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ABSTRACT

A coarse-grid correction algorithm has been implemented into an implicit upwind Euler
solver and tested for transonic airfoil problems. The Euler solver uses split-flux formulation and
pentadiagonal scalar equations, respectively, for the explicit and implicit operators. The multigrid
sequence starts at the fine grid level, then steps down to each coarse grid level to smooth error
components using implicit operators. An estimate of residuals can be obtained by two approaches,
which differ in the level at which the residuals are collected. Both approaches will lead to a work
reduction factor of 12 for a Mach 0.75 flow at 2° incidence angle on a 65 X 26 grid. The work
reduction factor is found to increase in proportion to the number of grid levels.

INTRODUCTION

The multigrid (MG) method was first advocated in 1980 by Brandt (ref. 1) as a potentially
efficient technique to solve fluid dynamies equations. Since then, Ni has developed an innovative
explicit scheme to solve the Euler equations, and Jameson and his coworkers (ref. 3) have attempted
to combine the MG strategy with explicit as well as with implicit schemes. Jameson’s latest work
has shown an impressive work reduction factor (WRF) as great as 15 for a nonlifting transonic
airfoil flow on a 128 X 32 grid. These applications share two prominent features; namely, the finite-
volume formulation and the centered difference approximation to the conventional flux terms.
Thereby, the error components can be removed and expelled out the computation domain very
effectively on a succession of grid levels and smoothed by the numerical damping added to the
difference operators. It is of interest to determine whether the MG strategy will work equally well if
the flux terms are split into subflux terms according to their eigenvalues and approximated by
upwind schemes. Because the directional preference of signal propagation might be lost by
collecting residuals on coarse grids and the numerical damping is generally not required to stabilize
the results near the shock, the basic mechanisms attributable to the removal of error components
seem to be missing. To resolve the unsettling issues, the author has incorporated the multigrid
sequencing into an ADI factorization Euler solver and reported the findings in a 1984 paper (ref 4).
The MG algorithm is different from other versions in using the corrections at each level rather than
the residuals at the fine grid level. Although the algorithm is stable, as well as easy to implement,
and requires no additional storage for intermediate variables, the improvement in WRF is
relatively small compared to others. It has been found in this study that a much higher WRF can be
obtained by introducing local time increment and implicit damping to the algorithm.

SPLIT-FLUX EULER FORMULATION

The conservation-law form of the inviscid flow equations is given in generalized coordinates §
and n.

ut+F +G =0 (¢))
£ n

Each part of the flux term is composed of three subflux terms which are associated with local
characteristics Ag, An. They are of the following form.
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and E,,E , N, 1, are treated as local invariants. The three parts corresponding to the characteristic
values can be cast alternately in the following form.
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Standard notation is used for flow variables; viz, the density p, the pressure p, and the velocity

components u and v in Cartesian coordinates, the total internal energy e and (¢ = u2 + v2)2, and
the internal energy e = Cy,T, which relates to p and p by the equation of state. The sonic speed is
¢ = (yp/p)1/%; y is the ratio of specific heats. The integer € is used to simplify the equation form, in

which each characteristics component can be identified by £ = -1, 0, 1. The conventional matrix of
characteristics has four components:

Ag = diag @ - &, U, u, i+ b, A, =diag (@ — ¢, 7,7,7 + ci)

In accordance with the sign of the characteristics, second-order one-sided difference equations are

used upstream or downstream at each grid point. The order of accuracy is the same on the boundary
points as those in the field. Details of boundary treatment are given in reference 4 and a

forthcoming publication.




UPWIND FACTORIZATION TECHNIQUE

Let Av and Au denote the unknown correction vectors abbreviated for (Ap, Au, Av, Ae)T and
(Ap, Apu, Apu, Ape)T, respectively. The solution procedure for implicit calculation can be described

in the following four steps:
Av, .= (P “r>. :
LJ Lv.]

_ -1
(I + AtSE.Ag - di 6£E>A w, = (T Av)i,j (3)
(1+ At§ A -d.§ )Aw*. = (s ‘lTAw). .
nn 1 nn t.J 2%}
’ =(S Aw*)i,j

where r refers to the residual vector obtained from the explicit operation in equations (1) and (2)
after replacing the derivatives of flux terms by their difference formulas. The subscripts i and j
denote the spatial location of a grid point network ranging from i = 1 to imaxandj = 2 to jmax.
The operators 8, and §_are for upwind difference and §.,,8__ are for centered difference associated
with a damping coefficient, d.. The difference formulas'stop switching sides if the magnitude of the
characteristics is smaller than a prescribed tolerance in order to reduce the truncation errors near
the stagnation and sonic points. The notation used and the expanded form of the second and third
equations in equation (3) are given in reference 5. The step increment is generally At = CFL - min
(AY|Age, Aq/lA,]!e) where CFL is the Courant number. It must be equal to or less than 0.25 if
implicit operations are skipped. A global At implies that one value of time increment is used for the
entire domain; a local At is obtained at each point and used at that point.

MULTIGRID ALGORITHM

The implicit procedure for single-level grid calculations may be summarized as follows:

L Av’.”.'l =rk
iJ i,j
(4)
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where L is the operator representing equation (3) and r; ;, Av; ;are called the residual and
correction vectors, respectively. On a coarse grid with spacmg twice as large as in all coordinates,
equation (4) becomes

- 2h
LAv2h = Wh h or
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= Wh Avh



On a still coarser grid,

_ wih 2h 2h
LAvM = th [(Wh re = Th rh) + szh

— w8k 4h 2h 2h
LAUSh = W4h [th(Wh r, = Th rh> + AvM
etc., where W is an operator representing the weighted average of the residuals and corrections on
the grid points surrounding the coarser grid point, and T is an operator transferring directly the
values from fine to coarse grid. The correction obtained at each level is interpolated back to the fine
grid by

_ h (6)
vy, =0, + 1y, Doy,

The implicit operator I is a linear function on the boundaries and bilinear inside the domain. The
weighted operator W serves a very important role to eliminate high frequency modes before passing
the residuals to coarser grids. Equation (5) is in a general form so that the residuals may be

obtained from either r or Av, or from both. For example, letting

2h __ m2h 4h _ mbh
Wh —Th and W2h_T2h ete.

The present MG strategy uses the explicit residuals only once on the fine grid level, then uses the
implicit corrections on other grid levels. A complete cycle of the MG algorithm is illustrated in
figure 1.

DISCUSSION

To help evaluate the performance of the implicit MG algorithm, three parameters (Ap/p)max,
number of supersonic points NSUP, and stagnation pressure P; are used for monitoring the
convergence rate, whereas P;and Mach contours are used for checking solution accuracy. Several
grids (113 X 34,97 X 34, 65 X 26, 65 X 22) have beeen considered, but most of the results shown
here are based on a 65 X 26 grid and for the NACA 0012 airfoil. The baseline calculation uses
global At with CFL = 10, as it encounters stability difficulties with local At even with CFL = 2.
Figure 2 shows the convergence history and results of a non-lifting case. The magnitude of (Ap/p) in
the MG calculation is typified by a plateau two orders higher than that in the single-grid (SG)
calculation. Nevertheless, the MG calculation is at least four times as efficient as the single-grid
calculation. The WRF is close to 7 if optimal values of CFL = 4 and d; = 1 are used instead. Figure
3 shows the 65 X 26 grid and the Mach contours for a Mach 0.8 flow at 1.25° incidence angle. Figure
4 is a comparison of the convergence rate between the calculations made from the MG algorithm
with CFL = 2local At and from the single-grid algorithm with CFL = 10. The WRF is estimated to
be 7 for this case and could have been 13 if CFL = 4 had been used. Note the sharpness of the shock
above the airfoil and the compression wave underneath. The accuracy of the current results seems
to be on a par with the conventional SG solution ona 128 X 32 grid.




If the MG algorithm uses the explicit residuals on coarse grids; viz,

— w2k
LAv, =W,"r, |
the convergence rate is nearly equivalent to that of the current algorithm. Shown in ﬁgui‘e 5 is the
comparison between the two. A comparison of different types of residual collection is shown in
figure 6. It is seen that the use of local time step increment substantially accelerates the
convergence rate.

In the following table the converged values of pressures on the surface and of NSUP are
listed. The slight differences seen are partly caused by the peculiar behavior of the solution
technique (eq. (3)), whereby the factorization error affects the converged solutions.

Parameter P, 1 Level 2 Levels 3 Levels
Work unit Wu 1000 200 116
Pogx 39.46 40.11 38.96 38.72
Prin 15.01 14.59 14.78
NSUP 86 88 88

M = 0.75,a = 2°,65 X 26,33 X 14, 17 X 8 grids

CONCLUSIONS

The current MG algorithm is capable of enhancing the stability and the efficiency of the ADI
factorization technique, and of retaining the excellent shock-capturing capability rendered by the
split-flux formulation. Satisfactory results are obtained from a 65 X 26 grid for Mach 0.75 flow at 2°
incidence angle with a work reduction factor equal to 12. The apparent shortcoming of the
algorithm is in the difficulty of lowering the maximum incremental vector further after a
reasonable number of iterations.
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Figure 1.- Schematic of a complete MG cycle.
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H
Ht
w

-4

L ““ﬁj

T

2

==
D

Figure 3.- Grid and Mach contours for M = 0.8, a = 1.25° calculation.
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