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SUMMARY

A variable inlet guide vane (VIGV) convertible engine that could be used

to power future high-speed rotorcraft was tested on an outdoor stand. The

engine ran stably and smoothly in the turbofan, turboshaft, and dual (combined
fan and shaft) power modes. In the turbofan mode with the VIGV open, fuel

consumption was comparable to that of a conventional turbofan engine. In the

turboshaft mode with the VIGV closed, fuel consumption was higher than that of

present turboshaft engines because power was wasted in churning fan-tlp air-

flow. In dynamic performance tests with a specially built digital engine

control and using a waterbrake dynamometer for shaft load, the engine responded
effectively to large steps in thrust command and shaft torque. Previous

mission analyses of a conceptual X-wlng rotorcraft capable of 400-knot cruise

speed were revised to account for more fan-tlp churning power loss than was

originally estimated. The new calculations confirm that using convertible

englnes rather than separate lift and cruise engines would result in a smaller,
lighter craft with lower fuel use and direct operating cost.

INTRODUCTION

A convertible engine can produce turbofan thrust, turboshaft power, or any
combined thrust and shaft power continuously while operating up to full speed.

Convertible engines could be used to power vertlcal/short-takeoff-and-landing
(V/STOL) airplanes and advanced hlgh-speed rotorcraft such as those shown in

figures l and 2. Studies of conceptual hlgh-speed rotorcraft (fig. 3) have
shown that using convertible engines rather than separate engines for rotor

power and forward thrust affords installation advantages and Can save as much

as 16 percent in fuel and 20 percent in direct operating cost (refs. 1 and 2).

For rotorcraft a convertible engine would operate as a turboshaft engine to

drive a lifting rotor for vertical and low-speed horizontal flight, and as a

turbofan engine to produce thrust for high-speed horizontal flight. For a jet-

powered V/STOL airplane the convertible feature could be used to cross-couple

the fans in a two-englne configuration for safety in case one engine should
fail.

In a convertible engine the power turbine drives both the fan and an out-

put shaft connected to some other load. Total turbine power is just the sum
of the powers absorbed by all the loads; therefore any turbine power over that

needed by the fan is available at the power output shaft. Maximum turbine

power is limited by cycle temperature (fuel flow) and speed. For high thrust

*Material similar to that presented at the 1987 Rotorcraft Technology

Conference cosponsored by NASA Ames Research Center and the U.S. Army, Moffett
Field, California, March 17-19, 1987.
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the shaft load is reduced or decoupled, as by releasing a clutch. When shaft

power is required, the fan is unloaded aerodynamlcal;ly. Two general methods
have been devised to unload the fan (ref. 3). One method is based on variable-

pitch fan blades - fan power is reduced as the pitch is made "flatter." This

method has been demonstrated_in tests of engines such as QCSEE (ref. 4), Q-fan

(ref. 5), and Astafan (tested successfully as a convertlble engine in a U.S.
Army Research and Technology Laboratories test program). The other method is

based on variable inlet guide vanes (VIGV) that can be deflected to change fan
airflow and inflow swirl - fan power is reduced as the vanes are closed. This

method has been demonstrated in fan research tests (ref. 6) and in tests of a

hlgh-bypass-ratio turbofan engine with no output shaft power (ref. 7).

Recognizing the potential installation and performance advantages of con-

vertible engines, the Defense Advanced Research Project Agency (DARPA) and the
National Aeronautics and Space Administration (NASA) have joined in a Convert-

ible Engine System Technology (CEST) Program to establish the feasibility of
the convertible engine concept. This program is intended to expand basic

technology, to generate design criteria, and to provide data and experience

applicable to engines and controls for future convertible propulsion systems.

The program includes defining requirements for convertible engine systems and
evaluating an engine type that could be used on advanced rotorcraft such as

the X-wing (refs. 8 and 9), the Advancing Blade Concept (ABC), and the folding

tilt rotor (refs. lO and II, in which use of a new torque converter was
proposed to uncouple the fan for shaft-only power). The experimental work

described in this report was done at NASA Lewis. The engine was a TF34-400B

(8000-1b-thrust class) turbofan modified to a VIGV convertible engine. The

tests were performed on an outdoor test stand with a waterbrake dynamometer

used for the shaft load. For some tests a new digital electronic system was

used to control engine speed and varlable-geometry actuators. The test objec-
tives were to demonstrate operation of this type of convertible engine in the

turbofan, turboshaft, and dual (combined fan and shaft) power modes and to

evaluate the effects of the new and modified components on performance through
internal flow path measurements.

The tests included steady-state and dynamic performance tests plus engine
response to simulated aircraft maneuvers such as takeoff and X-wlng conversion

between fixed- and rotary-wing flight. The engine tests are summarized in this

paper by showing typical results at selected operatlng condltlons. (Detailed

results and a more thorough discussion of the steady-state tests are given in

ref. 12.) In addition, some of the conclusions of a previous mission analysis
study are reviewed on the basis of calculations made with measured convertible

engine performance instead of the original analytically predicted performance.

APPARATUS AND PROCEDURE

Engine

The test engine was a previously used TF34-400B especlally modified by the
manufacturer as sketched in figure 4. The standardTF34 is a 6:1 bypass ratio

turbofan that can produce 9100 Ib of sea-level-statlc thrust. The slngle-stage
fan Is driven by a four-stage low-pressure turbine. The core has a 14-stage

axial compressor, an annular combustor, and a two-stage hlgh-pressure turbine.



The engine modifications, shownin more detail in figure 5, were madeby
using as manyexisting parts as feasible. The resulting configuration, called
the CESTTF34, was not meant to be a production engine. The fan was unloaded
aerodynamically by deflecting part-span VIGVto change the rate and swirl angle
of the flow entering the fan tip. The vanes are "part span" because they reach
only from the outer wall to the core/bypass flow splitter and thus have little
effect on core flow. Whenthe vanes are deflected, the fan air load is reduced
and the power turbine can drive an external load through the power output
shaft.

Eachof the major modifications is described in the following paragraphs.
For additional detail, consult references 12 and 13.

Variable inlet guide vanes. A set of 30 vanes was installed just ahead

of the fan rotor to unload the fan in the turboshaft power mode. Each vane

consisted of a flxed forward strut and a movable rear flap. The flaps were
deflected together by a hydraulic actuator system.

Flow splitter. - The core/bypass flow splitter was extended forward to the
VIGV to minimize core inlet flow distortion from the deflected VIGV.

Fan blades. - Full-chord shrouds, continuing the core/bypass flow
splitter, were added to the standard TF34 fan blades. The shrouds were hollow

to reduce weight, and contained seals to mlnlmlze leakage between the hub and

tip flows. In addition, the hub airfoil shape was changed to improve pumping

performance in the Iow-aspect-ratlo passage formed by the hub/splltter annulus.

Variable exit guide vanes. - A set of 44 variable exit guide vanes (VEGV)

replaced the same number of standard TF34 exit stator vanes in the fan-tlp
(bypass) flow. Deflection of the new vanes by hydraulic actuators was sched-

uled to VIGV deflection to prevent stall buffettlng at high VIGV closure such

as was encountered in previous tests of a similar configuration (ref. 7).

Bleed valve. - A core/bypass bleed valve was installed in the flow split-

ter behind the VEGV to improve the fan-hub/core-englne flow match at low-power

operation. The valve was a slidlng-ring valve moved by three actuators evenly
spaced around the core engine.

Shaft extension. - The power output shaft extended forward from the fan

disk. The extension included a flexible coupling and bearings supported by
spider struts built into the inlet ducting.

Control Systems

For the CEST TF34, fan speed and thrust were controlled by the engine

control system, and shaft torque (power) was controlled by the waterbrake
torque control.

Engine control system. - A new digital control system (described in

ref. 14) was supplied with the engine. The system worked together with the
standard TF34 fuel control in two operating modes.



(1) In the "shaft" mode the digital system varied the VIGV (open loop) to

match the thrust command input and adjusted the fuel to hold the fan speed
steady (closed loop) as the output shaft torque changed.

(2) In the "thrust" mode the digital system locked the VIGV In the fully

open position and controlled the fan speed to a preprogrammed schedule (open
loop) to match the thrust command input.

In both modes the control also adjusted the VEGV and the bleed valve to posi-
tions determined from internally programmed schedules.

Waterbrake torque control. - The waterbrake torque control system adjusted

the power output shaft torque (closed loop) to match the torque command input.

Control was accomplished by positioning the exit flow valve to vary the water
annulus level in the waterbrake. The water throughflow rate, and thus the
water temperature rise, was set by sizing the inlet flow valve.

The excellent performance of the waterbrake and its control is indicated

by its response to a large torque command step (fig. 6). The exit flow valve,

driven by a large hydraulic actuator and a hlgh-response electrohydraullc
servovalve, moved fast enough to change torque at a rate of more than

12 000 ft-lb/sec. For the test shown the engine fuel flow was fixed (nominally
constant engine power) and the water inlet valve was of maximum size. For

smaller inlet valve openings the torque changed at a lower rate because the

water annulus filled more slowly. The initial dead time in torque response may
have been caused by an unexplained flow effect within the waterbrake; its pres-
ence caused no problems in the tests reported herein but might limit other

types of control transient testing that can be done successfully with this type
of power absorber.

Test Facility and Engine Installation

The engine was tested on an outdoor static test stand at the NASA Lewis

Research Center (fig. ?). The separate-flow exhaust nozzles were standard TF34

nonadjustable nozzles. The power output shaft was supported by a pedestal just

in front of the bellmouth and then connected to the waterbrake. A honeycomb

screen flow straightener was located at the bellmouth. The honeycomb caused up
to 2-percent total-pressure loss but reduced inlet distortion that might have
been caused by the shaft support pedestal. The residual distortion near the

fan face, indicated by the conventional gradient parameter (Maximum total

pressure - Minimum total pressure)/Average total pressure, was only about
0.5 percent.

Total-pressure rakes, wall-pressure orifices, thermocouples, load cells,
fuel flowmeters (both turbine and beam types), and other conventional instru-

mentation transducers were used to measure steady-state engine operation and

internal flow path performance. Because transient engine changes were slow

enough that the necessary transducers could follow the changes satisfactorily,

no special dynamic performance instrumentation was required. A photoelectric

scanner (ref. 15) was used to monitor fan-blade-tip motions for possible aero-
mechanical instability.



Procedure and Data Recording

Steady-state tests. - The steady-state tests were performed with the
engine running at constant referred speed. The engine VIGV, VEGV, and bleed

valve positions, plus the waterbrake torque, were adjusted manually as desired.

Performance data were averaged from several (usually 20) scans through the

instrumentation llst. Computed results are referred to the engine inlet plane
Just ahead of the VIGV.

Dynamic tests. Some of the dynamic tests were performed with the engine
control in the thrust mode, but most were performed in the shaft mode because

that mode Is more typical of rotorcraft operation. After steady-state data

were taken to define the transient end points, the transient was performed
with thrust command to the engine control and torque command to the waterbrake

torque control. Both commands were generated by programmable facility con-

trollers. The commands and selected performance data were recorded on magnetic
tape and later digitized or played back on strip charts for analysis.

CEST TF34 TEST RESULTS AND DISCUSSION

The test results presented in this report were obtained on an outdoor

static test stand and are referred (corrected) to sea-level-statlc, standard-

day conditions at the engine inlet. Symbols used in this report are defined
in an appendix.

Steady-State Tests

Data are shown for a referred fan speed NFR of 90 percent, and are

representative of performance for speeds of ?0 to lO0 percent. Complete test
results are contained in reference 12.

Thrust and shaft power. - When the engine is running with no output shaft
power, it is said to be operating in the turbofan mode; when it Is running at

limiting power-turblne inlet temperature T4.SR, L, in the turboshaft mode;
when it is running with both thrust and shaft power, in the dual power mode.

As shown in figure 8, at constant referred fan speed the shaft power in

the turboshaft mode was greatest with the VIGV closed. As the limiting power-

turbine inlet temperature T4.SR, L was reduced by decreasing fuel flow at

any fixed VIGV position, the engine produced less shaft power when running in
the dual power mode, but the thrust was reduced only slightly because the fan-
tip flow and the speed were the same. In the turbofan mode the thrust was

highest with the VIGV open. Although the thrust decreased as the VIGV closed,

thrust never went to zero. Residual thrust was mainly from the core engine.
The engine was stable as speed, output shaft power, and any of the variable

engine hardware settings were changed. It ran smoothly in all modes, except

for a small region of fan-tlp aeromechanical instability at high VIGV closure
and high fan speed. The instability is not considered to be a problem in a

new VIGV type of convertible engine. Instability could be avoided by designs

whlch either reduce the blade-tlp aspect ratio or include part-span shrouds or
dampers.



The success of these tests, the first for a VIGV convertible engine run-

ning in the dual power mode, demonstrated that this type of engine is suitable
for applications needing both thrust and shaft power.

Power balance. - When the VIGV were closed, the fan was unloaded by

changing the tip alrflow and the inflow swirl. In the turboshaft mode as the

VIGV were closed, airflow fell off until at full closure it was reduced by

90 percent (fig. g). By design, some throughflow remained with the VIGV closed
in order to cool fan-stage parts heated by churning. The fan-hub power was

essentially constant as the airflow changed (fig. lO) because the speed was

steady and because the bleed valve was opened to keep hub flow constant at low

power. The tip power fell off as the VIGV were closed to about 60 percent and
then remained the same for further closure. The constant tip power, in view

of the decreasing tip airflow, indicates worsening compression efficiency and

more power lost in churning the tip airflow. With fully closed VIGV the tip

wasted 23 percent of the turbine power in churning. Reduction in the churning
loss would add to available shaft power. However, churning losses as large as

those measured on the CEST TF34 may not be detrimental for hlgh-speed rotor-

craft applications in which engine size is determined by the thrust needed for

cruise flight. As an example the power requirement for a conceptual X-wing is

shown in figure II. In rotary-wlng flight this aircraft would use only

30 percent of the power that it needs for hlgh-speed, horizontal, flxed-wlng

flight. An engine having performance llke the CEST TF34 could easily meet this

requirement.

Another way to view engine behavior is to consider a power balance for the

engine running at constant fan speed in the dual power mode with partlally

closed VIGV. A typical power balance for this type of operation is shown in

figure 12. Both the fan-hub and fan-tlp powers were nearly constant as shaft
power was raised (fig. 12) because both of those powers depend on speed and

VIGV closure. Turbine power went up with shaft power, and T4.SR, L rose as
fuel was added to provide this power. The turbine and hub powers are easily
computed from component maps and cycle computer programs. When the tip power

is computed (using known methods at open VIGV) or estimated (closed VIGV), the

power balance is complete and engine performance is defined.

As discussed previously, the tip churning power loss Is dependent on air-

flow and compression efficiency. Because of instrumentation limitations the

efficiency reported in figure 13 is based on fan-lnlet and fan-nozzle measure-

ments and thus includes the pressure loss in the bypass ductlng. With open

VIGV the efficiency was good and was close to the value predicted analytically

by the engine manufacturer. As the VIGV were closed, efficiency fell to nearly

zero. The poor efficiency at high closure seems to be related to unusual fan

airflow behavior. During testing it was observed that the fan pumped air

radially outward when the VIGV were closed past about 75 percent, resulting in

flow concentration along the fan-case wall and leading to high turbulence and

reclrculatlon in the duct behind the fan stage (ref. 12). The poor efficiency

produced high tip outflow temperatures - values as high as 1.5 times the inlet

temperature (as much as a 250 deg F rise) were measured.

Fan research tests reported in reference 6 were done with a VIGV/fan

rotor/VEGV different from the CEST TF34 design. Several differences from the
CEST performance were measured, including significantly lower churning power
loss with closed VIGV. The lower loss was obtained with the VEGV closed also



(notdone with CEST), but the rotor-exit temperature reached almost 500 °F.
Better understanding of fan flow behavior with closed VIGV might lead to
designs that successfully reduce flow and churning loss without thermal or
mechanical problems.

Specific fuel consumption. - For high-speed rotorcraft cruise flight a
convertible engine would be run in the turbofan mode at low VIGV closure to

produce hlgh thrust, and thrust specific fuel consumption (SFC) would be most

important. The test results (fig. 14) show that for thls type of operation the

thrust SFC was very nearly the same as that for the unmodified engine. The

reason was that the only significant change In fuel use came from the inlet

pressure loss across the VIGV, which was small. The large rlse in SFC at hlgh
VIGV closure was due to low thrust rather than to a sudden increase in fuel
flow.

In the turboshaft mode only the output shaft power is used to compute
power SFC. Because most of the fuel Is used to produce thrust at low VIGV

closure, the power SFC Is very high. A convertible engine probably would not

be operated in thls way just to produce power; therefore the poor power SFC is

of no real interest. As the VIGV were closed, more of the turbine power went
to the shaft load, and the power SFC improved. The best power SFC was obtained

wlth fully closed VIGV, but it was still not as good as that of modern shaft

engines mainly because of tip churning loss. These characteristics probably
would be acceptable for a hlgh-speed rotorcraft In which high shaft power

normally Is needed only during takeoff and landing. For alrcraft In which

hover is a large portion of the mission, the convertible engine would use

significantly more fuel than a conventional shaft engine.

In the dual power mode the definition of SFC Is complicated because there

is no general way to apportion total fuel between thrust and shaft power.
Describing engine performance In terms of power-turbine SFC or block fuel used

during a particular manuever or mission would be satisfactory.

Dynamic Tests

The dynamic tests were performed using the digital engine control system

to control the VIGV, the VEGV, and the bleed valve and to hold fan speed con-
stant when the engine was run In the shaft control mode.

Simulated rotorcraft maneuvers. - The engine was commanded to provide the

estimated thrust and shaft power requirements at constant fan speed for several

rotorcraft maneuvers (fig. 15). The requirements came from the X-wlng study of
reference 8 and included a takeoff with sufficient "thrust" for vector control.

The X-wlng conversion requirements were based on the same study but modified to

account for loss of engine thrust due to inlet momentum at conversion speed.

The resulting transient exercised the engine over the same core engine changes

as conversion at 5000-ft altitude and 250 knots. All the tests, except gust

response, were done wlth control anticipation. The engine responded stably and
effectively in every test (table I).

Thrust-step response. - Engine response (fig. 16) to a large thrust-

command step was much quicker In the shaft control mode (speed constant; VIGV
changing) than In the thrust control mode (VIGV locked; speed changing) because



the fan did not have to accelerate. The data suggest that the response was

limited only by the VIGV slewing rate. This attribute would be useful for
thrust vector control but might require large actuators.

The dead time (NSO msec) between command input and VIGV action can be

partially explained by hysteresis from mechanical wear in the VIGV actuation

system and by digital data synchronization in the engine control system.
Further investigation of this dead time was not possible within the scheduled
test period.

Torque-step response. - The engine responded effectively to a large
torque change (fig. 17). The waterbrake fulfilled the torque command in

1.5 seconds. Anticipation circuits in the engine control gave an initial fuel

surge that caused overtorque In the power turbine and a consequent increase in

speed. Then the speed control reacted to reduce fuel, resulting in speed

droop. The speed overshoot was 2.6 percent, and the droop was 5.8 percent.
These variations are within a range comparable to that of modern production

shaft engines. The overshoot could be reduced by optimizing the anticipation

circuitry gain, and the droop could be minimized by optimizing the fuel/speed
loop gain.

MISSION ANALYSIS UPDATE

Previous mission analyses (e.g., refs. l, 2, lO, and ll) have shown that

convertible engines have installation and cost advantages over separate engines
for llft and cruise in high-speed rotorcraft. Because these studies were done

before convertlble-englne test data were available, performance was based on

analytical predictions. In this section some of the comparisons in the X-wing
studies of reference 2 are updated with appropriate CEST TF34 test data. The

new results confirm that convertible engines are better than separate engines

but that the improvement in some areas is not as great as originally predicted.

Mlsslon and aircraft. - The X-wlng aircraft envisioned in reference 2 was

a 48-passenger offshore oil rig crew transport. The baseline design and the

economic missions analyzed are shown in figure 18. Propulsion was provided by
two turboshaft engines for rotary-wlng flight plus two turbofan engines for

climb and cruise or by two VIGV convertible engines. All engines contained
advanced technology features and were sized for sea-level hover with one llft

engine inoperative. This amount of power enabled 400-knot cruise speed at

30 O00-ft altitude. (The combined ability of one-englne hover and hlgh-speed,

hlgh-altitude cruise is characteristic of X-wlng and other Iow-disk-loadlng
rotorcraft, as illustrated in fig. ll.)

Characteristics of the aircraft and the separate and convertible engines

considered in the study are given in table II. With the convertible engines
the craft is smaller and lighter because all the engines are about the same

size, and only two engines are needed in contrast to four separate engines.

The predicted churning loss shown in the middle row was only about half the

power estimated by scaling CEST TF34 data on the basis of open-VIGV fan-tip

power at the same fan speed. The last row in table II shows the performance

of convertible engines enlarged to account for the revised churning loss. To

provide the same hover capability as the study engines, the revised engines

have about 12 percent more turbine power and are scaled to be lO percent



heavier. The additional engine weight and fuel were counteracted by reducing
the payload by four passengers. Thus the aircraft:with revised engines has the
sametakeoff gross weight and fuel reserve capability as the study aircraft.
This approach simplified the calculations and enabled better comparison with
the study results. Also, it was assumedthat the fans in the revised engines
were larger to take advantage of the extra power available with open VIGV,
giving a proportional thrust Increase and higher cruise speed.

Fuel use. - For one-englne-inoperatlve (OEI)hover the convertible engine

with VIGV closed uses less fuel than the separate engines (fig. 19) because the
gross weight is less, even though the SFC is higher. For normal takeoff the

advantage disappears because the SFC for the convertible engines is increased

further as churning losses are doubled (same rotor speed and both engines now

operating with closed VIGV with each having the same churning loss as the work-

ing engine in the OEI case), but total shaft power is about the same. In

cruise the SFC is practically the same for each propulsion system (fig. 14(a)),
but as described previously the smaller craft_with convertible engines cruises

at higher speed. The block fuel used for the whole economic mission (fig. 18)

is about II percent less with the revised convertible engines. This is not as

good as the 16 percent result in reference 2 forthe convertible engines'with
lower churning losses.

Direct operating cost. - Comparison of direct operating cost (DOC)
(fig. 20) is based on data from reference 2, but fuel costs were reduced to be

more representative of expected 1990's costs and total DOC was increased for

inflation since the study was made several years ago. As mentioned previously,

the X-wlng with revised convertible engines was assumed to carry 37 instead of

41 passengers in order to keep the same aircraft weight and reserve Capability.

Even wlth the lower payload the revised convertible-englne case showed

12 percent improvement over separate engines due to lower block fuel, less
expensive airframe, fewer engines, and reduced maintenance.

CONCLUDING REMARKS

A convertible engine using variable inlet guide vanes (VIGV) to unload the
fan aerodynamically was successfully tested on an outdoor test stand at the

NASA Lewis Research Center. The tests demonstrated that this type of engine

could be used for propulsion of new hlgh-speed rotorcraft needing both thrust
and shaft power. The engine might also be used to cross-couple the fans of a

two-engine V/STOL aircraft, but the controls and dynamics for that application
were not tested.

In the steady-state tests the engine was operated in the turboshaft,
turbofan, and dual (combined fan and shaft) power modes. The engine ran

smoothly except for a small region at high VIGV closure and high fan speed
where fan-tlp aeromechanlcal instability was found; otherwise, it was stable

as speed, shaft power, and any of the variable hardware settings were changed.
This instability is not considered to be a big problem for a new engine and

could be avoided by changes in blade design.

For rotorcraft propulsion the engine would be used in the turboshaft or

the dual power mode to drive a rotor for takeoff and low-speed flight. If
thrust during takeoff is low, the VIGV would be closed and the engine fuel



consumption would be about 25 percent more than that of a turbofan engine
running at the same core power level. The additional fuel is needed because
power is wasted In churning and heating the tip airflow with the VIGV closed.
The wasted power Is not detrimental to rotorcraft having engines sized for
high-speed cruise, such as the X-wing, because the Installed power would be
great enough to permit one-engine inoperative (OEI) hover at sea level.

In high-speed cruise fltght the engine would be operated in the turbofan
mode with the VIGV open (or nearly open) to produce thrust or In dual power
mode if shaft power Is also needed for auxiliary equipment such as a compressor
for X-wing blowtng. The engine fuel consumption would be comparable to that of
a conventional turbofan engine because the only change In fuel use comes from
the lnlet pressure loss across the VIGV. The loss Is small when the VIGV are
nearly open.

In dynamic performance tests with a specially bullt digital engine control
system and using a waterbrake dynamometer for shaft load, the engine easily
handled large torque and thrust command steps, as well as simulated fllght
maneuvers. The fastest thrust step was made by changing the VIGV closure at
constant fan speed; in thls control mode the response seems to be limited only
by the VIGV slewing rate and would be useful for thrust vector control. During
a large torque step the speed droop was 5.8 percent, which is comparable to the
droop shown by production turboshaft engines. Simulated takeoff, X-wing con-
version, and collective pitch change maneuvers were performed successfully with
control anticipation, and response to a simulated gust load was performed
successfully without anticipation.

When the analysis of an X-wlng capable of OEI sea-level hover and 400-knot

cruise at 30 O00-ft altitude was revised to account for higher churning power

loss, the required engine power increased by about 12 percent. Wlth the larger
engines the improvement in block fuel use and direct operating cost over that

for separate llft and t_rust engines was ll and 12 percent, respectively.
These results were calculated for a mission requiring engine operation wlth

closed VIGV mainly during takeoff and landing; improvement would be less If the

mission included additional hover time, and more If the fan-tlp churning power
loss was reduced.

Engine performance was predictable with conventional analytical techniques

and computer cycle programs, except for the fan-tlp churning power loss wlth

the VIGV closed. The experimental data showed about twice the power loss

expected in a previous study, probably because of unusual fan-stage flow
behavior at hlgh VIGV closure. Other reported test results measured less

churning loss with a VIGV/fan rotor/VEGV different from the CEST design; how-

ever, rotor-exlt temperature was very high. Better understanding of fan flow

behavior wlth closed VIGV might lead to reduction of churning loss without
other problems.

lO
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APPENDIX - SYMBOLS

engine gross thrust, l Ib

referred engine gross thrust, l F/6

fan, power-output-shaft, and power-turblne speed, percent of rated
speed

referred fan, power-output-shaft, and power-turbine speed,
NF/_/re-, percent of rated speed

output shaft power, hp

referred output shaft power, PWSD/6_

temperature, °R

power-turblne inlet total temperature, °R

referred power-turblne inlet total temperature, T4.5/(B) 0.84

upper limit of power-turbine inlet total temperature for standard

TF34 engine, °R

fan-tlp airflow, Ib/sec

referred fan-tlp airflow, WAI2_/6

fuel flow rate, Ib/hr

referred fuel flow rate, WF/6B

ratio of pressure to 14.696 psi

ratio of temperature to 518.7 °R

ICalled "gross thrust" because, by convention with the TF34 engine, the

reported thrust is net (measured in test stand) thrust plus calculated core
cowling scrubbing drag.
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TABLE I. - CEST TF34 ENGINE RESPONSE TO SIMULATED ROTORCRAFT

MANEUVERS SHOWN IN FIGURE 15

Maneuver

Takeoff

Takeoff with

maximum vector
control

Command Shaft power Thrust
time,

sec Time from start to

reach 95 percent

of level,

sec

1 .B 2.2 ---

1.8 2.1 2.6

Collective pitch 1.0 1.0 1.0

Unanticipated

gust .15 .5 .5

X-wlng conversion 18.0 (a) (a)

Speed Speed

overshoot, droop,

percent percent

3.6 5.1

1.4 5.2

3.5 2.7

1.3 0

0 0

aFollowed commands.

TABLE II. - CONCEPTUAL 48-PASSENGER X-WING OIL CREW TRANSPORT (REFERENCE 2)

[Aircraft sized for 600-n ml still-alr range and cruise at 30 O00-ft altitude; engines sized for sea-level hover, ISA + 27 °F
ambient temperature, and one lift engine inoperative; rotary-wlng disk loading, 15 Ib/ft 2 at sea level.]

Separate lift and cruise

engines (two of each;

from ref. 2)

VIGV convertible engines

(two, from ref. 2)

VIGV convertible engines

(two, from ref. 2, but
with tlp loss increased

per CESI TF34 data

aVIGV closed.

bVIGV closure, N8 percent.

CEstimated.

Aircraft

gross
weight,

Ib

51 869

43 950

43 950

Fan-tip churning

power loss at
sea level with

closed VIGV,

hp

1075

2460

Sea-level hover, Sea-level Cruise at
ISA + 27 °F, takeoff, 30 000 ft,

OEI ISA day ISA day

Engine output, shaft hp plus Ib thrust

II 960 + idle TF

a9945 + 1630

a9945 + 1830

5610 + idle TF

a4670 + 960

a4670 + 1150

340 + 2600 TF

b300 + 2280

b300 + 2550

Cruise

airspeed,
kn

400

4OO

c420

Passenger load
for economic

mission study

(see fig. 18)

41

37

37

14
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• POSSIBLE CONVERTIBLE ENGINE APPLICATIONS
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FIGURE I.- AIRCRAFT THAT COULD USE CONVERTIBLE ENGINES. (DATA

FROM REFS. 10 AND 12.)

i:

FIGURE 2.- CONCEPTUAL X-WING ROTORCRAFTWITH CONVERTIBLEENGINES.
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FIGURE 4,- TE34 CONVERTIBLE ENGINE COMPARED WITH STANDARD TF34 ENGINE.
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FIGURE 11.- POWER REQUIRED FOR CONCEPTUAL X-WING AIR-
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