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SUMMARY

Flight tests were performed to investigate the stall, spin, and recovery charac-
teristics of a low-wing, single-engine, light airplane with four interchangeable tail
configurations. The four tail configurations were evaluated for the effects of vary-
ing mass distribution, center~of-gravity position, and centrol inputs. Stalls were
characterized by predominant roll-off tendencies accompanied by slight nose-down
pitching motions. Variations in tail configuration produced spins at angles of
attack from 40° to 60° and turn rates of about 145 to 208 deg/sec. Deflecting the
ailerons with the spin tended to steepen the spin, reduce the yaw rate, and increase
the magnitude of oscillations in roll rate and pitch rate; deflecting ailerons
against the spin had the opposite effect. The steady spin was not noticeably af-
fected by entry conditions or power level. Increasing the mass of the wing did not
appreciably change the spin mode, but it did degrade spin recovery. Asymmetries in
wing mass distribution caused the airplane to spin flatter and to recover more slowly
when spinning toward the lighter wing. A center-of-gravity shift of nine percent of
the mean aerodynamic chord had little effect on spin characteristics. Some unrecov-
erable flat spins were encountered which required the use of the airplane spin chute
for recovery. For recoverable spins, antispin rudder followed by forward wheel with
centered ailerons provided the quickest spin recovery. For all four tail configura-
tions, the moderate spin modes of the airplane agreed very well with those predicted
from spin-tunnel model tests. The flat spin encountered was at a lower angle of at-
tack and at a slower turn rate than predicted from spin-tunnel model tests. Results
indicate that the 1947 NACA tail design criterion cannot be used alone to predict
airplane spin recovery characteristics.

INTRODUCTION

In response to the need for improving the stall/spin characteristics of general
aviation airplanes, the National Aeronautics and Space Administration (NASA) is con-
ducting a comprehensive program to develop new stall/spin technology for this class
of airplane (ref. 1). The program incorporates spin-tunnel model tests, radio-
controlled flying model tests, static- and rotary-balance wind-tunnel tests, analytic
studies, and airplane flight tests for a number of configurations representative of
typical general aviation airplanes.

Airplane flight-test results provide a reference base for correlation of theo-
retical predictions and model test results. Four single-engine airplanes are being
or have been tested in the NASA stall/spin program: (1) a low-wing airplane with
four interchangeable tails (ref. 2), (2) a low-wing airplane with wing-tip rockets
for control augmentation (ref. 3), (3) a high~-wing airplane (ref. 4), and (4) a low-
wing airplane with a T-tail (refs. 5 and 6).

Spin-tunnel model tests (ref. 7) have been conducted to explore the effects of
tail design on the spin and recovery characteristics of a typical low-wing, single-
engine, light general aviation airplane and to evaluate a tail design criterion for
satisfactory spin recovery for light airplanes. These tests showed that in addition
to the tail configuration, other geometric characteristics of the airplane configura-
tion could appreciably affect the spin and recovery characteristics. It was con-
cluded in reference 7 that the "tail design criterion for light airplanes, which uses



the tail damping power factor (TDPF) as a parameter, cannot be used to predict spin-
recovery characteristics. However, certain principles implicit in the criterion are
still valid and should be considered when designing a tail configuration for spin
recovery. It is important to provide as much damping to the spin as possible (area
under the horizontal tail), and it is especially important to provide as much exposed
rudder area at spinning attitudes as possible (unshielded rudder volume coefficient
(URVC)) in order to provide a large antispin yawing moment for recovery."

To validate the model test results reported in reference 7, an airplane was mod-
ified to accommodate tail configurations selected from those tested on the model, and
flight tests were conducted to determine the spin and recovery characteristics. This
report presents results for flight tests of the low-wing airplane with four inter-
changeable tails. Stall, incipient spin, developed spin, and recovery characteris-
tics are presented, including the effects of mass distribution, center-of-gravity
position, and control inputs. Results from related model tests are presented in
references 7 to 9. This report is primarily a presentation of flight-test results;
however, a brief comparison of airplane and model spin characteristics is included.
(See also ref. 10.) Although it was not a variable for the tests reported herein,
wing leading-edge design can have a strong effect on airplane stall/spin characteris-
tics, as shown in references 2 and 11.

SYMBOLS AND ABBREVIATTONS

Measurements are referred to the set of body axes with the origin at the air-
plane center of gravity, as shown in figure 1. Measurements were made and quantities
are presented in U.S. Customary Units. Symbols in parentheses refer to labels on
computer generated figqures.

ay (NORM ACC) normal acceleration at ceanter of gravity (positive in negative
2, direction), g units

(ALTITUDE) pressure altitude, ft
b wing span, ft
c mean aerodynamic chord, ft
CeGe center-of-gravity location, percent c
FS fuselage station, longitudinal coordinate measured along a
water line, positive moving aft (wing leading edge is at
FS 68.03), in.
g acceleration due to gravity, 32.2 ft/sec2
IX’IY’IZ momént of inertiazabout Xb’ Yb’ and Zb body axis, respec-
tively, slug-ft
Ix - Iy
IYMP inertia yawing-moment parameter, —5
mb
L distance from center of gravity of airplane to centroid of

fuselage area Spr ft (see fig. 5)




Ly
(LAT ACC)
(LAT FORCE)
(LONG ACC)
(LONG FORCE)

m
(MPR)

p (ROLL RATE)
(PROP SPEED)

q (PITCH RATE)

r (YAW RATE)

R

R/S
(RES ACC)
(RUD FORCE)

S

Sp

Sr1

Sr2

T

TDPF

TDR

distance from center of gravity of airplane to centroid of
rudder area Sp,, ft (see fig. 5)

distance from center of gravity of airplane to centroid of
rudder area Sg,, ft (see fig. 5)

lateral acceleration at center of gravity (positive in positive
Yy direction), g units

lateral wheel force (positive for forces tending to rotate
wheel clockwise), 1lb

longitudinal acceleration at center of gravity (positive in
positive Xb direction), g units

longitudinal wheel force (positive for forces tending to pull
wheel aft), 1b

mass of airplane, slugs

engine manifold pressure, in. Hg

roll rate (positive for right wing down), deg/sec
propeller and engine speed, rpm

pitch rate (positive for nose up), deg/sec

yaw rate (positive for nose right), deg/sec

spin radius, approximately —9J ., ft

’
_ 02 tan a
rate of sink, ft/sec

resultant linear acceleration, (LONG ACC2 + LAT ACC2

+ NORM ACC*) , g units

rudder pedal force (positive for forces tending to push right
pedal forward), 1b

wing area, ft2

fuselage side area under horizontal tail, ft2 (see fig. 5)
unshielded rudder area above horizontal tail, ft2 (see fig. 5)
unshielded rudder area below horizontal tail, ft2 (see fig. 5)

°

—, SecC

period of spin, approximately a

tail damping power factor (see fig. 5)

tail damping ratio (see fig. 5)



WL

( SPEED)

b’ Y1 2p

(ALPHA CG)

(BETA CG)

(AILERON)

(ELEVATOR)

(RUDDER)

velocity component in X, Y., and Z, direction, respec-
tively, ft/sec (see fig. 1)

unshielded rudder volume coefficient (see fig. 35)

true airspeed, ft/sec (see fig. 1)

water line, vertical coordinate in airplane plane of symmetry
measured perpendicular to reference line (reference line is
WL 45.00 and passes through propeller center 1line), in.

body axes through airplane c.g. (see fig. 1)

distance rearward from leading edge of mean aerodynamic chord
to center of gravity, ft

distance between center of gravity and fuselage center line
(positive when center of gravity is right of center line), ft

distance between center of gravity and fuselage reference line
(positive when center of gravity is below line), ft

true angle of attack at airplane center of gravity, deg (see
fig. 1)

angle between fuselage reference line and relative wind
(approximately equal to absolute value of angle of attack
at plane of symmetry), deg

nmeasured angle of attack at instrumentation boom, deg

true angle of attack at instrumentation boom, deg

angle of sideslip at airplane center of gravity, deg (see
fig. 1)

measured angle of sideslip at instrumentation boom, deg
true angle of sideslip at instrumentation boom, deg

average aileron deflection (positive for right aileron trailing
edge down), — (Right aileron deflection + Left aileron
deflection), deg (see fig. 1)

elevator deflection (positive for trailing edge down), deg (see
fig. 1)

rudder deflection (positive for trailing edge left), degqg (see
fig. 1)
bank angle (positive for right wing down), deg

m

airplane relative density coefficient, ng

air density, slugs/ft3




Q (TURN RATE) total angular velocity of airplane, (p2 + q2 + r2)V/2 yiwn

sign of r, deg/sec

DESCRIPTION OF AIRPLANE
Baseline Configuration

The test airplane was a two-place, single-engine, low-wing, fixed-gear design.
This airplane was a one-of-a-kind research airplane, but was considered representa-
tive of this class of aircraft. A photograph and three-view drawing of the baseline
configuration are presented as fiqures 2 and 3, respectively. The wing incorporated
an NACA 642—415 airfoil section (modified to remove lower-surface reflex near the
trailing edge) and had plain flaps and ailerons. The baseline configuration, re-
ferred to as tail 4, had a low, aft-mounted horizontal tail, and the rudder extended
from the top of the vertical tail to the top of the fuselage. Elevator, rudder, and
aileron trim could not be varied in flight. Brackets for adding ballast at the wing
tips and at the firewall enabled variation of airplane mass and moments of inertia
while maintaining a fixed center-of-gravity position. Fuel was carried in a
10-gallon tank mounted in the cockpit near the airplane center of gravity to reduce
fuel movement during spins. The airplane was equipped with a spin-recovery parachute
system (ref. 12), the size of which was based on tests in the Langley Spin Tunnel
(ref. 13). Baseline airplane characteristics are presented in table 1.

Tail Configurations

To study the effect of tail configuration on stall, spin, and recovery charac-
teristics, the horizontal tail was relocated and the rudder length was changed to
produce the four tail arrangements shown in figure 4. The tail configurations were
selected based on spin-tunnel tests of nine different tails on a model of the test
airplane. Tail configurations 2, 3, 4, and 6 (the identification numbers used in the
model tests of reference 7 are used herein) were chosen because they were thought to
be typical of current production designs, because they were the easiest to implement
on the test airplane, and because model tests indicated they would yield a wide range
of spin characteristics.

The various tail configurations consisted of three locations for the horizontal
tail and either a long or a short rudder. Geometric characteristics of the four
tails are given in table 2. Both tails 2 and 3 had the horizontal stabilizer mounted
at the top of the fuselage. Tail 2 had a short rudder; tail 3 had a long rudder.
Tail 4, the baseline configuration, had a low, aft-mounted horizontal tail and a
short rudder. Tail 6 had the horizontal tail mounted above the fuselage on the ver-
tical stabilizer and had a long rudder. Horizontal and vertical tail incidences were
kept constant at -3° and 0°, respectively.

Variation of only the tail configuration provided an opportunity to evaluate the
validity of the tail damping power factor (TDPF), a spin-recovery design criterion
presented by the National Advisory Committee for RAeronautics (NACA) in 1947 and de-
scribed in reference 14. The historical development and the method of calculation
are given in reference 7. As shown in figure 5, TDPF is the product of the tail
damping ratio (TDR) and the unshielded rudder volume coefficient (URVC). The cri-
terion assumes the airplane spin mode is a function of TDR and the airplane spin-
recovery control power is a function of URVC; hence, the overall spin-recovery char-
acteristics are expected to be a function of TDPF. A wide range of tail damping



characteristics for the test airplane was obtained with the four tail configurations,
as shown in table 3. The TDPF of each of the four tails is plotted in fiqure 6
against the inertia yawing-moment parameter (IYMP) values tested to relate these
designs to the 1947 NACA design guideline for satisfactory spin recovery.

Mass Distribution

To investigate the effect of tail configuration alone, the mass characteristics
of the airplane were carefully controlled and are listed in table 4. For the base-
line loading tested, the overall weight of the airplane at test altitude varied from
1530 to 1538 1lb, which was slightly above the normal gross weight limit of the air-
plane. The center-of-gravity position was nominally 26 percent of the mean aerody-
namic chord (0.26c); the normal aft center-of-gravity limit for the test airplane is
27 percent of the mean aerodynamic chord (0.27¢c), as shown in figqure 7. Considering
the equations of motion for a rigid body, important mass characteristics for spin
recovery are the IYMP and the airplane relative density coefficient p. The IYMP was
maintained at about -50 x 10'4; pu  varied from about 9.7 at an altitude of 5000 ft
to 11.3 at an altitude of 10 000 ft.

To determine the effects of varying mass distribution on spin and recovery char-
acteristics, additional tests were performed with tails 2, 3, and 4 at IYMP values of
0 and 50 x 10" °. Ballast was added to make the airplane neutrally loaded (IYMP = 0)
and wing heavy (IYMP = 50 x 10-4) while maintaining the center of gravity at 0.26c.
Gross weight and relative density u were increased slightly by the ballast addi-
tion. These airplane loadings are also presented in table 4. The combinations of
TDPF and IYMP tested are displayed graphically in figure © along with the criterion
boundaries for spin recovery for u = 11,

Center of Gravity

Aft movement of the center of gravity normally enables an airplane to penetrate
the stall more deeply and therefore can be detrimental to spin characteristics. To
study the effect of center-of-gravity location on spin and recovery characteristics,
the baseline confiquration (tail 4) was tested at center-of-gravity positions of
0.26c to 0.35¢. It was not possible to add sufficient ballast or to relocate enough
equipment to move the center of gravity forward of 0.26C. The IYMP varied from
-53 x 107° to -61 x 10_4 during these tests of center-of-gravity effects.

INSTRUMENTATION

The test airplane was instrumented to measure and record flow angles and true
airspeed ahead of each wing tip, linear accelerations along the body axes, angular
rates about the body axes, control surface positions, control wheel and rudder pedal
forces, engine power parameters, altitude, and spin-recovery parachute load. The
onboard data system was supplemented by ground-based telephoto video and movie cam-
eras and by wing-tip and cockpit mounted movie cameras. Pilot comments were recorded
on the ground videotape. All data were time correlated and provided a continuous
time history from spin entry through recovery. Data were telemetered to a ground
station and monitored in real time along with a video display of the spinning air-
plane. For debriefing purposes, the videotape and telemetry records were reviewed
shortly after each flight.




Linear accelerations and flow measurements were corrected to indicate conditions
at the airplane center of gravity. The measured values of angle of attack and angle
of sideslip were corrected for upwash and sidewash based on flow angle corrections
determined from wind-tunnel tests of full-scale and small-scale models which dupli-
cated the flight~test instrumentation boom installation (ref. 15). The correction
equations are as follows:

For % < 53¢,

]

ap = 0.8776 a  + 0.0170 B - 0.80 (at left wing tip)

aqn = 0.8776 a_ 0.0170 B_ - 0.80 (at right wing tip)

= 0 - 0o - Q . .
ap = 0.8984 a - 0.0244 Bm 0.85 ({at left wing tip)
an = 0.8984 o+ 0.0244 Bm - 0.85 {at right wing tip)

For all o
BT = 0,9873 Bm - 0.0956 On ~ 0.11 (at left wing tip)

B, = 0.9873 B + 0.0956 a_ - 0.11 (at right wing tip)

Detailed descriptions of the instrumentation system and the data reduction procedures
can be found in references 16 and 17.

EVALUATION PROCEDURE

The results of the investigation were based on pilot comments, time history
records of airplane motions and controls, and films and videotapes of the tests. Aall
maneuvers were flown by the same pilot, thus minimizing differences in maneuvering
caused by variation in pilot technique.

The initial flight tests were conducted with tail 6, followed by tests with
tails 2, 3, and 4 in that order. This order of testing corresponded to a progression
from the most favorable to the least favorable spin and recovery characteristics in-
dicated by the model tests of reference 7. Airplane stall and departure characteris-
tics were evaluated with tail 6. Maneuvers included 1g and accelerated (banked)
stalls with flaps retracted for various combinations of engine power, bank angle, and
sideslip angle, as shown in table 5. An abbreviated series of stalls were performed
with tails 2, 3, and 4. For each tail configuration, elevator effectiveness was




determined from gradual airspeed acceleration-deceleration maneuvers at 1g with idle
power, and rudder effectiveness was determined from steady~heading sideslips at
constant airspeed.

The spin tests were performed at the NASA Wallops Flight Facility. The test
altitudes ranged from 10 000 to 5000 ft. Reynolds number (based on <c) at the stall
was about 2.5 x 107, Spin entry conditions included combinations of acceleration,
roll, pitch, yaw, and power. Controls anticipated to be prospin (i.e., in the direc-
tion of the spin) were applied at or just before the stall. The control positions at
entry were wheel back with rudder in the direction of the spin or neutral and aile-
rons either neutral with the spin (right wheel for a right spin), or against the spin
(left wheel for a right spin). All spins were performed with the flaps retracted.
Spins were allowed to develop for 1, 3, 6, and, in some instances, 10 or more turns.
Recovery control inputs investigated included the following:

1. Normal recovery controls, defined as full antispin rudder followed by full
trailing-edge-down elevator with ailerons neutralized

2. Simultaneous recovery controls, defined as simultaneous application of full
antispin rudder and full trailing-edge-down elevator with ailerons neutralized

3. Rudder only, defined as full antispin rudder alone

4. Neutral recovery controls, defined as neutralized rudder, elevator, and
ailerons

5. Elevator only, defined as full trailing-edge-down elevator with prospin rud-
der and aileron deflections maintained

For each major configuration change, spins were conducted to both the left and
right; the most critical (faster, flatter, etc.) direction was then used for the
remainder of spin tests in that configuration. Spins were performed with the wing-
tip cameras removed, the wheel pants removed, and the propeller rotation stopped to
assess possible effects on airplane spin and recovery characteristics.

RESULTS AND DISCUSSION
Comparison of Tail Effectiveness

Elevator effectiveness, as determined from idle-power acceleration-deceleration
maneuvers, and rudder effectiveness, as determined from steady-heading sideslips at
constant airspeed with power on, are presented in figures 8 and 9, respectively, for
the four tail configurations. For a given airplane angle of attack, tails 2 and 3
consistently operated with more positive (trailing edge down) elevator deflection and
tail 4 operated with more negative elevator deflection than the other tails. At
cruise angles of attack, tail 4 operated with the elevator in a near-neutral posi-
tion. For the center-of-gravity position tested (0.26c), all four tails had more
than sufficient elevator deflection to fully stall the airplane. With power on,
approximately 5° of right rudder deflection was needed to trim the airplane for
straight and level flight with zero sideslip. Results from tests of a full-scale
model of the subject airplane with tail 4 in the Langley 30- by 60-Foot Tunnel
(ref. 18) agree well with the flight-test results, as indicated in figures 8 and 9.




Stall Characteristics With Baseline Loading

The airplane stall characteristics with tail 6 are presented in table 5.
Table 6 presents the stall characteristics of the airplane for tails 2, 3, 4, and 6.

The airplane stall characteristics are illustrated by means of time histories in
figures 10 to 15.

The airplane with tail 6 stalled at an angle of attack of about 18°. For the
baseline loading tested, slow deceleration (1 mph/sec) to a 1g, wings-level stall at
idle power with flaps retracted produced a stall at an indicated airspeed of 72 mph
and a trailing-edge-up elevator deflection of about 8° with the rudder centered.
Stall warning in the form of a light buffeting preceded the stall airspeed by about
2 to 3 mph and was judged to be inadequate. The addition of maximum power reduced
the elevator deflection needed to stall the airplane to about 4° trailing edge up and
reduced both the warning and stall airspeeds by about 4 mph.

Idle-power stalls with tail 6.- Slow deceleration to a 1g, wings-level stall
with near-zero sideslip and with the controls held fixed at the stall (fig. 10) re-
sulted in a tendency for the airplane to roll-off slowly. Pulling the wheel full aft
(maximum elevator deflection) and then holding the controls fixed (fig. 11) produced
a more pronounced tendency to roll-off and to autorotate to the left., With the wheel
pulled full aft, the roll~off tendency could be countered with judicious anticipatory
use of the rudder, but eventually the pilot would lose control of the airplane.

Stalls from coordinated 30° banked turns produced mild wing-rock or wing-drop
motions. Figure 12 illustrates a stall from an idle-power, 30° banked right turn.
At the stall, the left wing started dropping. To counter this left roll, right
aileron was applied while maintaining neutral rudder deflection. The airplane then
rolled off to the right. Left aileron and rudder inputs were unable to stop this
roll-off until the airplane was unstalled by reducing the elevator deflection.
Stalls from coordinated 60° banked turns produced a more pronounced tendency to roll
to the left and to autorotate.

When stalled with sideslip, the airplane rolled away from the sideslip; that is,
right sideslip produced a left roll. Figure 13 illustrates idle-power stalls with
both left and right sideslip.

Power-on stalls with tail 6.- When stalled with maximum power and near-zero
sideslip, the airplane tended to roll to the right (fig. 14). Pulling the control
wheel full aft at the stall accentuated the right roll-off tendency; however, use of
full aileron control inputs was effective in countering the roll-off tendency.

Stalls from coordinated 30° and 60° banked left and right turns resulted in roll-offs
to the right.

When stalled with sideslip, the airplane rolled away from the sideslip. Fig-
ure 15 illustrates a stall in a slipping, 60° banked left turn. At the stall, the
airplane abruptly rolled to the right "over the top."

Stalls with tails 2, 3, and 4.- The results of the limited stall investigations
performed with tails 2, 3, and 4 (see table 6) were generally similar to those of the
more extensive investigation with tail 6. Stall departures were characterized by
roll-off tendencies. When stalled with sideslip, the airplane tended to roll away
from the slip. Tails 3 and 6, which had long rudders, could produce much larger
sideslip angles at the stall than tails 2 and 4 and had more pronounced roll-offs
with sideslip than tails 2 and 4.




When the airplane with tail 6 was stalled at idle power with full right rudder
deflection (large negative angle of sideslip), the pilot sensed from the ensuing
motion that the vertical tail was stalling, an undesirable characteristic for light
airplanes. Tails 2, 3, and 4 did not exhibit any such tendency to lose directional
stability.

Spin Characteristics With Baseline Loading

The results are based on 385 spins totalling 2540 turns. A total of 398 spins
were attempted, but in 13 attempts the airplane did not enter a spin. The number of
spins performed for each tail configuration is presented in table 7. Spin character-
istics ranged from slow and steep to fast and flat, as shown in fiqure 16. 1In some
instances, the spin-recovery parachute was required to recover the airplane from flat
spins.

1-turn spins.- In the United States, certification of general aviation airplanes
in the normal and utility categories requires the demonstration of recovery from a
1-turn spin or from a 3-sec spin, whichever takes longer, within 1 additional turn
following the application of recovery controls (ref. 19). This requirement is in-
tended to address only airplane characteristics in an abused stall condition, that
is, when the airplane is stalled with controls in a prospin direction and corrective
control inputs are delayed. Compliance with this standard does not clear an airplane
for intentional spins.

With this standard in mind, 58 1-turn, idle-power spins were studied to address
the abused stall and incipient spin for the airplane with tails 2, 3, 4, and 6 at
IYMP = -50 x 107~, Angle of attack and turn rate at the initiation of recovery from
1-turn spins are presented in figure 16. Representative time histories of 1-turn
spins are presented in fiqures 17 to 20 for the four tail configurations tested.
Using normal recovery controls, the airplane always recovered within the 1-turn
guideline.

The first turn following application of any combination of prospin controls
required from 3.4 to 9.3 sec, with the average being 5.2 sec. Altitude loss varied
from 50 to 450 ft, with the average being 210 ft. In general, a 1-turn spin to the
right took less time than the same spin to the left; however, looking at each spin
individually, less time did not necessarily correspond to less altitude loss.

Altitude loss during recovery from a 1-turn spin ranged from 200 to 500 ft and
averaged 340 ft when normal recovery controls were used. Recovery took from 1.5 to
2.5 sec and averaged 1.9 sec.

Following recovery from a spin, the airplane entered a dive. The altitude lost
in the dive was dependent upon how abruptly the pilot pulled the airplane out of the
dive. An abrupt pullout, limited by the airplane maximum positive lcad factor of
3.8, resulted in less loss of altitude than a more gentle pullout, limited by the
airplane never-exceed speed of 195 mph. In a sample of 57 recovery dives, performed
within these limitations following recovery from 1-turn spins, altitude loss ranged
from 200 to 1150 ft and averaged 550 ft. The duration of the dives ranged from 1.7
to 6.5 sec and averaged 4.3 sec.

Taken as a whole, from stall through incipient spin, recovery, and pullout to
level flight, a 1-turn spin could require from 450 to 2100 ft of altitude and last
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from 6.6 to 18,3 sec. An average 1-turn spin could be expected to result in a cumu-
lative loss of 1100 ft and last 11.4 sec. Therefore, a stall followed by departure
into an incipient spin at a typical airport traffic pattern altitude of 800 to

1000 £t above ground level would require prompt and proper action by the pilot to
recover before ground impact.

Fully developed spins.- Table 8 summarizes characteristics of representative
fully developed spins as a function of aileron deflection for the four tail configu-
rations tested at IYMP = -50 X 10_4. Figures 17 to 21 present time histories of
representative idle-power, ailerons-neutral spins for the four tails tested. The
spin usually became fully developed after about 4 to 5 turns.

With ailerons neutral, the baseline configuration {(tail 4) had two spin modes,
one moderate (a = 43°) and one flat (a = 60°), as shown in figure 21. Changing the
tail design from the baseline configuration eliminated the flat spin and produced
“moderate spins for tails 2 (a = 46°), 3 (a = 51°), and 6 (a = 53°), as shown in
table 8 and the spin time histories in figures 18 to 20. With ailerons neutral,
left spins were steeper (about 2° to 5° lower angle of attack) than right spins for
tails 2 and 4; right spins were steeper than left spins for tail 6. Changes in TDR,
URVC, and TDPF did not produce consistent changes in spin angle of attack or in spin
rate. Angle of attack increased with increased yaw rate of the fully developed spin.

For tail 4 the moderate spin mode was predominant. Specific segquencing of ele-
vator motions during spin entry was required to accelerate the airplane in yaw and
drive it into the flat spin, as shown in fiqure 21. At the stall, full rudder and
trailing~edge-up elevator were applied with ailerons neutralized. After 3 turns of
the spin, the elevator was moved to full trailing edge down for 1 turn, which in-
creased the roll rate. At the 4-turn point, the elevator was moved to 15° trailing
edge up for 1 turn to convert the increased rolling motion into yawing motion. After
an additional turn, the elevator was neutralized and the airplane spun up to the
flat-spin mode.

In general, deflecting the ailerons with the spin (rolling in the direction of
the spin) tended to steepen the spin (reduce angle of attack), reduce the yaw rate,
and increase the magnitude of the oscillations in roll rate and in pitch rate; de-
flecting the ailerons against the spin (rolling against the direction of the spin)
tended to flatten the spin (increase angle of attack), increase the yaw rate, and
reduce the oscillations in roll rate and in pitch rate. Deflecting the ailerons with
the spin resulted in a slipping rotation (positive sideslip in a right spin); de-
flecting the ailerons against the spin resulted in a skidding rotation (negative
sideslip in a right spin). These effects of aileron deflection are shown in
figure 22.

Consistent with the roll-off and autorotative tendencies identified during the
stall investigation, the airplane with tail 6 entered a left spin when full aft con-
trol wheel was applied and held at idle power with ailerons and rudder neutralized,
as shown in figure 23. The spin was a slipping rotation at about a = 33°, with
B = =7° ¢ 7°,

The steady spin of the airplane with tail 4 was not noticeably affected by entry
conditions or power level. Figure 24 illustrates entry into a left spin from a
maximum-power stall with 14° of left sideslip. Following the application of prospin
controls, the angle of attack increased to the fully developed spin value more
quickly than during idle-power entries from coordinated stalls. Once the airplane
was in the spin, the engine lost power even though a maximum-power throttle setting
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was maintained throughout the spin. In flat spins, the engine stopped and the pro-
peller stopped turning, as shown in figqure 21.

Figure 16 presents the airplane angle of attack and turn rate at the instant
that recovery controls were applied for all the spins at the baseline loading condi-
tions of table 4 (IYMP = -50 x 10"~ and c.g. at 0.26¢). At the 1-turn point, the
angle of attack was 40° or less and typically was between 25° to 35°., At the 6-turn
point of the spin and beyond, angle of attack was usually above 40°. The ranges of
angles of attack and turn rates in the fully developed spins reflect the effects of
varying aileron and elevator deflections.

Recovery Characteristics With Baseline Loading

The airplane spin-recovery characteristics were investigated for five different
antispin control inputs:

1. Normal recovery controls, defined as full antispin rudder followed by full
trailing-edge-down elevator with ailerons neutralized

2. Simultaneous recovery controls, defined as simultaneous application of full
antispin rudder and full trailing-edge-down elevator with ailerons neutralized

3. Rudder only, defined as full antispin rudder alone

4. Neutral recovery controls, defined as neutralized rudder, elevator, and
ailerons

5. Elevator only, defined as full trailing-edge-down elevator with prospin rud-
der and aileron deflections maintained

If the antispin control input did not stop the spin, the controls were returned to
the prospin position and then normal recovery controls were applied.

Recovery controls were evaluated for their ability to stop spins at idle power
with flaps retracted and ailerons neutral, with the spin, and against the spin. Re-
covery control inputs were applied in left and right spins at the 1-, 3-, and 6-turn
points. The spin was considered to have stopped when the yaw rate was reduced to
zero. The number of turns required for recovery from idle-power spins with flaps
retracted is presented in table 9 for the four tail configurations.

For the moderate spin modes, tail 4 generally produced consistently faster re-
coveries than the other tail configurations. All four tail configurations produced
recoveries from 1-turn spins that would meet the current spin-recovery requirements
for normal and utility category airplanes as defined in the Federal Aviation Regula-
tions (ref. 19). That is, using normal recovery controls, the pilot could terminate
1-turn spins within 1 turn following the application of recovery controls.

For all four tails, normal recovery controls provided the quickest recovery.
The steeper spins generated by ailerons held with the spin tended to quicken the re-
covery. The flatter spins generated by ailerons held against the spin tended to slow
the recovery. Figure 25 presents the recovery time as a function of the number of
turns required to recover from idle-power spinsg through use of normal recovery con-
trols for the four tails. Because a linear relationship appears to exist between
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time required for recovery and number of turns required for recovery for this air-
plane, either can be used as a gauge of recovery characteristics. This is consistent
with results of tests of the T-tail light airplane of reference 5.

Simultaneous recovery controls were practically as effective as normal recovery
controls.

For tails 2, 3, and 6, when spin recovery was attempted by reversing the rudder
alone, the airplane would recover from left spins but not from right spins. Follow-
ing the application of antispin rudder alone in a right spin, the airplane transi-
tioned to a steep spin at about a = 20° (fig. 26 for §_ = ~-27°). In cases where a
rudder-only recovery control input was ineffective in terminating the spin, reducing
the elevator deflection to about -19° resulted in recovery (fig. 26). The airframe
was checked for asymmetries, but no significant difference between the left side and
the right side was found. To check for propeller slipstream effects, a 6-turn spin
was performed with the propeller stopped. No changes were noted in the spin or
recovery characteristics. A check of rudder travel indicated that maximum trailing-
edge-left deflection was 22° and maximum trailing-edge-right deflection was 26°,

In general, neutral recovery controls produced slower recoveries than either
normal or simultaneous recovery controls.

Elevator-only control input did not recover the airplane from fully developed
spins. For tail 4, attempting an elevator-only recovery from a fully developed spin
(fig. 27) resulted in a momentary reduction in angle of attack and an increase in
roll rate, followed by transition to a higher angle-of-attack spin at an increased
yaw rate. For tail 6, attempting an elevator-only recovery from a fully developed
spin reduced the spin angle of attack about 11 percent, increased the roll rate about
28 percent, and increased the yaw rate about 5 percernt. For tail 2, attempting an
elevator-only recovery reduced the spin angle of attack about 8 percent, increased
the roll rate about 40 percent, and increased the yaw rate about 20 percent. For
tail 3, attempting an elevator-only recovery reduced the spin angle of attack about
4 percent, increased the roll rate about 27 percent, and increased the yaw rate about
21 percent.

Releasing the controls as a means of spin recovery was briefly investigated for
the baseline configuration. The controls were released at the completion of the
third turn of idle-power spins to the right with ailerons neutral. Releasing the
controls did not stop the spin. The controls floated to 16° trailing edge up eleva-
tor, 4° right rudder, and -4° right aileron. The angle of attack of the spin ini-
tially decreased when the controls were released and then increased again as the
airplane spun back up toward the moderate spin mode.

Effect of Changing Mass Distribution

For the tail configurations tested, making Ehe airplane more wing heavy (chang-
ing from I¥YMP = =50 x 10—4 to IYMP = 50 x 10~ ") did not appreciably change the
spin mode, as shown in figure 28. However, spin recovery was affected.

Table 9 presents the turns required for recovery for the tail configurations and
mass loadings tested. Table 10 highlights the effect of IYMP on the airplane spin
and recovery characteristics for tails 2, 3, and 4 for ailerons neutral, with the
spin, and against the spin. In general, as mass was added to the wings, the airplane
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recovered more slowly from the spin; however, recoveries using normal recovery con-
trols were affected very little by the mass changes. For tails 2 and 3, neutral and
rudder-only control inputs became ineffective for recovery as the airplane was made
wing heavy. For tail 4, rudder-only control input became ineffective for recover-
ing the airplane from right spins, as was the case for tails 2, 3, and 6 at

IYMP = -50 x 1074,

A slight asymmetry in mass distribution made a marked difference in the spin and
recovery characteristics, as evidenced by tests with tail 3 at IYMP = O. Removing
20 1b from the left wing tip and adding it to the right wing tip (right wing 40 1b
heavy) did not change the IYMP, but it produced a flatter, faster spin toward the
light wing (@ = 59° and @ = 170 deg/sec) than toward the heavy wing (a = 42° and
8 = 150 deg/sec) and significantly increased the turns required for recovery (3 1/8
turns versus 1 1/8 turns), as shown in figure 29.

A similar test was performed with tail 4 at IYMP = 0 and left wing 33 1b
heavy. Spinning toward the light wing increased the angle of attack in the flat spin
from 61° to greater than 66° (the spin angle of attack exceeded the instrumentation
measurement capability) and markedly increased the airplane turn rate from 211 to
250 deg/sec. With symmetric mass distribution, the airplane recovered from the 61°
angle-of-attack spin 8 7/8 turns after application of normal recovery controls. With
asymmetric mass distribution, the spin-recovery parachute was needed to stop the
o > 66° spin.

Effect of Center-of-Gravity Position

Moving the center of gravity from 26 to 35 percent mean aerodynamic chord (0.26c
to 0.35C) had little effect on the moderate spin mode (o = 43°) of the baseline con-
figuration, as shown in table 11. As the center of gravity was moved aft, the turn
rate of the fully developed spin decreased.

Following the application of prospin controls, the airplane typically experi-
enced two or three transient increases and decreases in angle of attack as it pro-
gressed to the fully developed spin. Moving the airplane center of gravity aft
increased the magnitude of the initial angle-of-attack transient generated by prospin
control input, as shown in figure 30. Recovery from a 1-turn spin by use of normal
recovery controls was not significantly changed for the range of center-of-gravity
positions tested.

Comparison of Airplane and Model Spin Characteristics

Table 12 shows characteristics of fully developed spins and recoveries of the
airplane and of spin-tunnel model test results from reference 7. The spin-tunnel
model exhibited all the spin modes obtained on the airplane. The moderate spin modes
of the airplane and of the model agreed quite well. The model tests indicated that
both tails 3 and 4 would have flat spin modes; however, a flat spin mode was not
encountered during flight tests with tail 3. The flat spin mode of the airplane with
tail 4 (ailerons neutral) was at a lower angle of attack and a slower turn rate than
indicated by the model tests. In general, rudder-only control input was not as ef-
fective at recovering the airplane from spins (particularly right spins) as it was at
recovering the model.

14




For rudder-only recoveries from fully developed spins with ailerons neutral, the
flight-test results in table 9 indicate the same effect of varying mass distribution
(IYMP) as that of the tail design criterion presented in fiqure 6; that is, changing
from fuselage-heavy (IYMP < 0} loading to wing-heavy (IYMP > 0) loading reduced the
effectiveness of the rudder for stopping the spin. Simultaneous control reversal
also became less effective for stopping spins as the airplane loading changed from
fuselage heavy to wing heavy. This appears to be counter to the trend expected from
the tail design criterion of figure 6. With tail 4, the airplane had an unrecover-
able flat spin for all three loadings tested; this is not consistent with the tail
design criterion of figure 6. Thus, as concluded from the model tests, the tail
design criterion cannot be used alone to predict spin-recovery characteristics.
However, certain principles implicit in the criterion, as noted in the introduction,
are still valid and should be considered when designing a tail configuration for spin
recovery.

SUMMARY OF RESULTS

Flight tests were conducted to investigate the stall, spin, and recovery charac-
teristics of a low-wing, single-engine, light airplane with four interchangeable tail
configurations. The four tail configurations were evaluated for the effects of vary-
ing mass distribution, center-of-gravity position, and control inputs. The following
results were indicated:

1. Stall departures were characteristized by roll-off tendencies.

2. At idle power with ailerons neutral and flaps retracted, the baseline config-
uration (tail 4 at inertia yawing-moment parameter IYMP = -50 x 107 7) had two spin
modes, one at angle of attack a = 43° and one at o = 60°., When fitted with tail 2
the airplane spun at o = 46°, with tail 3 it spun at o = 519, and with tail 6 it
spun at a = 53°,

3. In general, normal recovery controls (antispin rudder followed by full
trailing-edge-down elevator with ailerons neutralized) provided the quickest recovery
from 1-turn through fully developed moderate spins for all tail configurations and
loadings tested.

4. For the baseline loading tested (IYMP = -50 x 10-4), the simultaneous recov-
ery control input was practically as effective as the normal recovery control input.
The rudder-only recovery control input 4id not always stop the spin. The neutral
recovery control input produced slower recoveries than either normal or simultaneous
recovery controls. The elevator-only recovery control input did not recover the
airplane from fully developed spins.

5. Through use of normal recovery controls for all tail configurations and load-
ings tested, 1-turn spins could be terminated within 1 additional turn following
application of recovery controls.

6. Making the airplane more wing heavy (increasing the rolling moment of inertia
relative to the pitching moment of inertia) did not appreciably change the spin mode,
but it did degrade spin recovery. Recoveries using normal recovery controls were
affected less by the mass changes than recoveries using the other control inputs
tested.

15



7. As there was ample elevator deflection to fully stall the airplane at all
center-of-gravity positions tested, moving the center of gravity rearward nine per-
cent of the mean aerodynamic chord had little eEfect on spin characteristics of the
baseline configuration.

8. For all four tail configurations, the moderate spin modes of the airplane
agreed very well with those predicted from spin-tunnel model tests. The flat spin
encountered with tail 4 was at a lower angle of attack and at a slower turn rate than
those predicted from spin-tunnel model tests.

9. The 1947 NACA tail design criterion for light airplanes, which uses the tail
damping power factor (TDPF) as a parameter, cannot be used alone to predict airplane
spin recovery characteristics.

HASA Langley Research Center
Hampton, VA 23665-5225
October 20, 1986
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TABLE 1,- BASELINE AIRPLANE CHARACTERISTICS

Overall dimensions:
Span, ft eeeeeoeocescsconscssotsoocssoncssoeresssiostctesscssssecsnsssocsssarsscsassssosssasascss 24,46
Length, £t seeeescceacsseesssecasossoccssocsessstotssccasasescocacssssescssnssscssscsssssasssvesss 18,95

Helght, ff seeevessccoosesncocesecssscvescessosocrsonssroncsonsnssessssnssanssssosscsssssossescsecs 6473

Engine:
TYPE esssevessosceasssscsssscscsassssssansssssesnseess Reciprocating, 4-cylinder, horizontally opposed
Rated continuous POWET, NP sccaceoreccosaccscoccorsossessescsscsscsssssscssscsaasssssosssscascsccses 108
Rated continuous sSpeed, YPM eseecessccccoassossessosssesssossasssrssoscsscscsssscsosocssssassssssscssse 2600

Propeller:
TYDPE ceeescssessscsracasccsacascssssssnscscsesessscssssssosoncsssscncscsassscssssss 2 Dlades, fixed pitch

Diameter, 1Me ceeevrosececcscsosssocecssssnsansosssscscassonscssassnssosossassossssssocsssosesesssss 71

Pitch, in. £ 00 6000000000000 0000000860000000800000t0csasanseccstsoststsssentsstssscsassnosssnsse 46

Wing:

ATEA, T2 4auueonesssnsenossssoeesosncensassessssesssessnnsosenssssssssossnssnsosssasonsssseass 98,11

ROOt ChOYd, ft cececsecsesssccsosonscoancsacsososssressnosnsscsseonsesssnssessocsesscssasassncsscssssses 4,00
Tip ChOrd, £t . eeececscesscccsosveacscsseacssosscssssssossasocscsnsossssscssssaccssssssssassscaase 4,00
Mean aerodynamic chord, ft eeecsceccesscacsvocscsscocscsnscsvrscossoscacovseosscscsosssassessscsase 4,00
ASpect Yatlo ececessvecocsccescssesscsccassrosccesssorsoasssssssssscsscnssssssscsesascsnssnesssssss 6,010
Dihedral, @G ceecsccessocscescoecssscossacuosssesacctsanonacssotsssossosnsssanssssoscscnvnossncnss 5.0
Incidence:

ROOL, GEQ eceeccnsoscecosccscosonsssssssesastsocssossrsosssosnesossosscansasassossoscccssnssosacssces 3.5

Tip, AE@QJ cevececscccccersveccscsassssosessssesosostsorssacnsosssssossosasssssssssssccnsosscnsssasns 3.5

Airfoil SECLiON eseesccescoaoncoensesessssosacssosssoscssssaceassossssosscsassscecses NACA 642—415 modified

Aileron (each):

Aread, ft7 ceeeeevccesocsevesecccccsscasnsossrscssesasarsaccsssssosscsssacscssensossacsasssssncsssnsse 2060
Span, ft  ceeeccovococscsessccncssascsnassesssssssastoersasnasecsonrsesscsessscscsecssasesscsscacsacsasess 3482

Chord, £t eeecoscscccocsossscecsoncsccossanssesosossssscsasnssscsssscssosssnssosssncssasccsnscsssasnsscssecs 0.68

Hinge line, percent ¢ aft of wing leading edge - Lo

Hinge line, percent ¢ aft of aileron leading €dge cceececeeecccesvsesnscoscssassossccssasccsssees 14.2

Flap (each):

Area, ft7 eccecercsceceencsecseosacssscsososeosssassarsnsacessconsssssensosssssnssscsscsssaccscossssonsasssses 2:68
Span, £t  ceeevsceresecscactsccsasosnscsccsscossncosssncsssssvssssossasesssssassssseassssscsannscacse 4,01

CROTA, £L sessonuoeeonoeeenenessoanssnansesssnerasesasssnnssssnssaasossssansssasassasecssscases 0,68

Hinge line, percent ¢ aft of wing leading €Age eeerecesscescoscscssancsssoessossscsssascssaasses 85.4

Hinge line, percent ¢ aft of flap leading €Age seesescsecesseccscosccsssoasencasasssesssessecss 14,2
Horizontal tail: 2
Area (excluding elevator), f£° secesesecsssscsecoesciconcssornccscennssssscascocensssssscsssssns 9,52

Span, ft seeescecsccrevossssacscccsossccscassessocstosscosasssstosssnsscsansssssscessssssssscssscss /469

ROOt ChOTrd, ff  ceeeeveccccacsosscssccosasacseonsssassssassccssosnoscscsacnsasssccsassassescsssscscscsssssse 3.60
Tip chord, ft T S P PII IY <X
Aspect ratio P Y
Incidence, A€G seceescssscososcsacssssoscsnsessssssoccscosncsvssseososssssessencsoscasssosssssncsscscse —3¢0

Airfoil SECLION sosssesasssevosssssssscsnssoscnsossestsosassessscscncesscsncccsacssssssasss NACA 651—012

Vertical tail:
Area (excluding rudder), ft2 Y
Span, ft #0068 000000000 0000000000008 00000000000t ssss0sssesssacssossscsssrssnscccssssensenss 4,09

ROOt ChOTd, £t cuveeccocnessccssscsconcsssscsssssoacsisssesccsosssssosscssssosenssscsssscssscsccsnssssscsas 3460

Tip Chord, ft (uiseesecceccsscessaovosanssensosoossssssesoessossososssncsssesscssossscssscsscscssasece 1467
Aspect ratio ceseecessesetesesesestssessast et sttt oses0sssassessrsssssssesencsesssssssssessce 1,46
Tail OffsSet, @G seeceveccvovecvsesonssacseccoscsosostsoossasonesscccsccscssssssssasassossssssssssssse 0.0

Airfoll SECLIiON  ceeescscasscsccssssasasssacsssssssssssssscsssscscsasossssesesssasssecscesse NACA 651—012

Control surface deflections:
Elevator, Q€0 seeeseessssssscesvsosnssssscossossscscscsssssssccssssscscsscscnssasscssssss 25 Up, 15 down
Bileron, dET seeeesecsesesscssoscsceccscccsssansnossassassssosssscscccaccsssscscsnsessssssas 25 up, 20 down
Rudder, deg tecesresseseseseesessesssessnssrtsasaiesesnsssssssscssssssascsssssses 25 left, 25 right

Flap, deg Cetsessesesssesesestssasssesasessreesessnssasssresesessscssssessssssccsssace 0, 30 down
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TABLE 2,- GEOMETRIC CHARACTERISTICS OF TAIL CONFIGURATIONS

20

Tail configuration
Characteristic
2 3 4 6
Rudder:
Hinge line, ine. « « « & . FS 218.92 FS 218,92 FS 218.92 FS 218.92
Area, ft® ¢« o o« o & o . 3.61 4,79 3.61 4,79
E tor:
levator: = { FS 218.92 | FS 218.92 | FS 233.05 | FS 218.92
Hinge line, ine « o« « o .
WL 54,08 WL 54.08 WL 45.0 WL 60.68
Area, ££% « v v o o o . . 7.34 7.34 8.26 7.34
Stick-fixed neutral point
(calculated for gliding
flight, no propeller) . . 0.327¢c 0.327¢ 0.352¢ 0.330c
Stick-fixed neutral point
(from flight tests,
DOWEY ON) « o « s o o @ . 0.333¢c
TABLE 3.- DAMPING CHARACTERISTICS OF TAIL CONFIGURATIONS
Tail TDR URVC TDPF
configuration
2 0.028 0.012 336 x 107
3 .018 .016 288
4 .0045 .018 81
6 .025 .021 525
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TABLE 5.~ AIRPLANE STALL CHARACTERISTICS WITH TAIL 6

I[IYMP = =50 x 10~%; c.g. at 0.26C]

Power

¢,
deg

B,
deg

Description of maneuver

Result

Idle

-30
-30

-30

30
30

30

60

60

24 + 6

-32 + 3

-12

-10 £ 1

12

-12

12

Wheel back to stall, then controls fixed
Wheel full back, then controls fixed

Wheel back to stall, then ailerons used

Wheel full back, then rudder used

Right sideslip

Left sideslip

Left turn
Skidding left turn

Slipping left turn

Right turn
Skidding right turn

Slipping right turn

Left turn
Slipping left turn

Right turn

Skidding right turn

Slipping right turn

Roll-off to left

Roll-off to left and
autorotation

Ailerons effective at
first, then airplane
spirals to right

Roll-off controllable
with anticipatory use
of rudder but pilot
eventually loses
control of airplane

Roll-off to left
uncontrollable

Roll-off to right and
pitch forward vio-
lently with apparent
loss of directional
stability

Very mild wing rock

Tendency to roll-off to
left and spin

Gentle stall; roll-off
to right

Left wing drop

Roll-off to right
uncontrollable

Tendency to roll-off to
left; controllable
with rudder and
aileron

Roll-off to left and
autorotation

Mild stall followed by
roll-off to right

Tendency to roll-off to
left; autorotation to
right if abused

Roll-off to right
uncontrollable

Roll-off to left
over top

22




TABLE 5.- CONCLUDED

Power

deg

B,
deg

Description of maneuver

Result

Maximum

60

60

-4

20
-13

11

13

-2

Wheel back to stall,

then controls fixed

Wheel full back, then controls fixed

Wheel back to stall,

Wheel full back,

Right sideslip
Left sideslip
Left turn

Skidding left turn
Slipping left turn

Right turn

Slipping right turn
Left turn

Skidding left turn
Slipping left turn

Right turn

Slipping right turn

then ailerons used

then rudder used

Roll-off to right

Roll-off to right

Random aileron
effectiveness;
full aileron
input effective

More rolling and yaw-
ing than at idle
power, but can hold
indefinitely

Roll-off to left

Roll-off to right

Roll-off to right
slowly; full
aileron ineffec-
tive at counter-
ing roll-off

Tendency to roll-off to
left

Tendency to roll-off to
right

Roll-off to right

Controllable about all
axes

Roll-off to right con-
trollable with rudder
and ailerons

Roll-off to left and
autorotation in
vertical roll

Roll-off to right over
top

Roll=-off to right and
autorotation, rudder
and ailerons can
keep wings level

Sudden roll-off to
left over top
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TABLE 6.- STALL CHARACTERISTICS FOR THE FOUR TAIL CONFIGURATIONS

4

[IYMP = -50 x 10™7; c.g. at 0.26cC)

Tail|Power Y B, Description of maneuver Result
deg deg
2 Idle| © 0 Wheel back to stall, then controls fixed|Roll-off to right slowly
0 Wheel full back, then controls fixed Roll-off to left
0 Wheel full back, then rudder used Roll-off to right
-11° < B < 18° from
rudder
15 Right sideslip Roll-off to left mildly
-16 Left sideslip Roll-off to right {(not
stall break)
Max |=-60 0 Left turn Stays in stable stall
3 Idle | O 0 Wheel back to stall, then controls fixed|Tendency for autorota-
tion to right
0 Wheel full back, then controls fixed Roll left, then right
into vertical maneuver
0 Wheel full back, then rudder used o = 24° with full aft
stick
28 Right sideslip Roll-off to left
uncontrollable
-32 Left sideslip Roll-off to right
uncontrollable
Max |-60 0 Left turn Development of left B;
roll-off to right
4 Idle 0 3 Wheel back to stall, then controls fixed|Roll-off to left slowly
3 Wheel full back, then controls fixed Autorotation to left
(left rudder was
input)
3 Wheel full back, then rudder used Controllable with rudder
18 Right sideslip Roll-off to left
-19 Left sideslip Nothing
Max |~60 0 Left turn Heavy buffet with wing
rock
6 Idle 0 0 Wheel back to stall, then controls fixed|Roll-off to left slowly
1 Wheel full back, then controls fixed Tendency for autorota-
tion to left
0 Wheel full back, then rudder used Can control roll with
judicious anticipatory
use of rudder; pilot
eventually loses
control of airplane
24 + 6 [Right sideslip Roll-off to left
uncontrollable
-32 + 3|Left sideslip Roll-off to right and
pitch forward vio-
lently; loss of
directional stability
Max {-60 -1 Left turn Roll-off to right con-
trollable with rudder
and ailerons

PRECEDING PAGE BLANK NOT FILMED

EAOR_J-![ _ \NTENTIONALLY BLANK
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TABLE 9.- TURNS REQUIRED FOR SPIN RECOVERY

[ Idle power, flaps retracted, full prospin rudder and full trailing-edge-up elevator deflections]
during spin. A blank space indicates condition was not tested; « indicates airplane
stabilized in a spin with recovery controls applied; > indicates airplane had not stopped
spinning at that point and pilot reverted to secondary recovery control input

Tail 2 Tail 3 Tail 4 Tail 6
Prospin R
Aileron |Recovery -4
t\..xrns .and position|controls IMp, x 10
direction
-50 0 50 -50 0 50 -50 0 50 -50
. 3 1 511 1 1 3 1 3 1 1 1 1
1 Right | Neutral | Normal 8’ 2?8132 3 2’ 8 2 8’ 3 1 > 33
1 .1 |5 3 7 3 2 |l .1
3 Right | Neutral | Normal 1-2-, 15 1§ 1-5 1-8- 1§ 3 15 12, 15
, 1 (11,1 b3 7 3 a1 1 A PSR S - |
6 Right | Neutral | Normal 2, 22 ZZ 2—2-, Z-Z 18’ 2 24, 35 14, 14 12 12 12, 12
1 7 1 7 1 3 3 3
6 Left Neutral | Normal 1-Z 15 2—5 18 1§ 12- 1§ 1-§ 14
. Simulta- 7 1 3 3 5 1 1 1 7
6 Right | Neutral neous 18 2-‘—1- 3Z 14 2—§ 1—8— 12 1—2— 1§
7 3 3 1 3 3 3 5 3 3 (1 1 1
i — 1= |= — = 1= =, = = == = 1=
1 Right | Neutral | Neutral 8 '8 8 > 2 7 8’ 8 2 202 2 '3
5 7 7 1 1 1 1 1
2 = = — 1— - = =
1 Left Neutral | Neutral 8 8 B 2 8 51 3 5 1 1
. 7 3 1 3
3 Right | Neutral [ Neutral 2— LJ o 4= 2— >3 2=
8 4 8 4
6 Right |Neutral |Neutral| 5+ [>5| »s 4t oo 1, 2| 22 (23] 3l
9 ra ra 2 2 Y 1 ) 2
1 3 3 3 1
6 Left Neutral | Neutral 2-Z 3—-8- L] 1§ 1Z >4Z
; 1 5 1 1 3 1 1
1 Right { Neutral | Rudder | 2—, >4Z 1 o 0 © r Ay >2-5, © 22— >3
5 3 1 3 1 3 1 3
2 1= —_ 1= — = - =2
1 Left Neutral | Rudder s 8 © 5 2 5 2 12 2
' 1 10 1
3 Right | Neutral | Rudder >4, o ® ® 2 o 1-—2- 22, 23 o 4—3-
. 1 1 1 5 1 ¢,5 1 1 1
6 Right | Neutral | Rudder >5§, >6Z [ © >4, >47f’ 4—§ ® 12, 1~§ 2— o >35, >5—2-
7 3 3 5 1
6 Left Neutral | Rudder 2 4—§ o 1Z o 1—§ 2 2§ 21
Footnotes at end of table, p. 29.
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TABLE 9.- CONCLUDED

Tail 2 Tail 3 Tail 4 Tail 6
Prospin | ajjeron Recovery IyMp. x 10-4
tl.lrns :and position|controls !
direction
=50 0 50 -50 0 50 =50 0 50 -50
. Immed- Immed- 1 3
Right | Neutral |Elevator iate 1 iate 2 >42 2’ >3
Right | Neutral |Elevator o © o € €
. b e
Right | Neutral |Elevator ® © ® o ®
o on | vormaz | X2 13| 1 LI T N (A (1
Right Wit orma 2’ 5 2 2 2 > > 5 8 >
Lef With | Normal L < 1 <
t it orma 2 8 2 2
. . 1 3 3 3 3
N - = = — — = =
Right With ormal 14 14 14 1 1 18 18
. o 1 APy 3 13 3
Right With Normal 12 14 22 1 14 2’ 1 1 14
. . 5 1 1 1 1 3 1 5 1
Right | Against | Normal 8 2 8 > 2 2 > 3 5
. . 1 7 1 1 1 1 1 7
Right | Against | Normal 28 1§ 25 22 12 14 14 18
Right | Against | Normal PLI LY PP | 2 el 2
E gains orma 2 |2| ‘2 “a 2 8 8
. . 1 3 7 3 7 3
Right | Against | Neutral 3 12 1 2 1 8 2’ B 1 2 1
. 3 1 1 3 1
left Against | Neutral 1 14 >3 18 5 1 2 5
Right Against | Rudd 2‘l 31' >3—l 1-2 -§-
ig gains udder 2 g > 8 2
. X 1 3
Right | Against { Rudder 45, >6, a>8 S5 1—;—, 1-—2— ZZ
left Against | Rudd 32 43 11 2—1-
gains udder P 2 8 2
aRecovery controls applied after 4 turns.
Recovery controls applied after 5 turns.
cRecovery controls applied after 7 turns.
Recovery controls applied after 10 turns.
eAirplane transitioned to a higher angle-of-attack spin with faster turn rate.
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Figure 1.- Body system of axes. Arrows indicate positive direction of quantities.
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Figure 2.- Baseline configuration of test airplane.
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Figure 3.- Three-view drawing of test airplane baseline configuration.
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Figure 4.- Tail configurations tested.



*papniduo) -°p aanbiyg

("€0°89 SJ 3e sT obps buTpesl buiM) cunjep LouU2193Id1
sbeTesny 3JO 3Je S8UDUT UT @ae S2uT[ 9BUTY 90PJINS TOIJUOD JO SUOTIRDOT *STTe3 JO sHuTmeap moTA-32ayL (q)

L1e3 LBOLIU3A

uo abeasny aaoqe uor3edo| [te} abe|asny j0 doj abetasny jo doj
pajunow jLej {eJUOZLUOH {ejuozLaoy “3je MOT 30 |Le3 |eJUOZLUOH e |le} [PJUOZLJOH
J43ppnd  6uoT 49ppnJd 140yg 49ppnda buo d3ppnJ  340yS
9 Ltel v oLiel € Ltel ¢ Lte]l

: 00°Gy IM—0
89°09 MM—

26°81¢ S4—

i
S0°€EZ o4 B i W
26°812 S4 26°812 S4 26°812 S4

37



(*L *3°1 woag) <-ao3oej aomod butdwep TTe3 burindwoo 3O poylew -*g Sanbla

N&\em 2Mm)s
X =4d0L
Na\em - N._ mm N._ Nmm N : Em 2MS - ouN
1% 4 Byl I8
4 ¥al X JAYN =4dal
_,. auejdie jo _nl 17— aue|diie jo
puIM  aAnejRy 3 0) puim o>_§§4V\ 63 0}
a *
09
lh . 2ueidiie jo o o, °ueidie jo
‘53 0] 63 o)
o0€ 34 0} pawnsse
{4D) PUIM BALIE[J
j0 3|buy 4S¥ 30 0} pawnsse
6100 <¥aL (D) PUIM 3AljR|3d
j0 3|buy
_ 2 _ 61070 > 4al
} 1

\uc_i dAljelay

oSV 80 0} pawnsse
(,D) pulm 3AjejalL jO
ajbue 'sJappnd
ueds-|iny 404

aem Jaz)jiqels”

a4npadosd
uojie|nojed

>

\

Jappnd
ueds

-jeided

lappnu
ueds
-1ind

38




Tail damping power factor, TDPF

Boundary for recovery

-6 ) by rudder alone
600 ~ X 10 Satisfactory from reference 7
Satisfactory or
unsatisfactory
500
QO Tail 2
[ Tail 3
<:>'Ta11 4
400 A Tail 6
300
200
100 - <:>
. Boundary for recovery by
p =11 Satisfactory simultaneous reversal of
) - rudder and elevator from
Satisfactory or unsatisfactory reference 7
0 ] 1 1 { ] L ] ) 1 ) 4

-100 -80 -60 -40 -20 0 20 40 60 80 100 X 10~

Inertia yawing-moment parameter, Iy -Iy

mb2

Figure 6.- Variation of tail damping power factor with inertia yawing-moment
parameter for configurations tested showing 1947 NACA spin-recovery
guideline.
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Figure 17.- Right spins of 1 and 6 turns with tail 4 at
idle power with ailerons neutral. Normal recovery
controls; TIYMP = -53 x 10™%; c.q. at 0.263.
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