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ABSTRACT

Some progress has been made on some of the objectives

set for the NASA/ASEE Summer FellowshiD, specifically: (I)

..... _ andAssemble a biblioaraDhy on DrODosals, L_ ..... ,

suGGestions for space-based laboratory measurements of G;

(2) Recome i_amiliar with some of the activities in sDace

science at Marshall SDace Flight Center; (3) Identify and

contact ......... u ..... ,_h p_,_={h1_ _mi!ar interests; (4)

InvestiGate further the suggestion of orbiting two balls in

a near-earth orbiting laboratorv. With regard to the last of

these, a manuscriDt entitled "Orbits inside a spacecraft:

measuring the Gravitational constant G," bv Adam F. Falk and

SteDhen D. Baker has been drafted, the abstract of which

reads as follows:

A common SUGGestion for measuring the Newtonian

Gravitational constant G in a near-earth orbiting laboratory

is simDly to put two balls in orbit around each other and

observe the resulting motion, thereby determining G.

However, the radial variation with distance of the

qravitational field of the earth is so large that "tidal

forces" on the balls in near-earth orbit can be several

times Greater than the gravitational attraction between the

two masses, leading some writers to assume that two objects

will not stably orbit about each other and that this method

of measurinq G in low-earth orbit is impossible, or at least

imDractical. We have, however, identified certain orbits

which are stable (at least over many periods of the

sDacecraft about the earth). In this case, the objects

exDerience their Gravitational interaction for a long time,

and it becomes reasonable to consider such orbits as

candidates for measurements of G.
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INTRODUCTION

Since the time that it became reasonable to assume that

orbiting laboratories would be available for Dhysics

exDerimentation, DrODosals have been put forward to measure

the Newtonian qravitational constant G in such

laboratories. Of the fundamental physical constants, G is

bv far the least well known (only about one part in a

thousand). Since there have also recently been some

suaaestions that G is distance dependent or source

comDosition dependent, new measurements of its value (with

new sets of systematic errors to be understood) are

needed. Of experiments proposed for orbitinq laboratories,

one suqgestion is simDiy to put two balls in orbit around

each other and measure the resultina orbital elements and

Deriod of the motion, thereby determining G. Another

suqqestion is to construct an oscillator whose restoring

force is gravitational--a "q_avitational clock."

With regard to the first suggestion, it turns out that

a major comDlication is introduced in this method bv the

nonuniformity of the earth's qravitational field. The

radial variation with distance of the aravitational field of

the earth is so larqe (about a third of a Dart Der million

each meter at the surface of the earth) that "tidal forces"

on the balls in near-earth orbit can be several times

areater than the gravitational attraction between the two

masses. The Dresence of these relatively strong tidal

forces has led some writers to assume that two objects will

not stably orbit about each other and that this method of

measurina G in near-earth orbit is impossible, or at least

imDractical. We have, however, identified certain orbits

which are stable (at least over manv Deriods of the

sDacecraft about the earth). In this case, the objects

experience their gravitational interaction for a long time,

and it becomes reasonable to consider such orbits as

candidates for measurements of G.
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OBJECTIVES

The stated objective of the summer's work were to make

some Dro_ress on some of the following tasks:

i. PreDaration of a bibliography on DroDosals, reDorts, and

sua_estions for sDace-based laboratory measurements of G, to

suDplement the very comDlete biblioaraDhy DreDared by
Gillies on all determinations of G.

2. Determine the comDatabillitv of these suqqestions and

those I might have with current efforts in other ultra-low-a

investigations.

3. Identify, contact, and DerhaDs DroDose a workshoD for,

workers with similar interests.

4. ProDose and discuss theoretical and experimental

feasibility studies needed before a sDace-based experiment
can be carried out.

5. Other tasks as they become evident.
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OBJECTIVES WHICH WERE REALIZED

It may qo almost without sayinq that not all the

objectives stated on the previous page were fully

realized. On the other hand, some progress was made on some

of them. As evidence, in the following pages I present (a)

a draft manuscript entitled "Orbits inside a spacecraft:

measuring the gravitational constant G" and (b) a short

bibliographv on measuring G in space. I have also this

summer identified and spoken with a number of workers in the

U.S. who might be interested in further consideration of

measuring G in space, and I have realized one of the general

objectives of the NASA/ASEE Summer Fellowship Program: to
become familiar with the Marshall Space Flight Center.
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DRAFT MANUSCRIPT

Orbits inside a spacecraft: measuring the gravitational

constant G

Adam F. Falk

Physics Department, University of North Carolina, Chapel

Hill, NC 27514

Stephen D. Baker

Physics Department, Rice University, Houston, TX 77251

Abstract:

A common suaaestion for measurina the Newtonian

qravitational constant G in a near-earth space

laboratory is simply to put two balls in orbit around

each other and observe the resultinq motion, thereby

determininq G. However, the radial variation with

distance of the qravitational field of the earth is so

larqe that "tidal forces" on the balls in near-earth

orbit can be several times areater than the

qravitational attraction between the two masses, leadinq

some writers to assume that two objects will not stably

orbit about each other and, therefore, that this method

of measurina G in near-earth orbit is impossible, or at

least impractical. We have, however, identifzed certain

orbits which are stable (at least over many periods of

the spacecraft about the earth). In this case, the

objects experience their qravitational interaction for a

lona time, and it becomes reasonable to consider such

orbits as candidates for measurements of G.

Introduction:

Since the time that it became reasonable to assume that

orbitinq laboratories would be available for physics

experimentation, Droposals have been put forward to measure

*University of North Carolina Morehead Scholar,

Summer 1986

**NASA/ASEE Summer Faculty Fellow, Marshall Space

Fliaht Center, Huntsville, Alabama 1986
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the Newtonian qravitational constant G in such laboratories
[see BiblioqraDhy]. A common suaGestion is simply to put
two balls in orbit around each other and measure the
resultina orbital elements and Deriod of the motion, thereby
determinina G. It turns out, however, that a major
comDlication is introduced in this method by the
nonuni_m_v nF the earth's Gravitational field. The
radial variation with distance of the qravitation_i field of
the earth is so larae (about a third of a part per million
each meter at the surface of the earth) that "tidal forces"
on the balls in near-earth orbit can be several times
qreater than the qravitational attraction between the two
masses. The presence of these relatively strona tidal
forces has led some writers to assume that two objects will
not stably orbit about each other and that this method of
measurina G in near-earth orbit is impossible, or at least
impractical. We have, however, identified certain orbits
which are stable (at least over many periods of the
sDacecraft about the earth). In this case, the objects
exDerience their gravitational interaction for a long time,
and it becomes reasonable to consider such orbits as
candidates for measurements of G. In any case, it is
interestina to examine _k_..em_nv_.... of two aravitationally..
attactinG masses in a space laboratory as a relevant
aPDlication of elementary mechanics.

First we will ch_acterize the qravitational
environment of an ideal orbiting laboratory. Then we will
describe the motion of sinale objects within that
laboratory. Finaliv we will c_o_e_ ,_ _h_.... motion of two

objects which are actina under their mutual attraction.

Orbitinq Laboratory:

Let us consider that the laboratory is in a near-earth,

circular orbit, and that the laboratory keeDs one face

toward the earth. That is, the laboratory rotates 2 each

time it circles the earth. The forces on an object in the

laboratory then depend on the qravitational force from the

earth and the fictitious forces associated with the rotation

of the laboratoy (centrifuaal and Coriolis forces). We are

not obliged to choose such a reference frame, of course, but

this one is convenient, and we can always transform to

another coordinate system which, for example, does not
rotate.

Since the laboratory is in free-fall, one miqht expect

that the earth's aravitational field may be neqlected, but

that is not the case. Before writing down any formulas,

here is the situation.
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Assume we have a spherically symmetric spacecraft with
an empty space inside. Only at the center of mass of the
spacecraft is the acceleration of the spacecraft equal to
the acceleration due to the qravity of the earth. Above
this point the field of the earth is weaker and below it is
stronger, so that in the spacecraft there is a "tidal force"
which tends to accelerate objects above the center of mass
toward the top of the spacecraft and objects below the
center of mass toward the floor of the spacecraft. In empty
space, the divergence of the gravitational field is zero.
Therefore, corresponding to the tidal tension which acts
vertically, there is an tidal compression which tends to
push objects that are displaced to the side of the center of
mass sideways back toward the vertical line through the
center of mass. When one adds the centrifugal force to
these gravitational tidal forces, one finds that the net
force in the radial direction increases, the net force in
the horizontal direction parallel to the direction of motion
of the spacecraft is zero, and the tidal compression force
in the horizontal direction perpendicular to the direction
of motion of the spacecraft is unaffected.

In the plane of the the orbit of the sDacecraft, the
resultinq acceleration field for a particle instantaneously
at rest in the spacecraft is schematically depicted in Fig.
I. The z-axis is chosen along the direction of motion of
the spacecraft and the x-axis points radially away from the
Earth. As one can see, there is a 'neutral line' (our z-
axis) in the spacecraft on which an object released at rest
will simply remain at rest. In this paper, we will confine
our consideration to this plane, but it should be noted that
at points off the zx plane, there is a y-component of force

toward the zx plane. In drawing Fia.l we have assumed that

the spacecraft is much smaller than the earth, so that the

acceleration vectors are practically parallel to the x-axis,

and the neutral line is practically straight. An object

anywhere in this field will move in response to this field

as well as in response to a Coriolis force which acts in a
÷

direction -v x 9, where _ is parallel to the axis of

rotation of the spacecraft.

Motion of sinqle particle:

As we show in the Appendix and in liqht of the above

discussion, the eauations of motion of a sinale particle

moving in this field are

z : -2x

x = 2z + 3x

y = -V
V-6
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where dots indicate time derivatives, and time is measured
in units of radians (one radian eauals T/2_, where T is the
orbital period of the spacecraft around the earth.) Note
that the z-acceleration (parallel to the neutral line)
comes only from the Coriolis force, while the x-acceleration
(radial directl_[_) ha ..... term which is _he Coriolis force
and another term which is the sum of the tidal tension and
the centrifuaal force.

Solutions of these equations for motion in the zx plane
are [Alexander and LundQuist]

z = z(0) - z(0)[3t - 4 sin t]

-6x(0) It - sin t] - 2x(0)[l - cos t] (2)

x = x(0)[4 - 3 COS t] + x(0) sin t + 2z(0)[l - cos t]

examples of which are shown in Fiq.2(a) and Fiq.2(b). As
one can see, if a particle is launched so that it crosses

the neutral line with a velocity perpendicular to the

neutral line, it can remain in the spacecraft, executing a

counterclockwise elliptical orbit. Such a trajectory is
shown in Fig. 2(a), with the initial conditions chosen to

give an orbit centered on the origin. (The orbit is marked

at equal time intervals of one-sixth the spacecraft's

period.) If the particle is launched in other ways, it

eventually strikes the wall of the spacecraft. Such a

trajectory is shown in Fig. 2(b), with initial conditions

which give a non-zero z-component of the velocity as the

particle crosses the neutral line. As one can see, the

Coriolis force is very important, since without it the

particle would simply move away from the neutral line under

the influence of the tidal force.

We can get another perspective on this motion if we

consider a non-rotating reference frame with its origin at

the center of the Earth. The particle and the spacecraft

are in independent Keplerian orbits. A particle placed on

the neutral line is in the same orbit as the spacecraft;

hence it remains at rest in the rotatinq, orbiting frame.

small initial velocity in the radial direction changes the

eccentricity, but not the enerqy, of this orbit. Therefore

the Darticle executes a closed orbit inside the

spacecraft. An initial velocity along the neutral line,

however, is an initial velocity parallel to the orbital

velocity, so the total energy, and hence the period, of the

particle's orbit is different from the spacecraft's. For

example, an initial velocity in the positive z-direction

will put the particle in an orbit of hiqher energy and

longer period; thus in the spacecraft's frame it moves off

in the neaative z-direction.

A
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Motion of two attractina Darticles:

Suppose now one launches two arav_tationallv attractina
balls, each of mass m, in the sDacecraft so that their
center of mass coincides with the center of mass of the
sDacecraft; if one ball is at (z,x,y) then the other one is
at (-z,-x,-v). Takina into account the aravitational
attraction between the two balls, the eauations of motion of

the first ball are

,o

z = -2x - z [x 2 + V 2 + z2] -3/2

H

x = 3x + 2_. - x[x 2 + y2 + x21-3/2 (3)

,e

V = -Y _y[x 2 + y2+ z2]-3/2

Here the unit of lenqth has been chosen in such a way that

the values of G and m do not exDlicitl%' appear in the

eauation_/_f motion. This unit of length is the eaual

to (m/M)_a , where M is the mass of the Earth and a o is
the radius o_ the orbit of the spacecraft.

Althouqh we do not have solutions for the orbits in

closed form, we may calculate the orbits numerically. We

find several interestina cases, illustrated in Pias. 3. For

concreteness, we have chosen to show the3motion of I0 ka
balls of radius 5 cm (density 19.1 am/cm ), and a sDacecraft

in a circular orbit of radius 6700 km (a tvDical SDace

Shuttle's near-earth orbit) for which the period T = 91.1

minutes. In Ea.(3), this corresDonds to the unit of time

eaual to 870 seconds and the unit of lenath eaua_ to 5.06
cm. We will restrict our attention to motion in the x-z

plane. Aqain, to aive some indication of the velocities, we

have marked some of the orbits at intervals of 911 seconds,

one sixth of the period of the spacecraft's motion about the

earth.

As our first example of motion with mutual

aravitational attraction between the two balls, we consider

the case of two balls released from rest on the neutral

line. Fiq. 3(a) shows the trajectories. We have a somewhat

paradoxical result. The aravitational force between them is

attractive, vet they move aDart! This can be understood,

however, when we note that the balls initially accelerate

toward each other, but as they Dick uD sDeed the Coriolis

force moves them off the neutral line. The tidal force

tends to move them further from the neutral line and they

pick up speed until the tidal force is nearly balanced by

the Coriolis force, and the balls continue to move aDart and

out of ranae of their aravitational attraction. (This is

related to what is thouaht to be the behavior of some
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co-rotating moons of Saturn, which "exchange" orbits with
each other.) [Spiria and Waldvoael 1985]

The motion can also be understood by returning to the
non-rotatina reference frame considered earlier. As the
balls attract and are [n±L±dily acce _^_^_ _"=_a _a_h
other, they acquire velocities along the neutral line while
remaining essentially on it. This effect changes the
eneraies of their orbits. The ball on the right, for
example, is decelerated in the non-rotating frame, drops
into an orbit of lower enerqy and shorter period, and drifts
awav from the other ball which moved into an orbit of hiqher
energy and lower period.

In Figs. 3(b,c,d) we show the motion of the center of
only the first ball. The other ball moves symmetrically
about the center of mass which is at the origin. We also
show with a dashed line the excluded reqion around the
oriqin, since at the dashed line the balls are in contact.

Fig. 3(b) indicates the motion corresDondinq to the
same initial conditions as in Fig. 2(a). One can see that
the attraction of the balls Dulls them closer than they
otherwise would have qone and that the balls then collide.
The orbit is continued, however, to show the motion that
would occur in the absence of a collision. Unless _.,_ balls
are launched within within a small range of velocities, they

_ _ .... 11_A= _ mov_ anart strikinq the walls of the

spacecraft. Figs. 3(c) and 3(d) show cases in which the

balls are launched within this range.

Figure 3(c) shows a trajectory with initial conditions

chosen to make the balls move in closed orbits. Comparison

with Fiq. 2(a) shows that for the same z-intercept (15 cm),

the balls must be launched with hiaher velocity and that the

x-intercept is larqer; i.e., the orbit is "fatter"--the

limiting case of very massive balls would simply aive

circular orbits. In the example shown in Fla. 3(c) the

period of the motion has been shortened bv about 20%.

Finally, Fiqure 3(d) shows an orbit with the initial

conditions of Fiq. 2(b), showinq that the gravitational

attraction of the two balls actually stabilizes their motion

and keeps them within the spacecraft for a long time. The

source of this stability may be understood aualitatively as

follows. When the orbit is almost closed but passes closer

to the attractive center on one side of the orbit than the

other, the ball receives an net impulse due to the

gravitational force which causes a general drift in the
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opposite direction, an effect we have already observed in
the example shown in Fig. 2(b).

This is a somewhat surprising result since the tidal
forces in this example are typically several times as strong
as the gravitational attaction of the two balls, and one

does not have the sort of stability of orbit that one would
have, say, of a satellite around the moon (which also

experiences the tidal forces due to the Earth). Actually,

such stability (satisfaction of the Hill criterion)

[Szebehelv 1967] would be attainable with laboratory sized

masses if one were to use a spacecraft which orbits the

earth at about two earth radii or beyond.

For the example that we have discussed so far, we may
investigate the tolerances on the initial conditions of the

orbit so that the balls neither collide with each other nor

with the walls of the spacecraft. In Fig. 4 we show the

"launch window" for a ball started out on the neutral line

at z = 15 cm with the velocity components shown on the axes

of the figure. Trajectories which result in the balls'

strikina each other or the walls of the spacecraft are

represented by diamonds or crosses, respectively. Those

which survive for 25T or longer are unmarked. One may note

that the tolerance on _ is much tighter than that on 6micrometer/second vs. _ micrometer/second, and while vx'

these tolerances are rather tight, they are not necessarily

impractically so. Launchina from other points besides those

on the neutral line are, of course, possible, and we find

that the allowable ranges of z- and x-velocities are very
similar to those in Fla. 4.

Measurement of G:

We believe that the analysis of such motion could be

one way to measure the value of the Newtonian araviatational

constant G in an orbital laboratory. The balls spend

considerable time in the neighborhood of each other,

allowina the gravitational interaction to act for a long

time. There are many practical problems which would have to

be mastered before one could consider such an experiment to

be a reasonable competitor in the measurement of G. However

it should be noted that the value of G is not as well known

as the other physical constants and that there may be some

reason to believe that systematic errors in the measurement

of G exist in the different methods of measurement. Since

these differences are of the order of one Dart in i00 or

i000, an independant measure of G to only one part in i000

would be of interest. And one might expect considerably

better results than I:i000 for an experiment based on the

analysis of motion of the tyDe illustrated in Fig. 3a.
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Some of the practical problems reauiring careful
consideration are mentioned below. The gravitational field
of the spacecraft itself would have to be carefully modeled,
or known, or determined from the experiment itself. The
gravitational field of the earth , which is well known, is
nevertheless complicated and would have to be carefully
taken into account. The electrical charge on the balls
would have to be carefully monitored and controied so thdt
electrical attraction or repulsion which mimics the
qravitational force would not be a serious perturbation.

The spacecraft wouldhave to be flown around the center of

mass of the two balls. The balls would have to be launched

carefully, but it is interesting to note that they could be

steered into place with the radiation pressure from modest

sized lasers.

[To save sDace, the Appendix to the draft manuscript is

deleted from this report.]
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CONCLUSIONS AND RECOMMENDATIONS

Since it appears that there are several reasonable

methods to measure G in space, further thouqht should be

aDplied to the problem. In Darticular, a study of the

Dractical problems to be encountered with an experimental

realization of the orbitinq balls method should be made. A

further refinement of the "qravitational clocks" idea should

also be initiated. It is probably time for a workshop to be

organized to bring together workers who miqht be interested

in particiDatinq in such a measurement.
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