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HELFRICH, REINHARD

TOWARD THE DEVELOPMENT OF A SOFTWARE SYSTEM FOR MODELLING WITH THE

FINITE ELEMENT METHOD

This work is concerned with the concepts of software engineering which

allow a user of the finite element method to describe his model, to

collect and to check the model data in a data base as well as to form

the matrices required for a finite element calculation. Next the

components of the model description are conceived including the mesh

tree, the topology, the configuration, the kinematic boundary

conditions, the data for each element and the loads. For this the

possibilities for description and review of the data are especially

considered. The concept of the segments for the modularization of the

programs follows the components of the model description. The

significance of the mesh tree as a global guiding structure will be

understood in view of the principle of the unity of the model, mesh

tree, and the database. Out of this will be derived the concept of

the mesh context for the modularization of the data in the data base.

For storage of the model data, the data module sequences and tables

will be introduced and their application functions thoroughly

described. Then the user interface will be developed through the

central concept of command language. It embraces the recognition and

description of the language, the production of language tables and

with that, the possible translation of every language input in free

format to a fixed processing format for the programs. At the same

time the concepts of open lists for the creation of regular series of

numbers and macro-commands for user-specific definition and

application of repeatable and variable parts of the modelling will be

explained/ Finally the user-friendly aspects of the software system

will be summarized: the principle of language communication, the data

generators, error processing, and data security.

*Numbers in margin indicate foreiqn pagination.
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Explanation of Symbols

, Ways of Writing Matrices

: Vectors and matrices are boldface

: Column matrix with elements Qi

,

: Diagonal matrix with elements a i

: Column Matrix with elements m_ to Q n in row order

Ways of Writing Brackets for Description of Commands

_o_ : Parts of commands. If they are not enclosed within

angle brackets, they must be used in the given form.

: = or 8 must be written

I

{._}'.{m}'.{a}" :, = iS to be written at least once (or n times,

! respectively and repeated as often as desired (or m

times, repectively.

[.]"o[-]-,[.].•

: = or 8 can be written

: If = is written, then it must be written at least

once (or n times, respectively) and = must be

repeated as often as desired (or a maximum of m

times).

{[_] [@]} : At least one of command parts = and 8 must be written
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<a> : All intermediate symbols of the command description

will be written lowercase between angle brackets•

During the use of the command, these intermediate

symbols are to be replaced by the user with suitable

end symbols•

Other possibilities for describing the commands are found in

Chapter 6.4.2.

• Function Description

AAA ( al, .. , a i, aj, ..)

AAA : Function name in uppercase letters

a
i

: Function parameter in lowercase letters. They depict

intermediate symbols which are to be replaced by the

programmer with end symbols (e.g. with FORTRAN

variable names.

a
i

: Input parameter

a
-j

: Output parameter.

underlining.

These are emphasized by

%[d] : The parameter a i stands for several pieces of data,

so it is to be placed in a field of length d.

ai_i' a_ : Two dimensional field with column dimension d i and

row dimension d
2

• Operations on integers

div (m,n) : integer quotient of the division of m through n.

mod (m,n) : The remainder from the division div (m,n)
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The method of finite elements (FE) is a recognized procedure of

applied mathematics. Since the beginning of its development [Argyris

54,56,57] it has been intimately connected with the technology of

digital computers. The early insight into the capabilities of this

then-new technology has significantly influenced the development of

the method in form of the displacement method [Argyris

59,64,65,70,75]. Therefore it was logical to connect the creation of

the theoretical fundamentals to the development of a powerful

programming system, which could serve a broad application of the

method. [Schrem, 70a,70b,71,75]

Since the introduction of the first programming system suited

for the finite element method, the conditions for its applications

have changed in manifold aspects. If, at the beginning, structural

calculations were established as an area of application, so today many

areas of application have been opened up. If at first only large

research establishments and financially strong industrial concerns

were in a position to buy a digital computer, the development of

inexpensive and small computers has advantageously changed the

prerequisites for the application of the method. Out of this resulted

a constantly increasing dissemination of the method and the software

systems required for its practical application.

Software systems, as all technical creations, are first objects

of the development and afterwards of the application. Thus those who

develop the system and those who apply the system, the so-called

users, are commonly not identical. Therefore the users play a

decisive role in all development considerations, This applies above

all for software systems for the finite element method, because its

scope and complexity require considerable development costs and the

broad dissemination which is therefore necessary presupposes the

approval of many users. The judgement of a user will be determined on
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one hand by the fulfillment of functional requirements, on the other

hand through the user's experience in working with a system. Out of

this results the importance of the so-called user interface, over

which the entire communication between user and system is developed.

A user interface is then called user-friendly if it connects /9

numerous functions to reduce work with a pleasant unified way of

working. In particular, the modelling is a very communication-

-intensive phase in which a slight or a well-developed

user-friendliness of the interface easily becomes evident.

At the beginning of the history of the development of software

systems for the finite element method the user interface was not given

the attention necessary today. At that time one concentrated more on

the algorithmic aspects of FE calculation. That was also required

from the state of the hardware and software equipment, since only

modest resources were available in terms of computing time and storage

capacity. With the improvement of these resources it was recognized

that the preparation and input of the model data as well as the

evaluation of the results together required 60 to 90 percent of the

total time needed for application of the method (after [Gallagher 77,

Rehak 81]). A shortening of this time is thus to be achieved through

a reevaluation of the user interface in view of earlier system

solutions. Thereby the user-friendliness of the interface comes into

decisive significance. How this can be achieved shall be depicted in

the following work in terms of modelling.

The actual computation programs apply the method using

matrices. It was always obvious that it could not be demanded of

every user to construct the matrices himse]f and place the program at

his disposal. Therefore the job of a software system for modelling is

to place in readiness tools which allow the user to describe a finite

element model in terms amenable to him (such as location of elements,

orientation of the supporting structure, material properties), to

collect and to check the model data as well as to create the matrices

necessary for the calculation.
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Tools of the type described are made available by practically

all software systems for the method of finite elements. There ,

supplying the system with data is in the foreground and not the user

friendliness of the data entry. Besides that, many pre-run programs

(so-called pre-processors have been developed which support a user- or

application-oriented model description. However, all too often /I0

the description of a model is equated with the pure division into

elements and establishment of coordinates (keyword: mesh generators).

Therefore, in the following work it will first be thoroughly examined

which components a model description does have. Special prerequisites

for this were the application of the partial structure process, which

is also applied to the model calculations and the incorporation of the

element calculations into the model description in accordance with the

above-mentioned assignments. In no case was it intended to develop a

general multipurpose program that would be suitable as a pre-processor

for all FE systems. The development had rather the goal to merge the

model description into the virtual FE machine (VFE machine) newly

conceived by Schrem [Schrem 78a]. Incidentally, in other respects in

this work expressions and examples from structural calculations will

be cited where necessary for explanation.

A complete model description requires in some circumstances

that the user make available very extensive amounts of data. A

user-friendly system must therefore realize concepts for the

simplified and abbreviated description of the data. The wish of the

user to describe ever-more complex models with ever-smaller amounts of

data is understandable. Precisely for that reason, all questions

which are connected with the verification of the correctness of a

model will be thoroughly treated in this work. Because as long as

software systemsdon't operate according to the utopian demands of the

users: "I'm thinking of a model, make it available!",

incompatibilities and errors will belong to the normal byproducts of a

model description. For so long, the user will have to communicate his

model data to the system in some manner. To create a foundation for
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this in the form of a command language is a further chief concern of
this work. Here is appplied extensive experience from applied
information science with the help of which a language concept suited
for the model description will be developed in a very general way.
Special attributes for this include on one hand the description of
number series for the creation of desired model data and on the other
hand the capability for the depiction of algorithms with which the
user can realize variable model descriptions.

/II

Software is designated above all by the category of information

and not by the category of material or energy. Therefore one cannot

get to know software by handling it or looking at it. This results in

difficulties for the depiction of a software outline, for which there

presently exists no satisfactory method (as with blueprints, for

example). The following work thereforeattempts to depict the outline

of the software system under three different aspects. For the first

will be explained the decisions for the outline which are applicable

for system configuration. In addition above all will be emphasized

the observed principles whose effectiveness marks a software system of

the level expected of a technical product of high quality. The

principle of unity of model, mesh tree and project data base proves

itself to be of particular far-reaching significance. Second, the

central functional units will be described. Their functions and data

structures will be described as immediate consequences of abstract

concepts. The function description serves as a basis for the

implementation of the functional unity. The complete software system

will be implemented through the assembly of equally-entitled and

hierarchically-ordered fuctional units. Third, the commands for the

user will be introduced. Through them, the functions and capabilities

of the user inter face will be stipulated. They facilitate a

presentation of the practice of the use of the system in textual

connection with the underlying concepts and principals. Above all,

with respect to the strived-for user friendliness, the commands are to

be seen as significant results of the system development.
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2.1 Core Systems and Satellite Systems

A software system for the method of finite elements will be

decisively influenced by the versatility and uniformity of the method.

On one hand the versatility is represented by the element model which

allows the most diverse areas of application to be comprehended. On

the other hand the unity of the method is guaranteed through the

operations of linear algebra, which make possible the formulation and

solution of the systems of equations arising from the discretization.

The suitability of this method was already recognized in the beginning

of its development: "The matrix formulation allows us not only to

write the equations much more clearly, rather it is also the ideal way

of writing for digital computers" [Argyris 57].

The separation of element model and solution of equations is

reflected in the structuring of the software system. Thus, the unity

of the operation of linear algebra has led to the concept of the core

system, in which abstractions can be made from all element models.

So, for example, the following functions of elastic static mechanics

do not belong in the core system:

o assembly of the element stiffness matrices,

o determination of initial loads based on initial strains,

o discretization of distributed element loads (such as

line, area and volume loads),

o calculation of element stresses from element strains.

Through the exclusion of these functions the core system becomes very

generally applicable and its application is exclusively oriented to

the solution algorithm.

The concept complementary to the core system is that of the
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satellite system that, together with the above-mentioned

element-dependent functions comprises the overall model description

and evaluation of results. With this,all application-dependent and

communication-intensive parts of a FE calculation are clearly divided

from the core system. A change in the area of application can

subsequently lead to a new satellite system, while the core system

with all computation-intensive parts remains unchanged. The /13

integration of core system and satellite system is designated virtual

finite element machine (VFE machine), "which is suited as fundamental

ordering principle for every modern programming system for the

application of the method of finite elements" [Schrem 78a]. The two

partial systems are connected with each other over the data-processing

system (DVS) {Datenverwaltungssystem} which constitutes an example of

the VFE machine.

2.2 System and Functional Unity

The idea of the system was already used in this work in some

expresions: software system, program system, core system, satellite

system, data processing system. The idea should be examined here

somwhat more closely in order to avoid its undisciplined use. In

[Rohpohl 79] one finds the following description of the system idea:

"a system is a unit which (a) exhibits relationships between definite

attributes, which (b) consists of interconnected parts or subsystems,

and (c) is divided by a definite boundary from its environment or is

circumscribed within a supersystem." The functional view (a)

describes a system by a number of attributes -- those are, for the

time being, arbitrary properties. Such attributes, which place the

system in relation to its environment, are called entrance and exit

attributes. Such attributes which characterize the constitution of

the system itself are called state attributes. Every coordination /14

of the attributes to each other represents a function of the system.

This conception of the function is universal and signifies no

limitation to mathematical functions. According to the structural
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view (b) a system consists of subsystems which combine in a definite

manner to form the whole. A system is therefore the environment of

all its subsystems. A structure exists if definite relations exist

between the subsystems. With these relations,interconnections between

attributes of various subsystems are designated. If the subsystems

arise through division of the entire system, one speaks of the

modularization of the system; if a system arises from the assembly of

subsystems, then the system exists as a result of integration.

According to the hierarchical view (c) subsystems are further

divisible into subsystems. Thus, a recursive process is described to

modularize a system into smaller and smaller subsystems or to

integrate systems into more and more powerful supersystems.

Software systems can now be described as technical systems for

which all attributes are represented by data. These systems are

technical because they are, on one hand, artificially created and, on

the other hand serve as tools for achievement of definite tasks. For

the subsystems of a software system a sound concept was introduced in

[Schrem 78a,78b] with the idea of functional unity: " A functional

unit is a device for data processing that is defined by a complete set

of function and performance specifications" [Schrem 78a] (Emphasis

added). As attributes of a functional unit the data may be divided

into

o input data: these are transmitted from the environment

to the functional unit.

o output data: these are transmitted from the functional

unit to the environment.

o internal data: these are known only within the

functional unit and represent the state of the

functional unit.

The function specification describes the environment of the

functional unit, the domain and the significance of all input and

/15
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output data, all complete functions as well as the changes of state

connected with them. For the outline of a functional unit the

following rules apply:

o The function specification should be complete and should

include all functionswhich result from the application

of the functional unit. This also requires that for

every input datum (or output datum or internal datum)

there exists at least one function which needs (or

creates or changes) the datum.

o The function specification should be self-contained and

include all functions which change the state of the

functional unit. This especially includes both of a

pair of inverse functions, which are so distinguished

since they do not change the state of the functional

unit when they are both performed, one after the other.

o The function specification should he unambiguous; that

is, for a definite change in state should be forseen

exactly one function. With all this, "similar"

functions are excluded and a clear separation of the

functions is achieved.

The performance specification describes the demands on all operating

means which must be fulfilled by the functional unit, especially the

time and memory requirements.

Functional units play an important role in the development of

complex software systems. Such systems become comprehensible and

realizable if one structures and abstracts. Especially, one can and

should proceed according to the principle of modularization:

> From the modularization of the application and

theoretical areas it will be attempted to derive the

modularization of the systems into functional units and

with this a modularization of the data into data

structures.
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This principle can be made use of on many levels of a system

hierarchy. An important consequence for the following work is that

the modularization of multifunctional systems, with reference to a

system for model description, will necessarily be reflected in a

modularity of the user interface. This is forseen and desired.

From the principle of abstraction, the partial aspects of a

system once considered separately may be condensed into a few.

Functional units as subsystems allow abstraction from a supersystem and

other subsystems. Just as much is abstracted from the structural

aspects of a functional unit. So in the above-cited definition

nothing is mentioned about the role of programs and computer sytems.

Only the fulfillment of function and performance specification ,is

controlling. A further abstraction concerns the storage of the

internal data of a functional unit. For the function specification a

general concept of the data structures for the establichment of the

functions is sufficient (compare "information hiding module" [Parnas

77]).

As required by the hierarchical view,the ideas of software

system and functional unit can be used equally. Following the general

language usage the idea of software system shall be associated with

"complex, comprehensive, global" and the idea of functional unit with

"simple, comprehensible, limited". The idea "machine" as it is used

in connection with VFE machine is therefore most closely equated with

software system.

2.3 Use and Development Environment

The VFE machine and thus also the satellite system need to be

implemented in a computer system for practical use. Therefore, two

aspects of the system environment are especially important:

o the input/output (I/O) devices and

o the operating system.
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For the user, the available variety of I/0 devices for input

and output is interesting. The input and output must be regarded as a

fundamental software problem, since its unified treatment on various

I/O devices is not transferable. This realization has led to a total

renunciation of every language-inherent input and output concept

(compare [Wirth 82]). In the model description, the input may take

place by light pen, keyboard, or graphics tablet. With this in mind,

it is obvious that each input medium must be supported by

corresponding software measures in order to allow adequate work with

the medium. While the keyboard is suited e.g. to input commands to

the system, one would use a light pen in order to choose a desired

command out of the possibilities displayed on the screen. The

integration of so many different input media requires a concept of

strict separation of syntax and semantics as will be introduced in

this work (Chapter 6).

Besides the compatibility to various I/0 devices,the large

development costs of a software system require the largest possible

independence from an operating system. For one thing, this is

important with respect to a long product lifetime, during which

changes in computers and operating systems should not lead to a loss

of usefulness of the software. For another thing, the software system

may be installed in various computers and thus become available to a

wide circle of users. There must be definite minimum requirements

made of an operating system in order to make possible software

compatibility. These include above all the availability of a _FORTRAN

machine':

o The computer should have at its disposal a magnetic tape

device in order to input the program to the machine.

o A compiler for the programming language FORTRAN [DIN

66027] {DIN = Deutsche Industrie Norm, German Industrial

Standard} must be available. The choice of this

programming language is based on its standardization and
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widespread use. Its disadvantage as a primitive
language (e.g. no support of structured programming,
provision for only the simplest data types) may be
balanced out by a heightened discipline in programming
(compare [Schrem 74]).

o The operating system must make available a bus which /18

can integrate independently-compiled programs into an

executable module. For this is needed a virtual memory

capacity, which includes the possibility for the

formation of multi-user modules.

o A loader allows the execution of the connected modules.

If the corresponding I/O devices are available, then the

satellite system is ready for operation.

The compatibility of the software is conceptually simplified by virtue

of its I/O device-dependent and operating system-dependent parts being

organized in special functional units (compare [Schrem 76, Kalb 81]).

A change of the Fortran machine then affects exclusively these

functional units. With these can be abstracted from the

machine-dependent aspects of the satellite system.

Since the development of the satellite system is also

accomplighed with the help of a computer, additional requirements must

be fulfilled. One can imagine very fancy systems for the development

environment (compare [Ivie 77]) but here shall be mentioned only a few

requirements which are indispensable, according to the experience of

the author:

O For the creation of the program a text editor is

required. The input of the program over CRT

(cathode-ray tube) devices available in sufficient

quantity, a high-speed printer for output, a

dialog-oriented operating system and a high throughput

for execution of programs as well as a breakdown-free
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operation over long periods of time can be regarded as a
package of requirements.

o The control of the program must be possible in a data
structure which is easily overviewed (compare [Ritchie
74]).

o Especially important is the constantly undisturbed
access to peripherals of the computer system such as CRT
devices, high-speed printers, and magnetic tape devices.
A closed system is to be avoided, since it hinders the
software developer from choosing his operating speed
himself.
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3.1 Brief Characterzation

A model is the idealized depiction of a structure under

conditions of use in such a way that the finite element method may be

used directly to make calculations based on the model with the

intention to interpret the results of the calculation in terms of the

behavior of the structure. Thus, every application of the finite

element method is characterized by the three phases of modelling,

calculation, and evaluation of results. A high-performance computer

with suitable software is a prerequisite for the completion of each of

the three phases [Argyris 70, Schrem 71,78a].

The precursor to model development is called idealization.

This consists of mentally dividing the structure into a discrete number

of finite elements which suit the purpose of the calculation. This

division is to be built into the modelling. For this, the mesh serves

as the fundamental building block. Each mesh consists of a row of

nodes which represent definite points in the visualization space• The

nodes posess degrees of freedom. These stand for two dual physical

quantities, of which one is unknown and the other given in each node.

In structural calculations these are, depending on the component,

force and displacement, or their generalized analogous quantities. In

this way the boundary conditions of a structure are determined by the

given forces and displacements and the unknown forces and

displacements result from the calculation.

The description of each model can be divided into the following

steps:

I. Description of the division of the structural model into

meshes.

2. Description of the topology of the interrelationships of

elements and meshes by means of nodes
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3. Description of the configuration, through which the
nodes are given positions and degrees of freedom of a
coordinate system.

4. Description of the kinematic boundary conditions,
through which the unknown displacement quantities may be

separated from the given displacements.

5. Description of the elements with specific data on /20

geometry and type of engineering material.

6. Description of the loading by statement of the values of

the given force and displacement quantities.

7. Calculation of the elements through creation of their

discretization matrices.

Every step is chosen such that a few correlated properties of the

model are coupled. The sequence results from the fact that each step

in the modelling refers to the previous steps. Through this, a logicl

construction of the model is achieved.

The following treatment of all steps in the description of the

model is accompanied by illustrations with the commands for modelling

which have arisen in the development of the system. The concept of

command language is explained thoroughly in Chapter 6. Through the

preferred listing of commands a direct relationship of the fundamental

concepts to the practice of modelling will be produced. An example of

modelling is found in Appendix A.

3.2 Element and Mesh

A fundamental concept of every model is the mesh.

differentiates between two types of meshes:

One

o Elementary meshes: In each of these is connected

together a row of elements of any one type. Each such

element is a model in miniature and is described by its
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behavior with respect to physical field variables
(stress and strain or force and displacement,
respectively). Through simple statements about the
changes in the field variables the element is idealized
with a small number of degrees of freedom (up to
approximately I00). Since, in a model, a large number
of elements appear, elementary meshes allow an order
which makes the model comprehensible in that the
component parts may be regarded as a unit. Connected /21

with this is a coordinated treatment of all elements of

an elementary network in the model description. The

elements remain unconnected. The degree of freedom is

determined from the number of elements and the

respective set of degrees of freedom (compare [Schrem

78a]).

Connecting meshes: These are created when elements of

one or several elementary meshes are connected with each

other. The connection results when the nodes of several

elements are placed in the visualization space. This

process is also called coupling. Here, the elementary

meshes can be of different types. In addition, a

connecting mesh is also created when one or several

connecting meshes or elementary meshes are coupled

together. Thus, the definition of a connecting mesh is

recursive. The coupling process can be performed in as

many steps as desired, until all elements in a model are

coupled. Through the coupling, the degrees of freedom

at the nodes of the connecting meshes are always

connected directly or indirectly with the element

degrees of freedom. From this results the important

principle of node-connected degree of freedom:

> In the process of coupling the meshes, only degrees

of freedom connected with the nodes are counted.
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The versatility of the finite element method is, above all,

based on the variety of possible element types. To classify each

element according to type has the advantage of being able to condense

its characteristic properties into a single expression (compare

Chapter 5.2). The element type includes:

o The type name as identification.

o The discretization in the statement function with which

the progress of the field variables within the element

is comprehended.

o The organization of the element mesh.

o The physical area of application.

o The number of degrees of freedom and their division

among the nodes.

o The type of coordinate system in which the locations /22

of the nodes are described and according to which the

degrees of freedom are oriented.

The choice of an element type is the task of idealization and an

important prerequisite for modelling. This is first determined

according to which physical question formulation is to be answered

with a model. For this are to be considered all of the properties of

an element type mentioned previously. So, for example,the order of

the statement function is very important for the consideration of the

expected stress changes in a model.
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Figure 3.1 Examples of mesh types for model description in structural

calculations.
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/23

Because of various physical application areas, the degree of

freedom and the coordinate system of various elements can be so

different that they cannot be coupled by means of elementary meshes

into one and the same connecting mesh because the unified description

of these properties is not ensured. The element types may be so

classified that this unity is achieved in each class. Each such class

is designated by a mesh type, which is a property of the connecting

mesh. Through this is determined (for examples see Fig. 3.1):

o the type name as identifier.

o the set of degrees of freedom on each node. This is the

same for all nodes of a mesh.

o the type of coordinate system, in which the location of

all nodes is described and to which all degrees of

freedom are related.

The elements are then coupled into a connecting mesh, so that element

and mesh type allow a mutually compatible set of node variables.

3.3 Mesh Tree

The recursive definition of the connecting mesh leads to the

concept of the mesh network. Through it, the division of a model into

meshes is described. Specifically, this follows the principle of

unity of model and mesh tree:

> Each model is described by exactly one mesh tree and

every mesh tree depicts exactly one model.

That mesh which, after the recursive coupling procedure is not itself

again coupled into another connecting mesh, is called the main mesh.

All other connecting meshes of a model are called partial meshes

[Schrem 78a]. A mesh tree is an ordered tree with the properties

(compare Fig. 3.2):

o The roots of the tree form the main mesh. /24

o The branches of the tree form the partial meshes.

o The leaves of the tree form the elementary mesh.
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Figure 3.2 - Example of a mesh tree
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The tree is called ordered, because its meshes are presented in a
definite order. The order is laid down such that the meshes follow
each other stepwise from right to left (as seen from the main mesh
outwards). In order to designate a mesh, the mesh number will be
introduced. This is a positive whole number which gives its name to
the mesh. With this, each mesh is unambiguously identified within a
model. The user-chosen external mesh number refers to an ordinal,
internal mesh number corresponding to the mesh order.

The edges of the mesh tree give rise to a lower mesh/upper mesh
relationship. Each connecting mesh is an upper mesh_ the meshes
coupled within it are its lower meshes. From this follows:

o Except for the main mesh, each mesh has exactly one
upper mesh.

o Except for the elementary meshes, each mesh has at least
one lower mesh.

The properties of the nodes of the connecting mesh are determined /25

by the mesh type. Therefore, the mesh types of two meshes which are

coordinatedby a lower mesh/upper mesh relationship must be compatible

(see Fig. 3.3). If the mesh type of a lower mesh represents more node

variables than the upper mesh, the extra variables are called

redundant node variables.
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Figure 3.3 - Compatibility of mesh types in the lower mesh/upper mesh

relationship.

The simplest mesh tree consists of a main mesh and an

elementary mesh. For the construction of complicated mesh trees many

reasons can apply. One reason is the need to coordinate different

types of elements and different types of elementary meshes. Another

reason is purely from considerations of computer technology. That is,

with idealization using very many elements, a solution is only

possible by separation into several connecting meshes, since the

available computer system capacity (memory space, computing time) is

not sufficient for a solution in a single step. Regularities in a

structure that allow its depiction using several similar meshes (e.g.

with symmetry) are suited for separate idealization. Out of this

results the possibility to carry out the calculation of identical

discretization matrices only once. Besides this, there can also be

reasons based on a more favorable model description, in which the

construction of a hierarchy of connecting meshes appears advantageous.

With this, one achieves the separation of structural parts which are

to be changed in a later model or idealized differently (e.g. with a

finer mesh or other element types. Last but not least, the aspects of
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the evaluation of the results for a given construction of the mesh
tree may be relevant. The description of the mesh tree occurs
with the commands in Fig. 3.4.

/26

i - main mesh, 2 - partial mesh, 3 - elementary mesh, 4 - mesh number,
5 - number of nodes, 6 - number of loadings, 7 - mesh type, 8 - lower
mesh lists, I0 - number of elements, Ii - element

type, 12 - model type, 13 - load type.

Figure 3.4: Commands for mesh tree description.

Figure 4.5).

(For examples, see

3.4 - Nodes and Incidences

In order to coordinate node variables with a node, the node

must be identifiable. This purpose is served by node numbers. These

are arbitrary positive whole numbers which give each node a name.

Within a connecting mesh this node name must be unambiguous, but the

same number/name may be used to identify nodes in different meshes.

The order of the node variables at a node is determined by the mesh

type. The order of node variables in a connecting mesh results from

the definition of a nodal order. For this,the n node numbers of a
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mesh are depicted by the ordinal numbers from 1 through n. In order

to differentiate them, the former will be called external node

numbers; the latter, internal node numbers. The arrangement of the

node variables in the connecting mesh results in the so-called

canonical order of node variables.

The coupling of elements and meshes is accomplished with

incidences. One differentiates:

o node incidences and

o incidences of degrees of freedom.

The node incidences facilitate the coupling in visualization /27

space_ the incidences of degrees of freedom facilitate the coupling in

the dual space of the degrees of freedom. Two nodes are incident if

they occupy the same point in the visualization space. The coupling

of upper and lower meshes is then simply described by the listing of

the ordered pairs _ of all incident lower and upper nodes. Each node

of a lower mesh is incident with either zero or exactly one upper mesh

node. With respect to multiple incidences, the principle of

unambiguous coordination of node and point applies:

> Different lower mesh nodes may not be incident with the

same upper mesh node if they do not represent the same

point.

Each edge of the mesh tree represents the availability of node

incidences. Specifically, the following apply:

o All elementary mesh nodes are incident with upper mesh

nodes.

o In each partial mesh exist incident nodes; otherwise,the

mesh tree would fall apart into disjunct graphs. This

would violate the principle of unity of model and mesh

tree.

o No main mesh node can be incident, because there is no

upper mesh.
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Since degrees of freedom are bound onto nodes, incidences of degrees

of freedom are only possible on incident nodes.

3.5 Topology

3.5.1 Description

In the following, the coupling of the elements in a connecting

mesh will be examined. Topology of such a net means the totality of

all aspects of graph theory of this part of the model. All aspects of

the degree of freedom or the location and size of the participating

elements is disregarded.

/28

The topological properties of elements are determined by

element type and include:

o the dimensions of the elements ; that is, whether node,

edge, planar, or solid elements are concerned.

o the number and order of the element nodes.

o the number of edges and surfaces and their description

as polygonal inscription through the nodes concerned.

Nodes, edges, surfaces, and solids are the topological units of a

mesh.

The coupling of the elements is described by element

incidences. In this,all node incidences of an element with its upper

connecting mesh are included. For description, it suffices to count

up the node numbers of all connecting meshes with one incident

element, in the element-dependent order. Corresponding to the nodes,

an element number is used to identify each element. The

determination of an element order leads also to a differentiation

between internal and external element numbers.
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How many elements are associated at a connecting mesh node is
denoted by a degree of node incidence. In summary, the topology of a
given connecting mesh is described by:

o the quantity and the numbers of the connecting mesh
nodes,

o The quantity and type of the applied elements, and
o the node incidences for each element.

These descriptive quantities make possible the construction of a very
general class of mesh which, based on its physical background, has
some limitations. So, e.g. interpenetration of elements is not
possible and inhomogeneities may only appear in the mesh when the
underlying structure is homogeneous. A mesh will thus be called

topologically correct if all such limitations are fulfilled. However,
for a given structure there can be very many topologically correct
meshes. Which one will be chosen in a given case depends largely upon
physical considerations. These can be influenced by the applied
loads, by symmetry of structure or loading or the desire for a simpler
description.

/29

3.5.2 Degree of Incidence

In order to judge the topological correctness of a mesh, the

idea of the node incidence degree will be generalized to the other

topological units. Thus, an edge incidence degree is defined which

denotes how many elements two nodes which determine an edge have in

common. The same applies for surface and solid incidence degrees.

Besides this, it has proven to be practical, in the establishment of

the topology of an elementary mesh, to consider middle nodes

separately and to connect no edges with such nodes. One

differentiates solid, surface, and middle edge nodes. By this, all

common elements may be related back to only six different fundamental

topological elements:
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o one edge element,
o two surface elements (triangular, quadrilateral)
o three body elements (tetrahedron, pentahedron,

hexahedron).

With the help of the incidence degree the following rules for
topologically-correct meshes may be formulated:

o The degree of incidence of (edge, surface, and solid)
elements is I. Out of this results the unambiguity of
element incidences.

o The degree of incidence of a surface is either 1
(so-called outer surfaces) or 2 (so-called inner
surfaces or else surface elements lying in between solid
elements.

o With two-dimensional meshes the degree of incidence of
edges is either 1 (so-called outer edges) or 2
(so-called inner edges or edge elements lying in between
surface elements.

o If two solids have in common three nodes which are not
middle nodes, then they also have a surface in common
which includes the three nodes, otherwise a crack must
exist between the two solid elements and hence in the
structure itself.

o If two surfaces have in common two nodes which are not
middle nodes, then they also share a common edge between
these nodes.

o Solid middle nodes have a degree of incidence of I.
o Either the surface and edge nodes have the incidence

degree of the surface to which they belong, or else a
hole will appear between elements and also on the
structure itself.

/3O

One obtains further rules about topology if one ascertains the degree

of incidence not only with respect to elements, but also considers
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degrees of incidence related to solids, surfaces, and edges. A
summary of all rules which can be made about degree of incidence is
shown in Fig. 3..5. For this, it is generally assumed that elementary
meshes of different types are coupled.
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While the degree of incidence allows one to make statements

about every topological unit -- that is, a microscopic view of the

mesh, a global view of the mesh may be performed with the help of the

numbers of topological units. According to the formula for

three-dimensional networks from Euler and Poincar_ [Schubert 69], the

following applies:

n - e + f - b = C (3.1)

where n, e, f, and b are the numbers of nodes, edges, surfaces, and

solids, repectively, in a mesh. Thus C is the Euler-Poincar_

characteristic of the mesh to which the formula is applied. If one

ascertains the characteristic for the fundamental topological

elements, this always results in a value of I (see Fig. 3.6). As long

as such elements are simply arranged together in a connecting mesh,

the characteristic does not change, since it is only dependent on the

topological continuity of the mesh.

The nominal value of the characteristic results simply from the

form of the structure which is idealized by the mesh. This nominal

value is called the topological condition number and is independent

from each idealization of a property of the structure. For this

applies

C = k - r - h (3.2)
K

where k is the number of components of the mesh which among themselves

exhibit no coupling, k is commonly I. The number of cracks and holes

in the structure is given by r. Cracks include every disturbance of

the topological relationship in the sense that a closed curve which
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cannot be condensed to a point may be constructed on the outside of

the structure. The number of hollow spaces in three-dimensional

models is given by the number h. Examples of numbers for topological

conditions (for k=l) are the following:

o circle, cylinder, HSbius strip (r=l, h=0): Cz=0

o hollow torus (r=2, h=l): C =0
K

o solid sphere (r=0, h=0): Cz=l

o hollow sphere (r=0, h=0): Cz=2

o two-cell fuselage shape with window cut-out (r=3, h=0):

C =-2
K
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1 - edge element, 2 - triangular element, 3 - quadrilateral element,
4 - tetrahedral element, 5 - pentahedral element, 6 - hexahedral
element.
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Figure 3.6: Characteristics of elements (n, e, f, b, : numbers of

nodes, edges, surfaces, and solid bodies, respectively)
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In summary the necessary condition for topological correctness of an
idealization is

C = C (3.3)
K

Every deviation from this requirement indicates a defect in the

topology of the mesh. A common reason for such defects are incorrect

element incidences. Either an element is identified with the wrong

connecting mesh node numbers or the order of these numbers is

incorrect.

/33

If not all nodes of the topologically-correct mesh are used in

the element incidences, n is reduced and, in general, from Eq. (3.1),

C < C K. It should be now assumed this error does not occur, e.g. n is

constant. Incorrect element incidences in meshes of surface elements

then lead to an increase in the number of edgessince n = f = constant

and -e = C - n - f, and again C < C . With solid elements, however,

the characteristic remains unchanged, since the same number of edges

as surfaces intersect on every element node, so n = b = constant and

-e + f = C - n - b, C = C applies. However, the outer surface is
K

enlarged by errors in the element incidences. The outer surface is

composed of all outer surfaces of a mesh. For its Euler-Poincar_

characteristic

C : n - e + f (3.4)
R R R R
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It must therefore also be true (as in Eq. (3.3)) that

c = c (3.5)
R KR

with

C = k - r + h • (3.6)
KR R R R

The index R designates here the outer surface of the mesh.
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element bundle, I0 - number of nodes, ii - node type list, 12 -
element incidences, 13 - element and node type list

Figure 3.7: Commands for the description of the topology
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1 - elementary mesh, 2 - connecting mesh, 3 - node numbers and node
order, 4 - element numbers and element order, 5 - description of the
element incidences with the help of an element bundle, 6 - element

bundle, 7 - this description of the element incidences is equivalent
to

Figure 3.8: Simple example for the description of the topology.
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In summary, it may be said that a mesh may be called
topologically correct if the rules about the degree of incidence and
the conditions (3.3) and (3.5) are fulfilled. These are however only
prerequisites for the determination as to whether an idealization is
correct. For more thorough examination the node coordinates are
needed. Then the user can determine by inspection the correctness of
the idealization, e.g. with the help of a graphical depiction of the
mesh.

The description of the topology is accomplished with the

commands shown in Fig. 3.7. Attention is particularly called to the

possibilities of description of element incidences using element

bundles. With these a repeating pattern of coupled elements out of an

elementary mesh may be assembled, e.g. two triangles to every

quadrilateral. Through the naming of external upper mesh node numbers

for the nodes of a bundle, the bundle may then be placed several times

into the upper mesh. Depending on the model, this can be connected

with a considerable simplification of the description. A simple

example of the descriptive possibilities is shown in Figure 3.8.

3.6 Configuration

3.6.1 Rules for Description

The configuration includes the two properties of nodes:

i. Node coordinates: location of nodes.

2. Node basis: reference directions for the degree of

freedom at the nodes.

While topology describes a mesh that could still manifest itself

arbitrarily in the visualization space, the configuration describes

exactly one manifestation. It must therefore be geometrically

compatible, since incorrect coordinates could cause contradictions to
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the shape of the model or its elements to arise, e.g. a violation of
the unambiguous coordination of node and point, the placement of all
nodes of a solid element in a single plane, or the creation of cracks.

/36

The configuration has a large influence on the quality of an

idealization which is described by the so-called discretization error.

Ths denotes all deviations of the calculated behavior of the structure

from the actual behavior, which can be traced back to the

idealization. In order to keep discretization error as small as

possible, some regulations for the construction of meshes can be

heeded (compare [Taig 75, Melosh 79]), e.g.:

o Symmetries and regularities of the structure should be

reflected in the mesh. (Requirement of structural

equivalence of model and structure).

o Each element should have edges of as equal length as

possible, and the edge lengths of an element should

differ little from neighboring elements. (Requirement

of formal equivalence).

o With respect to the boundary conditions, the elements

should be chosen smaller where large stress gradients

occur (Requirement of proportionality of effort).

Since the user can, in reality, describe very many different models of

the same structure, such regulations simplify the choices.

3.6.2 Node Coordinates

The mesh type determines the corresponding coordinate system

for each connecting mesh (compare Fig. 3.1). This mesh coordinate

system determines type and canonical series of the coordinate axes.

Node coordinates referring to the mesh coordinate system are also

called mesh coordinates. For all meshes of a model exists exactly on
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global reference system: the world coordinate system. It is always
three-dimensional and Cartesian. Node coordinates are designated

world coordinates with respect to the world coordinate system. For

the conversion from mesh coordinates of a given system into world

coordinates and vice versa, a set of functions is available (see Fig.

3.9). Only mesh coordinates which allow such a reversible unambiguous

coordination are provided for.
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Figure 3.9: Coordination of mesh and world coordinates

The location of a mesh coordinate system is described by a mesh

basis. Each mesh is allotted exactly one mesh basis. Through this,

the mesh coordinates may be transformed, and meshes with the same

configuration may easily be placed at different locations with in a

model. The model sizes of mesh basis B N and mesh coordinates xN are

formed so that for world coordinates x w it applies that: i

" X _ 1 _ X N l ( 3" 7 )
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Through the introduction of Cartesian world coordinates, it becomes

possible to compare the node coordinates of meshes of different types.

With this, a unified foundation for the creation of graphic model

depictions is given.

In the description of certain parts of the mesh it is often

advantageous to express the coordinates in terms of a local coordinate

system which does not agree with the mesh coordinate system (e.g.

cylindrical, spherical, and polar coordinate systems). Since for the

local coordinates so described it is not necessary to have a

reversible transformation to the mesh coordinate system, a variety of

other coordinate systems may find use (e.g. toroidal, bicylindrical,

or elliptical coordinate systems). For these only a functionto

convert to mesh coordinates is needed. The location of the local

coordinate system compared to the mesh coordinate system is described

by a local basis. Local coordinate systems and local bases serve /38

to simplify creation of coordinates and have no other further meaning

other than for the description of the configuration.

Besides these, for the scaling of coordinates, there is also

available the means of description of the units of measure. With

this, calculations may be carried out with various measuring systems

and size relationships. The used can choose from a variety of

measuring units (e.g. millimeter, inch, degree, etc.). All length

units are converted to meters and all angl,es are converted to radians

(according to [DIN 1301]).

In summary, there exists a relation which is summarized by the

following conversion scheme (compare Fig. 3.10):

UI: Conversion of measuring units.

U2: Conversion of the local to the mesh coordinate system.

U3: Transformation of the local coordinate system to the mesh

coordinates with the help of the local basis.
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U4: Conversion of the mesh coordinate system to the world
coordinates with the help of the mesh basis.

The descriptive quantities relevant for the configuration are:
o the mesh coordinates (created by conversions U1 - U3)

and
o the mesh basis.

The mesh coordinates must now not be declared in all meshes of a

model; rather, from the principle of complete coordinate description

it may be proceeded:

> All nodes are to be provided with coordinates. However,

for incident nodes, coordinates need only be described

once.

The choice of the meshes for the description is up to the user. It

has, however, proven to be advantageous to describe the coordinates of

all nodes of the upper meshes of the elementary meshes. If incident

nodes of different upper meshes do not receive the same coordinates,

that is an indication of an incorrect description. In this /39

connection, the difference between defined node coordinates and

undefined node coordinates is important. Defined node coordinates are

all coordinates supplied by the user, all others are undefined.

The description of a mesh basis is only required if a

difference exists in the locations of the mesh and the world

coordinates. Then the mesh basis is described with respect to the

world coordinate system by means of translations and rotations. The

same is true of a local basis with respect to the mesh coordinate

system. The mesh coordinates and mesh bases described suffice to give

the world coordinates of all nodes automatically. Thus,the principle

of complete coordinate description comes to use in the following

deduction:

> Incident nodes have identical world coordinates.
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Weltkoordinotensystem Xw.¥w,zw
t
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Iokoles Koordinotensystem 3 xL.yL
• Yw 4

Knotenbasis XK,YK

Xw I.
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• 1_.4. _
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I t _1-

1 - world coordinate system, 2 - mesh coordinate system, 3 - local

coordinate system, 4 - node basis

Figure 3.10: Coordinate systems and bases for the description of the

configuration.
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ThisThe world coordinates are determined by the following procedure.

will be called consolidation of coordinates:

I •

,

Computation of the world coordinates from the defined mesh

coordinates (created by the conversions U4 and U5).

Transferring the world coordinates upwards:

In a traversing of the mesh tree from the elementary mesh

to the main mesh (according to the ordered mesh sequence)

all defined world coordinates are tranferred into the next

higher upper mesh in each step via the node incidences.

The agreement of redundant coordinates with all nodes of a

mesh is demanded (compare Chapter 3.3). Deviations from

defined upper mesh coordinates can be an indication of

incorrect node incidences or an incorrect description of

coordinates.
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3. Transferring the world coordinates downwards:

By the reverse traversing from the main mesh to the

connecting meshes of the highest rank, all defined world

coordinates are transferred into the next-lowest mesh via

the node incidences. Agreement is again demanded for

redundant coordinates. Deviations from defined lower mesh

coordinates can again indicate errors in description.

4. World coordinates for elements: via the element incidences

all element nodes receive the world coordinates from the

corresponding upper mesh.

5. World coordinates for middle nodes: The element meshes of

some types provide for middle nodes. For their world

coordinates the following rules apply:

o If they are undefined, they are determined from the

corner nodes by interpolation.

o If they are defined, no change occurs. If they

correspond to the interpolated coordinates, surfaces and

edges will be flat or straight, respectively.

Otherwise, they will be bent.

6. If world coordinates are determined for middle nodes, steps

(2) and (3) are repeated.

/41

After consolidation undefined world coordinates may not exist for any

nodes of any mesh. From the compatibility of mesh and element type

(Chapter 3.2) it follows that an element coordinate system is always

identical with the mesh coordinate system of the corresponding upper

mesh. Therefore, the consolidation still must be completed by:

7.Conversion of the world coordinates for the element nodes in

the element coordinate system.
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3.6.3 Regular Node Distribution

Commonly, for reasons of simplicity, a model is idealized so
that several nodes of a mesh are regularly distributed in the
visualization space. The term "regularity" is used because the
measurement numbers of the coordinates can be given by an arithmetic
or geometric series in a definite reference system. Through suitable
coordinate systems it is possible to describe the location of nodes by
means of characteristic geometric loci, e.g. with:

o straight lines in Cartesian coordinate systems

o circles and straight lines in cylindrical coordinate

systems.

o spherical surfaces and straight lines in spherical

coordinate systems.

Moreover, a reference system is given by interpolation functions, with

the help of which the coordinates may be indirectly written in

parameter form. According to the number of necessary parameters one

differentiates:

o line parameter _ : With this the nodes lie on an

arbitrarily curved line.

o surface parameters _, _ : The nodes lie on an

arbitrarily curved surface which forms a topological

triangle or quadrilateral.

o space parameters _, _, _ : The nodes are distributed in

space. Tetrahedra, pentahedra, and hexahedra are used

as topological regions.

The interpolation functions facilitate the desciption of a regular

distribution of the nodes in parameter space in the framework of a

certain coordinate system. The form of the interpolation function

depends on
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o the choice of functions (e.g. Lagrangian polynomials).

o the topological region and hence the number of

parameters.

o the number and arrangement of so-called support nodes

whose coordinates must exist in explicit form and not in

parameter form.

The more support nodes available, the higher the order of the function

and the more exact is the approximation of a geometric locus. In

reference to the arrangement of support nodes, one differentiates two

cases:

The support nodes are distributed over the entire

topological region.

The support nodes lie only on the edge of the topological

region. Thus one is saved having to specify support nodes

in the interior.

The location of the support nodes can control the distribution of

support nodes in the region and thus allow the creation of patterns of

refinement. Obviously, there exists a direct relationship between

interpolation functions for certain topological areas and the

statement functions for elements. They are even identical, if the

topology is the same, if Lagrangian polynomials are used with the

elements.

Let _i be the coordinates of the support node i, x-

{X1' X2 ..... "'}I the coordinates of all m support functions, '' the set of

all m interpolation functions and _k the parameters of a node k in the

given topological region. Thus f must fulfill the following

conditions (compare Appendix C):

i. fi(_i)=l and fi(_j)=0 for l_<i, j_m and i#j.

2. = i .
Iml



Then for the coordinates of this node
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/43

x k = _Tc _l x (3.8

For the topological regions the results in detail are:

I • For the line with (n+l) support nodes result functions of

the nth order for each support node i (Lagrangian

polynomials, compare [Rutishauser 76]):

- _ c_---4a,i_iti I - f.
J-1 fi - lj ',,
j,l t

(3.9)

with O< K _ 1.

• For a topological triangle with support nodes in the entire

area after [Argyris 68] applies:

"f_" J If,',i) i (ti. _- (,l). fk__ (__f_,l) l" fl-1 I
(3.1o)

with i+j+k = n+3. Here i and j are the numbers of the

support nodes in the K-direction and the N-direction

respectively. The terms of the function may be depicted in

visual form as a Pascal's triangle:

!
/\

I\1\,

/.\.I\/_%

I
# "%

............. 7;.
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, For a topological quadrilateral there exist for support

nodes in the entire area Lagrangian polynomials according

to equation 3.9:

°_'Jc_,_) = f_(_)__c_, '_,
(3.ii)

If n is the order of the function in the E-direction and m

the order in the n-direction:

(3.12)

The terms of this function can be depicted in the following

manner using Pascal's triangle:

sl'k

;x/x,

/ \ / \ /

/ %%

,, _.m
, I

|" #
\ ?
% I

% iI
%

/
%
%

II

% /\

If only edge nodes are used as support nodes, it results

that (compare [Coons 67]):

'i

- + - 4<,'<T",',,.,,,
n#lli

with

fi i l_i<(n+l)
T - ; i-I ' i

I l=(n+l)
i i 1'tit'(m+1)

T- s -I-i
I :1- (mtl I

(3.14a)
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or

T ,, max [(cl*_(*-l,ni-,_xl(_-l,n)+l),o]
3" ". _x ['(div(jol,m)-mod('i-l,m)+l 1,0] .

respectively.

For the depiction in Pascal's triangle results:

(3.14b)
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/i\
i ."l,

_\/\,
/ # _ "

,' ,IX
# %

/ / %%% %%tL
• / 'l #I 'i t

\ ,"

Through the exclusive use of edge nodes one obtains no

coupling of the functions in the E- and h-directions. Thus,

the order of the functions _(1) can be changed from j=l

with n=n I to j=m+l with n=n 2 This applies analogously for

"_li:i . This yields:

(n'm) l,2 _ • ,,_ , , i -
(3.15)

with T,T accordingly from Eq. (3.14).

Appendix C).

(For proof, see



, In a tetrahedral region, analogous to the triangle,

applies:
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o _ fj_1(.,l) fk_ I (E) fl_ I (1-_l-'i- _) ,
'I (3.16)

,

with i+j+k+l = n+4. It has been shown that, in triangular

and tetrahedral regions, for orders greater than 2, no set

of interpolation functions may be given in which the

support nodes lie only on the edge because the three or

four function terms from Eq. (3.10) and Eq. (3.16),

respectively, are not linearly independent.

In a pentahedral region,the functions are created by a

combination of equations (3.10) and (3.11):

(3.17)
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or a combination of equations (3.10) and 3.15):

m,_,j,k ,,. ,,.a,l,j,,. f_(n+_k(_),,f_,]'!_,_),_'
-nl,n2,m_''c'°' "n_ ,a,.)

-6fI'_(,, 'T ) f'_'l (,) : :

(3.18)

.

with L_',_', from Eq. (3.14).

In a hexahedral region in the case of support nodes also in

the interior applies, analogous to Eq. (3.11):

£,J,k . i £J k
fn,m,l(|,_,_) fn(} ) m(_)fl(_)

(3.19)
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Considering only nodes on the edges on the hexahedron and

assigning a different order to the polynomial on each edge

yields, analogous to Eq. (3.15):

{_f:L, :l ,k (,,T,,,,I, Z,) .
((noes')') i,2 ) lw2

(3.20)

with x,_,E, according to Eq. (3.14).

Thus, Lagrangian interpolation functions are known for all six

different fundamental topological areas. The parametric form of the

coordinate description represents a powerful broadening of the palette

of transformations of coordinates. It is noted, however, that the

oscillations of the function values between the support nodes in the

interpolation of node coordinates, commonly feared in Lagrangian

interpolations, have no significance. For one thing, node coordinates

always have discrete values, and for another thing, a sufficient

quantity of support nodes may always be named which exactly determine

the expected locus of the interpolated nodes (for an example, see

Appendix A).
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3.6.4 Node Bases

For the orientation of the degrees of freedom on a node the

respective mesh basis presents itself first of all. The unified

treatment is in many cases insufficient because for one thing,

kinematic boundary conditions can exist which are not parallel to the

axes of the mesh basis. For another thing, different meshes can have

various bases, through which can arise incompatibilities on incident
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nodes. For the treatment of directions of degrees of freedom the

concept of node bases is available. Each node is a carrier of such a

basis. It represents a pure rotation, because the translation

component is included by the node coordinates. Analogous to node

coordinates, one differentiates mesh node bases and world node bases,

which can be transformed through the mesh basis and over the mesh

coordinate system (see Fig. 3.11).

In the description of the mesh node bases, it applies that

unspecified node bases determine the same directions as the mesh

basis. Moreover, the same principles apply as for the node

coordinates:

> For incident nodes, bases need only be described once.

x 3

Hetztyp

_,P

AC,AT

C,S,T

Net.z _ Welt

.,,.,_ .__!°,,"12 o
a21 a2_ , a21 a22 0

O 0 1

["11 o a12ali a12 _i 0 I 0

L'2,°22J J
!a21 0 a22

all al2 813 "all a12 a13

a21 a22 a23 _ a21 a22 a23

a31 a32 a33 i a31 a32 a33

1 - mesh type, 2 - mesh, 3 - world

Figure 3.11: Association of mesh node bases and world node bases.
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148

and

incident nodes have identical world node bases.

From this results the following procedure for the consolidation of

node bases:

i. Calculation of the world node bases from the mesh node

bases.

2. Upwards transferral of the world node bases:

In a traverse of the mesh tree from the elementary mesh to

the main mesh, all world node bases are transferred via the

node incidences into the respective upper mesh. Deviations

from specified upper mesh node patterns can be an

indication of incorrect node incidences or an incorrect

description of the node bases.

3. Downwards transferral of the world node bases:

In a traverse of the mesh tree in the other direction from

the main mesh to the connecting meshes of the highest rank,

the node incidences of all world node bases are transferred

into the respective lower mesh. Again, deviations from

specified lower mesh node bases can indicate errors in

description.

4. World node bases for elements: With the help of element

incidences all element nodes receive the world node bases

from the accompanying upper mesh.

5. Conversion of the node bases of the elements from world

coordinate systems to the element coordinate system.

The description of the node bases is made simple by using/

known node coordinates and the local basis. The following

possibilities are considered sufficient:

the
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fa) . Ib)

Figure 3.12: Defining process for node bases.

I. A node basis is in agreement with the directions of the

local basis.

II. In the three-dimensional case, a basis on node K is
i

defined by three additional nodes K2, K 3, and K 4 (Fig.

3.12a). The first axis of the node basis points from K 2 to

K3 ; the second axis is perpendicular to the first in the

direction of K ; the third axis creates with the others a
4

system of directions. The establishment of the node bases

happens with the Schmidt orthogonalization process (compare

[Kowalsky 79]. Notable special cases are: /49

a) The second axis of the node basis points from K 2 to

K ; the other axes are revealed by cyclic substitution.
3

b) K m K
3 1

c) The location of K2 is the location of the local basis.

According to this process, in the two-dimenslonal case two

nodes suffice for the description of the node basis.

III. A basis on node K_ is, in the three-dimensional case as in

the two-dimensional case, determined by two further nodes

K 2 and K 3 (Fig. 3.12 b). Here,the basis of node K 2 is

aligned with a definite axis in the direction toward node

K3. The establishment of the node basis occurs according



59

to a process given by [Argyris 82]. Special cases are:

- Ka) K 3 i

b) According to locations and directions, K 2 is the local

basis.

Interpolations of node bases are not provided for, since this

generally results in a loss of the orthonormality of the bases. In

summary, all commands for description of the configuration are

summarized in Figure 3.13. The description possibilities given there

are best shown by means of an example, as in Appendix A. For

explanation of the separate commands, further examples are shown in

Figure 3.14.
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Figure 3.13: Commands for the description of a configuration
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Fig. 3.14: Simple examples for the description of a configuration
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3.7.1 Dual Vector Spaces in Physics

The finite element method was first applied in static and

dynamic calculations for structures. Here the physical theory of

elasticity was made useable for engineering practice through a

restricted -- limited to finite elements -- approximation solution of

the fundamental theoretical equations. It was however soon recognized

that the method did not need to be restricted to elasticity

calculations [Argyris 69,72]. It is applicable to all physical areas

in which the theoretical foundations are described by two dual

physical parameters, u, v. Let U and V be two well-behaved vector

spaces with equal finite dimensions and u E U, v _ V. Then the

duality of U and V is described by a scalar product

E = _ (u, v) (3.21)

which is positive definite, thus:

E > 0 for u, v _ 0 (3.22)

In elasticity theory the physical meaning of energy can be attributed

to the scalar product:

E = Iv e_ 6 dV = 2 (3.23)

with the dual vector quantities

E = {E , E , E ,
xx yy zz xy

xx yy zz xy

' _x ' E }: strain vectorz yz

, _ , _ }: stress vector
xz yz

and U as deformation energy. Besides this the vector spaces U and V
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are related to each other such that V is the dual space of U, which
includes all linear combinations of the form

v = p (u) (3.24)

Physically this has the significance of the existence of a
constitutive equation in the theoretical area which interrelates the
two dual parameters. If one uses this relation to depict the scalar
product this yields the quadratic form
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E = 8 (u, p(u)) > 0 (3.25)

In elasticity theory the constitutive equation is known as Hooke's

Law:

= E_ (3.26)

where E is the elasticity tensor.

In summary,elasticity possesses the following properties which

are important for the application of the finite element method in

linear elastostatics:

I , The scalar product of two related dual parameters may be

considered energy.

, The dual parameters are related to each other by a linear

constitutive equation.

To cite further examples of linear, static areas of application of the

finite element method besides elasticity theory:
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Electrical field with the dual parameters electrical
field strength E and electrical displacement density D.

The scalar product is

E = ]'v DT E dV

and the applicable constitutive equation is

D = 8E

where _ is electrical susceptibility.

o Magnetic field with the dual quantities of magnetic

field strength H and magnetic field density B. The

scalar product is

E = ]'v BT H dV

and the applicable constitutive equation is
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B = pH

where p is magnetic permeability.

It is characteristic of all these areas of application that the

components of the model description are always the same. From this

results the uniformity of the finite element method, which is most

necessary for its wide practical application.

3.7.2 Duality Relationships

The duality of physical quantities manifests itself also in the

specification of a measurement procedure; specifically, all

measurement variables in a physical application are divided into

so-called flow or cross-section variables and potential or reference



point variables. The first name reflects the physical significance,

the second,the measuring procedure. Thus, flow properties are

measured with the use of a cross-section and determination of the

throughput, while potential quantities are measured between two

reference points as a potential difference. In elasticity theory,

force and stress are flow properties; displacement and strain,

potential quantities.
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Through such a classification one obtains several pairs of dual

variables in a theoretical area. If one compares two such pairs u, v

and u', v', one can depict the relationships between these quantities

in a graph (Fig. 3.15). Each node of the graph represents a quantity

with which the potential quantities are coordinated on the left side

and the flux quantities on the right side (or vice versa). Each edge

represents a linear relationship.

u--B'u"

B'=B r
u' v '--u"v"

A" -"BA B'

V'=Bv

Fig. 3.15: Relationships between pairs of dual quantities.

Between dual quantities exists a constitutive equation and between /55

similar quantities exists a compatibility requirement. According to

the classification, one has one compatibility requirement for flow

variables and another for potential variables. These are not

independent of each other and represent a dual descriptive pair. For

this,applies first of all the constancy of the scalar product (i.e.

the energy)

T T

u v = u' v' (3.27)
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: U = BU t

_* : v e = BV

results

(3.28)

u'TBTv = u'TBv

from which follows

B' = B T (3.29)

Therefore _ is the compatibility requirement adjunct to _* (compare

[Kowalsky 79]). The compatibility requirement always exists and is

unambiguous. The constancy of the scalar product used here signifies

physically the independence of the energy from the quantities which

define it, as long as such quantites are mutually compatible. From

this may be derived a relationship between constitutive relations of

the two pairs of quantities. Once again

or

T T vU V = U t r

/56

uTAu = u'TA'u '

and with

u = B'U'

then

u'TB'TAB'u = u'TA'u '



from which
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A t = B'TAB ' (3.30)

or with Eq. (3.29)

A' : BAB T (3.30a)

and thus

v' : BABTu ' (3.31)

The relations of Eqs. (3.29) and (3.30) are applicable to all pairs of

dual parameters and they make possible the transition from one pair of

quantities to another as a consequence of the linear relations.

3.7.3 Displacement Method

The duality relationships can be applied in a multistage manner

to a dual parameter pair. In Fig. 3.16 the resulting graph is shown

as a duality ladder for the displacement method of finite elements in

structural calculations. While the uppermost rung is determined by

the physics of the continuum, the second rung depicts the most

important step in the derivation of the finite element method. Thus

from the continuous displacement field u the node of discrete elements

is transferred to the displacement p. This step of discretization has

contributed to the development of the method, above all by the

principle of virtual work [Argyris 54,56,57]. The dual parameter /57

pair _m is designated the element degrees of freedom. These are

related to the mesh degrees of freedom, r, R on the third rung of the

ladder. While in the derivation of the displacement method the static

compatibility is deduced from the kinematic compatibility, the

opposite is true of the dual force method [Argryis 54,56,57]. The

force method may be depicted by a dual ladder by which all edges of

the graph have the opposite orientation. The existence of two dual

methods follows from the principle o£ dualization [Kowalsky 79].
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1 - region, 2 - kinematic compatibility, 3 - potential variables, 4 -

flow variables, 5 - static compatibility, 6 - stiffness and linear

operator, 7 - stress, 8 - continuum, 9 - strain, i0 - point forces, ii
- material stiffness, 12 - differential operator, 13 - point, 14 -
point stiffness, 15 - discretization, 16 - point displacement, 17 -
element forces, 18 - statement functionlg_lement nodes, 20 - element

stiffness, 21 - element displacement, 22 - mesh forces, 23 - assembly,
24 - incidences of degrees of freedom, 25 - mesh, 26 - mesh node, 27 -
mesh displacement, 28 - mesh stiffness

Fig. 3.16: Duality ladder for the displacement method in structural

calculations.
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3.8 Kinematic Boundary Conditions

3.8.1 Incidences of Degrees of Freedom

In the dual vector spaces of the degrees of freedom the

coupling of the meshes is brought about by incidences of degrees of

freedom. For incident degrees of freedom the degrees of freedom of

the lower mesh are designate external degrees of freedom and the

corresponding upper mesh degrees of freedom are designated actual'

degrees of freedom. The quantity of degrees of freedom A of an upper

mesh consists of the union of all external degrees of freedom E_ of

each coupled lower mesh i:

ORIC:INAL PAG_ .I'S
OF POOR Q_.IALITY
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This condition is expressed in terms of matrices as
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(3.32)

r i = a i r (3.33)

by which r i c £, The total degrees of freedom of the upper mesh is

designated by r, and a i denotes the incidence of degrees of freedom of

the lower mesh (compare [Schrem 78a]). Depending on the mesh type,

each node of a connecting mesh carries the same _et of degrees of

freedom which can be actual. One calls the quantity of all degrees of

freedom of a mesh the quantity of potential degrees of freedom _, out

of which all the actual degrees of freedom must be taken, i.e.

A m _ / (3.34)

The following apply for the distribution of external degrees of

freedom in the mesh tree:

O

O

The main mesh has no external degree of freedom.

Partial meshes must have external degrees of freedom,

otherwise the lower mesh tree contributes nothing to the

physical model.

o Elementary meshes normally have only external degrees of

freedom, because the choice of a certain element type is

based precisely on its degree of freedom.

/59

Degrees of freedom are transferred upwards by means of incidences into

each sucessive upper mesh until they no are longer arranged as

external degrees of freedom. This release of the degrees of freedom

can occur in all meshes, but must occur in the main mesh at the

latest. The correlation with the node incidences according to the

principle of node-connected degrees of freedom (Chapter 3.2) is based



on the fact that exclusively incident nodes can have degrees of
freedom. Thus,if a lower mesh node has a degree of freedom, it must
also be incident. Conversely, a lower mesh node must also have a
degree of freedom if it is incident; otherwise,the coupling in the
visualization space must occur differently from in the dual vector
spaces of the degrees of freedom. Incident nodes take up the same
point in the visualization space. For incident degrees of freedom
apply:

7O

o The displacement values are equal: kinematic compatibility

o The sum of the lower mesh node forces is equal to the
force on the upper mesh node: static compatibility.

This is the physical significance of the assembly in Fig. 3.14.

3.8.2 Classes of Degrees of Freedom

All degrees of freedom occurring in a connecting mesh are
included in the quantity of potential degrees of freedom. Their
canonical order is defined by the node order and the order of all
degrees of freedom in a node, the latter being determined by the mesh
type.

A division of the potential degrees of freedom into classes of
degrees of freedom serves to divide the dual vector spaces into
distinct lower spaces and hence also serves the modular treatment of
the boundary conditions [Schrem 78a]. Here the actual degrees /60

of freedom play a central role (compare Fig. 3.17). They include all

those degrees of freedom which can be traced over incidences back to

element degrees of freedom. In contrast to these are the apparent

degrees of freedom Y' which denote the unused potential degrees of

freedom.

¥" _xm (3.35)
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unbet_nnt extern vorgeschrieben unterdr_cld

1 - potential, 2 - actual, 3 - apparent, 4 - unknown, 5 - external, 6
- prescribed, 7 - suppressed.

Fig. 3.17: Classification of the degrees of freedom

A node whose potential degrees of freedom are all apparent degrees of

freedom is called an apparent node. The quantity of actual degrees of

freedom includes the following subquantities (Fig. 3.17):

External degrees of freedom E : They serve the coupling

into the upper mesh and may not be described for the main

mesh.

Internal degrees of freedom: the dual character of the

degree of freedom requires its division into:

a) Unknown degrees of freedom U : Their displacement

values are a priori unknown. Their quantity determines the

dimensions of the calculation tasks in each mesh.
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b) Given degrees of freedom: For them a displacement value
is known a priori. Through this,results in the model a
constraint; thus,such given conditions are called kinematic
constraints. The constraint results from the quantity of
degrees of freedom being reduced due to projection into a
displacement space of smaller dimensions. That also /61

reduces the dimension of the constitutive equation to be

solved

R = Kr (3.36)

Here one differentiates:

I ,

.

Prescribed degrees of freedom m : For them an arbitrary

value is provided for, for which reason these measurement

values are counted among the load-dependent data of the

model description (compare Chapter 3.10).

Suppressed degrees of freedom s : For them the displacement

value of zero is assigned. They make no contribution to

the displacement field of a model and are not considered in

the calculation.

Thus,there result five classes of degrees of freedom and it applies

that:

(3.37)
EuUuPv$ v_ " I_

E.UnPn$._ - •

In the method of writing matrices the selection of displacement values

of a class K is achieved with the class selection matrix b (compare
K

[Schrem 78a]):



73
r = b T r (3.38)

K K

where the potential degrees of freedom of a mesh are shown by r

(compare Eq. (3.33)). In the model description the class Y is never

specified. A degree of freedom is assigned to the class _; if it

either is designated as such or if it is an actual degree of freedom

associated with any class. The description of all the other class

affiliations must be done by the user. Here the following rule is to

be observed

/62

> The model must be kinematically definite, i.e. rigid body

movements of the entire model are to be excluded.

That can happen through a suitable orientation of the structure with

the help of suppressed degrees of freedom.

Zum Obernetz

f 1

i spezifizierbore 1• F_I__
S"

I vom Unternetz "

I - to upper mesh, 2 - specified classes of degrees of freedom, 3 -
external, 4 - unknown, 5 - prescribed, 6 - apparent, 7 - actual, 8 -

suppressed. 9- to lower mesh

Fig. 3.18: Plan for classification of degrees of freedom in a partial

mesh.
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3.8.3 Element Degrees of Freedom

In elementary meshes the canonical order of the degrees of
freedom results from the order of the elements, the node order in the
element mesh and the element type-dependent quantity of degrees of
freedom on each node. Commonly the following simple relationships
apply for the quantities of degrees of freedom in elementary meshes:

_'AI[ (3.39)

/63

A change in these relationships results from the introduction of

element-localized element degrees of freedom. Through this the number

of degrees of freedom is reduced. This serves e.g. the simulation of

joints between elements. Fig. 3.19 shows how commands for description

of joints and degrees of freedom appear. The two small examples in

Fig. 3.20 illustrate the use of the commands.

i - class coordination, 2 - mesh number, 3 - class, 4 - degrees of
freedom, 5 - node list, 6 - element localized degrees of freedom, 7 -
degree of freedom, 8 - node, 9 - element list

Fig. 3.19: Commands for the description of kinematic boundary

conditions.
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Coordination of classes of degrees

of freedom:

rAED 100 8m'lP' U,V Zll 1

I_PIP U Zll 3

The remaining degrees of freedom are

automatically associated with the

"unknown" class.

l B_l_'lt_ _'gO.--
xH.u

1 - mesh, 2 - elementary mesh

Jointed connection of two beam

elements:

rUD 200 IIOIPP g,V,_ _ 1,3

EZII_ _ PEZ 2 _ 1.2

Fig. 3.20: Examples of the description of kinematic boundary

conditions.

3.9 Element Data

Characteristic of the finite element method is the uniformity

which allows

o

o

o

o

mesh tree

topology

configuration and

boundary conditions

for all element types to be treated in the same way in the model

description. A series of properties of the elements cannot be so

taken in, and these are all those which outside the configuration are

necessary for the calculation of an element (e.g. for the stiffness).

These elements concern:



o
o

geometry and
material of the model

and depend on the element type. By geometry is understood
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Cross-section data on rod and beam elements such as area,

moment of inertia, torsional moment of inertia, shear

areas, etc.

Cross-sectional data on membrane,shell, and plate elements

as thickness, distribution of layers, etc.

The key word material unites all parameters which describe the

material behavior, e.g.

material stiffness, including a possibly necessary

reference direction system

density

coefficient of thermal expansion, etc.

An element type can have several sets of such element data, which can

be determined depending on the resources available for the element

calculation, e.g.

isotropic or anisotropic material stiffness,

solid beam or beam with open,thin-walled construction, etc.

Which set is under considerationis determined by the so-called model

type. This encompasses the variety of elements of a type. The

selection of the model type prevails over the model description. Here

is to be heeded:

For all elements of an elementary mesh applies the same

model type.
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The model type serves for one thing the guidance of the input data
with respect to storage and checking the completeness of the model
description. For another thing,it directs the element calculation in
regard to its scope and thus its efficiency. The principle of unity
of model and mesh tree demands then that to every given element type
the corresponding model type is also determined. Thus,the user
determines exactly which physical phenomena he plans to investigate.

For the description of element data, two fundamentally /66

different possibilities are given. One possibility occurs on

elementary mesh planes by statement of the element number. This is

the usual way. In the other way the description takes place on

connecting mesh planes. Here,the data are allotted to certain nodes

and coordinated with the elements concerned by means of node

incidences. This possibility is excluded if the element datum in

question is not equal in all elements concerned, or if elements of

different types are coupled in this connecting mesh node, but the

datum is not contained in all model types concerned. Fig. 3.21 shows

the command for description of the element data. An example of its

application is found in Appendix A.

In the description of element data, dimension-dependent

variables appear, as already seen to some degree in the configuration

and the combined constraints. All their units must be compatible, in

order to be able to interpret correctly the results of the

calculation. This compatibility can be left the responsibility of the

user, but for the description it is significantly more convenient to

ensure automatically the compatibility of input measurement numbersby

specifying measurements. This occurs by the conversion of all

quantities to the MKSA system of units [DIN 1301]. Thus,the user has

a variety of possibilities for input of data.
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1 - element data, 2 - mesh number, 3 - block name, 4 - mass unit, 5 -
data, 6 - element list, 7 - upper mesh node list

Fig. 3.21: Command for description of element data.

3.10 Loading

167

In the description of loading,all given parameters of the

degrees of freedom (displacement and forces) are specified. Thus, dual

parameters in a node cannot both be specified at the same time. In

loading, one differentiates between

O Node loads on planes of the connecting mesh. In this

category fall node forces and node displacements for the

prescribed degree of freedom and for the prescribed portion

of the dependent degree of freedom.

O Element loads on elementary mesh planes. These include:

I. Distributed loads:

a) Volume loads from accelaration such as weight and

centrifugal force

b) Surface loads from pressure

c) Line loads

2. Initial loads

a) Initial strains (e.g. from temperature)

As the model type determines a set of element data, so is a

load type provided for, which chooses those loads for a certain

element type which are needed for a model description. Which load

types are possible is determined by the element type.



For all elements of an elementary mesh applies the same

load type.
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Out of the divided element loads, kinematic equivalent node forces are

determined [Argyris 65]. These are transmitted to the upper mesh via

incidences and there they are added into the node loads. Since

certain element data are important for this calculation, the choice of

load type also depends on the model type. One must also pay attention

to the following schema of dependencies:

Element

Model Type

The load type serves firstly to guide the element load input and /68

secondly for the guidance of the calculation of the initial loads and

the kinematically equivalent node loads. According to the procedure

for input of element data, the possibility of description on planes of

elementary meshes or connecting meshes also exists with element loads.

A definite combination of node and element loads for a model is

called a loading case. Each model allows a fundamentally free

selection of loading cases. Each loading case is identified by means

of a loading case number. As with nodes and elements, the user

determines the order of his external loading case numbers, which

correspond to ordinal internal loading case numbers. In this way the

user is free in his choices of identifiers for loading cases. Single

loading cases can represent combinations of other loading cases. The

quantity of loading cases is a global property of the model. All

meshes possess the same number of loading cases. According to the

principle of the unity of the model and mesh tree, this number must be

determined during the mesh tree description. The same is true for the

load type of an elementary mesh. According to the dependency schema
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shown above, and in order to fix all global model properties from the
beginning it will be agreed:

> One load type applies for all loading cases.

As with the model type,the user determines the physical phenomena to

be studied through the choice of the loading type. This serves a

precise idealization which always must precede a model description.

This means that the user must consider precisely in what condition his

model is. These considerations affect all the properties which are to

be fixed in the mesh tree description. In reference to the physics of

the calculation assignments, the types of mesh elements, element

models, and element loads are decisive. The well-considered choice of

these types makes their alteration unnecessary in the further course

of the model description. The principle of unity of model and mesh

tree is thus tightly connected with a properly sequenced way of

working on the part of the user: first,the complete idealization of

the model; then its description. The commands for description of /69

loading are summarized in Fig. 3.22. An explanatory example with

three loading cases is shown in Fig. 3.23.
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I - loading case numbers and loading case order, 2 - loading case
list, 3 - activation of a loading case, 4 - loading case, 5 - node
loads, 6 - mesh number, 7 - degree of freedom, 8 - unit of
measurement, 9 - node and load list, i0 - load list, II - load, 12 -
node list, 13 - prescribed node displacements, 14 - node and
displacement list, 15 - displacement list, 16 - displacement, 17 -
element load, 18 - block name, 19 - data, 20 - element list, 21 -
upper mesh node list, 22 - superposition of loading cases, 23 -
loading case, 24 - factor

Fig. 3.22: Commands for the description of the loading.
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1 - loading case, 2 - mesh, 3 - description, 4 - superposition of
loading cases 1 and 2.

Fig. 3.23: Simple example for description of node loads.

3.11 Calculation

Part of the total purpose of a system for modelling is to place

in readiness all matrices with which the core system can perform the

FE calculation. If one takes as a basis the solution algorithm as it

is implemented in the program system ASKA for a linear static analysis

[ASKA 71], then the following matrices are needed:
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(compare

for all lower meshes j of a connecting mesh: the

matrices of incidences of degrees of freedom aj

Eq. 3.33).

for all upper meshes:

a) the class selection matrices b u, b E , bp, b s (compare Eq.

3.38). Thus,result the class-specific matrices of

incidences of degrees of freedom in the corresponding lower

mesh

a = a.b
uj j v

a = a B
zj j z

etc.,

b) the node loads R' for all loading cases,

c) the prescribed displacements r'

(3.40)

for all loading cases.
P

Through the concept of the satellite system (compare Chapter 2.1), in

particular the entire element calculation is removed from the core

system• To that part of the model description belong:

•

2.

the checking of all supplied data of each single element,

the construction of element stiffness matrices k for all
ei

elements i, so that for the stiffness matrix of an

elementary mesh results

3. the assembly of the element forces _i based on initial

loads _el and distributed element loads _el for all

elements i and all loading cases so that it results in

• 1 (3.42)I •
With these preconditions, all necessary steps for solution of the

calculation task can be performed in the core system. These are

performed in Appendix B.
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4.1 Segments

4.1.1 Concepts

A definite application of the finite element method -- called a

project -- always begins with that part of the satellite system

concerned with the model description. Thus, in the model description

the user first comes into contact with the VFE-machine. All available

model data are then stored in a single special project data base and

processed (see Chapter 5) by the data processing system (DVS). For

the following illustration of the modularity of the program and the

data, it suffices here first to assume that so-called data modules

serve as storage units in the project data base. In each of these

modules is stored all the data of a model object which describe a

particular property, e.g. all node incidences of a lower mesh with its

upper mesh, or all node coordinates of a mesh.

The components of the model description could be depicted in

easy-to-follow form by the division into several steps, one following

the other. Following the principle of modularization, this division

should also be carried out for the programming system, the data

module, and the user input. The pertinent concept is called a

segment. Each segment represents the sum of the following decisions:

O The user should have in mind an easily-overviewed and

homogeneous part of the model description and thus be able

to abstract from the other parts as extensively as

possible.

0 A segment is a collection of tools for the convenient

description of model data. In using these tools, the user

should need no knowledge about the data modules used

internally in the program.
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The fundamental operations of creating and initializing (or

destroying) as well as changing data are allocated exactly

one segment. The coupling of allocated segments is /73

realized solely by read access to data already described.

Thus each segment depicts one functional unit in the view of the user.

For the elastostatic model description result the following segments

(with their respective names):

A1 TREE

A2 TOPO

A3 CONFIG

A4 BOUND

A5 ELDA

A6 LOAD

A7 ELCA

mesh tree

topology

configuration

kinematic boundary conditions

element data

loading case

element calculation

Each segment is shown to the User in the following phases (compare

Fig. 4.1):

• Activation of the segment: This is called up by the user

either as a first call (NEW), continuation call (MOD) or

reading call (READ). The differentiation of first and

continuation calls serves the strict separation of creation

and alteration of data modules (compare to the separation

principle of [Schrem 78a]). This separation is closely

correlated with a static structure of the project data

base, the details of which still need to be carefully

considered. In the first call all segment-specific data

modules are assigned the state "existing and empty". The

first call and all continuation calls can change the

content of the data module. The types of calls serve to

define the access rights:
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1 - segment, 2 - creation and initialization, 3 - consolidation, 4 -

previous segment, 5 - next segment, 6 - change and read, 7 - read only

Fig. 4.1: User calling diagram of a segment.

o NEW : create, initialize (or destroy), change, read

o HOD : change, read

o READ : read

, Work with the segment: The user effects the changing or

reading of the segment-specific data module. The scope of

the possible operations is guided by the access rights set

forth in the first phase of this segment.

, Deactivation of a segment: This is undertaken by the user

either to interrupt the work (KEEP, 0UIT) or at the close

of the work (END). An interruption can be desired to

activate another segment (KEEP) or to end the work with the

system (QUIT), which leads to a return to the operating

system level. In both cases, it is ensured that the

current data state is not disturbed and, after a new

activation (by HOD or READ) the previous conditions are

found again exactly. If the user believes to have

described all data for a segment, he will bring about a

so-called consolidation (END). This central concept serves

the verification of the completeness and compatibility of

the inputted model data. Thus, the user is reassured from
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segment to segment of the correctness of the model
description. The consolidation is called successful if no
completeness or incompatibilities are found; if this is not
the case, it is called unsuccessful. Through multiple /75

activation of a segment and subsequent correction of the

data content, the user can always ensure a successful

consolidation. These circumstances are summarized in the

principle of consolidation:

> Each model description must be successfully

consolidated in all segments. Only then may it be

called successful.

If a segment is successfully consolidated, a new activation

with a first call is excluded, because this would cause all

pertinent data modules to be newly created,which would lead to

destruction of the consolidated state of the data base.

Besides the desired verification, a broadening of the data

base can be done in the consolidation (compare the

consolidation of the node coordinates, Chapter 3.6.2).

Thus, a consolidation can not be performed for a read-only

segment.

Some further consequences of the consolidation principle are

indicated: For one thing, all consolidations must be very carefully

planned in order to expose all sources of error (compare Chapter 3).

For another thing, a considerable effort is connected with all

consolidations, both in view of the programming involved as well as

the computation time. This is balanced by the certainty of the user
• i

of having given a correct model description _nl the framework of the

verifiable conditions. This is of great significance for the

subsequent calculation of the model and evaluation of the results.
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All segments of the model description may be judged with

respect to state and handling of their model data according to the

following viewpoints:

• Which segments must be processed and consolidated before

the segment in question, since the access to already

existing data is necessary for the creation of new data?

• Which access rights to the project data base exist for the

statement in question?

3. Are the data of the segment in question fully consolidated?

Since the correct consideration of these viewpoints is decisive for

successful work with the system, it suggests itself to give the user a

helping hand to save him the necessity of bookkeeping the

state of his model description.

The first step in that direction consists in the introduction

of a higher-ranked control segment which is always active at the

beginning of system use and which knows and can call every segment

demanded by the user. Each segment is thus informed of the access

rights to the data modules of the project data base (whether NEW, or

MOD, or READ)• Afterwards, the segment takes the sole control of the

model description until the user interrupts or ends with a

consolidation of further input to this segment. Following this, the

control segment is active again, and is informed of the conclusion of

the segment (whether QUIT, KEEP, or END; whether successfully

consolidated or not).

The second step consists in the creation of a segment control

list which represents the static call diagram of all segments. This

is a component of the project data base and in it takes place the
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bookkeeping for the consolidation of all segments. Thus,it is

determined in which order the segments should be called if the

consolidation occurs successfully. The actual dynamic calling /77

order can deviate considerably from this and include many iterations.

In the elastostatic model description the static calling order agrees

with the sequence -- A1 through A7 -- given above (Chapter 4.1.1).

The third and final step to segment control lies in the

development of a functional unit, whose inner state is represented by

the segment control list, and which decides according to this list

whether a segment can be called or not. Thus,the control segment is

placed in the position to react to the demands on a segment from the

user according to the continuation of the model description. The

entrances to this functional unit are consistent with the control

possibilities of the user (compare Fig. 4.2):

1. First calling of a segment

SECNEW (name[3], permissibility)

'name[3]' : segment name, up to 12 symbols long

(FORTRAN format 3A)

'permissibility' = 0 : no

> 0 : yes

This function determines the rank of the segment named. It

examines whether all lower-ranked functions have been

successfully consolidated. If that is the case, the user

receives a message. Then the function deletes all entries

for the requested function and all higher ranked segments,

if such entries are available. Thus,it is hindered that

the determined compatibility of the model data of a segment

be destroyed by subsequent changes in the data. This has

the consequence that this higher ranked segment must be
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once again consolidated in every case. If the demanded
segment was already successfully consolidated, then the
calling of the function is not permissable, and the user
receives a message. Thus,it is hindered that existing data
can be destroyed by mistake. If the calling of the segment
is permitted, then, after the call, the corresponding
actual parameter receives the segment number which in the
control segment can be used as a jump variable for a
multiple branching. /78

_ I_

/.lien van
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READ

KEEP

, /

\ -H..,,...,
", , i -

,°
1

i - no model data extant, 2 - consolidation = 0, 3 - read only, 4 -

dormant, 5 - in process, 6 - reading of model data, 7 - input of model
data, 8 - consolidation, 9 - consolidation = i, I0 - closed.

Fig. 4.2: Flow chart of a segment

2. Continuation calls of a segment

SECMOD (name[3], permissibility)



This function differs from the previous one only in that
the change of an already unsuccessfully consolidated
segment is permissible, if it is also confirmed with a
warning notice to the user. Thus,the difference is
preserved between correct model description and correct
model calculation.

3. Read calls to a segment

91
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SECRED (name[3], permissibility)

Such a call is always permissible if the segment is carried

in the control list. The function does not change the

control list.

4. Interruption of the segment

SECKEP (name[3])

The segment must be known but the function does not change

the state of the control list. This function is also

called from the control segment if the consolidation was

not successful.

5. Ending of a segment

SECEND (name[3])

After the release of the segment,the success of the

consolidation is retained in the segment control list.

This occurs, however, only on the condition that all lower

ranked segments were successfully consolidated, because

otherwise the results will not necessarily be based on

irrefutable model data.



Changes of the calling order affect exclusively the segment control
list. The state diagram of the functional unit corresponds to Fig.
4.2. For the user, an additional function is provided for:

92

6. Listing of the state of the model description

SECLIS

With this, the user receives the momentary state of the
segment control list in easy-to-see form on his output
device.

4.2 Contexts
/80

4.2.1 Concepts

In the broadening of a concept already introduced (Chapter 3.3)

the principle of unity of model, mesh tree, and project data base is

established for the storage of model data:

All data for a model are stored in one data base, and in

one data base are stored the data for at most one model.

This principle forms the framework for the application of the

following concepts.

All data modules in the project data base are identified by

name. A table of symbols (compare [Knuth 68]) makes possible the

correct depiction of names in addresses within the data base. From

the principle named results now the necessity to have data modules of

the same kind for all meshes in a mesh tree. The processing of the

same kind of data modules can then occur truly simply and uniformly,

if they are accessible under the same name. In order to ensure the

unambiguity of the coordination of names and data modules, all data

modules of a mesh are combined under a context (compare [Schrem 78a]),
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the so-called mesh context. This is identified with one name as well.
This context name corresponds to the respective internal mesh number.
The contexts are further implemented as symbol tables which assign the
context names to addresses which refer to the symbol table for the
data module of every individual context. Therefore the unambiguity of
the name must be demanded on one hand for the meshes and on the other
hand for the data modules within a context.

Which data module is called by a certain name depends on the
actual context, i.e. each context requires activation before the
data modules within it can be processed. The data processing system
(DVS) places two pairs of functions at one's disposal, in order to
create and to activate contexts out of the project data base (see also
the flowchart in Fig. 4.3: /81

I. Creation or destruction of an empty context

NEWCTX (namctx)

DELCTX (namctx)

According to the description of the mesh tree, a context is

created for each mesh. Through this, a context structure

is imprinted which remains unchanged for the entire model

description.

2. Activation or deactivation of a context

USECTX (namctx)

RELCTX (namctx)

Since for any given point in time only one context can be

active, the deactivation of the first context must precede

the activation of the second.
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In addition, an additional interrogatory function is available for the
name of the current mesh:

ASKCTX (namctx, iex)

The name of the active context is thereby given (iex = I) or no
context is active (iex = 0).

For the input of mesh-independent model data such as the
segment control list, beyond the mesh contexts one needs also a
so-called basic context. This is always active and allows at any time
the access to the data stored in it. In order to ensure the
unambiguity of the name in the basic context and each desired active
context, it is agreed upon that the names of the data modules in the
basic context must always begin with a special symbol (the $ sign).
Thus it is already determined by the name whether a particular data
module is in the basic context or in the active context. /82

DEL CTX RELCTX

I - context unknown, 2 - context known and inactive, 3 - context

known, 4 - data access

Fig. 4.3: Flow chart for data access by means of contexts.

Since always only one mesh context can be active, there is at fZrst no

possibility to simultaneously process two data modules of different

meshes. But exactly this is necessary by all assembly precursors by

which data from lower meshes are placed into a common upper mesh

(compare the consolidation of the node coordinates, Chapter 3.6.2).

The existence of incidence information requires the common access to

upper and lower mesh data. This purpose is served by the introduction

of the so-called Olympus in the context processing [Schrem 78a]. With



this,it is allowed for exactly one data module out of a mesh context
to be accessible from all other mesh contexts. In order to avoid
confusion of names, the data modules must also have an Olympian name
which exists in no context. This context is implemented in the data
processing system by a pair of functions (see also the flow chart in
Fig. 4.4):
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I. Raising a data module into Olympus

RAISE (namdat, namolm)

It must be an active mesh context, out of which the given

module is raised into Olympus. In 01ympus,the data module

carries another name and it is not called its original name

as long as it occupies Olympus.

2. Dropping a module out of Olympus

DROP

The same context, out of which the module was raised to

Olympus must again be active. After calling this function,

Olympus is empty. The data module raised is afterwards

again accessible under its original name.

i - first context active, Olympus empty, 2 - first context active,

Olympus occupied, 3 - no context active, Olympus occupied, 4 - second
context active, Olympus occupied, 5 - data access also on Olympus

Fig. 4.4: Flow chart for data access for contexts and Olympus



4.2.2 Mesh Lists
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The central significance of the mesh tree for the model

description is underscored by the fact that its description serves the

first segment. The data structure of the mesh lists and the user

input agrees with this concept, as Fig. 4.5 shows in an example. The

meshes of the mesh trees are arranged in the lists according to the

following rule (compare Chapter 3.3):

Beginning with the step zero all meshes of a step follow

one another and that is in the order from right to left as

seen when the tree is viewed from the main mesh outward.

In this way the mesh tree is ordered. The order chosen considers the

mesh tree phenomenologically as a family tree, since all sons of a

father follow one another in the list. A second, and equivalent order

would consist of placing all meshes of a lower tree behind each other

in order to depict the concept of a mesh tree as a hierarchy of lower

trees.

As super-ordered data structure of the model description the

mesh tree is stored in a doubly-interlinked list in the basic context

of the project data base [Knuth 68]. It receives, in addition to the

linkage information, the following mesh properties (compare Fig. 4.5):

The context structure of the project data base is

determined by the quantity and the numbers of the meshes.

The structure of the mesh data modules is determined by

(a) the quantity of nodes and the mesh type of each

connecting mesh.

(b) the quantity of elements and the element type, model

type, and load type of each elementary mesh.

(c) the quantity of loading cases for all meshes.
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A change in the mesh properties describes another model. According to

the principle of unity of model, mesh tree, and project data base, a

new project data base is thus connected with another mesh list. Out

of this,results a fully static structure of the project data base. /84

The advantages versus a dynamic concept, by which e.g. the quantity of

nodes is not determined at the beginning, lie in a simpler and more

efficient data processing and implementation. Last but not least,

this design decision has as a consequence fewer and simpler commands

for the user.
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Fig. 4.5: Example of the depiction of a mesh tree as a mesh list and

its description



4.2.3 Mesh Tree Traversing

The invention of the mesh tree concept may be traced back to
the application of the partial structure technique in model
calculations [Argyris 70]. This technique is based on a
modularization of the model which was shown to be advantageous in the
application of the finite element method to complex models. The
general application of the partial structure technique makes use then

in the mesh list of suitable means to carry out an automated

calculation in all meshes (compare Chapter 3.11).
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1 - fix lower tree, 2 - by means of root, traverse direction, and mesh
types, 3 - NOFNET depicts the quantity of the relevant meshes in the

lower tree, 4 - activate the next mesh context, 5 - process mesh data,
6 - deactivate mesh context,_release lower tree

Fig. 4.6 - General flow chart for mesh tree traverses.
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So one speaks of a mesh tree if definite operations for all meshes /86

of a mesh tree are to be carried through in a definite order. The

mesh tree may be generalized to all possible lower trees and is

completely described by the following properties:

o The root of the lower tree is determined by a mesh number.

The traverse direction follows the order of the meshes in

the mesh list or the reverse order. Graphically, this

corresponds to a traverse from top to bottom and left to

right or a traverse from bottom to top and right to left

(compare Fig. 4.5).

O The input of the mesh types to be considered such as main,

partial, or elementary meshes makes possible a selective

mesh tree traverse.

If one connects the concepts of mesh list and mesh tree traverse one

obtains a general method for the processing of the same data in

different mesh contexts. Besides the partial structure technique, the

method also finds application for the consolidation phases of the

segments of the model description. Fig. 4.6 shows a general program

flow chart for the application of mesh tree traversing.

4.2.4 Control of Mesh Contexts

The activation of mesh contexts is a very common task within

the software system for the model description. For this reason a

functional unit was created which performs the following:

Abstraction from the mesh list: the mesh tree traverse as

well as the activation of definite mesh families is made

possible.
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Placing in readiness of functions for activation (or /87

deactivation) of the mesh contexts and for inquiring as to

the properties of the active mesh.

All functions of the functional unit which change its inner state obey

the principle of symmetry, which means that for each of these

functions there exists a corresponding inverse function [Schrem 78b].

Such functions act like brackets between which a certain state remains

in existence. These circumstances are illustrated in the flow chart

in Fig. 4.7. As required by the symmetry of the functions, simple,

unified and comprehensible programs arise for processing of the mesh

context contents. A consolidated mesh list is the prerequisite for an

orderly working of the functional unit. The mesh list will therefore

be employed following the mesh tree description in all the segments by

which the mesh lists are exclusively read.

The functional unit includes the following pairs of functions:

i. Opening-closing of the functional unit

NVINIT

NVTERM

In between these brackets the project data base must be

accessible in order to be able to process. The

corresponding state of the functional unit is

active-inactive.

2. Mesh tree traverse on-off

NVMAIN (direction, mesh types, number of meshes)

NVXMAN
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Within these brackets prevails the state:

(a) context name of the main mesh

(b) Traverse direction of the mesh tree:

+i : in the canonical order of the meshes in the mesh

list

-i : in the reverse order

(c) the mesh types to be considered

0 : all meshes

1 : all connecting meshes

2 : main mesh and elementary meshes

3 : main mesh

4 : partial meshes and elementary meshes

5 : partial meshes

6 : elementary meshes

7 : no mesh

101
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The calling program is given the exact number of the meshes

to be considered, in order to be able to control a simple

counting loop over these meshes (compare Fig. 4.6). In

this loop the following brackets are then opened and

closed:

Next mesh in the tree active-inactive

NVNODE (number of lower meshes)

NVXNOD

Through this, an internal counting variable is incremented

by one and the corresponding mesh is activated in the

canonical order• With connecting meshes a loop around all

lower meshes can lead to closing of an additional bracket:



4. Next lower mesh active-inactive
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NVSUB (number of lower meshes)

NVXSUB

This set of brackets leads to incrementation of a further

conunting variable and to activation of the context

concerned.

5. Upper mesh active-inactive

NVSUP (number of upper meshes)

NVXSUP

With this the upper mesh can be made accessible to each

mesh activated with NVXNODE.

For the traversing of a lower tree, its root must be declared. For

this, one must replace the brackets NVMAIN - NVXMAN by means of:

6. Lower tree traverse on-off

NVR00T (mesh number, direction, mesh type, number of

meshes)

NVXROT

The name of the lower tree root in internal state is stored

as context name. The activation of the meshes and their

lower meshes or upper meshes, respectively, occurs

analogously to mesh tree traversing.

With this are named all pairs of functions which allow a mesh tree or

lower tree to be crossed in a simple manner. This corresponds to a

processing of the meshes with respect to the hierarchy of lower trees.

By contrast, a second set of functions considers the family, i.e. /90
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1 - mesh control inactive, 2 - mesh control active, 3 - tree active, 4
- mesh active, 5 - lower mesh active, 6 - data access, 7 - upper mesh
active, 8 - father active, 9 - child active, i0 - son active, ii -

grandfather active.

Fig. 4.7: Flow chart of mesh context control

a mesh with its lower meshes and its upper mesh (or a father with his

sons and their grandfather):

7. A certain mesh active-inactive

NVDAD (mesh number, number of lower meshes)

NVXDAD

For a further consideration of the family, there are two

possibilities: either a certain son is picked out or the children are

called in order:

8. A certain lower mesh active-inactive

NVSON (mesh number, number of lower meshes)

NVXSON

OF POOP,



104

The state is designated by the context names of father and

son.

9. Next lower mesh active-inactive

NVKID (number of lower meshes)

NVXKID

These brackets are called in a loop, which is connected

with the incrementing of a counting variable. Here the

father must be a connecting mesh in every case.

The consideration of the family is rounded off by a call for the

grandfather:

10. Upper mesh active-inactive

NVOPA (number of upper meshes)

NVXOPA

In addition to these functions changing the state of the functional

unit, the parameters of the momentarily active mesh can be called by

the following function:

105

NVASK (mesh number, upper mesh number, number of lower meshes,

number of loading cases, number of nodes/elements,

mesh/element type, model type, load type)

Here all current parameters are zero if no mesh context is active.

/91

The significance of the context control for a simple and

comprehensible program shall be shown in an example. The assignment
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shall be to perform the assembly of stiffness matrices for an entire

model and for a desired pair of classes of degrees of freedom (compare

The accompanying FORTRAN subprogram has the followingChapter 3.11).

form:

SUBROUTINE BETREE ( NN4SA 1 # NN4SK, NAJtSA2, NA/WK )

DATA I_40L_ /4HOU)I /

C

C... JU.J.E V1F:RBUNDNETZR IN NB".eZBAUM VOM UR'I_N NACH OBER

NVHAIN (- ! , 1 ,NOFNET)

C

C.*°

DO 1oo I-I,NOFNET

CALL NVNOOE (NOFSUB)

9RINGE DIE STEIFIGKEITSHATRIX IN DEN OLYI4p

CALl, RAISE (NNtBK, NANOI, N )

DO .50 3-1 ,NOFSUB

CJU_ MVSUB (NSUB)

C

C .... ASSENBLI E RUNG

CA/*/* ATPA (NAKSAI • NAHSE, I/_qSA2, NAItOIJ4 )

C

CALL NVXSUB

5o CONTINUE

C

C... LEERE DEN OI,YMP

CALl, DROP

C

CALl, NVXNOD

too CONTINUE

CA/.[, NVXJ_J_

RETURN

END

1 - ALL CONNECTING MESHES IN THE MESH FROM BELOW TO ABOVE,

2 - BRING THE STIFFNESS MATRIX TO OLYMPUS,

3 - ASSEMBLY,
4 - EMPTY OLYMPUS
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The processor ATPA performs the assembly of the stiffness of a

single lower mesh into its upper mesh. The term "processor" is used

here according to the definition used in [Sehrem 78a]. In the way

shown, all calculated steps of a solution algorithm can be controlled

by the partial structure technique, independent of the number of

meshes in the model.



, Management of the Model Data
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5.1 General Aspects of Storage Management

All assignments of storage management are performed by the data

processing system (DVS), which represents a subsystem of the

VFE-machine. For an ordered management it provides for a working

memory storage space as well as background memory storage space. The

background storage is called the product data base. This fulfills the

function of a long-term storage in which all data for a project may be

accessibly stored for as long as desired. So the project data base

may also be blocked against changes. The project data base is called

passive when only reading access is allowed and active when all types

of access may be performed.

The management of a project data base rests first on an

arrangement of the data base in so-called pages. By this one

understands storage regions with a constant number of storage spaces

of FORTRAN type integer -- the so-called page size. The maximum size

of the project data base, i.e. its largest possible page number, is a

set property of the data base. This can span data bases of several

operating systems. These must however be physically placed on storage

devices which allow direct access (e.g. magnetic disk but not magnetic

tape).

The working memory is a continuous storage region of definable

size in the central storage of the computer. It is e.g. realized by

the FORTRAN statement

COMMON // LOT (i0000)

with a length of i0,000 storage spaces of FORTRAN type integer. This

storage is available however only during the activity of the

programming system. The logical connection of the project data base

with the working storage space results in the following basic demands

on the data processing system:
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Addition of new pages to the project data base• Existing

pages no longer needed must be processed along with the

holes arising thereby. Thus the project data base /94

always has the smallest possible size.

Transmission of data from the project data base into the

working memory by copying pages

Dynamic processing of the working memory. Each access to

data in the project data base follows only over one

indicator into the working storage. The indicator is only

available for use for a limited time. An external

influence on the location of data is not possible.

On a high level of the data processing certain data modules are

depicted on the pages• All required information about the linking of

all corresponding pages are parts of each data module. Furthermore

they contain all other data about their own architecture. One

therefore denotes such data modules as self-descriptive. They are an

important concept for the organization of access paths to data. Each

type of data module is managed by its own functional unit. This is

part of the data processing system. Self-descriptive data modules

receive a special significance through the distribution of

computer-connected and distributed data processing. Here above all

the information about the data type stored in every storage space is

of decisive significance in order to undertake a type-correct

conversion between different computer systems. The data-processing

system supports only a few standardized modules which favors a simple

and easy-to-follow processing of data. For the requirements of above

all the core system9 the so-called tablets were introduced in [Schrem

78a]. They serve the storage of the hypermatrices which appear by the

method of finite elements. Further, sequences and tables are provided

for the storage of control lists and model data.



In the use of the data modules for the model description,
the two following principles are heeded:
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I • Principle of unity of the model, mesh tree, and project

data base (compare Chapters 3.3 and 4.2).

> The project data base contains all data for one and

only one model.

That means that with a change in the mesh tree and thus in

all of the model properties included, another model and

thus another project data base must be chosen, because the

user determines at the very beginning of the model

descriptionby means of the mesh tree the context structure

of the project data base and the structure of all data

modules for the module data. This static structure of the

project data base contrasts with a free changeability of

the content of the data module, which may be formulated in

the following way:

2. Principle of the generalized storage cell

> A new datum always writes over an old one.

For this, the creation of the data modules is in

programming strictly separated from the changing of its

contents. Through this, following every user input, the

current state of data described up to the present is in the

project data base. The data base is thus largely isafe

from interrruption.

It is _expressly stated that these principles go back to design

decisions for the programming system and are not required by

limitations of the data-processing system. Therein a very fundamental

design principle of the modularization of complex systems proves
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itself useful. After that all lower abstraction levels of a system
are conceived as generally as possible and the limiting design
decisions follow first at higher abstraction levels. The freedom for
such decisions is a direct consequence of the generality of lower
abstraction levels. For the software system for the model description
the principles named yield a simple implementation and an
easy-to-follow user interface.

/96

5.2 Control Lists

5.2.1 Types

A programming system for modelling clearly has the task to

offer the user a broad selection of various element types, so that he

may describe his model in the proper form. The integration of this

variety into the system can be achieved by a generalizer, a

generalizing principle, as considered in the concept of the type.

Each class of objects of the model description is described by a

series of properties. Each type within the class is then

characterized by a complete set of values for these properties. All

elements are described e.g. by the number of nodes, but for each

element type this number is set, and two different element types can

be so differentiated. In general two types of a class differ in the

values for at least one constitutive property. Further classes of

objects are e.g.

0

0

0

meshes,

coordinate systems,

degrees of freedom, etc.

Now the principle of giving names and calling by name will be agreed

upon:

All types of each class of model objects receive an

unambiguous type-specific name which is used by the user

for identification of the type in the model description.
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In addition, each type receives an alphanumeric type name from one to

twelve characters. Such names are not arbitrary, rather they have for

the user a mnemonic significance. For the processing of the types

within the program system, however, numerical identifiers are better

suited. Therefore each type name corresponds to an unambiguous type

number. This is a positive integer greater than zero. From the point

of view of programming techinique, the preference for numbers lies in

lower memory demand, easier comparison, and the possibility to use

them as indicators or keys, or to make calculations with them. /97

The properties of model objects of a class are now divided into

parameterizable and non-parameterizable properties. Prerequisite for

parameterizability is the possibility to specify definite numerical

quantities for a property. Thus e.g. the quantity and types of

degrees of freedom for an element are parameterizable properties of

the element type. By contrast, the stiffness of an element is

dependent on the configuration and must be newly calculated each time

and so is not a parameterizable quantity of the element type. The

differentiation concerned of the type properties is important for the

strategy of the integration of many different types. Parameterizable

properties can be written down on control lists. These fulfill the

following assignments:

O

O

O

O

naming.

giving of the type name from the type number and vice

versa.

similar access to a property for all types of a class.

easy increase in the number of types considered by the

system.

no burdening of the program text with any knowledge about

properties of specific types.

fixing of a canonical order of properties (e.g. the degree

of freedom on a node of a mesh type).

controlling data transformations (e.g. conversion of

measurement units).
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The control lists contain no mesh-dependent data and are therefore

contained in the basic context of the project data base (compare

Chapter 4.2).

For non-parameterizable properties of a specific type, programs

must be integrated into the system. There the type number allows an

unambiguous coordination of program and type in the form of a multiple

branching (FORTRAN: computed GO TO). Thus, always with the help of a

control list can be ascertained the number of an element type which

makes directly possible the calling of the element program, e.g. for

the stiffness calculation.

5.2.2 Sequences
/98

For storage of control lists in the project data base, data

modules of the type sequence are provided for. They obey the

following rules of construction:

I. A sequence is a series of lists.

2. A list is a series of elements.

3. All elements of a list are atoms of the same type.

Each sequence is identifiedl by a name. This consists of one to four

characters. For control lists, those include a $ sign followed by one

to four alphanumerical characters (compare Chapter 4.2.1). Each list

within a sequence is, as well, designated by a name. This includes one

to twelve alphanumeric characters (compare Chapter 4.2.1). Each list

within a sequence is, as well, designated by a name. This includes

one to four alphanumeric characters, thus these names are suitable

for type names. In general the arrangement applies that:

All type names are list names.

All types of a class are summarized into a sequence.
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Each element of a list is unambiguously determined by the
specification of sequence name, list name, and index. The index has
here the function of a number for designation of an element. As atom
types, storage spaces of FORTRANtype integer or real come into
consideration for control lists.

For the processing of sequences a functional unit is created

which is a part of the data processing system. The state of each

sequence is stored completely in the project data base. To this state

belong:

i. The sequence is known/unknown

With the function

NEWSEQ (namseq)

a sequence is created whose contents are empty. The

quantity of possible entries is fundamentally limited.

Moreover, there follows an entry into the contents of the

active context. With this, the sequence is known. The /99

corresponding inverse function:

DELSEQ (namseq)

deletes a known sequence in the active context. All

occupied pages in the project data base are freed up.

entry in the contents of the active context is removed.

After this the sequence becomes unknown.

The

2. A list is known/unknown

Each new list is first created by the function

LISNEW (namseq, namlis[3], length, atom type)



The sequence concerned must be accessible in the active
context.
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A list with the given name may not already exist in the
sequence. The function causes an entry into the list
contents of the sequence. This corresponds to a change of
state

numlis <--- numlis + 1 ,

where 'numlis' signifies the quantity of the known lists in

the sequence. Moreover, the function causes the necessary

storage spaces in the project data base to be reserved and

initialized (if 'length" > 0). All elements already exist

after that. Up to the calling of the function, a llst has

the state 'unknown'; afterwards, the state is 'known'.

There exists for the following reasons no corresponding

inverse function:

o With an inverse function the coordination of list

numbers and list names in the contents would be lost.

o The management of the gaps thus arising in the

contents and the sequence would be complicated and

inefficient.

o The use of sequences for storage of control lists

makes the inverse function unnecessary, since control

lists are only created a single time, but in contrast

are used very often.

For the storage of control information in a list, the following

function is used:

1100



,
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Describing a list

If a list is unknown (and 'length' > 0), then the contents

of the list may be changed with the function

LISWRT (namseq,namlis[3],istart,ifeld[nelem],nelem)

This has write-over effects for the chosen index interval

[istart,istart+nelem-l]

From the set reservation of the list places, a lengthening

of a list is not possible:

I < istart _ istart+nelem < length

The inverse function is

4. Reading a list

LISRD (namseq,namlis[3],istart,ifeld[nelem],nelem)

In reading and writing attention must be given to the atom

type in order to make possible correct processing.

The functional unit encompasses a series of interrogatory functions:

5. State of a sequence

INFSEQ (namseq,iex,numlis)

The state variables are

'iex' : The sequence is known in the actual context (iex=l)

or unknown (iex=O). A change in the state variables is

possible with DELSEQ or NEWSEQ.

'numlis' : The number of the calls performed to LISNEV

since the creation of the sequence.
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/103o number of edges and their corner nodes

o number of solid, plane, and edge middle nodes

2. Element configuration

o type of coordinate system

o number of linear interpolatable element node locations,

the interpolation nodes, the support nodes, and the

location parameters.

3. Element degree of freedom

o total number

o largest number at a node

o enumeration of degrees of freedom at each node

4. Element data

o number of possible model types

o for every model type: quantity, atom type, and

dimensions of the element data.

5. Element loads

o number of possible load types

o for every load type: quantity, atom type, and dimensions

of the load data

The control list may be tied into the system in two ways. One way is

for the user to use a copy of the project data base containing all

control lists. One speaks of a prepared project data base. The

second way consists of an automatic creation of a FORTRAN subprogram

which can accomplish the initialization and preparation of a project

data base. In this way it is possible, following the mesh tree

description, to include only the control lists in the project data

base correlated with the mesh and element types used. If the data

modules in the project data base are structurally self-descriptive

(Chapter 5.1), then from the incorporation of the control lists, the

project data base will also be self-descriptive with regard to the

contents, since with their help the depiction of type names by numbers

may be reversed at any time. The commands for description of the

control lists and generation of FORTRAN subprograms are summarized in

Fig. 5.2.
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1 - Activation of the system description in the control segment, 2 -

description of a control list, 3 - list, 4 - generation of a program,
5 - end of the system description, 6 - with, 7 - alphanumeric name

with 1 to 5 symbols.

Fig. 5.2: Commands for system description.

5.3 Model Data

5.3.1 Numbering

The principle of naming and calling by name (Chapter 5.2.1) is

now broadened as follows:

> All objects of the model description receive explicitly an

unambiguous name which is used for identification of the

object.

While names for all types are fixed by the system description, the

following model objects are in addition arranged by the user:

o meshes,

o nodes,



elements, and

loading cases.
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The naming of these objects leads, in contrast to any implicit

arrangement, to the user's exact knowledge of his model. Whether

numbers or alphanumeric names are used depends on the number of

objects and their use. Since commonly the number of nodes and

elements in a model is large, alphanumeric names are little suited to

the purpose. They would be extremely difficult for the user to

memorize. Besides, numbers offer the advantage that they may be

generated, if a regular number series is available (compare Chapter

6.5). Depending on the model, there could exist many or few meshes

and loading cases. Their designation with alphanumeric names would be

justifiable, but numbers will also be provided here for reasons of

uniformity, i 1 3 H
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1 - sequence, 2 - table, 3 - tablet, 4 - block tablet, 5 - mesh tree,
6- node numbers, 7 - element numbers, 8 - node incidences, 9 - element
incidences, I0 - degrees of incidences, ll - node coordinates, 12 -
element coordinates, 13 - node bases, 14 - element bases, 15 - mesh

bases, 16 - local bases, 17 - class of degree of freedom, 18 - degree
of freedom selection matrix, 19 - degree of freedom incidence matrix,

20 - element data, 21 - loading cases, 22 - element loads, 23 - node

loads, 24 - given displacements, 25 - element stiffness, 26 - element
forces

Fig. 5.3: The model data and their data modules
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Out of the order of the naming an ordinal numbering
results for all objects. These internal numbers are used for data
processing. In contrast to this the numbers given by the user are

designated external numbers. The correspondence of external to

internal numbers is a property of th object in question and belongs to

the model data. The coordination of all objective data results from

the user by the external number of the object and by the project data

base from the depiction by the internal number•

Which type of data module is chosen for the storage of the

model data depends on the expected operations. Fig. 5.3 shows the

summary of all model data and the corresponding type of data module

chosen for each. If matrix operations are expected, then tablets are

best suited for the storage of the data. Block tablets are used for

the storage of data which is used in the element calculations.

Reference is made to [Schrem 78a], in which can be found a thorough

depiction of the tablet concept. For a series of model data, the

direct access to a data bundle by an index (the internal number) is

desired. Then the tablets described below are suited to the task. In

some cases sequences are alternatively possible if an alphanumeric

name is available for the access (e.g. the context name for meshes in

the mesh list).

5.3.2 Tables

The rules of construction for tables are:

•

2.

3.

Each table is a series of lines

All lines possess the same number of columns

All columns consist of one atom of each of the same type.

The name table for this type of data module is derived from the

identification of each column with a name which corresponds to a list

name in sequences. Besides this the access always occurs on a /107
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whole line of the table. For this the lines are implicitly numbered

ordinally• The tables allow e.g. a relation between the internal node

numbers and the degrees of freedom whose mesh-type-dependent names

stand over the columns. If the number of atoms in each line is n,

then each index in the table corresponds to an n-tuple of values. The

significant difference with sequences is that the lines of the

sequences correspond to the columns in the table. Despite this the

atoms in each line occupy consecutive memory spaces in both types of

data modules. Such an arrangement is decisive for an efficient access

to the data. The dimensions of each table are determined on one hand

by the control lists and on the other hand by the mesh tree. If both

are known, the structure of the table is fixed: the names of the

mesh-type-dependent degrees of freedom are e.g. taken from one control

list and placed over the columns, while the length of the table is

determined by the number of nodes of the mesh tree.

For the management of the tables a functional unit in the

framework of the data processing system is available for use. As

required by the similarity to sequences, the functions are also

arranged in a similar manner (compare the flow charts in Figure 5.1

and 5.4). The state of the tables is changed by the following

functions:

• The table is known/unknown

A table is made known and created by the function

NEWTBL (namtbl, atomtyp, numcol, namcol[3, numcol]

The name of a table may here contain one to four

alphanumeric symbols. The table possesses from the
beginning a fixed column directory, which belongs
unchangeably to the state of the table until the inverse
function

DELTBL (namtbl)

is called. Both functions refer to the same context• Like

a list name of a sequence, a column name also has one to
twelve alphanumeric symbols.

/108
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1 - table unknown, 2 - table known, 3 - tuple unknown, 4 - tuple known

Fig. 5.4: Flow chart for the management of tables.

. The tuples are known/unknown
Each tuple is unknown until it is added to the table by the
function

TUPNEW (namtbl, ntup, istart)

By this function are created the next 'ntup' tuples,
starting with the tuple 'start' (normally i). The change
in state of the table is

numtup <-- numtup + ntup

where 'numtup' stands for the number of the available

tuples in the table. Besides this the function causes the
necessary storage space in the project data base to be
reserved and initialized. A corresponding inverse function

is not provided for, for reasons analogous to the

sequences.
/109

The following function serves for storage of model data:

3. Description of one or several tuples

TUPWRT (namtnl, numcol, istart, ifeld[numcol, ntup],

ntup)

Beginning with the tuple on the index 'istart', tuples are

described by the contents of the field 'ifeld'. Then

all tuples must be created (i.e. with the function TUPNEW):
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I < istart < istart + ntup -I < numtup
The corresponding inverse function is:

4. Read one or more tuples

TUPRD (namtbl, numcol, istart, ifeld[numcol, ntup],ntup)

In addition to the functions named, the functional unit includes a
series of interrogatory functions:

5. State of a table

INFTBL (namtbl, iex, atomtyp, numcol, numtyp)

,

The state variables are:
'iex' : The table is known in actual context

('iex'=l) or unknown ('iex'=0). A change in
the state can occur by DELTBL or NEWTBL.

'atomtyp': type of atom of which the entire table
consists (commonly atoms are FORTRAN type

'integer' or 'real'
'numcol' : number of columns in the table

'numtup' : number of tuples created with TUPNEW since
the origin of the table

Inquiry of column names

For one thing, the column name may be determined for a

given column number using

TUPCOL (namtbl, icol, namcol[3]) ,

for another thing the inverse

TUPIND (namtbl, icol, namcol[3], icol)

determines the column number for a given column name.
While in the first function the column must exist (compare

INFTBL), by the second function the column number is set to
zero if in the table no column of this name is available.

If the content of a tuple is known, but the index in the table is

desired, the function

7. Searching for a tuple

TUPSRC (namtbl, istart, numcol, ifeld[numcol], index)
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helps. Beginning with the tuple on the index 'istart' the

first tuple is seached whose contents agree with that

of 'ifeld'. Its index is determined. It is zero when no

such tuple is found by the end of the table.

Project Maintenance

The principle of unity of the model, mesh tree, and project

data base ensures a simple implementation of the model description.

This is based above all on the separation of the following tasks from

the model description:

the combination of partial modules

the broadening or shrinking of the mesh tree /iii

changing the number of nodes, elements, or loading cases

the use of other element types, model types or load types.

The processing of all these tasks always leads to a new model and thus

to a new project data base. For the user, a tool is now made

available which allows him to transfer parts of already-existing

models into the new model in order to make unnecessary a repetition of

parts of the model description. In addition a further segment-like

functional unit is created which does the following:

0

0

creation and initializing a new project data base.

copying certain data modules from an old to a new project

data base.

Old and new project data bases are both managed by the data

processing system. Therefore the page sizes concerned must agree

(compare Chapter 5.1). Before copying, a new project data base must

-- following the abovementioned principle -- first be described with a

new mesh tree. Here the new mesh numbers may not be chosen with

complete freedom. In particular, they may not be identical to the old

mesh numbers. Through this, an unambiguous coordination of the mesh
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contexts is possible for the data processing system. The new mesh

tree must be consolidated. A further condition for the application of

the project maintenance package is given by the strict separation of

creation and changing of data modules (compare Chapter 4.1). All the

segments of the new project must be previously initialized with a

first call, for which certain data modules are transferred from old

project data bases (compare Fig. 4.1). If all these conditions are

fulfilled, the user can call the following copy routines:

1. copying from a mesh or a lower tree

2. copying all data modules of the model description or such

out of certain segments or for certain descriptive commands

3. Copying data for certain nodes or elements

/112

For all copy processes the compatibility of the data modules concerned

is required.

After the application of the project care package the user can

complete his model description in the manner already known. An

especially important point here is, that all segments for the new

project must be consolidated (according to the principle of

consolidation, Chapter 4.1.1), in order to guarantee the consistency

of copied data modules. For old project data bases this demand need

not be fulfilled as long as no calculation should take place for the

model concerned. With the help of the project maintenance, the user

can for one thing access back to already-existing models (project

library); for another thing, it is possible to modularize complex

calculation tasks into partial models with their subsequent assembly.

The user commands necessary for this are summarized in Fig. 5.5
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1 - Activation of project maintenance in the control segment, 2 -
transmission of data, 3 - mesh number copied from, 4 - mesh number
copied to, 5 - segment name, 6 - command name, 7 - list, 8 - creation
and initialization of a new project data base, 9 - number of pages, I0

- use of an old project data base, ii - end of project maintenance, 12
- with <namen> : alphanumeric name with 1 to n symbols•

Fig. 5.5 : Commands for project maintenance
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6.1 Overview

The application of a satellite system for model description

brings a division of work favorable to the user. While he idealizes

and describes a model, the model data are processed and managed by the

system. The form of the model description determines significantly

the scope of the work reduction for the user and thus the user

friendliness of the system. As a basis for the communication of the

user with the satellite system, very different processes may be used

such as command languages, menu, and dialog processes. The choice of

a command language is based on its general applicability. They can be

used in the same way on a CRT-device as well as on a llne printing

terminal. Besides this it is suited for self-documentation of the

communication• A series of commands can be easily processed again and

again without the user doing the same work each time. In the

foreground, the command language serves thecommunication of the user

with the system. But a more important aspect lies in the

communication among different users. A series of commands describes

intentions and processes for the system and every other user in a form

understandable to all.

In a definite contrast to the demands of the users on the form

of the model description are the needs of the programming system for

an efficient supply with model data. On one hand, the user wants the

largest possible freedom in the organization of the model description

(keyword: free format), on the other hand, the processing of the model

data is made much easier by a standardization of data depiction

(keyword: fixed format). The resolution of this conflict lies in the

creation of a logical interface between user and programming system

which converts from free to fixed format.

In the establishment of the user interface, above all, three

sources are drawn from. First, problem-oriented languages (POL's) are
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the application of computers, as it was desired to make the

possibilities of computers accessible, without requiring mastery of a

programming language (compare [Fenves 64, Roos 66]). These languages

are of a simple type and their sentences frequently connect certain

portions of data with memorable keywords taken from the jargon of the

particular area of application. Thus, the user is in a position to

describe his problem and determine its processing without giving the

underlying algorithms. There lies the significant difference between

these languages and algorithm-related programming languages

(procedure-oriented languages). While a programming language serves

the implementation of a programming system, a problem-oriented

language takes care of the communication of the users with the system.

The second source is represented by operating system control

languages. They serve the user of a computing system for the

description of a desired process. To this belongs the demands of

operating equipment and the output control. These are often very

simply constructed, that is, the commands consist only of a keyowrd

followed by a -- usually short -- parameter list. It is

characteristic of many command languages that there are several

command planes to differentiate. Among these one understands a state

of the command interpreter, which can be changed by certain commands

such that afterwards other commands apply as before (e.g. calling and

exiting from a text editor). Since each command plane has its own

commands and the operations belonging to these, the easy change of

planes signifies an integrating factor for several partial systems of

an operating system. It is desired as well that new commands and

command planes may be integrated into an existing system without great

difficulty. Besides this, the possibility to be able to establish

command procedures and the suitability of the command structure for

interpretation and compilation belong to the demands on a modern

command language [Gram 75].

The third source is from the theory of formal languages (e.g.

[Aho 72, Salomaa 73]) just as it also forms a basis for the
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development of programming languages. Out of this, exclusively /i15

regular languages (Chomsky Type 3 [Chomsky 56]) come into

consideration, whose construction is simple and sufficient for the

model description. The choice of this language class limits in a

useful way the number and complexity of rules of language creation and

language recognition, the so-called syntax.

With the help of the source named, the following strongly

simplified structural description of the interface is possible. The

component command language allows the user to describe his model and

to control the course of the model description. Each segment receives

its own so-called segment language as a building block of the

satellite system. The control segment represents the highest command

level, from which the several equally-ranked segments of the other

segments are called. Corresponding to this vertical language

structure is a horizontal language structure in the form of

segment-specific and general commands. The latter form a basic

language common to all segment languages. The segment-specific

commands are carriers of the model description in the sense of

problem-_oriented languages, while the general commands are used for

communication control in the sense of the operating system control

languages. As aspects of user-friendliness, the following minimum

demans are to be placed on the languages to be developed:

o Ease in learning: The user should, after a short

introduction, be in a position to describe a model by

himself.

o Good readability: The user should be able to arrange the

command input comprehensibly. A sufficient use of type

names and key words ensures good readability.

o Simple applicablity: The user should not have to pay

attention to complicated punctuation rules. Meaningful key

words alone identify the data unambiguously.

o Little writing: The user should be able to describe as much

data as possible with as few statements as possible.
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The so-called register may be named as the second component of

the interface on the program side. This name is chosen on the

register management during compiliation of programming languages. As

there, a defined datum exists during a definite time span through

which its efficient processing is guaranteed. Following the input of

a command, the register considered here receives the command's entire

data content in a precisely prescribed form. The content of the

register stays unchanged until the demand of the next command. A

register consists of three parts:

I. Identifier part: this determines the type of command

depicted in the register.

2. Descriptor part: this describes the content of the

following parts of data according to type and availability

of certain data proportions.

3. Data part: this contains all data packed in the command in

a command-specific order.

The length of the register and its parts are fixed for a language.

Through this, since also the location of certain data in the register

is fixed for every command, it is possible for the processing program

to access directly each datum.

The core of the sought-for interface is formed by the dual

component pair of language creator and language translator. Their

roles should be explained by Fig. 6.1. First, the developer

determines the command language of a new segment, with which the user

will input the segment-specific model data. This language is then

described by means of the so-called definition language. This

description is processed by the language creator out of which results

a three-fold result. For the future user, an assembly is created with

the syntax of the command language. The developer of the segment

receives a description of the contents of the register belonging to

every command of the language. With this information, the programming
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of the processing of the model data may be very easily arranged. The

third result is represented by a set of tables which make it possible

for the language translator to recognize commands of the language as

such and to implement their transmission into the register. In /117

this type of procedure result some important consequences:

5prochbe_tzer 4

,, ¢,ge

Sprochemwiclder_t 13

1 - language creator, 2 - learn the language, 3 - syntax, 4 - language
user, 5 - model, 6 - commands, 7 - apply the language, 8 - language
translator, 9 - tables, 10 - register contents, 11 - transmit the
language, 12 - register, 13 - program, 14 - language developer, 15 -
describe the language.

Fig. 6.1: The command language forms the user interface.

0

0

0

There is only one language translator. It understands in
each case the language whose tables are made known to it.
The language is table-driven.
There is exactly one set of tables which the language
creator makes from the description of the definition
language and with which the language translator can
understand the definition language. Thus the definition
language is self-descriptive and complete.
Only such language construction is possible as may be
described with the definition language. This is
language-limiting because through its descriptive
possibilities a limited class of languages is defined.
The language translator possesses no type of knowledge
about the meaning of the contents of commands. It is
exclusively syntax-oriented and therefore free of
semantics.
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Thus is outlined the interface,which lets the user see only the

front side of the satellite system. Each command input by him is

transmitted in the first phase from the language translator in

register form. This depicts in a certain way the workshop faqade of

the system. Behind it follows in the second phase the interpretation

of the contents of the register. These two steps correspond to the

division of command processing according to the viewpoints of syntax

and semantics. Through this division, the language translator creates

a general as well as a simple tool for the processing of the model

description.

6.2 Lexical Analysis and Free Format

The answer to the question whether a command depicts a correct

sentence of the presently active language is the prerquisite for the

transmission of the command into register form. This is the task of

the so-called syntactic analysis. Extensive experience is present on

this subject primarily from the compilation of programming languages _

(e.g. [Gries 71, Aho 72, Bauer 76]). Here an important role is played

by the determination of the words of a sentence. This happens by

means of lexical analysis: From every series of signs is filtered out

that string of symbols which represent the smallest units (words) of

the language, the so-called tokens. They are based on a set of

symbols of the alphabet out of which they come forth through definite

rules of construction.

An explanation of the lexical analysis suited for the needs of

the command language is documented in [Schrem 79]. By this, each

token is formed as a regular expression out of an alphabet of

standardized symbols. This may be shown with the aid of the

left-linear production system shown in Fig. 6.2 (for proof, see e.g.

[Salomaa 73]). In the following, some concepts of this lexical

analysis will be named, in order to be able to judge that aspect of

the user-friendliness known under the keyword "free format"
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comment, 10 - token

Fig. 6.2: Left-linear production system for the tokens of the command

language.

The input of the command language occurs line-by-line, by which

each line has a fixed length of 80 symbols. The end of a line is

reached either after 80 symbols ('physical end-of-line') or after the

symbol 'logical end-of-line' ('-s Sat the beginning of the line '_.bl '

on an entire line). Five token types are to be differentiated:

I .

2.

3.

text constant,

numerical constant,

keyword,'
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5.

identifier,

special symbol.
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The token types numerical constant, keyword, and identifier must be

separated from one another by at least one spacer symbol, one special

symbol, or one end-of-line symbol. Therefore, within tokens of these

types neither spacer symbols nor unallowed special symbols may appear•

Besides this, all tokens must lie completely within one line.

In view of these conventions, the input for the user is

format-free for the following reasons:

o

o

o

Tokens can stand anywhere between the beginning and the

physical or logical end of a line.

Everywhere in the input (outside of tokens) comments may be

added. They may be added either between opening and

closing comment parens (symbol (* and *), repectively) and

can extend for many lines or between logical and physical

end-of-line.

Whether a numerical constant represents an integer depends

not on the depiction of the number but rather on its _

value (e.g. 0.5El and 5 are different depictions of the

integer 5). Therefore the user must not be concerned with

the differentiation of real numbers and integers known from

FORTRAN in the input of a number.

The advantage of the format-free-input for the user is that he can

deal with the ordering of the language elements in free form as it

appears correct for him. From this results however a responsibility

of the user for the comprehensibility of the chosen order, if his

colleagues are supposed to understand the input text. The given

definition of format-free input is very general. Commonly, this

property is only connected with the free distribution of numerical

values in an input line as opposed to the fixed format prescibed, for

example, in FORTRAN [DIN 66027]. The extension to different token

types leads to a more comprehensive meaning of the term.
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Noteworthy is the fact that the format-free input represents

exclusively a property of the word formation and not the sentence

formation of the command language. This means the introduction of an

important abstraction step through the lexical analysis. Only the

order of the words themselves, not their distribution on the input

lines is the object of the syntax of the command language.

6.3 Syntax

If one considers the lines processed by the lexical analysis as

the physical sentences of the language, the commands then; represent

the logical sentences of the language. For them now a syntax should

be declared which follows the fundamental conditions of the command

language for the model description:

o right for the user through a simple (because regular)

language

o right for the application through data-descriptive,

non-algorlthmic language (keywords are connected with

certain portions of data).

All languages that satisfy the following rules form a class of

languages. Therefore no terminal symbols, rather only non-terminal

symbols of the language are required [Aho 72]:

i. Each command language consists of a finite number of

different commands.

2. Each command consists of a series of parameters.

3. Each parameter consists of a (parameter-) keyword and a

subsequent, possibly empty parameter list.

4. All parameters obey a fixed predecessor/successor relation,

by which each parameter is identified by its predecessor

and its keyword and even the quantity of possible

successors is determined. By this relation, sentence

symbols become unnecessary.

5. Some parameters are differentiated on the basis of /122

their syntactic function within a command:
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o Beginning parameter: This is the first parameter of a

command. Its keyword is called the command keyword and

identifies the entire command. There is exactly one

beginning parameter for each command.

o Loop parameter: By repetitions of the same commands

immediately following one another, the first parameters

can be identical, so that it suffices to intorduce these

parameters in only the first command of the series. For

this, certain parameters in the command take the function

of loop parameters so that the command part preceding

need not also be repeated by repetition of the command.

A beginning parameter cannot be a loop parameter at the

same time.

o End parameter: Such a parameter is denoted by the

quality that it is followed by either a loop parameter

of the same command or the beginning parameter of the

next command. An end parameter can also be a loop

parameter or a beginning parameter, but not both at the

same time.

o Optional parameter: These are the parameters of a

command which need not be given in every case when the

command is formulated. Their choice is influenced by

semantic aspects. Each parameter of a command besides

the beginning parameter may be an optional parameter.

In parameter lists one differentiates two forms

Closed parameter lists: they possess fixed minimum and

maximum lengths 1 (that is, the number of values in the

lists):

0 < i < 1 < 1
-- min -- -- max

As the values, all token types come into consideration.

For each position in the list the lower limit of allowed
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token types as well as the value range of the token of
each type (token sub-type [Schrem 79]) must be fixed•

o Open parameter lists: Their length has no upper /123

limit:

1>i

•

As values are allowed exclusively tokens of the type

numerical constant. Through this limitation the llst is

imaginable as a series of numbers. Thus it is suited

for the depiction of the most model data, whose quantity

depends on the model. /124

A branching in a command occurs when many parameters of th_

command have the same predecessor. A union signifies that

a parameter of the command has several predecessors. Thus

it is possible to bundle parameters which belong together

into one command.

The syntax described now is depicted in Fig. 6.3 as a production

system. Here the predecessor-successor relation is not considered,

because to describe them, the terminal symbols of the language are

needed. As already mentioned, the introduction of sentence symbols is

made unnecessary by this relation. The beginning and end of a command

are determined unambiguously by the corresponding parameters. The

input of commands can thus occur free of punctuation. To be sure,

many punctuation marks are provided for (as , and ;) but their use for

arrangement of the input is according to the preference of the user.

There remains one more important consequence to be drawn from

properties of format-free and punctuation-free input: If a logical

sentence is distributed over several lines, then no continuation

characters (as in FORTRAN [DIN 66027]) are necessary. This proves to

be user-friendly, especially in the input of commands using a

CRT-terminal.
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1 - command language, 2 - command order, 3 - command, 4 - command
level, 5 - command repetition, 6 - command middle, 7 - beginning
parameter, 8 - optional parameter, 9 - loop parameter, lO - loop end
parameter, ll - terminal parameter, 12 - beginning terminal parameter,
13 - command keyword, 14 - closed list, 15 - keyword, 16 - open list,
17 - see Fig. 6.2, 18 - see Fig. 6.13
Fig. 6.3: Production system for the class of command languages.
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6.4.1 Language Recognition

The determination, whether or not a sentence with a definite

vocabulary is a sentence of a language already presented, belongs to

the task of language recognition or syntactic analysis. For regular

languages the deterministic finite automat (DFA) represents a

mathematical model of the syntactic analysis [B6hling 69, Aho 72].

For the recognizing automat a representation is chosen in the form of

a language matrix. Its columns represent the vocabulary V* of a

command language. This encompasses the quantity of the parameter

keywords and a blank word V . The rows of the matrix represent /125
@

the number of thestates of the automat. Each state is understood by

exactly one correct word out of the vocabulary of the language, that

is, each word V i corresponds to exactly one state S i The present

state of the automat during the recognition process is therefore given

unambiguously by the line index in the language matrix. The language

matrix is a Boolean matrix, in which each row and each column contain

at least one I. A change of state 6.. is then the change of the row
13

index i on one of the column indices j, in the current state of which,

row i contains a I. Or, put another way: each line i, which stands

for an already known word V , contains for all successors V a I in
i j

column i and otherwise 0. The language matrix can therefore be seen

as a depiction of the predecessor-successor relation of the parameters

of the command language. The initial state S of the automat
n

corresponds to the blank word V of the vocabulary and has all command
@

keywords of a language as successors.

A word V is now recognized by the automat if it is in state S
J

and is valid for the contents of the language matrix 6.. = I. Thus
13

one operator may be defined for all changes of state which, based on

the next input word, shifts the momentary state of the automat into

the next one. This recognition operator
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is shown in Fig. 6.4. In the case of a mistaken input it performs a

change of state to the initial state S . Its effect may be summarized

as

S I _ Vj =

Sj , for 8. = 1

ij

S, for 6. = 013

The way the operator works is to compare the state Si of all the

values V for which S = 1 with the input word V . If the search is
1 il j

successful, the desired change of state will occur. In the other /126

ease the automat reverts to the initial state. The input of the blank

word V is recognized if 6.. = 1, which is always the case after
e _3

terminal parameters.

1 - no, 2 - yes9 3 - error

v

Fig. 6.4: The recognition operator _Csi_sj) 'b
.I
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6.4.2 Graphic Depiction of the Syntax

The language matrix is not suited for the depiction of a

command language outside of the recognizing automat. In contrast,

graphic depictions are above all suited to give a quick overview of a

language. Since the order of the language is decisive for the syntax,

directed graphs are used (e.g. DSrfler 72]).

Depending on which constitutive quantity of the command

languages occupies the nodes of the graph, one can dif£erentiate three

equivalent depictions:

I. State Diagram: The states of the recognizing automats /127

form the nodes of the graph:

o

The relationship of this diagram with the language matrix

is that this diagram depicts the adjacence matrix of the

state diagram [DSrfler 72]. For each command the state

diagram begins and ends in state S :
n

•

The graph has as many nodes as the command parameter has,

plus the beginning and end nodes.

State transition diagram: Here the nodes are occupied by

the state transitions:
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One can imagine such a diagram as arising from the

subsequent switching of recognition operators E (Sij)

(compare Fig. 6.4). For a command language, it has as many

beginning nodes as the language has commands and as many

end nodes as there are available end parameters:

..
Word diagram: With this, the words of the language are

depicted through the nodes:

Word diagramms of single command begin with the beginning

parameter and end with the blank word:

Here the relationship between the graphical depiction of

regular languages and functional units should be noted [Schrem 78b].

Use was already made of the descriptive possibilities of a functional

unit through a diagram of state. A further analogy exists between

syntax diagrams and calling diagrams (compare Figs. 6.11 and 6.12).

The observed relationship is thus based on the regularity [Salomaa 73]

of the appropriate rules of construction.
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/129

1 - syntactic structure, 2 - syntax diagram, 3 - method of writing

with parentheses, 4 - linking, 5 - branching, 6 - merging, 7 -
optional parameter, 8 - loop, 9 - loop parameter, I0 - loop end

parameter.

Fig. 6.5: Two depictions of the syntactic structures of the command

language

6.4.3 Language Description

To be sure, the language matrix is suited for control of the

syntactic analysis of a command language, since it has all permissible _

sentence forms, but it does not describe the language completely. It

encompasses only commands and their parameters. The fine structure of

parameters also needs to be arranged, and for that there must be

suitable concepts found, which, as the language matrix, are applicable

for the entire class of the command languages. The description /130

of a parameter includes the following information:
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2.

3.

4.
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Parameter keyword

Parameter list type

Type of list (open/closed)

Description of closed lists

a) minimum length (in positions)

b) maximum length (in positions)

c) number of tokens for every position

d) for every token the possibility for the token type and

its range of values (token sub-type)

This information is organized in the so-called parameter table by

which the keywords and the position descriptions are comprehensible by

reference to the keyword table or the token table, respectively. With

this, there is a set of language tables, which contains all data

necessary for a complete description of the language:

,

2.

3.

4.

language matrix,

parameter table,

keyword table,

token table

The creation of the language tables can be automated with the

help of a functional unit -- the language creator. Its input for this

consists of an exact language description by the means of the

so-called definition language. While the tabular form of a language

is suited for the recognizing automat, the linguistic description has

significant advantages for the developer of new commands. Among these

may be named good readability and ease of changing the description.

Since the definition language itself is an element of the language

class considered, its qualities may be best explained by a

self-description. Figure 6.6 shows the complete description of the

definition language. According to the conscious separation of syntax

and semantics, in the description are described exclusively syntactic

units and sentence forms. The power of the language amounts to 24

parameters in 8 commands. These suffice to describe every command
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' 1131

1 - SELF DESCRIPTION OF THE DEFINITION LANGUAGE, 2 - PLACE FOR

DEFINITION BLOCK OF THE FUNDAMENTAL LANGUAGE, 3 - DEFINITION BLOCK OF

THE MAIN LANGUAGE, 4 - SYMBOL -- TYPE -- SUBTYPE -- NOT IN REGISTER, 5
- OPEN PAREN, 6 - CLOSE PAREN, 7 - KEYWORD, 8 - IDENTIFIER, 9 -
NON-NEGATIVE INTEGER, i0 - HYPHEN, II - STAR NOT INTO REGISTER, 12 -

STAR INTO REGISTER, 13 - SUPERTOKEN DEFINITION-COMPOSED TOKENS, 14 -
SYMBOL -- TOKEN SYMBOLS, 15 - NAME, 16 - OPEN PARENS, 17 - TOKEN IN

PARENTHESES, 18 - PARENS CLOSED, 19 - OPEN ASTERISKS, 20 - NAME IN
BETWEEN ASTERISKS, 21 - CLOSE ASTERISKS, 22 - NAHE OR PLUS, 23 - NAME
IN THE PARENTHESES, 24 - DEFINITION OF CLOSED PARAMETERS, 25 - SYMBOL

-- POSITION -- COUNT, 26 - TWO NAMES, 27 - TOKEN IN PARENTHESES, 28 -
INTEGER, 29 - FROM -- TO, 30 - NAHE IN PARENTHESES, 31 - COMMAND

DESCRIPTION, 32 - PARAMETER DESCRIPTION, 33 - PREDECESSOR LIST, 34 -
COMMAND DEFINITION, 35 - TYPE -- KEYWORD -- PARAMETER LIST --

PREDECESSOR -- CHOICE, END, LOOP

Fig. 6.6: Self description of the command language.
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language of the definition shown. The small number can be taken /132

as proof of the simplicity of the language.

The usable tokens result from lexical analysis (compare Fig.

6.2). The types and subtypes to be declared are collected in Fig.

6.7. Here, also, a low number is characteristic. The variety results

from composition of elements of this basic quantity of tokens. Thus,

all closed parameter lists can be described in detail. This

substantiates the many possibilities of data input as well as the

exact monitoring of the input in the syntactic analysis. The

examination has a decisive effect for an error free data input for the

user with respect to number and order of the data. Besides the

sentence forms it is above all the configuration possibilities for the

parameter list on which the flexibility of the command languages

rests.

Token Type Number

Text constant 1

Numerical constant 2

Keyword 3

Identifier 4

Special signs 5

Token Subtype

Number of symbols

1 : negative mixed number

2 : negative integer

3 : zero

4 : positive integer

5 : positive mixed number

Value according to keyword table

(created by language creator)

Number of signs

+, - , * etc. according to set of

ASCII-symbols (compare [Mackenzie 80])

Fig. 6.7: The token types and their values (subtypes).

The order of the commands already depicts a semantic /133

aspect of the language definition. This results from the hierarchy of

the syntactic units as shown in Fig. 6.8. The region between tokens



and commands is the region of syntactic analyisis and thus also of

language definition. The logical reference of the syntactic units

described determines the order of the commands in the description.

The semantic analysis of the commands is the assignment of the

language creator.

1 I.xo_mo_osp_c_,l

I
|

r
smone_J_e 9Analyse

"2. [ Kommando

f

?
[ Zeichen

synt, kt__Jle | 0

Anolyse

..... I!

lexik _lische
Anal *se

i

1 - command language, 2 - command, 3 - parameter, 4 - keyword, 5 -

parameter _ list, 6 - assembled tokens, 7 - token, 8 - symbol, 9 -

semantic analysis, I0 - syntactic analysis, Ii - lexical analysis

Fig. 6.8: Hierarchy of the syntactic units of command languages.
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The possibility to define an arbitrary number of /134

different languages is especially an advantage for the satellite

system. Each segment gets its own segment language. As already

mentioned, there exists for all segments the allowance to have

commands for communication control (e.g. for input and output) which

are the same in the entire system. These general commands are

collected in a so-called basic language, whose definition must be a

component of each description of a segment language. This part is set
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off in its own definition block (compare Fig. 6.6). This arrangement

has the advantage that the description of the basic language must not

constantly be newly created, rather it can be e.g. placed in each new

description of a segment language as a whole block from a language

library. In the language tables created out of both blocks, then,

basic language and segment language appear unified.

The definition language represents a tool with which the

developer of a segment of the satellite system can fix the commands

for the future user. The demand that a new language be describable

with the definition language guarantees the uniformity of the

languages of all segments.

6.2.4 Language Creation

After the description of a language it is the task of the

language creator to transform the language into the language tables.

The transformation occurs in several steps as shown in Fig. 6.9:

i. Construction of symbol tables: In the syntactic analysis,

the language definition is followed by the construction of

the symbol tables for the intermediate symbols used (as

names for tokens, assembled tokens, parameter lists, and

terminal symbols (keywords). Here, for every type of /135

symbol, a table is created and processed. Following this

is the semantic analysis of the definition as consolidation

of the symbol tables. Here, for one thing, their

completeness is checked; that is, all symbols used need to

be defined. For another thing, the compatibility

requirements different for each sentence form are checked

(i.e. the keyword of a loop parameter may not be the same

as a command keyword, since the unambiguity ofthe

predecessor - successor relation would be lost). The

compatibility ensures the unambiguity of a later user input

with the help of the defined commands.



150

yY _...........:...........................
1 - language creator, 2 - construction of the symbol tables, 3 -

construction of the language tables, 4 - language translator, 5 -
lexical analysis, 6 - language tables, 7 - input, 8 - table generator
I, 9 - consolidation, 10 - table generator II, 11 - result list, 12 -

program generator, 13 - language tables

Fig. 6.9: Diagram with overview of the building blocks of the

language creator.

, Construction of the language tables: with this, the symbol

tables are condensed, in which all intermediate symbols may

be replaced by references (so-called pointers). Out of

this compact form, a program generator creates a FORTRAN

subprogram that contains the language table. This program

can become known to the language recognizer with /136

application of the FORTRAN-EXTERNAL arrangement. After

that,commands in the new language can be syntactically

analyzed. In the case of self-description of the

definition language there results a reproduction of the

language tables (compare the dashed connecting line in Fig.

6.9). With this, it was always possible in the development

of the language creator to create new language

constructions with the help of old available constructions

so that only at the very beginning must a simple and

preliminary variant of the definition language be entered



151

by hand into the language table (bootstrapping [Wirth 71]).

The correct working of the language creator could always be

checked during the further development with the exact

reproduction of the definition language.

The methods of language processing applied in the language

creator owe their origin in many respects to the techniques applied in

the compiliation of programming languages. As with them, a source

program (i.e. language description) is transformed into an object

program (i.e. FORTRAN subprogram). Here the phases of analysis (i.e.

construction of language tables) will differ [Gries 71]. In the same

way, the division in a lexical analysis of syntactic and semantic

analysis corresponds to the procedure in eomp±lation. Further points

are the organization and processing of symbol tables, the transfer of

the source program into an internal representation and the

optimization of the codes to be produced (that is, condensation of the

symbol tables). The last point has further the important consequence

that the illustration of the language definition on the language

tables cannot be reversed in such a way that the intermediate symbols

used by the user could be inserted again. These are lost in the

condensation. But, in any case, a depiction equivalent to the

original definition can be produced from the language tables with the

help of artificially produced intermediate symbols. Such an inverse

process of the language creation process guarantees for the most part

the operational security of the total processing of the command

languages (compare Chapter 7.1).



6.4.5 Language translation

Using the language tables, every command can be recognized

by the language which reprssents it. The language-independent

structure of the tables means that a single language recognizer

is sufficient in order to detect every command language of the

class under consideration with the correct tables. It performs

the syntactic analysis of any input command. The analysis is

a part of the language translator, which translates any command

recognized as correct into a so-called register. In this

compact form, the data of further processing contained in the

command are made accessible.
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/137

The language translator determines the occupation of the

register for each describing command. The result of this

register space assignment is communicated to the language

describer and also incorporated into the language tables. Using

the result list, the program developer can detect the expected

position of certain data from the commands in the register

input by the user. In this way the programs can be written in

such a way as if the data were input in a fixed format ( in the

Fortran sense). This means the programs are purely oriented

according to semantics. Each register consists of three parts:

i. command type: a numerical identifier for the command,

which is then contained in the register. It is specified by

the language describer for each command in a unique fashion

(see Fig. 6.6). It is used to select the corresponding

semantic program (using "computed GO TO")

2. parameter register: its content describes the present

command as a sequence of its parameters. For each parameter

it is specified whether it is present or not, which is im-

portant for selection parameters. In addition, which alterna-

tive for branches was selected is also specified. This infor-

mation is used to perform sequence control inside the

semantic program.
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3. Data register. It contains all of the data of all

closed parameter lists of the present command. The register
locations are fixed for all lists. Figure 6.10 shows the
way in which all of the data are found in the data register
depending on their associated token type. /138

All of the data of the present command are contained in

such a register, except for those from an open list. The

reason for this is the importance of open lists for model de-

scription. The number of data varies widely depending on the

model for many model properties. For such data collections,

the open list at the end of the command is provided. In order

to process these data, a few important additional pieces of in-

formation are required, which are located in the front command

part, the so-called command head. The register represents an

image of the command head. Typically it is short compared with

the length of the open list.

The register has exactly enough room for one command. Im-

mediately after the complete input of the command , it is

syntactically analyzed, translated, and the register content

is processed semantically. The method of operation is inter-

preting [Gries 71]. The interpretation of the command language

has the user friendly property that both syntactic as well as

semantic errors are recognized directly where they are created,

and can be communicated to the user. The command re-establish-

ment process can be used for precise error messages during /139

semantic analysis, where the register is present as an internal

representation of the command. The mapping of a command to the

register is reversible. Using the language tables, from the

register content one can reconstruct the corresponding command

in the previously input form.
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Figure 6.10: Representation of token types
and the variables in the data register (word,

A4-format, real, integer are used in the
Fortran sense)

1 - register content; 2 - representation; 3 -

length in words; 4- text constant; 5 - 20A4

+ no. of symbols; 6- numerical constant; 7 -

-i, real, integer; 8 - key word; 9 - 3A4;

I0 - identifier; ii - 3A4; 12 - special symbol;

13 - -2, 0, value according to ASCII-symbol
set [Mackenzie 80]; 14 - variable; 15 -

-3,0, running number of variables in macro

(see Chapter 6.6)
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6.4.6. Functions for Language Translation

The command interpretation is taken over by the segments
in the satellite system. Each section controls the command
translation, in order to be supplied with new register
contents command by command. However, since the translation
is dependent on sections, one can design a function unit for
it which can be used by each segment. The following functions
are present:

i. Opening and closing of the function unit
SPRINIT
SRTERM

These functions are called at the beginning and end of a
program execution. Other functions can only be used in between.

2. Loading of a new language
SRLOAD (extern)
The "external" is considered to be the Fortran type

"external", and is the name of the subprogram, which is built
up with the language generator and which contains the language
tables of the desired language. It is only after calling of
this function that sets of this language are detected and trans-
lated. This function is the only function unit which changes
its internal state. All other state changes are produced by the
user. /140

. Translation of the next command

s_T c_t__,le,par,ipar[1,,p,_.1-nr.9.ir,qD,,_e_

This function translates the next syntactically correct command.

The register is represented by three parts: command type "ityp",

parameter register "ipar", and data register "ireg". If during

translation a syntactic error is detected, then an error

message is output, and the language generator looks for the be-

ginning of the next command (command key word). Semantically

erroneous commands are considered to not have been input, and
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they never appear in the register. An input error usually leads
to a shutdown of the command interpretation. In a translation
of a command the internal state of the function unit is

changed by the inputs of the user. The state which can be changed
in this way includes the following:

(a) the active line index in the language matrix
(b) the state of the user input (next line yes/no)
(c) the state of the present command (command type and

command repetition yes/no)
(d) the state of open lists (active/inactive)

4. Interrogation of the command state

SRLOOP (loop)

For the command intezpretation it may be necessary to know
whether the last register content delivered by SRNEXTbelongs to
a command repetition ("loop" = i) or not ("loop" = 0) (see
Chapter 6.3.).

Figure 6.11 shows the calling sequence diagram of the
function unit. The great dependence of translation on the
semantic analysis is emphasized by the low number of functions.

/141

Since the general commands of the basic language are

integrated in each segment language, the corresponding semantic

programs also have to be made available.. However, in order to

not have to include this in each section and to overload the

program text several times, they are all summarized in a layer

between the section and the language translator. This means

an expansion of the function unit discussed above by the

function

COMAND (ityp, lenpar, ipar[lenpa_, lenreg, ireg _enre_).

Instead of SRNEXT it is to be used for command interpreta-

tion in the next sections. This function itself uses SRNEXT

and if a general command is being translated (detectable from
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Figure 6.11. Sequence diagram of the functions
of the language translator

Figure 6.12. Calling diagram of the functions
of the language translator with consideration of
transparent commands
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the command type), then the corresponding semantics program
is called directly. In this way COMMANDonly gives the
translation of section-specific commands to the next section.
Since the COMANDacts as a sifting function, so that for the
sections the general commands are not visible, these are also
called transparent commands. In this way we obtain the modified
sequence calling diagram of Figure 6.12.

6.5. Open Lists
6.5.1. Concept

Open lists have a special position within the command
language in several ways:

i. Numbers are exclusively the object of description in
open lists.

2. Most model data are represented by numbers and are
primarily described in open lists.

3. The syntactically unlimited length of open lists allows
the description of arbitrarily large data amounts.

4. The syntax of the open lists differs from that of the

command head. It is not producible by the language generator,

but it is the same for all open lists of each command language

(see Figure 6.13).

An open list is defined as a line by line enumeration of a

table with a fixed number of columns, and an open number of

lines. If the number of columns is n, then a line of the

table is called an n-tuple, and the list is an open sequence

of n-tuples. The tuple length n is an invariant of the open

list. The concept of the table was introduced in Chapter 5.3

as a data module for storing model data. In this way the open

lists are the language items with which the user fills the

tables with data.

/142
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In this connection, we should mention that the correspondence

of the table and the open lists corresponds to the correspondence

of the control list and the command head. This contains the (type)-

names of those data in the control list which are required for

processing the elements of the open list. This is a profound

reason for the pragmatic division of commands into a command

head and the open list.

According to the tuple length n, two types of open lists

are distinguished:

• n = 1 :simple (open) list

. n 1 :tuple list

Syntactically, both types are formed in such a way that

a simple list represents a sequence of numbers. In the case

of tuple lists, the tuple are to be separated by means of a

separator, a special symbol (symbol:/). The table character of

tuple lists can be made visible by the user by a corresponding

arrangement of numbers on the input lines. The simple lists

are of two different forms:

i. ORDINAL: This key word briefly describes the list

i, 2, ......... m

where m is a semantic aspect of the list, which is derived from

the corresponding command and the prevailing network tree.

2. ALL: This is an abbreviation for all values of a /144

numerical collection, whereas the elements of the collection

are specified in a different way. For example, they are

specified by a simple list of another command.

6.5.2. Functions of list generation

Since during command interpretation, the same operations

are to be performed for each element of an open list and the

number of elements depends on the model, one requires a tool

for reprocessing of open lists element by element. One of
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the tasks of a functional unit conceived for this is the

syntactic analysis of lists and the determination of the next

number. The lexicon analysis is used which is the same as

for the language translator. The functional unit is used by

the semantic programs, in order to produce a pure number

sequence. They are also called list generators. Since the

processing of the command head and of the open list is done one

after another, the language translator and the list generator

mutually exclude one another: while the language translator is

active, the list generator cannot be called ,and vice versa.

This is considered in the calling sequence diagram of Figure 6.14.

The following functions are provided for list generation:

i. Beginning of an open list

LSETUP (lentup, iordal)

These functions displace the list generator into the active

state. The expected tuple-length "lentup" is a semantically

determined quantity, and therefore has to be specified again

for each open list. If it is a simple list ("lentup" = i),

then depending on their special form we have:

O_INAL : 'iordal' = I,

_L : ' £ordal' = 2.

In all other cases, we always have "iordal" = 0. Whether /145

a special form is possible has to be examined by the semantic

analysis.

2. Next numerical value in the list

LSNEXT (iend, next, fnext)

This function is called exactly once for each element of an

open list. For a simple list in one of the mentioned special

forms, the function is not called. The result is:

"iend" = 1 The produced numerical value is the last one

in the list. The beginning of the next command follows, or

a loop parameter of the present command.
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"iend" = -i: An input error in the list was discovered.
A corresponding error message is given to the user directly by
the list generator. A further calling of the function is not
allowed and would also not make sense.

"iend" = 0 :
not been reached.

"fnext"
Fortran type "real".

There is no input error, and the list end has

Representation of the value as a number of the

"next" : Representation of the value as a number of the
"integer" Fortran type:

next = div (fnext+o.5,1.)

If the numerical value cannot be repr<_sented in this way because

its size goes beyond the representation possibilities of the

physical memory locations, then "next" is given the value zero.

3. End of an open list

LSUPST

This function concludes the functional unit. This is

related to a reactivation of the language translator, which after

this can be called again. If during processing of the open list

an error occurred, either of the syntactic ("iend = -i) or the

ematic type, then no end of list has yet been reached. The

function therefore looks for the end of the list and in this way

allows a subsequent calling of SRNEXT (Chapter 6.4.6) without

errors.

The language translator and the list generator are the

tools with which one can process the language side of the model

description. Figure 6.15 shows how this is done in a unified

way which can be used for all command languages. The program

sequence plan includes all functions of the two functional units.
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Figure 6.14. Calling sequence diagram of
functions of the language translator and
the list producer

This diagram can be considered as a frame for all semantic

programs of the satellite system.

6.5.3. List description

/148

Usually the user will be anxious to arrange his model data

in a regular form in order to facilitate data input. Therefore

in open lists finite numerical sequences will often occur, which

can be specified in terms of a formation law. For each pair of

successive terms of a numerical sequence with n terms we have:

ai+ I = a i + Aa i

Here and in the following we will have

formation law is now established, if a rule

for determining 4ai , so that we have

Aa£÷ I = £(Aai)

(6 .i)

f(&ai-1) is used

(6.2)

For the simplest and most frequent of the numerical sequences of

this type, we shall now introduce a language construction, which

will allow the user to describe very long numerical sequences
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Figure 6.15. Schematic program sequence plan

of language processing (Please see key on
following page)
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Key for Figure 6.15. 1 - section; 2 - command;
3 - open list; 4 - list elements; 5 - end of list;
6- no; 7 - yes; 8 - error; 9 - error; i0 - process
list element; ii - end of list; 12 - no ; 13 - yes;
14 - yes; 15 - yes; 16 - no; 17 - no; 18 - new
command; 19 - new language

with only a small amount of data. The complete syntax is given
in the syntax diagram of Figure 6.16. The following numerical
sequences can be distinguished:

I. First degree numerical sequence
i. Constant sequence: This is a numerical sequence

which remains the same

Its language form is:

law is
•

_a i - 0 .
(6.3)

FROM ,a I) LOOP (n, CONST PEP
I

Arithmetic sequence of the first order: Its formation

Aa i = Aa I = const _ O.

From the determination variables a I and aaI

determine all the members of the sequence:

Its language form is:

a i = a I + (i-I} • _a I

If Aa1

BY ,£ai) _

FROM ,_a|> LOOP <n, _NEXT <a2' [ REP

l

(6.4)

, we can directly

(6.5)

/149

is not given explicitly, then it can be determined from

Aal =a2-al ( (for NEXT)
I

&al = n--_ (an- al) (

(for TO)

3. Arithmetic sequence of the second order: The

represent an arithmetic sequence of the first order, so that

the formation law is
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L_a i = Aa I + (i "- 1)d (6.7)

with d = const _ 0. The determination variables of the sequence

are al, Aal, d , and the terms are determined by

ai = al + (i-1)_al + 2
(i-1) (1-2) d

6.8)

This sequence can be described with

BY (Aa1> 1

FROM <a I> LOOP <n, JNEXT <a2> r

L_O <_n>J

DIF <d> REP

When a
n

as

is specified, then aa I is found from Equation (6.8)

i Ea _al (n_l) (n_2) dl (6.9)_al = n--_ n 2

4. Geometric sequence of the first order.

sequence with the formation law

This is a

Aa i = Aa I • r (i-I)

where r = (I + %11 ) = const _ 1.

(6.10)

The determination variables

of such sequences are a I and _al

ai - a I (I + _al)
a I

, and we have /150

(1-1)

(6 .Ii)

5. Geometric sequence of the second order. Similarly

to the arithmetic sequences, the aal make up a geometric

sequence of the first order

= r (1-1)
Aa i da I •

(6.12)

--1_a
with and I.r - co.st _ (1+--_-_') r _= The sequence has the de-

termination variables a l, _al , and r and the determination

equation is r(I-I) -I
ai " al +aal r-1 (6.13)



Both types of geometric sequences are described by

FROM <al> LOOP <n> JNEXT <a2; _ RAT (r> PEP

L_ <an,J

Aa I

where for r=(I+-_i) there results a geometric sequence of

the first order and otherwise a geometric sequence of the

second order. If a is specified, then according to
n

equation (6.13) we have

r-1 (a n _ al )
_, = r(.-1)., (6.14)

II. Second degree numerical sequences

If a numerical sequence of the first degree is run

through several times and if its initial value changes

according to one of the form formation laws and if in

addition all of the other determination variables remain

constant, then a second degree numerical sequence results.

It is described just like a numerical sequence of the

first degree. For the description there is a numerical

sequence of the first degree (with LOOP n ... ) and there

is a description of its repetition and the formation laws

to be followed (with AND m ... see Figure 6.16). In order

to be able to reduce numerical patterns which are different

from "rectangular patterns", one also provides for a change

in the number of following terms according to an arithmetic

or geometric series. This is described by means of DIFLOOP

or RATLOOP (see examples of Figure 6.17).

III. Numerical sequence of the third degree

Just like the formation of the second degree numerical

sequences, from them the numerical sequences of the third

degree are produced by a change in the initial value

according to some law. Accordingly, the description of a

167

/151
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second degree numerical sequence (with LOOP n ... and

AND m ... ) is complemented by specifying the number of

repetitions and the formation laws to be used (see AND 1

... in Figure 6.16). In order to be able to produce

numerical patterns different from a prismatic pattern,

the change of the following terms according to arithmetic

or geometric series is provided for. This change is

described for the numerical sequences of the first degree

by DIFLOOP or RATLOOP and for the numerical sequences of

the second degree it is described by DIFAND or RATAND,

respectively.

Figure 6.16. Syntax diagram for describing

numerical sequences



All of the mentioned numerical sequences can be
expanded by tuple sequences. The mentioned formation
laws are used again on all of the tuple elements in the
same way.
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The syntactic analysis of the sequence description is

the task of the functional unit of the List generator.

This determines also a sequence of the next value in the

list (function LSNEXT) from the specified determination

variables. For the series sequence of the values we have

the following priority diagram

i. Tuple

2. First degree sequence

3. Second degree sequence

4. Third degree sequence

In order to explain the description possibilities,

Figure 6.17 gives a few examples of numerical sequences.
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I, 2, 3. 4, 5r 6, 7. 8

I. 2, 4, 7, 11, 16, 22, 29

I, 2, 4, 8e 16, J2, 64,128

I, 2, 3, 4, S, 6, 7, 8,

9_ 10, 11, 12. 13, 14, 15, 16s

17, 18, 19, 20, 21, 22, 23, 24,

25, 26, 27, 28, 29, 30, 31, 32

1, 2, 3, 4, S, 6, 7, 8,

g# 10, I1, 12, 13, 14p

17, 18, 19, 20,

25, 26

1, 2, 3, 4, 5, 6, 7, 8,

9, 10, 11, 12, 13, 14,

15, 16, 17, 18,

19, 20

I, 2, 3. 4, 5, 6, 7, 8,

9, 10, 11, 12e

17, 18,

25

I, 2, 3, 4, 5, 6, 7, 8,

9t I0, 11, 12,

13t 14r

IS

A
• Fi_OM I LOOP 8 BY ! BEP

^
• rP, O(4 1 LOOP 8 BY I DIP I Itd_P

F_{_I I LOOP 8 DY I RAY 2 _£P

FiU]4 1 LOOP 8'BY 1

AND 4 BY 8 REP

A. . FRO_ 1 LOOP II BY I

A31D 4 DTFL,OOP -2 BY 8 lUmP

^ F_ 1 LOOP 8 BY I

AND 4 DIFI,OOP -2 BY 8 DZF -2 IPJgP

__ FK'_e4 1 LOOP 8 BY 1

AND 4 RATLOOP .5 BY 8 R.EP

A. PROH I LOOP 8 BY 1

AND 4 I_TL,OOP • S BY 8 RAT , S IREP

Figure 6.17. Examples of number sequences
of the first and second degree



6.6 Macrocommands

6.6.1 Properties

171
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The previously introduced command language has the

following characteristic properties:

- For each command the interpretation follows directly

after translation: interpretative command processing

- The commands are processed in the same sequence as

with which they were input: sequential command series

- The elements of the parameter lists explicity contain

values: specified command content

These properties are independent of whether or not the

input was in the form of individual commands (on the screen)

or as a command stack (from an operating system data bank).

They are no longer sufficient for model description, for

example, when it is necessary to input a series of command

with slightly changed data several times, which can occur

for very similar models (network generator key word). The

comfort of the command language for such applications can be

substantially increased by introducing so called macro

commands or macros for short. By macro we mean a sequence of

translated commands which are identified by names selected

by the user (see [Cole 76]). The data registers and open

lists contain three locations, which are filled up by

arguments specified when a macro is called. The substitution

of the arguments is done by command. After this, the

complete command is available for interpretation. The

process of substitution of arguments and the making available

of commands is called (macro) expansion. The macros have



the advantage of being able to be used arbitrarily with any
other arguments. Also, the interpretation process is accel-
erated because the translation step is not needed.

It is remarkable that the c_apacity of the command
language to form macros follows very naturally from the
strict separation of syntax and semantics or of translation
of the commands. The flexibility in the use of the satellite
system is clearly visible in a number of phase transitions
during command processing as shown in Figure 6.18.

The introduction of macros means an expansion of the
language elements in two ways. First of all, the commands
defined in the language description are supplemented by the
macro commands defined by the user himself. In addition,
so-called pseudo commands apply within the macros. These
are instructions to the macro expander, which allows the
joining of variables, operations on variables and the control
of the command sequence during expansion.

• _] u _"

Figure 6.18. Phases of command processing
1--translate; 2--set up; 3--edit; 4--stack; 5--reverse
translate; 6--compile; 7--expand; 8--interpret

172
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This amounts to introducing algorithms in the command language.

The pseudo commands are effective during expansion, and

depending on the intents of the user, a stream of (model

description) commands are produced, which no longer contain

pseudo commands• The command language expanded in this way

is then characterized by the following properties:

- Translation and interpretation of commands are done

at different times: compiling command processing

- The sequence of interpretation of commands can be

influenced based on selected conditions: conditional

command sequence

- For the translation, not all the values of the

parameter lists have to be specified: variable

command content

/15 _

6.6.2. Macro description

Based on the separation of translation and expansion of

the macros, two phases are also introduced when they are

applied. First of all, a macro has to be described. This is

done in three parts:

• Macro convention: The macro is given a name it is

determined on which data bank the macro is to be

compiled• Then the macro description is deposited

there in the translated form.

• Variable convention: If the subsequent commands

contain variable command contents, then names have

to be assigned. The variables in addition are given

a class and a type.
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• Macro body: This is all of the commands, which

are to be expanded during a call of the macro•

This includes commands for model description from

the active command language, macro calls and

pseudo commands.

/156

Figure 6.19 gives the syntax diagram of macro description.

An important concept of the macro is the treatment of the

variables. The concepts of macro environment and command

step play a special role here. The calling of a macro is

possible by the user during command input (command level O),

or this can take place from another macro (command step >0).

The command step (i) to be called represents the surroundings

of the called macro (command step i+l). One of the three

following variable classes is assigned to each variable (see

[Dijkstra 76])•

i• Surrounding-independent variables (local variables):

The name of such variables is only known inside the

corresponding macro and its value is only accessible

there. The production and change of the value is

done using pseudo commands. Before the first

generation, the value is undefined• Each operation

with undefined values is disallowed accept for an

assignment of a defined value•

• Call-dependent variables (arguments):

Its name is also known in the surroundings• The

initial value is set when the macro is called• It is,

therefore, known outside of the macro. After this call

a variable like a local variable is processed. A

change in the value during expansion is not felt in

the macro surroundings. In other words, the initial

value remains intact there.
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• Call dependent variables (global variables):

Its name and value are known in the macro

surroundings• A change of these variables

produces a change in the surroundings. For

this reason, such variables are not allowed in

the macros of command step zero. In every case,

only the used variables from the surroundings

have to be considered as global variables

according to convention. Global variables always

lower command step than local variables.

In addition to the assignment to a class, all

variables are also of a certain type. /157
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Figure 6.19. Syntax diagram of the macro
description

1 - macro description; 2 - macro convention; 3 -

variable convention; 4 - macro body; 5 - macro

convention; 6 - variable convention; 7 - first name;

8 - first name; 9 - macro body; i0 - command;

ii - macro body; 12 - macro body; 13 - first name;
14 - first name



This specifies the memory form and the possible operations.
The variable type is specified by four attributes:

i. Token type: This is the type of the token, which

represents each variable•

177
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• Value range: This is the range of possible token

subtypes (see Figure 6.7), within which the values

of the variable can lie. The largest possible value

of the corresponding token type is the range adjusted

beforehand.

• Tuple length: Simple variables can stand for a

in all parameter lists (tuple length i). Tuple

variables can only be substituted for a single

entire tuple within open parameter lists. (Tuple

length >I). Simple variables are set first.

value

• Constant nature: If the value of a variable

should not be changed by pseudo commands, then it

is constant. This means that during the expansion

the use of variables is monitored, so that it is

impossible to overwrite the value. Since local

variables do not have a defined value at the

beginning of expansion, it cannot be constant•

The constant nature of the variable is not set

before hand.

The storage forms of variable values correspond to the

representation of the associated tokens in the data register

(see Figure 6.10). As general operations, the following

are possible for all variable types

- the association (operator EQU) and

- the test for equality (operators EQ, NE).



In addition, there are special arithmetic operations
which are only allowed for variables of the token type
number :

178

- calculation operations:

- comparison operations:

ADD (+), SBT (-), MPY (p),

DIV (/), EXP (_).

LT (4), LE (_), GE (.),

GT (>).

All of these operations are only triggered by pseudo

commands:

/159

- association and calculation operations:

,o.-.°---.H_:_:.,o--.1
|/DZV]

[IEXZ'J

- test for equality and comparison operations:

Branching

"J_:ts'° 1
.r (vaurna_) iGE|t.tok...

I.GTJ
r_k,.,,_nao_I "I"

THEN _ _makroaufruf • |

L"pmeudOXOa_ndo,J

[, r'.,ko,,_nao_. ' "] I'?
LSE ] _makroaufzuf J. |

L'po.,_oko-,n_,j
ENDIF OmGINAL "_ ....•, L,_,'._:_,_'_

OF POOR QUAL[-C'Y

Pre-tested group

,_--.,.--"l_iL.,o-o.r
I',ko.,.ao, I ]"

DO _(makroau fruf. | ENDDO

L"pseudoXommando>_

1--command, macro call, pseudo command



The pseudo commands are commands in the sense of a
command language. They represent instructions for the
expansion process. Semantically, several pseudo commands
can have a composite structure, such as branching and pre-
tested groups. Theyare known as standard structures from

programming languages [Linger 79]. In this way, one can
realize the conditional command series sequence without
using jump instructions.
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The variables agreed upon by convention can be substituted

for each element of a parameter list within a command sequence

of the macro body, if there is compatibility with respect to

type. For this, instead of the value, one specifies the

variable name, which is specified within two dollar signs

$varname$. The special symbols are for the language translator

for detecting the variable. The special representation of

the variables in the data register is related to this (see

Figure 6.10). In this way, one can have a convention regarding

variable command content in the macros.

All of the commands of the macro body are translated and

the registers are stored together with the variable conventions

on the fixed data bank. If open lists occur, then their

syntactic units are also stored in the data bank. The macro

data bank contains all the information of the commands contained

in the macro body with exception of the argument values.

These are specified in a macro call which has the following

structure:

1--text constant; 2--numerical constant; 3--key word, identifer,
special symbol
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The syntax for the intermediate symbols of the right
side of the argument associations can be taken from Figure
6.2. For all of the agreed upon arguments, and only for
them, the values selected have to be specified for each
macro call. In this way during the expansion of the macro,
one obtains a sequence of commands which can be directly
interpreted. Appendix A gives an example of a description
and a call of macros.

7. Aspects of a user friendly model description /161

7.1 Principles of communication

The design of a command language was done with the intent

of giving the user a convenient tool for model description.

The principles used will be summarized in the following.

Language is especially useful for communication between

humans. In a very simple form of the command language,

among engineers it can be used for communicating a certain

model. The wide use of names and the abbreviated description

of model data in open lists result in a readable and clear

picture of model description. In this form, the transfer of

a model description through space and time is easily possible

without any loss of any understandability. As far as the

understand abilit_ among engineers is concerned, this should

also apply for communication with the satellite system. In

the language translated, an automatic method for transferring

commands into a program-like form should be found, which

does not have to be specified by the user himself. This leads

to the principle of language communication:

- Every communication of a user with a satellite system

occurs exclusively with commands of the language which

is specified by the given syntax (Chapter 6.3).



This does not exclude all of the side paths, which
may be used because of expediency. (For example, for
generating a simplified input in user programs). However,
this does not then guarantee the complete readibility of
every model description.
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Because of the strict separation of syntax and semantics,
in addition to the command language, it would also be
possible to have a dialog oriented communication in the form
of question and answer method, or using a menu technique.
Both methods, however, are not suited for communication
among engineers or for documentation of a model description.
In addition, stap processing becomes impossible. Therefore,
these communication methods are now considered first in the

model description.

/162

In order to ensure that the communication always occurs

completely and uniquely, that is, there is no loss of important

information, the principle of reversibility of language trans-

lation has to apply. This means that a function unit exists,

which can produce a command from the content of each register

using the language tables, which is equivalent in its action

to the one input before by the user. Only the information

which does not have syntactic importance is lost, which is

related to the free format of input (see Chapter 6.2). The

commands are mainly used for describing data. This means we

have the following

- language description is used for producing tables

- list description is used for producing extensive

numerical series

- macro description is used for producing a command

s tream

- the model description is used for producing the model

data in the project data bank
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Therefore, there is an analaqous correspondence of
description and the producing system. By expanding the
last mentioned principle, therefore, we have to specify
the principle of reversibility of communication. This means
that during communication from user input until a data point
is produced in the inner state of the satellite system, no
important information is lost. This means that always one
can automatically produce a stream of description commands
from the data using the reversal method, which is equivalent
in its effect to the previously occurring user input function.
This means that there is a describing system which can be
generated for each producing system, which provides for self-
documentation of any describing data structure.

7.2 Data generators
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For the user friendly model description, data generators

are absolutely necessary. In most models, regular distributions

can be found for some model data, which are suitable for being

described with relatively small amounts of data. In individual

cases, much data input can be saved. The command language

makes available two general tools for this:

- The list description for abbreviating arbitrary regular

numerical sequences (Chapter 6.5).

- The macro description for the easy and variable

repeatability of entire model descriptions or parts

(Chapter 6.6).

Any other aid for data generation has to follow the

principle of name specification and name generation (Chapters

5.2.1 and 5.3.1). In contrast to the procedure for so-called

net generators (see [Pfaffinger 81]), we explicitly dispense



with the program production of nodes and elements. The
user identifies every node and each element using a number
which he selects, which has to be agreed upon before it is
used the first time. The same is true for networks and
load cases. Additional general aids include:
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- Describing model data can be copied between various
net contexts for the same network type and the same
node number. This means one of the two descriptions
becomes superfluous.

- Among the various elementary networks, model data
with the same model type and possible with the same
model or load type can be exchanged for all elements
or for one of them.

- All measurement variables can be described by a free
selection of scale units in a useful way (for example,
coordinates, loads).
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Additional generators and aids for data generation depend

on the class of model data (see Chapter 3).

- Bundling of elements of an elementary network for the

simplified incidence description (for example, two

triangle elements to make up a square).

- Selection of suitable coordinate systems for the

coordinate description.

- Selection of suitable bases for the description of

the configuration.

- Use of the principle of complete coordinate description

(Chapter 3.6)



- Interpolation of coordinates on the basis of
topological regions.

- Superposition of load cases.

The mentioned data generators are controlled by
work and element properties which can be parameterized (see
Chapter 5.2). In addition, generators for element data and
element loads are to be provided for, which for the most
part, can be characterized by element properties which cannot
be parameterized. This raises the question of the work
division between generators for such data and the proqrams
which process them and to perform element calculation. The
general nature of the data to be produced can be used as
guidelines for conceiving elementary data generators. This
occurs when many model or load types have a single common
property, for example

- cross section data for different beam elements,
- reference systems for the orientation of material

characteristics,
- different material laws such as for isotropy,

orthotropy or certain crystal structures,
- temperature and speed distributions.

On the other hand, the model type and the load type
allow a selection of elementary properties and the required
data (see Chapters 3.9 and 3.10). In this way, by input of
a small amount of simple data, one can provide for sufficient
element description. As examples we can mention

- using the element data density and the network data
angular rate and rotation center, all centrifugal
loads are completely described,

- with the element data of expansion coefficients
(and their reference system in the anisotropic case)
as well as the network data for temperature distri-
bution, all temperature-cause initial expansions
can be described.
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Therefore, the element programs should be designed

carefully for the user and there should be a large

variation of model and load types available• In this way,

the element programs can take over important functions of

data generation.
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7.3 Errors

According to a naive point of view, data generators are

the most important part of the system for model description.

There is a desire to support the user during the production

of extensive amounts of data. This point of view is naive_

because it uses the unrealistic assumption, that the data

described in this way is always correct• The converse is

true: Most models first will have errors• This does not

mean that large data generators which take over most of the

tasks of data production do not have any value• Instead,

this expanded point of view gives support of the user in the

task which is usually the most difficult: Finding errors

and eliminating them.

The following error sources have to be considered:

1. Errors in the model description: Description

errors• /166

• Errors in the modeling of the physical reality•

The describing model does not agree with the one

to be described: idealization errors.

• Errors in the programs of the satellite systems:

Programming errors.



Whereas the user is effected by all three types of

errors, the satellite system can only discover description

errors itself actively. How important such a discovery of

errors is can be made clear by considering some of the

consequences :

- Errors in the model description can lead to severe

non-correctable errors in the operation of the core

system: no results

- Errors in the model description can only be detected

by careful analysis of calculated results: erroneous

results
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- Errors in the model description are not noticed at

all, that is the calculated results do not apply for

the model under consideration: apparently correct results

The concept for treating description errors includes four

phases:

l. Prophylaxis: First it is important to avoid errors.

This conceals the complex relationship between the

system and the user, in which psychological factors

play an important role (see [Weinberg 71]). All

aspects of the method of working with the system

can le_d to avoiding errors. This includes the

principle of language communication, the free

input format and the list description. The most

important factor is the extensive information of

the user which can be done as a preparation or in

parallel with the model description. This makes

use of the following:

- Aid functions: The user can obtain a display of the

possible commands (especially on the screen) and
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can find out about the structure, content and meaning
of the individual commands.

- Summary functions: The user can become informed

about the status of the model description (see

Chapter 4.1) and can obtain a list of the input model

data in a table form.

- Handbooks and training courses: When the portion of

instructions for the user, especially the beginner,

can be made very small, then one can evaluate the

system to be user friendly.

• Analysis: Since one can assume that errors are present

in the model data, these have to be found. This

should be done as close as possible to the error

source, the input of erroneous data. In this way,

errors are better localized and their creation

becomes more understandable to the user. In

addition to syntactic errors, contradictions and

incompletenesses in the input data have to be

discovered• Only such logical errors can be found

at all from the program• On the other hand, physical

errors cannot be detected, which results from the

fact that the described model does not correspond

to the one which is being described• In summarizing,

we can say:

correct model = physically correct idealization

+ logically correct model description.

The following tests are used for error detection:

- Input tests: The content of each syntactically correct

command is tested for plausibility. Only syntactically

and semantically correct commands are processed. Logical

errors are discovered, which result exclusively from the
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command content•

- Completeness tests:

are discovered.

Gaps in the model description

- Compatibility tests: Within the framework of section

consolidation, the input data are related to one

another. Errors which cannot be found in individual

data are discovered (see Chapter 4.1). The effort

for error analysis must not be very great, if the

logical correctness of a model description has to be

insured• The user only in this way will be given

sufficient competence for interpreting the calculated

results.
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• Diagnosis: Errors found have to be described suffi-

ciently. The description has to be easily under-

standable for the user and has to be complete enough

in order to allow an easy detection of the error

source (see [Horning 79, Parsons 79, Shneiderman 82]).

Diagnosis includes the following:

- Error stage: This determines the weight of the error

and the required reaction by the user:

0: Communication, intended to orient the user.

i: Indication of possible errors. The user should

pursue these possibilities, because there is the

danger of subsequent errors.

2: Errors, which have to be eliminated at all costs.

3: Programming errors, for which the user is not

responsible•



189

- Error number: This is used for identification of the

error. Then using an error handbook with auxiliary

functions, one can find an extensive description of

the error.

- Error communication: The error is described in a

natural language in a polite form. Positive expressions

and the use of concepts from the world of the user can

have a psychological positive effect: An error found

indicates a false model description and not the

bad intentions of the user.

- Additional information: Using numerical and alpha-

numerical values, the error is determined more

accurately. The values are basically only known at

the time at which the error is detected, so that

for the same error number they can always change.

For example, this includes the discovered erroneous

data.

•
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Therapy: The user has to eliminate the error found.

This means that he does not only have to understand

the error, but also has to find the error source and

must correct the erroneous data. This requires

different procedures which depend on the error. The

error number is suitable for requesting information

as to how the error is to be corrected (.using auxiliary

functions or the error handbook). This information

includes:

- An explanation as to what went wrong, if it has not

already been described by the error message•

- An indication how erroneous data is to be found

(_for example, by listing).
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- A procedure for correcting the data.

Idealization errors are very difficult to detect and
can only be avoided by the user by a very careful model
description.

Reliability is a very important property for evaluating
the user friendliness of the satellite system. If programming
errors occur nevertheless, which is demonstrated by a surprising
behavior of the system, then they must be capable of being
eliminated quickly. The following is a list of prophylactic
measures against programming errors:

- A clear and clean modelling of the program system
into functional units. In this way, errors can easily
be found.

- A basic testing of the transferred parameter values
in subprograms, in order to insure correct use.

- A testing of the inner state by the function units
every time they are used, in order to prevent des-
truction of their functional capacity.

- Careful programming. This includes the clean use of
data types and the maintenance of fixed conventions

in the use and the avoidance of elements of programming
languages (see [Schrem 74]).

Very often additional internal system information is
required for the analysis of a programming error. For each
data structure in the project data bank and in the internal
state of the program, there is a listing program in the system.
Each of these programs can be activated on the command plane
(by commands in the basic language). This makes it possible

/170
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for the user, after appropriate remarks (for example, from

the error handbook), to list the surroundings of a programming

error and make it available for the error analysis. In the

vicinity of an error, the dynamic call sequence list of the

subprograms is also important. For this purpose, one can

have sequence traces which are easy to turn on and off which

can be controlled from the command plane.

7.4 Data safety

In the model description, the safety of the data stored

in the project data bank plays a central role. This is

especially true when a project extends over a long period

of time. The protection of the data against unauthorized

access is an important requirement for model description•

All of the comfortable operating systems provide extensive

protective measures for a project data bank. Therefore,

on the satellite system plane there do not have to be any

corresponding measures for this. The following concepts of

the satellite system are used to insure the safety of the

model data in the sense of user support about the nature of

the project data bank:

me

•

The user can operate the project data bank in the

two access modes "active" and "passive" (see Chapter

5.1). One can easily change the operating mode.

For many accesses, it is sufficient only to read

the project data bank. Therefore, in these cases,

the user himself can protect the project data bank

against destruction.

The project data bank is considered to be a general-

ized memory cell (Chapter 5.1). This means that the

uniqueness of the data is insured• The data input

last by the user will certainly be the actual data

in the project data bank.

/171
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• At any time the user can interrupt the work with

the satellite system and take it up again at any

later time ("break/restart"--capacity). Using

the principle of generalized memory cells, the

last data state is always conserved•

• The system has an error tolerating behavior• An

operating error in the use of the satellite system

or a description error do not lead to a loss in

project data in any case. For example, the first

call of segments already consolidated is prevented•

e According to the principle of reversibility of

communications, the result of model description

is also insured after a long connection work,

because the production of a model data can always

be done later on.

The protection of project data against destruction depends

greatly on the reliability of the operating system and the

computer (key words: "deadlock", "head-crash", power

failure)• The user can insure himself against this only by

multiple and distributed storage of the project data (for

example, on magnetic disks and magnetic tapes). However, there

is no absolute data safety here.
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Appendix A: Example for model description

We wish to describe a square plate with a hole, whose

hole edge is loaded with the pressure p. Based on the

symmetry of the hole plate and the load, the idealization

of one-eighth of the hole plate is sufficient. This

segment has to be handled kinematically in such a way that

the displacement perpendicular to the symmetry lines is not

possible.

E

• a=lOcm -..L /

. OooS !4'

S 'I--. -- .L.

/

I
The dimensions of the model are as follows:

half edge length of the square

whole radius

number of elements in the edge direction

number of elements in the radial direction

pressure at the hole edge

elasticity modulus of the plate material

Poisson transverse contraction coefficient

a = i0 cm

r = 4 cm

n = 5
a

n = 5
r

p = i0 N/cm

E =I00 N/cm

=0.3

The configuration of the mesh is determined by a two

dimensional continuum. Correspondingly, a continuum element

QUAC4 with 4 nodes and the degrees of freedom u and v at

each node is used as the element. We thus obtain the
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following model description (see Chapter 3), where the key

words are written in large letters and the identifiers are

written in small letters for readability:

The mesh tree is of the simplest kind. An element mesh

(1) is coupled into a composite mesh (10), which is also the

main mesh•

TREE NEW

MAIN IO NODES 36 CASES 1 NETyp pc SUB 1

ENET I ELTS 25 ELTYP quac4 MOTTP isot LATYP no
END

Starting with the ordinal node and elementary numbering,

the element indices are first described in the circumferential

direction (first loop:

(second loop: AND).

LOOP) and in the radial direction

TOPO NEW

NODESEQ 10 NODES ORDINAL

Z_TSF_ t i_1"$ O_DIItM,

1,2,8,'7 LOOP 5 BY 1,1,1,1 AND 5 BY 6,6,6,6 REP
IItSELT I ALL ELTS FROM
END

The node coordinates are described in three steps:

• The coordinates along the inner edge are determined

with polar coordinates ("polar").

• The coordinates along the outer edge are determined

with cartesian coordinates "SEL". In the mesh tree

description, the mesh type "pc" was given (see

Figure 3.1). In this way, the cartesian coordinate

system is specified as a network coordinate system

and all node positions are converted into this

system.

• The other node coordinates are interpolated through

the topological rectangle range i, 6, 36, 31

("PARC"). For this purpose, along the inner edge
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a trial solution of a fifth order (6 support

points) and a linear trial solution along the

other edges (2 support points) is used. In the

circumferential direction the _-parameters are

given and the n-parameters are given in the

radial direction.

The node bases "ROTB" are described so that the u-

degree of freedom along the left and right edge ("REF y")

and the v-degree of freedom along the inner and outer edge

("LB REF y") are perpendicular to the edge. The other node

bases follow in the directions of the mesh base.

COl_" IG MEW

ODOR 10 polar rho(cm) I_l(gcad) TAIl FROtl 1,4,90 LOOP 6 TO 6,4,45 P,ZP
SEI, x (cu) y ("") TAB 1"1_0H 31,O,10 LOOP 6 TO 36,10,10 RZP

PAAC 10 Ill i,2 re& 2 BOUND IUECIL'A FIRf_ I LOOP i IY 1 IlllP,36,31

ALL FROM O,O LOOP 8 BY 0.2,O A.qD 6 BY 0,0.2 lUmP
ROTE IO _ y TAB rROH 6,6,35 LOOP 6 Blr 6,0,O I_P

LB _ y TAB FBOII 1,1 LOOP 6 BY 1,1 REP
END

All the degrees of freedom along the edge which are

perpendicular to the symmetry lines of the whole plate are

suppressed ("supp u"). In these directions, there can be

no displacement. The alignment of the degress of freedom

is specified by node bases.

BOUND NEW

IF'R£D 10 lupp u IN /'itOH ! LOOP 6 BY 6 AND 2 BY 5 It£P
END

The elasticity modulus ("emod") and the transverse

contraction coefficient ("ny") for all elements are given

for element data at the same level.

ELDA NEW

ELDA I emod (N ca -1) WJTH 100 ELTS ALL

ny WITH 0.3 ELTS ALL
END

Only a single load case is considered ("LCASEQ",

"LCASE"). This consists of pressure forces of the same

magnitude along the nodes of the inner edge ("NLOAD").
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freedom, which is aligned by the node base accordingly.
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LOAD
LCASEQ 1

LCASE 1

N£.OAJD 10 SEL v(N) TAB F_ 1,10 X.X)OP 6 BY 1,0 REP
END

When one wishes to calculate a sequence of such models

with different dimensions, the use of macro commands for

model description is very advantageous for such a parameter

investigation. The commands given above are then generalized

as follows:

i. The macro command "plate" is taken over by the

parameters of the model and it controls the model

description in the individual segments.

. All commands for one segment are included in a

macro command. The required commands for macro

description are discussed in Chapter 6.2.2.

• Each such macro command is supplied with a number

of model parameters. The corresponding variables

are called GLO and are defined as being dependent

on the surroundings. In addition, a few variables

independent of the surroundings are required. They

are called LOC.

. Certain fixed values in the commands will also have

to be changed for a changed model. These new values

are now in general calculated using the LET command

from the model parameters and assigned to certain

local variables. The variables are set between S-

signs and instead of the fixed values they are

introduced into the command.
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DEFMACRO plate TO file

DECLARE

ARG BUN a SUB 4 - 5
ARG NUN r SUB 4 - S

ARG NUN na SUB 4 - 4
ARG HUM nr SUB 4 - 4

ARG NUN p
ARG NUN • SUB 4 - S

Ai_ HUM ny SUB 4 - S
ENDDEC

BOOY
TREE NZW

NACRO treeplate F_I4 file START

ToPe NEW

MACRO topoplete F_ flle START

CONFIG HEW

H_AO conflgplate FI_4 file START

5OUND NEW

_t&CBO boundplate FN)N file START

ELDA NEW

NACRe eldaplate FR014 file START

LOAD NEW

HACRO loadplate FR_4 file START

ENDBODY

ENDDEF

D_FHACRO treeplate TO file

DECLARE
GLO HUM na

GLO NUN nr

LOC NUN nodes
LOC NUN elt8

ENDDEC

BOOY

LET elts EQU na MPy nr
LET nodes E(_ elts ADD na ADD nr ADD !

NAIN IO HODES SnodesS CASES 1 NETYP pc SUB 1

ENET 1 ELTS Selts$ ELTYP quac4 MOTyp /sot LATYP rio

END

ENDi_DOY

EMDOEF

DEFMACRO topoplate'TO file

DECLARE

GLO NUN na

GLO MUM nr

LOC NUH nl
LOC NUN n2

LOC NUN n3"

ENDDEC

BODY

LET nl EQU na ADD 1
LET n2 EQU na ADD 2

LET n3 £QU na ADD 3

NODESEQ 10 NODES ORDINAL

ELTSEQ 1 ELTS ORDINAL

INSELT 1 ALL ELTS FROH 1,2,$nlS,$n25 LOOP Sne$ BY 1,1,1,I

AND $nr$ BY Sn1$,$n1$,$n1$,SnI$ REP

END

ENDBOOy

ENDDEF



OE POOR QUALITY
208

/186

DKFI,IACRO conflgpla_n TO file

DECLARE

GI_ NUN •
GLO PUN r

GLO NgJ4 n•
GLO NUN nr

LOC NUN nl

LOC PUN n2

LOC NON n]
LOC NUN tl

LOC NLD4 t2
ENDDEC

BODY

LET nl EQU na ADD I
LET a2 EOU nt NPY nr ADO 1

LET n3 E0U n2 ADD na

COOR 10 polar rho(_-) phi(grad) TAB FROM I,$r$,90 LOOP £n15

TO SnIS,Ir$,45 RZP
SEL • (cm) y (ca) TAB FROI4 Sn2S,O,flJ LOOP Snl$

TO $n3S,$85,$8I REP

LET tl EQU 1 DIV na
LET t2 EQU I DIV nr

LET n2 EQU nr ADD 1

PJURC 10 Xl $n15,2 ETA 2 BOUND RECTA FRO/4 I LOOP $nlS BY 1 REP,Sn3S,,Sn2$
ALL FROM 0,O LOOP $ni$ BY StlS,O AND $n2S BY O,$t;2S REP

ItOTB 10 REF y TAB FI_4 Snl$,Snt$,$n3$ LOOP $n25 BY SnLS,O,O REP

LB REF _ TAB FROM 1,1 LOOP Sn15 BY 1,1 REP
END

EHDBOD¥

ENDDEF

DEFI4ACRO boundplate TO file

DECLARE
GLO HUM na

GLO _ nc
LOC NUN n l
LOC HU_ n2

ENDDEC

BODY
LET nl EQU nr ADD 1

LET n2 EQU na ADD 1

FRED 10 SUpp U IN Flair4 1 LOOP $nls BY $n2$ AND 2 BY SnaS REP

END
ENDDODY

ENDDEF

DEFMACI_O eldmplace TO file

DEC_
GLO NUN e

GLO NUH ny
ENDDEC

BODY
ELDA I emocl (N _ -I) WITH $e$ £LTS ALL

ny WITH Sny$ ELTS ALL
END

ENDBODY

ENDDEF
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DEFMACRO loadplate TO file

DECLARE
GLO HUM na

GLO NL,'M p
LOC NUM nl

ENDDEC

BODY
LET nl EQU na ADD I

LC.ASEO I
LCASE I

NLOAD 10 SEL v(N) TAB FR_4 I,$p$ LOOP $n15 BY 1,O REP

EMD

ENDBODY

ENDDEF

The model given above is described by the macro

command
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MACRO plate FROg fXle NUN a _ 10

NUM E m 4

NUMna m 5

NUM nr m 5

NUM p - 10

MUM • _ 100

ny - 0.3 START

By changing the arguments, one can produce other

idealizations of the plate.

Appendix B: Linear static analysis

In the following we will give all of the calculation

steps required for the meshes of the mesh tree in the case

of a linear static analysis. The method is used which is

implemented in the programming system ASKA [ASKA 71].

We will first consider a partial network with n sub-

meshes. For each submesh j (I ( j _ n) we assume the

existence of class specific degrees of freedom index matrices

auj.-_j, _j,_§_' and for the partial mesh the class selection

matrices bu, _. _, bs . In addition, for each submesh, we

assume a stiffness matrix k0 and a matrix of the node forces
]

Qi for the degrees of freedom coupled to the partial mesh.

These matrices are determined for the elementary meshes by

the element calculation (Chapter 3.11). Therefore, the FE

(finite element) calculation starts in the partial meshes

into which only elementary meshes have been coupled.
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The assembly in the partial mesh gives the following

for the node forces

n

'RE = RE: * j=1
(B.I)

etc.,

whe re

etc.

' = R'Ru bTu

_' = b_ R'E

(B.2)

R' contains the known node forces input in the partial

mesh. For the assembled stiffnesses, we find

j_=1_T I_.jKUU " • Uj auj (B. 3)

_uE = _ aT _j• uj OEj
3"'

etc.

In this way one obtains the linear equation system for

the constitution equation

Ru Kuu k'u_ Kue Kus ru

RE KE_ KEp Kzs rE

Rp = Kpp Mps| rp
3T.I. i

Rs Wss I"s

(B.4)
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If we consider that

r = 0
s

and if we eliminate the prescribed displacement
i

T _prp = bp (B. 5)

with the displacements r' input in the partial mesh, then
P

one obtains the equation system
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W'uE KEEJ rE

(B.6)

where

_u " Ru - Kuprp

RE = RE - K_rp !

(B.7)

The triangulation of KUU by Cholesky gives

Kuu = UTU

Using

_'U = _-TRu

and

TuE = U-_ KUE

one obtains the coupling matrices of the partial mesh

,,-= -
T -FuQ l [_¢ -TuE

(B.8)

(B.9)

(B.10)

(B.II)

If the degree of freedom index matrices

Zl U, a E, Qp, ¢IS

unknown in the partial mesh, then the calculation on the

upper mesh plane can be continued with the same method.

process is repeated until the main mesh is reached.

we have

rE = 0

and from equation (B.6), we find

Using equations (B.8) and (B.9), we find the solution

This

There

(B .12)

ru = a-1 Fu
(B.13)

In the following calculation, we find the following in

each submesh j (r S = 0)
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and one finds with equation (B.9) and (B.10) from (B.6)

that

ruj . _-i (Fuj _ T_r_j) (B. 15 )

This process of reverse calculation of the displacements

is continued over each of the submeshes until all elementary

meshes have been reached and the element displacements are

calculated.

Appendix C: Proof of equation (3.15)

Two conditions have to be satisfied for the correct sets

of interpolation functions:
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• The function belong to a support node has the value of

1 at this node and at all other support nodes, it has

the value 0.

•

This condition is satisfied by definition for LaGrange

polynomials (see equation (3.9))• This therefore is

also true for the product of two such polynomials, if

one is taken in _ and the other n. The product becomes

one at the support points, where both polynomials are 1

and are 0 otherwise. Since only support nodes are

selected along the edge of the topological region, in

equation (4.15) only the first two terms of the right

side are equal to 1 for the corner nodes• This then

means that the third term is 1 and the sum of all terms

is also I. For the other nodes, only one of the two

other first terms is i. Then, however, the third term

is 0 and the sum of all terms is again I. q.e.d.

A given set of interpolation functions have to be capable

of interpolating a constant value over the corresponding
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topological region. Then the sum of the interpolation

functions has to be i.

The sum of all functions according to equation (3.15)

is the following for one side. For example, j = i:

I_+1 n+l

£_n_m) 1, 2 1_,1 n 1

1 1 2 1
-fl (_)fl ('_)-fl (_)fl(_)

For

lsl

and

2 ,, _f 1_1 + fl (_)

we find

n+1

' ;1 ml m2 [_) fl (._)

For the sum of all of the four sides of the region, we find
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__ n+1
]=1 i=I (n'm) 1,2 m1(_; I(_)*f12(_)

+fm+l 2
fm+lml(_)fl 1(_) m2 (?)fl(_)÷

fl (_) 1 1 f12(._)+f"l fl (_) +fn2, ' (_)

n+l 1 (%).fn+l {_} f12 (_)
fn 1 (_) fl . n 2

(C.I)

For the sum of all four corner functions, we find:
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_1,1 (_,_)+fn+l,l(_,_)+fl,m+1 .... n+l,m+l(_,_)
nl,m I ( n1,m 2 _ n2,mlL_'_J+£n2,m2

fl (_) l(_)+f_ 1 fl I 1n I fl (_) 1(_)-f1(_)£1(I)+

"fl ,.,£2, ...a+i 1(_) 1(_)f_(_)+
n21_l ll_J :m 1 (_)[1 -fl

_n.1(_).2, _m÷l ,f_(p)_ 2 2- f1(_;f1(1)+n2 _l,_)*rm2 1_; .

Since

fl fl ('l) ('/) +f | (]) f I ("/) .-

one obtains the value of i for the

equations (C.1) and (C.2). q.e.d.

difference between

(C.2)
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