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SUMMARY

This paper presents the results of an investiga-
tion of the effects of far field boundary conditions
on the solution of the three dimensional Euler equa-
tions governing the flow field of a high speed single
rotation propeller. The results show that the solu-
tions obtained with the nonreflecting boundary condi-
tions are in good agreement with experimental data.
The specification of nonreflecting boundary conditions
is effective in reducing the dependence of the solution
on the location of the far field boundary. Details of
the flow field within the hlade passage and the tip
vortex are presented. The dependence of the computed
power coefficient on the blade setting angle is
examined.
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p static pressure

R gas constant

Rt blade (tip) radius

T static temperature

Th thrust

t time

v velocity vector

Vol volume of element

X fractional radius

zZ,r,8 cylindrical coordinates

8374 blade angle at 0.75 blade radius
Y ratio of specific heats

Al ) change in a property in a time step
P fluid density

Q rotational speed

Subscripts

e extrapolated value

Z,r,8 in coordinate directions

w at free stream condition
INTRODUCTION

Advanced high speed propellers with transonic
helical tip Mach numbers are being developed for fuel
efficient passenger aircraft to operate in the speed
range of the current turbofan powered aircraft. High
speed propellers incorporate many features which are
quite different from low speed ones. Advanced pro-
pellers employ eight or ten highly loaded, Tow aspect
ratio, thin and highly swept blades (Fig. 1) to obtain
high propulsive efficiency and to reduce noise radia-
tion. To optimize the design of high speed propellers
in terms of the aerodynamic and aeroacoustic consider-
ations, a knowledge of the complex flow field is




essential. Experimental, analytical and numerical
approaches are being developed to define and analyze
the flow field of an advanced high speed propeller
(Mikkelson et al. 1985).

The design procedure for advanced high speed pro-
pellers employs the Goldstein type 1ifting line ana-
lysis modified to account for blade sweep, spanwise
variation of blade loading and blade-nacelle inter-
action (Rohrbach et al, 1982}, For a detailed analysis
and understanding of the high speed propeller flow
field, 1ifting surface analyses are used. The lifting
surface analysis used in a full numerical approach to
the understanding of the propeller flow field is either
a potential flow analysis or an Euler analysis. The
potential flow analysis solves the transonic potential
equation and requires the specification of wake loca-
tion. The potential flow solution has been extensively
used in aerodynamic analysis. The assumption of poten-
tial flow is, however, not strictly correct when shock
waves are present. A correct description of the
inviscid transonic flow can be be obtained by solving
the three dimensional Euler equations. These equations
allow entropy rise through the shock waves while con-
serving mass, momentum and energy. The Fuler formula-
tion provides for the treatment of rotational flows
including vortices and strong shock effects. It has
been reported that the solution of Euler equations has
produced a reasonahle description of leading edge vor-
tex and vortex wake behavior (Rizzetta and Shang 1986,
Grinstein, et al., 1986). The solutions of three dimen-
sional Euler equations have heen found very useful in
analyzing complex flows in turbomachines. Recently,
they have also been employed to describe the flow
fields of high speed single rotation (Barton et al.
1985, Clark and Scott 1986) and counter rotation
(Celestina et al. 1986) propellers.

The time dependent Euler equations admit an infi-
nite number of solutions, each one defined by a set of
initial and boundary conditions. Initial conditions
remaining the same, any change in the boundary condi-
tion will produce a new solution. The specification
of the boundary conditions for the time dependent Euler
equations governing the flow in an infinite domain,
such as that of a propeller, needs careful considera-
tion. The numerical solution of the differential
equations governing the propeller flow field can be
carried out in one of three ways:

(1) Transform the infinite domain to a finite
domain and specify the free stream conditions at the
far field boundary.

(2) Place the far field boundary at a distance
sufficiently far away from the solid surface and
specify the free stream conditions on this boundary.
or

(3) Place the boundary at a finite distance but
relatively close to the region of interest, to keep the
number of grid points and hence the computing time
within 1imits. The boundary condition on this boundary
then should be modified.

Option three is desirable in many respects partic-
ularly in terms of grid resolution and accuracy of the
solution in the region of interest. However, boundary
condition modification becomes complicated for three-
dimensional flows. Simplified nonreflecting boundary
conditions are often employed.

The aim of this paper is to study the sensitivity
of the three dimensional Euler predictions to far field
boundary conditions. The present investigation con-
siders the application of a simplified nonreflecting
far field boundary condition and the effect of the
location of the far field bhoundary in the Fuler ana-
lysis of a propeller flow field. The solution obtained

with the simplified far field boundary condition is
found to be in good agreement with experimental data
and published Euler analyses. The specification of a
nonreflecting boundary condition is shown to he effec-
tive in reducing the dependence of the solution on the
location of the far field boundary.

Numerical Treatment of Far Field Boundary Conditions

Several investigators have studied the effect of
far field boundary conditions on the solution of Euler
equations. The excellent study of boundary conditions
for supersonic flows by Abbett (1973) clearly pointed
out that the characteristic type schemes at boundaries
tended to result in optimum accuracy. Approaches
developed to reduce the influence of the location of
the far field houndary and the boundary condition
specified there on the solution of transonic flows
include:

(1) A far field boundary condition hased on an
expansion that was asymptotic in distance from an
arbitrary origin, developed by Thomas and Salas (1986)
and Bayliss and Turkel (1980).

(2) Construction of a pseudo-differential overator
which exactly annihilates the outgoing waves developed
by Enqquist and Mazda (1981).

(3) Rudi and Strikwerda's (1980) boundary condi-
tion in which the pressure at the outflow section is
effectively relaxed to its correct value, using an
arbitrary narameter.

(4) Characteristic variable/Riemann invariant
specification at the boundary developed by Morretti
(1980), Jameson and Baker (1983) and others {for
example Celestina et al, 1986).

Kwak (1980) tested several of these boundary con-
ditions on the time dependent small disturbance equa-
tion for the flow over an airfoil and came to the
conclusion that the characteristic condition is the
most effective one in reducing the size of the compu-
tational domain and in accelerating convergence. The
study of Berry (1984) on the effect of boundary condi-
tions on the solution of (2-D) Euler equations for the
flow over an airfoil, showed that the characteristic
variable specification at the far field bhoundary pro-
duced the highest rate of convergence. An excellent
description of the basis and the formulation of the
characteristic boundary conditions for one dimensional
flow and extensions to multi-dimensional flows are
given by Morretti (1980). To reduce the complexity
and effort involved in the treatment of the far field
boundary for three-dimensional flows, often it is
treated by employing a local one-dimensional abproxi-
mation and specifying characteristic variables at the
boundary (Celestina et al. 1986, Jameson and Baker
1983, Rerry 1984). Such a houndary condition is per-
fectly nonreflecting to waves in one dimension and to
waves at normal incidence in two dimensions (Headstrom
1979). The ideal boundary treatment should take into
account all outgoing waves and assure transmission of
all waves. Such a technique is described by Erdos et
al. (1977). Their technique is, however, too involved
and time consuming and is not employed in practice,

In this paper, we shall be concerned only with a local
one-dimensional approximation technique (item 4 ahove).

MOTIVATION

Clark and Scott (1986) employed Denton's (1980)
time marching method, which is a finite-volume method
developed for turbomachinery flow analysis, to solve
the flow field of a high-speed propeller. They modi-
fied NDenton's computer program to accommodate the far
field boundary of the propeller flow field. They




specified the far field boundary at a distance of two
blade radii from the axis of the propeller and imple-
mented the slip wall boundary conditions there. It has
been argued that such a wall boundary specification for
a propeller flow in an infinite domain, could produce
significant errors in the computed blade pressure dis-
tributions which are the input needed for acoustic
computations. The importance of an accurate descrip-
tion of the blade pressure distributions has motivated
the present study of the effect of far field boundary
conditions on the Euler solution of the propeller flow
field. In this paper we consider three different far
field boundary conditions. They are the free stream
condition, solid wall boundary condition and a non-
reflecting boundary condition. These conditions are
incorporated into the Denton computer program and the
solutions are compared.

The experimental data on the high-speed propeller
flow field is very limited. Use of the data is diffi-
cult because of the uncertainties in the dynamic blade
shape. In this paper, the sensitivity of the numerical
solution to the blade-setting angle is studied. In
addition to the far field boundary condition, the study
examines the effect of location of the far field bound-
ary and nonreflecting boundary conditions at the inlet/
exit sections.

Governing Equations

The governing equations describing the inviscid
flow field of the propeller are the three-dimensional
Euler equations, expressing the conservation of mass,
momenta, and energy. It is convenient to work with
absolute quantities, writing the equations in a coor-
dinate frame rotating with the blade, so that centrif-
ugal and coriolis forces can be represented as body
forces acting on each element. The equations are
written in the form (Denton 1980):

continuity
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These equations are solved in conjunction with the
perfect gas relationships:

P = oRT (6)
H=CpT+%—V2 (7)
oE =Y—lif+%0v2 (8)

Computational Grid

The governing equations are solved in the physical
domain on a grid generated algebraically. The flow
domain is discretized using three kinds of surfaces.
The bladewise surfaces are evenly spaced and are lim-
ited by the suction side of one blade and pressure side
of the adjacent one (Fig. 2(a)). In the figure the
outer boundary is at a distance 2Ry from the axis
of the spinner. The streamwise surfaces are variably
spaced along the spanwise direction and are limited by
the spinner/nacelle surface and the outer boundary
(Fig. 2(b)). The spanwise (quasi-orthogonal) surfaces
are variably spaced along the axial direction depending
on the region, leading edge, trailing edge, blade sur-
face, inlet or exit and are limited by the inlet and
exit planes. The computational nodes are located at
the corners of each volume element defined by the
streamwise, bladewise and spanwise surfaces. The
fluxes of mass, momenta, and energy through each face
are calculated using the averages of the flow proper-
ties stored at the corners of that face.

The Numerical Technique

Denton's explicit time marching method employs
what is called an opposed difference scheme. The
scheme uses upwind differences for fluxes of mass and
momenta, and downwind differences for pressure, in the
streamwise direction. The derijvatives in the circum-
ferential direction are evaluated using central differ-
ences. The time marching method uses a time step such
that the Courant number is close to unity. The method
itself ensures stability by solving the flow equations
in the order of continuity - energy - momentum, The
procedure is as follows:

(1) For each time step and each control volume the
continuity equation is used to find the new density
associated with each grid point.

(2) The energy equation is solved to yield new
energy using the densities of the previous time step.

(3) The new density is then used along with the
velocities and energy from the previous time step to
compute new pressures.

(4) The velocities are then updated using the
momentum equations with the new pressures and
densities.

A variable time step appropriate for each volume
element is used to accelerate convergence. The method
is of first order accuracy and is modified to achieve
greater accuracy by adding a lagged correction factor
to correct the upwind pressure to a value close to the
true one. The scheme uses no explicit artificial vis-
cosity. Only a smoothing is used after each time step
to smooth out any waviness in the circumferential
direction. The convergence is judged on the hasis of
mass conservation and the maximum change in the axial
velocity component.

Initial and Boundary Conditions
The Euler equations governing the flow field of
the propeller have to be solved in conjunction with




appropriate initial and boundary conditions of the
flow. Since the steady flow solution is of interest
here, the initial conditions need be only approximate.
The boundary conditions that need to be specified
depend on the flow Mach number. The absolute flow
entering and leaving the computational domain is
assumed subsonic,

The effect of far field boundary condition on the
blade pressure distribution is of main concern in the
present study. The boundary conditions considered are:

(1) Wall boundary conditions. The wall boundary
condition requires that the mass flux through the sur-
face be zero and the velocity normal to the surface be
zero. The implementation of this condition is the same
as that of Denton (1980) and Clark and Scott (1986).
That is, the mass flux through the far field boundary
is simply set to zero and the velocity components and
density at this boundary are calculated using the
changes in values at two points adjacent to the bound-
ary. The pressure at the boundary is computed as for
any inner field point.

(2) Free stream boundary condition. The free
stream static pressure, velocity components and density
are specified at the far field boundary.

(3) A nonreflecting boundary condition based on a
local one dimensional flow approximation and specifi-
cation of the characteristic variable normal to the

boundary. Assuming a fixed incoming characteristic
c-
C = Vu) - 7—-_-*1- (9a)

The outgoing characteristic C* is extrapolated from
the interior of the computational domain

. 2,
= +
R A (9b)

From the Riemann invariants we can write

1, 4+ _
V = i (C +¢C) (10}

-C) (11)

where V. and c are the normal velocity and speed
of sound to be specified at the far field boundary.
The entropy is extrapolated (from points inside the
computational domain adjacent to :-e boundary) or set
equal to the free stream value depending on the direc-
tion of the radial velocity. The density, energy and
pressure are calculated from the speed of sound and
entropy. Depending on the direction of the radial
velocity, the axial velocity at the boundary point is
computed using either the axial velocity of the free
stream or the axial velocity at the point adjacent to
the boundary inside the computational domain, The tan-
gential velocity component is extrapolated from the
point adjacent to the boundary.

A periodicity condition is imposed ahead and down-
stream of the blade from hub to outer boundary and
beyond the blade tip in the blade region. On the solid
surfaces the mass flux through the surface is set to
zero. At the inlet boundary the relative stagnation
temperature, pressure and the flow angle are specified.
The axial velocity is computed from the characteristic
boundary condition. The upstream running characteris-
tic €~ is extrapolated from the interior of the
computational domain. Then using the specified total

temperature and €~ the total inlet velocity is
computed from isentropic relations. The individual
velocity components are computed from geometric rela-
tions while density and pressure are calculated from
isentropic relations. At the downstream boundary the
static pressure is specified at the far field boundary.
The radial variation of the static pressure satisfying
the radial equilibrium is computed from

oV 2
L (12)

Here Vg and p are the extrapolated values
from the interior of the domain. The downstream run-
ning characteristic, €% is also extrapolated. The
final density and speed of sound are calculated from
isentropic relations. The exit axial velocity is com-
puted from the extrapolated ¢* characteristic.

RESULTS AND DISCUSSION

Solutions of SR-3 propeller flow field have been
obtained with three different far field boundary con-
ditions, with the boundary located at twice the blade
radius from the axis of the propeller. This boundary
lTocation was chosen primarily to assess the effects of
wall boundary condition specified at the same location
used by Clark and Scott (1986). The computations have
been carried out for the design conditions of the SR-3
propeller, J = 3,06, M = 0.8, and 83/4 = 61.3°,
Results obtained with the three boundary conditions —-
wall boundary condition, free stream boundary condition
and the nonreflecting boundary condition -- are com-
pared with each other and with experimental data where
possible. The effect of location of the far field
boundary and details of the propelier flow field are
also examined. An accurate description of the pres-
sures on the blade surfaces is essential as they are
the input needed for acoustic computations. The
effects of the far field boundary conditions are shown
in the chordwise pressure distributions plotted in
Fig. 3. The figure shows blade surface pressures at
21, 53, 84, and 100 percent span heights. First, it
is observed that there exists an appreciable difference
between the solutions obtained with the wall boundary
condition and nonreflecting boundary condition. The
large difference stems from the pressure rise intro-
duced due to the confining wall boundary. The differ-
ence in pressures between nonreflecting and free stream
conditions are appreciable only at 84 and 100 percent
locations. It is to be noted that only with the non-
reflecting boundary condition are the computed solu-
tions in good agreement with experimental data as dis-
cussed below.

Figure 4 shows the spanwise variation of the ele-
mental power coefficient, dcp/dx obtained with the
three boundary conditions. R1so shown for comparison
are the experimental data (Mikkelson et al. 1985) and
the resuits of the 1ifting line analysis of the design
condition (Rohrbach et al. 1982). The curve for the
nonreflecting boundary condition shows good agreement
with the experimental data. The variation of the ele-
mental power coefficient above 50 percent span height
including the location of the neak power coefficient
is well predicted. The Euler predictions near the
biade root are poor in all cases. The 1ifting line
analysis predicts well near the blade root but the
prediction in the region of peak power coefficient is
poor.,

The spanwise variation of the elemental thrust
coefficient, dCyy/dx, is shown in Fig. 5. As before




the curve for the nonreflecting boundary condition
shows good overall agreement with experimental data
(Jeracki 1986)., A1l of the three Euler predictions and
the 1ifting line analysis significantly overpredict
near the blade root region. The present results show
a "transition" region in the predicted elemental thrust
coefficient curve, which corresponds to the region of
blade shape transition. The SR-3 propeller design
incorporates airfoil sections of NACA series 16 from
tip to 53 percent radius and NACA series 65 circular
arc camber lines from 37 percent radius to the root
with a transition fairing between. Detailed examina-
tion of projected areas of the blade elements gave no
indication of a transition. Limited runs made with
different grid densities did not alter the shape of the
elemental thrust curve. Although the experimental data
indicates a change in slope of the curve, it does not
show a distinct transition region as in the predic-
tions. It should be noted here that the measurement
of the elemental thrust coefficient is not as direct

as the power coefficient. The experimental data shown
in Fig. 5 have been scaled to match the measured total
thrust coefficient.

Another quantity of interest is the flow swirl
angle downstream of the blade. Fiqure 6 shows the
swirl angles predicted in the present study along with
experimental data and predictions of Barton et al.
(1985). (The Euler analysis of Barton et al. (1985)
specifies free stream conditions at the far field
boundary located at 9 radii from the axis of the pro-
pelier.} Use of the nonreflecting boundary condition
tends to move the predicted swirl angles closer to the
data.

The sensitivity to the choice of far field
boundary location is small when the boundary is non-
reflecting. Fiqure 7 shows pressure distributions for
three boundary locations, namely, 2Ry, 2.5R:, and
3Rt. Results indicate that a noticeable difference
in pressures obtained with the far field boundary
Tocated at 2 and 2.5Ry, occurs at 84 percent span
height and at the blade tip. However, the total power
coefficient changes by only about 3 percent. The dif-
ference between the blade pressures ohtained with the
far field boundary at 2.5Ry and 3Ry is negli-
gible indicating that 2.5Ry s sufficiently far
when the nonreflecting boundary condition is used.
Since the total power coefficient change in moving the
far field boundary from 2Ry to 2.5Ry is small,
comparisons with data are made with the boundary at
2Rty as in the paper of Clark and Scott. It may be
noted here that the comparison has been carried out
with the same number of grid point: in the radial
direction. After the implementation of the non-
reflecting boundary condition at the far field, incor-
poration of the nonreflecting boundary conditions at
the inlet/exit does not produce any noticeable differ-
ence in blade pressure distributions. For one- and
two-dimensional flows, implementation of the non-
reflecting far field boundary condition has been found
to accelerate the convergence rate (Rudi and Strikwerda
1980, Berry 1984) of the solution to steady state. In
the present computations only a 10 to 20 percent reduc-
tion in the number of iterations has been noted with
the nonreflecting boundary conditions.

We have observed that the solution obtained with
the nonreflecting boundary condition is in reasonably
good agreement with experimental data. It is then
instructive to examine the complete flow field provided
by this solution. The contour plots of pressures in
the blade passages are shown in Figs. 8 and 9. The
figures show contour plots for two adjacent blade pas-
sages to aid understanding of the flow field. Ffig. 8
shows pressure contours at the blade root, midspan and

blade tip. The contours show the highly three-
dimensional nature of the flow within blade passages.
The blade - nacelle interaction effects are reflected
in the contours at the blade root (Fig. 8(a)). The
predicted flow is in qualitative agreement with other
predictions and and experiments summarized by Mikkelson
et al. (1985). The pressure distributions at three
axial stations, namely, leading edge, mid chord, and
trailing edge are shown Fig. 9. The pressure contours
at the trailing edge (Fig. 9(c)) indicate the propaga-
tion of pressure waves from the hlade tip as pictured
in color graphics by Adamzyck (1986). The mid chord
section contours show the nature of the pressure dif-
ferential existing hetween the two sides of the blade.

Figure 10 shows the vorticity contours at two
axial stations downstream of the trailing edge. Of
particular interest are the vorticity contours in the
tip region. One can observe the movement of the center
of the vortex (marked by as 1in Fig. 10(b)) in the
direction of rotation of the blades. Such a displace-
ment of the vortex from the blade wake has been
observed in laser Doopler measurements of the high-
speed propeller flow field (Neumann et al. 1983). It
is attributed to the tip vortex roll-up. One can also
notice diffusion of vortex with axial distance, due to
numerical diffusion. However, the fact that Euler
solutions do provide a reasonable description of the
vortex wake and leading edge vortex flows has been
observed by many investigators (for example Rizzetta
and Shang 1986, Grinstein et al. 1986). Recently,
Hanson (1986) estimated the noise produced by the
radial forces associated with the tip vortex of a high-
speed propeller,

Experimental data on high-speed nropellers indi-
cate a strong dependence of the total power coefficient
on the blade shape. It is difficult to determine pre-
cisely the dynamic blade shape. Here, the sensitivity
of the numerical solution to the blade setting angle
is examined. The design hlade angie of the SR-3 pro-
peller at 3/4 radius is 61.3°, which untwists to 58.7°,
with centrifugal loading at design speed. The compu-
tations reported in this paper are with a blade anglc
of 58.7°, allowing for the dynamic untwist. The depen-
dence of the computed power coefficient on the blade
setting angle is shown in Fig. 11. It is seen that the
power coefficient depends strongly on the blade setting
angle (or the estimated untwist). Such a dependence
has been observed in experiments (Rohrbach et al. 1982)
and other Euler analysis (Barton et al. 1985).

CONCLUSTONS

The solution of the three-dimensional Euler equa-
tions governing the flow field of a high-speed pro-
peller with nonreflecting boundary conditions yields
results which are in fairly good agreement with exper-
imental data. The solution obtained with the wall
boundary condition at the far field overpredicts the
blade loading in the region of the peak by as much as
20 percent. The resulting overprediction in the total
power coefficient is about 14 percent. The study also
shows that with the specification of the nonreflecting
boundary condition, the far field boundary can be
located as close as 2.5 blade radii from the axis of
the oropeller without affecting the computed solution,
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FIGURE 1. - SR-3 PROPELLER.
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FIGURE 2. - COMPUTATIONAL GRID.
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FIGURE 3. - COMPUTED BLADE PRESSURE DISTRIBUTION.
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FIGURE 5. - ELEMENTAL THRUST COEFFICIENT.
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FIGURE 7. - EFFECT OF LOCATION OF FAR FIELD BOUNDARY ON
COMPUTED BLADE PRESSURE DISTRIBUTION.
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FIGURE 8. - COMPUTED PRESSURE DISTRIBUTION ON STREAM-
WISE SURFACES. M = 0.8. J = 3,06.
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FIGURE 9. - COMPUTED PRESSURE DISTRIBUTION ON SPANWISE

SURFACES. M = 0.8, J = 3.06.




FIGURE 10. - COMPUTED VORTICITY DISTRIBUTIONS.
We = VORTICITY AT THE VORTEX CENTER.
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