobtainedby usarein goodagreementwith thoseof Zidler et

al.[34] exceptfor thebehaviorof theterminatorwhich is differentbecauseof theabove

two reasons.Moreover,theresultsby Bier et al.[ 36] alsoindicatethat both increasing
and decreasingprofiles of the terminator are possible depending on the initial
concentrationswhich is consistentwith our results.

Two-dimensional simulations As pointed out earlier in this section, there is no result

available to compare with in two dimensions. However, in order to test the algorithm

and to demonstrate its capability, results for zone and cross (no reaction) electrophoresis

have been shown. Although other methods have also been simulated, the results have

not been shown here. For both cases the domain was taken as 0.66 x 1.0 units in the

positive XY plane with a mesh of 20 x 30 square elements. For simplicity, the constant

current density was applied in the Y-direction only.

Zone electrophoresis in Two Dimensions

Species A + and B-, bearing opposite charges, are introduced as cosine hills centered at

coordinates (0.33,0.5). The basic electrolyte, as usual, is made of P÷ and Q- ion

distributed uniformly ( not shown ).

The problem was run for 100 time steps and results plotted at steps 0, 50 and 100, in

Figure 4.6.5. The profiles along Y-direction are similiar to those attained in the

one-dimensional version of ZE. However, both diffusion and electro-migration act in

the X-direction. Though diffusion is understandable, electro-migration might appear

peculiar because, as stipulated earlier, the current was applied only in the Y-direction.
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However,on carefulexaminationof eq. (4.3.11) it becomesobviousthat thepotential

gradientalsodependson the concentrationgradientswhich do exist alongX-direction.

This_isConiCarmedby thenonzeroO_/0xwhichdevelopsin time (notshown).

Cross Electrophoresis in Two Dimensions

Species A + is introduced as a cosine-hill centered at coordinates (0.33,0.25) and species

B- centered at (0.33,0.75) so that they cross over in the domain on applying current.

This problem was run for 250 time steps and the results are shown at steps 0, 50, and

200 in Figure 4.6.6.

Species A + behaves quite normally, displaying the usual broadening and reduction in

concentration level. However B + shows an increase in concentration which is accounted

by the sharp potential gradient change at step 50( It does not affect A + because it has not

reached there ). However this sharpness diffuses later which is consistent with

Kauhlraucsh's principle. Moreover, it is apparent that the potential gradient is

predominantly controlled by B ÷ because it is seen to drift along with the profile of B +

rather than that of A +.
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CHAPTER5

CONCLUSIONS

The results from Chapter 2 show that by choosing a proper weighting function and an

appropriate form for the algorithmic Courant number, a variety of problems can be

solved giving improved results. Choosing the form C.2._ = 2N15 + ( 1 - 2/415 ) CAt

4
with SUPG and C2t = 1/4 + ( 1 - 1/4 ) CAt form with TW (or SW) gives optimal

results for a range of Courant numbers, for one-dimensional problems. For

two-dimensional problems, in addition to the above forms of C2_, the form C2_ = Cat

also performs well. In general, the extension of one-dimensional schemes to

multi-dimensions should be done with care. However, the proposed weighting functions

perform satisfactorily in multi-dimensions as is clear from the results.

Based on the results obtained, and from the stability and accuracy analysis performed,

one can deduce that the proposed transient schemes are versatile, produce wiggle-flee

solutions, and show minimal damping and a good frequency ratio response.

Numerical test cases run for flow field simulations in Chapter 3, indicate that the

vorticity-stream function algorithm behaves quite well at low Reynolds number.

However, there is limitation on the time step, which depends on the mesh size and is

thus crucial for the stability/accuracy of the solution.

As Reynolds number increases, sharp changes occur in the solution which lead to

resolution problems. Though these can be resolved by mesh refinement (which is an

extra computational burden), in complex domains it is not possible initially to predict

regions of steep gradients.

For high Reynolds number this model is not appropriate because turbulent flows are

three-dimensional in nature[37]. Also, resolving the small scale structures would require

refinement beyond feasible limits[37].

Moreover, if the pressure is to be determined, the primitive approach, in terms of the

velocity and the pressure, is often advantageous. For flow in finite-sized enclosures and

flow over arbitrary three-dimensional bodies, this assumption of two-dimensional flow

may not be applied and the general three-dimensional circumstance is to be considered.

The problem is extremely complicated in that case, and though the vorticity-stream

function approach may be extended to this flow, the primitive variable method is often

more appropriate.Thus other approaches like penalty formulation, primitive variable

approach, etc., should also be tested with the newly developed Petrov-Galerkin
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schemes.

Thenumericalschemeproposedfor electrophoresissimulationiscapableof simulating

ZE, MBE, andITP in onedimension.Theresultsobtainedarein goodagreementwith

thoseobtainedby others.In general,electriccurrentapplicationmobilizestheparticles,

which in turn, alterthepotentialgradientdistribution.Thustheelectromigrationvelocity

will changeasaresult of thechangingpotentialgradient.In manycases,complicated

concentrationandpotential gradientprofiles areachievedwhich aredifficult to predict
otherwise.

However, a combination of Petrov-Galerkin finite-element and 2ndorder finite-

differencediscretizationwasusedin thealgorithmwhich doesplacearestrictionon the

domainshape.In orderto avoidsucharestriction,thealgorithmshouldbemodified for

quadraticelementsandthusapurefinite-elementschemecanbe usedon anydomain.

This would requiretestingof thePetrov-Galerkinweightingfunctionswhich havebeen
•developed and tested only for linear elements.However, it is expected that the

performancewouldbemoreor lessthesame.
The effectsof thermalheating/osmoticflow havebeenneglectedin our model. By

including sucheffects andlearning to control them, it is possibleto keep them to a

minimumandthusdevelopbettercommercialtechniques.

Reactiontermshave not beenincluded asyet in the testcases;clearly, to takeinto

accountequilibria betweenneutralandchargedspecies,this is essential.This would
requireabetterunderstandingof individualphysicalproblems.

The assumptionof a constant current density, while valid for one-dimensional
problems,is not a gooclapproximationfor two-dimensionalcases;it is expectedthat

bettermodelswill bedeveloped.Two-dimensionalsimulationsarequite expensivebut

provide invaluable help in understandingthe physical process.In short,more work

needsto bedoneto simulateelectrophoresisseparationfully, but in the meantimethe

existingmodeldoesprovideusefulinsightinto thephysicsof theproblem.

To sumup, the motivation for:developingaccuratetime-dependentPetrov-Galerkin
schemes was to simulate flow field and electrophoresisseparation phenomena;

nevertheless,the equationsconsideredmight be thosegoverningthermalconvection/
diffusion, chemical convection/diffusion/reaction, etc. Our results indicate a strong

potential for future work in this areaand it is expectedthat suchformulationswill be

usedto obtain bettertransientsolutionsfor Navier-StokesandEuler equationswhich

havebecome"classical"challengesovertheyears.
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i a_ a 2 _

a • f

Figure 1.1.1 Electrophoresis. Characteristic examples of separation of pathological blood
serum proteins : (a) normal ; (b) acute inflammation ; (c) subcute chror_ic

inflammation ; (d) cirrhosis of the liver ; (e) nephrotic syndrome; (f) [3-myeloma;

(g) T-plasmocytoma[ 19].
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t----- m --

Figure 2.3.1 Weighting functions for Petrov-Galerkin schemes for 1-D linear elements.
( Dotted lines represent weighting function leading to Galerkin formulation.)
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i.

Figure 2.4.3 Initial condition for translating puff and rotating puff problems.
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Figure 2.4.4 Translating puff elevation plots ( SUPG ).
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Figure 2.4.5 Translatingpuffelevationplots( TW/SW ).
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ROTATING PUFF AT TIN4E STEPS 100 AND 200 (_SLJPG)
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Figure 2.4.6 Rotating puff elevation plots ( SUPG ).
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ROTATING PUFF AT TiME STEPS 100 AND 200 (TW)

CI_, ml 1

C.l_" ,11 C

c - 1/4 ÷ (I-_/4)c:,

Figure 2.4.7 Rotatingpuffelevationplots(TW ).
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Figure 2.4.8 Rotating puff elevation plots ( SW ).
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Figure 3.2.1 Vorticity -stream function formulation. Wall boundary details.
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Figure 3.5.1 Flow past a step. Problem description, boundary conditions, and mesh
employed.
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Re = 200 (caorse mesh) Steady state streamlines

Corner streamlines

Re = 200 (caarse mesl_) Steady state iso--varticity lines

Figure 3.5.2 Flow past a step at Re = 200. Steady state streamlines and iso-vorticity lines
(coarse mesh ).
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Figure 3.5.3 Flow past a step at Re = 200. Su_xmlines at various dine s_eps( fine mesh ).
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Re ---- 200 (fine mesh) Streamlines at t _ 0.4

Corner streomlines

Figure 3.5.3 Flow past a step _a Re = 200. Streamlines at various time s_ps( fine mesh ).
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Re = __ (f;ne r_nosh) Streamlines at t _ 0.6

Corner StreOml;nes

Figure 3.5.3 Flow past a step az Re ,, 200. Su'eamlia_s at various time steps( fine mesh ).
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Re ---- 200 (f;ne mesh) Strec3rnlines at t -_- 0.8

Corner streornl;nes

Figur= 3.5.3 Flow past a step at Re = 200. Streamlines at various time steps( fine mesh ).
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Re = 200 (flne mesh) Streamlirles ot t = 2.0

Corner Streomlines

Re = 200 (f_ne mesh) Iso--vorticity I_nes at t = 2.0

Figure 3.5.3 Flow past a step az Re ,, 200. Steady state su'eamlincs and iso-vorticity lines.
( fine mesh ).
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Figure 3.5.4 Driven cavity. Problem _ption and boundm-Fconditions.
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Re _t 1 O0

Strear_l|nes t == 1 ¢_¢
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Iso--vortic;ty lines ot t = 1 _ ¢

Figure 3.5.5 Driven cavity at Re = 100. Smesmlmes and iso-vorticity lines at vmious time

steps.
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Re = I O0

Stroormllnes at t == 8 Corner streonml|mes
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Iso--vortlc_ty i|nes at t = 8

Figurc3.5.5 Drivencavitya:Re = I00.Steadystatcsuv,amlineaand iso-vorticitylines.
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ISo--vor_clty Hnes ot t == 8

Figur_ 3.5.6 Driven cavity at Re = 400. Steady state strv.amlines and iso-vorticity lines.
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Re == 800

5treomllnem at t == 8 CornQr streomlines

Iso--vortlo;ty lines at t -- 8

Figur_ 3.5.7 Driven cavity at Re = 800. Steady state su'eamliaes and iso-vordcity lines.
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Figure 3.5.8 Driven cavity at Re = 100 and 400. Steady state streamlines and iso*vorticity
lines obtained by Hughes et al. [32].
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_gurc4.1.1 Zone electrophoresis. A mixture S consisting of anions and cations to be
separated is injected in the electrolyte consisting of P+ and Q" ions. On the
passage of an electric current the species separate out into zones depending on
the charge and mobility.
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MOVING BOUNDARY EI_CTROPHORESIS
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Figure 4.1_ Moving boundary electrophoresis. The sample S consisting of species A and B
is introduced into the cathode compartment. On the passage of current species A
separates out fully because it has a higher mobility. This is followed by a
mixtur_ of A+B.
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ISOTACHOPHORESIS
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Figure 4.1.3 Isotachophomsis. The sample S consisting of A+B species is introduced
between leading( L ) and terminating(T ) anionic species. Oa the passage of
current mixed zones axeobtained( like in MBE). On achieving steady state
speciesA andB separateoutandmoveat thesameconstantspeed.
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Figure 4.6.1 Zone electrophoresis in 1-D. Temporal evolution of species A ÷ and B'.
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Fig,an:4.6.1 Zone electrophoresisin I-D.Temporal evolutionofP + and potentialgradient.
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Figure 4.6.2 Moving boundary clcctrophoresis in I-D. Temporal evolution of species A +
andB ÷.
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Figure 4.6.2 Moving boundary electrophoresis in I-D. Temporal evolution of P+
and potentialgradient.
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Figurc 4.6.3 Isotachophorcsis in 1-D. Initial condition showing concentration profiles of
terminator 1"*, species B* and A ÷, and leader L ÷ (in order of increasing
mobility).
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Figure 4.6.3 Isotachophoresis in I-D. Int_ and final condition showing conceau'atio_

profiles of terminator 'I"+, spccics B ÷ and A*, and leader L ÷ (in order of
mcrr.asing mobility).
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Figure 4.6.4" Isotachophoresis in 1-D. Temporal evolution of potential gradient.
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Figure 4.6.4 Isotachopho_sis in I-D. Temporal evolution of terminator T* and leader L +.
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Figur_ 4.6.4 Isotachophoresisin I-D.Temporal evolutionof potentialgradient.



91

OF P(X)R QUALIFY

ZONE ELECrROPHORESIS IN TWO DIMENSIONS

Species A ÷ Species B"

"" condition

Tune step I

Figure 4.6.5 Zone electrophor_sis in 2-D. Temporal evolution of species A* and B'.
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Figure 4.6.5 Zone elccu'ophorcsis in 2-D. Temporal evolution of W" and potential gradient.
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Figur_4.6.6 Crosselccu'ophoresisinI-D.Temlx:_ evolutionofspeciesA ÷and B'.
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Figure 4.6.6 Cross electn_horesis in 1-D. Temporal evolution of P+ and potential gradient.


