SN =37
56172

NASA TECHNICAL MEMORANDUM NASA TM-88528

217

DESIGN OF SOFTWARE FCR DESIGN OF FINITE ELEMENT FOR STRUCTURAL
ANALYSTIS

Reinhard Helfrich

Translation of: "Zur Entwicklung eines Softwaresystems fur die
Modellbeschreibung bei der Methode der finiten Elemente,"
dissertation submitted to the Faculty of Aerospace Transportation
Technology of the University of Stuttgart for the Achievement

of the Degree of Doctor of Engineering, (Nov. 22) 1983,

pp. 1-192

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
WASHINGTON, D.C. 20546 FEBRUARY 1987

(NASA~TM-88528) TLESIGN CF SCEIsAdKE FOR

DﬁSIGN OF ?INITE ELEMENT FCH STKUCTURAL NeT-1ICEs
ANALYSIS Eh.nt Thkesis -~ Stuttgart Univ., 22
Ncv. 1983 (Naticnal Aercnautice ard Space Unclas

Administration) 16 F CSCL 20K G3/39 43983

Toward the Development of a Software System for Modelling with
the Finite Element Method

from the Faculty of Aerospace Transportation Technology
of the University of Stuttgart for the Achievement of the Degree of

Doctor of Engineering (Dr.-Ing.)

Submitted by
Reinhard Helfrich

from Ludwigsburg

Advisor: Prof.Dr.Dr.h.c.mult. J. H. Argyris
Referee: Prof. W. Schoénauer

Date Submitted: 22 November 1983

Date of Oral Examination: 25 July 1984

Institute for Statics and Dynamics of Aerospace Structures

of the University of Stuttgart

1984

/2%
Abstract

HELFRICH, REINHARD

TOWARD THE DEVELOPMENT OF A SOFTWARE SYSTEM FOR MODELLING WITH THE
FINITE ELEMENT METHOD

This work is concerned with the concepts of software engineering which
allow a user of the finite element method to describe his model, to
collect and to check the model data in a data base as well as to form
the matrices required for a finite element calculation. Next the
components of the model description are conceived including the mesh
tree, the topology, the configuration, the kinematic boundary
conditions, the data for each element and the loads. For this the
possibilities for description and review of the data are especially
considered. The concept of the segments for the modularization of the
programs follows the components of the model description. The
significance of the mesh tree as a global guiding structure will be
understood in view of the principle of the unity of the model, mesh
tree, and the database. Out of this will be derived the concept of
the mesh context for the modularization of the data in the data base.
For storage of the model data, the data module sequences and tables
will be introduced and their application functions thoroughly
described. Then the user interface will be developed through the
central concept of command language. It embraces the recognition and
description of the language, the production of language tables and
vith that, the possible translation of every language input in free
format to a fixed processing format for the programs. At the same
time the concepts of open lists for the creation of regular series of
numbers and macro-commands for user-specific definition and
application of repeatable and variable parts of the modelling will be
explained/ Finally the user-friendly aspects of the softvare system
will be summarized: the principle of language communication, the data

generators, error processing, and data security.

*Numbers in margin indicate foreign pagination.

/3

Foreword

The following work is based on the research activities of the
ISD (Insitute for Statics and Dynamics) in the framework of the
further development of the finite element programming system ASKA, in
which work the author was alloved to participate. Professor Dr. J. H.
Argyris is to be thanked that the work could be performed under such
favorable professional and humane conditions. The author especially

wishes to thank cordially Professor Argyris for his support.

Professor W. Sch&nauer is cordially thanked as well for his

support of the work and for taking over the duties of referee.

Also thanked are all the colleagues at the ISD, especially Dr.
Ernst Schrem, who stimulated the work in numerous discussions and Mr.
Uwe Schulz, whose constant collaboration enabled the implementation of

the first experimental program.

My wife, Brigitte Helfrich, earns special thanks for her

encouraging solidarity and the painstaking typing of the manuscript.

Table of Contents

Explanation of Symbols

Introduction

General Aspects of System Design
2.1 Core Systems and Satellite Systems
2.2 System and Functional Unity

2.3 Application and Development Environment

Fundamentals and Components of Modelling
3.1 Brief Characterization

Element and Mesh
. Mesh Tree

Nodes and Incidences

w w W W
(G IR S VS I

Topology
3.5.1 Description
3.5.2 Degree of Incidence
3.5.3 Euler-Poincaré Characteristic
3.6 Configuration
3.6.1 Rules of Description
3.6.2 Coordinates of Nodes
3.6.3 Regular Description of Nodes
3.6.4 Node Basis
3.7 Duality of the Degree of Freedom
3.7.1 Dual Vector Spaces in Physics
3.7.2 Duality Relationships
3.7.3 Displacement Methods
3.8 Kinematic Boundary Conditions
3.8.1 Incidences of Degrees of Freedom
3.8.2 Classes of Degrees of Freedom
3.8.3 Element Degrees of Freedom

10

14
14

15
18

22
22
23

27
31

33
33
34
37

42
42

43
49
55
62

62
64

67
68
68
70
74

/4

Page

3.9 Element Data

3.10 Loading

3.11 Calculation

Modularization of the Program and the Data

4.1 Segments
4.1.1 Concepts
4.1.2 Control

4.2 Contexts
4,2.1 Concepts
4.2.2 Mesh Lists
4.2.3 Traverses of Mesh Tree
4.2.4 Control of the Mesh Context

Management of the Model Data
5.1 General Aspects of Memory Management

5.2 Control Lists
5.2.1 Types
5.2.2 Structures

5.2.3 System Description

5.3 Model Data
5.3.1 Numbering
5.3.2 Tables

5.3.3 Project Maintenance

75

78

82

84

84

84
88

92
92
96

98
99

107

107

110
110

112
119

119
119

121
125

/5

Command Language

6.1 Overview

6.2 Lexical Analysis and Free Format

6.3 Syntax

Aspec
6.4.1
6.4.2
6.4.3
6.4.4
6.4.5
6.4.6

ts of Language Processing

Language Recognition
Graphic Depiction of Syntax
Language Description
Language Creation

Language Translation

Functions for Language Translation

6.5 Open Lists

6.5.1
6.5.2
6.5.3

Concept
Functions for List Creation

Description of Lists

6.6 Macro Commands

6.6.1
6.6.2

Properties

Macro Description

Aspects of User-Friendly Modelling

7.1 Principles of Communication

7.2 Data Generators

7.3 Errors

7.4 Data Security

128

128

133

136

140
140
142

144
149

152
155

158

158

159
163

171

171
173

180

180

182

185

191

Literature
List of Figures
Appendix A: Example of Modelling

B: Linear Static Analysis
C: Proof of Eq. (3.15)

193

200

203
209
212

Explanation of Symbols

Ways of Writing Matrices

a A |

Vectors and matrices are boldface
Column matrix with elements qt'
Diagonal matrix with elements a;

Column Matrix with elements &' to a, in row order

Writing Brackets for Description of Commands

.o

.o

Parts of commands. If they are not enclosed within

angle brackets, they must be used in the given form.
o or B must be written

o is to be written at least once (or n times,
respectively and repeated as often as desired (or m
times, repectively.

o or B can be written

If o« is written, then it must be written at least
once (or n times, respectively) and o must be
repeated as often as desired (or a maximum of m

times).

At least one of command parts o and B must be written

agfq]

9
/7
<a> : All intermediate symbols of the command description
will be written lowercase between angle brackets.
During the use of the command, these intermediate
symbols are to be replaced by the user with suitable
end symbols.
Other possibilities for describing the commands are found in
Chapter 6.4.2.

Function Description

AAA (ay ee oy A3, gj, o)
AAA : Function name in uppercase letters
a ., aj : Function parameter in lowercase letters. They depict

intermediate symbols which are to be replaced by the
programmer with end symbols (e.g. with FORTRAN

variable names.

a, : Input parameter
a : Output parameter. These are emphasized by

underlining.

..

The parameter a, stands for several pieces of data,

so it is to be placed in a field of length d.

a1@1[dﬂ

oo

Two dimensional field with column dimension di and
row dimension d2

Operations on integers

div (m,n) : integer quotient of the division of m through n.

mod (m,n) : The remainder from the division div (m,n)

10
/8
1. Introduction

The method of finite elements (FE) is a recognized procedure of
applied mathematics. Since the beginning of its development [Argyris
54,56,57] it has been intimately connected with the technology of
digital computers. The early insight into the capabilities of this
then-new technology has significantly influenced the development of
the method in form of the displacement method [Argyris
59,64,65,70,75]. Therefore it was logical to connect the creation of
the theoretical fundamentals to the development of a powerful
programming system, which could serve a broad application of the
method. [Schrem, 70a,70b,71,75]

Since the introduction of the first programming system suited
for the finite element method, the conditions for its applications
have changed in manifold aspects. If, at the beginning, structural
calculations were established as an area of application, so today many
areas of application have been opened up. If at first only large
research establishments and financially strong industrial concerns
were in a position to buy a digital computer, the development of
inexpensive and small computers has advantageously changed the
prerequisites for the application of the method. Out of this resulted
a constantly increasing dissemination of the method and the software

systems required for its practical application.

Softwvare systems, as all technical creations, are first objects
of the development and afterwards of the application. Thus those who
develop the system and those who apply the system, the so-called
users, are commonly not identical. Therefore the users play a
decisive role in all development considerations, This applies above
all for software systems for the finite element method, because its
scope and complexity require considerable development costs and the
broad dissemination which is therefore necessary presupposes the

approval of many users. The judgement of a user will be determined on

11

one hand by the fulfillment of functional requirements, on the other
hand through the user’s experience in working with a system. Out of
this results the importance of the so-called user interface, over
which the entire communication between user and system is developed.
A user interface is then called user-friendly if it connects /9
numerous functions to reduce work with a pleasant unified way of
working. 1In particular, the modelling is a very communication-
-intensive phase in which a slight or a well-developed

user-friendliness of the interface easily becomes evident.

At the beginning of the history of the development of software
systems for the finite element method the user interface was not given
the attention necessary today. At that time one concentrated more on
the algorithmic aspects of FE calculation. That was also required
from the state of the hardwvare and software equipment, since only
modest resources were available in terms of computing time and storage
capacity. With the improvement of these resources it was recognized
that the preparation and input of the model data as well as the
evaluation of the results together required 60 to 90 percent of the
total time needed for application of the method (after [Gallagher 77,
Rehak 81]). A shortening of this time is thus to be achieved through
a reevaluation of the user interface in view of earlier system
solutions. Thereby the user-friendliness of the interface comes into
decisive significance. How this can be achieved shall be depicted in

the following work in terms of modelling.

The actual computation programs apply the method using
matrices. It was always obvious that it could not be demanded of
every user to construct the matrices himself and place the program at
his disposal. Therefore the job of a software system for modelling is
to place in readiness tools which allow the user to describe a finite
element model in terms amenable to him (such as location of elements,
orientation of the supporting structure, material properties), to
collect and to check the model data as well as to create the matrices

necessary for the calculation.

12

Tools of the type described are made available by practically
all software systems for the method of finite elements. There,
supplying the system with data is in the foreground and not the user
friendliness of the data entry. Besides that, many pre-run programs
(so-called pre-processors have been developed which support a user- or
application-oriented model description. However, all too often /10
the description of a model is equated with the pure division into
elements and establishment of coordinates (keyword: mesh generators).
Therefore, in the following work it will first be thoroughly examined
which components a model description does have. Special prerequisites
for this were the application of the partial structure process, which
is also applied to the model calculations and the incorporation of the
element calculations into the model description in accordance with the
above-mentioned assignments. In no case was it intended to develop a
general multipurpose program that would be suitable as a pre-processor
for all FE systems. The development had rather the goal to merge the
model description into the virtual FE machine (VFE machine) newly
conceived by Schrem [Schrem 78a]. Incidentally, in other respects in
this work expressions and examples from structural calculations will

be cited where necessary for explanation.

A complete model description requires in some circumstances
that the user make available very extensive amounts of data. A
user-friendly system must therefore realize concepts for the
simplified and abbreviated description of the data. The wish of the
user to describe ever-more complex models with ever-smaller amounts of
data is understandable. Precisely for that reason, all questions
which are connected with the verification of the correctness of a
model will be thoroughly treated in this work. Because as long as
software systemsdon’t operate according to the utopian demands of the
users: "I’'m thinking of a model, make it available!",
incompatibilities and errors will belong to the normal byproducts of a
model description. For so long, the user will have to communicate his

model data to the system in some manner. To create a foundation for

13

this in the form of a command language is a further chief concern of
this work. Here is appplied extensive experience from applied
information science with the help of which a language concept suited
for the model description will be developed in a very general way.
Special attributes for this include on one hand the description of
number series for the creation of desired model data and on the other
hand the capability for the depiction of algorithms with which the
user can realize variable model descriptions.
/11

Softvare is designated above all by the category of information
and not by the category of material or energy. Therefore one cannot
get to know software by handling it or looking at it. This results in
difficulties for the depiction of a software outline, for which there
presently exists no satisfactory method (as with blueprints, for
example). The following work thereforeattempts to depict the outline
of the software system under three different aspects. For the first
will be explained the decisions for the outline which are applicable
for system configuration. In addition above all will be emphasized
the observed principles whose effectiveness marks a softvare system of
the level expected of a technical product of high quality. The
principle of unity of model, mesh tree and project data base proves
itself to be of particular far-reaching significance. Second, the
central functional units will be described. Their functions and data
structures will be described as immediate consequences of abstract
concepts. The function description serves as a basis for the
implementation of the functional unity. The complete software system

will be implemented through the assembly of equally-entitled and

hierarchically-ordered fuctional units. Third, the commands for the
user will be introduced. Through them, the functions and capabilities
of the user inter face will be stipulated. They facilitate a

presentation of the practice of the use of the system in textual
connection with the underlying concepts and principals. Above all,
with respect to the strived-for user friendliness, the commands are to

be seen as . significant results of the system development.

14
/12
2. General Aspects of the System Outline

2.1 Core Systems and Satellite Systems

A software system for the method of finite elements will be
decisively influenced by the versatility and uniformity of the method.
On one hand the versatility is represented by the element model which
allows the most diverse areas of application to be comprehended. On
the other hand the unity of the method is guaranteed through the
operations of linear algebra, which make possible the formulation and
solution of the systems of equations arising from the discretization.
The suitability of this method was already recognized in the beginning
of its development: "The matrix formulation allows us not only to
write the equations much more clearly, rather it is also the ideal way
of writing for digital computers" [Argyris 57].

The separation of element model and solution of equations is
reflected in the structuring of the software system. Thus, the unity
of the operation of linear algebra has led to the concept of the core
system, in which abstractions can be made from all element models.
So, for example, the following functions of elastic static mechanics

do not belong in the core system:

o assembly of the element stiffness matrices,

o determination of initial loads based on initial strains,

o discretization of distributed element loads (such as
line, area and volume loads),

o calculation of element stresses from element strains.
Through the exclusion of these functions the core system becomes very
generally applicable and its application is exclusively oriented to

the solution algorithm.

The concept complementary to the core system is that of the

15

satellite system that, together with the above-mentioned
element-dependent functions comprises the overall model description
and evaluation of results. With this,all application-dependent and
communication-intensive parts of a FE calculation are clearly divided
from the core system. A change in the area of application can
subsequently lead to a nev satellite system, while the core system
with all computation-intensive parts remains unchanged. The /13
integration of core system and satellite system is designated virtual
finite element machine (VFE machine), "which is suited as fundamental
ordering principle for every modern programming system for the
application of the method of finite elements" [Schrem 78a]. The two
partial systems are connected with each other over the data-processing
system (DVS) {Datenverwaltungssystem} which constitutes an example of
the VFE machine.

2.2 System and Functional Unity

The idea of the system vas already used in this work in some
expresions: softvare system, program system, core system, satellite
system, data processing system. The idea should be examined here
somvhat more closely in order to avoid its undisciplined use. 1In
[Rohpohl 79] one finds the following description of the system idea:
"a system is a unit which (a) exhibits relationships between definite
attributes, which (b) consists of interconnected parts or subsystems,

and (c) is divided by a definite boundary from its environment or is

circumscribed within a supersystem." The functional view (a)
describes a system by a number of attributes -- those are, for the
time being, arbitrary properties. Such attributes, which place the

system in relation to its environment, are called entrance and exit
attributes. Such attributes which characterize the constitution of
the system itself are called state attributes. Every coordination /14
of the attributes to each other represents a function of the system.
This conception of the function is universal and signifies no

limitation to mathematical functions. According to the structural

16

view (b) a system consists of subsystems which combine in a definite
manner to form the whole. A system is therefore the environment of
all its subsystems. A structure exists if definite relations exist
between the subsystems. With these relations,interconnections between
attributes of various subsystems are designated. If the subsystems
arise through division of the entire system, one speaks of the
modularization of the system; if a system arises from the assembly of
subsystems, then the system exists as a result of integration.
According to the hierarchical view (c) subsystems are further
divisible into subsystems. Thus, a recursive process is described to
modularize a system into smaller and smaller subsystems or to

integrate systems into more and more powerful supersystems.

Software systems can nov be described as technical systems for
which all attributes are represented by data. These systems are
technical because they are, on one hand, artificially created and, on
the other hand serve as tools for achievement of definite tasks. For
the subsystems of a software system a sound concept was introduced in
[Schrem 78a,78b] with the idea of functional unity: " A functional
unit is a device for data processing that is defined by a complete set
added). As attributes of a functional unit the data may be divided
into

o input data: these are transmitted from the environment
to the functional unit.

o output data: these are transmitted from the functional
unit to the environment.

o internal data: these are known only within the
functional unit and represent the state of the

functional unit.

The function specification describes the environment of the /15

functional unit, the domain and the significance of all input and

17

output data, all complete functions as well as the changes of state
connected with them. For the outline of a functional unit the

following rules apply:

o The function specification should be complete and should
include all functionswhich result from the application
of the functional unit. This also requires that for
every input datum (or output datum or internal datum)
there exists at least one function which needs (or
creates or changes) the datum.

o The function specification should be self-contained and
include all functions which change the state of the
functional unit. This especially includes both of a
pair of inverse functions, which are so distinguished
since they do not change the state of the functional
unit when they are both performed, one after the other.

o The function specification should be unambiguous, that
is, for a definite change in state should be forseen
exactly one function. With all this, "similar"
functions are excluded and a clear separation of the

functions is achieved.

The performance specification describes the demands on all operating
means which must be fulfilled by the functional unit, especially the

time and memory requirements.

Functional units play an important role in the development of
complex software systems. Such systems become comprehensible and
realizable if one structures and abstracts. Especially, one can and

should proceed according to the principle of modularization:

> From the modularization of the application and
theoretical areas it will be attempted to derive the
modularization of the systems into functionmal units and
with this, a modularization of the data into data

structures.

18
/16
This principle can be made use of on many levels of a systenm
hierarchy. An important consequence for the following work is that
the modularization of multifunctional systems, with reference to a
system for model description, will necessarily be reflected in a

modularity of the user interface. This is forseen and desired.

From the principle of abstraction, the partial aspects of a
system once considered separately may be condensed into a few.
Functional units as subsystems allow abstraction from a supersystem and
other subsystems. Just as much is abstracted from the structural
aspects of a functional unit. So in the above-cited definition
nothing is mentioned about the role of programs and computer sytems.
Only the fulfillment of function and performance specification .is
controlling. A further abstraction concerns the storage of the
internal data of a functional unit. For the function specification a
general concept of the data structures for the establichment of the

functions is sufficient (compare "information hiding module" [Parnas

171).

As required by the hierarchical view,the ideas of software
system and functional unit can be used equally. Folloving the general
language usage the idea of software system shall be associated with
"complex, comprehensive, global" and the idea of functional unit with
"simple, comprehensible, limited". The idea "machine" as it is used
in connection with VFE machine is therefore most closely equated with

softwvare system.
2.3 Use and Development Environment

The VFE machine and thus also the satellite system need to be
implemented in a computer system for practical use. Therefore, two

aspects of the system environment are especially important:

o the input/output (I/0) devices and
o the operating system.

19
/17
For the user, the available variety of I/0 devices for input
and output is interesting. The input and output must be regarded as a
fundamental software problem, since its unified treatment on various
I/0 devices is not transferable. This realization has led to a total
renunciation of every language-inherent input and output concept
(compare [Wirth 82]). 1In the model description, the input may take
place by light pen, keyboard, or graphics tablet. With this in mind,
it is obvious that each input medium must be supported by
corresponding software measures in order to allow adequate work with
the medium. WVhile the keyboard is suited e.g. to input commands to
the system, one would use a light pen in order to choose a desired
command out of the possibilities displayed on the screen. The
integration of so many different input media requires a concept of
strict separation of syntax and semantics as will be introduced in
this work (Chapter 6).

Besides the compatibility to various I/0 devices,the large
development costs of a software system require the largest possible
independence from an operating system. For one thing, this is
important with respect to a long product lifetime, during which
changes in computers and operating systems should not lead to a loss
of usefulness of the software. For another thing, the software system
may be installed in various computers and thus become available to a
wide circle of users. There must be definite minimum requirements
made of an operating system in order to make possible software
compatibility. These include above all the availability of a ‘FORTRAN

machine’:

o The computer should have at its disposal a magnetic tape
device in order to input the program to the machine.

‘0 A compiler for the programming language FORTRAN [DIN
66027] {DIN = Deutsche Industrie Norm, German Industrial
Standard} must be available. The choice of this

programming language is based on its standardization and

(o)

20

videspread use. Its disadvantage as a primitive
language (e.g. no support of structured programming,
provision for only the simplest data types) may be
balanced out by a heightened discipline in programming
(compare [Schrem 74}).

The operating system must make available a bus which /18
can integrate independently-compiled programs into an
executable module. For this is needed a virtual memory
capacity, which includes the possibility for the
formation of multi-user modules.

A loader allows the execution of the connected modules.
If the corresponding I/0 devices are available, then the

satellite system is ready for operation.

The compatibility of the software is conceptually simplified by virtue

of its I/0 device-dependent and operating system-dependent parts being
organized in special functional units (compare [Schrem 76, Kalb 81]).

A change of the Fortran machine then affects exclusively these

functional units. With these can be abstracted from the

machine-dependent aspects of the satellite system.

Since the development of the satellite system is also

accomplighed with the help of a computer, additional requirements must

be fulfilled.

One can imagine very fancy systems for the development

environment (compare [Ivie 77]) but here shall be mentioned only a few

requirements vhich are indispensable, according to the experience of

the author:

For the creation of the program a text editor is
required. The input of the program over CRT
(cathode-ray tube) devices available in sufficient
quantity, a high-speed printer for output, a
dialog-oriented operating system and a high throughput

for execution of programs as well as a breakdown-free

21

operation over long periods of time can be regarded as a
package of requirements.

The control of the program must be possible in a data
structure which is easily overviewed (compare [Ritchie
741).

Especially important is the constantly undisturbed
access to peripherals of the computer system such as CRT
devices, high-speed printers, and magnetic tape devices.
A closed system is to be avoided, since it hinders the
softvare developer from choosing his operating speed
himself.

22
/19
3. Fundamentals and Components of Modelling

3.1 Brief Characterzation

A model is the idealized depiction of a structure under
conditions of use in such a way that the finite element method may be
used directly to make calculations based on the model with the
intention to interpret the results of the calculation in terms of the
behavior of the structure. Thus, every application of the finite
element method is characterized by the three phases of modelling,
calculation, and evaluation of results. A high-performance computer
with suitable software is a prerequisite for the completion of each of
the three phases [Argyris 70, Schrem 71,78a].

The precursor to model development is called idealization.
This consists of mentally dividing the structure into a discrete number
of finite elements which suit the purpose of the calculation. This
division is to be built into the modelling. For this,the mesh serves
as the fundamental building block. Each mesh consists of a row of
nodes which represent definite points in the visualization space. The
nodes posess degrees of freedom. These stand for two dual physical
quantities, of which one is unknown and the other given in each node.
In structural calculations these are, depending on the component,
force and displacement, or their generalized analogous quantities. In
this way the boundary conditions of a structure are determined by the
given forces and displacements and the unknown forces and

displacements result from the calculation.

The description of each model can be divided into the following
steps:

1. Description of the division of the structural model into
meshes.

2. Description of the topology of the interrelationships of
elements and meshes by means of nodes

23

3. Description of the configuration, through which the
nodes are given positions and degrees of freedom of a
coordinate systenm,

4. Description of the kinematic boundary conditions,
through which the unknown displacement quantities may be
separated from the given displacements.

5. Description of the elements with specific data on /20
geometry and type of engineering material.

6. Description of the loading by statement of the values of
the given force and displacement quantities.

7. Calculation of the elements through creation of their

discretization matrices.

Every step is chosen such that a few correlated properties of the
model are coupled. The sequence results from the fact that each step
in the modelling refers to the previous steps. Through this, a logicl
construction of the model is achieved.

The following treatment of all steps in the description of the
model is accompanied by illustrations with the commands for modelling
which have arisen in the development of the system. The concept of
command language is explained thoroughly in Chapter 6. Through the
preferred listing of commands a direct relationship of the fundamental
concepts to the practice of modelling will be produced. An example of

modelling is found in Appendix A.
3.2 Element and Mesh

A fundamental concept of every model is the mesh. One

differentiates between two types of meshes:

o Elementary meshes: In each of these is connected
together a row of elements of any one type. Each such

element is a model in miniature and is described by its

24

behavior with respect to physical field variables
(stress and strain or force and displacement,
respectively). Through simple statements about the
changes in the field variables the element is idealized
with a small number of degrees of freedom (up to
approximately 100). Since, in a model, a large number
of elements appear, elementary meshes allow an order
which makes the model comprehensible in that the
component parts may be regarded as a unit. Connected /21
with this is a coordinated treatment of all elements of
an elementary network in the model description. The
elements remain unconnected. The degree of freedom is
determined from the number of elements and the
respective set of degrees of freedom (compare [Schrem
78al]).

Connecting meshes: These are created when elements of
one or several elementary meshes are connected with each
other. The connection results when the nodes of several
elements are placed in the visualization space. This
process is also called coupling. Here, the elementary
meshes can be of different types. In addition, a
connecting mesh is also created when one or several
connecting meshes or elementary meshes are coupled
together. Thus, the definition of a connecting mesh is
recursive. The coupling process can be performed in as
many steps as desired, until all elements in a model are
coupled. Through the coupling, the degrees of freedom
at the nodes of the connecting meshes are always
connected directly or indirectly with the element
degrees of freedom. From this results the important
principle of node-connected degree of freedom:

> In the process of coupling the meshes, only degrees

of freedom connected with the nodes are counted.

25

The versatility of the finite element method is, above all,
based on the variety of possible element types. To classify each
element according to type has the advantage of being able to condense
jts characteristic properties into a single expression (compare
Chapter 5.2). The element type includes:

o The type name as identification.

o The discretization in the statement function with which
the progress of the field variables within the element
is comprehended.

o The organization of the element mesh.

o The physical area of application.

o The number of degrees of freedom and their division
among the nodes.

o The type of coordinate system in which the locations /22
of the nodes are described and according to which the

degrees of freedom are oriented.

The choice of an element type is the task of idealization and an
important prerequisite for modelling. This is first determined
according to which physical question formulation is to be answered
with a model. For this are to be considered all of the properties of
an element type mentioned previously. So, for example,the order of
the statement function is very important for the consideration of the

expected stress changes in a model.

26

Configuration Mesh Type Coordinate Degrees
Space Type Name System of freedom
\.\ \ ! / — e ‘
Netztyp Typ- |Koordinaten- | Freieits- | - ,
raum name| system grade |
|
- "
Ebene v
Rz Kontinuo PCl xr vy Lu

»

z
Achsen. . .
R? Konfin::m |AC| rz Up .Uy C:u'l
q,

z
Achsensym.
R? d,-ck:m AT | rz Uiy, C%__

Schalen » [T a%
w b4
R? Platten Pl xy w, w0, /k\
. W W, w |
"".xr" /', x
P 4
Réiumiiche
R C| »yz u,v,w
Kontinua
RJ . Sﬂlruktunn S W, v
{diinne Schalsn xyz v %
und Balken) . Pty J"u
: ’ z X
| Raumiiche ’ |
u,vw,
RJ dicke T x.y.z £
. Schalen : «p Y
z X
PC - planar continuum, AC- axisymmetric continuum, AT - axisymmetric
thick shells, P - plates, C - spatial continuum, S - structures (thin

shells and beams), T - spatial (thick shells).

Figure 3.1 Examples of mesh types for model description in structural
calculations.

27
/23
Because of various physical application areas, the degree of
freedom and the coordinate system of various elements can be so
different that they cannot be coupled by means of elementary meshes
into one and the same connecting mesh because the unified description
of these properties is not ensured. The element types may be so
classified that this unity is achieved in each class. Each such class
is designated by a mesh type, which is a property of the connecting
mesh. Through this is determined (for examples see Fig. 3.1):
o the type name as identifier.
o the set of degrees of freedom on each node. This is the
same for all nodes of a mesh.
o the type of coordinate system, in which the location of
all nodes is described and to which all degrees of

freedom are related.

The elements are then coupled into a connecting mesh, so that element

and mesh type allow a mutually compatible set of node variables.

3.3 Mesh Tree

The recursive definition of the connecting mesh leads to the
concept of the mesh network. Through it, the division of a model into
meshes is described. Specifically, this follows the principle of
unity of model and mesh tree:

> Each model is described by exactly one mesh tree and

every mesh tree depicts exactly one model.

That mesh which, after the recursive coupling procedure is not itself
again coupled into another connecting mesh, is called the main mesh.
All other connecting meshes of a model are called partial meshes
[Schrem 78a]. A mesh tree is an ordered tree with the properties
(compare Fig. 3.2):
o The roots of the tree form the main mesh. /24
o The branches of the tree form the partial meshes.

o The leaves of the tree form the elementary mesh.

2
geordnete Netzreihenfolge:
1000, 100, 200, 11, 21, 22, 1, 2

1 - Step, 2 - ordered mesh series
Tree Part Symbol Mesh Type
Leaf . Elementary Mesh
Branch o Partial Mesh
Root 0. Main Mesh

Figure 3.2 - Example of a mesh tree

28

29

The tree is called ordered, because its meshes are presented in a
definite order. The order is laid down such that the meshes follow
each other stepvise from right to left (as seen from the main mesh
outwards). In order to designate a mesh, the mesh number will be
introduced. This is a positive whole number which gives its name to
the mesh. With this, each mesh is unambiguously identified within a
model. The user-chosen external mesh number refers to an ordinal,

internal mesh number corresponding to the mesh order.

The edges of the mesh tree give rise to a lover mesh/upper mesh
relationship. Each connecting mesh is an upper mesh, the meshes

coupled within it are its lover meshes. From this follows:

0o Except for the main mesh, each mesh has exactly one
upper mesh.

o Except for the elementary meshes, each mesh has at least
one lower mesh.

The properties of the nodes of the connecting mesh are determined /25
by the mesh type. Therefore, the mesh types of two meshes which are
coordinatedby a lower mesh/upper mesh relationship must be compatible
(see Fig. 3.3). If the mesh type of a lower mesh represents more node
variables than the upper mesh, the extra variables are called
redundant node variables.

30

1

Obernetztyp

PClAC | AT| P c s T

PC 1

2' AC 1

AT 1 . \

dnterhetztyp

1 - Upper Mesh Type, 2 - Lower Mesh Type

Figure 3.3 - Compatibility of mesh types in the lower mesh/upper mesh

relationship.

The simplest mesh tree consists of a main mesh and an
elementary mesh. For the construction of complicated mesh trees many
reasons can apply. One reason is the need to coordinate different
types of elements and different types of elementary meshes. Another
reason is purely from considerations of computer technology. That is,
with idealization using very many elements, a solution is only
possible by separation into several connecting meshes, since the
available computer system capacity (memory space, computing time) is
not sufficient for a solution in a single step. Regularities in a
structure that allow its depiction using several similar meshes (e.g.
with symmetry) are suited for separate idealization. Out of this
results the possibility to carry out the calculation of identical
discretization matrices only once. Besides this, there can also be
reasons based on a more favorable model description, in which the
construction of a hierarchy of connecting meshes appears advantageous.
With this, one achieves the separation of structural parts which are
to be changed in a later model or idealized differently (e.g. with a
finer mesh or other element types. Last but not least, the aspects of

31

the evaluation of the results for a given construction of the mesh
tree may be relevant. The description of the mesh tree occurs /26

with the commands in Fig. 3.4.

. 1
Naspinesy 4 5 ¢ 1 g
MATE » mooks > CASES <lastfallassadl> WETYP P> U8 Y71
2
CuST . noors YR Y nvn.;
. 3
. mmmwﬂ* 10 /i 2 13
ZaET ELTS <ol nTYY “ NOTYP ¢modellityp> LATYR ch:nqp
1 - main mesh, 2 - partial mesh, 3 - elementary mesh, 4 - mesh number,
5 - number of nodes, 6 - number of loadings, 7 - mesh type, 8 - lower

mesh lists, : 10 - number of elements, 11 - element
type, 12 - model type, 13 - load type.

Figure 3.4: Commands for mesh tree description. (For examples, see

Figure 4.5).

3.4 - Nodes and Incidences

In order to coordinate node variables with a node, the node
must be identifiable. This purpose is served by node numbers. These
are arbitrary positive whole numbers which give each node a name.
Within a connecting mesh this node name must be unambiguous, but the
same number/name may be used to identify nodes in different meshes.
The order of the node variables at a node is determined by the mesh
type. The order of node variables in a connecting mesh results from
the definition of a nodal order. For this the n node numbers of a

32

mesh are depicted by the ordinal numbers from 1 through n. 1In order
to differentiate them, the former will be called external node
numbers; the latter, internal node numbers. The arrangement of the
node variables in the connecting mesh results in the so-called

canonical order of node variables.

The coupling of elements and meshes is accomplished with
incidences. One differentiates:
o node incidences and

o incidences of degrees of freedom.

The node incidences facilitate the coupling in visualization /27
space, the incidences of degrees of freedom facilitate the coupling in
the dual space of the degrees of freedom. Two nodes are incident if
they occupy the same point in the visualization space. The coupling
of upper and lover meshes is then simply described by the listing of
the ordered pairs‘ of all incident lower and upper nodes. Each node
of a lover mesh is incident with either zero or exactly one upper mesh
node. With respect to multiple incidences, the principle of
unambiguous coordination of node and point applies:

> Different lower mesh nodes may not be incident with the

same upper mesh node if they do not represent the same

point.

Each edge of the mesh tree represents the availability of node
incidences. Specifically, the following apply:

o All elementary mesh nodes are incident with upper mesh
nodes.

o In each partial mesh exist incident nodes; otherwise, the
mesh tree would fall apart into disjunct graphs. This
would violate the principle of unity of model and mesh
tree.

o No main mesh node can be incident, because there is no

upper mesh.

33

Since degrees of freedom are bound onto nodes, incidences of degrees

of freedom are only possible on incident nodes.

3.5 Topology

3.5.1 Description

In the following, the coupling of the elements in a connecting
mesh will be examined. Topology of such a net means the totality of
all aspects of graph theory of this part of the model. All aspects of
the degree of freedom or the location and size of the participating
elements is disregarded.

/728

The topological properties of elements are determined by
element type and include:

o the dimensions of the elements; that is, whether node,
edge, planar, or solid elements are concerned.

o the number and order of the element nodes.

o the number of edges and surfaces and their description

as polygonal inscription through the nodes concerned.

Nodes, edges, surfaces, and solids are the topological units of a

mesh.

The coupling of the elements is described by element
incidences. In this,all node incidences of an element with its upper
connecting mesh are included. For description, it suffices to count

up the node numbers of all connecting meshes with one incident
element, in the element-dependent order. Corresponding to the nodes,
an element number is used to identify each element. The
determination of an element order leads also to a differentiation

between internal and external element numbers.

34

How many elements are associated at a connecting mesh node is
denoted by a degree of node incidence. In summary, the topology of a
given connecting mesh is described by:

o the quantity and the numbers of the connecting mesh
nodes,
o The quantity and type of the applied elements, and

o the node incidences for each element.

These descriptive quantities make possible the construction of a very
general class of mesh which, based on its physical background, has
some limitations. So, e.g. interpenetration of elements is not
possible and inhomogeneities may only appear in the mesh when the
underlying structure is homogeneous. A mesh will thus be called
topologically correct if all such limitations are fulfilled. However,
for a given structure there can be very many topologically correct
meshes. Which one will be chosen in a given case depends largely upon
physical considerations. These can be influenced by the applied
loads, by symmetry of structure or loading or the desire for a simpler
description.

/29
3.5.2 Degree of Incidence

In order to judge the topological correctness of a mesh, the
idea of the node incidence degree will be generalized to the other
topological units. Thus, an edge incidence degree is defined which
denotes how many elements two nodes which determine an edge have in
common. The same applies for surface and solid incidence degrees.
Besides this, it has proven to be practical, in the establishment of
the topology of an elementary mesh, to consider middle nodes
separately and to connect no edges with such nodes. One
differentiates solid, surface, and middle edge nodes. By this, all
common elements may be related back to only six different fundamental

topological elements:

o

o

o

35

one edge element,
two surface elements (triangular, quadrilateral)
three body elements (tetrahedron, pentahedron,

hexahedron).

With the help of the incidence degree the following rules for

topologically-correct meshes may be formulated:

(o]

o

The degree of incidence of (edge, surface, and solid)
elements is 1. Out of this results the unambiguity of
element incidences.

The degree of incidence of a surface is either 1
(so-called outer surfaces) or 2 (so-called inner
surfaces or else surface elements lying in between solid
elements.

With two-dimensional meshes the degree of incidence of
edges is either 1 (so-called outer edges) or 2
(so-called inner edges or edge elements lying in between
surface elements.

If two solids have in common three nodes which are not
middle nodes, then they also have a surface in common
which includes the three nodes, otherwise a crack must
exist between the two solid elements and hence in the
structure itself.

If two surfaces have in common two nodes which are not
middle nodes, then they also share a common edge betveen
these nodes.

Solid middle nodes have a degree of incidence of 1.
Either the surface and edge nodes have the incidence
degree of the surface to which they belong, or else a
hole will appear between elements and also on the

structure itself.
/30

One obtains further rules about topology if one ascertains the degree

of incidence not only with respect to elements, but also considers

36

degrees of incidence related to solids, surfaces, and edges. A

summary of all rules vhich can be made about degree of incidence is

shown in Fig. 3.5.

meshes of different types are coupled.

Il Netzdimension

For this, it is generally assumed that elementary

Xnoten 3 Xante “f Fliche § xorper § \
y:b 34 \
. q,‘,, »3 q:b »1
< xr 1
‘3 gy = 9:.-3 g;‘!,‘ I >4
] g * ! e ® 3 g:t)}
r . 1
3 ne* 2 Sne® ¢
S
3 91131;’ 3
: i -2 T
: : g, = 1 gg‘ 92") !
$1 8§ - : gEew 4
S) s c . Et~ 9pe>3
- 9y = % c r
g ¥ e Fpe| Ipe>?
N c
2 Ine * JEb
1
-2
£ - 9 =) g:b
] - ¢S 9pp =1
~ "% c o
5 Ing € Ip
] 1
9g = .
|l - S B
3 Iy = 9
.1
,.{::;‘::::2 8 6543
r : Rand-
N B : Kdrper-
Yun ! B : : ::::::'_" Inzidenzgrad %
N 3 Xnoten~ ‘5“'
b 1 kdrper-
n= {! T chhon-}ﬁwon |°
® : kanten~
1 - mesh dimension, 2 - degree of incidence, 3 - node, 4 - edge, 5 -
surface, 6 - solid, 7 - middle, 8 - inner, 9 - edge, 10 - related .

Figure 3.5: Degrees of incidence for topological units in finite

element meshes

37

/31
3.5.3 Euler-Poincaré Characteristic

Vhile the degree of incidence allows one to make statements
about every topological unit -- that is, a microscopic view of the
mesh, a global view of the mesh may be performed with the help of the
numbers of topological units. According to the formula for
three-dimensional networks from Euler and Poincaré [Schubert 69], the
folloving applies:

n - e + f -b=2¢C¢ (3.1)

wvhere n, e, f, and b are the numbers of nodes, edges, surfaces, and
solids, repectively, in a mesh. Thus C is the Euler-Poincaré
characteristic of the mesh to which the formula is applied. If one
ascertains the characteristic for the fundamental topological
elements, this always results in a value of 1 (see Fig. 3.6). As long
as such elements are simply arranged together in a connecting mesh,
the characteristic does not change, since it is only dependent on the

topological continuity of the mesh.

The nominal value of the characteristic results simply from the
form of the structure which is idealized by the mesh. This nominal
value is called the topological condition number and is independent
from each idealization of a property of the structure. For this

applies
C =k -r -nh (3.2)

where k is the number of components of the mesh which among themselves
exhibit no coupling. k is commonly 1. The number of cracks and holes
in the structure is given by r. Cracks include every disturbance of

the topological relationship in the sense that a closed curve which

ORIGINAL PAGE .IS
OF POOR QUALITY

38

cannot be condensed to a point may be constructed on the outside of
the structure. The number of hollow spaces in three-dimensional
models is given by the number h. Examples of numbers for topological
conditions (for k=1) are the following:

o circle, cylinder, Mdbius strip (r=1, h=0): CK=O

o hollow torus (r=2, h=1): CK=O

o solid sphere (r=0, h=0): Cx=1
o hollow sphere (r=0, h=0): Cx=2
0

two—cell fuselage shape with window cut-out (r=3, h=0):

cC =-2 \
K » n=2
Kantenelement — 7 * b=:>C-1 /32
1 =0
. ns3d -
2 Oreieckselement : s .;i:_—_-;>c. 1
.
be0
nsé
3 Vierechkselement esb—"5Cs1
{al
be 0
ns é
®=6—5Cs
4 Tetraederelement L .: Cx1
n= g
5 Pentaederelement fes—>ct
bs1?
I
e= =
é Hexoederetement ! f=6 Ce1) \
’ 1 b=1 B
A~ > : \
1 - edge element, 2 - triangular element, 3 - quadrilateral element,
4 - tetrahedral element, 5 - pentahedral element, 6 - hexahedral
element.
Figure 3.6: Characteristics of elements (n, e, f, b, : numbers of

nodes, edges, surfaces, and solid bodies, respectively)

39

In summary the necessary condition for topological correctness of an
idealization is

C =2¢C (3.3)

Every deviation from this requirement indicates a defect in the
topology of the mesh. A common reason for such defects are incorrect
element incidences. Either an element is identified with the wrong
connecting mesh node numbers or the order of these numbers is
incorrect.
/33

If not all nodes of the topologically-correct mesh are used in
the element incidences, n is reduced and, in general, from Eq. (3.1),
Cc < CK. It should be now assumed this error does not occur, e.g. n is
constant. Incorrect element incidences in meshes of surface elements
then lead to an increase in the number of edgessince n = f = constant
and -e = C - n - £, and again C < Cx‘ With solid elements, however,
the characteristic remains unchanged, since the same number of edges
as surfaces intersect on every element node, so n = b = constant and
-e + £ =C-n-»>b, C = CK applies. However, the outer surface is
enlarged by errors in the element incidences. The outer surface is
composed of all outer surfaces of a mesh. For its Euler-Poincaré

characteristic
C =n -e + f (3.4)
/34
It must therefore also be true (as in Eq. (3.3)) that
cC =2¢ (3.5)
with

c =k - r_ + h_ . (3.6)

The index R designates here the outer surface of the mesh.

.

1 -
sequence, 4 -
6 -
element bundle,

element incidences,

ORIGINAl, PAGE IS
OF POOR QUALITY

node numbers and node sequence, 2

10

Kknotennummern und Knotenreihenfolge ’
3
NODESEQ <net > NODES < thenfolge>

Elementnummern und Elementreihenfolqe

l:l;‘l'sto <netznummer> ELTS <elementliste>

Knoteninzidenzen
-

PAIRS <knotenpaarliiste>

INSNODE <netznummer>
. ALL

Elemenchindel
10

BUNDELT <netznummer> WITH <kno

hl> NODES tki

|
<obernstzknotenliste> } &

"
pelliste>

Elementinzidenzen

i3

<el
INSELT <netanuamer> { [aL] .
. BUNDS <knotentupelliste>

- node pair list,
- number of nodes, 11

- mesh number, 3 -
element numbers and element sequence, 5 -
node incidences, 7

} }'

mesh
element list,

40

8 - upper mesh node list,

- node type list,

13 - element and node type list

Figure 3.7: Commands for the description of the topology

12

9

41

%%% amatenss 0

12 2 32 &2
2

Verbundnatz 1000 ' {

n a4 X 4
3

Knotennummern und Knotenreihenfolge

WODESEQ 1000 WODRS 11,12,21,22,31,33,41,42

4+

Elementnummexn und Elementreihentolge

ZLTSEQ 10 XLTS 1,2,3,4,5,6

. 5
Beschreibung der Blemantintidensen mit Nilfe eines Elementbindels
4 3
! Elementbdindel ¢
2
2

BUNDEL? 10 WITE 4 MODES 1,3,4 / 3,1,2
IMSELT 10 ALL BUMDS 11,21,22,12 / 21,31,32,22 / 31,4%,42,32

Diess Beschreibung der Elessntinzidenzen ist gleichwertig Mt? ‘

INSELT 10 ALL RLTS 11,22,12 / 22,1%,21 / il,ll,ll /
32,21,31 / 31,42,32 / 42,31, 8

1 - elementary mesh, 2 - connecting mesh, 3 - node numbers and node
order, 4 - element numbers and element order, 5 - description of the
element incidences with the help of an element bundle, 6 - element
bundle, 7 - this description of the element incidences is equivalent
to ‘

Figure 3.8: Simple example for the description of the topology.

42

In summary, it may be said that a mesh may be called
topologically correct if the rules about the degree of incidence and
the conditions (3.3) and (3.5) are fulfilled. These are however only
prerequisites for the determination as to whether an idealization is
correct. For more thorough examination the node coordinates are
needed. Then the user can determine by inspection the correctness of
the idealization, e.g. with the help of a graphical depiction of the
mesh.

The description of the topology is accomplished with the
commands shown in Fig. 3.7. Attention is particularly called to the
possibilities of description of element incidences using element
bundles. With these a repeating pattern of coupled elements out of an
elementary mesh may be assembled, e.g. two triangles to every
quadrilateral. Through the naming of external upper mesh node numbers
for the nodes of a bundle, the bundle may then be placed several times
into the upper mesh. Depending on the model, this can be connected
with a considerable simplification of the description. A simple

example of the descriptive possibilities is shown in Figure 3.8.
3.6 Configuration
3.6.1 Rules for Description
The configuration includes the two properties of nodes:
1. Node coordinates: location of nodes.
2. Node basis: reference directions for the degree of
freedom at the nodes.

While topology describes a mesh that could still manifest itself
arbitrarily in the visualization space, the configuration describes

exactly one manifestation. It must therefore be geometrically
compatible, since incorrect coordinates could cause contradictions to

43

the shape of the model or its elements to arise, e.g. a violation of
the unambiguous coordination of node and point, the placement of all
nodes of a solid element in a single plane, or the creation of cracks.
/36
The configuration has a large influence on the quality of an
idealization which is described by the so-called discretization error.
Ths denotes all deviations of the calculated behavior of the structure
from the actual behavior, which can be traced back to the
idealization. In order to keep discretization error as small as
possible, some regulations for the construction of meshes can be

heeded (compare [Taig 75, Melosh 79]), e.g.:

o Symmetries and regularities of the structure should be
reflected in the mesh. (Requirement of structural
equivalence of model and structure).

o Each element should have edges of as equal length as
possible, and the edge lengths of an element should
differ little from neighboring elements. (Requirement
of formal equivalence).

o With respect to the boundary conditions, the elements
should be chosen smaller where large stress gradients

occur (Requirement of proportionality of effort).

Since the user can, in reality, describe very many different models of

the same structure, such regulations simplify the choices.
3.6.2 Node Coordinates

The mesh type determines the corresponding coordinate system
for each connecting mesh (compare Fig. 3.1). This mesh coordinate
system determines type and canonical series of the coordinate axes.
Node coordinates referring to the mesh coordinate system are also

called mesh coordinates. For all meshes of a model exists exactly on

44

global reference system: the world coordinate system. It is always
three-dimensional and Cartesian. Node coordinates are designated
world coordinates with respect to the world coordinate system. For
the conversion from mesh coordinates of a given system into world
coordinates and vice versa, a set of functions is available (see Fig.
3.9). Only mesh coordinates which allow such a reversible unambiguous

coordination are provided for.

/37

' 2 3
Netztyp | Netz — Welt
X >———e X
PC,P Yy =Yy
3'-0
. L e Xy
AC,AT ' - ¥, 0
z e——z,
X e X
‘c,s,'r y-—Yy,
3 e z,

1 - mesh type, 2 - Mesh, 3 - world
Figure 3.9: Coordination of mesh and world coordinates

The location of a mesh coordinate system is described by a mesh
basis. Each mesh is allotted exactly one mesh basis. Through this,
the mesh coordinates may be transformed, and meshes with the same
configuration may easily be placed at different locations with in a
model. The model sizes of mesh basis B, and mesh coordinates x; are

formed so that for world coordinates x, it applies that: ‘

Xy B Xy (3.7)

45

Through the introduction of Cartesian world coordinates, it becomes
possible to compare the node coordinates of meshes of different types.
With this, a unified foundation for the creation of graphic model

depictions is given.

In the description of certain parts of the mesh it is often
advantageous to express the coordinates in terms of a local coordinate
system which does not agree with the mesh coordinate system (e.g.
cylindrical, spherical, and polar coordinate systems). Since for the
local coordinates so described it is not necessary to have a
reversible transformation to the mesh coordinate system, a variety of
other coordinate systems may find use (e.g. toroidal, bicylindrical,
or elliptical coordinate systems). For these only a functionto
convert to mesh coordinates is needed. The location of the local
coordinate system compared to the mesh coordinate system is described
by a local basis. Local coordinate systems and local bases serve /38
to simplify creation of coordinates and have no other further meaning

other than for the description of the configuration.

Besides these, for the scaling of coordinates, there is also
available the means of description of the units of measure. With
this, calculations may be carried out with various measuring systems
and size relationships. The used can choose from a variety of
measuring units (e.g. millimeter, inch, degree, etc.). All length
units are converted to meters and all angles are converted to radians
(according to [DIN 1301]).

In summary, there exists a relation which is summarized by the

following conversion scheme (compare Fig. 3.10):

Ul: Conversion of measuring units.

U2: Conversion of the local to the mesh coordinate system.

U3: Transformation of the local coordinate system to the mesh
coordinates with the help of the local basis.

46

U4: Conversion of the mesh coordinate system to the world

coordinates with the help of the mesh basis.

The descriptive quantities relevant for the configuration are:
o the mesh coordinates (created by conversions Ul - U3)
and

o the mesh basis.

The mesh coordinates must now not be declared in all meshes of a
model; rather, from the principle of complete coordinate description
it may be proceeded:
> All nodes are to be provided with coordinates. Howvever,
for incident nodes, coordinates need only be described
once.
The choice of the meshes for the description is up to the user. It
has, however, proven to be advantageous to describe the coordinates of
all nodes of the upper meshes of the elementary meshes. If incident
nodes of different upper meshes do not receive the same coordinates,
that is an indication of an incorrect description. In this /39
connection, the difference between defined node coordinates and
undefined node coordinates is important. Defined node coordinates are

all coordinates supplied by the user, all others are undefined.

The description of a mesh basis is only required if a
difference exists in the locations of the mesh and the world
coordinates. Then the mesh basis is described with respect to the
world coordinate system by means of translations and rotations. The
same is true of a local basis vith respect to the mesh coordinate
system. The mesh coordinates and mesh bases described suffice to give
the world coordinates of all nodes automatically. Thus,the principle
of complete coordinate description comes to use in the following
deduction:

> Incident nodes have identical world coordinates.

47

Weltkoordinatensystem x,.Yu.Zy

Netzkoordinatensystem x,.y, (xy.yn)
lokales Koordinatensys tem3 XN

4
Knotenbasis xy .y,

Xw

o o o o
'\’; -

1
|
b
[}
|
- ' " .
o
R
-
1 - world coordinate system, 2 - mesh coordinate system, 3 - local
coordinate system, 4 - node basis

Figure 3.10: Coordinate systems and bases for the description of the

configuration.
/40

The world coordinates are determined by the following procedure. This

will be called consolidation of coordinates:

1.

Computation of the world coordinates from the defined mesh
coordinates (created by the conversions U4 and U5).
Transferring the world coordinates upwards:

In a traversing of the mesh tree from the elementary mesh
to the main mesh (according to the ordered mesh sequence)
all defined world coordinates are tranferred into the next
higher upper mesh in each step via the node incidences.
The agreement of redundant coordinates with all nodes of a
mesh is demanded (compare Chapter 3.3). Deviations from
defined upper mesh coordinates can be an indication of
incorrect node incidences or an incorrect description of

coordinates.

48

Transferring the world coordinates downwards:

By the reverse traversing from the main mesh to the

connecting meshes of the highest rank all defined world

coordinates are transferred into the next-lowest mesh via
the node incidences. Agreement is again demanded for
redundant coordinates. Deviations from defined lower mesh
coordinates can again indicate errors in description.

World coordinates for elements: via the element incidences

all element nodes receive the world coordinates from the

corresponding upper mesh.

World coordinates for middle nodes: The element meshes of

some types provide for middle nodes. For their world

coordinates the following rules apply:

o If they are undefined, they are determined from the
corner nodes by interpolation.

o If they are defined, no change occurs. If they
correspond to the interpolated coordinates, surfaces and
edges will be flat or straight, respectively.
Otherwise, they will be bent.

If world coordinates are determined for middle nodes, steps

(2) and (3) are repeated.

/41

After consolidation undefined world coordinates may not exist for any
nodes of any mesh. From the compatibility of mesh and element type
(Chapter 3.2) it follows that an element coordinate system is always

jdentical with the mesh coordinate system of the corresponding upper

Therefore, the consolidation still must be completed by:

7.Conversion of the world coordinates for the element nodes in

the element coordinate system.

49

3.6.3 Regular Node Distribution

Commonly, for reasons of simplicity, a model is idealized so
that several nodes of a mesh are regularly distributed in the
visualization space. The term "regularity" is used because the
measurement numbers of the coordinates can be given by an arithmetic
or geometric series in a definite reference system. Through suitable
coordinate systems it is possible to describe the location of nodes by

means of characteristic geometric loci, e.g. with:

o straight lines in Cartesian coordinate systems

o circles and straight lines in cylindrical coordinate
systems.

o spherical surfaces and straight lines in spherical

coordinate systems.

Moreover, a reference system is given by interpolation functions, with
the help of which the coordinates may be indirectly written in
parameter form. According to the number of necessary parameters one

differentiates:

o line parameter § : With this the nodes lie on an
arbitrarily curved line.

o surface parameters &, N : The nodes lie on an
arbitrarily curved surface which forms a topological
triangle or quadrilateral.

o space parameters §, h, L : The nodes are distributed in
space. Tetrahedra, pentahedra, and hexahedra are used

as topological regions.

The interpolation functions facilitate the desciption of a regular
distribution of the nodes in parameter space in the framework of a
certain coordinate system. The form of the interpolation function

depends on

50

o the choice of functions (e.g. Lagrangian polynomials).

o the topological region and hence the number of
parameters.

o the number and arrangement of so-called support nodes
vhose coordinates must exist in explicit form and not in

parameter form.

The more support nodes available, the higher the order of the function
and the more exact is the approximation of a geometric locus. In
reference to the arrangement of support nodes, one differentiates two

cases:

o The support nodes are distributed over the entire
topological region.

o The support nodes lie only on the edge of the topological
region. Thus one is saved having to specify support nodes
in the interior.

The location of the support nodes can control the distribution of
support nodes in the region and thus allow the creation of patterns of
refinement. Obviously, there exists a direct relationship between
interpolation functions for certain topological areas and the
statement functions for elements. They are even identical, if the
topology is the same, if Lagrangian polynomials are used with the
elements.

Let xl'be the coordinates of the support node i, .

{xv xz,.".ng the coordinates of all m support functions, f:theset of
all m interpolation functions and Ek the parameters of a node k in the
given topological region. Thus f must fulfill the following

conditions (compare Appendix C):

1. £2(g)=1 and £'(%,)=0 for 1<i, j_m and i#j.

1
2. SE = 1.

i=1

51

/43
Then for the coordinates of this node

x, = {T(Sk)x } (3.8

For the topological regions the results in detail are:

1. For the line with (n+1) support nodes result functions of
the nth order for each support node i (Lagrangian

polynomials, compare [Rutishauser 76]):

+1
'TT T -,
fﬁw)- (?_7_1,
1° Yy

=1 1 (3.9)
it |

with 0¢ & < 1.

2. For a topological triangle with support nodes in the entire
area after [Argyris 68] applies:

Seted(¥,m) = €5 (B £)£, (-E | (3.10)

with i+j+k = n+3. Here i and j are the numbers of the
support nodes in the &-direction and the n-direction
respectively. The terms of the function may be depicted in

visual form as a Pascal’s triangle:

!n________________“n \

52

For a topological quadrilateral there exist for support

nodes in the entire area Lagrangian polynomials according

to equation 3.9:

B gls) - by £
£,70 (8 = £.(%) £](y)

If n is the order of the function

the order in the n-direction:

i i 3
Beledigm = £, g0

The terms of this function can be

manner using Pascal’s triangle:

| \'I.
IN/\
2
/!\ ,l\ ~
s\t \\I \
’ \\ N
/ \
/ by
[/
| /
\
\ /
\ /)
\
\ /’
\
\ K
\
\ /I
e
A

If only edge nodes are used as support nodes,

that (compare [Coons 67]):

/

(3.11)

in the &-direction and m

(3.12)

depicted in the following

it results

T T eyl
ufli"'a‘(g,.l) - f:“(§)fj‘-(ql) + fih)!,(!) - £, (D7) (3.13)

with
0 ; 1<1i<(n+1) 0 1<j<(m+1)
Te=q1; 1= Cg T =413 j=1
2) i=(n+1) 23 j=(m+1)

(3.14a)

53

or

T = max [(@iv(i-1,n)-mod(1~1,n)+1),0]

7 = max [(div(j-1,m)-mod (j-1,m)+1),0] . (3.14b)

respectively.
/45

For the depiction in Pascal’s triangle results:

J\
e §
4\/\
¥ <
/ 1 \\ \
/ / Y
P AT
4 '// R \\m
i hYA 1
VA " \
™

Through the exclusive use of edge nodes one obtains no
coupling of the functions in the &- and n-directions. Thus,
the order of the functionsf:u)[can be changed from j=1
with n=n_ to j=m+1 with n=n_. This applies analogously for
] . This yields:

/
{

0.1, '
£ ®aeel mem-Fmea | (3.15)

i
(n,m)hz(!'")"f

"y

with =7 accordingly from Eq. (3.14). (For proof, see
Appendix C).

54
4, In a tetrahedral region, analogous to the triangle,
applies:

e 1,3,k i 3 k 1 o A 4
3 (Y0, 5)=f7_ L (B)EI_(q)E _(D)E5_ 400 ¥-q-3)
n i-1 j 1 k-1 . 1-1 \‘ (3‘ 16)

with i+j+k+1 = n+4. It has been shown that, in triangular
and tetrahedral regions, for orders greater than 2, no set
of interpolation functions may be given in which the
support nodes lie only on the edge because the three or
four function terms from Eq. (3.10) and Eq. (3.16),

respectively, are not linearly independent.

5. In a pentahedral region,the functions are created by a
combination of equations (3.10) and (3.11):

o i, k
@ i3y =t g (3.17)

/46
or a combination of equations (3.10) and 3.15):

D, 1,5,k adgisd k L I :
g P D= G D0 e Ty (3.18)
‘ S Rl RIYLAS) '
wvith 1,3,%! from Eq. (3.14).

6. In a hexahedral region in the case of support nodes also in

the interior applies, analogous to Eq. (3.11):

1,3,k =ty €3 (me"
ofn'a.l(;,,,n £ NEN (VIR o (3.19)

55
Considering only nodes on the edges on the hexahedron and
assigning a different order to the polynomial on each edge
yields, analogous to Eq. (3.15):

o3k - .)
Ot((n,m.l)1"2)1'2(5:10” | , \
i 3 k i S PRy o
£ (§) £ () £5(3)+£ (FIE(y) £ (1 .
DR RIS ¥ Rt |
X 3 k el 5] X (3 20)
+£7(8) € (9) £ (5)-£ ($)£3 () £,(T) ‘ .
R R P S S A

X X b G, g b IR, PR 3
-f,(!)tar 2(1)£,(t)-fl(E)f1(q)£1133(3)+£1(!)t,(a)fl(!)

’

with 3%, according to Eq. (3.14).

Thus, Lagrangian interpolation functions are known for all six
different fundamental topological areas. The parametric form of the
coordinate description represents a powerful broadening of the palette
of transformations of coordinates. It is noted, however, that the
oscillations of the function values between the support nodes in the
interpolation of node coordinates, commonly feared in Lagrangian
interpolations, have no significance. For one thing, node coordinates
always have discrete values, and for another thing, a sufficient
quantity of support nodes may always be named which exactly determine
the expected locus of the interpolated nodes (for an example, see
Appendix A).

/47
3.6.4 Node Bases

For the orientation of the degrees of freedom on a node the
respective mesh basis presents itself first of all. The unified
treatment is in many cases insufficient because for one thing,
kinematic boundary conditions can exist which are not parallel to the
axes of the mesh basis. For another thing, different meshes can have

various bases, through which can arise incompatibilities on incident

56

nodes. For the treatment of directions of degrees of freedom the
concept of node bases is available. Each node is a carrier of such a
basis. It represents a pure rotation, because the translation
component is included by the node coordinates. Analogous to node
coordinates, one differentiates mesh node bases and world node bases,
which can be transformed through the mesh basis and over the mesh

coordinate system (see Fig. 3.11).

In the description of the mesh node bases, it applies that
unspecified node bases determine the same directions as the mesh
basis. Moreover, the same principles apply as for the node
coordinates:

> For incident nodes, bases need only be described once.

Netztyp Netz — Welt
. ,
a.a 1 %2 ©
pC.P 1 %2 ‘
' %21 %22 ©
221 %22
o o0 1
[b
.. a 7 0 2
11 %2
AC,AT [] —l 0o 1 o
a a
. 21 %22
a2l o .22
211 %2 3 344 212 23]
c,s,T 3,y 8y 8 3le——rla,y, a,y, ayy
231 %32 %33 [#31 %32 33

1 - mesh type, 2 - mesh, 3 - world

Figure 3.11: Association of mesh node bases and world node bases.

57
/48
and

> incident nodes have identical world node bases.

From this results the following procedure for the consolidation of

node bases:

1. Calculation of the world node bases from the mesh node
bases.

2. Upwards transferral of the world node bases:
In a traverse of the mesh tree from the elementary mesh to
the main mesh, all world node bases are transferred via the
node incidences into the respective upper mesh. Deviations
from specified upper mesh node patterns can be an
indication of incorrect node incidences or an incorrect
description of the node bases.

3. Downwards transferral of the world node bases:
In a traverse of the mesh tree in the other direction from
the main mesh to the connecting meshes of the highest rank,
the node incidences of all world node bases are transferred
into the respective lower mesh. Again, deviations from
specified lover mesh node bases can indicate errors in
description. i

4. Vorld node bases for elements: With the help of element
incidences all element nodes receive the world node bases
from the accompanying upper mesh.

5. Conversion of the node bases of the elements from world

coordinate systems to the element coordinate system.

The description of the node bases is made simple by using | the
known node coordinates and the local basis. The following

possibilities are considered sufficient:

58

(a) - . " (b)

Figure 3.12: Defining process for node bases.

I.

II.

IIT.

A node basis is in agreement with the directions of the
local basis.

In the three-dimensional case, a basis on node K1 is
defined by three additional nodes Kz, Ks, and K4 (Fig.
3.12a). The first axis of the node basis points from Kz to
Ks; the second axis is perpendicular to the first in the
direction of K4; the third axis creates with the others a
system of directions. The establishment of the node bases
happens with the Schmidt orthogonalization process (compare
[Kowalsky 79]. Notable special cases are: /49

a) The second axis of the node basis points from K2 to
K3; the other axes are revealed by cyclic substitution.
b) K. = K

3 1

¢) The location of K2 is the location of the local basis.

According to this process, in the two-dimensional case two

nodes suffice for the description of the node basis.

A basis on node K; is, in the three-dimensional case as in
the two-dimensional case, determined by two further nodes
K, and K, (Fig. 3.12 b). Here,the basis of node K, is
aligned with a definite axis in the direction towvard node

K3. The establishment of the node basis occurs according

59
to a process given by [Argyris 82]. Special cases are:

a) K3 = K1 .
b) According to locations and directions, K2 is the local

basis.

Interpolations of node bases are not provided for, since this
generally results in a loss of the orthonormality of the bases. In
summary, all commands for description of the configuration are
summarized in Figure 3.13. The description possibilities given there
are best shown by means of an example, as in Appendix A. For
explanation of the separate commands, further examples are shown in

Figure 3.14.

Netzbasis 1

2

MBASE <netznusmer>

'[glulo Basisg 7

LBASE <nettnusmer>

8
Engtenkoordinaten

COOR <netznuamar>q {
L

==2I2%asen

!
Knotenbasen

[

ROTB <netznuaser>

Knotenkoordinaten-Interpolation

PARC <

.~

<typ

[10) [{ ::}[achees) [cen]

60

3 “ .

[p1s <verschisbung> {<maBeinheits)]
[reser] | ror <arenung $ (caasetnhetes)

| MIR <achse> ‘

_

DIS c¢verschiebung> (<maSeinheit>) W
[reseT] | mor cazehung: (<madeinheit>}

[IR cachse> o]

9

TAB <knotenkoordinatenliste>

4

SEL

. .
][<.cma> (cuﬂdnhol»)} ALL <koordinatenliste> o
)] o

" 9
{mo <koordinaten> IN &kmtcnl.ion;}

'
[y *
TA® cknotenhilfsknotenliste>
‘ALL <hilfsknotenlistes '
3 7
[uon <hilfsknoten>| IN <knotenliste>

'8

t9

1 mesh basis, 2 - m
measure, 5 rotation
coordinates, 9 node
coordinates, 12 - nod
list, 15 - auxiliary

18 - interpolation of
node parameter list,

Figure 3.13: Commands

1> [ru < 1> [2ETA <k

1] [so0e]

-
2o
TAB <knotenparameterliste>

%l

<knotenliste>4{ ALL <parameterliste>
N

- .
{uon <parameter> IN <Iznonnu.ltc)}

esh number, 3 - displacement, 4 unit of
6 - axis, 7 local basis, 8 node
coordinate list, 10 coordinate list, 11
e list, 13 node basis, 14 - node auxiliary node
node list, 16 - auxiliary nodes, 17 - node list,
node coordinates, 19 - number of nodes, 20
21 - parameter list

’

for the description of a configuration

ORIGINAL PAGE IS
OF POOR QUALITY

ORIGINAL PAGE 15
OF POOR QUALITY

61
‘ /51
| Rotation of the local coordinate
w ! | system with respect to the mesh
coordinate system:
LBASE 100 ROT. 30 (GRAD) 2 |
: ot |
|
|
. . Description of the node coordinates
Lem TS 2!
Netz 200 in polar coordinates:
COOR 200 POLAR R(CM) PHI(GRAD) 2 !

TAB 10 2,30/11 4,30/
20 2,60/21 4,60

The following descriptions of the

node basis on node 2 are equivalent:

I: LBASE 300 ROT 20(GRAD) 1
ROTB 300 LB IN 2

II: ROTB 300 AINM Y TAB 2 2,3

III: ROTS 300 REF X TAB 2 1,2

Description of the location of the
inner edge:
COOR 400 POLAR R(CM) PHI(GRAD)

TAB 10 2.5,607/11 2.5,45/12 2.5,30

Description of the location of the

55 cm

outer edge:

LBASE 400 DIS X 5.5(CM) DIS Y $.5(Cm)
ROT 180(GRAD)
COOR 400 POLAR R(CM) PHI(GRAD) 2
TAB 30 3,20/31 3,45/32 3,70

Description of the location of the
remaining nodes:

PARC 400 XI 3 ETA 2 BOUND
RECTA 12,11,10,32,31,30
TAB 20 1,0.5/21 0.5,0:5/22 0,0.5

1- Mesh, 2 - Degrees

Fig. 3.14: Simple examples for the description of a configuration

62

/52

3.7 Duality of the Degrees of Freedon
3.7.1 Dual Vector Spaces in Physics

The finite element method was first applied in static and
dynamic calculations for structures. Here the physical theory of
elasticity was made useable for engineering practice through a
restricted -- limited to finite elements -- approximation solution of
the fundamental theoretical equations. It was however soon recognized

that the method did not need to be restricted to elasticity
calculations [Argyris 69,72]. It is applicable to all physical areas
in which the theoretical foundations are described by two dual
physical parameters, u, v. Let U and V be two well-behaved vector
spaces with equal finite dimensions and ué€ U, v € V. Then the
duality of U and V is described by a scalar product

E =8 (u, v) (3.21)
which is positive definite, thus:

E >0 for u, v # 0 . (3.22)

In elasticity theory the physical meaning of energy can be attributed

to the scalar product:

E=J € 4dv =21 (3.23)
with the dual vector quantities

€e=f{(¢ , € , € , € , €& , € }: strain vector

d={(¢6 , 6 , 06 , 0 , 0 , 0 }: stress vector

and U as deformation energy. Besides this the vector spaces U and V

63

are related to each other such that V is the dual space of U, which
includes all linear combinations of the form

v = P (u) (3.24)

Physically this has the significance of the existence of a
constitutive equation in the theoretical area which interrelates the
two dual parameters. If one uses this relation to depict the scalar

product this yields the quadratic form

/53
E = B8 (u, p(u)) >0 . (3.25)
In elasticity theory the constitutive equation is known as Hooke'’s
Law:
o = Eg (3.26)

where E is the elasticity tensor.

In summary ,elasticity possesses the following properties which
are important for the application of the finite element method in

linear elastostatics:

1. The scalar product of two related dual parameters may be

considered energy.

2. The dual parameters are related to each other by a linear

constitutive equation.

To cite further examples of linear, static areas of application of the
finite element method besides elasticity theory:

64
o Electrical field with the dual parameters electrical
field strength B and electrical displacement density D.
The scalar product is

E=ijTEdv
and the applicable constitutive equation is
D = €E
where € is electrical susceptibility.
o Magnetic field with the dual quantities of magnetic

field strength H and magnetic field density B. The
scalar product is /54

and the applicable constitutive equation is
B = uH
wvhere u is magnetic permeability.

It is characteristic of all these areas of application that the
components of the model description are always the same. From this
results the uniformity of the finite element method, which is most

necessary for its wide practical application.
3.7.2 Duality Relationships

The duality of physical quantities manifests itself also in the
specification of a measurement procedure; specifically, all
measurement variables in a physical application are divided into

so-called flow or cross-section variables and potential or reference

65
point variables. The first name reflects the physical significance,
the second,the measuring procedure. Thus, flow properties are
measured with the use of a cross-section and determination of the
throughput, while potential quantities are measured between two
reference points as a potential difference. In elasticity theory,
force and stress are flow properties; displacement and strain,

potential quantities.

Through such a classification one obtains several pairs of dual
variables in a theoretical area. If one compares two such pairs u, v
and u’, v’, one can depict the relationships between these quantities
in a graph (Fig. 3.15). Each node of the graph represents a quantity
with which the potential quantities are coordinated on the left side
and the flux quantities on the right side (or vice versa). Each edge

represents a linear relationship.

Fig. 3.15: Relationships between pairs of dual quantities.

Between dual quantities exists a constitutive equation and between /55
similar quantities exists a compatibility requirement. According to
the classification, one has one compatibility requirement for flow
variables and another for potential variables. These are not
independent of each other and represent a dual descriptive pair. For
this,applies first of all the constancy of the scalar product (i.e.
the energy)

\Ad (3.27)

66
for discrete quantities and with

: u = Bu’
;* : v’ = Bv (3.28)
results
u'"B'v = u’"Bv

from which follows

B’ = B (3.29)

Therefore y is the compatibility requirement adjunct to @* (compare
[Kowalsky 79]). The compatibility requirement always exists and is
unambiguous. The constancy of the scalar product used here signifies
physically the independence of the energy from the quantities which
define it, as long as such quantites are mutually compatible. From
this may be derived a relationship between constitutive relations of

the two pairs of quantities. Once again

uTv = u'Tv'
/56
or
uTAu = u’TA’u’
and with
u = B’u’
then

u'"B'TAB’u = u'TAru’

67
from which

A’ = B'TAB’ (3.30)

or with Eq. (3.29)

T

A’ - BAB (3.30a)
and thus
v’ = BABTu’ (3.31)

The relations of Eqs. (3.29) and (3.30) are applicable to all pairs of
dual parameters and they make possible the transition from one pair of

quantities to another as a consequence of the linear relations.

3.7.3 Displacement Method

The duality relationships can be applied in a multistage manner
to a dual parameter pair. In Fig. 3.16 the resulting graph is shown
as a duality ladder for the displacement method of finite elements in
structural calculations. While the uppermost rung is determined by
the physics of the continuum, the second rung depicts the most
important step in the derivation of the finite element method. Thus
from the continuous displacement field u the node of discrete elements
is transferred to the displacement p. This step of discretization has
contributed to the development of the method, above all by the
principle of virtual work [Argyris 54,56,57]. The dual parameter /57
pair s.P is designated the element degrees of freedom. These are
related to the mesh degrees of freedom, r, R on the third rung of the
ladder. While in the derivation of the displacement method the static
compatibility is deduced from the kinematic compatibility, the
opposite is true of the dual force method [Argryis 54,56,57]. The
force method may be depicted by a dual ladder by which all edges of
the graph have the opposite orientation. The existence of two dual

methods follows from the principle of duvualization [Kowalsky 79].

. YA . .4 . 5] I3]
Bereich | Vtrlrdgl:::slfkh:lf F:":(;,h;lg gfléulf'cn V.:r'r%lg'frf:'lz:m z::i#.gp:rnadfor 68
Spannung '
é
F ”
Material — —— - - = —— ; -=={€ é =Ee d)-----~-- Materialsteitigkeit
Dehnung 1y ! Punkrkrall?c . € 1R
. Kontinuum €-Dv el u’P P J 4 Differentialoperator '
4 . / l
Pupkt == === - e = — — {up—ﬂ—eb -------- Punldsuiligk«:/ R
‘ . Koo a x =« D'ED |
I}/ Punidverschiebung v ' , Elementkratte I
Diskretisierung v ’ J upav « P. j’ Urfdv Ansatzfunktionen '
. v 20 @
7 : Pl > o
Element | —— — — = = e e e Pr-——-———-=- Elomonlstmhgkou ;
EIcmonl-anhn 21 AX I Wwxway '
42 © Elementverscha re 7 Netzkralte
Ass’ze%o‘l_::rung g, i;‘ Z 4 LA *R R- X“:'P, gpfa'hmlsgradmzdamﬂi
2) . 2
xe:z —K- ;f;n- - ——— };- -=4r R Kr R)-—-~-—==~ Nofzsfiolhgho:l l
@IZ - Kn
—e Netzverschiebung K X e kq !
r
1 - region, 2 - kinematic compatibility, 3 - potential variables, 4 -~
flow variables, 5 - static compatibility, 6 - stiffness and linear
operator, 7 - stress, 8 - continuum, 9 - strain, 10 - point forces, 11
- material stiffness, 12 - differential operator, 13 - point, 14 -
point stiffness, 15 - discretization, 16 - point displacement, 17 -
element forces, 18 - statement functionl9-element nodes, 20 - element
stiffness, 21 - element displacement, 22 - mesh forces, 23 - assembly,
24 - incidences of degrees of freedom, 25 - mesh, 26 - mesh node, 27 -
mesh displacement, 28 - mesh stiffness

Fig. 3.16: Duality ladder for the displacement method in structural
calculations.
/58
3.8 Kinematic Boundary Conditions

3.8.1 1Incidences of Degrees of Freedom

In the dual vector spaces of the degrees of freedom the
coupling of the meshes is brought about by incidences of degrees of
freedom. For incident degrees of freedom the degrees of freedom of
the lower mesh are designate external degrees of freedom and the
corresponding upper mesh degrees of freedom are designated actual
degrees of freedom. The quantity of degrees of freedom A of an upper
mesh consists of the union of all external degrees of freedom E&; of

each coupled lower mesh i:

ORIGINAL PAGE .5
OF POOR QUALITY

69

A-Ueg, . (3.32)

r = a.r ' (3.33)

by which r € E . The total degrees of freedom of the upper mesh is
designated by r, and a, denotes the incidence of degrees of freedom of
the lower mesh (compare [Schrem 78a]). Depending on the mesh type,
each node of a connecting mesh carries the same set of degrees of
freedom which can be actual. One calls the quantity of all degrees of
freedom of a mesh the quantity of potential degrees of freedom TT, out

of which all the actual degrees of freedom must be taken, i.e.

ASTT . / (3.34)

The following apply for the distribution of external degrees of
freedom in the mesh tree:

o The main mesh has no external degree of freedom.

o Partial meshes must have external degrees of freedonm,
otherwise the lower mesh tree contributes nothing to the

physical model.

o Elementary meshes normally have only external degrees of
freedom, because the choice of a certain element type is
based precisely on its degree of freedom.

/59
Degrees of freedom are transferred upwards by means of incidences into
each sucessive upper mesh until they no are longer arranged as
external degrees of freedom. This release of the degrees of freedom
can occur in all meshes, but must occur in the main mesh at the
latest. The correlation with the node incidences according to the

principle of node-connected degrees of freedom (Chapter 3.2) is based

70
on the fact that exclusively incident nodes can have degrees of
freedom. Thus,if a lower mesh node has a degree of freedom, it must
also be incident. Conversely, a lower mesh node must also have a
degree of freedom if it is incident; otherwise,the coupling in the

visualization space must occur differently from in the dual vector

spaces of the degrees of freedom. 1Incident nodes take up the same
point in the visualization space. For incident degrees of freedom
apply:
o The displacement values are equal: kinematic compatibility
o The sum of the lower mesh node forces is equal to the

force on the upper mesh node: static compatibility.
This is the physical significance of the assembly in Fig. 3.14.
3.8.2 Classes of Degrees of Freedom

All degrees of freedom occurring in a connecting mesh are
included in the quantity of potential degrees of freedom. Their
canonical order is defined by the node order and the order of all
degrees of freedom in a node, the latter being determined by the mesh
type.

A division of the potential degrees of freedom into classes of
degrees of freedom serves to divide the dual vector spaces into
distinct lower spaces and hence also serves the modular treatment of
the boundary conditions [Schrem 78a]. Here the actual degrees /60
of freedom play a central role (compare Fig. 3.17). They include all
those degrees of freedom which can be traced over incidences back to
element degrees of freedom. 1In contrast to these are the apparent
degrees of freedom 7Y which denote the unused potential degrees of
freedon.

y=-T\A B (3.35)

71

m pote!:fioll 1 ’

3

unbekannt extern vorgeschrieben unterdrickt

— —— = o
o

l - potential, 2 - actual, 3 - apparent, 4 - unknown, 5 - external, 6
- prescribed, 7 - suppressed.

Fig. 3.17: Classification of the degrees of freedom

A node whose potential degrees of freedom are all apparent degrees of
freedom is called an apparent node. The quantity of actual degrees of
freedom includes the following subquantities (Fig. 3.17):

o External degrees of freedom E : They serve the coupling

into the upper mesh and may not be described for the main
mesh.

o Internal degrees of freedom: the dual character of the

degree of freedom requires its division into:

a) Unknown degrees of freedom & : Their displacement
values are a priori unknown. Their quantity determines the

dimensions of the calculation tasks in each mesh.

72

b) Given degrees of freedom: For them a displacement value
is known a priori. Through this,results in the model a
constraint; thus,such given conditions are called kinematic
constraints. The constraint results from the quantity of
degrees of freedom being reduced due to projection into a
displacement space of smaller dimensions. That also /61
reduces the dimension of the constitutive equation to be
solved

R = Kr (3.36)
Here one differentiates:

1. Prescribed degrees of freedom p : For them an arbitrary
value is provided for, for which reason these measurement
values are counted among the load-dependent data of the

model description (compare Chapter 3.10).

2. Suppressed degrees of freedom $: For them the displacement
value of zero is assigned. They make no contribution to
the displacement field of a model and are not considered in

the calculation.

Thus,there result five classes of degrees of freedom and it applies
that:

(3.37)
EuUuvPUS VY = Wm
[1]

EnunI’ASnY =

In the method of writing matrices the selection of displacement values
of a class K is achieved with the class selection matrix bK (compare
[Schrem 78a]):

73
r =5>b r (3.38)

wvhere the potential degrees of freedom of a mesh are shown by r
(compare Eq. (3.33)). 1In the model description the class Y is never
specified. A degree of freedom is assigned to the class & if it
either is designated as such or if it is an actual degree of freedom
associated with any class. The description of all the other class
affiliations must be done by the user. Here the following rule is to
be observed
/62
> The model must be kinematically definite, i.e. rigid body

movements of the entire model are to be excluded.

That can happen through a suitable orientation of the structure with

the help of suppressed degrees of freedom.

zum Obernetz

r;poziliziorbaro
I Freiheitsgradkiassen

—

scheinbar

vom Unternetz > %
1 - to upper mesh, 2 - specified classes of degrees of freedom, 3 -
external, 4 - unknown, 5 - prescribed, 6 - apparent, 7 - actual, 8 -

suppressed. 9- to lower mesh

Fig. 3.18: Plan for classification of degrees of freedom in a partial

mesh.

74
3.8.3 Element Degrees of Freedom

In elementary meshes the canonical order of the degrees of
freedom results from the order of the elements, the node order in the
element mesh and the element type-dependent quantity of degrees of
freedom on each node. Commonly the following simple relationships
apply for the quantities of degrees of freedom in elementary meshes:

T-A-E (3.39)

/63
A change in these relationships results from the introduction of
element-localized element degrees of freedom. Through this the number
of degrees of freedom is reduced. This serves e.g. the simulation of
joints between elements. Fig. 3.19 shows how commands for description
of joints and degrees of freedom appear. The two small examples in
Fig. 3.20 illustrate the use of the commands.

1

Kl ullcnluordnug
2 3 k4 £

” 1 4
FRED <netznummer> {(khnno) <freiheitsgrade> IN lknotonliltc)}

elementlokale Xlamentfreihestsqrade
7 g)

o
HINGE <netznummer> {[uo'r] <freiheitsqgrad> cknoten> IN «-l-ntu-n»}

1 - class coordination, 2 - mesh number, 3 - class, 4 - degrees of
freedom, 5 - node list, 6 - element localized degrees of freedom, 7 -
degree of freedom, 8 - node, 9 - element list

Fig. 3.19: Commands for the description of kinematic boundary

conditions.

75
/64
Coordination of classes of degrees

of freedom:

TV
1 S .
. PRED 100 SUPP U,V IN 1 P
SUPP U 1IN lv
X &

g Netz 100 The remaining degrees of freedom are

~automatica11y associated with the
"unknown" class.

~Jointed connection of two beam

) " elements:
FRED 200 SUPP U,V,PNI IN 1.3 x
EINGE 20 PNI 2 IN 1,2
\
|
|

1 - mesh, 2 - elementary mesh

Fig. 3.20: Examples of the description of kinematic boundary

conditions.

3.9 Element Data

Characteristic of the finite element method is the uniformity

which allows

mesh tree
topology

configuration and

O O O ©

boundary conditions

for all element types to be treated in the same way in the model
description. A series of properties of the elements cannot be so
taken in, and these are all those which outside the configuration are
necessary for the calculation of an element (e.g. for the stiffness).

These elements concern:

76

o geometry and
o material of the model
/65
and depend on the element type. By geometry is understood

o Cross-section data on rod and beam elements such as area,
moment of inertia, torsional moment of inertia, shear
areas, etc.

o Cross-sectional data on membrane,shell, and plate eléements

as thickness, distribution of layers, etc.

The key word material unites all parameters which describe the
material behavior, e.g.

o material stiffness, including a possibly necessary
reference direction system
o density

coefficient of thermal expansion, etc.

An element type can have several sets of such element data, which can
be determined depending on the resources available for the element
calculation, e.g.

o isotropic or anisotropic material stiffness,

o solid beam or beam with open,thin-walled construction, etc.

Which set is under considerationis determined by the so-called model
type. This encompasses the variety of elements of a type. The

selection of the model type prevails over the model description. Here
is to be heeded:

> For all elements of an elementary mesh applies the same
model type.

77
The model type serves for one thing the guidance of the input data
with respect to storage and checking the completeness of the model
description. For another thing,it directs the element calculation in
regard to its scope and thus its efficiency. The principle of unity
of model and mesh tree demands then that to every given element type
the corresponding model type is also determined. Thus,the user

determines exactly which physical phenomena he plans to investigate.

For the description of element data, two fundamentally /66
different possibilities are given. One possibility occurs on
elementary mesh planes by statement of the element number. This is
the usual way. In the other way the description takes place on
connecting mesh planes. Here,the data are allotted to certain nodes
and coordinated with the elements concerned by means of node
incidences. This possibility is excluded if the element datum in
question is not equal in all elements concerned, or if elements of
different types are coupled in this connecting mesh node, but the
datum is not contained in all model types concerned. Fig. 3.21 shows
the command for description of the element data. An example of its

application is found in Appendix A.

In the description of element data, dimension-dependent
variables appear, as already seen to some degree in the configuration
and the combined constraints. All their units must be compatible, in
order to be able to interpret correctly the results of the
calculation. This compatibility can be left the responsibility of the
user, but for the description it is significantly more convenient to
ensure automatically the compatibility of input measurement numbersby
specifying measurements. This occurs by the conversion of all
quantities to the MKSA system of units [DIN 1301]. Thus,fthe user has

a variety of possibilities for input of data.

78

1

Elesantdaten 6
ELTS celementliste> 7 }}

1 3 9 5
ELDA < > 4 <block [(cuhtnmt::)] WITR <Jdaten>
. NODES <obernetsknotenliste>

1 - element data, 2 - mesh number, 3 - block name, 4 - mass unit, 5 -
data, 6 - element list, 7 - upper mesh node list

Fig. 3.21: Command for description of element data.

/67
3.10 Loading

In the description of loading,all given parameters of the
degrees of freedom (displacement and forces) are specified. Thus dual
parameters in a node cannot both be specified at the same time. 1In

loading, one differentiates between

o Node loads on planes of the connecting mesh. In this
category fall node forces and node displacements for the
prescribed degree of freedom and for the prescribed portion

of the dependent degree of freedom.

o Element loads on elementary mesh planes. These include:
1. Distributed loads:
a) Volume loads from accelaration such as weight and
centrifugal force
b) Surface loads from pressure
c¢) Line loads
2. Initial loads

a) Initial strains (e.g. from temperature)

As the model type determines a set of element data, so is a
load type provided for, which chooses those loads for a certain
element type which are needed for a model description. Which load

types are possible is determined by the element type.

79
> For all elements of an elementary mesh applies the same
load type.

Out of the divided element loads, kinematic equivalent node forces are
determined [Argyris 65]. These are transmitted to the upper mesh via
incidences and there they are added into the node loads. Since
certain element data are important for this calculation, the choice of
load type also depends on the model type. One must also pay attention
to the following schema of dependencies:

Element Type

Model Type —» Load Type

The load type serves firstly to guide the element load input and /68
secondly for the guidance of the calculation of the initial loads and
the kinematically equivalent node loads. According to the procedure

for input of element data, the possibility of description on planes of

elementary meshes or connecting meshes also exists with element loads.

A definite combination of node and element loads for a model is
called a loading case. Each model allows a fundamentally free
selection of loading cases. Each loading case is identified by means
of a loading case number. As with nodes and elements, the user
determines the order of his external loading case numbers, which
correspond to ordinal internal loading case numbers. 1In this way the
user is free in his choices of identifiers for loading cases. Single
loading cases can represent combinations of other loading cases. The
quantity of loading cases is a global property of the model. All
meshes possess the same number of loading cases. According to the
principle of the unity of the model and mesh tree, this number must be
determined during the mesh tree description. The same is true for the

load type of an elementary mesh. According to the dependency schema

80
shown above, and in order to fix all global model properties from the
beginning it will be agreed:

> One load type applies for all loading cases.

As with the model type,the user determines the physical phenomena to
be studied through the choice of the loading type. This serves a
precise idealization which always must precede a model description.
This means that the user must consider precisely in what condition his
model is. These considerations affect all the properties which are to
be fixed in the mesh tree description. In reference to the physics of
the calculation assignments, the types of mesh elements, element
models, and element loads are decisive. The well-considered choice of
these types makes their alteration unnecessary in the further course
of the model description. The principle of unity of model and mesh
tree is thus tightly connected with a properly sequenced way of
working on the part of the user: first, 6 the complete idealization of
the model; then its description. The commands for description of /69
loading are summarized in Fig. 3.22. An explanatory example with

three loading cases is shown in Fig. 3.23.

81

ORIGINAL P&GE T
OF POOR QUALITY

4+ L
Lastfallousmern und Lastfallireihenfolge

2 0
LCASEQ <Lascfalliste>

Aktjvieren eines Lastfalls 3

q
LCASE «<lastfall>

!m;!n!ll!n‘ ’
4 ? s [TAN cknotesundlastlistes
MLOAD «netsnummer> { sEL {dun-.n-quo u-n.un-n.»}. ALL <lastlistes 19
: {0 ttasts 10 ch-t-unnr
1} 3
jabene 13
[AR I
rees »am {a tagrads (e} { AL cverschiobusgstistes '3 ’
[
I
Elemenciasten |7
. Y 3) a0 .
ELOAD > [, . " Wit <datens {ﬂ-ﬂ calementlistes al }}
NODES <chermetihimotanliste»
un;m‘;!u vyon Lastfillen lz
SPOSE (ll-l!:l?) dn:w“;.'
1 - loading case numbers and loading case order, 2 - loading case
list, 3 - activation of a loading case, 4 - loading case, 5 - node
loads, 6 - mesh number, 7 - degree of freedom, 8 - unit of
measurement, 9 - node and load list, 10 - load list, 11 - load, 12 -
node list, 13 - prescribed node displacements, 14 - node and

displacement list, 15 - displacement list, 16 - displacement, 17 -
element load, 18 - block name, 19 - data, 20 - element list, 21 -
upper mesh node list, 22 - superposition of loading cases, 23 -

loading case, 24 - factor

Fig. 3.22: Commands for the description of the loading.

82

ORIGMAL PITE 15

OF POCR GUALITY

1
Lastfoll 1 Lastfall 2 Lasttall 3 |
o |
YV R=100N . y.v
4 3 13 3
R=50N
=SON
? 2 2
Xog, U N XAl Xt

Nelz 10

3
Beschreibung: LCASEQ 1,2,3

LCASE 1
WLOAD 10 SEL V(X) TABD 3 -100

LCASE 2
MLOAD 10 SEL U(W) TAB 2 -50 / 3 %0

Superposition der Lastfille 1 und 2 ‘q

LCASE)
sPOSE 1 1.0
8POSE 2 1.0

1 - loading case, 2 - mesh, 3 - description, 4 - superposition of
loading cases 1 and 2.

Fig. 3.23: Simple example for description of node loads.
3.11 Calculation

Part of the total purpose of a system for modelling is to place
in readiness all matrices with which the core system can perform the
FE calculation. 1If one takes as a basis the solution algorithm as it
is implemented in the program system ASKA for a linear static analysis
[ASKA 71], then the following matrices are needed: |

83

o} for all lower meshes j of a connecting mesh: the /71
matrices of incidences of degrees of freedom a, (compare
Eq. 3.33).

o for all upper meshes:

a) the class selection matrices bu, bE, bp, bs (compare Eq.
3.38). Thus,result the class-specific matrices of
incidences of degrees of freedom in the corresponding lowver

mesh

a . = a,

Uj j U

a =a.B (3.40)
Ej j E

etc.,

b) the node loads R’ for all loading cases,

¢) the prescribed displacements r’p for all loading cases.

Through the concept of the satellite system (compare Chapter 2.1), in
particular the entire element calculation is removed from the core

system. To that part of the model description belong:

the checking of all supplied data of each single element,
the construction of element stiffness matrices kei for all
elements i, so that for the stiffness matrix of an

elementary mesh results

by = [wed \ (3.41)

3. the assembly of the element forces @, based on initial
loads ¢, and distributed element loads %ot for all

elements i and all loading cases so that it results in

Q= [Res - ded] -/‘ : (3.42)

With these preconditions, all necessary steps for solution of the
calculation task can be performed in the core system. These are

performed in Appendix B.

84
4. Modularization of the Program and the Data /72

4.1 Segments
4.1.1 Concepts

A definite application of the finite element method -- called a
project -- always begins with that part of the satellite system
concerned with the model description. Thus, in the model description
the user first comes into contact with the VFE-machine. All available
model data are then stored in a single special project data base and
processed (see Chapter 5) by the data processing system (DVS). For
the following illustration of the modularity of the program and the
data, it suffices here first to assume that so-called data modules
serve as storage units in the project data base. 1In each of these
modules is stored all the data of a model object which describe a
particular property, e.g. all node incidences of a lower mesh with its

upper mesh, or all node coordinates of a mesh.

The components of the model description could be depicted in
easy-to-follow form by the division into several steps, one following
the other. Following the principle of modularization, this division
should also be carried out for the programming system, the data
module, and the user input. The pertinent concept is called a

segment. Each segment represents the sum of the following decisions:

o The user should have in mind an easily-overviewed and
homogeneous part of the model description and thus be able
to abstract from the other parts as extensively as

possible.

o A segment is a collection of tools for the convenient
description of model data. In using these tools, the user
should need no knowledge about the data modules used

internally in the program.

85
The fundamental operations of creating and initializing (or
destroying) as well as changing data are allocated exactly
one segment. The coupling of allocated segments is /73

realized solely by read access to data already described.

Thus each segment depicts one functional unit in the view of the user.

For the elastostatic model description result the following segments

(with their respective names):

Al
A2
A3
A4
A5
A6
A7

TREE mesh tree

TOPO topology

CONFIG configuration

BOUND kinematic boundary conditions
ELDA element data

LOAD loading case

ELCA element calculation

Each segment is shown to the user in the following phases (compare

Fig.

4.1):

1.

Activation of the segment: This is called up by the user
either as a first call (NEW), continuation call (MOD) or
reading call (READ). The differentiation of first and
continuation calls serves the strict separation of creation
and alteration of data modules (compare to the separation
principle of [Schrem 78a]). This separation is closely
correlated with a static structure of the project data
base, the details of which still need to be carefully
considered. In the first call all segment-specific data
modules are assigned the state "existing and empty". The
first call and all continuation calls can change the
content of the data module. The types of calls serve to

define the access rights:

1

«abschnitt>
o st o
Abséhnitt
—_— , /74
l
1 - segment, 2 - creation and initialization, 3 - consolidation, 4 -
previous segment, 5 - next segment, 6 - change and read, 7 - read only
Fig. 4.1: User calling diagram of a segment.
NEW : create, initialize (or destroy), change, read
0 MOD : change, read
o READ : read
2. VWork with the segment: The user effects the changing or
reading of the segment-specific data module. The scope of
the possible operations is guided by the access rights set
forth in the first phase of this segment.
3. Deactivation of a segment: This is undertaken by the user

either to interrupt the work (KEEP, QUIT) or at the close
of the work (END). An interruption can be desired to
activate another segment (KEEP) or to end the work with the
system (QUIT), which leads to a return to the operating
system level. 1In both cases, it is ensured that the
current data state is not disturbed and, after a new
activation (by MOD or READ) the previous conditions are
found again exactly. If the user believes to have
described all data for a segment, he will bring about a
so-called consolidation (END). This central concept serves
the verification of the completeness and compatibility of

the inputted model data. Thus, the user is reassured from

87
segment to segment of the correctness of the model
description. The consolidation is called successful if no
completeness or incompatibilities are found; if this is not
the case, it is called unsuccessful. Through multiple /75
activation of a segment and subsequent correction of the
data content, the user can always ensure a successful
consolidation. These circumstances are summarized in the

principle of consolidation:

> Each model description must be successfully
consolidated in all segments. Only then may it be

called successful.

If a segment is successfully consolidated, a new activation
with a first call is excluded, because this would cause all
pertinent data modules to be newly created which would lead to
destruction of the consolidated state of the data base.
Besides the desired verification, a broadening of the data
base can be done in the consolidation (compare the
consolidation of the node coordinates, Chapter 3.6.2).

Thus, a consolidation can not be performed for a read-only

segment.

Some further consequences of the consolidation principle are
indicated: For one thing, all consolidations must be very carefully
planned in order to expose all sources of error (compare Chapter 3).
For another thing, a considerable effort is connected with all
consolidations, both in view of the programming involved as well as
the computation time. This is balanced by the certainty of the user
of having given a correct model description in' the framework of the
verifiable conditions. This is of great significance for the

subsequent calculation of the model and evaluation of the results.

88
4.1.2 Control /76

All segments of the model description may be judged with
respect to state and handling of their model data according to the

following viewpoints:

1. Vhich segments must be processed and consolidated before
the segment in question, since the access to already

existing data is necessary for the creation of new data?

2. Vhich access rights to the project data base exist for the

statement in question?

3. Are the data of the segment in question fully consolidated?

Since the correct consideration of these viewpoints is decisive for
successful work with the system, it suggests itself to give the user a
helping hand to save him the necessity of bookkeeping the
state of his model description.

The first step in that direction consists in the introduction
of a higher-ranked control segment which is alwvays active at the
beginning of system use and which knows and can call every segment
demanded by the user. Each segment is thus informed of the access
rights to the data modules of the project data base (whether NEW, or
MOD, or READ). Afterwards, the segment takes the sole control of the
model description until the user interrupts or ends with a
consolidation of further input to this segment. Following this, the
control segment is active again, and is informed of the conclusion of
the segment (whether QUIT, KEEP, or END; whether successfully
consolidated or not),.

The second step consists in the creation of a segment control
list which represents the static call diagram of all segments. This

is a component of the project data base and in it takes place the

89
bookkeeping for the consolidation of all segments. Thus,it is

determined in which order the segments should be called if the
consolidation occurs successfully. The actual dynamic calling /77
order can deviate considerably from this and include many iterations.
In the elastostatic model description the static calling order agrees

with the sequence -- Al through A7 -- given above (Chapter 4.1.1).

The third and final step to segment control lies in the
development of a functional unit, whose inner state is represented by
the segment control list, and which decides according to this list
whether a segment can be called or not. Thus,the control segment is
placed in the position to react to the demands on a segment from the
user according to the continuation of the model description. The
entrances to this functional unit are consistent with the control

possibilities of the user (compare Fig. 4.2):
1. First calling of a segment
SECNEV (name[3], permissibility)

'name([3]’ ¢ segment name, up to 12 symbols long
(FORTRAN format 3A)

"permissibility’ = 0 : no

> 0 : yes

This function determines the rank of the segment named. It
examines whether all lower-ranked functions have been
successfully consolidated. If that is the case, the user
receives a message. Then the function deletes all entries
for the requested function and all higher ranked segments,
if such entries are available. Thus,it is hindered that
the determined compatibility of the model data of a segment
be destroyed by subsequent changes in the data. This has

the consequence that this higher ranked segment must be

90
once again consolidated in every case. If the demanded
segment was already successfully consolidated, then the
calling of the function is not permissable, and the user
receives a message. Thus,it is hindered that existing data
can be destroyed by mistake. If the calling of the segment
is permitted, then, after the call, the corresponding
actual parameter receives the segment number which in the
control segment can be used as a jump variable for a
multiple branching. /78

3

o | READ
el KEEP
Lesen von
Modeiidaten G
1 - no model data extant, 2 - consolidation = 0, 3 - read only, 4 -
dormant, 5 - in process, 6 - reading of model data, 7 - input of model
data, 8 - consolidation, 9 - consolidation = 1, 10 - closed.

Fig. 4.2: Flow chart of a segment

2. Continuation calls of a segment

SECMOD (name[3], permissibility)

91
This function differs from the previous one only in that
the change of an already unsuccessfully consolidated
segment is permissible, if it is also confirmed with a
warning notice to the user. Thus,the difference is
preserved between correct model description and correct
model calculation.

/79
Read calls to a segment

SECRED (name[3], permissibility)

Such a call is always permissible if the segment is carried
in the control list. The function does not change the
control list.

Interruption of the segment

SECKEP (name[3])

The segment must be known but the function does not change

.the state of the control list. This function is also

called from the control segment if the consolidation was

not successful.
Ending of a segment
SECEND (name[3])

After the release of the segment,the success of the
consolidation is retained in the segment control list.
This occurs, however, only on the condition that all lower
ranked segments were successfully consolidated, because
otherwvise the results will not necessarily be based on
irrefutable model data.

92
Changes of the calling order affect exclusively the segment control

list. The state diagram of the functional unit corresponds to Fig.
4.2. For the user, an additional function is provided for:

6. Listing of the state of the model description

SECLIS

Vith this, the user receives the momentary state of the
segment control list in easy-to-see form on his output

device.

/80
4.2 Contexts

4.2.1 Concepts

In the broadening of a concept already introduced (Chapter 3.3)
the principle of unity of model, mesh tree, and project data base is
established for the storage of model data:

> All data for a model are stored in one data base, and in

one data base are stored the data for at most one model.

This principle forms the framework for the application of the

following concepts.

All data modules in the project data base are identified by
name. A table of symbols (compare [Knuth 68]) makes possible the
correct depiction of names in addresses within the data base. From
the principle named results now the necessity to have data modules of
the same kind for all meshes in a mesh tree. The processing of the
same kind of data modules can then occur truly simply and uniformly,
if they are accessible under the same name. In order to ensure the
unambiguity of the coordination of names and data modules, all data

modules of a mesh are combined under a context (compare [Schrem 78a}),

93
the so-called mesh context. This is identified with one name as well.

This context name corresponds to the respective internal mesh number.
The contexts are further implemented as symbol tables which assign the
context names to addresses which refer to the symbol table for the
data module of every individual context. Therefore the unambiguity of
the name must be demanded on one hand for the meshes and on the other

hand for the data modules within a context.

Which data module is called by a certain name depends on the
actual context, i.e. each context requires activation before the
data modules within it can be processed. The data processing system
(DVS) places two pairs of functions at one’s disposal, in order to
create and to activate contexts out of the project data base (see also

the flowchart in Fig. 4.3: /81

1. Creation or destruction of an empty context

NEWCTX (namctx)
DELCTX (namctx)

According to the description of the mesh tree, a context is
created for each mesh. Through this, a context structure
is imprinted which remains unchanged for the entire model

description.
2. Activation or deactivation of a context

USECTX (namctx)
RELCTX (namctx)

Since for any given point in time only one context can be
active, the deactivation of the first context must precede

the activation of the second.

94
In addition, an additional interrogatory function is available for the

name of the current mesh:

ASKCTX (namctx, iex)

The name of the active context is thereby given (iex = 1) or no

context is active (iex = 0).

For the input of mesh-independent model data such as the
segment control list, beyond the mesh contexts one needs also a
so-called basic context. This is always active and allows at any time
the access to the data stored in it. In order to ensure the
unambiguity of the name in the basic context and each desired active
context, it is agreed upon that the names of the data modules in the
basic context must always begin with a special symbol (the $ sign).
Thus it is already determined by the name whether a particular data

module is in the basic context or in the active context. /82

1 - context unknown, 2 - context known and inactive, 3 - context
known, 4 - data access

Fig. 4.3: Flow chart for data access by means of contexts.

Since alwvays only one mesh context can be active, there is at first no
possibility to simultaneously process two data modules of different
meshes. But exactly this is necessary by all assembly precursors by
which data from lower meshes are placed into a common upper mesh
(compare the consolidation of the node coordinates, Chapter 3.6.2).
The existence of incidence information requires the common access to
upper and lower mesh data. This purpose is served by the introduction

of the so-called Olympus in the context processing [Schrem 78a]. With

95
this,it is allowed for exactly one data module out of a mesh context
to be accessible from all other mesh contexts. In order to avoid
confusion of names, the data modules must also have an Olympian name
which exists in no context. This context is implemented in the data
processing system by a pair of functions (see also the flow chart in
Fig. 4.4):

1. Raising a data module into Olympus
RAISE (namdat, namolm)
It must be an active mesh context, out of which the given
module is raised into Olympus. In Olympus,the data module
carries another name and it is not called its original name
as long as it occupies Olympus.
2. Dropping a module out of Olympus
DROP
The same context, out of which the module was raised to
Olympus must again be active. After calling this function,

Olympus is empty. The data module raised is afterwards

again accessible under its original name.

ﬂAlSE RELCTX U ECTX
USECTX RELCYX

1 - first context active, Olympus empty, 2 - first context active,
Olympus occupied, 3 - no context active, Olympus occupied, 4 - second
context active, Olympus occupied, 5 - data access also on Olympus

Fig. 4.4: Flow chart for data access for contexts and Olympus

96
4.2.2 Mesh Lists ' /83

The central significance of the mesh tree for the model
description is underscored by the fact that its description serves the
first segment. The data structure of the mesh lists and the user
input agrees with this concept, as Fig. 4.5 shows in an example. The
meshes of the mesh trees are arranged in the lists according to the

following rule (compare Chapter 3.3):

o Beginning with the step zero all meshes of a step follow
one another and that is in the order from right to left as

seen when the tree is viewed from the main mesh outward.

In this way the mesh tree is ordered. The order chosen considers the
mesh tree phenomenologically as a family tree, since all sons of a
father followv one another in the list. A second, and equivalent order
would consist of placing all meshes of a lower tree behind each other

in order to depict the concept of a mesh tree as a hierarchy of lower
trees.

As super-ordered data structure of the model description the
mesh tree is stored in a doubly-interlinked list in the basic context
of the project data base [Knuth 68]. It receives, in addition to the

linkage information, the following mesh properties (compare Fig. 4.5):

o The context structure of the project data base is

determined by the quantity and the numbers of the meshes.

o The structure of the mesh data modules is determined by
(a) the quantity of nodes and the mesh type of each
connecting mesh.

(b) the quantity of elements and the element type, model
type, and load type of each elementary mesh.

(c) the quantity of loading cases for all meshes.

97

A change in the mesh properties describes another model. According to
the principle of unity of model, mesh tree, and project data base, a
nev project data base is thus connected with another mesh list. Out
of this results a fully static structure of the project data base. /84
The advantages versus a dynamic concept, by which e.g. the quantity of
nodes is not determined at the beginning, lie in a simpler and more
efficient data processing and implementation. Last but not least,

this design decision has as a consequence fewer and simpler commands

for the user.

2 Nefzbqum

Beschreibung i A
MAIN 1000, NODES 9, CASES 1, NETYP S, SUB 100, 200,
CNET 100, NODES 97, . NETYP S, suB 10, m,
CNET 200. NOOES 37, NETYP S, SUB 20.
ENET 10. ELTS 2¢. ELIYP QUAMG, MOTYP ISOT. LATYP NO,

ENET 1. ELTS 12, ELIYP Ouami. MOTYP ANIS, LATYP UNE.
ENET 20, Eurs 6. ELTYP TRIN3, MOTYP ISOT. LATYP NO;

9
4 5 ¢ 7 Ngle:,sfo " 2 3
Netz- ‘0"0‘::- I:I::. " (‘/:.“.M *‘5 -/
nommer | netz | “nets | natze | it | Evemonre | S hment - [Hegeu- s -
t | 1000 0 2 2 7 9 7 ° -
F 100 1] 2] 97 7 o P’
2 200] ']] ' 27 2 ° °
14 0 2 0 F’)] 2 A s P
s 1 2 0 0 [12 ¢ 2 2
6 20 7 0 [1 6 ?] 1
1 - mesh tree, 2 - rank, 3 - description, 4 - mesh number, 5 - index,
upper mesh, 6 - index, first lower mesh, 7 - number of lower meshes, 8
- mesh list, 9 - loading cases, 10 - nodes/elements, 11 - mesh/element

type, 12 - model type, 13 - load type

Fig. 4.5: Example of the depiction of a mesh tree as a mesh list and

its description

C ol

98
4.2.3 Mesh Tree Traversing /85

The invention of the mesh tree concept may be traced back to
the application of the partial structure technique in model
calculations [Argyris 70]. This technique is based on a
modularization of the model which was shown to be advantageous in the
application of the finite element method to complex models. The
general application of the partial structure technique makes use then
in the mesh list of suitable means to carry out an automated
calculation in all meshes (compare Chapter 3.11).

Ourchquerungsrichtung

durch Wurzel,
und Netzarten.

LNOFNET FNOFNET stelit die 3
————— Anzahi der relevonten
Netze im Unterbaum dar.

verarbeite 5

1l - fix lower tree, 2 - by means of root, traverse direction, and mesh
types, 3 - NOFNET depicts the quantity of the relevant meshes in the
lower tree, 4 - activate the next mesh context, 5 - process mesh data,
6 - deactivate mesh context,”release lower tree

Fig. 4.6 - General flow chart for mesh tree traverses.

99
So one speaks of a mesh tree if definite operations for all meshes /86
of a mesh tree are to be carried through in a definite order. The
mesh tree may be generalized to all possible lower trees and is

completely described by the following properties:
o The root of the lower tree is determined by a mesh number.

o} The traverse direction follows the order of the meshes in
the mesh list or the reverse order. Graphically, this
corresponds to a traverse from top to bottom and left to
right or a traverse from bottom to top and right to left

(compare Fig. 4.5).

o The input of the mesh types to be considered such as main,
partial, or elementary meshes makes possible a selective

mesh tree traverse.

If one connects the concepts of mesh list and mesh tree traverse one
obtains a general method for the processing of the same data in
different mesh contexts. Besides the partial structure technique, the
method also finds application for the consolidation phases of the
segments of the model description. Fig. 4.6 shovs a general program

flow chart for the application of mesh tree traversing.
4.2.4 Control of Mesh Contexts

The activation of mesh contexts is a very common task within
the software system for the model description. For this reason a

functional unit was created which performs the following:

o Abstraction from the mesh list: the mesh tree traverse as
well as the activation of definite mesh families is made
possible.

100
o Placing in readiness of functions for activation (or /87
deactivation) of the mesh contexts and for inquiring as to

the properties of the active mesh.

All functions of the functional unit which change its inner state obey
the principle of symmetry, which means that for each of these
functions there exists a corresponding inverse function [Schrem 78b].
Such functions act like brackets between which a certain state remains
in existence. These circumstances are illustrated in the flow chart
in Fig. 4.7. As required by the symmetry of the functions, simple,
unified and comprehensible programs arise for processing of the mesh
context contents. A consolidated mesh list is the prerequisite for an
orderly working of the functional unit. The mesh list will therefore
be employed following the mesh tree description in all the segments by

which the mesh lists are exclusively read.

The functional unit includes the following pairs of functions:

1. Opening-closing of the functional unit

NVINIT
NVTERM

In between these brackets the project data base must be
accessible in order to be able to process. The
corresponding state of the functional unit is

active-inactive.

2. Mesh tree traverse on-off

NVMAIN (direction, mesh types, number of meshes)
NVXMAN

101
Within these brackets prevails the state:
(a) context name of the main mesh
(b) Traverse direction of the mesh tree:
+1 : in the canonical order of the meshes in the mesh
list
-1 : in the reverse order
/88
(¢) the mesh types to be considered
0 : all meshes

oo

all connecting meshes

main mesh and elementary meshes

main mesh

partial meshes and elementary meshes

partial meshes

elementary meshes

~N O LW N

no mesh

The calling program is given the exact number of the meshes
to be considered, in order to be able to control a simple
counting loop over these meshes (compare Fig. 4.6). 1In
this loop the folloving brackets are then opened and

closed:

Next mesh in the tree active-inactive

NVNODE (number of lower meshes)
NVXNOD

Through this, an internal counting variable is incremented
by one and the corresponding mesh is activated in the
canonical order. With connecting meshes a loop around all

lowver meshes can lead to closing of an additional bracket:

102
Next lower mesh active-inactive

NVSUB (number of lower meshes)
NVXSUB

This set of brackets leads to incrementation of a further
conunting variable and to activation of the context
concerned.

Upper mesh active-inactive

NVSUP (number of upper meshes)
NVXSUP '

With this the upper mesh can be made accessible to each
mesh activated with NVXNODE.

For the traversing of a lower tree, its root must be declared. For
this, one must replace the brackets NVMAIN - NVXMAN by means of:

6.

Lowver tree traverse on-off

NVROOT (mesh number, direction, mesh type, number of
meshes)
NVXROT

The name of the lower tree root in internal state is stored
as context name. The activation of the meshes and their
lover meshes or upper meshes, respectively, occurs

analogously to mesh tree traversing.

With this are named all pairs of functions which allow a mesh tree or

lowver tree to be crossed in a simple manner. This corresponds to a

processing of the meshes with respect to the hierarchy of lower trees.

By contrast, a second set of functions considers the family, i.e. /90

OF bt ¢00
‘ 103
|
|
i
|
1 - mesh control inactive, 2 - mesh control active, 3 - tree active, 4
- mesh active, 5 - lower mesh active, 6 - data access, 7 - upper mesh

active, 8 - father active, 9 - child active, 10 - son active, 11 -~
grandfather active.

Fig. 4.7: Flow chart of mesh context control

a mesh with its lower meshes and its upper mesh (or a father with his
sons and their grandfather):

7. A certain mesh active-inactive

NVDAD (mesh number, number of lower meshes)
NVXDAD

For a further consideration of the family, there are two

possibilities: either a certain son is picked out or the children are
called in order:

8. A certain lower mesh active-inactive

NVSON (mesh number, number of lower meshes)
NVXSON
GR]G”\{&_Q_ -f‘.‘;’ SN

OF Pocr QL;}:ZWI"?

104

The state is designated by the context names of father and

son.

9. Next lower mesh active-inactive

NVKID (number of lower meshes)
NVXKID

These brackets are called in a loop, which is connected
with the incrementing of a counting variable. Here the

father must be a connecting mesh in every case.

The consideration of the family is rounded off by a call for the

grandfather:

10. Upper mesh active-inactive

NVOPA (number of upper meshes)
NVXOPA

In addition to these functions changing the state of the functional
unit, the parameters of the momentarily active mesh can be called by

the following function:

105

NVASK (mesh number, upper mesh number, number of lower meshes,
number of loading cases, number of nodes/elements,
mesh/element type, model type, load type)

/91
Here all current parameters are zero if no mesh context is active.

The significance of the context control for a simple and

comprehensible program shall be shown in an example. The assignment

105

shall be to perform the assembly of stiffness matrices for an entire
model and for a desired pair of classes of degrees of freedom (compare
Chapter 3.11). The accompanying FORTRAN subprogram has the following

form: ‘

SUBROUTINE BKTREE (NAMSA 1, NAMSK , NAMSA2 , NAMBK) |
DATA NAMOLM /4HOLM /

C... ALLE VERBUNDNETZE IM NETZBAUM VOM UNTEN NAcH oBxN ()
CALL NVMAIN{-1,1,NOFNET)

DO 100 I=1,NOFNET i
|
CALL NVNODE (NOPSUB) i

C... BRINGE DIE STEIFIGKEITSMATRIX IN DEN OLYMP @
CALL RAISE (NAMBK,NAMOLM) .

DO So J=1,NOFPSUB
CALL NVSUB(NSUB)

C.... ASSEMBLIERUNG @
CALL ATPA (NAMSA1,NAMSK, NAMSA 2, NAMOLM)

CALL NVXSUB
S0 . CONTINUE

C... LEERE DEN OLYMP @
CALL DROP

CALL NVXNOD
100 CONTINUE

CALL NVXMAN

RETURN
END

- ALL CONNECTING MESHES IN THE MESH FROM BELOW TO ABOVE,
- BRING THE STIFFNESS MATRIX TO OLYMPUS,

ASSEMBLY,

- EMPTY OLYMPUS

HrWON =
|

106
/92
The processor ATPA performs the assembly of the stiffness of a
single lower mesh into its upper mesh. The term "processor" is used
here according to the definition used in [Schrem 78a]. 1In the way
shown, all calculated steps of a solution algorithm can be controlled
by the partial structure technique, independent of the number of

meshes in the model.

107
5. Management of the Model Data /93

5.1 General Aspects of Storage Management

All assignments of storage management are performed by the data
processing system (DVS), which represents a subsystem of the
VFE-machine. For an ordered management it provides for a working
memory storage space as well as background memory storage space. The
background storage is called the product data base. This fulfills the
function of a long-term storage in which all data for a project may be
accessibly stored for as long as desired. So the project data base
may also be blocked against changes. The project data base is called
passive when only reading access is allowved and active wvhen all types

of access may be performed.

The management of a project data base rests first on an
arrangement of the data base in so-called pages. By this one
understands storage regions with a constant number of storage spaces
of FORTRAN type integer -- the so-called page size. The maximum size
of the project data base, i.e. its largest possible page number, is a
set property of the data base. This can span data bases of several
operating systems. These must howvever be physically placed on storage
devices which allow direct access (e.g. magnetic disk but not magnetic

tape).

The working memory is a continuous storage region of definable
size in the central storage of the computer. It is e.g. realized by
the FORTRAN statement

COMMON // LOT (10000)

with a length of 10,000 storage spaces of FORTRAN type integer. This
storage is available however only during the activity of the
programming system. The logical connection of the project data base
with the working storage space results in the following basic demands
on the data processing system:

108
1. Addition of new pages to the project data base. Existing
pages no longer needed must be processed along with the
holes arising thereby. Thus the project data base /94

always has the smallest possible size.

2. Transmission of data from the project data base into the

working memory by copying pages

3. Dynamic processing of the working memory. Each access to
data in the project data base follows only over one
indicator into the working storage. The indicator is only
available for use for a limited time. An external

influence on the location of data is not possible.

On a high level of the data processing certain data modules are

depicted on the pages. All required information about the linking of
all corresponding pages are parts of each data module. Furthermore
they contain all other data about their own architecture. One
therefore denotes such data modules as self-descriptive. They are an
important concept for the organization of access paths to data. Each
type of data module is managed by its own functional unit. This is
part of the data processing system. Self-descriptive data modules

receive a special significance through the distribution of
computer-connected and distributed data processing. Here above all
the information about the data type stored in every storage space is
of decisive significance in order to undertake a type-correct
conversion between different computer systems. The data-processing
system supports only a few standardized modules which favors a simple
and easy-to-follow processing of data. For the requirements of above
all the core system, the so-called tablets were introduced in [Schrem
78a]. They serve the storage of the hypermatrices which appear by the
method of finite elements. Further, sequences and tables are provided

for the storage of control lists and model data.

109

In the use of the data modules for the model description, /95

the two following principles are heeded:

1. Principle of unity of the model, mesh tree, and project

data base (compare Chapters 3.3 and 4.2).

> The project data base contains all data for one and

only one model.

That means that with a change in the mesh tree and thus in

all of the model properties included, another model and

thus another project data base must be chosen, because the

user determines at the very beginning of the model

descriptionby means of the mesh tree the context structure

of the project data base and the structure of all data

modules for the module data. This static structure of the

project data base contrasts with a free changeability of

the content of the data module, which may be formulated in

the following way:

2. Principle of the generalized storage cell

> A new datum alvays writes over an old one.

For this, the creation of the data modules is in

programming strictly separated from the changing of its

contents. Through this, following every user input, the

current state of data described up to the present

project data base. The data base is thus largely

from interrruption.

is in the

" safe

It is expressly stated that these principles go back to design

decisions for the programming system and are not required by

limitations of the data-processing system. Therein a very fundamental

design principle of the modularization of complex systems proves

110
jtself useful. After that all lower abstraction levels of a systenm
are conceived as generally as possible and the limiting design
decisions follow first at higher abstraction levels. The freedom for
such decisions is a direct consequence of the generality of lower
abstraction levels. For the software system for the model description
the principles named yield a simple implementation and an
easy-to-follow user interface.

/96
5.2 Control Lists

5.2.1 Types

A programming system for modelling clearly has the task to
offer the user a broad selection of various element types, so that he
may describe his model in the proper form. The integration of this
variety into the system can be achieved by a generalizer, a
generalizing principle, as considered in the concept of the type.
Each class of objects of the model description is described by a
series of properties. Each type within the class is then
characterized by a complete set of values for these properties. All
elements are described e.g. by the number of nodes, but for each
element type this number is set, and two different element types can
be so differentiated. In general two types of a class differ in the
values for at least one constitutive property. Further classes of

objects are e.g.

o meshes,
o) coordinate systems,
o degrees of freedom, etc.

Now the principle of giving names and calling by name will be agreed

upon:

> All types of each class of model objects receive an
unambiguous type-specific name which is used by the user

for identification of the type in the model description.

111
In addition, each type receives an alphanumeric type name from one to
twelve characters. Such names are not arbitrary, rather they have for
the user a mnemonic significance. For the processing of the types
wvithin the program system, however, numerical identifiers are better
suited. Therefore each type name corresponds to an unambiguous type
number. This is a positive integer greater than zero. From the point
of view of programming techinique, the preference for numbers lies in
lowver memory demand, easier comparison, and the possibility to use
them as indicators or keys, or to make calculations with them. /97

The properties of model objects of a class are now divided into
parameterizable and non-parameterizable properties. Prerequisite for
parameterizability is the possibility to specify definite numerical
quantities for a property. Thus e.g. the quantity and types of
degrees of freedom for an element are parameterizable properties of
the element type. By contrast, the stiffness of an element is
dependent on the configuration and must be newly calculated each time
and so is not a parameterizable quantity of the element type. The
differentiation concerned of the type properties is important for the
strategy of the integration of many different types. Parameterizable
properties can be written down on control lists. These fulfill the

following assignments:

naming.

o giving of the type name from the type number and vice
versa.

0 similar access to a property for all types of a class.

easy increase in the number of types considered by the
system.

o no burdening of the program text with any knowledge about
properties of specific types.

o fixing of a canonical order of properties (e.g. the degree
of freedom on a node of a mesh type).

o controlling data transformations (e.g. conversion of
measurement units).

112
The control lists contain no mesh-dependent data and are therefore
contained in the basic context of the project data base (compare
Chapter 4.2).

For non-parameterizable properties of a specific type, programs
must be integrated into the system. There the type number allows an
unambiguous coordination of program and type in the form of a multiple
branching (FORTRAN: computed GO TO). Thus, always with the help of a
control list can be ascertained the number of an element type which
makes directly possible the calling of the element program, e.g. for

the stiffness calculation.
5.2.2 Sequences /98
For storage of control lists in the project data base, data
modules of the type sequence are provided for. They obey the
following rules of construction:
1. A sequence is a series of lists.
2. A list is a series of elements.

3. All elements of a list are atoms of the same type.

Each sequence is identified by a name. This consists of one to four

characters. For control lists, those include a $ sign followed by one
to four alphanumerical characters (compare Chapter 4.2.1). Each list
within a sequence is, as well, designated by a name. This includes one
to twelve alphanumeric characters (compare Chapter 4.2.1). Each list
within a sequence is, as well, designated by a name. This includes
one to four alphanumeric characters. thus these names are suitable
for type names. In general the arrangement applies that:

0 All type names are list names.

0 All types of a class are summarized into a sequence.

113
Each element of a list is unambiguously determined by the
specification of sequence name, list name, and index. The index has
here the function of a number for designation of an element. As atom
types, storage spaces of FORTRAN type integer or real come into

consideration for control lists.

For the processing of sequences a functional unit is created
which is a part of the data processing system. The state of each
sequence is stored completely in the project data base. To this state
belong:

1. The sequence is known/unknown
With the function
NEVSEQ (namsegq)
a sequence is created whose contents are empty. The
quantity of possible entries is fundamentally limited.
Moreover, there follows an entry into the contents of the
active context. With this, the sequence is known. The /99
corresponding inverse function:
DELSEQ (namseq)
deletes a known sequence in the active context. All
occupied pages in the project data base are freed up. The
entry in the contents of the active context is removed.
After this the sequence becomes unknown.

2. A list is known/unknown

Each new list is first created by the function

LISNEV (namseq, namlis[3], length, atom type)

114
The sequence concerned must be accessible in the active

context.

A list with the given name may not already exist in the

sequence. The function causes an entry into the list
contents of the sequence. This corresponds to a change of
state

numlis <--- numlis + 1 ,

vhere ’'numlis’ signifies the quantity of the known lists in
the sequence. Moreover, the function causes the necessary
storage spaces in the project data base to be reserved and
jnitialized (if ’length" > 0). All elements already exist
after that. Up to the calling of the function, a list has
the state 'unknown’; afterwards, the state is 'known’.
There exists for the following reasons no corresponding

inverse function:

o With an inverse function the coordination of list

numbers and list names in the contents would be lost.

o The management of the gaps thus arising in the
contents and the sequence would be complicated and

inefficient.

o The use of sequences for storage of control lists
makes the inverse function unnecessary, since control
lists are only created a single time, but in contrast
are used very often.
/100
For the storage of control information in a list, the following

function is used:

115
3. Describing a list

If a list is unknown (and ‘length’ > 0), then the contents
of the list may be changed with the function

LISWRT (namseq,namlis[3],istart,ifeld[nelem],nelem)
This has write-over effects for the chosen index interval

[istart,istart+nelem-1]

From the set reservation of the list places, a lengthening
of a list is not possible:

1 € istart < istart+nelem £ length .
The inverse function is
4. Reading a list
LISRD (namseq,namlis[3],istart,ifeld[nelem],nelem)

In reading and writing attention must be given to the atom

type in order to make possible correct processing.
The functional unit encompasses a series of interrogatory functions:
5. State of a sequence
INFSEQ (namseq,iex,numlis)
The state variables are
riex’ : The sequence is known in the actual context (iex=1)
or unknown (iex=0). A change in the state variables 1is

possible with DELSEQ or NEVWSEQ.

'numlis’ : The number of the calls performed to LISNEW

since the creation of the sequence.

THIS PAGE INTENTIONALLY LEFT BLANK

(Foreign page 101 missing)

11le

117

THIS PAGE INTENTIONALLY LEFT BLANK

(Foreign pg. 102 missing)

118

o number of edges and their corner nodes /103
o number of solid, plane, and edge middle nodes

2. Element configuration
o type of coordinate system
o number of linear interpolatable element node locations,
the interpolation nodes, the support nodes, and the
location parameters.

3. Element degree of freedom
o total number
o largest number at a node
o enumeration of degrees of freedom at each node

4. Element data
o number of possible model types
o for every model type: quantity, atom type, and
dimensions of the element data.

5. Element loads
o number of possible load types
o for every load type: quantity, atom type, and dimensions
of the load data

The control list may be tied into the system in two ways. One way is
for the user to use a copy of the project data base containing all
control lists. One speaks of a prepared project data base. The
second way consists of an automatic creation of a FORTRAN subprogram
which can accomplish the initialization and preparation of a project
data base. In this way it is possible, following the mesh tree
description, to include only the control lists in the project data
base correlated with the mesh and element types used. If the data
modules in the project data base are structurally self-descriptive
(Chapter 5.1), then from the incorporation of the control lists, the
project data base will also be self-descriptive with regard to the
contents, since with their help the depiction of type names by numbers
may be reversed at any time. The commands for description of the
control lists and generation of FORTRAN subprograms are summarized in
Fig. 5.2.

CRl

OF

gy, PLOD D
119
Aktivierung der sxltnb'flchzctbm im Steusrabschnitt 1 / 1 04
SYSTEM
peschreiben einer Steuerliste 3 At
T ¢u-_u> -
CONLIS <namel> | ROW «name12> 1 | TYPE {(uu—)- «u_-u»)}
’ TIOAT cliste>
4
T Ne: td
» e
MAKE <nameé> OM chamed> {w{cmb} }
- _ _
auﬁLuuﬁawuwus
0o)
\
we © T
“ ¢name n> 1 alphanumerischer Name mit { bis n Seichen
1 - Activation of the system description in the control segment, 2 -
description of a control list, 3 - list, 4 - generation of a program,
5 - end of the system description, 6 - with, 7 - alphanumeric name

with 1 to 5 symbols.

Fig. 5.2: Commands for system description.

5.3 Model Data

5.3.1 Numbering

The principle of naming and calling by name (Chapter 5.2.1) is
now broadened as follows:

> All objects of the model description receive explicitly an

unambiguous name which is used for identification of the
object.

While names for all types are fixed by the system description, the

following model objects are in addition arranged by the user:

0 meshes,

o nodes,

The naming of these objects leads,

arrangement,

o

elements, and

loading cases.

in contrast to

to the user’s exact knowledge of his

numbers or alphanumeric names are used depends on

objects and their use.

Since commonly

the number

any implicit
Whether

model.

120

/105

the number of

of nodes and

elements in a model is large, alphanumeric names are little suited to

the purpose.

memorize.

They would be extremely difficult for the user to

Besides, numbers offer the advantage that they may be

generated, if a regular number series is available (compare Chapter

6.5)

and loading cases.

. Depending on the model, there could exist many or few meshes

Their designation with alphanumeric names would be

justifiable, but numbers will also be provided here for reasons of

uniformity.

1 -

sequence, 2 - table,
6- node numbers, 7 - element numbers, 8

incidences,

loads,

forces

Fig.

5.3:

1

2

3

Y.

Sequenz

Tabelle

Tablet

Block~
tablet

Netzbaum

{x)

>

Knotennummern
Elementnummern
Knoteninzidenzen
Elementinzidenzen
Inzidenzgrade

Knotenkoordinaten
Elementkoordinaten
Knotenbasen
Elementbasen
Netzbasen

lokale Basen

(x)
(x}

X X X X X X

FG-Klassen-Zuordnung
FG-Klassenselektionsmatrix
FG-Inzidenzmatrix

Elementdaten

Lastfille

Elementlasten
Knotenlasten

vorgeschr. Verschiebungen

(x)

Elementsteifigkeit

Elementkrifte

3 - tablet, 4

10 - degrees of incidences,
element coordinates, 13
bases, 16

local bases,

- node bases, 1

loading cases,

- block tablet, 5
- node incidences,
node coordinates,
4 - element bases,
17 - class of degree of freedom,
of freedom selection matrix, 19 - degree of freedom incidence matrix,
20 - element data, 21 -

11 -

1

mesh tree,

9
5

element
12 -
mesh

18 - degree

22 - element loads,

The model data and their data modules

24 - given displacements, 25 - element stiffness,

26

23

- node
element

121

Out of the order of the naming an ordinal numbering
results for all objects. These internal numbers are used for data
processing. In contrast to this the numbers given by the user are
designated external numbers. The correspondence of external to
internal numbers is a property of th object in question and belongs to
the model data. The coordination of all objective data results from
the user by the external number of the object and by the project data
base from the depiction by the internal number.

Which type of data module is chosen for the storage of the
model data depends on the expected operations. Fig. 5.3 shows the
summary of all model data and the corresponding type of data module
chosen for each. If matrix operations are expected, then tablets are
best suited for the storage of the data. Block tablets are used for
the storage of data which is used in the element calculations.
Reference is made to [Schrem 78a], in which can be found a thorough
depiction of the tablet concept. For a series of model data, the
direct access to a data bundle by an index (the internal number) is
desired. Then the tablets described below are suited to the task. 1In
some cases sequences are alternatively possible if an alphanumeric
name is available for the access (e.g. the context name for meshes in
the mesh list).

5.3.2 Tables

The rules of construction for tables are:

1. Each table is a series of lines

2. All lines possess the same number of columns

3. All columns consist of one atom of each of the same type.
The name table for this type of data module is derived from the

identification of each column with a name which corresponds to a list

name in sequences. Besides this the access alwvays occurs on a /107

122
whole line of the table. For this the lines are implicitly numbered
ordinally. The tables allow e.g. a relation between the internal node
numbers and the degrees of freedom whose mesh-type-dependent names
stand over the columns. If the number of atoms in each line is n,
then each index in the table corresponds to an n-tuple of values. The
significant difference with sequences is that the lines of the
sequences correspond to the columns in the table. Despite this the
atoms in each line occupy consecutive memory spaces in both types of
data modules. Such an arrangement is decisive for an efficient access
to the data. The dimensions of each table are determined on one hand
by the control lists and on the other hand by the mesh tree. If both
are known, the structure of the table is fixed: the names of the
mesh-type-dependent degrees of freedom are e.g. taken from one control
list and placed over the columns, while the length of the table is

determined by the number of nodes of the mesh tree.

For the management of the tables a functional unit in the
framework of the data processing system is available for use. As
required by the similarity to sequences, the functions are also
arranged in a similar manner (compare the flow charts in Figure 5.1
and 5.4). The state of the tables is changed by the following

functions:

1. The table is known/unknown
A table is made known and created by the function

NEWTBL (namtbl, atomtyp, numcol, namcol[3, numcol]

The name of a table may here contain one to four
alphanumeric symbols. The table possesses from the
beginning a fixed column directory, which belongs
unchangeably to the state of the table until the inverse
function

DELTBL (namtbl)

js called. Both functions refer to the same context. Like
a list name of a sequence, a column name also has one to
twelve alphanumeric symbols.

/108

123

— o

1 - table unknown, 2 - table known, 3 - tuple unknown, 4 - tuple known

Fig. 5.4: Flow chart for the management of tables.

2. The tuples are known/unknown
Each tuple is unknown until it is added to the table by the

function
TUPNEW (namtbl, ntup, istart)

By this function are created the next 'ntup’ tuples,
starting with the tuple ‘start’ (normally 1). The change
in state of the table is

numtup <-- numtup + ntup
wvhere ’'numtup’ stands for the number of the available

tuples in the table. Besides this the function causes the
necessary storage space in the project data base to be

reserved and initialized. A corresponding inverse function
is not provided for, for reasons analogous to the
sequences.

/109

The following function serves for storage of model data:
3. Description of one or several tuples

TUPWRT (namtnl, numcol, istart, ifeld[numcol, ntup},
ntup)

Beginning with the tuple on the index 'istart’, tuples are
described by the contents of the field 'ifeld’. Then
all tuples must be created (i.e. with the function TUPNEW):

124

1 € istart < istart + ntup -1 < numtup
The corresponding inverse function is:

4., Read one or more tuples

TUPRD (namtbl, numcol, istart, ifeld[numcol, ntup],ntup)

In addition to the functions named, the functional unit includes a
series of interrogatory functions:
5. State of a table

INFTBL (namtbl, iex, atomtyp, numcol, numtyp)

The state variables are:

"iex' : The table is known in actual context
('iex’=1) or unknown (’iex’=0). A change in
the state can occur by DELTBL or NEWTBL.

ratomtyp’: type of atom of which the entire table
consists (commonly atoms are FORTRAN type
‘integer’ or ’'real’

'numcol’ : number of columns in the table

*numtup’ : number of tuples created with TUPNEW since
the origin of the table

6. Inquiry of column names

For one thing, the column name may be determined for a
given column number using

TUPCOL (namtbl, icol, namcol[3])

?

for another thing the inverse
TUPIND (namtbl, icol, namcol[3], icol)

determines the column number for a given column name.

Vhile in the first function the column must exist (compare

INFTBL), by the second function the column number is set to

zero if in the table no column of this name is available.
If the content of a tuple is known, but the index in the table is

desired, the function

7. Searching for a tuple

TUPSRC (namtbl, istart, numcol, ifeld[numcol], index)

125
helps. Beginning with the tuple on the index ’istart’ the
first tuple is seached whose contents agree with that
of 'ifeld’. 1Its index is determined. It is zero when no
such tuple is found by the end of the table.

5.3.3 Project Maintenance

The principle of unity of the model, mesh tree, and project
data base ensures a simple implementation of the model description.
This is based above all on the separation of the following tasks from

the model description:

the combination of partial modules
the broadening or shrinking of the mesh tree /111

changing the number of nodes, elements, or loading cases

o o o o

the use of other element types, model types or load types.

The processing of all these tasks alvays leads to a nev model and thus
to a new project data base. For the user, a tool is now made
available which allows him to transfer parts of already-existing
models into the new model in order to make unnecessary a repetition of
parts of the model description. In addition a further segment-like

functional unit is created which does the following:

o creation and initializing a new project data base.
o copying certain data modules from an old to a new project

data base.

01d and new project data bases are both ’managed by the data
processing system. Therefore the page sizes concerned must agree
(compare Chapter 5.1). Before copying, a new project data base must
-— following the abovementioned principle -- first be described with a
nev mesh tree. Here the new mesh numbers may not be chosen with
complete freedom. In particular, they may not be identical to the old

mesh numbers. Through this, an unambiguous coordination of the mesh

126
contexts is possible for the data processing system. The new mesh
tree must be consolidated. A further condition for the application of
the project maintenance package is given by the strict separation of
creation and changing of data modules (compare Chapter 4.1). All the
segments of the nevw project must be previously initialized with a
first call, for which certain data modules are transferred from old
project data bases (compare Fig. 4.1). 1If all these conditions are

fulfilled, the user can call the following copy routines:

1. copying from a mesh or a lover tree
2. copying all data modules of the model description or such
out of certain segments or for certain descriptive commands
3. Copying data for certain nodes or elements
/112
For all copy processes the compatibility of the data modules concerned

is required.

After the application of the project care package the user can
complete his model description in the manner already known. An
especially important point here is, that all segments for the new
project must be consolidated (according to the principle of
consolidation, Chapter 4.1.1), in order to guarantee the consistency
of copied data modules. For old project data bases this demand need
not be fulfilled as long as no calculation should take place for the
model concerned. With the help of the project maintenance, the user
can for one thing access back to already-existing models (project
library); for another thing, it is possible to modularize complex
calculation tasks into partial models with their subsequent assembly.

The user commands necessary for this are summarized in Fig. 5.5

5 127

Aty deg Pgojekty -

2

Ubsytregen von Qacen

B TR

e e

uer

Erievgen yad Injtialisiecen gines meves Projektdete) 8
,-« R

' " “© 1S «

10

Yepuwenden einey alten Projsktdetel

! FETCH P cnamel>

E "

et 17 \
. «name > 1 alphasusecischer Name mit | Bis & Jeichea !

1 - Activation of project maintenance in the control segment, 2 -
transmission of data, 3 - mesh number copied from, 4 - mesh number
copied to, 5 - segment name, 6 - command name, 7 - list, 8 - creation
and initialization of a new project data base, 9 - number of pages, 10
- use of an old project data base, 11 - end of project maintenance, 12

- with <namen> : alphanumeric name with 1 to n symbols.

Fig. 5.5 : Commands for project maintenance

1menngy © eim e
CRiGIGR:, PRI &

RS T)

OF POOR QUALITY

128
6. Command Language /113

6.1 Overview

The application of a satellite system for model description
brings a division of work favorable to the user. While he idealizes
and describes a model, the model data are processed and managed by the
system. The form of the model description determines significantly
the scope of the work reduction for the user and thus the user
friendliness of the system. As a basis for the communication of the
user with the satellite system, very different processes may be used
such as command languages, menu, and dialog processes. The choice of
a command language is based on its general applicability. They can be
used in the same way on a CRT-device as wvell as on a line printing
terminal. Besides this it is suited for self-documentation of the
communication. A series of commands can be easily processed again and
again without the user doing the same work each time. In the
foreground, the command language serves the communication of the user
with the system. But a more important aspect lies in the
communication among different users. A series of commands describes
intentions and processes for the system and every other user in a form

understandable to all.

In a definite contrast to the demands of the users on the form
of the model description are the needs of the programming system for
an efficient supply with model data. On one hand, the user wants the
largest possible freedom in the organization of the model description
(keyvord: free format), on the other hand, the processing of the model
data is made much easier by a standardization of data depiction
(keyword: fixed format). The resolution of this conflict lies in the
creation of a logical interface between user and programming system

which converts from free to fixed format.

In the establishment of the user interface, above all, three

sources are drawn from. First, problem-oriented languages (POL’s) are

129
to be mentioned. This concept was developed in the early days of /114
the application of computers, as it was desired to make the
possibilities of computers accessible, without requiring mastery of a
programming language (compare [Fenves 64, Roos 66]). These languages
are of a simple type and their sentences frequently connect certain
portions of data with memorable keywords taken from the jargon of the
particular area of application. Thus, the user is in a position to
describe his problem and determine its processing without giving the
underlying algorithms. There lies the significant difference between
these languages and algorithm-related programming languages
(procedure-oriented languages). WVhile a programming language serves
the implementation of a programming system, a problem-oriented
language takes care of the communication of the users with the system.
The second source is represented by operating system control
languages. They serve the user of a computing system for the
description of a desired process. To this belongs the demands of
operating equipment and the output control. These are often very
simply constructed, that is, the commands consist only of a keyowrd
followed by a -- usually short -- parameter list. It is
characteristic of many command languages that there are several
command planes to differentiate. Among these one understands a state
of the command interpreter, which can be changed by certain commands
such that afterwards other commands apply as before (e.g. calling and
exiting from a text editor). Since each command plane has its own
commands and the operations belonging to these, the easy change of
planes signifies an integrating factor for several partial systems of
an operating system. It is desired as vell that new commands and
command planes may be integrated into an existing system without great
difficulty. Besides this, the possibility to be able to establish
command procedures and the suitability of the command structure for
interpretation and compilation belong to the demands on a modern

command language [Gram 75].

The third source is from the theory of formal languages (e.g.
[Aho 72, Salomaa 73]) just as it also forms a basis for the

130
development of programming languages. Out of this, exclusively /115
regular languages (Chomsky Type 3 [Chomsky 56]) come into
consideration, whose construction is simple and sufficient for the
model description. The choice of this language class limits in a
useful way the number and complexity of rules of language creation and

language recognition, the so-called syntax.

With the help of the source named, the following strongly
simplified structural description of the interface is possible. The
component command language allows the user to describe his model and
to control the course of the model description. Each segment receives
its own so-called segment language as a building block of the
satellite system. The control segment represents the highest command
level, from which the several equally-ranked segments of the other
segments are called. Corresponding to this vertical language
structure is a horizontal language structure in the form of
segment-specific and general commands. The latter form a basic
language common to all segment languages. The segment-specific
commands are carriers of the model description in the sense of
problem—oriented languages, vhile the general commands are used for
communication control in the sense of the operating system control
languages. As aspects of user-friendliness, the following minimum
demans are to be placed on the languages to be developed:

o Ease in learning: The user should, after a short

introduction, be in a position to describe a model by

himself.
o Good readability: The user should be able to arrange the
command input comprehensibly. A sufficient use of type

names and key words ensures good readability.

o Simple applicablity: The user should not have to pay
attention to complicated punctuation rules. Meaningful key
vords alone identify the data unambiguously.

o Little writing: The user should be able to describe as much

data as possible with as few statements as possible.

131
/116
The so-called register may be named as the second component of
the interface on the program side. This name is chosen on the
register management during compiliation of programming languages. As
there, a defined datum exists during a definite time span through
which its efficient processing is guaranteed. Following the input of
a command, the register considered here receives the command’s entire
data content in a precisely prescribed form. The content of the
register stays unchanged until the demand of the next command. A

register consists of three parts:

1. Identifier part: this determines the type of command
depicted in the register.

2. Descriptor part: this describes the content of the
following parts of data according to type and availability
of certain data proportions.

3. Data part: this contains all data packed in the command in

a command-specific order.

The length of the register and its parts are fixed for a language.
Through this, since also the location of certain data in the register
is fixed for every command, it is possible for the processing program

to access directly each datum.

The core of the sought-for interface is formed by the dual
component pair of language creator and language translator. Their
roles should be explained by Fig. 6.1. First, the developer
determines the command language of a new segment, with which the user
will input the segment-specific model data. This language is then
described by means of the so-called definition language. This
description is processed by the language creator out of which results
a three-fold result. For the future user, an assembly is created with
the syntax of the command language. The developer of the segment
receives a description of the contents of the register belonging to

every command of the language. With this information, the programming

132
of the processing of the model data may be very easily arranged. The
third result is represented by a set of tables wvhich make it possible
for the language translator to recognize commands of the language as
such and to implement their transmission into the register. In /117

this type of procedure result some important consequences:

Sprachbenutzer 4

. 12
3 =>Gow

1 - language creator, 2 - learn the language, 3 - syntax, 4 - language
user, 5 - model, 6 - commands, 7 - apply the language, 8 - language
translator, 9 - tables, 10 - register contents, 11 - transmit the
language, 12 - register, 13 - program, 14 - language developer, 15 -
describe the language.

Fig. 6.1: The command language forms the user interface.

o There is only one language translator. It understands in
each case the language whose tables are made known to it.
The language is table-driven.

o There is exactly one set of tables which the language
creator makes from the description of the definition
language and with which the language translator can
understand the definition language. Thus the definition
language is self-descriptive and complete.

o Oonly such language construction is possible as may be
described with the definition language. This is
language-limiting because through its descriptive
possibilities a limited class of languages is defined.

o The language translator possesses no type of knowledge
about the meaning of the contents of commands. It is
exclusively syntax-oriented and therefore free of
semantics.

133
/118
Thus is outlined the interface,which lets the user see only the
front side of the satellite system. Each command input by him is
transmitted in the first phase from the language translator in
register form. This depicts in a certain way the workshop facade of
the system. Behind it follows in the second phase the interpretation
of the contents of the register. These two steps correspond to the
division of command processing according to the viewpoints of syntax
and semantics. Through this division, the language translator creates
a general as well as a simple tool for the processing of the model

description.

6.2 Lexical Analysis and Free Format

The answer to the question wvhether a command depicts a correct
sentence of the presently active language is the prerquisite for the
transmission of the command into register form. This is the task of
the so-called syntactic analysis. Extensive experience is present on
this subject primarily from the compilation of programming languages
(e.g. [Gries 71, Aho 72, Bauer 76]). Here an important role is played
by the determination of the words of a sentence. This happens by
means of lexical analysis: From every series of signs is filtered out
that string of symbols which represent the smallest units (words) of
the language, the so-called tokens. They are based on a set of
symbols of the alphabet out of which they come forth through definite

rules of construction.

An explanation of the lexical analysis suited for the needs of
the command language is documented in [Schrem 79]. By this, each
token is formed as a regular expression out of an alphabet of
standardized symbols. This may be shown with the aid of the
left-linear production system shown in Fig. 6.2 (for proof, see e.g.
[Salomaa 73]). 1In the following, some concepts of this lexical
analysis will be named, in order to be able to judge that aspect of

the user—friendliness known under the keyword "free format".

S bt T
QRN;;, SEt nane
.)

OF | - cAGE I8 134
<Buchstabe> A& “11= Al8|c| ete.
ciifters 2 1= 0|1]2] ete.
<Sonderzeichen> 3 1. 0|-|-| etc.
<Leerzeichen> 4/ 11= D
<Textkonstante> 5 [¥L <t‘>'
ctyp 1= «g‘><|uch-nbo>|¢:1>au!cnl .
<t'><lond¢rlclch¢n> |< t > <u¢n.£ch‘n>l
*<Buchstabe> l'uuunl'(m.nncm» |
6 *<Lesrzeichen>
<numer ische Konstante> 11 <.‘>dut-n[uz-uunn[u,»uuunl
u‘)(uuonltlsuchrhlusv.
<ziffers [+<3ifter> |-<s1tter>
<2 11 <l|><ut!cn|<lz>¢!“hn
<ap L) u,»lluyzvlu)u-
<3y 11 <s’idutcnlu‘untun I
<z n= agp.|.
ag 1 usulu!on|‘luun|«uuu»|-<uucxb
<$chllsselwort> [XL4 dchlll-uoluoxtuluchut.b.»' |
<Schiusselvort><31ffer> | <Buchstabe> |
<ldentifikator> 8 11w <Schlusselwort> ’
<Kommentar> 3 11 <kp®)
x> 11e tlf(luch.tlb.»'(k‘) ;H(lon'
<kp<¢Sonderzeichens <k <Learzeschen> (e
<Tokan> #° 11= ¢Textkonstante>|<numerische mmu»l
<Schlusselvores|<Identifikatos> |
<Sonderzeichen>
1- letter, 2 - number, 3 - special symbol, 4 - spacer symbol, 5 - text
constant, 6 - numerical constant, 7 - keyword, 8 - identifier, 9 -
comment, 10 - token

Fig. 6.2: Left-linear production system for the tokens of the command

language.

The input of the command language occurs line-by-line, by which
each line has a fixed length of 80 symbols. The end of a line is
reached either after 80 symbols (’physical end-of-line’) or after the
symbol ‘logical end-of-line’ (' -8’at the beginning of the line ’'®.» '

on an entire line). Five token types are to be differentiated:

1. text constant,
2. numerical constant,

3. keyword,’

135
4, identifier,

5. special symbol.
/120
The token types numerical constant, keyword, and jdentifier must be
separated from one another by at least one spacer symbol, one special
symbol, or one end-of-line symbol. Therefore, within tokens of these
types neither spacer symbols nor unalloved special symbols may appear.

Besides this, all tokens must lie completely within one line.

In view of these conventions, the input for the user is

format-free for the following reasons:

o Tokens can stand anyvhere between the beginning and the
physical or logical end of a line.

o Everyvhere in the input (outside of tokens) comments may be
added. They may be added either between opening and
closing comment parens (symbol (* and *), repectively) and
can extend for many lines or between logical and physical
end-of-line.

0 Vhether a numerical constant represents an integer depends
not on the depiction of the number but rather on its -
value (e.g. 0.5E1 and 5 are different depictions of the
integer 5). Therefore the user must not be concerned with
the differentiation of real numbers and integers known from
FORTRAN in the input of a number.

The advantage of the format-free-input for the user is that he can
deal with the ordering of the language elements in free form as it
appears correct for him. From this results however a responsibility
of the user for the comprehensibility of the chosen order, if his
colleagues are supposed to understand the input text. The given
definition of format-free input is very general. Commonly, this
property is only connected with the free distribution of numerical
values in an input line as opposed to the fixed format prescibed, for
example, in FORTRAN [DIN 66027]. The extension to different token

types leads to a more comprehensive meaning of the term.

136
/121
Noteworthy is the fact that the format-free input represents
exclusively a property of the word formation and not the sentence
formation of the command language. This means the introduction of an
important abstraction step through the lexical analysis. Only the
order of the words themselves, not their distribution on the input

lines is the object of the syntax of the command language.

6.3 Syntax

If one considers the lines processed by the lexical analysis as
the physical sentences of the language, the commands then' represent
the logical sentences of the language. For them now a syntax should
be declared which follows the fundamental conditions of the command
language for the model description:

o right for the user through a simple (because regular)
language
o right for the application through data-descriptive,

non-algorithmic language (keywords are connected with
certain portions of data).
All languages that satisfy the following rules form a class of
languages. Therefore no terminal symbols, rather only non-terminal
symbols of the language are required [Aho 72}:

1. Each command language consists of a finite number of
different commands.

2. Each command consists of a series of parameters.

3. Each parameter consists of a (parameter-) keyword and a
subsequent, possibly empty parameter list.

4. All parameters obey a fixed predecessor/successor relation,
by which each parameter is identified by its predecessor
and its keyword and even the quantity of possible
successors is determined. By this relation, sentence
symbols become unnecessary.

5. Some parameters are differentiated on the basis of /122

their syntactic function within a command:

In

137
Beginning parameter: This is the first parameter of a
command. Its keyword is called the command keyword and
jdentifies the entire command. There is exactly one
beginning parameter for each command.
Loop parameter: By repetitions of the same commands
immediately folloving one another, the first parameters
can be identical, so that it suffices to intorduce these
parameters in only the first command of the series. For
this, certain parameters in the command take the function
of loop parameters so that the command part preceding
need not also be repeated by repetition of the command.
A beginning parameter cannot be a loop parameter at the
same time.
End parameter: Such a parameter is denoted by the
quality that it is followed by either a loop parameter
of the same command or the beginning parameter of the
next command. An end parameter can also be a loop
parameter or a beginning parameter, but not both at the
same time.
Optional parameter: These are the parameters of a
command which need not be given in every case when the
command is formulated. Their choice is influenced by
semantic aspects. Each parameter of a command besides

the beginning parameter may be an optional parameter.
parameter lists one differentiates two forms
Closed parameter lists: they possess fixed minimum and

maximum lengths 1 (that is, the number of values in the
lists):

As the values, all token types come into consideration.

For each position in the list the lower limit of allowed

138
token types as well as the value range of the token of
each type (token sub-type [Schrem 79]) must be fixed.

o Open parameter lists: Their length has no upper /123

limit:

As values are allowed exclusively tokens of the type

numerical constant. Through this limitation the list is

imaginable as a series of numbers. Thus it is suited

for the depiction of the most model data, wvhose quantity

depends on the model. /124

7. A branching in a command occurs when many parameters of the

command have the same predecessor. A union signifies that
a parameter of the command has several predecessors. Thus
it is possible to bundle parameters which belong together
into one command.

The syntax described now is depicted in Fig. 6.3 as a production
system. Here the predecessor-successor relation is not considered,
because to describe them, the terminal symbols of the language are
needed. As already mentioned, the introduction of sentence symbols is
made unnecessary by this relation. The beginning and end of a command
are determined unambiguously by the corresponding parameters. The
input of commands can thus occur free of punctuation. To be sure,
many punctuation marks are provided for (as , and ;) but their use for
arrangement of the input is according to the preference of the user.
There remains one more important consequence to be drawn from
properties of format-free and punctuation-free input: If a logical
sentence is distributed over several lines, then no continuation
characters (as in FORTRAN [DIN 66027]) are necessary. This proves to
be user-friendly, especially in the input of commands using a
CRT-terminal.

= 7 Ay ;
Lﬁd‘g’; in ‘u.,"._? F;} ¥

{;

£

- 138

73
(xS

OF POCR QUALITY

<Kommandosprache>
< Kosmandofolge>

<Rommando>

4

<Xommandokopt >

5

< Kommandowiederholung»

<Rommandomitte>

1

<Anfangsparameter>

<Wahlparameter> 9
<Schleifenparameter>
<Paramster»>

10
«<Schleifsnendparaneter>

U}
<Endparamster>

[X 8
<Anfangsendparameter>

13

<Kommandoschlisselwort>
<geschlossene Liste>

1§

. <Token>, <Schlissaiwort>

<offene Liste> !

1 - command language, 2 -
parameter,
parameter, 11 -
13 - command keyword, 14
17 - see Fig. 6.2,

Fig. 6.3:

18 - see

command order, 3
level, 5 - command repetition, 6 - command middle, 7 - beginning
8 - optional parameter,
terminal parameter,
- closed list,

11 < h n.g-s'
<Rommandofolge>

1e < dofolge> derh ‘m)t
<Kommando»

11 ¢Xoamandokopf»< Mpcu—nrbl
cAnfangsendparameter>

TLK} PL><Wahlp ,l
< dokoptr<Schleifenp >|
d_nniokwtxntn.unl
<Anfangsparameter)
jtter<Endp ’l

<Schleifenendparameter>

YLK} v}

L1 < domitter<WNahlp > I
< domitter<Schleif >|
< domitter< Par >|
<Schleifenparamster>

11» ¢(Kosmandoschllisselworts><geschlossene Luu;l
<Xomsandoschlisselwort>

11= <Parameter>

11= <Paramster>

11* <Schllieselwortrcgeschloasens l.nto)[
<Schllisselwort>

11+ <Endparameter>

11= <Schitsselwort><geschlossene l.uu»l
«<Schlisselworts> coffene LA-:.»I
<SchlUsselwort>
11= <kKommandoschliisselwort><geschlossene Lut‘)l
<«Xommandoschllsselworts <of fene Liste> |
< Kosmandoschllsselvort>
1:1= ¢SchlUsselwort >
31 1= <geschlossene Ltltcx'l‘oluwl
<Token> . ‘
17 ‘
13

] sishe Abb. 6.2
T sieshe Abb. 6.33

- command, 4 -

9 - loop parameter,

15 - keyword,

Fig. 6.13

Production system for the class of command languages.

command

139

10 - loop end
12 - beginning terminal parameter,
16 - open list,

140
6.4 Aspects of Language Processing

6.4.1 Language Recognition

The determination, whether or not a sentence with a definite
vocabulary is a sentence of a language already presented, belongs to
the task of language recognition or syntactic analysis. For regular
languages the deterministic finite automat (DFA) represents a
mathematical model of the syntactic analysis [Bohling 69, Aho 72].

For the recognizing automat a representation is chosen in the form of
a language matrix. Its columns represent the vocabulary V* of a
command language. This encompasses the quantity of the parameter
keywords and a blank word v_. The rows of the matrix represent /125
the number of thestates of the automat. Each state is understood by
exactly one correct word out of the vocabulary of the language, that
is, each word Vi corresponds to exactly one state Si. The present
state of the automat during the recognition process is therefore given
unambiguously by the line index in the language matrix. The language
matrix is a Boolean matrix, in which each row and each column contain
at least one 1. A change of state Sij is then the change of the row
index i on one of the column indices j, in the current state of which,
row i contains a 1. Or, put another way: each line i, which stands
for an already known word Vi, contains for all successors Vj al in
column i and otherwise 0. The language matrix can therefore be seen
as a depiction of the predecessor-successor relation of the parameters
of the command language. The initial state Sn of the automat
corresponds to the blank word Ve of the vocabulary and has all command

keywords of a language as successors.

A word Vj is now recognized by the automat if it is in state Si
and is valid for the contents of the language matrix 8ij = 1. Thus
one operator may be defined for all changes of state which, based on
the next input word, shifts the momentary state of the automat into

the next one. This recognition operator

141
v,
By = Bisg—Lesy

is shown in Fig. 6.4. 1In the case of a mistaken input it performs a
change of state to the initial state S . Its effect may be summarized

as

1}
[

S, for &, .
j ij

si?c'_vj

n
o

is , for &
n ij

The way the operator works is to compare the state Si of all the
values V1 for which Sil = 1 with the input word Vj. If the search is
successful, the desired change of state will occur. In the other /126

case the automat reverts to the initial state. The input of the blank

vord Ve is recognized if Si = 1, wvhich is always the case after

]

terminal parameters.

1 - no, 2 - yes, 3 - error

v
Fig. 6.4: The recognition operator E(s,—Lesy) ‘

142
6.4.2 Graphic Depiction of the Syntax

The language matrix is not suited for the depiction of a
command language outside of the recognizing automat. In contrast,
graphic depictions are above all suited to give a quick overview of a
language. Since the order of the language is decisive for the syntax,

directed graphs are used (e.g. Dérfler 72]).

Depending on which constitutive quantity of the command
languages occupies the nodes of the graph, one can differentiate three

equivalent depictions:

1. State Diagram: The states of the recognizing automats /127

form the nodes of the graph:

v, 9 Vv, e Vi \

The relationship of this diagram with the language matrix
is that this diagram depicts the adjacence matrix of the
state diagram [Dérfler 72]. For each command the state

diagram begins and ends in state Sn:

The graph has as many nodes as the command parameter has,

plus the beginning and end nodes.

2. State transition diagram: Here the nodes are occupied by

the state transitions:

143
One can imagine such a diagram as arising from the
subsequent switching of recognition operators £ (8ij)
(compare Fig. 6.4). For a command language, it has as many
beginning nodes as the language has commands and as many

end nodes as there are available end parameters:
a |

‘ /128
3. Word diagram: With this, the words of the language are
depicted through the nodes:

6," Sk !
()1~

Vord diagramms of single command begin with the beginning

parameter and end with the blank word:

&ni 6k 5mn \
ﬁ_éi---i@i‘.--fm_éi.

Here the relationship between the graphical depiction of
regular languages and functional units should be noted [Schrem 78b].
Use was already made of the descriptive possibilities of a functional
unit through a diagram of state. A further analogy exists between
syntax diagrams and calling diagrams (compare Figs. 6.11 and 6.12).
The observed relationship is thus based on the regularity [Salomaa 73]

of the appropriate rules of construction.

144

/129
® @) 3
syntaktische Struktur Syntaxdiagromm Klommerschreibwey: ‘
4 | Verkettung . ——@-—-@—. Ve Vi .
r<>-° v (v,
. : ;
5 Verzweigung —-@-— i v, 4 i
]
-@-. - v’ﬂ
() W]
) H
v []]
6 Zusammentihrung ! . —@._. E "
]
4:> e
7 Wahiparameter v, [v.] v 1
8 Schipife —4:}— J:E;: :EE§3° xuﬁg.@ﬂr ‘
Schiesten- S:Mnlm \
1 - syntactic structure, 2 - syntax diagram, 3 - method of writing
with parentheses, 4 - linking, 5 - branching, 6 - merging, 7 -
optional parameter, 8 - loop, 9 - loop parameter, 10 - loop end

parameter.

Fig. 6.5: Two depictions of the syntactic structures of the command

language
6.4.3 Language Description

To be sure, the language matrix is suited for control of the
syntactic analysis of a command language, since it has all permissible |
sentence forms, but it does not describe the language completely. It
encompasses only commands and their parameters. The fine structure of
parameters also needs to be arranged, and for that there must be
suitable concepts found, which, as the language matrix, are applicable
for the entire class of the command languages. The description /130

of a parameter includes the following information:

145
. Parameter keyword

Parameter list type

Type of list (open/closed)

S W N

. Description of closed lists

a) minimum length (in positions)

b) maximum length (in positions)

¢) number of tokens for every position

d) for every token the possibility for the token type and
its range of values (token sub-type)

This information is organized in the so-called parameter table by
which the keywords and the position descriptions are comprehensible by
reference to the keyword table or the token table, respectively. With
this, there is a set of language tables, which contains all data

necessary for a complete description of the language:

. language matrix,

parameter table,

keyword table,
token table

SN =

The creation of the language tables can be automated with the
help of a functional unit -- the language creator. Its input for this
consists of an exact language description by the means of the
so-called definition language. While the tabular form of a language
is suited for the recognizing automat, the linguistic description has
significant advantages for the developer of new commands. Among these
may be named good readability and ease of changing the description.
Since the definition language itself is an element of the language
class considered, its qualities may be best explained by a
self-description. Figure 6.6 shows the complete description of the
definition language. According to the conscious separation of syntax
and semantics, in the description are described exclusively syntactic
units and sentence forms. The power of the language amounts to 24

parameters in 8 commands. These suffice to describe every command

2 L, rams e PEFINITIONSSLICE BES GRNBEPRACTE)
iul

3 s oer DER WA "

v TONEN DEFINITION)

4 ¢ not cHr TS 0.)
FOKEN (OFDNPAR) TYP S SUB 68 - 66 REDUNGANT (v OFFNDIOR KAGEA)
TOURS | }TYP S BUB 74 - 74 REDNDANT (l SCALIESSEMDE KLAGER D,“
TOKEN (KRY) wrd e V-9 {o SCHLUSEELMORT » »“’
YoRTM (Ip@NT) TIP 4 S) - 1 (o IDEWTITIRATOR g
Touex () TP 2 s 3 - & c-nmmmuun -9
YOREN (BAR) YYP 3 SUB 106 - 106 REDUWOANT (o e
TOREN (STARLEY) T¥P S SU 03 ~ 81 REDUBANT (o SN WICHT INS MO, e)ou
YOREM (STAR) TIPS BB 82 - 82 (v STEMS 1xs MRGISTER o)2\3
PoKEN (PLUS) TIP3 KR 90 - 90 (s P08 <.

13 © DEpINITION - ouzs o >

v 11
SUPER (BASNAN) TOR (IDEWT) (REV) - e wse
SUPER (MANPAR) TOR (OPENPAR) {s ELMOE! o)~

1]
oK HM) (l!" (MBGER) (STAR) (o TOREN IN DER ELMOES ») ~ ‘7
08 (CLOS! (o KLAOER

SUPER (WANSTAR) TOR (STARLEY (s STERNCHEN AUP RS
o {oom e »-ro
(STAMLET) {e STENICHEN 30 o 29,
surEn (1oeTAR) TOK (STAMET) I aov) s
TOR (I0ENT) (REY) (P1.08) (s MANE CDER FLUS -] ®) 31
To8 (STARLIT) (e STENICHEN SO ale,y
SUPER (WANTOS) TOK (OPENPAR) (s ELAGER AOP 0
OB (I0ENT) (REY) (s Waer In DER LLMemR o)\ 27
0= (CLOSIAR) s) >L5 PAN
1
14 v oormiTion CEsCMOSSINDR PAMNETERLISTER o 2
15 !
PARANTYPE (BASEPAR) WIN Iwx 3 mr 3 gur (sl (e SVELass y =26
PARATYPE (TOKMAN) UM ' SUP (RANPAR) (s TOKEN IN KLANENN o) - 7
PARARTYPE (MR nin) ax) 20K (MMBER] (s GANSE BARL o=y
PARANTYPE (BANGE) WIS) WAX) ToR (WBER) (e VOW - B1S)
TOK (BAR) . 2
ou (RARER)
PAMANTYPE (SUPTOK) WIN | MAX ¢ BEP 4 SUP (WANTOR) (s MMM I8 iwemm o)< 2 9
PARANTYPE (CONPAR) NIN) WAX 3 TON (MAMIR) (¢ ROWIDO-SEXCHL. o) <30
SUP (WANSTAR} 3%§
. SUP (MNPAR)
PABANTYPE (PARPAR) KIN 3 MAX 2 Sur (IETAZ) (» PAMMETER-BECES. o -3
P (e
PAMANTYVE (FOLPAR) HIW 1 NAX 10 SEP 10 SUP (1D6TAR] (v VORGKBGZM-LISTE o) =31,

34 . Km0 DETINITION

L, END, SCKLEIFE)
38° »
R T ComAND 100 oBASEe (aasran) woeansn
?% " 3 . COMMAD 200 MAINe [{]
GR!ﬁ ﬁv v } : \:t-a". ', oA 300 :m' -1 m”
U Am COmAND 400 orine ©) WOPARAN
“ i o OR Q CHMMID 10 oTORTN (TORMAN
PARMERTER oTVPe (W) FOLLOWING +TOREN »
PARNAETER oSUBe [}] INC oTYPO
PARANETER (1QHORE S ©) POLLOVING oSUB+ OPTIONAL LAST
) FOLLOWING o808 » OPTIONAL LAST
o 2 sorEn. (YoRuAR)
OO AwaTER (TORe {SOPTOR) POLLOWING sPUPERe 1LOOP LAST
oD 30 PARMTIPEs
PARNMTER :Il" ° (Wun) FOLLOWING oPARNITY?Re
PARMNKETER sMAXe () POLLOWING oNINe
PARANITER »IEP () FOLLOMING eRAX & OPTIGMAL LOOP
PARANETER ¢TOK s (TORMAR) POLLOWING »BEP e
PARMIETER oSUP s (TORNAN) FOLLOMING s IEPS LAST
w 0 » CONMAMD »
POLLOMING ¢ COVMAND » LAST
PARAMETER » WOPARAN & (o) Im. reid
ARAMETER »FOLLOVING (POLPAR) POLLOWING » sPARAMETERe
;ml :m’ml. 10} POLLOVWING sPOLLOMINGs OPTIONAL
PARMMEITER »LOOP» [(-1] POLLONING 'mm‘ OPTIONMAL
PARAMETER slLASTs {0) POLLOWING »1000 OPTIONAL LASY
oo

rne

1 - SELF DESCRIPTION OF THE DEFINITION LANGUAGE, 2 -
DEFINITION BLOCK OF THE FUNDAMENTAL LANGUAGE, 3 -
THE MAIN LANGUAGE, 4 - SYMBOL -- TYPE -- SUBTYPE
- OPEN PAREN, 6 - CLOSE PAREN, 7 - KEYWORD, 8 -

NON-NEGATIVE INTEGER, 10 - HYPHEN, 11 -
STAR INTO REGISTER,
SYMBOL -- TOKEN SYMBOLS, 15 - NAME, 16
PARENTHESES, 18 - PARENS CLOSED, 19 -

BETWEEN ASTERISKS, 21 -
IN THE PARENTHESES,
-— POSITION -- COUNT, 26 - TWO NAMES, 27 -
INTEGER, 29 - FROM -- TO, 30 - NAME IN PARENTHESES, 31
DESCRIPTION, 32 - PARAMETER DESCRIPTION, 33 -
COMMAND DEFINITION, 35 - TYPE -- KEYWORD --
PREDECESSOR -- CHOICE, END, LOOP

- OPEN PARENS,

CLOSE ASTERISKS, 22

Fig. 6.6: Self description of the command language.

- NAME OR PLUS, 23 -
24 - DEFINITION OF CLOSED PARAMETERS,

146
/131

PLACE FOR
DEFINITION BLOCK OF
-- NOT IN REGISTER, 5

IDENTIFIER, 9 -

STAR NOT INTO REGISTER, 12 -
13 - SUPERTOKEN DEFINITION-COMPOSED TOKENS,
17
OPEN ASTERISKS, 20

14 -
- TOKEN IN

- NAME 1IN
NAME

25 - SYMBOL

TOKEN IN PARENTHESES, 28 -

COMMAND

PREDECESSOR LIST, 34 -
PARAMETER LIST --

147
language of the definition shown. The small number can be taken /132

as proof of the simplicity of the language.

The usable tokens result from lexical analysis (compare Fig.
6.2). The types and subtypes to be declared are collected in Fig.
6.7. Here, also, a low number is characteristic. The variety results
from composition of elements of this basic quantity of tokens. Thus,
all closed parameter lists can be described in detail. This
substantiates the many possibilities of data input as well as the
exact monitoring of the input in the syntactic analysis. The
examination has a decisive effect for an error free data input for the
user with respect to number and order of the data. Besides the
sentence forms it is above all the configuration possibilities for the

parameter list on which the flexibility of the command languages

rests.
Token Type Number Token Subtype
Text constant 1 Number of symbols
Numerical constant 2 1 negative mixed number
2 negative integer
3 : zero
4 positive integer
5 positive mixed number
Keyword 3 Value according to keyword table
(created by language creator)
Identifier 4 Number of signs
Special signs 5 +, - , * etc. according to set of

ASCII-symbols (compare [Mackenzie 80])
Fig. 6.7: The token types and their values (subtypes).
The order of the commands already depicts a semantic /133

aspect of the language definition. This results from the hierarchy of

the syntactic units as shown in Fig. 6.8. The region between tokens

148
and commands is the region of syntactic analyisis and thus also of
language definition. The logical reference of the syntactic units
described determines the order of the commands in the description.
The semantic analysis of the commands is the assignment of the

language creator.

1 ' Kommandosprache
? semantische 9
Analyse
i Kommando e T S——
3 Parameter
4 - s I
Schlisselwort |, Parometerliste syntaktische 10
. Analyse |
‘l‘ |
¢ |
Zusommengesetzte i
Token ‘
7 Token b ——————— - i 1
\
lexikalische
? Analyse
8 Zeichen
1 - command language, 2 - command, 3 - parameter, 4 - keyword, 5 -
parameter' -~ list, 6 - assembled tokens, 7 - token, 8 - symbol, 9 -
semantic analysis, 10 - syntactic analysis, 11 - lexical analysis

Fig. 6.8: Hierarchy of the syntactic units of command languages.

The possibility to define an arbitrary number of /134
different languages is especially an advantage for the satellite
system. Each segment gets its own segment language. As already
mentioned, there exists for all segments the allowance to have
commands for communication control (e.g. for input and output) which
are the same in the entire system. These general commands are
collected in a so-called basic language, whose definition must be a

component of each description of a segment language. This part is set

149
off in its own definition block (compare Fig. 6.6). This arrangement
has the advantage that the description of the basic language must not
constantly be newly created, rather it can be e.g. placed in each new
description of a segment language as a whole block from a language
library. 1In the language tables created out of both blocks, then,
basic language and segment language appear unified.

The definition language represents a tool with which the
developer of a segment of the satellite system can fix the commands
for the future user. The demand that a nev language be describable
with the definition language guarantees the uniformity of the

languages of all segments.
6.2.4 Language Creation

After the description of a language it is the task of the
language creator to transform the language into the language tables.
The transformation occurs in several steps as shown in Fig. 6.9:

1. Construction of symbol tables: In the syntactic analysis,
the language definition is followed by the construction of
the symbol tables for the intermediate symbols used (as
names for tokens, assembled tokens, parameter lists, and
terminal symbols (keywords). Here, for every type of /135
symbol, a table is created and processed. Following this
is the semantic analysis of the definition as consolidation
of the symbol tables. Here, for one thing, their
completeness is checked; that is, all symbols used need to
be defined. For another thing, the compatibility
requirements different for each sentence form are checked
(i.e. the keyword of a loop parameter may not be the same
as a command keyword, since the unambiguity ofthe
predecessor - successor relation would be lost). The
compatibility ensures the unambiguity of a later user input

with the help of the defined commands.

150

i
Sproch-
wzouger
Aufbou der Aufbou der
e 2 m’.’,{ 3 '
| ||] (o] |
8 9 10 o" 2 '?:",3
)
___ 4
1 - language creator, 2 - construction of the symbol tables, 3 -
construction of the language tables, 4 - language translator, 5 -
lexical analysis, 6 - language tables, 7 - input, 8 - table generator
I, 9 - consolidation, 10 - table generator II, 11 - result list, 12 -
program generator, 13 - language tables

Fig. 6.9: Diagram with overviev of the building blocks of the

language creator.

2. Construction of the language tables: with this, the symbol
tables are condensed, in which all intermediate symbols may
be replaced by references (so-called pointers). Out of
this compact form, a program generator creates a FORTRAN
subprogram that contains the language table. This program
can become known to the language recognizer with /136
application of the FORTRAN-EXTERNAL arrangement. After
that,commands in the new language can be syntactically
analyzed. In the case of self-description of the
definition language there results a reproduction of the
language tables (compare the dashed connecting line in Fig.
6.9). With this, it was always possible in the development
of the language creator to create new language
constructions with the help of old available constructions
so that only at the very beginning must a simple and

preliminary variant of the definition language be entered

151
by hand into the language table (bootstrapping [Wirth 71}).
The correct working of the language creator could always be
checked during the further development with the exact
reproduction of the definition language.

The methods of language processing applied in the language
creator owe their origin in many respects to the techniques applied in
the compiliation of programming languages. As with them, a source
program (i.e. language description) is transformed into an object
program (i.e. FORTRAN subprogram). Here the phases of analysis (i.e.
construction of language tables) will differ [Gries 71]. 1In the same
way, the division in a lexical analysis of syntactic and semantic
analysis corresponds to the procedure in compilation. Further points
are the organization and processing of symbol tables, the transfer of
the source program into an internal representation and the
optimization of the codes to be produced (that is, condensation of the
symbol tables). The last point has further the important consequence
that the illustration of the language definition on the language
tables cannot be reversed in such a way that the intermediate symbols
used by the user could be inserted again. These are lost in the
condensation. But, in any case, a depiction equivalent to the
original definition can be produced from the language tables with the
help of artificially produced intermediate symbols. Such an inverse
process of the language creation process guarantees for the most part
the operational security of the total processing of the command

languages (compare Chapter 7.1).

152

6.4.5 Language translation /137
Using the language tables, every command can be recognized

by the language which represents it. The language-independent

structure of the tables means that a single language recognizer

is sufficient in order to detect every command language of the

class under consideration with the correct tables. It performs

the syntactic analysis of any input command. The analysis is

a part of the language translator, which translates any command

recognized as correct into a so-called register. In this

compact form, the data of further processing contained in the

command are made accessible.

The language translator determines the occupation of the
register for each describing command. The result of this
register space assignment is communicated to the language
describer and also incorporated into the language tables. Using
the result list, the program developer can detect the expected
position of certain data from the commands in the register
input by the user. 1In this way the programs can be written in
such a way as if the data were input in a fixed format (in the
Fortran sense). This means the programs are purely oriented
according to semantics. Each register consists of three parts:

1. command type: a numerical identifier for the command,
which is then contained in the register. It is specified by
the language describer for each command in a unique fashion
(see Fig. 6.6). It is used to select the corresponding

semantic program (using "computed GO TO")

2. parameter register: its content describes the present
command as a sequence of its parameters. For each parameter
it is specified whether it is present or not, which is im-
portant for selection parameters. In addition, which alterna-
tive for branches was selected is also specified. This infor-
mation is used to perform sequence control inside the

semantic program.

153
3. Data register. It contains all of the data of all

closed parameter lists of the present command. The register
locations are fixed for all lists. Figure 6.10 shows the
way in which all of the data are found in the data register

depending on their associated token type. /138

All of the data of the present command are contained in
such a register, except for those from an open list. The
reason for this is the importance of open lists for model de-
scription. The number of data varies widely depending on the
model for many model properties. For such data collections,
the open list at the end of the command is provided. In order
to process these data, a few important additional pieces of in-
formation are required, which are located in the front command
part, the so-called command head. The register represents an
image of the command head. Typically it is short compared with
the length of the open list.

The register has exactly enough room for one command. Im=-
mediately after the complete input of the command , it is
syntactically analyzed, translated, and the register content
is processed semantically. The method of operation is inter-
preting [Gries 71]. The interpretation of the command language
has the user friendly property that both syntactic as well as
semantic errors are recognized directly where they are created,
and can be communicated to the user. The command re-establish-
ment process can be used for precise error messages during /139
semantic analysis, where the register is present as an internal
representation of the command. The mapping of a command to the
register is reversible. Using the language tables, from the
register content one can reconstruct the corresponding command

in the previously input form.

3

' l Linge

l-\eqisurinhalt Darstellung in Worten
4— Textkonstante 20A4 + Anzahl der Zeichanj 21
6 numerische -1, Real, Integer '7 3
Konstante
8 Schlilsselwort kI VR 9 3
(v} Identifikator we — | l# N
‘L Sonderzeichen ~2, O, Wert nach ASCII- -3

Zeichensatz [Hackehzle BO]

,l'- variable -3, 0, laufende Nummer 3
der Variablen im Makro ’5
(vgl. Kap. 6.6)

Figure 6.10: Representation of token types
and the variables in the data register (word,
A4-format, real, integer are used in the
Fortran sense)

1 - register content; 2 - representation; 3 -
length in words; 4- text constant; 5 - 20A4

+ no. of symbols; 6- numerical constant; 7 -
-1, real, integer; 8 - key word; 9 - 3A4;

10 - identifier; 11 - 3A4; 12 - special symbol;
13 - -2, 0, value according to ASCII-symbol
set [Mackenzie 80]; 14 - variable; 15 -

-3,0, running number of variables in macro

(see Chapter 6.6)

154

155
6.4.6. Functions for Language Translation

The command interpretation is taken over by the segments
in the satellite system. Each section controls the command
translation, in order to be supplied with new register
contents command by command. However, since the translation
is dependent on sections, one can design a function unit for
it which can be used by each segment. The following functions
are present:

1. Opening and closing of the function unit

SPRINIT

SRTERM

These functions are called at the beginning and end of a
program execution. Other functions can only be used in between.

2. Loading of a new language

SRLOAD (extern)

The "external" is considered to be the Fortran type
"external", and is the name of the subprogram, which is built
up with the language generator and which contains the language
tables of the desired language. It is only after calling of
this function that sets of this language are detected and trans-
lated. This function is the only function unit which changes
its internal state. All other state changes are produced by the
user. /140

3. Translation of the next command

SRNEXT (ityp, lenpar, 1par!1enpar|. lenreg, ireg lenreg'l;

This function translates the next syntactically correct command.
The register is represented by three parts: command type "ityp",
parameter register "ipar", and data register "ireg". If during
translation a syntactic error is detected, then an error
message is output, and the language generator looks for the be-
ginning of the next command (command key word). Semantically

erroneous commands are considered to not have been input, and

156

they never appear in the register. An input error usually leads
to a shutdown of the command interpretation. 1In a translation
of a command the internal state of the function unit is
changed by the inputs of the user. The state which can be changed
in this way includes the following:

(a) the active line index in the language matrix

(b) the state of the user input (next line yes/no)

(c) the state of the present command (command type and
command repetition yes/no)

(d) the state of open lists (active/inactive)

4. Interrogation of the command state
SRLOOP (loop)

For the command interpretation it may be necessary to know
whether the last register content delivered by SRNEXT belongs to
a command repetition ("loop" = 1) or not ("loop" = 0) (see
Chapter 6.3.).

Figure 6.11 shows the calling sequence diagram of the
function unit. The great dependence of translation on the
semantic analysis is emphasized by the low number of functions.

/141

Since the general commands of the basic language are
integrated in each segment language, the corresponding semantic
programs also have to be made available.. However, in order to
not have to include this in each section and to overload the
program text several times, they are all summarized in a layer
between the section and the language translator. This means
an expansion of the function unit discussed above by the
function

COMAND (ityp, lenpar, ipar[lenpar], lenreg, ireg[lenreg]).'

Instead of SRNEXT it is to be used for command interpreta-

tion in the next sections. This function itself uses SRNEXT

and if a general command is being translated (detectable from

157

Figure 6.11. Sequence diagram of the functions
of the language translator

COMAND

. //"' —‘\/

/ SRNEXT \
-) —
’ I

A\
AY
No -

T

Figure 6.12. Calling diagram of the functions
of the language translator with consideration of
transparent commands

158

the command type), then the corresponding semantics program

is called directly. In this way COMMAND only gives the
translation of section-specific commands to the next section.
Since the COMAND acts as a sifting function, so that for the
sections the general commands are not visible, these are also
called transparent commands. In this way we obtain the modified

sequence calling diagram of Figure 6.12.

6.5. Open Lists /142
6.5.1. Concept

Open lists have a special position within the command
language in several ways:

1. Numbers are exclusively the object of description in
open lists.

2. Most model data are represented by numbers and are
primarily described in open lists.

3. The syntactically unlimited length of open lists allows
the description of arbitrarily large data amounts.

4. The syntax of the open lists differs from that of the
command head. It is not producible by the language generator,
but it is the same for all open lists of each command language

(see Figure 6.13).

An open list is defined as a line by line enumeration of a
table with a fixed number of columns, and an open number of
lines. If the number of columns is n, then a line of the
table is called an n-tuple, and the list is an open sequence
of n-tuples. The tuple length n is an invariant of the open
list. The concept of the table was introduced in Chapter 5.3
as a data module for storing model data. In this way the open
lists are the language items with which the user fills the
tables with data.

159

In this connection, we should mention that the correspondence
of the table and the open lists corresponds to the correspondence
of the control list and the command head. This contains the (type)-
names of those data in the control list which are required for
processing the elements of the open list. This is a profound
reason for the pragmatic division of commands into a command

head and the open list.

According to the tuple length n, two types of open lists
are distinguished:

en =1 :simple (open) list

e N 1 :tuple list

Syntactically, both types are formed in such a way that
a simple list represents a sequence of numbers. In the case
of tuple lists, the tuple are to be separated by means of a
separator, a special symbol (symbol:/). The table character of
tuple lists can be made visible by the user by a corresponding
arrangement of numbers on the input lines. The simple lists
are of two different forms:

1. ORDINAL: This key word briefly describes the list

1, 2,e.... m
where m is a semantic aspect of the list, which is derived from

the corresponding command and the prevailing network tree.

2. ALL: This is an abbreviation for all values of a /144
numerical collection, whereas the elements of the collection
are specified in a different way. For example, they are

specified by a simple list of another command.

6.5.2. Functions of list generation

Since during command interpretation, the same operations
are to be performed for each element of an open list and the
number of elements depends on the model, one requires a tool

for reprocessing of open lists element by element. One of

¢open list7
{simple list?7
Ltuple list7
<numbering”

Ztuple”

¢simple list? / £tuple 1list?7

Lnumbering >/ ordinal/all

I

Ztuple listy/«tuplerktuple”

Znumbering7¢numerical constant?/ < numerical constant}>

::= Ltupley¢numerical constanty/ <numerical constant>

<numerical costanty: see Figure 6.2

Figure 6.13.

Numerical constant

091

161

the tasks of a functional unit conceived for this is the
syntactic analysis of lists and the determination of the next
number. The lexicon analysis is used which is the same as

for the language translator. The functional unit is used by
the semantic programs, in order to produce a pure number
sequence. They are also called list generators. Since the
processing of the command head and of the open list is done one
after another, the language translator and the list generator
mutually exclude one another: while the language translator is
active, the list generator cannot be called ,and vice versa.
This is considered in the calling sequence diagram of Figure 6.14.
The following functions are provided for list generation:

1. Beginning of an open list

LSETUP (lentup, iordal)

These functions displace the list generator into the active
state. The expected tuple-length "lentup" is a semantically
determined quantity, and therefore has to be specified again
for each open list. If it is a simple list ("lentup" = 1),

then depending on their special form we have:

ORDINAL : ‘iordal’ =1,
ALL : ‘'iordal’ 2.

#

In all other cases, we always have "iordal" = 0. Whether /145
a special form is possible has to be examined by the semantic

analysis.

2. Next numerical value in the list

LSNEXT (iend, next, fnext)

This function is called exactly once for each element of an
open list. For a simple list in one of the mentioned special

forms, the function is not called. The result is:

"jend" = 1 The produced numerical value is the last one
in the list. The beginning of the next command follows, or

a loop parameter of the present command.

162

"iend" = -1: An input error in the list was discovered.
A corresponding error message is given to the user directly by
the list generator. A further calling of the function is not

allowed and would also not make sense.

"iend" = 0 : There is no input error, and the list end has
not been reached.

"fnext" : Representation of the value as a number of the
Fortran type "real".

"next" : Representation of the value as a number of the

"integer" Fortran type:

next = div (fnext+o.5,1.)
If the numerical value cannot be reprucsented in this way because
its size goes beyond the representation possibilities of the

physical memory locations, then "next" is given the value zero.
3. End of an open 1list
LSUPST

This function concludes the functional unit. This is
related to a reactivation of the language translator, which after
this can be called again. If during processing cf the open list
an error occurred, either of the syntactic ("iend = -1) or the
ematic type, then no end of list has yet been reached. The
function therefore looks for the end of the list and in this way
allows a subsequent calling of SRNEXT (Chapter 6.4.6) without
errors.

The language translator and the list generator are the
tools with which one can process the language side of the model
description. Figure 6.15 shows how this is done in a unified
way which can be used for all command languages. The program

sequence plan includes all functions of the two functional units.

163

COMAND

Figure 6.14. Calling sequence diagram of
functions of the language translator and
the list producer

This diagram can be considered as a frame for all semantic

programs of the satellite system. /148

6.5.3. List description

Usually the user will be anxious to arrange his model data
in a regular form in order to facilitate data input. Therefore
in open lists finite numerical sequences will often occur, which
can be specified in terms of a formation law. For each pair of

successive terms of a numerical sequence with n terms we have:

34y = Ay + da,

(6.1)
Here and in the following we will have 1€¢ign. . A
formation law is now established, if a rule fla, is used
for determining 4a; |, so that we have

(6.2)

da; . = f(4a))

For the simplest and most frequent of the numerical sequences of
this type, we shall now introduce a language construction, which

will allow the user to describe very long numerical sequences

ORIGHAL PROT-ES
OF POOR QUALITY

!
Abschnitte o
I T
SRLOAD |
: Mm@mag%;___,_,_,__ _J _______ i
—"I !
g {sanexn] | N
] SRLOOP l[
. Register Fehler l ‘
| | : prufen und I
verorbeilen N \
I |= i
3
: { offeneliste __ _ ___ Ii
{ | i
1] e
1] l N
Il = i
i 11
Ink LSNEXT E Il |
9 i
I l : Listeneiement, Listeneiement Foger Fehier | Listenctement |40 : Il :
]
I I t verarbe lon‘; verorbeite verarbeiten { Il !
i | :
i : =
oy u A 1=
% i : 6“’" '"‘dja7 Li:rt:,;. Nein : [} ‘
! s i
T L= = !
I | 4 1 I |
| | e]
| B
e _.___.______.__.J |

Figure 6.15. Schematic program sequence plan
of language processing (Please see key on
following page)

164

165

Key for Figure 6.15. 1 - section; 2 - command;
3 - open list; 4 - list elements; 5 - end of list;
6- no; 7 - yes; 8 - error; 9 - error; 10 - process
list element; 11 - end of list; 12 - no ; 13 - yes;
14 - yes; 15 - yes; 16 - no; 17 - no; 18 - new
command; 19 - new language

with only a small amount of data. The complete syntax is given
in the syntax diagram of Figure 6.16. The following numerical
sequences can be distinguished:
I. First degree numerical sequence
1. Constant sequence: This is a numerical sequence
which remains the same

Aa, = O

* T (6.3)

'

Its language form is:

FROM <ap LOOP <n> CONST REP
1

2. Arithmetic sequence of the first order: Its formation

law is

da. =4a, = const ¢ O.

(6.4)

From the determination variables a; and Aﬁ' , we can directly

determine all the members of the sequence:

a, =a; + (1-1)- da; (6.5)
/149
Its language form is:
BY <Aa.|>
FROM <a;> LOOP <n> { NEXT <ap> REP
T <an>
If da{ is not given explicitly, then it can be determined from
43 =2 Ty : (for NEXT)
a8y = oIy (ag - ap)
(for TO)

3. Arithmetic sequence of the second order: The
represent an arithmetic sequence of the first order, so that

the formation law is

166

da; = Aa; + (1 - N)d (6.7)

with d = const # 0. The determination variables of the sequence

are a,, Aaq d , and the terms are determined by

= a, + (i-haa, + 21 U72) 4

a
15 %
6.8)
This sequence can be described with
BY <Aa1>
FROM <a1> LOOP <n> 4 NEXT <a2> DIF <d> REP
: TO <an>
When a, is specified, then sa, is found from Equation (6.8)
as
N | (n-1) (n-2) (6'9)
sa, ‘Eﬁl}n'at“—_‘z ‘_‘J

4. Geometric sequence of the first order. This is a
sequence with the formation law

_ (i=1)
Aa:.L =4a, . r.

(6.10)

where r = “.,§;)=cmmt*,_ . The determination variables
1

of such sequences are a; and 434 , and we have /150

(i-1)
sa,

ag = a, O (6.11)

5. Geometric sequence of the second order. Similarly
to the arithmetic sequences, the 8a; make up a geometric

sequence of the first order

ba, = pa, . e

(6.12)

with r-cmmty(1:§% and r # 1. The sequence has the de-
1

_—

termination variables ajs aa,’ , and r and the determination
equation 1s NS

—_— (6.13)

a; = a, +aa,

167

Both types of geometric sequences are described by

BY <Aa1>]
FROM <a,> LOOP <n> {NEXT ca,> r RAT <r> REP
TO «<ap>
82, .
where for r=(+70 there results a geometric sequence of

the first order and otherwise a geometric sequence of the
second order. If a, is specified, then according to

equation (6.13) we have

-1 _
tay = —mm o a T Y (6.14)

II. Second degree numerical sequences

If a numerical sequence of the first degree is run
through several times and if its initial value changes
according to one of the form formation laws and if in
addition all of the other determination variables remain
constant, then a second degree numerical sequence results.
It is described just like a numerical sequence of the
first degree. For the description there is a numerical
sequence of the first degree (with LOOP n ...) and there
is a description of its repetition and the formation laws
to be followed (with AND m ... see Figure 6.16). In order
to be able to reduce numerical patterns which are different /151
from "rectangular patterns", one also provides for a change
in the number of following terms according to an arithmetic
or geometric series. This is described by means of DIFLOOP

or RATLOOP (see examples of Figure 6.17).

III. Numerical sequence of the third degree

Just like the formation of the second degree numerical
sequences, from them the numerical sequences of the third
degree are produced by a change in the initial value

according to some law. Accordingly, the description of a

OR!GN#\L PACE IS
OF POOR QUALITY 168

second degree numerical sequence (with LOOP n ... and
ANDm ...) is complemented by specifying the number of
repetitions and the formation laws to be used (see AND 1
ees in Figure 6.16). In order to be able to produce
numerical patterns different from a prismatic pattern,
the change of the following terms according to arithmetic
or geometric series is provided for. This change is
described for the numerical sequences of the first degree
by DIFLOOP or RATLOOP and for the numerical sequences of
the second degree it is described by DIFAND or RATAND,

respectively.

e FROM 6,)< LOOP n

%

AND m

J

&=
=

i |
[

Figure 6.16. Syntax diagram for describing
numerical sequences

169

All of the mentioned numerical sequences can be /152
expanded by tuple sequences. The mentioned formation
laws are used again on all of the tuple elements in the

same way.

The syntactic analysis of the sequence description is
the task of the functional unit of the List generator.
This determines also a sequence of the next value in the
list (function LSNEXT) from the specified determination
variables. For the series sequence of the values we have
the following priority diagram

1. Tuple

2. First degree sequence
3. Second degree sequence
4

. Third degree sequence

In order to explain the description possibilities,

Figure 6.17 gives a few examples of numerical sequences.

170

ORIGINAL PAGE 18
OF POOR QUALITY

(13

i, 2, 3, 4, S5, 6, 7, 8 FROM 1 LOOP 8 BY 1 REP

2]

t, 2, &, 1,11, 16, 22, 29 PROM 1 LOOP 8 BY ! DIF 1 REP
i, 2, 4, 8, 16, 32, 64,128 5 FROM 1 LOOP 8 BY 1 RAT 2 REP \

1, 2, 3 4, 5 6 17, 8,
9, 10, 11, 12, 13, 14, 15, 16, FROM 1 LOOP 8'BY 1 "
|

(13

17, 18, 19, 20, 21, 22, 23, 24, AND BY 8 REP
25, 26, 27, 28, 29, 30, 31, 32

-~

1, 2, 3, 4, 5, 6, 1, 8,

9, 10, 11, 12, 13, 14, . FROM 1 LOOP 8 BY 1

17, 18, 19, 20,) AND 4 DIFLOOP -2 BY 8 REP

25, 26 .

»

i, 2, 3, 4, S5, &, 1, 8,

9, 10, 11, 12, 13, 14, FROM 1 LOOP 8 BY 1 -

15, 16, 17, 18, AND ¢ DIFLOOP -2 BY 8 DIF =2 REP
19, 20

»

1, 2, 3, 4, 5, 6, 7, 8,

9, 10, 11, 12, FROM 1 LOOP 8 BY 1

17, 18, AND 4 RATLOOP .5 BY 8 REP
25

>

9, 10, 11, 12,
13, 14,
15

»

PROM | LOOP 8 BY 1
AND 4 RATLOOP .5 BY 8 RAT .5 REP

Figure 6.17. Examples of number sequences
of the first and second degree

171

6.6 Macrocommands /153

6.6.1 Properties

The previously introduced command language has the

following characteristic properties:

- For each command the interpretation follows directly

after translation: interpretative command processing

- The commands are processed in the same sequence as

with which they were input: sequential command series

- The elements of the parameter lists explicity contain

values: specified command content

These properties are independent of whether or not the
input was in the form of individual commands (on the screen)
or as a command stack (from an operating system data bank).
They are no longer sufficient for model description, for
example, when it is necessary to input a series of command
with slightly changed data several times, which can occur
for very similar models (network generator key word). The
comfort of the command language for such applications can be
substantially increased by introducing so called macro
commands or macros for short. By macro we mean a sequence of
translated commands which are identified by names selected
by the user (see [Cole 76]). The data registers and open
lists contain three locations, which are filled up by
arguments specified when a macro is called. The substitution
of the arguments is done by command. After this, the
complete command is available for interpretation. The
process of substitution of arguments and the making available

of commands is called (macro) expansion. The macros have

172

the advantage of being able to be used arbitrarily with any
other arguments. Also, the interpretation process is accel-

erated because the translation step is not needed.

It is remarkable that the capacity of the command
language to form macros follows very naturally from the /154
strict separation of syntax and semantics or of translation
of the commands. The flexibility in the use of the satellite
system is clearly visible in a number of phase transitions

during command processing as shown in Figure 6.18,

The introduction of macros means an expansion of the
language elements in two ways. First of all, the commands
defined in the language description are supplemented by the
macro commands defined by the user himself.. In addition,
so-called pseudo commands apply within the macros. These
are instructions to the macro expander, which allows the
joining of variables, operations on variables and the control

of the command sequence during expansion.

Erstelien?

| Ubersetzen

Figure 6.18. Phases of command processing
lz-translate; 2--set up; 3--edit; 4--stack; 5--reverse
translate; 6--compile; 7--expand; 8--interpret

173

This amounts to introducing algorithms in the command language. /155
The pseudo commands are effective during expansion, and

depending on the intents of the user, a stream of (model

description) commands are produced, which no longer contain

pseudo commands. The command language expanded in this way

is then characterized by the following properties:

Translation and interpretation of commands are done

at different times: compiling command processing

- The sequence of interpretation of commands can be

influenced based on selected conditions: conditional

command sequence

- For the translation, not all the values of the
parameter lists have to be specified: variable

command content

6.6.2. Macro description

Based on the separation of translation and expansion of
the macros, two phases are also introduced when they are
applied. First of all, a macro has to be described. This is

done in three parts:

1. Macro convention: The macro is given a name it is

determined on which data bank the macro is to be
compiled. Then the macro description is deposited
there in the translated form.

2. Variable convention: If the subsequent commands

contain variable command contents, then names have
to be assigned. The variables in addition are given

a class and a type.

174

3. Macro body: ‘This is all of the commands, which

are to be expanded during a call of the macro.

This includes commands for model description from

the active command language, macro calls and

pseudo commands.

/156
Figure 6.19 gives the syntax diagram of macro description.

An important concept of the macro is the treatment of the
variables. The concepts of macro environment and command
step play a special role here. The calling of a macro is
possible by the user during command input (command level 0),
or this can take place from another macro (command step >0).
The command step (i) to be called represents the surroundings
of the called macro (command step i+l). One of the three
following variable classes is assigned to each variable (see

[Dijkstra 761).

1. Surrounding-independent variables (local variables):

The name of such variables is only known inside the
corresponding macro and its value is only accessible
there. The production and change of the value is
done using pseudo commands. Before the first
generation, the value is undefined. Each operation
with undefined values is disallowed accept for an

assignment of a defined value.

2. Call-dependent variables (arguments):

Its name is also known in the surroundings. The
initial value is set when the macro is called. It is,
therefore, known outside of the macro. After this call
a variable like a local variable is processed. A
change in the value during expansion is not felt in

the macro surroundings. In other words, the initial

value remains intact there.

175

3. Call dependent variables (global variables):

Its name and value are known in the macro
surroundings. A change of these variables
produces a change in the surroundings. For

this reason, such variables are not allowed in
the macros of command step zero. 1In every case,
only the used variables from the surroundings
have to be considered as global variables
according to convention. Global variables always

lower command step than local variables.

In addition to the assignment to a class, all

variables are also of a certain type. /157

ORIGINAL, PAZE IS
OF POOR QUALITY 176

Makrorumpf 9

Operation ’lf.
| (]
=] —
3 (=]
/

Figure 6.19. Syntax diagram of the macro

description

1 - macro description; 2 - macro convention; 3 -
variable convention; 4 - macro body; 5 - macro
convention; 6 - variable convention; 7 - first name;
8 - first name; 9 - macro body; 10 - command;

11 - macro body; 12 - macro body; 13 - first name;
14 - first name

177

This specifies the memory form and the possible operations.,

The variable type is specified by four attributes: /158

1. Token type: This is the type of the token, which

represents each variable.

2. Value range: This is the range of possible token
subtypes (see Figure 6.7), within which the values
of the variable can lie. The largest possible value

of the corresponding token type is the range adjusted
beforehand.

3. Tuple length: Simple variables can stand for a wvalue

in all parameter lists (tuple length 1). Tuple
variables can only be substituted for a single
entire tuple within open parameter lists. (Tuple

length >1). Simple variables are set first.

4. Constant nature: If the value of a variable

should not be changed by pseudo commands, then it
is constant. This means that during the expansion
the use of variables is monitored, so that it is
impossible to overwrite the value. Since local
variables do not have a defined value at the
beginning of expansion, it cannot be constant.

The constant nature of the variable is not set

before hand.

The storage forms of variable values correspond to the
representation of the associated tokens in the data register
(see Figure 6.10). As general operations, the following
are possible for all variable types

- the association (operator EQU) and

- the test for equality (operators EQ, NE).

178
In addition, there are special arithmetic operations

which are only allowed for variables of the token type
number:

. \ ADD (+), SBT (-), MPY)
- calculation operations: Ve (RS
DIV (/), EXP (%).

. . LT (<), LE (¢), GE (3),
-~ comparison operations: GT (»)

All of these operations are only triggered by pseudo
commands:

/159

- association and calculation operations:

”

EQU
ADD

SBT ¢<varname >
LET <varname>q 1ypy{ }<token>

DIV
EXP

- test for equality and comparison operations:
Branching

GE <token>

[EO
LT fevarname>
IF <varname> {1LE

GT

<kommando> t *
THEN | c<makroaufruf>
<pseudokommando>

<kommando > 1 hd
ELSE |<¢makroaufruf»
<pseudokommando>
V¢ YA e e
ENDIF MG‘. ‘___“L ol .

ol Ged

OF POOR GUALITY

Pre~-tested group

EQ

LT| [cvarname>
WHILE <varname> Ié: <token>

GT

[3

<kommando» ‘

pO }<makroaufruf» ENDDO
<pseudokommando>

l--command, macro call, pseudo command

179

The pseudo commands are commands in the sense of a
command language. They represent instructions for the
expansion process. Semantically, several pseudo commands
can have a composite structure, such as branching and pre-
tested groups. They'are known as standard structures from
programming languages [Linger 79]. In this way, one can
realize the conditional command series sequence without
using jump instructions.

/160

The variables agreed upon by convention can be substituted
for each element of a parameter list within a command sequence
of the macro body, if there is compatibility with respect to
type. For this, instead of the value, one specifies the
variable name, which is specified within two dollar signs
$varname$. The special symbols are for the language translator
for detecting the variable. The special representation of
the variables in the data register igs related to this (see
Figure 6.10). In this way, one can have a convention regarding

variable command content in the macros.

All of the cormmands of the macro body are translated and
the registers are stored together with the variable conventions
on the fixed data bank. If open lists occur, then their
syntactic units are also stored in the data bank. The macro
data bank contains all the information of the commands contained
in the macro body with exception of the argument values.
These are specified in a macro call which has the following

structure:

MACRO <name> FROM <dateinane>
TEX cvarname> = cTextkonstante> [

: .
NUM <varname> = {cnumerische Konua::u>}

<Schlisselwort>
NAM <varname> = ({ddentlukator»}’ 3

SYM <varname> = <Sonderzeichen>

START

l--text constant; 2--numerical constant; 3--key word, identifer,
special symbol

180

The syntax for the intermediate symbols of the right
side of the argument associations can be taken from Figure
6.2. For all of the agreed upon arguments, and only for
them, the values selected have to be specified for each
macro call. In this way during the expansion of the macro,
one obtains a sequence of commands which can be directly
interpreted. Appendix A gives an example of a description
and a call of macros.

7. Aspects of a user friendly model description /161

7.1 Principles of communication

The design of a command language was done with the intent
of giving the user a convenient tool for model description.

The principles used will be summarized in the following.

Language is especially useful for communication between
humans. In a yery simple form of the command language,
among engineers it can be used for communicating a certain
model. The wide use of names and the abbreviated description
of model data in open lists result in a readable and clear
picture of model description. 1In this form, the transfer of
a model description through space and time is easily possible
without any loss of any understandability. As far as the
understandabilitv ' among engineers is concerned, this should
also apply for communication with the satellite system. 1In
the language translated, an automatic method for transferring
commands into a program-like form should be found, which
does not have to be specified by the user himself. This leads

to the principle of language communication:

- Every communication of a user with a satellite system
occurs exclusively with commands of the language which

is specified by the given syntax (Chapter 6.3).

181

This does not exclude all of the side paths, which
may be used because of expediency. (For example, for
generating a simplified input in user programs). However,
this does not then guarantee the complete readibility of

every model description.

Because of the strict separation of syntax and semantics,
in addition to the command language, it would also be
possible to have a dialog oriented communication in the form
of question and answer method, or using a menu technique.
Both methods, however, are not suited for communication
among engineers or for documentation of a model description.
In addition, stap processing becomes impossible. Therefore, /162
these communication methods are now considered first in the

model description.

In order to ensure that the communication always occurs
completely and uniquely, that is, there is no loss of important
information, the principle of reversibility of language trans-
lation has to apply. This means that a function unit exists,
which can produce a command from the content of each register
using the language tables, which is equivalent in its action
to the one input before by the user. Only the information
which does not have syntactic importance is lost, which is
related to the free format of input (see Chapter 6.2). The
commands are mainly used for describing data. This means we
have the following

- language description is used for producing tables

- list description is used for producing extensive

numerical series

- macro description is used for producing a command

stream

~ the model description is used for producing the model

data in the project data bank

182

Therefore, there is an analagous correspondence of
description and the producing system. By expanding the
last mentioned principle, therefore, we have to specify
the principle of reversibility of communication. This means
that during communication from user input until a data point
is produced in the inner state of the satellite system, no
important information is lost. This means that always one
can automatically produce a stream of description commands
from the data using the reversal method, which is equivalent
in its effect to the previously occurring user input function.
This means that there is a describing system which can be
generated for each producing system, which provides for self-
documentation of any describing data structure.

/163

7.2 Data generators

For the user friendly model description, data generators
are absolutely necessary. In most models, regular distributions
can be found for some model data, which are suitable for being
described with relatively small amounts of data. In individual
cases, much data input can be saved. The command language

makes available two general tools for this:

- The list description for abbreviating arbitrary regular

numerical sequences (Chapter 6.5).

- The macro description for the easy and variable
repeatability of entire model descriptions or parts
(Chapter 6.6).

Any other aid for data generation has to follow the
principle of name specification and name generation (Chapters
5.2.1 and 5.3.1). 1In contrast to the procedure for so-called

net generators (see [Pfaffinger 81]), we explicitly dispense

183

with the program production of nodes and elements. The
user identifies every node and each element using a number
which he selects, which has to be agreed upon before it is
used the first time. The same is true for networks and

load cases. Additional general aids include:

- Describing model data can be copied between various
net contexts for the same network type and the same
node number. This means one of the two descriptions

becomes superfluous.

- Among the various elementary networks, model data
with the same model type and possible with the same
model or load type can be exchanged for all elements
or for one of them.

- All measurement variables can be described by a free
selection of scale units in a useful way (for example,
coordinates, loads).

/164

Additional generators and aids for data generation depend

on the class of model data (see Chapter 3).

- Bundling of elements of an elementary network for the
simplified incidence description (for example, two

triangle elements to make up a square).

~ Selection of suitable coordinate systems for the

coordinate description.

~ Selection of suitable bases for the description of

the configuration.

~ Use of the principle of complete coordinate description
(Chapter 3.6)

184

- Interpolation of coordinates on the basis of

topological regions.
- Superposition of load cases.

The mentioned data generators are controlled by
work and element properties which can be parameterized (see
Chapter 5.2). 1In addition, generators for element data and
element loads are to be provided for, which for the most
part, can be characterized by element properties which cannot
be parameterized. This raises the question of the work
division between generators for such data and the programs
which process them and to perform element calculation. The
general nature of the data to be produced can be used as
guidelines for conceiving elementary data generators. This
occurs when many model or load types have a single common
property, for example
-~ cross section data for different beam elements,
- reference systems for the orientation of material
characteristics,
~ different material laws such as for isotropy,
orthotropy or certain crystal structures,
- temperature and speed distributions.
/165
On the other hand, the model type and the load type
allow a selection of elementary properties and the required
data (see Chapters 3.9 and 3.10). 1In this way, by input of
a small amount of simple data, one can provide for sufficient
element description. As examples we can mention
- using the element data density and the network data
angular rate and rotation center, all centrifugal
loads are completely described,
- with the element data of expansion coefficients
(and their reference system in the anisotropic case)
as well as the network data for temperature distri-
bution, all temperature-cause initial expansions

can be described.

185
Therefore, the element programs should be designed
carefully for the user and there should be a large
variation of model and load types available. In this way,

the element programs can take over important functions of

data generation.
7.3 Errors

According to a naive point of view, data generators are
the most important part of the system for model description.
There is a desire to support the user during the production
of extensive amounts of data. This point of view is naive.
because it uses the unrealistic assumption, that the data
described in this way is always correct. The converse is
true: Most models first will have errors. This does not
mean that large data generators which take over most of the
tasks of data production do not have any value. Instead,
this expanded point of view gives support of the user in the
task which is usually the most difficult: Finding errors

and eliminating them.
The following error sources have to be considered:

l. Errors in the model description: Description

errors. /166

2. Errors in the modeling of the physical reality.
The describing model does not agree with the one

to be described: idealization errors.

3. Errors in the programs of the satellite systems:
Programming errors.

186

Whereas the user is effected by all three types of
errors, the satellite system can only discover description
errors itself actively. How important such a discovery of
errors is can be made clear by considering some of the

consequences:

~ Errors in the model description can lead to severe
non-correctable errors in the operation of the core

system: no results

- Errors in the model description can only be detected

by careful analysis of calculated results: erroneous

results

- Errors in the model description are not noticed at
all, that is the calculated results do not apply for

the model under consideration: apparently correct results

The concept for treating description errors includes four

phases:

1. Prophylaxis: First it is important to avoid errors.

This conceals the complex relationship between the
system and the user, in which psychological factors
play an important role (see [Weinberg 71]). All
aspects of the method of working with the system
can ledd to avoiding errors. This includes the
principle of language communication, the free
input format and the list description. The most
important factor is the extensive information of
the user which can be done as a preparation or in
parallel with the model description. This makes
use of the following:

- Aid functions: The user can obtain a display of the

possible commands (especially on the screen) and

187

can find out about the structure, content and meaning

of the individual commands.

- Summary functions: The user can become informed

about the status of the model description (see
Chapter 4.1) and can obtain a list of the input model
data in a table form.

- Handbooks and training courses: When the portion of

instructions for the user, especially the beginner,
can be made very small, then one can evaluate the

system to be user friendly.

2. Analysis: Since one can assume that errors are present
in the model data, these have to be found. This
should be done as close as possible to the error:
source, the input of erroneous data. 1In this way,
errors are better localized and their creation
becomes more understandable to the user. 1In
addition to syntactic errors, contradictions and
incompletenesses in the input data have to be
discovered. Only such logical errors can be found
at all from the program. On the other hand, physical
errors cannot be detected, which results from the
fact that the described model does not correspond
to the one which is being described. In summarizing,
we can say:
correct model = physically correct idealization

+ logically correct model description.

The following tests are used for error detection:

- Input tests: The content of each syntactically correct

command is tested for plausibility. Only syntactically
and semantically correct commands are processed. Logical

errors are discovered, which result exclusively from the

188

command content.

- Completeness tests: Gaps in the model description

are discovered.

- Compatibility tests: Within the framework of section

consolidation, the input data are related to one

another. Errors which cannot be found in individual

data are discovered (see Chapter 4.1). The effort /168
for error analysis must not be very great, if the

logical correctness of a model description has to be
insured. The user only in this way will be given
sufficient competence for interpreting the calculated

results.

3. Diagnosis: Errors found have to be described suffi-
ciently. The description has to be easily under-
standable for the user and has to be complete enough
in order to allow an easy detection of the error
source (see [Horning 79, Parsons 79, Shneiderman 82]).

Diagnosis includes the following:

- Error stage: This determines the weight of the error

and the required reaction by the user:
0: Communication, intended to orient the user.
l1: Indication of possible errors. The user should
pursue these possibilities, because there is the
danger of subsequent errors.
2: Errors, which have to be eliminated at all costs.
3: Programming errors, for which the user is not

responsible.

189

- Error number: This is used for identification of the

error. Then using an error handbook with auxiliary
functions, one can find an extensive description of
the error.

-~ Error communication: The error is described in a

natural language in a polite form. Positive expressions
and the use of concepts from the world of the user can
have a psychological positive effect: An error found
indicates a false model description and not the

bad intentions of the user.

- Additional information: Using numerical and alpha-

numerical values, the error is determined more

accurately. The values are basically only known at

the time at which the error is detected, so that

for the same error number they can always change.

For example, this includes the discovered erroneous

data.

/169
4. Therapy: The user has to eliminate the error found.

This means that he does not only have to understand
the error, but also has to find the error source and
must correct the erroneous data. This requires
different procedures which depend on the error. The
error number is suitable for requesting information
as to how the error is to be corrected (using auxiliary
functions or the error handbook). This information

includes:

- An explanation as to what went wrong, if it has not

already been described by the error message.

- An indication how erroneous data is to be found

(for example, by listing).

190

- A procedure for correcting the data.

Idealization errors are very difficult to detect and

can only be avoided by the user by a very careful model
description.

Reliability is a very important property for evaluating
the user friendliness of the satellite system. If programming
errors occur nevertheless, which is demonstrated by a surprising
behavior of the system, then they must be capable of being
eliminated quickly. The following is a list of prophylactic

measures against programming errors:

- A clear and clean modelling of the program system
into functional units. 1In this way, errors can easily
be found.

- A basic testing of the transferred parameter values

in subprograms, in order to insure correct use.

- A testing of the inner state by the function units
every time they are used, in order to prevent des-

truction of their functional capacity.

- Careful programming. This includes the clean use of
data types and the maintenance of fixed conventions
in the use and the avoidance of elements of programming
languages (see [Schrem 74]).
/170
Very often additional internal system information is
required for the analysis of a programming error. For each
data structure in the project data bank and in the internal
state of the program, there is a listing program in the system.
‘Each of these programs can be activated on the command plane

(by commands in the basic language). This makes it possible

191

for the user, after appropriate remarks (for example, from

the error handbook), to list the surroundings of a programming
error and make it available for the error analysis. In the
vicinity of an error, the dynamic call sequence list of the
subprograms is also important. For this purpose, one can
have sequence traces which are easy to turn on and off which

can be controlled from the command plane.

7.4 Data safety

In the model description, the safety of the data stored
in the project data bank plays a central role. This is
especially true when a project extends over a long period
of time. The protection of the data against unauthorized
access is an important requirement for model description.
All of the comfortable operating systems provide extensive
protective measures for a project data bank. Therefore,
on the satellite system plane there do not have to be any
corresponding measures for this. The following concepts of
the satellite system are used to insure the safety of the
model data in the sense of user support about the nature of

the project data bank:

1. The user can operate the project data bank in the
two access modes "active" and "passive" (see Chapter
5.1). One can easily change the operating mode.

For many accesses, it is sufficient only to read
the project data bank. Therefore, in these cases,
the user himself can protect the project data bank
against destruction.
/171

2. The project data bank is considered to be a general-
ized memory cell (Chapter 5.1). This means that the
uniqueness of the data is insured. The data input
last by the user will certainly be the actual data
in the project data bank.

192

3. At any time the user can interrupt the work with
the satellite system and take it up again at any
later time ("break/restart"--capacity). Using
the principle of generalized memory cells, the

last data state is always conserved.

4, The system has an error tolerating behavior. An
operating error in the use of the satellite system
or a description error do not lead to a loss in
project data in any case. For example, the first

call of segments already consolidated is prevented.

5. According to the principle of reversibility of
communications, the result of model description
is also insured after a long connection work,
because the production of a model data can always

be done later on.

The protection of project data against destruction depends
greatly on the reliability of the operating system and the
computer (key words: "deadlock", "head-crash", power
failure). The user can insure himself against this only by
multiple and distributed storage of the project data (for
example, on magnetic disks and magnetic tapes). However, there

is no absolute data safety here.

Ah72

Ars4

ArSé

ArsS7

Ar59

Aré64

Aré6s

Arés

Ar72

Ar?5

193

ORIGINAL T2AZT S
OF POOR QUALITY

-172-

Literatur

AHO,A.V., ULLMAN,J.D., "The Theory of Parsing, Translation
and Compiling®, Prentice-Hall, Englewood Cliffs, 1972.

ARGYRIS,J.H., "Energy Theorems and Structural Analysis®,
Butterworths, London, 1960 (uFspringlich vertffeatiteht —
in Aircraft Engng. 1954-1955).

ARGYRIS,J.H., "The Matrix Analysis of Structures with
Cut-Outs and Modifications”, Communication to the IX.
International Congress of Theoretical and Applied Mechanics
(IUTAM), Briissel, Sept. 1956, pp. 131-142.

ARGYRIS,J.H., "Die Matrizentheorie der Statik®", Ingenieur-
Archiv 25 (1957), pp. 174-192. | —

ARGYRIS,J.H., KELSEY,S., "Modern Fuselage Analysis and the
Elastic Aircraft®™, Aircraft Engng 31 (1959), 33 (1961),
als Buch : Butterworths, London, 1963.

ARGYRIS,J.H., “Recent Advances in Matrix Methods of
Structural Analysis”, Progress in Aeronautical Sciences,
Vol. 4, Pergamon Press, London, 1964.

ARGYRIS,J.H., "Continua and Discontinua®, in: Proc. of
the Int. Conf. on Matrix Meth. of Struct. Mech., Wright-
Patterson A.F.B., Dayton, Ohio (26. Okt. 196S), pp.1-198.

ARGYRIS,J.H., FRIED,I., -SCHARPF,D.W., "The TET20 and TEAS
Elements for the Matrix Displacement Method", Aeronaut.
J. RAS 72 (1968), pp. 618-623.

ARGYRIS,J.H., SCHARPF,D.W., "The Incompressible Lubrication
Problem®, Aeronaut. J. RAS 73 (1969), pp. 1044-1046.

ARGYRIS,J.H., "The Impact of the Digital Computer on
Engineering Sciences” (12th Lancaster Memorial Lecture),
Aeronaut. J. RAS 74 (1970), pp. 13-41, 111-127,

ARGYRIS,J.H., MARECZEK,G., "Potential Flow Analysis by
Finite Elements", Ingenieur-Archiv 41 (1972), pp. 1-25.

ARGYRIS,J.H., BRONLUND,O.E., “The Natural Factor
FPormulation of the Stiffness for the Matrix Displacement
Method”, Comp. Meth. Appl. Mech. Engng 5 (1975), pp. 97-119.

Ar82

AS71

Ba76

Be75

B669

Br77

Ch56

Co76

Csé67

Da72

Di76

DIN1

DING6

DIN7

194

ORIGINAL PAJE IS
OF POOR QUALITY

-173-

ARGYRIS,J.H., “An Excursion Into Large Rotations®, Comp.
Meth: Appl. Mech. Engng 32 (1982), pp. 85-155.

ASKA Part I - Linear Static Analysis, User's Reference
Manugl, ISD-Report 73, Stuttgart, 1971, Revisioa P 1979,
ASKA UM 202.

BAUER,F.L., EICKEL,J. (Hg.), "Compiler Construction®,
Lecture Notes in Computer Science Bd. 21, Springer,
Berlin-Heidelberg-New York, 1976 (2. Auflage).

BECKER,E., BURGER,W., 'Kong}nhumsmech7dik‘. B.G; Teubner,
Stuttgart, 1975.

BUHLING,K.H., INDERMARK,K., “"Endliche Automaten”,
Bibliographisches Institut, Mannheim, 1969/70.

BRANIN,Jr.,F.H., HUSEYIN,K. (Hg.), “Problem Analysis in
science and Engineering”, Interdisciplinary Conference,
University of Waterloo, Ontario, Canada, Mai 1975, |
Academic Press, 1977,

CHOMSKY,N., "Three Models for the Description of Language®, '
I.R.E. Transactions on Information Theory, Vol. IT-2,

Proc. of the Symp. on Inform. Theory, Sept. 1956.
COLE,A.J., “"Macro Processors", Cambridge University

Press, London, 1976.

COONS,S.A., “Surfaces for Computer-Aided Design of Space-
Forms", MIT~Project MAC, Report MAC-TR-41, 1967.

DAHL,0.-J., DIJKSTRA,E.W., HOARE,C.A.R., "Structured
Programming”, Academic Press, London, New York, 1972.

DIJKSTRA,E.W., "A Discipline of Programming”, Prentice-
Hall, Englewood Cliffs, 1976.

DIN 1301, Einheiten (-namen, -zeichen), 1978/79.

DIN 66001, Sinnbilder fiir Datenflu8- und Programmablauf-
pline, 1969.

DIN 66027, Programmiersprache FORTRAN, 1979.

DURFLER,W., MUHLBACHER,J., “Graphentheorie fir Informa-
tiker", wWalter de Gruyter, Berlin und New York, 1973.

Pebd

Ga77

Ge?7

Gm75

Gr71

Ho79

Iv7?
Jo78
Kné8
'Kbel
Ky79
Li79

Ma80

Me79

ORIGINAL [ASS 1S
OF POOR QUN-“'Y

-124-

FENVES,S.J., LOGCHER,R.D., MAUCH,S.P., REINSCHMIDT,K.F.,
®STRESS ; A User's Manual®, MIT Press, 1964.

GALLAGHER,R.H., “Computerized Structural Analysis and
Design - The Next Twenty Years”, Comp. and ‘Structures 7
(1977), pp. 495-501. ' e

y
Data Attribu;.' o

e ool

GEHANI,N., "Units of Measure ‘as a
Computer Languages 2 (1977), pp. 93-111.

PRSI SUP

GRAM,Chr., HERTWECK,F.R., "Command Languages 3 D.ugn
Considerations and Basic Concepts®, in: UHGBR.C. (Hq),
“"Command Languages"”(Proc. IPIP Congress on CM
Languages), North-folland, 1975. ~

GRIES,D., "Compiler Construction for Digital cgmputers'
Wiley International Editjion, 1971.

HORNING,J.J., ®Programming Languages for Reliable Computer
Systems®, in: GOOS, HARTMANIS, BAUER, BROY (Hg.), "Program
Congtruction®, Lecture Notes in Comp. Science, Spnngsr,
1979, pp. 494-530..

IVIE,E.L., “The Programmer's Workbench - A Machine for
Software Development®, CACM 20 (1977), pp. 746-753.

JONES,P.F., "Four Principles for Man-Caomputer Dialogue”,
CAD 10 (1978), pp. 197-202.

KNUTH,D.E., "The Art of Computer Programming®, Vol. 1
(Fundamental Algorithms), Addison-Wesley, Reading, 1968.

KOLB,H., "Standardized Interfaces for Data Transfer and
Graphics”, in: ASKA UM 230, Stuttgart, 1981, pp. 84-98.

KOWALSKY,H.~J., “Lineare Algebra”, Walter de Gruyter,
Berlin und New York, 1979 (9. Auflage).

LINGER,R.C., MILLS,H.D., WITT,B.I., "Structured Programming - ‘

Theory and Practice®, Addison-Wesley, 1979.

MACKENZIE,C.E., Coded Character Sets - History and
Development”, Addison-Wesley, 1980.

MELOSH,R.J., "Design Principles for Finite Element Meshing”,

NASA-ICASE Symposium on Math. Modelling, Langley Research
Center, Hampton, 24. Okt. 1979.

C -3

195

Mi76

Pn77

Ps79
P£81

Re81

Ri74

RO66

Rp79

Rs70

Ru76

sa73
sh82

Sm70a

ORIGINAL DATT IS
OF POOR QUALITY

-175-

MULLER,K.P., WOLPERT,H., "Anschauliche Topologie”,
B.G. Teubner, Stuttgart, 1976.

PARNAﬁ,D.L., “The Use of Precise Specifications in the
pevelopment of Software”, in: GILCHRIST,B. (Hg.),
»Information Processing 77" (Proc. IFIP Congress) ,
North-Holland, 1977, pp. 861-867.

PARSONS,I.T., "A Support System for Interactive Languages"”,

software 9 (1979), pp. 73-86.

PFAFFINGER,D., ®"Zur automatischen FE-Netzgenerierung”,
International FEM-Congress (IKOSS), Baden-Baden, 1981.

REHAK,D.R., LOPEZ,L.A., "Computer Aided Engineering -
Problems and Prospects®, Technical Report of Research,
Department of Civil Engineering, University of Illinois,
Urbana, Illinois, Juli 1981.

RITCHIE,D.M., "The UNIX Time-Sharing System”, CACM 17
(1974), pp. 365-375.

ROOS,D., "ICES System Design", MIT Press, 1966.

ROPOHL ,G., "Eine Systemtheorie der Technik - 2Zur Grund-
lequng der Allgemeinen Technologie®", Hanser, Minchen und
Wien, 1979.

ROSEN,R., RUBINSTEIN,M.F., "Substructure Analysis by
Matrix Decomposition®, J. Struct. Div. ASCE 96 (1970),
pp. 663-670.

RUTISHAUSER,H., "Vorlesungen {iber numerische Mathematik”,
Bd. 1 (Gleichungssystene, Interpolation, Approximation)},
Birkhiduser, Basel und Stuttgart, 1976.

SALOMAA,A., "Formal Languages®, Academic Press, New York
und London, 1973.

SHNEIDERMAN,B., "Designing Computer System Messages®,
CACM 25 (1982), pp. 610-611.

SCHREM,E., ROY,J.R., *An Automatic System for Kinematic
Analysis ASKA part I", in: FRAEIJS DE VEUBEKE,B. (Hg.),
*High Speed Computing in Elastic Structures®” (Proc.

IUTAM-Symposium 1970}, Universitit Liége, 1970,

pp. 447-507

196

td \"':"

ORIGINAL Ti.
OF POOR QUALITY

sSm70b

Sm71

Sm74
sm75
sSm76

Sm78a
Sm78b

sm79

sm80

sué9

Ta75

We71

Wiz

Wi82

197

~176~ .

SCHREM,E., "Die Konzipierung eines allgemeinen Rechenpro-

gramms fir die Anwendung der Methode der finiten Elemente®, f
in: BUCK,K.E., SCHARPF,D.W., STEIN,E., WUNDERLICH,W. (Hg.), i
*Finite Elemente in der Statik" (DFG-Kolloquium Stuttgart
1970), Wilhelm Ernst und Sohn, Minchen, 1973, pp. 302-320.

SCHREM,E., “Computer Implementation of the Finite Element
Procedure®, in: FENVES,S.J., PERRONE,N., ROBINSON,A.R.,
SCHNOBRICH,W.C. (Hg.), "Numerical and Computer Methods in
Structural Mechanics® (Proc. ONR-Conference 1971),
Academic Press, 1973, pp. 79-121.

SCHREM,E., "Standard FORTRAN IV (Erlduterungen und Ergdn-
zungen)*, ISD-Report 163, Stuttgart, 1974, Revision A, 1977.

SCHREM,E., "A Short Description af ASKA®, ISD-Report 194, ‘
Stuttgart, 1975. |

o
SCHREM,E., "PAGIO - A Software Package for Handling Paged i
pata-Sets”, ISD-Report 198, Stuttgart, 1976.

SCHREH,E.,"Proqummbausteine und Datenstrukturen fiir die
Implementation der Methode der finiten Elemente®,
pissertation, Universitdt Stuttgart, 1978.

SCHREM,E., °"Functional Software Design and its Graphical
Representation®, Comp. and Structures 8 (1978), ‘
pp. 491-502.

SCHREM,E., SCHULZ,U., “PRELEX - Eine Funktionseinheit fir
die lexikalische Analyse”, 1SD-Bericht 265, Stuttgart, 1979.

|

SCHREM,E., “"Werkzeuge fir die Modell-Beschreibung und
Etgebnis-Darstellung in ASKA 80", International FEM-
congress (IKOSS), Baden-Baden, 17./18. Nov. 1980.

SCHUBERT,H., “Topologie®, B.G. Teubner, Stuttgart, 1969
{2. Auflage).

TAIG,I.C., "Modelling and Interpretation of Results in
Finite Element Structural Analysis”, in: ROBINSON and Ass.
(Hg.), Proc. of the world Congr. on Finite Element Meth.
in Struct. Mech., Bournemouth, porset, England, 12.-17.
okt. 1975, Vol. 1.

WEINBERG,G.M., "The Psychology of Computer Programming”,
van Nostrand Reinhold, 1971.

=177~

WIRTH,N., "The Desi
gn of a PASCAL-Compiler®, Sof
+ .
(1971), pp. 309-333. ‘ e

W - “w
IRTH /N3, "Programming in HODULAZ', Springer, Berlin-
Heidelberg-New York, 1982.

Ar54

Axr57

Ba75

Be75

Bo69

DIN1

DING6

DIN7

Do72

Mu76

Pf81

Rp79

Ru76

Sm70b

198

REFERENCES /172

ARGYRIS, J. H., "Energy Theorems and Structural
Analysis", Butterworths, London, 1960 (originally
published in Aircraft Engineering, 1954-1955).

ARGYRIS, J. H., "Matrix Theory of Statics",
Ingenieur-Archiv 25 (1957), pp. 174-192.

BAUER, F. L., EICKEL, J. (Hg.), "Compiler /173
Construction", Lecture Notes in Computer Science

Rd. 21, Springer, Berlin-Heidelberg-New York 1976

(2nd edition).

BECKER, E., BURGER, W., Continued Mechanics", B. G.
Teubner, Stuttgart, 1975.

BoeHLING, K.H., INDERMARK, K. Finite Automata, Biblio-
graphisches Institut, Mannheim, 1969/70.

DIN 1301, units (names, symbols), 1978/79.

DIN 66001, Images for data flow and program sequence
plans, 1969.

DIN 66027, Programming language, FORTRAN, 1979.

DORFLER, W., MUHLBACHER, J., "Graph theory for
information", Walter de Gruyter, Berlin and New
York, 1973.
/175
MULLER, K. P., WOLPERT, H., "Lucid Topology",
B. G. Teubner, Stuttgart, 1976.

PFAFFINGER, D., "Automatic FE Network Generation",
International FEM-Congress (IKOSS), Baden-Baden, 1981.

ROPOHL, G., "A System Theory of Technology--
Foundations of General Technology", Hanser, Munich
and Vienna, 1979.

RUTISHAUSER, H., "Lectures on Numerical Mathematics",
Vol, 1 (Equation Systems, Interpolation, Approximation),
Birkhauser, Basel and Stuttgart, 1976.

SCHREM, E., "The Concept of a General Computer Program /176
for the Use of the Finite Element Method". 1In:

BUCK, K. E., SCHARPF, D. W., STEIN, E., WUNDERLICH, W.
(Hg.), "Finite Elements in Statics" (DFG-Colloquium
Stuttgart 1970, Wilhelm Ernest and Sohn, Munich, 1973,

pp. 302-320.

Sm78a SCHREM, E., "Program Blocks and Data Structures for

SM79

Sm80

Su69

the Implementation of the Finite Element Method",
Dissertation, University of Stuttgart, 1978.

SCHREM, E., SCHULZ, U., "PRELEX--A Functional Unit
for Lexical Analysis", ISD Report 265, Stuttgart, 1979.

SCHREM, E., "Tools for Model Description and Result--
Presentation in ASKA 80", International FEM-Congress
(IXK0SS), Baden Baden, 17.18. Nov. 1980.

SCHUBERT, H., "Topology", B. G. Teubner, Stuttgart,
1969 (2nd Edition).

199

200

FIGURE LIST

Figure /178

3.1 Examples of mesh types from model
description in structural calculation

3.2 Figure of a mesh tree

3.3 Compatibility of mesh types in the lower
mesh/upper mesh relationship

3.4 Commands for mesh tree description (for
example, see Figure 4.5)

3.5 Degress in incidents for topological units
in finite element meshes

3.6 Characteristics of elements

3.7 Commands for describing topology

3.8 Simple example for topology description

3.9 Correspondence of mesh coordinates and
world coordinates

3.10 Coordinate systems and bases for describing
configuration

3.11 Association of mesh and world node bases

3.12 Determination methods for node bases

3.13 Commands for describing configuration

3.14 Simple examples for describing configuration

3.15 Relationships between pairs of dual quantities

3.16 The duality ladder for the displacement
method in structural calculations

3.17 Division of the degrees of freedom

3.18 Degrees of freedom distribution plan of a
partial mesh

3.19 Commands for describing kinematic boundary

conditions

Examples for describing kinematic boundary
conditions

Commands for describing elementary data
Commands for describing loads

Simple examples for describing node loads
User Seéquence diagram of a section

State diagram of a section

State diagram for data access using contexts

State diagram for data access using contexts
and olymp

Examples for representing a mesh tree as a
mesh list and its description

General program sequence plan for mesh tree
crossing

State diagram of the net context control
State diagram of sequential management
Commands for system description

Model data and their data modules

State diagram of table management
Commands for project monitoring

The command language structures the user
interface

Left linear production system for the tokens
of the command language

Project system for the class of command
languages

The recognition operator (%Jﬁ*sy

Two representations of the syntactic structures
of the command language

Self description of the command language

201

/179

/180

6.18

6.19

The token types and their values (subtypes)

Hierarchy of the syntactic units of command
languages

Summary diagrams of the components of the
language generator

Representation of token types and variables
in the data register

Calling sequence diagram of functions of the
language translator

Calling sequence diagram of functions of the
language translator with consideration of
transparent command

Syntax of open list

Calling sequence diagram of functions of the
language translator and the listing generator

Schematic program flow chart of the language
processing

Syntax diagram of the description of number
sequences

Examples for numerical sequences of the first
and second degrees

Phases of command processing

Syntax diagram of macro description

202

Appendix A: Example for model description

We wish to describe a square plate with a hole, whose
hole edge is loaded with the pressure p. Based on the
symmetry of the hole plate and the load, the idealization
of one-eighth of the hole plate is sufficient. This
segment has to be handled kinematically in such a way that
the displacement perpendicular to the symmetry lines is not
possible.

The dimensions of the model are as follows:

half edge length of the square a = 10 cm
whole radius r = 4 cm
number of elements in the edge direction n, =

number of elements in the radial direction n_ =
pressure at the hole edge p = 10 N/cm
elasticity modulus of the plate material E =100 N/cm
Poisson transverse contraction coefficient v = 0.3

The configuration of the mesh is determined by a two
dimensional continuum. Correspondingly, a continuum element
QUAC4 with 4 nodes and the degrees of freedom u and v at

each node is used as the element. We thus obtain the

203

/182

following model description (see Chapter 3), where the key
words are written in large letters and the identifiers are

written in small letters for readability:

The mesh tree is of the simplest kind. An element mesh
(1) is coupled into a composite mesh (10), which is also the
main mesh.

TREE NEW
MAIN 10 NODES 36 CASES 1 NETYP pc SUB 1

ENET 1 ELTS 25 ELTYP quac4d MOTYP isot LATYP no
END

Starting with the ordinal node and elementary numbering,
the element indices are first described in the circumferential
direction (first loop: LOOP) and in the radial direction

(second loop: AND).

TOPO NEW

NODESEQ 10 NODES ORDINAL

ELTSEQ 1 ELTS ORDIMAL .

INSELT 1 ALL ELTS FROM 1,2,8,7 LOOP §

END BY 1,1,1,1 AND S BY 6,6,6,6 REP

The node coordinates are described in three steps:

1. The coordinates along the inner edge are determined

with polar coordinates ("polar").

2. The coordinates along the outer edge are determined
with cartesian coordinates "SEL". In the mesh tree
description, the mesh type "pc" was given (see
Figure 3.1). 1In this way, the cartesian coordinate
system is specified as a network coordinate system
and all node positions are converted into this

system.

3. The other node coordinates are interpolated through
the topological rectangle range 1, 6, 36, 31
("PARC"). For this purpose, along the inner edge

204

ORIGINAL #i0T i3

LR EN

OF POOR QUALITY 205

a trial solution of a fifth order (6 support
points) and a linear trial solution along the
other edges (2 support points) is used. In the
circumferential direction the f-parameters are
given and the n-parameters are given in the
radial direction.

The node bases "ROTB" are described so that the u-
degree of freedom along the left and right edge ("REF y")
and the v-degree of freedom along the inner and outer edge
("LB REF y") are perpendicular to the edge. The other node

bases follow in the directions of the mesh base.
CONFIG NEW ‘
COOR 10 polar rho(cm). phi(grad) TAB FROM 1,4,%0 LOOP 6 TO 6,4,45 REP
SEL x (cm) y (em) TAB PROM 31,0,10 LOOP 6 TO 36,10,10 REP
PARC 10 XI 6,2 ETA 2 BOUND RECTA FROX | LOOP 6 BY 1 REP,36,31

ALL FROM 0,0 LOOP 6 BY 0.2,0 AND 6 BY 0,0.2 REP

ROTB 10 REF y TAB P 6,6,36 LOOP 6 BY 6,0,0 REP
r 1,

1 LOOP 6 BY 1,1 REP
END :

All the degrees of freedom along the edge which are
perpendicular to the symmetry lines of the whole plate are
suppressed ("supp u"). 1In these directions, there can be
no displacement. The alignment of the degress of freedom
is specified by node bases.

BOUND NEW

FRED 10 supp u IN FROM | LOOP 6 BY 6 AND 2 BY 8 REP
END

The elasticity modulus ("emod") and the transverse
contraction coefficient ("ny") for all elements are given
for element data at the same level.

ELDA NEW
ELDA 1 emod (N cm -1) WITH 100 ELTS ALL

ny WITH 0.3 ELTS ALL
END

Only a single load case is considered ("LCASEQ", /184
"LCASE"). This consists of pressure forces of the same
magnitude along the nodes of the inner edge ("NLOAD").

206

The radial direction occurs there for the v-degree of

freedom, which is aligned by the node base accordingly.

LOAD NEW

LCASEQ 1

LCASE 1

NLOAD 10 SEL v(N) TAB FROM 1,10 LOOP 6 BY 1,0 REP
END

When one wishes to calculate a sequence of such models

with different dimensions, the use of macro commands for

model description is very advantageous for such a parameter

investigation. The commands given above are then generalized
as follows:

l.

The macro command "plate" is taken over by the
parameters of the model and it controls the model

description in the individual segments.

All commands for one segment are included in a
macro command. The required commands for macro

description are discussed in Chapter 6.2.2.

Each such macro command is supplied with a number
of model parameters. The corresponding variables
are called GLO and are defined as being dependent
on the surroundings. In addition, a few variables
independent of the surroundings are required. They
are called LOC.

Certain fixed values in the commands will also have
to be changed for a changed model. These new values
are now in general calculated using the LET command
from the model parameters and assigned to certain
local variables. The variables are set between $-
signs and instead of the fixed values they are

introduced into the command.

207

ORIGINAL, BACEi§

t<d

OF POOR
QUAUTV /185

DEFMACRO plate TO file

DECLARE
ARG NUM a SUB
ARG NUM T SUB
ARG NUM na SuB
ARG NUM nr SUB
ARG NUM p
ARG NUM ¢ SUB
ARG NUM ny SUB
ENDDEC |

BODY
TREE NEW
MACRO tteeplato FROM file START

TOPO NEW I
MACRO topoplate FROM file START

CONPIG NEW
MACRO configplate PROM file START

BOUND NEW
MACRO boundplate FROM file START

ELDA NEW
MACRO eldaputc FROM file START

LOAD N
MACRO loadplatc PROM file START
ENDBODY

ENDDEF

P S

W - awvun

-
1

DEPMACRO treeplate TO file

DECLARE
GLO NUM na .
GLO NUM nr
LOC NUM nodes
LOC NUM elts
ENDDEC

BODY
LET elts EQU na MPY nr
LET nodes EQU elts ADD na ADD nr ADD 1

MAIN 10 NODES $nodes$ CASES 1 NETYP pc SUB 1

ENET 1 ELTS Selts$ ELTYP guac4 MOTYP isot LATYP no

END }
ENDBODY

ENDODEF

DEFMACRO topoplate TO file

DECLARE i
GLO NUM na ;
GLO NUM nr |
LOC NUM nl
LOC NUM n2
LOC NUM n3-

ENDDEC

BODY
LET nl1 EQU na ADD 1
LET n2 EQU na ADD 2
LET n) EQU na ADD 3

NODESEQ 10 NODES ORDINAL

ELTSEQ 1 ELTS ORDINAL

INSELT 1 ALL ELTS FROM 1,2,35n3$,$n25 LOOP Sna$ BY 1,1,1,1
AND Sntl’ BY 3n15 $nis, $nis,$n1s REP
END .
ENDBODY

ENDDEF

CRiCIN, Foor g 208

/186

DEFMACRO configplate TO file

DECLARE

GLO NUM a

GLO NUM

GLO NUM na
NUM nr
LOC NUM nl
LOC NUM n2
LOC NUM nl
Loc
LoC

8

NUM t)
NUM t2
ENDDEC

BODY
LET n1 EQU na ADD 1
LET n2 EQU nl NPY nr ADD 1
LET n3 EQU n2 ADD na

COOR 10 polar rho(cm) phi(grad) TAB FROM 1, r,90 LOOP $nis
TO $nis, $r§,45 REP
SEL x (cm) y (cm) TAB FROM $n2$,0,5a$ LOOP Snis
’ TO $n3s,5as,5a$ REP

LET t1 EQU 1 DIV na
LET t2 EQU | DIV nr
LET n2 EQU nr ADD 1

PARC 10 XI $n1§,2 ETA 2 BOUND RECTA FPROM 1 LOOP ni BY 1 REP,Snl3$,$n2s$
ALL FROM O,0 LOOP $n1$ BY St15,0 AND $n2§ BY O,$t2S$ REP
ROTB 10 REF y TAB FROM $n15,5n1$,5n3§ LOOP $n2$ BY $nis,0,0 REP
LB REF y TAB FROM 1,1 LOOP Sn1$ BY 1,1 REP
END)
ENDBODY

ENDDEF

DEFMACRO boundplate TO file

DECLARE
GLO NUM na
GLO NUM nr
LOC NUM nl
LOC NUM n2
ENDDEC

BODY
LET n) EQU nr ADD 1
LET n2 EQU na ADD 1 .
FRED 10 supp u IN FROM 1 LOOP $ni1$ BY $n2$S AND 2 BY Sna$ REP
END
ENDBODY

ENDDEF
DEFMACRO eldaplate TO file

DECLARE
GLO NUM e
GLO MUM ny
ENDDEC
BODY
ELDA 1 emod (N cm ~1) WITH Se$ ELTS ALL
ny WITH Sny$ ELTS ALL
END
ENDBODY

ENDDEF

209

/187
DEFMACRO loadplate TO file
DECLARE
GLO NUM na
GLO NUM p
LOC NUM n1
ENDDEC
BODY
LET nl1 EQU na ADD 1
LCASEQ 1
LCASE 1 '
:;gAD 10 SEL v{(N) TAB FROM 1,5p$s LOOP $nis BY 1,0 REP
ENDBODY
ENDDEF
The model given above is described by the macro
command
MACRO plate FROM file NUM a = 10
NUM £ = 4
NUM na = S
NUM nr = 5
NUM p e 10
NUM e = 100
"NUM ny = 0.3 START
By changing the arguments, one can produce other
idealizations of the plate.
/188

Appendix B: Linear static analysis

In the following we will give all of the calculation
steps required for the meshes of the mesh tree in the case
of a linear static analysis. The method is used which is

implemented in the programming system ASKA [ASKA 71].

We will first consider a partial network with n sub-~
meshes. For each submesh j (1 ¢ j < n) we assume the
existence of class specific degrees of freedom index matrices
2,3+ %e3+ %3¢ %3 ' and for the partial mesh the class selection
matrices % % % % ., 1In addition, for each submesh, we
assume a stiffness matrix kj and a matrix of the node forces
Qj for the degrees of freedom coupled to the partial mesh.
These matrices are determined for the elementary meshes by
the element calculation (Chapter 3.11). Therefore, the FE
(finite element) calculation starts in the partial meshes

into which only elementary meshes have been coupled.

210

The assembly in the partial mesh gives the following

for the node forces

R -R +§EQT(Q

US4 T
n
- R (B.1)
R, =R . j};agjoj
etc.,
where
[Ta'
Ry = byR (B.2)
[] T .
etc.

R' contains the known node forces input in the partial
mesh. For the assembled stiffnesses, we find

T
Kou = g“uj kj %3 ‘ (B.3)

n
T
Koe = ; s %5 %;
etc.
/189
In this way one obtains the linear equation system for

the constitution equation

RU KPU KUE KUP KUS rU |
Re Kee Kep e |Tg ' (B.4)
RP s KPP KPS P :
m 1
R Y ¥ss| |Ts [
If we consider that
rS =0
and if we eliminate the prescribed displacement
r.o= bT P'
P~ 'p (B.5)

with the displacements ré input in the partial mesh, then

one obtains the equation system

211

fu .| Fou Koe 1%u (B.6)
Re Yoe ¥ee| | e

where
U'gu'KuprP (B.7)

RE =Rg ‘st’rp

The triangulation of K

uu by Cholesky gives
‘ B.8
Ky, = Wu ()
Using
T, = wiR, (B.9)
and
=0T
Toe =W Roe (B.10)
one obtains the coupling matrices of the partial mesh /190
T .
kgKEE -TUETUE. (B.ll)

Q'ﬁs -T:EFU

If the degree of freedom index matrices

Q -3

v’ % %, %
unknown in the partial mesh, then the calculation on the
upper mesh plane can be continued with the same method. This

process is repeated until the main mesh is reached. There

we have
rp = 0
and from equation (B.6), we find

Ry =Ky g (B.12)
Using equations (B.8) and (B.9), we find the solution

B.13
"u =Iu-'l Fu ()

In the following calculation, we find the following in

each submesh j (rs = 0)

lRU
Fps = ["Uj % °P:] "e| (B.14)
"P .

212

and one finds with equation (B.9) and (B.10) from (B.6)
that
oy -u"(?uj ‘Tusrsj’ (B.15)

This process of reverse calculation of the displacements
is continued over each of the submeshes until all elementary
meshes have been reached and the element displacements are
calculated.
/191
Appendix C: Proof of equation (3.15)

i, i J] 51
Eadm, B = £ (T ee] () £3 (D) =£1(5) £ () (3.15)
1,2 T By

Two conditions have to be satisfied for the correct sets

of interpolation functions:

1. The function belong to a support node has the value of
1 at this node and at all other support nodes, it has
the value 0.

This condition is satisfied by definition for LaGrange
polynomials (see equation (3.9)). This therefore is
also true for the product of two such polynomials, if
one is taken in ¢ and the other n. The product becomes
one at the support points, where both polynomials are 1
and are 0 otherwise. Since only support nodes are
selected along the edge of the topological region, in
equation (4.15) only the first two terms of the right
side are equal to 1 for the corner nodes. This then
means that the third term is 1 and the sum of all terms
is also 1. For the other nodes, only one of the two
other first terms is 1. Then, however, the third term
is 0 and the sum of all terms is again 1. g.e.d.

2. A given set of interpolation functions have to be capable

of interpolating a constant value over the corresponding

.o -y T
oyt 1 oy i'_ 1_ :\3
ST wiNAT e b

OF POOR QUALITY

213
topological region. Then the sum of the interpolation
functions has to be 1.

The sum of all functions according to equation (3.15)
is the following for one side. For example, j = 1:

n+1 n+l

i,3
;;; f(nfm)1'2tsnn - (;;; fij(E))f:bﬂ
' ff;1(1>f}(§)+f;2(q)ff(§)
~E1 B £ (-2 (D £y
/192

and
106 + £3(8) =1

we find

nti
i3 - 1 1 2
2 f(n’m)llz(f.q) fn, V(D) + fm2(1)f,(§)

For the sum of all of the four sides of the region, we find

f n+1
PEVS L gl 1 1 2
S = (n,m),'z(?’7) fm, (D E (B, () E(E)s

m+1 1 m+1 2
fm, (q)f,(!)+tm2 (7 6+

1

1 1 2
fn“s’f1‘7’*fn2‘5’f;‘7”

n+1

1
o (f)fl(7)¢f:;'(})ff(7) . (C.1)

For the sum of all four corner functions, we find:

(ﬁf\lM' Boketlil oL

OF POOR Q‘L’I“Lglh

/
f;'lm (?.7)¢f“” 1(E.)+£ '"”(3.7)%"”""”(3,,) - |
1"

i
1

(C.2)
tn1(E)f1(1)+fm](Q)f‘(})-f1(E)f‘(1)+

1 2 +1 1 1 2
fnz(E)fl(7)+£:l (£ (B)=£ (D) £7 () +
1 .2, +1 2 2 2
s:’ (})z,.ﬁ)+f:2 (PETBI-FIF1 £ ()

“*'(?)f Loqrag] (7)ff(§)-ff(i)f:(ﬁ)

Since
1 1 1 2 2 : 1
B @D et (N 2 eel (e () =
1 1 2 2 2 1
f,(E)[?1(7)+fl(qﬂ'+f1(§)[f1(7)+fl(n)] =1
one obtains the value of 1 for the difference between

equations (C.1l) and (C.2). g.e.d.

214

Personal:

School:

Matura:

Studies:

215

HISTORY /193

Wilfried Reinhard Helfrich, born Wagele,

vorn [N i~ . e

to Brigitte Helfrich since 1978.

1960-1964 grade school
1964-1972 gymnasium
both in Ludwigsburg

1972 at the Friedrich-Schiller-Gymnasium
in Ludwigsburg

After winter semester 1973/74 at the
Stuttgart University, Division for
Aerodynamics and Space Flight.
One-half year practical activity at

various firms.

1979 main diploma.examination

Scientific activity:

After my studies, scientific worker at the
Institute for Statics and Dynamics of the
Aviation and Space Flight Division,

Stuttgart University.

T ® STANOARD TITLE PacE
« Resert No. 2,

NASA TM-8 8528 Governmont Accossion No. 3. Recipient’s Coteleg No.

4, Title end Subd

DESTGN OF SOFTWARE FOR DESIGN OF FINITE | Reprt Oate 1987
ELEMENT FOR STRUCTURAL ANALYSIS . ebruary

8. Perlorming Orgenitetion Cede

12,

15,

7
. Avthe -
Rein ard Helfrich §. Perlorming Orgonization Repoet He,
10. Work Unit Ne.
P, Perlorming Organizetion Neme ond Addrese 1), Centrect or Gront Ne.

SCITRAN NASw- 4004

Box 5456 13, Typo of Repert ond Poriod Covered
L Santa Barhara, CA 93108 | Translation

RETOAAl Relorant 144" 0na s
sca Admi
Wasnington, D.C. 20546 P nistration

14, Spensoring Agency Code

Supplementery Notes
Translation of: "Zur Entwicklung eines Softwaresystems fur
die Modellbeschreibung bei der Methode der finiten Elemente,”
dissertation submitted to the Faculty of Aerospace Transport-
ation Technology of the University of Stuttgart for the
Achievement of the Degree of Doctor of Engineering, (Nov.: 22)
1983, pp. 1-192

14,

Abgatroct °
This work is concerned with the concepts of software engin-

eering which allow a user of the finite element method to des-
cribe his model, to collect and to check the model data in a
data base as well as to form the matrices required for a
finite element calculation. Next the componenets of the

model description are conceived including the mesh tree,

the topology, the configuration, the kinematic boundary A
conditions, the data for each element and the loads. For this
the possibilities for description and review of the data are
especially considered. The concept of the segments for the
modularization of the programs follows the components of the
model description. The significance of the mesh tree as a

as a global guiding structure will be understood in view of
the principle of the unity of the model, mesh tree, and data-
base...the user-friendly aspects of the software system will
be summarized: the principle of language communication, the
data generators, error processing, and data security.

17,

Key Words (Sotest
oy Yoeds { ested by Avtner(s) 10, Diswibution Stetemant

Unclassified and Unlimited

19.

.Unclassified

S
acurity Classil. (of this repert) 3. Secwrity Clesall, (of Wis poge) T Ko, of Poges . Pace -

Unclassified ' 215

