FY 1986 SCIENTIFIC AND TECHNICAL REPORTS, ARTICLES, PAPERS, AND PRESENTATIONS

Compiled by Joyce E. Turner
Management Operations Office

October 1986

(NASA-TM-86575) FY 1986 SCIENTIFIC AND TECHNICAL REPORTS, ARTICLES, PAPERS AND PRESENTATIONS (NASA) 72 p

CSCL 05B

Unclas

63/62 43648
This document presents formal NASA technical reports, papers published in technical journals, and presentations by MSFC personnel in FY 86. It also includes papers of MSFC contractors.

After being announced in STAR, all of the NASA series reports may be obtained from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.

The information in this report may be of value to the scientific and engineering community in determining what information has been published and what is available.
FOREWORD

In accordance with the NASA Space Act of 1958 the MSFC has provided for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof.

Since July 1, 1960, when the George C. Marshall Space Flight Center was organized, the reporting of scientific and engineering information has been considered a prime responsibility of the Center. Our credo has been that "research and development work is valuable, but only if its results can be communicated and made understandable to others."

The N number shown for the reports listed is assigned by the NASA Scientific and Technical Information Facility, Baltimore, Maryland, indicating that the material is unclassified and unlimited and is available for public use. These publications can be purchased from the National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22161. The N number should be cited when ordering.
GEORGE C. MARSHALL SPACE FLIGHT CENTER
Marshall Space Flight Center, Alabama

FY 1986 SCIENTIFIC AND TECHNICAL REPORTS,
ARTICLES, PAPERS, AND PRESENTATIONS

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Category</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA TECHNICAL MEMORANDA</td>
<td>1</td>
</tr>
<tr>
<td>NASA TECHNICAL PAPERS</td>
<td>10</td>
</tr>
<tr>
<td>MSFC CONFERENCE PUBLICATIONS</td>
<td>15</td>
</tr>
<tr>
<td>NASA CONTRACTOR REPORTS</td>
<td>16</td>
</tr>
<tr>
<td>MSFC PAPERS CLEARED FOR PRESENTATION</td>
<td>40</td>
</tr>
</tbody>
</table>
This document contains a description of the MSFC/J70 Orbital Atmospheric Density Model, a modified version of the Smithsonian Astrophysical Observatory Jacchia 1970 model. The algorithms describing the MSFC/J70 model are included as well as a listing of the computer program. The 13-month smoothed values of solar flux (F10.7) and geomagnetic index (Ap), which are required as inputs for the MSFC/J70 model, are also included and discussed.

TM-86523 September 1985
N86-14033

A test method for telescopes that makes use of a focused ring formed by an annular aperture when using a point source at a finite distance was evaluated theoretically and experimentally. The results show that the concept can be applied to near-normal as well as grazing incidence. It is particularly suited for x-ray telescopes because of their intrinsically narrow annular apertures, and because of the largely reduced diffraction effects.

TM-86524 June 1985
N86-13868

This report presents a summary of selected atmospheric conditions observed near Space Shuttle STS-51D launch time on April 12, 1985, at Kennedy Space Center Florida. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prelaunch Jimsphere measured vertical wind profiles is given in this report. The final atmospheric tape, which consists of wind and thermodynamic parameters versus altitude, for the STS-51D vehicle ascent has been constructed. The STS-51D ascent atmospheric data tape has been constructed by Marshall Space Flight Center's Atmospheric Sciences Division to provide an internally consistent data set for use in post flight performance assessments.
This report presents a summary of selected atmospheric conditions observed near Space Shuttle STS-51B launch time on April 29, 1985, at Kennedy Space Center, Florida. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of pre-launch Jimsphere measured vertical wind profiles is given in this report. The final atmospheric tape, which consists of wind and thermodynamic parameters versus altitude, for STS-51B vehicle ascent has been constructed. The STS-51B ascent atmospheric data tape has been constructed by Marshall Space Flight Center’s Atmospheric Sciences Division to provide an internally consistent data set for use in post flight performance assessments.

This is the last regular formal report of Space Shuttle launched from Kennedy Space Center, Florida. The Atmospheric Effects Branch will maintain atmospheric environment data files for reference on future missions through the first few Vandenberg Air Force Base (VAFB) launches.

A system has been developed specifically for the calibration and development of thermal ion instrumentation. The system is optimized to provide an extended beam (approximately 80 cm²) with usable current rates, ~1 pA/cm², at beam energies as low as 1 eV, with much higher values available with increasing energy. The beam energy spread is typically less than 2 eV/charge, and the average angular divergence is approximately 2.5 deg. A tandem electrostatic and variable geometry magnetic mirror configuration within the ion source optimizes the use of the ionizing electrons, thus decreasing the gas and non-thermal electron throughput to the instrument chamber while improving the current density uniformity. The system is integrated under microcomputer control to allow automatic control and monitoring of the beam energy and composition and the mass- and angle-dependent response of the instrument under test. The data can be transmitted in nearly real-time to the interested investigators for comparison with expected results over existing computer networks. The system is pumped by a combination of carbon vane and cryogenic sorption roughing pumps and ion and liquid helium operating pumps. This allows testing and final calibration of flight instrumentation in an ultraclean environment.

The Retarding Ion Mass Spectrometer on the Dynamics Explorer 1 spacecraft observes both the thermal and superthermal (<50 eV) ions of the ionosphere and inner magnetosphere. It is capable of measuring the detailed species distribution function of these ions in many cases. It was equipped with an integral electrometer to permit in-flight calibration of the detector sensitivities and variations thereof. This document is intended as a guide to understanding the RIMS data set. The reduction process from count rates to physical quantities is discussed in some detail. The procedure used to establish in-flight calibration is described, and results of a comparison with densities derived from plasma wave measurements are provided. Finally, a discussion is provided of various anomalies in the data set, including changes of channeltron efficiency with time, spin modulation of the axial sensor heads, apparent potential differences between the sensor heads, and failures of the radial head retarding potential sweep and of the -Z axial head aperture plane bias. Studies of the RIMS data set should be conducted only with a thorough awareness of the material presented here, or in collaboration with one of the scientists actively involved with RIMS data analysis.
The results of low cycle fatigue testing on turbine blades for use in hydrogen/oxygen rocket engines is covered in this report. Cored blade and cored blades with circulation were tested in the MSFC thermal fatigue tester. Both blade configurations showed significant low cycle fatigue life improvements when compared to baseline solid blades.

The state-of-the-art fabrication techniques for composite materials are such that stringent species-specific acceptance criteria must be generated to insure product reliability. Non-destructive evaluation techniques including computed tomography (CT), x-ray radiography (RT), and ultrasonic scanning (UT) have been investigated and compared to determine their applicability and limitations to graphite epoxy, carbon-carbon, and carbon-phenolic materials. While the techniques appear complementary, CT is shown to provide significant, heretofore unattainable data. Finally, a correlation of NDE techniques to destructive analysis is presented.

Doppler temperatures determined from observations of the atomic oxygen OI 6300 Å line during March 1984 at the University of Alaska/Fairbanks are presented. Temperatures were obtained from Fabry-Perot Interferometer pressure scans using a Fourier transform smoothing and fitting technique; this technique is presented in detail. The temperatures and the spread in the temperatures were consistent from day to day. On the clear nights of March 10-13, the temperatures were 800, 750, 750, and 800 K, respectively, with a spread of ±100 K. These temperatures are compared to the MSIS (84) model atmosphere for similar geomagnetic conditions and found to be in general agreement; they are also consistent with results obtained by other investigators.

This report discusses the nature of radar target glint and the factors upon which it depends when using the Hubble Space Telescope as a radar target. An analysis of the glint problem using a 35 MHz or 94 MHz radar on the orbital maneuvering vehicle is explored. A strategy for overcoming glint is suggested.

A series of torque tests were performed on four flight-type hex ball universal joints in order to characterize and determine the actual load-carrying
The universal joint is a part of manual actuation rods for scientific instruments within the Hubble Space Telescope. It was found that the hex ball will bind slightly during the initial load application. This binding did not affect the function of the universal joint, and the units would "wear-in" after a few additional loading cycles. The torsional yield load was approximately 50 ft-lb, and was consistent among the four test specimens. Also, the torque required to cause complete failure exceeded 80 ft-lb. It is concluded that the hex ball universal joint is suitable for its intended applications.

TM-86535 January 1986

With the ever increasing concern for computer security, users of computer systems are becoming more sensitive to unauthorized access. One of the initial security concerns for the Shuttle Management Information System was the problem of users leaving their workstations unattended while still connected to the system. This common habit was a concern for two reasons: it ties up resources unnecessarily and it opens the way for unauthorized access to the system. The Data General JV/10000 does not come equipped with an automatic time-out option on interactive peripherals. The purpose of this memorandum is to describe a system which monitors process activity on the system and disconnects those users who show no activity for some time quantum.

TM-86536 October 1985

Since the introduction of the Plasma Arc Torch by Linde in 1955 and subsequent to the work at Boeing in the 1960's, significant improvements crucial to success have been made in the Variable Polarity Plasma Arc (VPPA) Process at the Marshall Space Flight Center. This report gives several very important advantages to this process, and it discusses the genesis of PA welding, genesis of VPPA welding, theory of VPPA welding, special equipment requirements, weld property development, results with other aluminum alloys, and the eventual successful VPPA transition to production operations.

TM-86537 February 1986

Corrosion fatigue studies were conducted on bare, chemical conversion coated, and anodized 2219-T87 aluminum alloy. These tests were performed using a rotating beam machine running at a velocity of 2500 rpm. The corrosive environments tested were distilled water, 100 ppm NaCl, and 3.5 percent NaCl. Results were compared to the endurance limit in air. An evaluation of the effect of protective coatings on corrosion fatigue was made by comparing the fatigue properties of specimens with coatings to those without.

TM-86538 March 1986
Design and Verification Guidelines for Vibroacoustic and Transient Environments. Component Analysis Branch, Systems Dynamics Laboratory. N86-23975

Design and verification guidelines for vibroacoustic and transient environments contain many basic methods that are common throughout the aerospace industry. However, there are some significant differences in methodology between NASA/MSFC and others — both government agencies and contractors. The purpose of this document is to provide the general guidelines used by the Component Analysis Branch, ED23, at MSFC, for the application of the vibroacoustic and transient technology to all launch vehicle and payload components and experiments managed by NASA/MSFC. This document is intended as a tool to be utilized by the MSFC program management and their contractors as a guide for the design and verification of flight hardware.

TM-86539 February 1986

This report addresses the problems associated with overtorque applied to the Booster Separation Motor (BSM) Igniter Adapter high strength [200 KSI (1379 Mpa)] A286 CRES bolts and the threaded holes of the 7075-T73 aluminum alloy BSM cases. Our evaluation included torque, tensile, and stress corrosion tests incorporating the A286 CRES bolts and the 7075-T73 aluminum alloy BSM cases.
The tensile test data includes ultimate tensile load (UTL), Johnson's 2/3 yield load (J2/3YL), proportional limit load (PLL), and total bolt stretch. Torque tension data includes torque, torque induced load, and positive and negative break-away torque.

Stress corrosion test data reflect the overtorque and the resulting torque induced loads sustained by the A286 CRES bolts torqued into a 7075-T73 aluminum alloy forged dome with threaded holes. After 60 days of salt fog exposure, the positive and the negative break-away torques, the subsequent mechanical property tensile test results, and the BSM dome threaded hole axial tensile pullout loads are reported.

An Acoustic Levitation Furnace system is described that was developed for testing the feasibility of containerless fiber pulling experiments. It is possible to levitate very dense materials such as platinum at room temperature. Levitation at elevated temperatures is much more difficult. Samples of dense heavy metal fluoride glass were levitated at 300°C. It is therefore possible that containerless fiber pulling experiments could be performed. Fiber pulling from the melt at 650°C is not possible at unit gravity but could be possible at reduced gravities. The Acoustic Levitation Furnace is described, including engineering parameters and processing information. It is illustrated that a shaped reflector greatly increases the levitation force aiding the levitation of more dense materials.

In the fuel preburner of the Space Shuttle Main Engine, face plate, injector, and baffle erosion have been observed. The observed patterns of erosion suggest that flame attachment to the walls is a contributing factor. To better understand the physical phenomena involved, a portion of the preburner was modeled computationally. The simulated "preburner" had three two-dimensional jets entering a cavity adjacent to a baffle. The computational model employed the Patankar Spalding algorithm with upwind differencing. The turbulence model was a standard k-ε model with wall functions. The effect of incoming boundary conditions on turbulent kinetic energy and dissipation, k and ε, was studied. The results indicate a very strong sensitivity to these boundary conditions over certain ranges of values.
seawater at 0°, 25°, and 80°C for 451 hr was examined. The percent weight gain at 0° and 25°C was low (0.06 to 0.17 percent) and there was no significant change in the flexural properties for these environmental conditions.

At 80°C there was a decrease in the flexural strength of 17 and 20 percent in seawater and deionized water, respectively. These decreases were found to be nearly reversible once the samples were dried. Optical microscopy did not reveal cracking of the matrix. The flexural modulus was essentially unaffected by exposure to deionized water and seawater at 80°C.

This report addresses the mesopause-turbopause region (80 to 120 km) of the atmosphere which is frequently used as a boundary between the thermosphere and mesosphere for models of the atmosphere. The initialization of models is important since uncertainties may lead to significant changes in the computations of total density at greater altitudes. In this transition region, the experimental data base for the total gas density and the constituents of smaller abundance is very limited. The turbopause height (h_t) may vary from 90 to 120 km and no pronounced dependence of h_t on season, local time, or solar activity is determined.

The importance of atmospheric turbulence is discussed and its important role in the mesosphere and lower atmosphere by influencing the thermal balance of the upper atmosphere, as well as the distribution of different atmospheric constituents, is presented. The number of measurements of turbulence at these altitudes is small. Data from radio meteors, noble gas ratio analysis, and luminescent cloud analysis reveal no definite conclusion or systematic variation of the turbulence region. The heat input by gravity waves is a dominant term in the energy balance equation. Also gravity waves, either directly or through a mechanism of turbulence generation, enhance the mixing ability of the atmosphere. Internal gravity waves produce variations in the density as well as concentration of atomic oxygen.

The uncertainty in the atmospheric density variation, according to Walberg (1985), leads to control system design problems for the AOTV relative to the amount of control authority required to deal with the unpredictable variation in density.
end of the drop tube in the sample catcher. Gases are selectively absorbed into the sample. Upon solidification gas can become less soluble and as a result forms voids within the sample. The general oxidation/reduction characteristics of the gas also affect sample microstructures.

In general, under the more favorable experimental conditions including reducing atmospheric conditions and superheatings, examination of sample microstructures indicates that nucleation has been suppressed. This is indicated by underlying uniform dendrite spacings throughout the sample and with a single dendrite orientation through most of the sample. The samples annealed yielding a few large grains and single or "bi-crystal" samples were commonly formed. This was especially true of samples that were inadvertently greatly superheated. This is in contrast with results from a previous study in which surface oxides were stable and contained numerous sites of nucleation. The number of nucleation events depends upon the surface state of the specimen as determined by the atmosphere and is consistent with theoretical expectations based upon the thermodynamic stability of surface oxide films. Oxide-free specimens are characterized by shiny surfaces, with no observable features under the scanning electron microscope at 5000X.

The Space Processing Applications Rocket Project (SPAR) X Final Report contains the compilation of the post-flight reports from each of the Principal Investigators (PIs) on the four selected science payloads, in addition to the engineering report as documented by the Marshall Space Flight Center (MSFC). This combined effort also describes pertinent portions of ground-based research leading to the ultimate selection of the flight sample composition, including design, fabrication and testing, all of which are expected to contribute to an improved comprehension of materials processing in space.

The SPAR project was coordinated and managed by MSFC as part of the Microgravity Science and Applications (OSSA) of NASA Headquarters.

This technical memorandum is directed entirely to the payload manifest flown in the tenth of a series of SPAR flights conducted at the White Sands Missile Range (WSMR) and includes the experiments entitled "Containerless Processing Technology," SPAR Experiment 76-20/3; "Directional Solidification of Magnetic Composites," SPAR Experiment 76-22/3; "Comparative Alloy Solidification," SPAR Experiment 76-36/3; and "Foam Copper," SPAR Experiment 77-9/1R.
A system level failure could occur if the Hubble Space Telescope’s (ST) capability to operate as a facility on-orbit is critically reduced or when a significant reduction in the quality of science data is registered. Failure could occur if a meteoroid/debris impact damages a component of a major support subsystem or if a meteoroid/debris penetration causes straylight contamination in the light shield, forward shell, aft shroud, or through the aperture door.

The ST was analyzed to find the probability of no critical penetration. A straylight leakage repair technique was recommended for the aft shroud, the region found most likely to be critically penetrated.

Filament wound graphite/epoxy samples were immersed in seawater, deionized water, and toluene at room temperature and 80°C for 5, 15, and 43 days, and in methanol at room temperature for 15 and 43 days. The percent weight gains and short beam shear strengths were determined after environmental exposure. Samples immersed in deionized water and seawater had higher percent weight gains than those immersed in toluene at room temperature and 80°C. The percent weight gains for samples immersed in methanol at room temperature were comparable to those of deionized water and seawater immersed samples. A comparison of percent decreases in short beam shear strengths could not be made due to a large scatter in data. This may indicate defects in samples due to machining or variations in material properties due to processing.

This research was sponsored by the Center Director’s Discretionary Fund Project (No. 84-5, "Effects of External Environments on the Failure Mode and Mechanical Properties of an Epoxy and Graphite/Epoxy Composite System").

This report describes a digital imaging photometry system developed in the Space Science Laboratory at the Marshall Space Flight Center as part of the Center Director’s Discretionary Fund (CDDF). The photometric system used for cometary data acquisition is based on an intensified secondary electron conduction (ISEC) vidicon coupled to a versatile data acquisition system which allows real-time interactive operation. Field tests on the Orion and Rosette nebulae indicate a limiting magnitude of approximately $m_v = 14$ over the 40 arcmin field-of-view. Observations were conducted of Comet Giacobini-Zinner in August 1985. The resulting data are discussed in relation to the capabilities of the digital analysis system. The development program concluded on August 31, 1985.

The ice nucleus activity of exhaust particles generated from combustion of Space Shuttle propellant in small rocket motors has been measured. The activity at -20°C was substantially lower than that of aerosols generated by unpressurized combustion of propellant samples in previous studies. The activity decays rapidly with time and is decreased further in the presence of moist air. These tests corroborate the low effectivity ice nucleus measurement results obtained in the exhaust ground cloud of the Space Shuttle. Such low ice nucleus activity implies that Space Shuttle induced inadvertent weather modification via an ice phase process is extremely unlikely.

This handbook is intended to provide a ready reference for many of the solid and liquid lubricants used in the space industry. Lubricants and lubricant properties are arranged systematically so that designers, engineers, and maintenance personnel in the space industry can conveniently locate data needed for their work.

This handbook is divided into two major parts (A and B). Part A is a compilation of solid lubricant suppliers information on chemical and physical property data of more than 250 solid lubricants, bonded solid lubricants, dispersions and composites. Part B is a compilation of chemical and physical property data of more than 250 liquid lubricants, greases, oils, compounds, and fluids. The listed materials cover a broad spectrum from manufacturing and ground support to hardware applications of spacecraft.

TM-86557 July 1986

This report presents an assessment of case growth for two D6AC steel SRM case segments with multiple flight use and a comparison of these two cases with two new cases. Dimensional changes in the sealing diameter areas were recorded for the used cases and after each hydroproofing of the new cases.

TM-86559 August 1986
Viewport Concept for Space Station Modules. Freddie Douglas, III. Structures and Propulsion Laboratory.

This report addresses the generic design of a 20-in. diameter viewport for the space station modules. It should possess the capabilities of meteoroid/debris protection (with no metallic cover), redundancies in its meteoroid/debris protection, and pressure sealing systems. In addition, it should provide ease of change out for maintenance or repair. The design does not take into account the bumper-shield effect of the outermost panes in the meteoroid/debris analysis.

TM-86561 August 1986

The design of the Space Shuttle vehicle configuration requires that the SRMs produce thrust within tightly-controlled limits. These limits provide assurance that Shuttle ascent performance goals will be achieved within the vehicle flight load constraints. The SRM’s will initially describe the excellent performance reproducibility of the 24 SRMs during the first 12 flights [STS-8 through STS-26 (Mission 51-F)] using the HPM SRM. Secondly, this report will describe the transient phenomena which interrupted the reproducibility in the first 20 sec of flight for four flights (Missions 51-I/J and 61-A/B). The cause of this 20 sec phenomena is postulated to be a change in the crystal shape of the ammonium perchlorate used in the propellant. This shape change coincided with the performance shift on these four flights. The ballistic effect of the crystal shape change is manifested as a change to the generic “HUMP” or “BARF” curve of the Shuttle SRM thrust/pressure-time curve. As the crystal shape change was corrected by the vendor, the performance produced by the Shuttle SRM returned to normal.
TP-2550 January 1986
A Stochastic Model for Particle Impingements on Orbiting Spacecraft. Leonard W. Howell, Jr. Systems Dynamics Laboratory. N86-19095

A general methodology for simulating particle impingements on orbiting spacecraft is developed. Major steps in the modeling process are presented as (1) modeling objective, (2) construction of the spacecraft geometrical model, (3) simulation of the particles in the space environment, (4) particle impact and subsequent events of interest, and (5) results of the simulation.

A simulation of the expected meteoroid impingements on the Hubble Space Telescope and the resulting angular momentum transfers which can cause telescope pointing disturbances is given to illustrate these methods.

TP-2556 January 1986
Hydroburst Test of a Carbon-Carbon Involute Exit Cone. Roy M. Sullivan. Structures and Propulsion Laboratory. X86-10234

This report documents the hydroburst test of the aft portion of the PAM-D exit cone. The test fixture, test instrumentation, and test procedure are described in detail. The hydrostatic pressure required to buckle the cone was recorded at 9.75 psi.

Meanwhile, the PAM-D exit cone was modeled using the finite element method and a theoretical buckling pressure (8.76 psi) was predicted using the SPAR finite element code. This report discussed the modeling technique which was employed.

By comparing the theoretical to predicted critical pressures, this report verifies the modeling technique and calculates a material knockdown factor for the carbon-carbon exit cone.

TP-2569 March 1986

An investigation to determine the sensitivity of the Space Shuttle base and forebody aerodynamics to the size and shape of various solid plume simulators was conducted. Families of cones of varying angle and base diameter, at various axial positions behind a Space Shuttle launch vehicle model, were wind tunnel tested. This parametric evaluation yielded base pressure and force coefficient data which indicated that solid plume simulators are an inexpensive, quick method of approximating the effect of engine exhaust plumes on the base and forebody aerodynamics of future, complex multibody launch vehicles.

TP-2572 March 1986

This report presents the analyses and testing performed by NASA in support of an expanded and improved nozzle design data base for use by the U.S. solid rocket motor industry. A production nozzle with a history of one ground failure and two flight failures was selected for analyses and testing.

The stress analysis was performed with the Champion computer code developed by the U.S. Navy. Several improvements were made to the code. Strain predictions were made and compared to test data.

Two short duration motor firings were conducted with highly instrumented nozzles. The first nozzle had 58 thermocouples, 66 strain gages, and 8 bondline pressure measurements. The second nozzle had 59 thermocouples, 68 strain measurements, and 8 bondline pressure measurements. Most of this instrumentation was on the nonmetallic parts, and provided significantly more thermal and strain data on the nonmetallic components of a nozzle than has been accumulated in a solid rocket motor test to date.

TP-2573 March 1986
The purpose of this research was to develop a data base of paired detailed wind profiles for use in evaluating Shuttle Transportation System (STS) ascent capability. Since launch decision is based on a wind measured about 3.5 hr before launch, a data base of paired detailed profiles is needed. Method and technique on the reduction process and analysis is also presented. Guidelines used in selecting the pairs of profiles were established to insure a valid and representative data base. \(\text{uv} \) values for 3.5 hr at 12 km altitude show 8 percent increase from the transition case to the winter case and 18 percent decrease from the transition case to the summer case. \(\text{uv} \) values for 3.5 hr at 12 km altitude shows 12 percent increase from the transition case to the winter case and 17 percent decrease from the transition case to the summer case. A special feature of the 7- and 10.5-hr cases is that \(\text{uv} \) increases by as much as 30 percent from the transition to the winter profiles. This large increase does not appear in the \(\text{uv} \) data. Comparisons of the calculated values of 3.5-hr standard deviations of \(u \) and \(v \) with actual component deviations measured during Space Shuttle launch conditions confirm that the statistical values are representative.

TP-2574 March 1986
Reverification of Techroll Seal Used in the IUS Nozzle. R. L. Porter. Structures and Propulsion Laboratory.
X86-10233

The Inertial Upper Stage (IUS) uses a Techroll Seal in the nozzle design of each of its two solid rocket motors. As a result of the small solid rocket motor (SRM-2) anomaly of the STS-6 space shuttle flight, additional seal testing, motor firings, and structural analyses have been conducted. This paper begins with a background of the nozzle configuration, followed by a description of the design features of the Techroll Seal, and concludes with the post-flight seal testing, motor firings, structural analyses, and design changes. Although the Techroll Seal, which is constructed of two plies of Kevlar sandwiched between layers of neoprene, was designed and qualified prior to flight, a significant amount of highly instrumented testing and analysis has been accomplished since the flight anomaly. The additional analysis and testing shows the significant effects of the nozzle gimbal angle and the increase in seal temperature due to gas leakage and pyrolysis gas. It was learned that the critical design condition for the seal occurs much later in the motor burn than at the time of maximum chamber and seal pressure, as concluded in the original design analyses.

TP-2575 March 1986
Graphical Techniques to Assist in Pointing and Control Studies of Orbiting Spacecraft. Leonard W. Howell and Joseph H. Ruf. Systems Dynamics Laboratory.
N86-21559

Computer generated graphics are developed to assist in the modeling and assessment of pointing and control systems of orbiting spacecraft.

Three-dimensional diagrams are constructed of the Earth and of geometrical models which resemble the spacecraft of interest. Orbital positioning of the spacecraft model relative to the Earth and the orbital ground track are then displayed. A star data base is also available which may be used for telescope pointing and star tracker field-of-views to visually assist in spacecraft pointing and control studies.

A geometrical model of the Hubble Space Telescope (HST) is constructed and placed in Earth orbit to demonstrate the use of these programs. Simulated star patterns are then displayed corresponding to the primary mirror’s FOV and the telescope’s star trackers for various telescope orientations with respect to the celestial sphere.

TP-2576 March 1986
N86-23851

The microgravity environment of an orbiting vehicle permits crystal growth experiments in the presence of greatly reduced buoyant convection in the liquid melt. Crystals grown in ground-based laboratories do not achieve their potential properties because of dopant variations caused by flow in the melt. The floating zone crystal growing system is widely used to produce crystals of silicon and other materials. However, in this system the temperature gradient on the free sidewall surface of the melt is the source of a thermocapillary flow which does not disappear in the low-gravity environment.

Smith and Greenspan theoretically examined the idea of using a uniform rotation of the floating zone system to confine the thermocapillary flow to the melt
sidewall leaving the interior of the melt passive. These workers considered a cylinder of fluid with an axial temperature gradient imposed on the cylindrical sidewall. They considered a half zone and examined the linearized, axisymmetric flow in the absence of crystal growth. They found that rotation does confine the linear thermocapillary flow.

In this paper the simplified model of Smith and Greenspan is extended to a full zone and both linear and non-linear thermocapillary flows are studied theoretically. Analytical and numerical methods are used for the linear flows and numerical methods for the non-linear flows. It was found that the linear flows in the full zone have more complicated and thicker boundary layer structures than in the half zone, and that these flows are also confined by the rotation. However, for the simplified model considered and for realistic values for silicon, the thermocapillary flow is not linear. The nonlinear flows were examined by first computing a weakly nonlinear flow and then computing the fully nonlinear flow. The weakly nonlinear flow is steady, has less boundary layer character, and penetrates more deeply into the interior than the linear flow but still shows some rotational confinement. The fully nonlinear flow is strong and unsteady (a weak oscillation is present) and it penetrates the interior. Some non-rotating flow results are also presented.

Since silicon has a large value of thermal conductivity, one would expect the temperature fields to be determined by conduction alone. This is true for the linear and weakly nonlinear flows, but for the stronger nonlinear flow the results show that temperature advection is also important. Thus, this work reveals that for the nonlinear flow, a radiative sidewall boundary condition would be an improvement over the specified temperature boundary condition used in this paper and previously by others. Such a boundary condition would weaken the sidewall axial temperature gradient and hence the thermocapillary flow allowing the confining effect of rotation to play a stronger role. Hence, uniform rotation may still be a means of confining the flow and the results obtained define the procedure to be used to examine this hypothesis.

A systems approach was adopted to study the pocketing phenomena on a solid rocket nozzle liner. The classical thermoelastic analysis was used to identify marginally strained regions on the composite liner erosion surface and at a depth coincident with the peak value of the across ply coefficient of thermal expansion. A failure criterion was introduced which included a thermal term and permitted failure assessment over the charred liner. The method was verified by satisfactory application to a reported related experiment. Liner pocketing mechanism was attributed to very localized material degradation caused during manufacturing process either by reduction of fiber strength and/or by concentration of resin volume fraction. Pocketing scenario over the degraded material was constructed with supporting formulation to predict size of fissures with respect to degraded material size and location in the liner and with burn time. Sensitivities of liner material parameters were determined to influence test programs designed to update mechanical data base of carbon cloth phenolic over the char temperature range.

TP-2598 May 1986

The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on space shuttle flight STS-41D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an "intelligent" star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.
Throughout the aerospace industry, large variations of 50 percent (6 dB) or more are continually noted for linear shaped charge (LSC) generated shock response spectra (SRS) from flight data (from the exact same location on different flights) and from plate tests (side by side measurements on the same test). A research program was developed to investigate causes of these large SRS variations. A series of ball drop calibration tests to verify calibration of accelerometers and a series of plate tests to investigate charge and assembly variables were performed. The resulting data were analyzed to determine if and to what degree manufacturing and assembly variables, distance from the shock source, data acquisition instrumentation, and shock energy propagation affect the SRS. LSC variables consisted of coreload, standoff, and apex angle. The assembly variable was the torque on the LSC holder. Other variables were distance from source of accelerometers, accelerometer mounting methods, and joint effects. Results indicated that LSC variables did not affect SRS as long as the plate was severed. Accelerometers mounted on mounting blocks showed significantly lower levels above 5000 Hz. Lap joints did not affect SRS levels. The test plate was mounted in an almost free-free state; therefore, distance from the source did not affect the SRS either. Several varieties and brands of accelerometers were used—all varieties except one demonstrated very large variations in SRS. One accelerometer gave very good repeatable results throughout the program. Instrumentation is the cause of the large variations in SRS. SRS from the same source are indeed repeatable.

A new brute-force method of warm fog dispersal is described. The method uses large volume recycled water sprays to create curtains of falling drops through which the fog is processed by the ambient wind and spray induced air flow. Fog droplets are removed by coalescence/rainout. The efficiency of the technique depends upon the drop size spectra in the spray, the height to which the spray can be projected, the efficiency with which fog laden air is processed through the curtain of spray, and the rate at which new fog may be formed due to temperature differences between the air and spray water. Results of a field test program, implemented to develop the data base necessary to assess the proposed method, are presented. Analytical calculations based upon the field test results indicate that this proposed method of warm fog dispersal is feasible. Even more convincingly, the technique was successfully demonstrated in the one natural fog event which occurred during the test program. Energy requirements for this technique are an order of magnitude less than those to operate a thermokinetic system. An important side benefit is the considerable emergency fire extinguishing capability it provides along the runway.
[Vacuum induction melted (VIM), electro-slag remelted (ESR), and vacuum arc remelted (VAR)], solution treated, work strengthened and direct double aged Inconel 718 alloy bars [4.00 in. (10.16 cm) and 5.75 in. (14.60 cm) diameter] processed by Wyman Gordon.

Tensile, charpy v-notched impact, and compact tension specimens were tested at ambient temperature in both the longitudinal and transverse directions. Longitudinal tensile and yield strengths in excess of 220 ksi (1516.85 MPa) and 200 ksi (1378.00 MPa) respectively, were realized at ambient temperature.

Additional charpy impact and compact tension tests were performed at -100°F (-73°C). Longitudinal charpy impact strength equalled or exceeded 12.0 ft-lbs (16.3 Joules) at ambient and at -100°F (-73°C) while longitudinal (LC) compact tension fracture toughness strength remained above 79 ksi√(in. (86.80 MPa√m) at ambient and at -100°F (-73°C) temperatures.

No failures occurred in the longitudinal or transverse tensile specimens stressed to 75 and 100 percent of their respective yield strengths and exposed to a salt fog environment for 180 days. Tensile tests performed after the stress corrosion test indicated no mechanical property degradation.

The Variation of Corrosion Potential With Time for Coated Metal Surfaces. Merlin D. Danford and Ward W. Knockemus. Materials and Processes Laboratory. N86-30837

The variation of corrosion potential (E_{CORR}) with time has been measured for 4130 steel coated with a preservative compound and for primer coated 2219-T87 aluminum. The data for coated steel samples show a great deal of scatter, and a smoothing procedure has been developed to enable proper interpretation of the data. The E_{CORR}-time curves for coated steel exhibit a maximum, in agreement with the results of previous studies, where the data were the average of those for a large number of samples, while the present data were obtained from a single sample. In contrast, the E_{CORR}-time curves for primer coated 2219-T87 aluminum samples show no significant variations, although considerable activity is indicated by the resistance-time and corrosion rate-time curves.
CP-2410 January 1986
Current Scientific Issues in Large Scale Atmospheric Dynamics. Compiled by Timothy L. Miller. Systems Dynamics Laboratory.
N86-24082

CP-2411 January 1986

CP-2421 April 1986
N86-24614

CP- August 1986

CP- August 1986
CR-3957 February 1986

CR-3959 February 1986

CR-3960 February 1986

CR-3961 February 1986

CR-3962 March 1986

CR-3969 March 1986

CR-3971 April 1986

CR-3981 May 1986

CR-3990 June 1986

CR-3993 September 1986

CR-4011 September 1986

CR-4022 October 1986

CR-4025 October 1986

CR-178514 August 1985
Techniques for Fatigue Life Predictions from Measured Strains. NAS8-34971. Failure Analysis Associates.

CR-178515 August 1985
CR-178516 August 20, 1985
The Design Analysis and Fabrication of Composite Springs for the ST-SSE Isolation System from July 16, 1985 to August 15, 1985. NAS8-35444. CTL-Aerospace Inc. N86-90286

CR-178517 August 1, 1985

CR-178518 August 9, 1985

CR-178519 August 1985

CR-178520 August 10, 1985
Design Fabrication Testing and Delivery of a Manipulator Foot Restraint. NAS8-36366. Essex Corp. X86-90096

CR-178521 August 1985

CR-178522 August 1985

CR-178523 August 7, 1985
Satellite Attitude Motion Models for Capture and Retrieval Investigations, July 1 through July 31, 1985. NAS8-36470. Auburn University. X86-90089

CR-178524 August 31, 1985

CR-178525 September 10, 1985

CR-178526 August 1985

CR-178527 August 16, 1985

CR-178528 July 1985

CR-178529 August 10, 1985

CR-178530 September 6, 1985
Space Station Structures Development for August 1985. NAS8-36421. Rockwell International Corp. X86-10130

CR-178531 September 2, 1985

CR-178532 July 23, 1985

CR-178533 August 7, 1985
SRM Nozzle Instrumentation and Model Validation Study, Reporting Period July 1-31, 1985. NAS8-36290, Morton Thiokol, Inc. X86-90084
NASA CONTRACTOR REPORTS
(Abstracts for these reports may be obtained from STAR)

CR-178534 August 6, 1985
Space Station Body Mounted Radiator Systems, Progress Report No. 3. NAS8-36402. LTV Aerospace and Defense. X86-90086

CR-178535 August 15, 1985

CR-178536 August 1985

CR-178537 October 1985

CR-178538 October 1985

CR-178539 September 1, 1985

CR-178540 October 17, 1985
Protein Crystal Growth Results from Shuttle Flight 51-F. NAS8-36611. University of Alabama at Birmingham. N86-16875

CR-178541 May 1983
A 8.45 GHz FET Amplifier. NAS8-34545. Massachusetts Institute of Technology. N86-71114

CR-178542 August 15, 1985
Metallurgical Study of Quench Rates Experienced by Drop Tube Processed Samples to Marshall Space Flight Center. NAS8-36608. Battelle Columbus Lab. X86-90094

CR-178543 September 16, 1985
An Investigation of the Thermal Decomposition of the Nozzle Material of the Solid Rocket Booster. NAS8-36299. Alabama A&M University. X86-90099

CR-178544 August 15, 1985

CR-178545 August 1, 1985

CR-178546 October 1, 1985

CR-178547 July 1985

CR-178548 August 1985
August Progress Report for Contract NAS8-36125. Stanford University. X86-10160

CR-178549 August 1985

CR-178550 September 1985

CR-178551 August 1985
CR-178552 October 1, 1985 Simulation of Solidification in a Bridgman Cell. NAS8-35331. Continuum, Inc. X86-90102

CR-178553 October 14, 1985 Dynamics and Energetic of the South Pacific Convergence Zone During FGGE SOP-1. NAS8-35187. Purdue University. X86-90112

CR-178554 October 15, 1985 Utilization of Satellite Cloud Information to Diagnose The Energy State and Transformations in Extratropical Cyclones. NAS8-34009. Purdue University. X86-90135

CR-178560 August 30, 1985 Space Station Common Module Audio Distribution System Laboratory Demonstration. NAS8-36430. Hughes Aircraft Corp. X86-90097

CR-178571 May 1985
Design, Performance Investigation, and Delivery of a Miniaturized Cassegrainian Concentrator Solar Array. NAS8-36535. TRW Space and Technology Group. N86-16726

CR-178572 October 10, 1985
Development of a Shuttle Plume Radiation Heating Indicator, Progress Report. NAS8-35671. Remtech Inc. X86-71470

CR-178573 October 15, 1985

CR-178574 August 14, 1985

CR-178575 August 31, 1985

CR-178576 September 1985

CR-178577 October 9, 1985
Space Station Body Mounted Radiator Systems. NAS8-36402. LTV Aerospace and Defense Company. X86-71976

CR-178578 June 1985
Space Station Natural Environment Design Criteria Studies. NAS8-36400. Universities Space Research Association. X86-90085

CR-178579 October 1985

CR-178580 October 24, 1985
Space Station Common Module Audio Distribution System Laboratory Demonstration. NAS8-36430. Hughes Aircraft Company. N86-90323

CR-178581 September 9, 1985

CR-178582 September 6, 1985

CR-178583 October 4, 1985

CR-178584 August 31, 1985
Space Station Common Module System Network Topology and Hardware Development Program. NAS8-36583. Martin Marietta Corp. N86-90324

CR-178585 July 31, 1985
Space Station Common Module Power System Network Topology and Hardware Development Program. NAS8-36583. Martin Marietta Corp. N86-90284

CR-178586 August 1985
Space Station Protective Coating Development Combined Monthly Technical Progress Report for Periods 6-10-85 to 7-10-85 and 7-10-85 to 8-10-85. NAS8-36586. Boeing Aerospace Company. X86-71974

CR-178587 April 1985
Space Station Common Module Power System Network Topology and Hardware Development. NAS8-36583. Martin Marietta Corp. N86-18348

CR-178588 August 19, 1985
CR-178589 October 4, 1985

CR-178590 September 27, 1985

CR-178591 October 10, 1985
SRB Reentry Thermal Environments. NAS8-36476. Remtech, Inc. X86-71451

CR-178592 September 1985

CR-178593 August 9, 1985
Main Chamber Combustion and Cooling Technology Study. NAS8-36167. Aerojet Technology Systems Company. N86-90282

CR-178594 September 6, 1985
Main Chamber Combustion and Cooling Technology Study. NAS8-36167. Aerojet Technology Systems Company. N86-90291

CR-178595 September 13, 1985
Augmented Flexible Body Dynamics Analysis Program. NAS8-34588. Honeywell Corp. N86-90302

CR-178596 October 11, 1985
Augmented Flexible Body Dynamics Analysis Program. NAS8-34588. Honeywell Inc. N86-90305

CR-178597 August 1985

CR-178598 September 30, 1985
Internal Rotor Friction. NAS8-35601. Mechanical Technology Incorporated. X86-90013

CR-178599 January 1981

CR-178600 September 4, 1985

CR-178601 October 10, 1985

CR-178602 August 1985

CR-178603 September 30, 1985

CR-178604 May 1985

CR-178605 July 1985

CR-178606 September 10, 1985
Development of a Shuttle Plume Radiation Heating Indicator. NAS8-35671. Remtech Inc. X86-19336
NASA CONTRACTOR REPORTS
(Abstracts for these reports may be obtained from STAR)

CR-178608 November 1985
N86-90347

CR-178609 September 1985
N86-16252

CR-178610 November 18, 1982
Mass Property Generator for Augmented Flexible Bodies Via NASTRAN. NASA-34752. Sperry Rand Corp.
N86-70664

CR-178611 September 8, 1985
X86-72313

CR-178612 October 31, 1985
N86-19268

CR-178613 October 23, 1985
X86-90115

CR-178614 September 6, 1985
X86-90110

CR-178615 September 30, 1985
N86-90325

CR-178616 October 12, 1985
X86-71483

CR-178617 September 6, 1985
Progress Report for the Month of August on Contract NASA-35836. MTS Systems Corp.
X86-71565

CR-178618 October 10, 1985
X86-73782

CR-178619 October 1985
X86-72204

CR-178620 September 6, 1985
X86-90117

CR-178621 September 19, 1985
X86-90100

CR-178622 October 25, 1985
X86-90128

CR-178623 August 23, 1985
X86-90109

CR-178624 September 23, 1985
X86-90104

CR-178625 October 1985
X86-71443
| CR-178643 | October 21, 1985 | Orbital Equipment Transfer Techniques Progress Report During the Month of September. NAS8-36629. Essex Corp. |
CR-178663 June 27, 1985
N86-90334

CR-178664 November 15, 1985
N86-90358

CR-178665 October 10, 1985
Design, Fabrication, Testing, and Delivery of a Manipulator Foot Restraint, Work Completed During the Month of September. NAS8-36366. Essex Corp.
N86-90337

CR-178666 October 1985
X86-90127

CR-178667 October 11, 1985
X86-90124

CR-178668 September 10, 1985
X86-72480

CR-178669 September 1985
X86-90130

CR-178670 September 6, 1985

CR-178671 October 31, 1985
X86-72010

CR-178672 November 12, 1985
X86-72958

CR-178673 November 15, 1985
X86-72239

CR-178674 September 3, 1985
N86-15221

CR-178675 October 1, 1985
N86-11095

CR-178676 November 13, 1985
N86-90223

CR-178677 January 1986
Definition Phase for Thermal Ion Dynamics Experiment for Open. NAS8-34910. Michigan University.
N86-20098

CR-178678 October 1985
X86-90123

CR-178679 October 21, 1985
X86-73166

CR-178680 November 30, 1985
X86-72433
CR-178681 November 1985
N86-90342

CR-178682 November 18, 1985
X86-73070

CR-178683 November 18, 1985
X86-73792

CR-178684 November 18, 1985
X86-73793

CR-178685 November 18, 1985
X86-73794

CR-178686 November 18, 1985
X86-72362

CR-178687 September 13, 1985
N86-20782

CR-178688 October 1985
N86-13138

CR-178689 September 1985
N86-20435

CR-178690 September 16, 1985
X86-90116

CR-178691 August 30, 1985
N86-90306

CR-178692 September 23, 1985
N86-90299

CR-178693 November 7, 1985
X86-90134

CR-178694 November 12, 1985
X86-72023

CR-178695 November 8, 1985
X86-72477

CR-178696 November 14, 1985
X86-72481

CR-178697 November 1985
N86-90348

CR-178698 October 8, 1985
NASA CONTRACTOR REPORTS
(Abstracts for these reports may be obtained from STAR)

CR-178699 November 13, 1985

CR-178700 October 9, 1985

CR-178701 November 8, 1985

CR-178702 October 1985
Development of New Materials for Turbopump Bearings Phases 2 and 3 Monthly Progress Report No. 1, September 11 - October 11, 1985. NAS8-36180. SKF Engineering and Research Inc. X86-72896

CR-178703 January 7, 1986

CR-178704 December 5, 1985

CR-178705 August 1984
Eutectic Solidification Study. NAS8-34887. Clarkson College of Technology. N86-19435

CR-178706 December 5, 1985

CR-178707 December 10, 1985

CR-178708 November 1, 1985

CR-178709 January 1986
Research Reports – 1985 NASA/ASEE Summer Faculty Fellowship Program. NGT 01-008-021. N86-24507

CR-178710 December 1985
Hardware Test Program for Evaluation of Baseline Range/Range Rate Sensor Concept Phase 2 Report. NAS8-36144. Allied Bendix Aerospace Corp. N86-22129

CR-178711 November 1985
Space Shuttle IEMC Sampler Experiment, Final Report. NAS8-33507. The University of Alabama. N86-90502

CR-178712 June 15, 1985

CR-178713 December 31, 1985
Development of Space Telescope Non-ORU Hardware. NAS8-36364. Essex Corp. N86-20492

CR-178714 December 1985

CR-178715 March 1986

CR-178716 October 21, 1985
Preparation of Non-Metals Properties Data for Data Base. NASR-3619R. Engineering and Economics Research, Inc. X86-90195

CR-178717 December 16, 1985
Visiting Scientist Program in X-Ray Astronomy,
NASA CONTRACTOR REPORTS

(Abstracts for these reports may be obtained from STAR)

CR-178718 December 1985

CR-178719 October 10, 1985

CR-178720 September 10, 1985
Design, Fabrication, Testing, and Delivery of a Manipulator Foot Restraint. NAS8-36366. Essex Corp.

CR-178721 December 3, 1985

CR-178722 October 1985

CR-178723 October 31, 1985

CR-178724 September 13, 1985

CR-178725 December 1985

CR-178726 February 1986
Space Station ECLSS Integration Analysis, Space Station Trasys Model for Body Mounted Radiator Study. NASA-36407. McDonnell Douglas. X86-10155

CR-178727 March 1986

CR-178728 October 10, 1985

CR-178729 May 30, 1980

CR-178730 December 1985

CR-178731 December 31, 1985

CR-178732 February 18, 1986

CR-178733 January 1986

CR-178734 August 1985

CR-178735 January 7, 1986

CR-178736 September 1985
Analysis of Data from NASA B-57B Gust Gradient Program, Final Report. NASA-36177
NASA CONTRACTOR REPORTS
(Abstracts for these reports may be obtained from STAR)

CR-178737 January 1986
Evaluation of Tailored Single Crystal Airfoils,
Fourth Quarterly Progress Report May 10, 1985 -
December 31, 1985. NAS8-35915. Williams
International Corp. N86-74173

CR-178738 January 31, 1986
Emergency Management Computer-Aided
Trainer (EMCAT). NAS8-35815. Essex Corp.
N86-21554

CR-178739 August 1985
Turbomachinery Incipient Failure Detection
Indicators and Analysis. NAS8-34683. Shaker
Research Corp. N86-21857

CR-178740 November 1985
Performance Predictions for an SSME Configura-
tion with an Enlarged Throat. NAS8-35931.
Software and Engineering Associates, Inc.
N86-21579

CR-178741 January 1986
Drop Tube Technical Tasks, Final Report.
NAS8-35665. University of Alabama in
Huntsville. N86-21564

CR-178742 February 20, 1986
Ancillary Foam Investigations, Mission Task
001017 Final Report - FY85. NAS8-33708.
Martin Marietta Michoud Aerospace.
X86-10240

CR-178743 January 16, 1986
Glass Fiber Pulling in Low Gravity. NAS8-
35978. University of Alabama in Huntsville.

CR-178744 March 1986
Scientific Support for Space Telescope Progress
Report for June, July, August, September,
October, and November 1985. NAS8-36672.
Universities Space Research Association.
N86-90223

CR-178745 April 1986
On the Determination of the Origin of Linear
Anomaly in the Macrostructure of VPPA Welded
2219-T87 Aluminum Alloy - Preliminary
N86-22685

CR-178746 January 6, 1986
Space Shuttle Main Engine (SSME) LOX Turbo-
pump Pump-End Bearing Analysis Final Report.
NAS8-36183. SRS Technologies Inc.
N86-22633

CR-178747 November 1985
Bearing Tester Data Compilation Analysis, and
Reporting and Bearing Math Modeling, Monthly
Systems Technology Division. N86-90544

CR-178748 January 1986
Bearing Tester Data Compilation Analysis and
Reporting and Bearing Math Modeling Annual
Report. NAS8-36183. SRS Technologies.
N86-23939

CR-178749 December 1985
Bearing Tester Data Compilation Analysis, and
Reporting and Bearing Math Modeling, Monthly
Progress Report for November 1985. NAS8-
36183. SRS Technologies. N86-90550

CR-178750 February 22, 1986
The System Integration and Verification Testing
of an Orbital Maneuvering Vehicle for an Air
Bearing Floor. NAS8-35636. Essex Corp.

CR-178751 December 30, 1985
Atomization and Mixing Study. NAS8-34504.
Rockwell International. N86-23640

CR-178752 August 20, 1985
Interchangeable End Effector Tools Utilized on
the PFMA, Task Two Final Report. NAS8-
36307. SRS Technologies. X86-10243

CR-178753 October 31, 1985
High-Performance Deployable Structures for the
Support of High Concentration Ratio Solar Array
Modules, Final Report. NAS8-36043. Astro
Aerospace Corp. N86-16413

CR-178754 February 1986
Analytical Investigation of the Dynamics of
Tethered Constellations in Earth Orbit (Phase II)
CR-178755 March 31, 1986

CR-178756 December 1985
The Investigation of Tethered Satellite System Dynamics. NAS8-36160. Smithsonian Institution. N86-90548

CR-178757 October 1985

CR-178758 January 7, 1986

CR-178759 December 10, 1985

CR-178760 December 4, 1985

CR-178761 December 10, 1985

CR-178762 December 11, 1985

CR-178763 December 12, 1985

CR-178764 November 1985

CR-178765 December 6, 1985

CR-178766 November 29, 1985

CR-178767 January 1, 1986

CR-178768 December 1985

CR-178769 November 1985

CR-178770 November 1, 1985
Integrated Wall Design and Penetration Damage Control, Monthly Progress Report No. 5 Covering October 1 to 31, 1985. NAS8-36426. Boeing Aerospace Corp. X86-90196
CR-178771 January 6, 1986

CR-178772 January 7, 1986
Improved LOX/GOX Compatible Reinforced Cage Material. NAS8-36041. TRW Electronics and Defense. X86-90224

CR-178773 December 10, 1985

CR-178774 September 16, 1985
Growth of GaAs Crystals from the Melt in a Partially Confined Configuration. NAS8-36604. Massachusetts Institute of Technology. X86-90523

CR-178775 March 1986
SRM Nozzle Instrumentation and Model Validation Study. NAS8-36290. Morton Thiokol, Inc. X86-90209

CR-178776 December 11, 1985
SRM Nozzle Instrumentation and Model Validation Study. NAS8-36290. Morton Thiokol, Inc. X86-90547

CR-178777 December 2, 1985

CR-178778 November 30, 1985
Space Shuttle Propulsion Estimation Development Verification. NAS8-36162. Rogers Engineering and Associates. X86-74222

CR-178779 November 25, 1985
Software Development to Support Sensor Control of Robot Arc Welding. NAS8-36460. Clemson University. X86-74310

CR-178780 December 18, 1985
Software Development to Support Sensor Control of Robot Arc Welding. NAS8-36460. Clemson University. X86-74311

CR-178781 December 6, 1985
Progress Report for the Month of November 1985 on Contract NAS8-35836. MTS Systems Corp. X86-74279

CR-178782 December 1985
Development of a Coaxial Viewer and Vision System for Gas Tungsten Arc Welding. NAS8-35595. Ohio State University. X86-90220

CR-178783 December 9, 1985

CR-178784 November 1985

CR-178785 December 5, 1985

CR-178786 December 18, 1985

CR-178787 November 1985

CR-178788 September 1985
Space Station Protective Coatings Development for the Periods 8-10-85 to 9-10-85 and 9-10-85 to 10-10-85. NAS8-36586. Boeing Aerospace Company. X86-90200

CR-178789 March 1986
The Investigation of Tethered Satellite System
CR-178790
November 1985
Operational Procedures for Performing Low
Gravity Experiments at the Drop Tower Facility.
NAS8-34530. University of Alabama in
Huntsville. X86-90199

CR-178791
April 1986
Operational Procedures and Specifications Docu-
ment for the National Drop Tube Facility. NAS8-
34530. University of Alabama in Huntsville.
X86-10395

CR-178792
December 10, 1985
Space Station Long-Term Lubrication Analysis.
NAS8-36655. Battelle Columbus Division and
SRS Technologies. X86-90212

CR-178793
January 10, 1986
Space Station Long-Term Lubrication Analysis,
December 1 through December 31, 1985. NAS8-
36655. Battelle Columbus Division.
X86-90225

CR-178794
September 12, 1985
Space Station Long-Term Lubrication Analysis
NAS8-36655. Battelle Columbus Division and
SRS Technologies. X86-90194

CR-178795
November 13, 1985
Space Station Long-Term Lubrication Analysis
NAS8-36655. Battelle Columbus Division and
SRS Technologies. X86-90198

CR-178796
August 16, 1985
Space Station Long-Term Lubrication Analysis
NAS8-36655. Battelle Columbus Division.
X86-90193

CR-178797
May 9, 1985
Space Station ECLSS Integration Analysis Space
Station Body Mounted Radiator Model. NAS8-
36407. McDonnell Douglas. X86-10259

CR-178798
December 1985
Progress Report for November 1985 on Contract
NAS8-36125. Stanford University. X86-74670

CR-178799
January 1986
Investigation of Breadboard Temperature Profi-
ing System for SSME Fuel Preburner Diagnos-
NAS8-34655. United Technologies Research
Center. N86-24957

CR-178800
January 31, 1986
SRB/SLEEC (Solid Rocket Booster/Shingle Lap
Extendible Exit Cone) Feasibility Study, Month-
ly Report. NAS8-36571. Aerojet Strategic
Propulsion Company.

CR-178801
February 1986
SSME Seal Test Program: Test Results for Saw-
tooth Pattern Damper Seal. NAS8-35824. Texas
A&M University. N86-23940

CR-178802
January 1986
Water Jet/Spray Measurement Analysis, Final
Report. H-78743B. State University of New
York at Albany. N86-24930

CR-178803
February 28, 1986
Computational Analysis of the SSME Fuel
Continuum, Inc. N86-23642

CR-178804
February 26, 1986
Ground Software Maintenance Facility (GSMF)
TRW Huntsville Operations. N86-25143

CR-178805
February 26, 1985
Ground Software Maintenance Facility (GSMF)
TRW Defense Systems Group. N86-26018

CR-178806
February 26, 1986
Ground Software Maintenance Facility (GSMF)
User’s Manual Final Report, Appendices. NAS8-
32350. TRW Defense Systems Group.
N86-25144
NASA CONTRACTOR REPORTS
(abstracts for these reports may be obtained from STAR)

CR-178823
CR-178824
CR-178825
CR-178826
NASA Standard Spacecraft Computer II (NSSC-II), Principles of Operation. NAS8-32808. IBM.
CR-178827
NASA Standard Spacecraft Computer II (NSSC-II), Assembler Language. NAS8-32808. IBM.
CR-178828
CR-178829
CR-178830
CR-178831
Utilization of Satellite Cloud Information to Diagnose the Energy State and Transformations in Extratropical Cyclones. NAS8-34009. Purdue Research Foundation.

CR-178832

CR-178833
Solid-Propellant Rocket Motor Internal Ballistics Performance Variation Analysis (Phase Four). Auburn University.

CR-178834
Solid-Propellant Rocket Motor Internal Ballistics Performance Variation Analysis (Phase Five). Auburn University.

CR-178835

CR-178836
Hall Station and Camera System Operation and Maintenance Manual. NAS8-36646. The University of Dayton.

CR-178837

CR-178838
Simulation of Mercury Cadmium Telluride Crystal Growth. NAS8-36483. Continuum, Inc.

CR-178839

CR-178840

CR-178841
CR-178842 March 1966

CR-178843 June 1965

CR-178844 April 1986

CR-178845 March 1986
Failure Control Techniques for the SSME - Phase I. NAS8-36305. Rockwell International. N86-29900

CR-178846 March 1986
Analytical Investigations of the Dynamics of Tethered Constellations in Earth Orbit, Phase II. NAS8-36606. Smithsonian Institution. N86-28114

CR-178847 April 14, 1986

CR-178848 April 1986
Space Plasma Research. NAS8-33982. The University of Alabama in Huntsville.

CR-178849 May 1986

CR-178850 August 1985
Hardware Test Program for Evaluation of Baseline Range/Range Rate Sensor Concept Phase I Program. NAS8-36144. Allied Bendix Aerospace.

CR-178851 February 1986
Signal Detection Techniques for Diagnostic Monitoring of Space Shuttle Main Engine Turbomachinery. NAS8-34961. Wyle Laboratories. N86-27417

CR-178852 March 1986
Adaptive Rigid Body Control for an Evolving Space Station, Progress Report March 1986. NAS8-36422. Ford Aerospace and Communications Corp. X86-90253

CR-178853 April 18, 1986

CR-178854 March 1986

CR-178855 August 10, 1985

CR-178856 August 1985

CR-178857 September 10, 1985

CR-178858 September 1985

CR-178859 March 1986
CR-178860
Ostwald Ripening Theory - Final Report. NAS8-35986. The University of Alabama in Huntsville.
N86-27432

CR-178861
Creation of the Selection List for the Experiment Scheduling Program (ESP) - Final Report. NAS8-35972. Texas A&M University.
N86-28004

CR-178862
Concentration Dependence of the Interdiffusion Coefficient, Quarterly Report. NAS8-35986. The University of Alabama in Huntsville.
N86-27433

CR-178863
Ostwald Ripening Theory. NAS8-35986. The University of Alabama in Huntsville.

CR-178864
N86-30959

CR-178865
N86-28434

CR-178866

CR-178867
Orbital Transfer Vehicle Concept Definition and System Analysis Study. NAS8-36108. Martin Marietta Corp.

CR-178868
N86-30961

CR-178869

CR-178870
Developmental Testing of a Programmable Multizone Furnace. NAS8-35607. Grumman Corporate Research Center.

CR-178871
N86-30275

CR-178872
Properties of Large Nearly Perfect Crystals at Very Low Temperatures. NAG-8015. University of Maryland.
X86-10371

CR-178873
N86-30125

CR-178874
X86-10359

CR-178875
N86-30807

CR-178876

CR-178877
Co-ops Program Third Monthly Activity Report, September 1985. NAS8-36600. Lockheed-Georgia Company.
X86-76366

CR-178878
Co-ops Program Preliminary Work Breakdown
NASA CONTRACTOR REPORTS
(Abstracts for these reports may be obtained from STAR)

Structure for NASA/MSFC. NAS8-36600.
Lockheed-Georgia Company.

CR-178879 November 1985

CR-178880 November 15, 1985

CR-178881 December 1985

CR-178882 October 15, 1985
Space Station Long-Term Lubrication Analysis, September 1 - 30, 1985. NAS8-36655. Battelle Columbus Division and SRS Technologies.

CR-178883 August 1986
Bearing Tester Data Compilation Analysis, and Reporting and Bearing Math Modeling. NAS8-36183. SRS Technologies.

CR-178884 June 17, 1986
Space Station Thermal Storage/Refrigeration System Research and Development. NAS8-36401. Lockheed. X86-76434

CR-178885 May 1, 1986

CR-178886 February 1986
Relativity Explorer, Quarterly Progress Report. NAS8-33809. University of Alabama in Huntsville. X86-76115

CR-178887 November 10, 1985

CR-178888 June 16, 1986

CR-178889 June 16, 1986
SRM Nozzle Instrumentation and Model Validation Study. NAS8-36290. Morton Thiokol, Inc.

CR-178890 June 1986
System Analysis for the Huntsville Operation Support Center Distributed Computer System. NAS8-34906. Mississippi State University. N86-32232

CR-178891 June 1986

CR-178892 February 1976

CR-178893 March 1, 1986

CR-178894 May 1986

CR-178895 June 1986

CR-178896 June 1986

CR-178897 May 1986
Space Station Propulsion Technology First
NASA CONTRACTOR REPORTS
(Abstracts for these reports may be obtained from STAR)

CR-178898 July 1986
Space Plasma Research April - June 1986, Quarterly Progress Report. NAS8-33982. The University of Alabama in Huntsville. N86-32289

CR-178899 June 1986

CR-178900 July 1986

CR-178901 July 1986

CR-178902 May 1, 1986

CR-178903 February 1985

CR-178904 March 1985

CR-178905 May 1985

CR-178906 June 31, 1986
Space Transportation Booster Engine (STBE) Configuration Study First Quarterly Review. NAS8-36856. Rockwell International Corp.

CR-178907 June 13, 1986
Space Transportation Main Engine (STME) Configuration Study Plan (DR-1). NAS8-36869. Rockwell International Corp.

CR-178908 June 3, 1986

CR-178909 June 3, 1986

CR-178910 May 20, 1986

CR-178911 September 1986

CR-178912 February 1986

CR-178913 February 1986

CR-178914 May 6, 1986
Space Station Structures Development. NAS8-36421. Rockwell International.
<table>
<thead>
<tr>
<th>Report Number</th>
<th>Issue Date</th>
<th>Description</th>
<th>Contractor/Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Space Station Protective Coatings Development.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N86-32601</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Studies and Analyses of Space Shuttle Main Engine, Progress Report for April 1986.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Battelle Columbus Division.</td>
</tr>
</tbody>
</table>
ALEXANDER, J. USRA/ES72

SEKERKA, R.

ALEXANDER, J. ES72

ALTER, WENDY S. EH22
Effects of Magnetic Field on the Solidification of MAR-M246(Hf). For presentation at NASA Solidification Macrosegregation Workshop, Cleveland, Ohio, September 17, 1986.

AN, C.-H. ES52

AN, C.-H. NASA/NRC/ES52
BAO, J. J.
WU, S. T. (UAH)

AN, C.-H. NRC
SUSS, S. T.
MOORE, R.

AN, C.-H.
SUSS, S. T.

AN, C.-H. (MSFC/NRC) ES52
MHD Simulation of Active Prominence Magnetic Evolution. For presentation at the 167 Meeting of the American Astronomical Society, Houston, TX, January 5-9, 1986.

ANDREWS, J. B. ES74
TURPEN, N.
ROBINSON, M. B.

ANDREWS, R. N. ES75
SZOFRAN, F. R.
COBB, S. D.
LEHOCZKY, S. L.
PERRY, G. E.

ARNETT, CARL D. PF19
AXAF Servicing Presentation to TABES 86. For presentation at the Technical and Business Exhibition and Symposium (TABES) 86, Huntsville, AL, May 13-14, 1986.

ATKINS, HARRY L. PS05
Commercial Requirements for Materials Processing on the Space Station: Research, Development, and Production. For presentation at the AIAA Meeting on Space Station in the 21st Century, Reno, NV, September 3-5, 1986.

ATKINS, HARRY L. PS05
Space Station – Microgravity and Materials Processing Facility – A National Lab In Space. For presentation at the Twenty-Third Space Congress, Canaveral Council of Technical Societies, Cocoa Beach, FL, April 22-25, 1986.

BAGDIGIAN, R. EL84
PUTNAM, D.
MORASKO, G.
AiResearch Co.
BAILEY, C. R.

BENTON, E. V.
FRANK, A. L.
PARNELL, T. A.
WATTS, J. W., JR.
GREGORY, J. C.

BHAT, BILIYAR

BILBRO, JAMES
DiMARZIO, C.
FITZJARRALD, D.
JOHNSON, S.
JONES, W.
Airborne Doppler Lidar Measurements. For publication in Applied Optics.

BLAKESLEE, R. J.

BLAKESLEE, R. J.

BOARDSEN, S.
GURNETT, D.
CHAPPELL, C. R.
GREEN, J.

BRAMON, CHRISTOPHER J.
SULLIVAN, KENNETH W.

BROADFOOT, A. L.
DESSLER, A. J., et al.
Ultraviolet Spectrometer Observations of Uranus. For publication in Science, New York, NY.

BRODOWSKI, ROBERT A.

BRONZE, M. A.
CLARKE, M. M.
QUINN, ALBERTA, W.

BROWN, NORMAN

BRYANT, MELVIN A., III
SSME Manufacturing – Main Combustion Chamber. For presentation to the Society of Automotive Engineers, Huntsville, AL, June 16-18, 1986.
BURKA, JAMES A.

BURKHART, T. H.
PARNELL, T. A.
WATTS, J. W., et al.

BURNETT, T. H.
PARNELL, T. A., et al.

BURNETT, T. H.
DERRICKSON, J. H.
FOUNTAIN, W. F.
MEEGAN, C. A.
PARNELL, T. A.
ROBERTS, F. E.
WATTS, J. W., JR.
Nucleus (22 ≤ Zp ≤ 28)-Nucleus Interactions Between 20 and 65 GeV per Nucleon. For publication in Physical Review (D), Ridge, NY.

BUSSARD, R. W.
ALEXANDER, S. B.
MESZAROS, P.

CAMPINS, H.
TELESCO, C. M.
DECHER, R.
MOZRUKIEWICH, D.
THRONSON, H. A., JR.
Ground-Based Infrared Imaging of Comet Giacobini-Zinner: The Distribution of Dust During the ICE Flyby. For publication in Geophysical Research Letters, Washington, D.C.

CARRASQUILLO, EDGAR J.
CRAMER, JOHN M.

CARRUTH, M. R., JR.
Surface Voltage Gradient Role in Electron Collection Through Slits in Dielectric. For publication in the Journal of Spacecraft and Rockets, New York, NY.

CARTER, DANIEL C.

CHANDLER, M. O.
WAITE, J. H., et al.
A Comparison of Theoretical Results to the Voyager/Uranus Observations. For presentation at the Magnetosphere of the Outer Planets Conference, Iowa City, IA, September 1-6, 1986.

CHANDLER, M. O.
WAITE, J. H., JR.
YELLE, R. V.
SANDEL, B. R.

CHANDLER, M. O.
CHAPPELL, C. R.

CHANDLER, M. O.
WAITE, J. H., JR.
MSFC PAPERS CLEARED FOR PRESENTATION
(Available only from authors. Dates are presentation dates.)

CHAPPELL, C. R. ES51

CHAPPELL, C. R. ES51

CHAPPELL, C. R. ES51

CHAPPELL, C. R. ES51
MOORE, T. E. WAITE, J. H., JR.

CHASSAY, ROGER P. JA61

CHEN, C. P. NRC/ED42

CHEN, C. P. NRC/ED42

CHEN, C. P. NRC/ED42

CHEN, Y. S. ED42
SANDBORN, V. A.
Computational and Experimental Study of Turbulent Flows in 180 Degree Bends. For presentation and publication at the AIAA/ASME/SAE/ASEE 22nd Joint Propulsion Conference, Huntsville, AL, June 16-18, 1986.

CHEN, Y. S. ED42
Applications of a New Wall Function to Turbulent Flow Computations. For presentation at the AIAA 24th Aerospace Science Meeting, Reno, NV, January 6-8, 1986.

CHEN, Y. S. ED42
CAMPBELL, C. WARREN
SANDBORN, V. A.

CHENG, C.-C. ESO
TANDBERG-HANSSEN, E. A.

CHRISTIAN, H. J. ED43

CHRISTIAN, H. J. ED43

CHUNG, T. J. EP25
CIKANEK, HARRY A., III
Control, Health Assessment, and Condition Monitoring for Large Reusable, Liquid Rocket Engine. For presentation and publication by the 1986 American Controls Conference, AIAA, ASME, IEEE, AIChE, ISA, SCS, Seattle, WA, June 18-20, 1986.

CLARKE, J., et al.

CLAUER, C. R.
WAITE, J. H., et al.
Examination of Three Different Configurations of the Dayside Polar Cleft: Preliminary Results. For presentation at the Spring AGU Meeting, Baltimore, MD, May 19-23, 1986.

COBB, S. D.
ANDREWS, R. N.
SZOFRAN, F. R.
LEHOCZKY, S. L.
Characterization of Directionally Solidified Hg_1_,Zn,Se. For presentation at the 1986 Fall Meeting of the Metallurgical Society, Orlando, FL, October 5-9, 1986.

COLLINS, MARCIA R.
The Effect of Electrical Discharge Machining on the Fatigue Life of Inconel 718 Alloy. For presentation at the 1986 TMS Fall Meeting TMS-Metallurgical Society, Orlando, FL, October 7, 1986.

COMFORT, R. H.

COMFORT, R. H.
NEWBERRY, I. T.
CHAPPELL, C. R.

COOK, JERRY R.
Space Station O_2/H_2 Thruster Test: Rocketdyne 25 lbf Prototype. For presentation at the ITEA Symposium, Huntsville, AL, September 30-October 2, 1986.

COSTES, N. C.
FRENCH, K. W.
JANOO, V. C.
PARKER, J. K.
STURE, S.

CRAVEN, P. D.
OLSEN, R. C.
GENNELL, J.
CROLEY, D.
AGGSON, T.
Potential Modulations on the SCATHA Spacecraft. For publication in the Journal of Spacecraft and Rockets, Gainsville, VA.

CRAVEN, P. D.
CHAPPELL, C. R.

CURRERI, P. A
KAUKLER, W. F.
The Effects of Gravity Level During Directional Solidification on the Microstructure of Hypomonotectic Al-In-Sn Alloys. For publication in Metallurgical Transactions, Pittsburgh, PA.

CURRERI, P. A.
CURRERI, P. A. ES72
VAN ALSTINE, J. M.
BROOKS, D. E.
BAMBERGER, S.
SNYDER, R. S.

On the Stability of High Volume Fraction Immiscible Dispensions in Low Gravity. For publication in Metallurgical Transactions, Pittsburgh, PA.

CURRERI, P. A. ES72

DAILEY, C. C. ES65
REILY, J. C.
WEISSKOPF, M. C.
WYMAN, C. L.
GLENN, P.
SLOMAT, A.
McKINNON, P. J.
MURRAY, S. S.
et al.

Correspondence Between AXAF TMA X-Ray Performance and Models Based Upon Mechanical and Visible Light Measurements. For publication by SPIE, Bellingham, WA.

DANFORD, M. D. EH24

DANFORD, M. D. EH24

DANFORD, M. D. EH24

DAR BRO, WESLEY ES65

Twin Primes. For publication in The Mathematical Log, Norman, OK.

DARWIN, CHARLES R. PF20

Space Launch Systems – New Benefiting Opportunities. For presentation at the Thirty-Seventh IAF Congress, Innsbruck, Austria, October 4-11, 1986.

DARWIN, CHARLES R. PF20

Status of Space Transportation. For publication in Aerospace America.

DESSLER, A. J. ES01

Planetary Magnetospheres. For presentation at the International Symposium on Space Physics, Beijing, China, November 10-14, 1986.

DESSLER, A. J. ES01

DESSLER, A. J. ES01

DESSLER, A. J. ES01

A Turbulent Interface. For publication in the Geophysical Research Letters, Washington, D.C.

DESSLER, A. J. ES01

1986 – A Vintage Year for Space Science. For publication in Science, Washington, D.C.

DESSLER, A. J. ES01

Editorial, APL Rides a Barium Comet. For publication in Johns Hopkins Magazine, Baltimore, MD.

DODGE, JAMES FD43
ARNOLD, JAMES
WILSON, GREGORY
EVANS, JAMES
FUJITA, TED

The Cooperative Huntsville Meteorological
Experiment (COHMEX). For publication in the American Meteorological Society Bulletin, Boston, MA.

DOLAR, FRED J. EH14
MSFC Cryogenic Turbopump Bearing Tester Results and Analysis. For presentation at the AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Huntsville, AL, June 16-18, 1986.

DOLAN, FRED J. EH14

DOWDY, JAMES F. ES52
RABIN, DOUGLAS (NSO)
MOORE, RONALD L.
On the Magnetic Structure of the Quiet Transition Region. For publication in Solar Physics, The Netherlands.

DOZIER, JAN D. EP42
HACKETT, ROBERT M.

EBY, P. B. ES63
SUNG, C. C.
Comparison of Exact and Approximate Formulae for the Mott Correction to Energy Loss of Relativistic Heavy Ions. For publication in Physical Review A, Upton, Long Island, NY.

ELSNER, R. F. ES65
WEISSKOPF, M. C.

ELSNER, R. F. ES65
WEISSKOPF, M. C.
DARBRO, W.
RAMSEY, B. D.
WILLIAMS, A. C.
SUTHERLAND, P. G.
Observations of Quasi-Periodic Oscillations from GX 5-1 and CYG X-2 with the Einstein (HEAO-2) Observatory. For publication in Astrophysical Journal (Letters), Chicago, IL.

EMSLIE, A. GORDON UAH
MACHADO, MARCOS E. NRC/ESS2

EOFF, WILLIAM L. TA51

ESKRIDGE, RICHARD H. EP26

ETHRIDGE, E. C. ES74
CURRERI, P. A.
PLINE, D.
Heterogeneous Nucleation and Glass Formation Studies of 56Ga₂O₃-44CaO. For publication in the Journal of the American Ceramic Society, Columbus, OH.

EUDY, ROBERT G. KA41

FACEMIRE, BARBARA R. ES75
FRAZIER, DONALD O.

FEREBEE, ROBIN C. ED23
FERNANDEZ, KEN

FERNANDEZ, KEN
COOK, GEORGE
Vanderbilt Univ.

FERNANDEZ, KEN
COOK, GEORGE

FERNANDEZ, KEN
COOK, GEORGE

FICHTL, GEORGE H.
Spacelab 3: Research in Microgravity. For publication in Science Magazine.

FICHTL, GEORGE H.
SMITH, STEVE
USRA

FISHMAN, G. J.
PACIESAS, W. S.
GREGORY, J. C.

FISHMAN, G. J.
MEEGAN, C. A.
WILSON, R. B.
PACIESAS, W. S.
Observation of a Strong Gamma Ray Burst on Spacelab 2. For presentation at the COSPAR 26th Meeting, Toulouse, France, June 30-July 12, 1986.

FITZJARRALD, D. E.

FOUNTAIN, JAMES A.

FOWLIS, W. W.
OWEN, R. B.
WITHEROW, W. K.

FOWLIS, W. W.
BAIRD, J. K.

FOWLIS, W. W.
HAITHAWAY, D. H.
FRANKLIN, D. B.
EH24

FREEMAN, MICHAEL S.
EL66

FREEMAN, MICHAEL S.
HOOPER, JAMES W.
UAH

GALABOFF, ZACHARY J.
ED13
Validation of TSS SES Simulation. For presentation at the Tether Dynamics Simulation Workshop, Arlington, VA, September 16, 1986.

GARY, G. A.
MOORE, R. L.
HAGYARD, M. J.
Non-Potential Features Observed in the Magnetic Field of an Active Region. For publication in the Astrophysical Journal, Chicago, IL.

GARY, GILMER A., et al.
ES52

GILES, B. L.
CHAPPELL, C. R.
WAITE, J. H., JR.
MOORE, T. E.
HORWITZ, J. L.
The Auroral Ion Fountain: MLT, L-Shell and Magnetic Activity Dependences. For publication in EOS, American Geophysical Union, Washington, D.C.

GILES, B. L.
ESS3

GOERTZ, C. K.
DESSLER, A. J.
ES01

GOLDBERG, BENJAMINE E.
EH34

GOMBOSI, T. I.
CRAVENS, T. E.
NAGY, A. F.
WAITE, J. H., JR.
Unsteady O+ Flow in the Polar Ionosphere. For presentation at the 5th Scientific Assembly of International Association of Geomagnetism and Aeronomy, Prague, Czechoslovakia, August 5-17, 1985.

GREENBERG, H. S.
GREENE, JOHN B.
OWEN, JAMES W.
Hamilton Standard
EP44

GREENE, MICHAEL
LORENZONI, ANDREA
University of Alabama
RUPP, CHARLES
PS04
GREENWOOD, TERRY F.
LEE, YOUNG C.
BENDER, ROBERT L.
ENGEL, CARL D.

GREGORY, J. C.
KARR, G. R.
PETERS, P. N.
Free Molecular Drag and Lift Deduced from Shuttle Flight Experiment. For presentation and publication at the Rarefied Gas Dynamics 15 Conference, Grando, Italy, July 16, 1986.

HAGYARD, M. J.

HALL, GERALD E.

HARRINGTON, M. M.

HART, J.
TOOMRE, J.
DEANE, A.
HURLBURT, N.
GLATZMAIER, G.
FICHTL, G.
LESLIE, F.
FOWLIS, W.
A Laboratory Model of Planetary and Stellar Convection. For publication in Science, Washington, D.C.

HATHAWAY, DAVID H.
SOMMERVILLE, RICHARD C. J.
Univ. of California
Thermal Convection in a Rotating Shear Flow. For publication in Geophysical Astrophysical Fluid Dynamics, Great Britain.

HATHAWAY, DAVID H.

HAYASHI, T.
NOMOTO, K.
Takahashi, Y.
MIYAJI, S.
PARNELL, T. A.
WEISSKOPF, M. C.
The Enhancements in the High Energy Cosmic Ray Spectrum with Calcium Overabundance and Its Origin in Type-II Supernovae. For publication in the Bulletin of the American Physical Society, New York, NY.

HENDERSON, ARTHUR J.
Project Explorer's Unique Experiments: Getaway Special No. 007. For presentation at the 1985 GAS Experimenter Symposium, GSFC, Greenbelt, MD, October 8-9, 1985.

HERNANDEZ, A. M.
MACHADO, M. E.
VILMER, N.
TROTTET, G.
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>HERRN, G. J.</td>
<td>Control of Electroosmosis in Coated Quartz Capillaries. For publication in the Journal of Colloid and Interface Science, New York, NY.</td>
</tr>
<tr>
<td>SHAFER, S. G.</td>
<td></td>
</tr>
<tr>
<td>VAN ALSTINE, J.</td>
<td></td>
</tr>
<tr>
<td>HARRIS, J. M.</td>
<td></td>
</tr>
<tr>
<td>SNYDER, R. S.</td>
<td></td>
</tr>
<tr>
<td>ANDERSON, A. E.</td>
<td></td>
</tr>
<tr>
<td>DESSLER, A. J.</td>
<td></td>
</tr>
<tr>
<td>HINMAN, ELAINE M.</td>
<td></td>
</tr>
<tr>
<td>YORCHAK, JOHN P.</td>
<td>Teleoperation of Space-Based Manipulators. For presentation at the Human Factors Association of Canada 19th Annual Meeting, Vancouver, British Columbia, Canada, August 22-23, 1986.</td>
</tr>
<tr>
<td>WOLFSON, R.</td>
<td></td>
</tr>
<tr>
<td>HARDAGE, J.</td>
<td></td>
</tr>
<tr>
<td>HOOVER, RICHARD B.</td>
<td>The Spectral Slicing X-Ray Telescope. For publication in Optical Engineering, Tucson, AZ.</td>
</tr>
<tr>
<td>HORWITZ, J. L.</td>
<td>Plasmasphere and Plasmapause Characteristics as Measured by DE-1. For presentation at the XXVI COSPAR Workshop, Toulouse, France, June 30-July 12, 1986.</td>
</tr>
<tr>
<td>HORWITZ, J. L.</td>
<td></td>
</tr>
<tr>
<td>BRACE, L. H.</td>
<td></td>
</tr>
<tr>
<td>COMFORT, R. H.</td>
<td>Plasmasphere and Plasmapause Characteristics as Measured by DE-1. For presentation at the XXVI COSPAR Workshop, Toulouse, France, June 30-July 12, 1986.</td>
</tr>
<tr>
<td>CHAPPELL, C. R.</td>
<td></td>
</tr>
<tr>
<td>HOWELL, LEONARD W., JR.</td>
<td>A Stochastic Model for Particle Impingements on Orbiting Spacecraft. For publication in The Journal of the Astronautical Sciences, Fairfax, VA.</td>
</tr>
<tr>
<td>HUMPHRIES, WILLIAM R.</td>
<td></td>
</tr>
</tbody>
</table>
HUMPHRIES, W. R.
REUTER, J. L.
SCHUNK, R. G.

HUMPHRIES, W. R.
RAY, C. D.

HUNG, R. J.
CHIU, Y. N.
LESLIE, FRED W.

HUNG, R. J.
LIU, J. M.
SMITH, R. E.

HWANG, K. S.
STONE, N. H.
WRIGHT, K. H., JR.
SAMIR, U.

HWANG, K. S.
STONE, N. H.
WRIGHT, K. H., JR.
SAMIR, U.

Theoretical Investigation of Broadband Electrostatic Noise Associated with Secondary Ion Streams Near the Shuttle Orbiter. For publication in the Journal of Geophysical Research, Washington, D.C.
JOLLY, W. D. EH13
KNADLER, J. M., III

JONES, CLYDE S. EH42
WATSON, J. KEVIN
TODD, DOUG M.
Use of Voice Recognition for Control of a Robotic Welding Workcell. For presentation at the International Conference on Systems, Man, and Cybernetics, Atlanta, GA, October 14-17, 1986.

JONES, CLYDE S. EH42
GANGL, KENNETH J.

JONES, LEE W. EP24

KARR, L. J. ES73
SHAFER, S. J.
HARRIS, J. M.
VAN ALSTINE, J.
SNYDER, R. S.
Immuno-Affinity Partition of Cells in Aqueous Polymer Two-Phase Systems. For publication in the Journal of Chromatography.

KIRKWOOD, NANCY
WEEKS, DAVID J. EB12

KULPA, VYGANTAS P. ET44

LEE, J. E. EH22
McCAY, M. H
CURREN, P. A.
The Effect of Gravity Level on the Average Primary Dendritic Spacing of a Directionally Solidified Superalloy. For publication in Metallurgical Transactions, Warrandale, PA.

LESLIE, FRED ED42
GANS, R. F.

LESTER, ROY C. JA11

LIN, N. G. ES53
CAHILL, L. J.
PERSON, A.
WAITE, J. H., JR.

LITTLE, SALLY A. EH12

LOCKWOOD, M. ES53
WAITE, J. H., JR.
MOORE, T. E.
Injection of Solar Wind and Ionospheric Ions at the Cusp. For presentation at the M.I.S.T. (UK) Conference, Edinburgh, United Kingdom, April 7, 1986.

LOVATO, FRANK AD01
LUNDQUIST, CHARLES A. UAH
SNODDY, WILLIAM C. PA01
Commercial Use of Space – Status and Prospects.

McCAY, T. DWayNE EP26
DEXTER, CAROL E.
Space Shuttle Main Engine Fuel Preburner Augmented – Spark Igniter Backflow Analysis.

McCONNAGHEY, HELEN V. ED31

McCAY, T. DWayNE EP01
McCARTY, JOHN P.
Advances in High Chamber Pressure Propulsion.
For presentation at the 37th IAF Congress, Innsbruck, Austria, October 4-11, 1986.

McNIDER, RICHARD T. ED43
KALB, MICHAEL W.
JEDLOVEC, GARY J.
WILSON, GREGORY S.

McPHERSON, W. B. EH23

McPHERSON, W. B. EH23
MENZEL, W. PAUL ED44
JEDLOVEC, GARY
WILSON, GREGORY

MICKELBOROUGH, MARTHA AD01

MILLER, E. R. ES61
CARIGNAN, G. R. Univ. of Michigan
The Shuttle Induced Background: Gaseous Constituents. For presentation and publication at the XII - Contamination Environment of the Space Shuttle for Astronomical Observations; 26th Plenary COSPAR Meeting, Toulouse, France, June 30-July 12, 1986.

MILLER, TIMOTHY L. ED42

MITCHELL, ROYCE E. TA81

MITCHELL, ROYCE E. TA81
FLANAGAN, GERALD

MIYAJI, S. ES65
NOMOTO, K.

MOK, EVA Y. (RI)
CLARKE, MARGARET M. (RI)
QUINN, ALBERTA W. EL15

MONKS, R. F. EP13
MOREL, D. E. Harris Corp.
JACKSON, J.
GODDARD, D.
ENGLER, E. E. MSFC

MOOKHERJI, T. ES71
NAUmann, ROBERT J.
VLASSE, MARCUS

MOORE, CARLETON J. ED22
MSFC Space Station Structural Dynamics Test Philosophy. For presentation at the Workshop on Measurement and Characterization of Acceleration Environment on the Space Shuttle and Space Station, Guntersville, AL, August 12-14, 1986.

MOORE, D. R. EH23
DRINAN, D. T.
HODO, J. D.
Development of a Computer-Controlled Technique to Determine Crack Growth Rate in Controlled Environments with Crack Opening Displacement. For presentation at the Advanced Earth-To-Orbit Propulsion Technology Conference, MSFC, AL, May 14, 1986.

MOORE, RONALD L., et al. ES52
MOORE, R. L. ES52

MOORE, RONALD ES52
BOHLIN, DAVID NASA Headquarters

MOORE, T. E. ES53
POLLOCK, C. J.
ARNOLDY, R. L.
KINTNER, P. M.

MOORE, T. E. ES53

MOORE, T. E. ES53
POLLOCK, C. J.
ARNOLDY, R. L.
KINTNER, P. M.
Preferential O+ Heating in the Topside Ionosphere. For publication in Geophysical Research Letters, Washington, D.C.

MUJERJEE, T. ED42
PRZEWAS, A. J.
HOLLAND, R. L.
COSTES, N. C.

NAUMANN, ROBERT J. ES71
Physical Behaviour of Fluids and Particles in Microgravity. For presentation at the FASEB Summer Research Conference, Copper Mt., CO, July 26-August 1, 1986.

NAUMANN, ROBERT J. ES71

NAUMANN, ROBERT J. ES71
Research Opportunities in Space. For presentation at the Pathways to Space Experimentation Workshop, Orlando, FL, June 17-19, 1986.

NAUMANN, ROBERT J. ES71

NAUMANN, ROBERT J. ES71

NEIGHBORS, ALICE K. PF16

NESMAN, TOMAS E. ED24
Signal Analysis Techniques in Structural Dynamics. For presentation at the Workshop on Measurement and Characterization of Acceleration Environment on the Space Shuttle and Space Station, Guntersville, AL, August 12-14, 1986.

NICOLAS, DAVID P. EB13
TAYLOR, C. D.
WADE, T. E.

OLSEN, R. C. ES51 CHAPPELL, C. R. Conical Ion Distributions Near One Earth Radius. For presentation at the XXVI COSPAR Workshop, Toulouse, France, June 30-July 12, 1986.

OWEN, ROBERT B. ES73 KROES, ROGER L. WITHEROW, WILLIAM K. Results and Further Experiments Using Spacelab Holography. For publication in Optics Letters, Washington, DC.
OWENS, S. F.
MUKERJEE, T.
SINGHAL, A. K.
PRZEKWAS, A. J.
GLYNN, D. R.
COSTES, N. C.

PABLO, J. D.
MACHADO, MARCOS E. (NAS/MSFC)

PARKER, JOE R.
MORGAN, SAMUEL H.

PARNELL, T. A.
MIYAJI, S.
TAKAHASHI, Y.

PETERS, P. N.
GREGORY, J. C.
KARR, G. R.

PETERS, P. N.
SWANN, J. T.
GREGORY, J. C.
Effects on Optical Systems from Interactions with Oxygen Atoms in Low Earth Orbits. For publication in Applied Optics, Newton Highlands, MA.

PETERS, P. N.
GREGORY, J. C.
SISK, R. C.
Oxygen Atom Velocity Distributions as Viewed from a Spacecraft and Their Use to Determine Thermospheric Temperatures. For publication in Geophysical Research Letters, Washington, D.C.

PETERSON, W. K.
MOORE, T. E.
SHELLY, E. G.
WAITE, J. H., JR.
BOARDSEN, S. A.
GURNETT, D. A.
Observations of Transverse Ion Energization on Auroral Field Lines from Dynamics Explorer 1. For presentation at the Fall Meeting of the American Geophysical Union, San Francisco, CA, December 9-13, 1985.

PORTER, J. G.
REICHMANN, E. J.
MOORE, R. J.
HARVEY, K. L.
Associations of Compact C IV Events, He I 10830 Å Dark Points, and Magnetic Structures. For presentation at the 167th Meeting of the American Astronomical Society, Houston, TX, January 5-9, 1986.

PORTER, JASON G.
GEBBIE, KATHARINE B.
NOVEMBER, LAURENCE J.

POTEET, WADE M.
OWEN, ROBERT B.
A Compact Field Color Schlieren System for Use in Microgravity Materials Processing. For publication in Optical Engineering, Bellingham, WA.
POWELL, LUTHER E. KA01
GOSS, ROBERT
SPENCER, RICHARD Martin
NASA’s Robotic Servicing Role for Space Station. For presentation at the Thirty-Seventh IAF Congress, Innsbruck, Austria, October 7, 1986.

POWELL, LUTHER E. KA01

POWELL, LUTHER E. KA01
NASA’s Robotic Servicing Role for Space Station. For presentation at the Thirty-Seventh IAF Congress, Innsbruck, Austria, October 4-11, 1986.

POWELL, LUTHER E. KA01
STEBBINS, JERRY Boeing Logistics Resupply Scenario for the Space Station. For presentation at the Thirty-Seventh IAF Congress, Innsbruck, Austria, October 7, 1986.

PRAKASH, C. ED42
SINGHAL, A.
SCHAFER, C. F.

PUSEY, MARC L. ES73
An Apparatus for Protein Crystal Growth Studies. For publication in Analytical Biochemistry, San Diego, CA.

PUSEY, MARC L. ES73
SNYDER, ROBERT S.
NAUMANN, ROBERT J.
Protein Crystal Growth: Growth Kinetics for Tetragonal Lysozyme Crystals. For publication in the Journal of Biological Chemistry, U.S.A.

PUSEY, MARC L. ES73
NAUMANN, ROBERT J.

QUINN, ALBERTA W. EL15
THOMPSON, WILLIAM M.

QUINN, ALBERTA EL15

QUINN, ALBERTA W. EL15
CLARK, M. Rockwell
THOMPSON, W. NSA
SHELDS, N. Essex

RAMSEY, B. ES65
WEISSKOPF, M. C.

RAMSEY, B. D. ES65
WEISSKOPF, M. C.

RAMSEY, B. D. ES65
WEISSKOPF, M. C.
ELSNER, R. F.
A Fluorescent Gated Proportional Counter for X-Ray Astronomy. For publication in the SPIE Proceedings, Cannes, France.
RAMSEY, B. ES65
WEISSKOPF, M. C.
ELSNER, R. F.

RAMSEY, B. ES65

RAO, D. Rocketdyne
STRUCK, H. G. ED31

RAY, JOHN R. ES65
SMALLEY, LARRY L.

RAY, JOHN R. ES65
SMALLEY, LARRY L.

RAY, JOHN R. ES65
SMALLEY, LARRY L.

RAY, W. L. EP25
POLICELLI, F. J.
ITCHKAWICH, T. J.
Improved Large Diameter Pressure Seal Using the Seal Capture Device. For presentation at the AIAA Conference, Huntsville, AL, June 16-18, 1986.

REASONER, D. L. ES53
BUSH, R. I.
Ambient Ion Perturbations/Induced by an Electron Gun on the Orbiter. For presentation to the 1986 Fall Meeting American Geophysical Union, San Francisco, CA, December 8-12, 1986.

REINLEITNER, L. A. ES53
GALLAGHER, D. L.
GURNETT, D. A.
Ion Cyclotron Resonance with Thermal Helium Near the Plasmapause. For presentation at the AGU Spring Meeting, Baltimore, MD, May 19-23, 1986.

REISS, D. A. ES72
KROES, R. L.
ANDERSON, E. E.
Growth Kinetics of the (001) Face of TGS Below the Ferroelectric Transition Temperature. For publication in the Journal of Crystal Growth, Amsterdam.

REYNOLDS, NATHANIEL D. ED42
MILLER, TIMOTHY L.
Almost Symmetric Instability at Unit Prandtl Number. For publication in the Journal of the Atmospheric Sciences, Boston, MA.

RHODES, PERCY H. ES73
SNYDER, ROBERT S.
Sample Band Spreading Phenomena in Ground and Space-Based Electrophoretic Separators. For publication in Electrophoresis, Springer-Verlag: West Germany.

ROBERTS, W. T. PS02
DABBS, J. R.

ROBERTS, WILLIAM T. PS02

ROBERTSON, FRANKLIN R. ED43
RUPP, CHARLES C.

RUTLEDGE, WILLIAM S.

RYAN, RICHARD M.
GROSS, LOREN A.

SANDLIN, A. C.
ANDREWS, J. B.
CURRERI, P.

SCHRAMM, HARRY F.
The Evolution of Bar Coding in NASA. For presentation at the SCAN-TECH’85 Meeting, Baltimore, MD, December 2-6, 1985.

SCHWANIGER, ARTHUR J.
Low G Measurements by NASA. For presentation at the Measurement and Characterization of the Acceleration Environment on the Shuttle and Space Station, Guntersville, AL, August 12, 1986.

SCHWARTZ, D. A.
McKINNON, J.
MURRAY, S. S.
PRIMINI, F. A.
VAN SPEYBROECK, L. P.
ZOMBECK, M. V.
REILY, J. C.
WEISSKOPF, M. C.
X-Ray Testing of the AXAF Technology Mirror Assembly (TMA) Mirror. For publication in the Proceedings of SPIE, Willingham, WA.

SCHWINGHAMER, R. J.

SHEALY, DAVID L.
HOOVER, RICHARD B.
GABARDI, D. R.

SISSON, JAMES M.

SMALLEY, LARRY L.
SMALLEY, LARRY L. ES65
Geometrization of Spin. For presentation at the Meeting of the American Physical Society, Williamsburg, VA, November 20-22, 1986.

SMALLEY, LARRY L. ES65
Is There A Connection Between Nonmetricity and the Large Numbers Hypothesis? For publication in Essays in Gravity Competition, Gravity Research Foundation, Gloucester, MA.

SMALLEY, LARRY L. ES65
FENNELLY, A. J.
An Interpretation of Orbital Residuals in Earth Satellites as Evidence for Macroscopic Nonmetricity in Gravitation. For publication in Physical Review Letters, Ridge, NY.

SMALLEY, LARRY L. ES65
Discrete Dirac Equation on a Finite Half-Integer Lattice. For publication in IL Nuovo Cimento, Bologna, Italy.

SMALLEY, LARRY L. ES65

SMITH, ROBERT E. ED41
NASA/MSFC Global Reference Atmosphere Model '86. For presentation at the 26th Plenary Meeting of COSPAR, Toulouse, France, June 30-July 12, 1986.

SNODDY, WILLIAM C. PA01

SNODDY, WILLIAM C. PA01

SNODDY, WILLIAM C. PA01
MORGAN, DR. SAMUEL H., JR.

SNODDY, WILLIAM C. PA01
GALLOWAY, WILLIAM E. PA14
YOUNG, ARCHIE PD32

SNYDER, ROBERT ES73
NAUMANN, ROBERT ES71
HERREN, BLAIR ES73
CARTER, DAN ES73
DELUCAS, LAWRENCE J., et al.

SNYDER, ROBERT S. ES73

SRINIVAS, R. TBE
DABBS, J. R. PS02
HOWELL, J. T. PD11
System Concept for the Pinhole/Occulter Facility Payload. For presentation at the 37th International Astronautical Federation Congress, Innsbruck, Austria, October 4-11, 1986.

STEFANESCU, D. ES72
CURRELLI, P.
FISKE, M.
Microstructural Variations Induced by Gravity Level During Directional Solidification of Near-Eutectic Iron-Carbon Type Alloy. For publication in Metallurgical Transactions, Pittsburgh, PA.

STEFANESCU, D. M. ES74
FISKE, M. R.
CURRELLI, P. A.
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>ES Code</th>
<th>Title</th>
<th>Event/Publication Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU, CHING-HUA</td>
<td>ES72</td>
<td>Heat Capacity, Enthalpy of Mixing, and Thermal Conductivity of Hg_{1-x}Cd_{x}Te Pseudobinary Melts. For publication in the Journal of Crystal Growth, Amsterdam.</td>
<td></td>
</tr>
<tr>
<td>SU, CHING-HUA</td>
<td>ES72</td>
<td>A Method to Eliminate Wetting During the Homogenization of HgCdTe. For publication in the Journal of Applied Physics, New York.</td>
<td></td>
</tr>
<tr>
<td>SUExESS, STEVEN T.</td>
<td>ES52</td>
<td>Magnetic Clouds and the Pinch Effect. For presentation at the American Geophysical Union Fall Annual Meeting, San Francisco, CA, December 8-12, 1986.</td>
<td></td>
</tr>
<tr>
<td>TAYLOR, KENNETH R.</td>
<td>PS05</td>
<td>Opportunities for Commercial Participation in Microgravity Material Processing. For presentation to the Twenty-Third Space Congress, Canaveral Council of Technical Societies, Cocoa Beach, FL, April 22-25, 1986.</td>
<td></td>
</tr>
</tbody>
</table>
THOM, ROBERT L.

THOM, R. L.
DOLAN, F. J.

THOMAS, LAWRENCE D.

THOMPSON, R. G.
NUNES, A. C.
CALLAGHAN, M. L.

THOMSON, J.

THRONSON, H. A., JR.
TELESCO, C. M., et al.
Star Formation in the Magellanic Irregular Galaxy NGC 4449. For publication in the Astrophysical Journal, Chicago, IL.

THRONSON, HARLEY A., JR.
TELESCO, C. M.
Star Formation in Active Dwarf Galaxies. For publication in Astrophysical Journal, Chicago, IL.

TORR, MARSHA R.
RANTANEN, R. O.

TORR, D. G.

TORR, MARSHA R.
ERWIN, E.
TORR, D. G.

TORR, MARSHA R.
TORR, D. G.
Mesospheric NO from Spacelab 1. For presentation to the 1986 Fall Meeting American Geophysical Union, San Francisco, CA, December 8-12, 1986.

TORR, MARSHAL R.
TORR, D. G.
OWENS, J. K.
The Optical Environment of the Spacelab 1 Mission. For publication in the AIAA Journal of Spacecraft and Rockets, New York, NY.

URBAN, EUGENE W.
LADNER, DAN R.
SPIELMAKER, R.

URBAN, EUGENE W.
LADNER, DAN R.
Performance of the Superfluid Helium Dewar of Space Shuttle Mission STS-63. For publication in Cryogenics, Guildford, UK.
the Infrared Telescope During the Spacelab 2 Mission. For presentation at the Space Cryogenics Workshop, ESTEC, Nordwijk, Holland, April 28-29, 1986.

URBAN, EUGENE W. ES63
LADNER, DAN R.

URBAN, EUGENE W. ES63

URBAN, EUGENE W. ES63
LADNER, DAN R.

VAN ALSTINE, J.
BOYCE, J.
HARRIS, J. M.
BROOKS, D. E.
BAMBERGER, S.
Snyder, R. S.
ES73

VANDERHOF, J. W.
The First Products Made in Space: Monodisperse Latex Particles. For presentation at the Sixth European Symposium on Materials Science in Microgravity, Bordeaux, France, December 2-5, 1986.

VANDERHOF, J. W.
KORNFIELD, DALE, et al.
Preparation of Large-Particle-Size Monodisperse Latexes in Space. For presentation at the Emulsion Polymerization Symposium, American Chemical Society Spring National Meeting, New York, NY, April 1, 1986.

VINZ, FRANK L. EB44

VINZ, FRANK L. EB44
FERNANDEZ, KENNETH EB44

VLASSE, M. ES72
KOETZLE, T. F.
The Crystal and Molecular Structure of an Asymmetric Diacetylene Monomer, 1-(4-dimethylaminobenzoxyloxy)-6-(3", 5"-dinitrobenzoxyloxy)-2, 4-Hexadiyne. For publication in J. Die Makromolekulare Chemie, Midland, MI.

VON TIESENHAUSEN, GEORG PS01
Tether Transportation. For presentation at the Applications of Tethers in Space Workshop, Venice, Italy, October 15-17, 1985.

WAITE, J. H., JR. ES53
CRAVENS, T. E.
CLARKE, J. T.
HORANYI, M.

WAITE, J. H., JR. ES53
CRAVENS, T. E.
CLARKE, J. T.
HORANYI, M.
Jovian Aurorae: Ion or Electron Precipitation? For presentation at the Magnetospheres of the Outer Planets Conference, Iowa City, IA, September 1-6, 1986.
WAITE, J. H., JR. ES53
LOCKWOOD, M.
MOORE, T. E.
CHANDLER, M. O.
CHAPPELL, C. R.
The Geomagnetic Mass Spectrometer. For presentation at the Fifth Scientific Assembly Symposium, Oxfordshire, England, August 4-5, 1985, and at the IAGA Meeting in Prague, Czechoslovakia, August 5-17, 1985.

WAITE, J. H., JR. ES53
The Ionospheres of Jupiter and Saturn: A Current Perspective. For presentation at the IAGA Meeting, Fifth Scientific Assembly, Prague, Czechoslovakia, August 5-17, 1985.

WAITE, J. H., JR. ES53
PETERSON, W. K.
MOORE, T. E.
SHELLEY, E. G.

WEBB, D. F. ES52
HOLMAN, G. D.
DAVIS, J. M., et al.

WEISSKOPF, M. C. ES65
Advanced X-Ray Astrophysics Facility (AXAF). For presentation and publication at the XXXVIth International Astronautical Congress, Innsbruck, Austria, and publication in Proceedings of IAF, October 4-11, 1986.

WEISSKOPF, M. C. ES65
MIYAJI, S.
HASHIMOTO, M.	
NOMOTO, K.
Takahashi, Y.
Calcium Overabundance in Type-II Supernova Remnant. For publication in the Bulletin of the American Physical Society, New York, NY.

WEISSKOPF, M. C. ES65
LINSKY, J. L.

WEISSKOPF, M. C. ES65
LINSKY, J. L.

WEISSKOPF, M. C. ES65
ELSNER, R. F.
DARBRO, W.
MIYAJI, S.
RAMSEY, B.
WILLIAMS, A. C.
SUTHERLAND, P. G.
GRINDLAY, J. E.
Observations of Quasi-Periodic Oscillations from GS5-1 with the Einstein (HEAO-2) Observatory. For publication in the Bulletin AAS and for presentation to the American Astronomical Society, Houston, TX, January 5-9, 1986.

WEISSKOPF, M. C. ES65
The Advanced X-ray Astrophysics Facility (AXAF): An Overview. For presentation to the American Astronomical Society, Houston, TX, January 5-9, 1986, and for publication in the Bulletin AAS.

WEST, E. A. ES52

WHITAKER, ANN F. EH12
WIEGMANN, B. M.
ED32

WILLIAMS, A. C.
ES65
APPARAO, K. M. V.
WEISSKOPF, M. C.
On the Variability of the Pulsed Fraction in X-Ray Pulsing Binaries. For publication in the Astrophysical Journal, Chicago, IL.

WILLIAMS, A. C.
ES65

WILLIAMS, A. C.
ES65

WILLIAMS, A. C.
ES65

WILSON, ROBERT M.
ES52

WILSON, ROBERT M.
ES52

WILSON, ROBERT M.
ES52
HOLDNER, ERNEST

WILSON, ROBERT M.
ES52

WINKLER, CARLE E.
PF19

WITHEROW, WILLIAM K.
ES73
Reconstruction of Holograms from the Fluid Experiment System on Spacelab 3. For presentation at the Aerospace Optics Workshop, Huntsville, Alabama, October 28, 1985.

WOJTALIK, FRED S.
TA01
Hubble Space Telescope Systems Engineering. For presentation to the International Federation of Automatic Control (IFAC), Munich, Germany, July 26-31, 1986.

WRIGHT, K. H., JR.
ES53
STONE, N. H.
HWANG, K. S.
SAMIR, U.

WU, M. K.
ES72
ASHBURN, J. R.
TORNG, C. J.
CURRERI, P. A.
CHU, C. W.
WU, M. K.
ASHBURN, J. R.
CURRERI, P. A.
KAUKLER, W. F.

APPROVAL

FY 1986 SCIENTIFIC AND TECHNICAL REPORTS,
ARTICLES, PAPERS, AND PRESENTATIONS

Compiled by Joyce E. Turner

The information in this report has been reviewed for technical content. Review of any information concerning Department of Defense or Atomic Energy Commission programs has been made by the MSFC Security Classification Officer. This report, in its entirety, has been determined to be unclassified.

C. D. Bean
Director, Administrative Operations Office