A Research Program in Advanced

Information Systems

Final Report
by
Wallace E. Vander Velde
February 12, 1987

A RESEARCH PROGRAM IN ADVANCED INFORMATION SYSTEMS

Final Report
NASA Research Grant No. NAGW-448

June 1983 to September 1985

Principal Investigator: Wallace E. Vander Velde
Department of Aeronautics and
Astronautics
Massachusetts Institute of Technology
Cambridge, MA 02139

L4Kéé%&ggé szuﬂLzaéyéZL'

" Wallace E. Vander Velde

February 12, 1987

A RESEARCH PROGRAM IN ADVANCED INFORMATION SYSTEMS

Introduction

This is the final report of the work accomplished under
NASA Research Grant No. NAGW-448. This was a block grant,
active over the period June 1, 1983 to September 30, 1985,
which supported a number of research tasks dealing with
computational issues of importance to NASA.

This program, conducted jointly by the Massachusetts
Institute of Technology and the Charles Stark Draper
Laboratory, Inc., was part of a NASA initiative in computer
science and technology which reflects the growing importance of
this discipline in aircraft and spacecraft design and
operations relative to the traditional aerospace disciplines
which NASA has long emphasized. The major objectives stated
for this initiative were:

- Improve computer performance

- Enhance computer fault tolerance

- Assure correctness of executed software

- Extend our ability to deal with complexity
A stated purpose of the university portion of the program was
to develop capability as well as research results. Toward that
end, involvement of students in research activities,
interactions among departments and research laboratories, and
cooperation among universities, industry, and the NASA centers
were specifically encouraged.

Description of the Program

MIT and CSDL organized a program of research which
addresses all of the objectives cited above. It involved
personnel from three departments at MIT and two groups at CSDL.
The research topics were as follows:

- Identification of Large Space Structure Dynamics

- Special-Purpose Architectures for CFD

- Fault-Tolerant Processor Architectures

- Dataflow Techniques

- Software Specification and Verification Tools

- Management of Software Development

- The Software Environment for Concurrent Computing

- Parallel Algorithms and Architectures for the Solution
of Partial Differential Equations

The objective of improved computer performance is addressed by
the research task on Fault-Tolerant Processor Architectures,
which dealt with computer configurations which offer high
throughput as well as fault tolerance, and by the task on

Concurrent Computing. The objective of computer fault
tolerance is addressed by the research on Fault-Tolerant
Processor Architectures and the task on Dataflow Techniques.
One of the motivations for this work on Dataflow was the
potential of that methodology for specifying fault-tolerant
computational structures. The objective of software
correctness is addressed by the research task on Software
Specification and Verification Tools, and indirectly by the
task on Software Development Management, as one of the
principal management questions is the issue of personnel
assignments during the software debugging process. The
objective of improved ability to deal with complexity is
addressed by the research task on Special-Purpose Architectures
for CFD and the task on Parallel Algorithms for the Solution of
Partial Differential Equations. These computations are among
the most complex that arise in the design and operation of
aircraft and spacecraft.

The motivation for the research task on Identification of
Large Space Structure Dynamics was to use this important
function as a reference for the work on computer architectures.
System identification is perhaps the most computer intensive
aspect of spacecraft control and thus it serves as an excellent
requirement for the throughput capability of computer
architectures which are also fault tolerant. Also, as software
development projects become more and more complex, the question
of how best to manage this process takes on increasing
significance. It is not obvious, for example, at what stages
of -a program the infusion of additional personnel results in
improved performance on a project which is running behind
schedule. It is issues such as this which were investigated in
the research task on Management of Software Development.

For the purposes of planning and reporting, two meetings
were held which involved participants in the program at MIT and
CSDL as well as the NASA Technical Monitor and interested
people from some of the NASA Centers. The first was a kickoff
meeting held at the MIT Endicott House in Dedham,
Massachusetts, June 15 -17, 1983. The Centers represented at
this meeting included MSFC, LaRC, JPL, KSC, and GSFC. The
discussion at this meeting was limited primarily to the
research activity planned under this program. The second
meeting was held at Langley Research Center, August 29 -31,
1984. A11 of the Centers cited above were represented at this
meeting as well, and in addition, Robert Voigt of ICASE was in
attendance. About half of the agenda of this meeting was
devoted to reports on computer science activities at the
centers represented. This served the desire of the Program
Technical Monitor for good communication among the interested
people at the Centers, in Headquarters, and those participating
in the research program.

Discussion of the Research Tasks

In this section, brief reports of the work accomplished in
each of the research tasks are given. The responsible persons
are identified and publications resulting from the work are
cited. The publications are more fully identified in the
Publications section which fodllows.

Identification of Large Space Structure Dynamics -- This
research task was under the direction of Professor William S.
Widnall of the MIT Department of Aeronautics and Astronautics.
Assisting in the work was graduate student Research Assistant
Janice Voss. The purpose of this task was to provide a
realistic reference point for the computational requirements of
spacecraft of the future.

Both NASA and the Air Force are looking forward to
deploying very large assemblies in space in the years ahead.
These may be large optical surfaces, large antennas, large
arrays of solar cells, or large structures incorporating more
than one of these elements. An example of the latter is the
Space Station which NASA has identified as a priority
objective. These assemblies will necessarily be 1light in
weight and will have 1ittle inherent rigidity. The common
concept is that these structures will require active control
not only for station keeping and attitude control, but also for
damping structural vibration and figure control.

Because of the low mass and 1imited strength of these
structures it will not be possible to erect them on the ground
in the 1 g field and perform the usual series of static and
dynamic tests. One consequence of this is that upon deployment
in orbit the dynamic properties of the structure will not be
well known. An estimate of these properties will have been
made by finite-element computations or other means, but it is
to be expected that this a priori model will be in error by an
amount sufficient to preclude the proper functioning of the
active control system. Thus one must anticipate an initial
period after the structure has been assembled during which
on-line identification of the dynamic characteristics of the
structure will be performed. During this period, a simple
control system will be engaged which is robust with respect to
modeling errors and is intended only to maintain loose control
over the system and damp vibrations. It may not be possible to
perform the primary missions of the spacecraft during this
period. Hence there is a natural motivation to share the
primary on-board data processor between the identification task

in the initial time period and other functions -- notably
scientific sensor data processing -- during most of the
mission.

0f the several functions associated with control of a
spacecraft, the one that imposes the greatest computational

burden is system identification. If high performance control
of a flexible space structure is required, it will have to be
based on an accurate, high-ordered model of the spacecraft
dynamics. Such a model involves hundred of parameters, and the
task of system identification is to estimate the values of
those parameters based on a body of input-output data. This is
a parameter estimation problem of a high order which has severe
computational requirements.

Initial work concentrated on surveying the literature on
system identification, choosing a form of model for the
spacecraft dynamics, and selecting the basic form of estimator
to use as a baseline. There is a large literature on system
identification but Tittle of it is specialized to the problem
of large space structure identification. Various forms of
state space models having the minimum number of parameters are
available to model linearized system dynamics. Eventually, the
modal form of state space model was selected because of its
convenient transformation to an autoregressive, moving average
input-output form used in the actual estimation process.
Parameter estimators based on least squares and maximum
likelihood theories were reviewed with particular emphasis on
recursive implementations. The final choice of estimator was a
lattice form of the recursive least squares filter. This
formulation of the estimator has smaller computational
requirements than other forms and lends itself well to
approximations which trade reduced computational throughput for
a longer estimation interval. It is also straightforward to
organize the required computation in a form that allows
concurrent processing in a bank of parallel computers.
Exploring the utility of concurrent computing is one of the
objectives of the NASA dinitiative in computer science and
technology.

This research task was pursued only during the first year
of the program. The work did not lead to publications during
that time.

Special-Purpose Architectures for CFD -- Responsible for
this research task was Professor William T. Thompkins, Jr., of
the MIT Department of Aeronautics and Astronautics. Working
with him were staff member Robert Haimes and student Patrick
Dirks. This task was designed to produce a methodology for
defining special purpose computer architectures for
computational fluid dynamics calculations and integrating
numerical algorithm development with architecture development.
The types of architecture considered were loosely coupled,
multiple processors which cooperate on a single CFD task or
calculation. The distinction between tightly and loosely
coupled architectures refers to synchronization requirements
between processors which are largely determined by rules for
updating global or shared memory variables. In tightly coupled

environments, a process may only update global memory variables
at a fixed point in the calculation sequence; 1in a loosely
coupled environment, processes may update global variables on a
non-deterministic basis.

What is commonly meant by integrating algorithm and
hardware development is particular coding strategies for
particular machines. For example, analysis of implicit,
approximated factored codes for the CRAY-1 shows that very
1ittle speedup over a scalar processor is available unless one
vectorizes across sweep lines for the matrix LU decompositions.
Such a result dictates the form that an efficient code must
take on that machine using that algorithm. This project paid
some attention to the problem of how we should code a given
algorithm for a given architecture, but it focused primarily on
the question of what algorithm features we should strive for.

During the first part of the grant period, efforts were
concentrated on developing a simulation capability for the
dedicated minicomputer/array processor/memory system machines
being developed for CFD applications (see presentation 1).

This machine provides a single user about CDC 7600 processor
capacity for mesh sizes of order 250,000 nodes. Appropriate
block level units and their timing and combination rules were
devised. While the low cost, dedicated machines can always
provide an interesting level of performance, these
configurations are difficult to push to supercomputer speed
levels. The primary disadvantages are demands on the memory
management computer and the fact that the I/0 bandwidth
requirements grow intolerably large as the number of external
processors increases. Progress toward general purpose,
multiple processor, multiple memory module (MPMMM)
configurations has aiso been quite slow because of processor
synchronization and switching system difficulties.

The goal was to develop a simulation capability for
multiple processor machines executing concurrent but identical
instruction streams and to realistically simulate the
performance of particular minicomputer/array processor systems.
These goals have been accomplished with the generation of a
LISP-based simulation which allows a user to explore the
effects of different hardware configurations and operating
system policies in Computational Fluid Dynamics (CFD) work.

The simulation provides realistic forecasts of actual times
required for the execution of a particular series of programs
on a given hardware system as well as the relative performance
of different systems on a given job.

The simulator was designed first and foremost with
generality in mind. As much as possible, the user should be
able to simulate a wide range of device characteristics and
system policies by making small changes in various parameters,
or substituting alternative modules for limited sections of the
simulation code. For the former, an understanding of the
available "hooks" in the system is necessary; the latter

requires a fuller understanding of the design of the simulation
to replace certain pieces without disrupting the overall
operation.

The basic model of the processor system is an arbitrary
number of Processing Elements (PE's), controlled by a single
Central Processor, all connected through a system-wide bus to a
number of peripheral devices. Devices currently modeled
include Main Memories (MM's), Array Processors (AP's) and Bulk
Memories (BM's). Note that any number of controllers (device
units) of a particular device type can be connected to the bus.
The "System Bus" allows central control of all PE's and all
devices by the CPU. 1In addition, the System Bus is used in all
transfers between devices in the system. The PE's are slaved
processors; they execute instructions for processes when
scheduled by the CPU,.

Main Memory represents processor memory available to all
processors in the system simultaneously. While Main Memory is
limited in size, there is never any contention for access to
the device. In addition to Main Memory, there is Bulk Memory,
BM. This represents large non-local memory. Like Main Memory,
it is limited in size. In addition, Bulk Memories act like
ordinary I/0 devices: there is a single controller per device
unit, and access to a particular Bulk Memory is limited to a
single PE at a time. 1In addition, the transfer speed of Bulk
Memory is usually lower than the transfer speed of Main Memory,
but there is usually more of it available. Typically, Main
Memory is used as a buffer in transfers between Bulk Memories
and Array Processor Storage. Finally, there are Array
Processors, or AP's., An Array Processor is unique in that it
appears as two separate devices: an I/0 controller that allows
transfers of data into and out of AP memory, and an Array
Processing Unit, or APU, which is a local processor that
operates on the data in the AP's memory. The AP device allows
simultaneous transfers to and from AP memory and computation by
the APU on the data elsewhere in AP storage. AP's are
typically very limited in storage, but the APU provides very
high speed computation compared to the PE's.

By manipulation of a small number of internal parameters,
the user can simulate different hardware configurations and
hardware characteristics. These parameters allow the user to
vary the number of Array Processors in the system, for
instance, or the transfer speed of Bulk Memory devices, the
total storage available in the Array Processors, or the speed
of Processing Elements. Perhaps more interestingly, there are
hooks that allow the user to change the behavior of the various
devices in the system. Some devices may be modeled as a single
controller, and access to the controller limited to a single
processor for the duration of a transfer. Others may be
modeled as having infinite shared access, so that processes
never compete with each other for the availability of a
particular access path. Similarly, some devices may be

-

reserved to a single process, while others may be shared
between all processes in the system at all times. The details
of the available hooks are described in the chapters on devices
and on processors in publication 2.

Finally, the user may also change the behavior of the
operating system being simulated itself. There is actually
only a very thin line between the implementation of the
simulation of the complete system and the simulation of the
operating system controlling the system. By changing some
functions in the system, the model of the operating system may
be changed to simulate different scheduling algorithms, for
instance, or different resource allocation strategies.

The simulation of the operating system is an essential
part of the simulation as a whole. The entire simulation may
be viewed as the simulation of the operation of a given
operating system on a particular hardware configuration, faced
with the demands of a number of processes in the system. The
operating system serves two functions in the simulation: the
scheduling of processes on processors, and the allocation of
the system's resources to the processes in the system. The
goal of the operating system is to maximize the use of the
available resources, reducing time spent waiting to a minimum.

The simulator was used to model the performance of the lab
minicomputer/array processor system and it produces the correct
qualitative system performance. A small effort was made to
improve the quantitative system prediction. A Computational
Fluid Dynamics Laboratory report was prepared which describes
the simulator and its applications to current hardware and
algorithms (see publication 2).

Fault-Tolerant Processor Architectures ~- Dr. T. Basil
Smith of the C. S. Draper Laboratory was initially in charge of
this research task. Upon his transfer from the Laboratory, Dr.
Jaynarayan Lala took responsibility for the work. Graduate
student Richard Harper also participated in this aspect of the
program. The objective of this task was to begin development
of a fault-tolerant processor architecture that can provide
high-throughput general-purpose computation in a software
environment which is comparable to that of non-redundant or
simplex super-computer environments. The study focused on the
incorporation of fault-tolerant processing techniques to mask
and correct faults within the context of a state-of-the-art
super-computer architecture.

For many real-time control tasks, processing requirements
in the millions-of-operations-per-second (current
mini-computer) range are satisfactory, or the problem is easily
distributed to loosely coupled multi-computer or
multi-processor systems. The Draper Fault-Tolerant Processor
(FTP), and Fault-Tolerant Multiprocessor (FTMP) are examples of
highly reliable machines matched to these needs or

requirements. There also exists a class of problems which
requires higher throughput, and in which a loose coupling of
processors is inadequate due to the overheads in communicating
between the coupled processors. Ground-based super computers
such as the CRAY-1 and the CYBER-205 are examples of existing
machines which address this need. The dataflow architectures
and CFD architectures are alternative architectures, as yet
unimplemented, which are also addressed to these needs. All of
these architectures employ large numbers of elements or
components and exhibit poor reliability and availability in
fault intolerant implementations. Availability and
maintainability are clearly inadequate for many real-time
scenarios or spaceborne applications. MTBF dis typically on the
order of tens of hours,

The architecture of existing "super-computers" such as
CRAY-1 and CDC STAR series computers were examined from the
viewpoint of incorporating "synchronous fault tolerances" into
these machines. The highly pipelined architecture of such
computers has been the only commercially successful approach to
achieving very high throughput. This type of architecture may
be combined with the concepts underlying the fault-tolerant
computers developed at Draper Lab for avionics applications.
The basic concept here is one of synchronous operation of
redundant hardware elements such that their results can be
matched on a bit-for-bit basis under no-fault conditions.

It was then decided to focus on the design of a computer
architecture which might be suited for the rapid solution of
problems which involve the evaluation of a large set of
alternatives and the estimation of the consequences of many
possible courses of action. Examples of problems of this sort
lie in the areas of decision support systems, autonomous
systems control, route planning, and other fields. We call
such problems "generalized planning problems."”

One view of such problems is to consider the set of
decisions which may be evaluated by the planning program to
comprise a tree structure which must be searched for a path
which results in the optimization of a cost criterion. For
example, the Dijkstra algorithm for finding the minimum cost
path through a graph is equivalent to a degenerate form of the
A* tree searching algorithm. As another example, the traveling
salesman problem (TSP) has been cast as the search of a tree
structure, where each node of the tree represents a set of
possible solutions of the problem. The search procedure
corresponds to the continual refinement of these sets until a
satisfactory solution is found. As a final example, another
solution method for the TSP 1is the route construction method.
Here, each node of the tree corresponds to a partial solution
to the problem.

Preliminary considerations indicate that problems which
can be cast into such a tree search formalism can potentially
possess a high degree of parallelism, on both the coarse and

fine scale. This parallelism can be efficiently exploited by a
multicomputer system, and thus solutions to such generalized
planning problems can be obtained much more quickly than when
they are attacked on a sequential computer.

A preliminary proposal for such a multicomputer system has
been generated. The system consists of a loosely coupled set
of processing elements (PE's).which communicate with each other
via an intercomputer network. ~The use of many computers to
solve the problem exploits the large-scale concurrency which
resides in the tree search formulation of the generalized
planning problem. Each PE is envisioned as a heavily pipelined
Multiple Instruction Multiple Data (MIMD) machine, which can
further take advantage of the additional fine-grained
parallelism inherent in the problem. The PE will have a
reduced instruction set to simplify its design, programming,
and operation, and to help speed up its instruction execution
rate. A report describing this proposed architecture has been
prepared (see publication 3).

For this computer to be adequately reliable for mission
and Tife-critical missions, it must satisfy theoretically
demonstrable architectural requirements. Specifically, it must
be capable of tolerating arbitrary failure behavior of a subset
of its components with near-unity coverage. The only known way
to achieve this is via synchronous redundant bit-for-bit
replicated computation, which in turn hinges upon the
capability to provide non-faulty redundant sites with
bit-for-bit inputs in the presence of such arbitrary failure
modes. This problem is the well-known Byzantine Generals
problem. For a solution to this problem to be possible, four
basic architectural requirements must be met. First, the
redundant sites must be partitionable into 3f+1 fault
containment regions, where f is the number of simultaneous
faults it is desired to tolerate. Second, the fault
containment regions must be interconnected via 2f+1 disjoint
paths., Third, the fault containment regions must perform a
minimum of f+1 "rounds" of communication, where a round may be
loosely defined as an algorithmic phase in which each fault
containment region communicates with each other. Finally, the
execution rates of the different fault containment regions must
differ by at most a known upper bound, i.e, the fault
containment regions must be synchronized. These are absolute
minimal requirements which must be met by any system hoping to
be highly reliable, and we have concluded that the
architectures that we have surveyed do not explicitly meet
these constraints. Therefore, we must study how to incorporate
these requirements into an architecture which meets the
functional requirements of the application.

Dataflow Techniques =-- In charge of this effort was
Professor Arvind of the MIT Department of Electrical

10

Engineering and Computer Science. Working with him was
graduate student Research Assistant Gregory Papadopoulos. This
task investigated a dataflow approach to highly reliable
computation. Drawing from dataflow principles, it is suggested
that an automatic procedure may be developed which can
transform a failure-sensitive graph of unreliable operators
into one which can tolerate random operator failures yet
completely implement the algorithm specified by the original,
unfailed graph. It is expected that at least two advantages
will be gained by this approach. First, synchronization
requirements inherent in present fault-tolerant systems will be
relieved, allowing easier expansion and distribution with the
commensurate reduction of the risk of synchronization failures.
Second, the isomorphism of dataflow languages with computation
graphs promises a much more rigorous basis for the wanting area
of software validation for highly reliable systems. On
balance, dataflow seems extremely well-suited for the
formulation of fault-tolerant systems.

We are able to apply sets of transformations to any data
flow program written to execute on a perfect machine and create
a2 model of a system which can tolerate a specified number of
hardware failures. The model contains the familiar concepts of
voters and redundant program copies along with abstractions of
the important features of the underlying hardware: the number
of independent modules, and the nature and topology of their
interconnection. Transformations have been developed to (1)
provide redundant modules with identical or congruent copies of
all input data, (2) correctly support time-out tests and
associated nondeterministic dataflow operators, (3)
interactively bound the time skew of similar computations at
redundant sites. These transformations come in two forms: ones
that minimize the total number of independent modules required,
and ones that minimize the total amount of information exchange
between modules.

In addition to unifying the hardware and software under a
single analytic paradigm, the transformations inherently lack
any requirements for synchronous and/or centralized control --
making the models well-suited for very large, distributed
computer systems.

Our goal was to take an arbitrary (but well-formed)
dataflow program, the simplex source, make it redundant, and
impose the necessary restrictions on the physical
implementation so that it is fault tolerant. The source
program is given in the language L,, a deterministic language
with fix-point semantics, and the Brogrammer assumes that it
will operate on a perfect machine. Programs are automatically
transformed into redundant, fault-tolerant ones as described by
the language R,. By abstracting elements of an implementation,
fault sets, WhQCh correspond to processing sites that fail
independently of each other, and interconnection links, which
correspond to data paths between these processing sites, we are

1

able to capture the nature of modular redundancy. Our assumed
fault model, token fragments, is an extremely general one and
basically states that a faulty element can transmit any data
(or no data at all) in any fashion to all elements which are
connected to it. Additionally, two receivers of what would
otherwise be identical data (from the same bus wire for
instance) could interpret different values for data transmitted
by a faulty source. As discovered by other researchers,
primarily the NASA-sponsored work of the SIFT project at SRI
and the FTMP project at C. S. Draper Laboratories, an essential
problem in the correct implementation of modular redundancy is
the ability to consistently or congruently distribute copies of
a simplex sensor to all redundant processing sites. Data flow
readily exposes this problem as well as providing concise,
graphical solutions in the form of congruence schemata. For
the multiple simultaneous fault case, we give recursive
formulas for schemata which require a minimum number of
fault-sets for their implementation as well as ones that
require a minimum amount of information exchange.

We then extend our source language to one that expresses
non-determinism. This gives us the ability to perform time-out
tests of simplex data sources, support non-deterministic merges
and stream-based programming, as well as an understanding of
synchronization, scheduling, and clocks. We define an event as
the receipt of a token (packet of data) by an operator. To
correctly support non-determinism we argue that a consistent
time total ordering of selected events must be derivable by all
redundant processing sites. Schemata, very similar to
congruence schemata, which can support such an algorithm are
derived. Finally, we show how to bound the time skew between
similar events occuring at redundant sites. This gives a
notion of clocks and synchronization which as readily describes
the microsynchronous clocking of the FTMP as well as the frame
synchronization strategy of SIFT, but in what we belijeve to be
a more general and perspicuous fashion.

A discussion of all these issues has been prepared in the
form of a paper that was presented at the 1984 American Control
Conference (see publication 4).

Software Specification and Verification Tools -- The
work on this research task was performed by Dr. Frederick
Furtek of the C. S. Draper Laboratory. For both autonomous and
manned spacecraft, reliable software is crucial to successful
mission performance. The complex and intricate nature of the
real-time software found on most spacecraft, however, makes the
task of achieving reliable software extremely difficult.

The reliability of software can be enhanced through
techniques applied either (1) during design/coding, (2) during
testing, or (3) during online operation. Techniques applied
during the first two phases increase reliability through fault

12

avoidance, while techniques applied during the third phase
increase reljability through fault detection and recovery
(fault tolerance). This task concentrated on achieving
reliable software through both fault avoidance and fault
tolerance.

To avoid software faults in operational code, it is
crucial that the reasoning underlying program operation be
formalized and verified. This effort is essential since all
software is developed through the reasoning of programmers, and
it is this reasoning, in lieu of exhaustive testing, that is
the ultimate source of confidence in the correctness of
software. This task sought to develop a capability in software
verification that does not presently exist but which may be
achievable by drawing upon and extending present verification
techniques. '

An in-depth survey was performed of a number of existing
techniques for software specification, with emphasis on
approaches suited to describing real-time, concurrent behavior.
Advantages and shortcomings of each approach were noted, and,
as expected, there was no single technique that met all of our
needs. In particular, there was no approach that could
adequately represent concurrency, indeterminacy, and timing
dependencies and that could provide specifications at different
levels of abstraction. A1l these are essential requirements
for specifying complex, real-time, distributed systems.

The abstraction requirement proved to be especially
troublesome in formulating a new approach since there are
several dimensions along which a system can be decomposed.
Successive levels of details can be added in three
interdependent ways:

(1) By elaborating on the definition of functions.
That is, by defining complex functions in terms
of ever simpler functions.

(2) By elaborating on the definition of data structures.
That is, by defining data structures in terms of ever
more primitive data structures.

(3) By describing behavior at finer granularities of
time.

While there exist well-understood techniques -- applicative
languages -- for dealing with the first two types of
abstraction, very little has been done with time abstraction.

Since all three types of abstraction are essential in
describing complex real-time systems, our efforts focused on
integrating the three abstraction techniques into a coherent
framework. More specifically, we attempted to incorporate the
three techniques into a previously developed specification
language.

13

The "Specification and Verification" task achieved one of
its principal goals: a framework for rigorously specifying the
behavior of real-time, distributed systems. The framework is
based on the widespread view of a concurrent/distributed system
as a collection of interacting processes. Unlike previous
approaches, however, no assumptions are made about the
mechanisms for process synchronization and communication. One
is able to describe the behavioral constraints imposed by such
mechanisms without being forced to consider the details of
process interaction. A key element of the framework is a
formal language that permits the expression of a broad range of
logical and timing dependencies, many of which are
inexpressible with existing techniques.

The technique incorporates a number of conceptual and
technical advances:

- A formal systems model has been developed that
accommodates multiple processes interacting both
synchronously and asynchronously. This capability
is made possible by a novel approach that separates
a specification into a synchronic part and a logical
part.

- A new language for describing complex logical and
timing relationships has been developed. The
language, whose formulas resemble Boolean expressions,
is based on the five logical primitives: 'not', ‘and',
‘and_next', 'and_next*' and 'reverse'. Through
the use of higher-level constructs, it is possible
to write specifications in a form that approaches
natural English.

- A way has been found, using the syntax of the Ada
programming language, to integrate the concept of
abstract data type into the specification technique.
The specification approach can thus be seen as a way
of making formal, implementation-independent statements
about the intended behavior of Ada objects.

These results are described in publication 5.

Work remaining on the development of the specification
framework falls into three main areas:

- Improvements and Extensions -- The need to improve
and extend the framework will inevitably arise as
applications experience is gained. One area in need
of improvement that has already been identified is
the synchronic structure, which is presently limited
in the sorts of synchronic relationships it can
express.

14

- Verification Capabilities =-- Although the desire to
rigorously verify system behavior has provided much
of the impetus for the present effort, the issue of
verification has not been addressed. Progress in this
area has been made under prior funding, but substantial
work remains.

- Hierarchical Specification -- Composing (or decom-
posing) a specification in a hierarchical fashion is
the most effective way of dealing with complexity.
The appropriate mechanisms for 'connecting' different
levels of a heirarchical specification need to be
explored.

Management of Software Development --— Professor Stuart
Madnick of the MIT Sloan Schoo! of Management was responsible
for this research task. Graduate student Research Assistant
Tarek Abdel-Hamid also participated in this effort. The past
decade has witnessed the development of a large number of
software engineering tools and techniques for improving the
development of software systems. During the same time,
research in the behavioral sciences continued to produce dozens
of other tools and methods to improve organizational
functioning and effectiveness. As a result of these
developments, software project managers today have at their
disposal an abundance of sophisticated tools that are
potentially useful in helping them maintain or increase
organizational effectiveness.

The objective of this research effort was not to provide
another specific software engineering tool. Instead, it offers
an integrative perspective on software project dynamics that
can help managers answer the difficult questions they need to
raise when assessing their organizations' health, selecting
improvement tools (from the many that are already available),
and implementing their choices.

To accomplish this, we developed an integrative system
dynamics model of software project management dynamics.

However, using an integrative model merely to "alert”
managers to all the important aspects of a problem, while
clearly useful and essential, is definitely not enough.

Because such a model will undoubtedly contain a large number of
components with a complex network of interrelationships, we
must, in addition, provide an effective means to determine both
accurately and efficiently the dynamic behavior implied by such
component interactions. And this, it turns out, is quite
challenging to achieve.

Experience from working with managers in many environments
indicates that they are generally able to specify the detailed
relationships and interactions among managerial policies,

15

resources, and performance. However, managers are usually
unable to determine accurately the dynamic behavior implied by
these relationships. Human intuition, studies have shown, is
i11-suited for calculating the consequences of a large number
of interactions over time.

By utilizing the simulation techniques of system dynamics
in this research effort we, thus, combined the strengths of
managers with the strengths of the computer. The manager aids
by specifying relationships within the software project
management system, the computer then calculates the dynamic
consequences of these relationships.

Considerable progress was made toward the objective stated
above:

First, we completed the development of an integrative
system dynamics model of software development project
management. The model complements and builds upon current
research efforts, which tend to focus on the micro components
(e.g., scheduling, programming, productivity,... etc.), by
integrating our knowledge of these micro components into an
integrated continuous view of the software development process.

Second, a case-study was conducted at NASA's Goddard Space
Flight Center to test the model. The model was highly accurate
in replicating the actual development history of the DEA
software project. Project variables tracked included: the
workforce level, the schedule, the cost, error generation and
detection, and productivity.

Third, the model was used as an experimentation vehicle to
study/predict the dynamic implications of an array of
managerial policies and procedures. Four areas were studied:
(1) scheduling; (2) control; (3) quality assurance; and (4)
staffing. The exercise produced three kinds of results: (1)
uncovered dysfunctional consequences of some currently adopted
policies (e.g., in the scheduling area); (2) provided
guidelines for managerial policy (e.g., on the allocation of
quality assurance effort); and (3) provided new insights into
software project phenomena (e.g., Brooks Law). These matters
are discussed fully in publications 6 and 7.

The Software Environment for Concurrent Computing --
This work was led by Virginia Klema of the MIT Concurrent
Computing Group. Working with her were staff member Elizabeth
Ducot and graduate student Richard Kefs. This work has been
augmented by the close cooperation of Professor George Cybenko
of the Tufts University Department of Computer Science and his
graduate students David Krumme and K.N. Venkataraman.

One of the stated points of focus of the NASA initiative
in computer science is concurrent computing. The Concurrent
Computing Group at MIT has for some time been studying the
jssues involved in use of concurrent computing capabilities to
execute demanding algorithms. This work includes study of the

16

details of hardware organization, the design of algorithms
intended for execution on a collection of computers, and the
environment in which the necessary software is developed. The
computing environment which is used for experimental support of
this work is pictured in the attached figure.

The work under this grant was concentrated on the software
environment for concurrent computing with microprocessor-based
systems. A major accomplishment has been the first-draft
definition of a concurrent tasker to interface with the Intel
iRMX operating system. This provides the vehicle that installs
code and data segments in the distributed computers and
monitors execution on and among the computer processing
elements. The intent of this tasker is to provide the user a
convenient environment in which to specify his concurrent
computing process. A summary of this initial effort is given
in publication 8.

Other research related to multiprocessor systems and
parallel computational algorithms is reported in publications 9
and 10. :

Parallel Algorithms and Architectures for the Solution of

Partial Differential Equations =-- Professor Bernard Levy
of the MIT Department of Electrical Engineering and Computer
Science was responsible for this research effort. Working with
him were Professor Bruce Musicus and graduate student Jay Kuo,
also of this department.

The main focus of this research was to develop parallel
algorithms and architectures for the numerical solution of
partial differential equations. (PDEs). The effort was
focused primarily on elliptic PDEs and on the use of
mesh-connected arrays of processors, or pyramidal arrays, for
their solution. Most schemes which have been proposed up to
this point are only parallel implementations of PDE algorithms
which were developed for Von-Neumann (single processor)
computers. In contrast, we have tried to develop algorithms
which take full advantage of the parallelism which is provide
by multiprocessor architectures. The main feature of these
algorithms is that their communication requirements have to be
taken explicitly into account when evaluating their complexity.
To see this, note that global communications on a square array
of NxN processors take O(N) time, whereas local communications
between a processor and its nearest neighbors take only one
time unit. This has motivated the development of a local
relaxation method of solving elliptic PDEs, where instead of
using a single relaxation parameter as in David Young's
successive overrelaxation (SOR) method, we use a set of local
relaxation factors which are determined locally. This method
was shown to converge, and even on a single processor computer,
it is faster than SOR. Furthermore, it can be implemented in
parallel, whereas the SOR method is not parallelizable, so that

= &

Wa)SAS

Jaysel

juawdojaaag

0££/98 13

T~

= &

=)

AHO1VHOavl

pneg 0096

199 009! p\

.39N0. 8PN ¢

_M..m

Jebeuely aqn)
01£/98¢2

|
pneg 0096

e

pneg 0096

T~

= &

uoeIS XJOM
J0ssad0Jd 9(buis

0££/98 13w

=

| & WASAS
01¢/982

g—

ogL/ |
23 WasAS abeuns XVA
01£/982 >$id *
pneg 0096
pneg 009 |
\ .a1ona.
§J0S53%044 8 walsAg juswdo|dAag
08£/98 (Al

JauJdng
Wod

pneg 0096
, §J0553004d £
pnegiz 61
divyl.
0¢¢/9¢8 18wl

mwm.m

ONILNdWOD LNFHININOI

17

on an array of M processors, it is at least M times faster than
SOR. This method is described in publication 11.

Work has also progressed on the development of parallel
multigrid algorithms for the solution of elliptic PDEs.
Multigrid algorithms are the fastest of the algorithms
currently available for solving elliptic PDEs on
single-processor computers. Furthermore, they are based on a
relaxation principle, so that they are parallelizable. The
only difficulty which has not yet been overcome is to figure
out how to run all grids (coarse and fine) in parallel. The
parallel multigrid technique that has been developed relies on
the observation that each grid can be viewed as computing a
different frequency band of the solution, and that the transfer
from a fine grid to a coarse grid can be viewed as a band pass
filtering operation. From this point of view multigrid methods
are similar to multirate digital signal processing techniques,
and we have been using this insight to develop the parallel
multigrid procedure. In addition, we have developed a
frequency dependent finite-difference discretization technique
which can be used to discretize a given PDE optimally at each
grid level. This method is currently being implemented, and
the results will be described in a technical report.

Publications and Presentations

1.

10.

11.

Thompkins, W.T. and R. Haimes: "A Minicomputer/Array
Processor/Memory System for Large-Scale Fluid Dynamic
Calculations," Presented at the Symposium on the Impact
of New Computing Systems on Computational Mechanics,
ASME Winter Annual Meeting, Nov. 1983, Boston, MA.

Thompkins, W.T. and P.W. Dirks: "The Nemesis System:
Simultaneous Simulation of Computer Architecture,
Numerical Algorithms, and Operating Systems," MIT
Computational Fluid Dynamics Laboratory Report
CFDL-TR-84-5, September 1984.

R. Harper: "Computer Architectures for
Decision Support Systems," C. S. Draper Lahoratory
report, September 1984.

Papadopoulos, G.M. and Arvind: "Dataflow Models for
Fault-Tolerant Control Systems," Proceedings of the
1984 American Control Conference, June 6-8, 1984.

Furtek, F.C.: "Specifying the Behavior of Concurrent
Systems," C. S. Draper Laboratory Report CSDL-P-1915
July 1984,

Abdel-Hamid, T.: "The Dynamics of Software Development
Project Management: An Integrative System Dynamics
Perspective,”" PhD thesis, MIT Sloan School of Management,
December 1983.

Abdel-Hamid, T.K. and S.E. Madnick: "The Dynamics of
Software Project Scheduling: A System Dynamics
Perspective," Communications of the ACM, May 1983.

Ducot, E.R.: "Application Interface to the Concurrent
Environment," MIT Concurrent Computing Laboratory Report,
July 1985

Krumme, D.W. and R. Kefs: "Implications of Shared Memory
for Real-Time Operating Systems,” Informal abstract of
research done in cooperation between the Department of
Computer Science, Tufts University, and the Concurrent
Computing Group, MIT., 1985.

Krumme, D.W., K.N. Venkataraman, and G. Cybenko:
"Hypercube Embedding is NP-Complete," Technical Report
85-1, Department of Computer Science, Tufts University,
August 1985,

Kuo, C-C, B.C. Levy, and B.R. Musicus: "A Local
Relaxation Method for Solving Elliptic PDEs on Mesh-
Connected Arrays," MIT Laboratory for Information and
Decision Systems Report P-1508, October 1985. To appear
in the SIAM Journal on Scientific and Statistical
Computing.

