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ABSTRACT

The degradation mechanism in thermal barrier coating system
subjected to prolonged heating in air as well as to thermal
cycling vas studied.	 Bond coat oxidation vas found to be the
most important reason for degradation.	 The oxidation produced
NiO as well as Al2O3 in one set of samples, but the variation in
initial coating structure made it difficult to resolve
systematic differences between isothermally hea`ed and thermally
cycled samples. However, the contribution to degradation from
changes in substrate compostion seemed less in the cycled sample.
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I.	 INTRODUCTION

Thermal barrier coatings (THC's) have been developed for
1,2

high temperature gas turbine application since the 70's.	 The

generally &ccepted thermal barrier system consists of a 'bond-

coat' layer of NJ., Cr, Al, Y alloy on the substrate covered by a

ceramic layer, usually ZrO with stabilizers (such as yttria or
2

magnesia). The ceramic layer establishes a temperature gradient,

thus	 making it possible to use higher surface	 operating

temperatures. The bond coat serves as an oxidation resistant

coating and as a buffer between the ceramic layer 	 and

mechanically dissimilar substrate. 	 A failure in such a cyst-m

consists of spallation and subsequent removal of the ceramic
3

layer.	 Recent studies have shown that the oxidation of the bond
3,4

coat is largely responsible for the degradation.	 It is

therefore important to determine the nature of the products

produced at the bond coat/ceramic interface in oxidizing

environment. The stresses at the interface will depend on

whether the TBC is being subjected to prolonged or to cyclic

heating. This paper reports on the identification of the

oxidation products at the interface and on the differences in

the interface microstructure and chemistry in TBC's subjected to

prolonged heating and to thermal cycling.
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Experimental_ Procedure

Specimens for optical metallography (OM), scanning electron

microscopy (SEM), and !.ransmission electron microscopy (TEM)

were prepared from two sets of TBC's. One set consisted of TBC's

prepared for the cylinder head in a diesel engine • ;	 the other

was a TBC under development at the NASA- Lewis Research Center,
0

Ohio.	 The first set was subjected to oxidation in air at 900 C

for 1 and 10 hours.	 A sample in the second set was oxidized at
0

1100 C for 10 hours and an other one was cycled ten times, each
0

cycle consisting of 1 hour at 1100 C in air, followed by rapid

cooling to room temperature.

Both the as-received and the oxidized samples were prepared

for cross-sectional microscopy (OM, SEM and TEM) by a technique
5

described elsewhere. An AMR 1000 SEM, fitted with a KEVEX system

was used for scanning electron microscopy, and a Philips EM400

with EDAX was	 used for analytical electron microscopy (AEM).

RESULTS AHD DISCUSSIOH

The results on the first set of TBC's have been reported
6

earlier.	 One of the figures is reproduced for the sake of

completeness. Only results relating to changes at the interface

between bond coat and zirconia are presented here.

Fig. 1 is an SEM micrograph showing the bond-coat portion of
0

a TBC that was oxidized for 10 hours at 900 C in air. The ED)(

spectra were taken using a raster mode, with the raster covering

•Plasma Tech. Inc., Torrence, CA
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approximately a 5-8 m square area. This gave information on the

overage compositional changes in the bond-coat as a function of

distance from the ceramic layer. The three spectra included in

Fig. 1 show definite aluminum depletion in the bond coat near the

interface. The reduction in the Al peak intensity is noticeable,

whereas a Cr-peek intensity variation could not is detected. One

can therefore conclude that aluminum diffuses out of the bond

coat to form an oxide layer (alumina) at the	 ZrO /alloy
2

interface.	 Also, because there is no variation in chromium peak

intensity, one would expect the major constituent of the oxide

layer developed at the interface to be alumina. Cross-sectional

TEM sanples made from the same specimen provided additional

information.

Figs. 2a and b show the two oxidation products detected at

the bond-coat/zirconis interface.	 This sample was oxidized at
0

900 C for 10 hours.	 Microdiffraction and EDXS established that

the oxidation products were alumina (Al 0 , Fig. 2a) and nickel
2 3

oxide (NiO, Fig. 2b).	 The bond-coat grains surrounding the

alumina were found to be depleted in aluminum (see EDX spectrum.

top right, 2a). Thus aluminum diff!jsed out of the bond-coat

grains to form alumina at the ceramic/metal alloy interface.

Further oxidation of the bond-coat grains should then produce

oxide products other than alumina. The microdiffraction pattern

in Fig. 2b reau.'_ted from both nickel and nickel oxide graine

superimposed in the electron beam, as confirmed by the EDX
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spectrum. Thus, nickel oxide can	 be one of the oxidation

products at the interface. It is possible that the Hi, Cr, Al, Y

bond coat was not homogeneous in composition, so that unalloyed

nickel grains were present near the interface, leading to NiO

formation.

These observations indicate that the oxidation products at

the interface are not alumina grains alone; other oxidation

products may be produced depending on the homogeneity of the

bond- coat and on the aluminum concentration in bond-coat grains

near the interface.

Figs. 3a, b and c show optical micrographs from the second

set of samples.	 Fig. 3a shows the cross-section of the an-

sprayed sample; Fig. 3b the cross-section of the sample oxidized
0

in air at 1100 C for 10 hours (isothermal); and Fig. 3c the

cross-section of the sample cycled 10 times (cycled). Each cycle
0

consisted of 1 hour at 1100 C in air, followed by rapid cooling

to room temperature.	 The difference in interface morphology in

the isothermal (Fig. 3b) and cycled samples (Fig. 3c) is evident

in these micrographs. Extensive bond-coat oxidation has led to

formation of oxides in both cases; however, the oxide layer has

penetrated up to the substrate/bond coat interface only for the

isothermal sample (arrows in Fig. 3b).

The oxidation products in both the isothermal and cycled

samples were characterized using SEN (AMR 1000) attached with a

KEVE)( microanalysis system. Figs. 4a and 4b and Table I show

the variation in composition an a function of position in these
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two samples.	 The quantitative estimates of the bulk bond coat,

and substrate compositions were in reasonably good agreement with

the reported compositions (+ 5% error).

The isothermal sample showed oxidation of the substrate as

well as of the bond coat. Microanalysis at position 1.1 (Fig. 4a

and Table 1) shows the elemental composition of the oxide layer

developed at the bond coat/ceramic interface. 	 If it is assumed

that all elements formed oxides,	 then the composition comes out

to be 75 mol%Al 0	 16.8 mom % Cr 0 and 8.2 mol % NiO. Alumina
2 3	 2 3

is thus a major constituent of the oxide layer at the interface.

Aluminum depletion from the bond-coat also was observed in this

sample. However, even the bond-coat grains at the center of the

layer were depleted in aluminum (position 1.2, Fig. 4a). This

indicates that some bond coat oxidation took place during the

fabrication	 (plasma spraying) itself. 	 E::t&naive oxidation of

the	 substrate	 also	 had	 occurred	 ;luring	 fabrication.

Microanalysis at position 1.3, Fig 4a shove all elements of the

substrate with enrichment in Al misci fir.	 The substrate has

oxidized in this region to form Al 0 and Cr 0 	 The substrate
2 3	 2 3

shoved	 aluminum depletion (see compositions at positions 1.4,

1.5 and 1.6). it would be difficult to may if this depletion

would also occur in the absence of the observed substrate

oxidation. The cycled sample showed very similar compositional

changes, the only difference being the absence of aluminum

depletion in the substrate near the bo^a coat/subetrate interface

(see compositions at positions 2.1 and 2.2, Fig. 4b).
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It is difficult to establish, with certainty,the differences

between the isothermal and the thermmlly cycled samples at thic

time, since some oxidation took place during the fwbrication

itself, and the starting microstructures were quite different.

The results so far point out the importance of controlling the

initial microstructure of the TBC for reliable performance.

Experiments on microstructure-cantrolled specimens are currently

in prugress and will be reported in the future.
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Table_I

Comp isitional Var iati-n in

Isothermally heated and Cycled TBC's

POSITION Ni Cr

----------------------------------------------------------------------

Al Co Ti LOCATION

Fig.	 4a wt

1.1 23.71 34.62 79.77 - - ZrO /h. c interface
2

1.2 82.47 17.08 2.75 - - Center of b. c.

1.3 43.',g 29.04 26.92 13.15 7.01 Center of oxidized
sub.

1.4 67.85 12.58 4.12 15.28 3.47 Substrate near
b. c. /sub. interface

1.5 70.10 10.07 5.70 14.24 4.49 Substrate 20 pn
ava y

1.6 67.8 11.32 7.66 15.03 4.13 Substrate 50 A m
aray

Fig.4 b

2.1 73.06 9.55 6.41 10.82 5.36 Substrate near
b. c. /sub. interface

2.2 73.21 8.54 G.87 11.22 5.73 Substrate 40 ^m

------------------------------------------------------------------------------
arav

Nominal
Compositions
Bond Coat 88.05 15.6 6.35 - -
Substrate E.3.00 9.0 5.00 15. 0W 5.0 and 3 '/. Ho not analyzed

8



REFERENCES

1. S. Stecurs, "Tvo-Layer Thermal Barrier Coating for High

Temperature Components",Ceramic Bulletin, 56(12),1082 (1977).

2. S. R. Levine, R. A. Miller and P. E. Hodge, 'Thermal Barrier Coatings

for Heat Engine Components",SAMPE Ouarterly,20,Oct(1980).

3. R.A. Miller and C. E. Lovell, "Failure Mechanisms of Thermal

Barrier Coatings Exposed to Elevated Temperatures", Thin Solid

Films, 95, 265 ( 1982) .

4. R.A.Mi:ler,*Cxidation-Based Modlel for Thermal Barrier Coating

Life % J. Amer. Ceram. Soc. 67 (8) , 517 ( 1984) .

5. S.L.Shinde and L.C.De Jonghe,"Cross-Sectional TEM Specimens from

Metal-Ceramic Composites, accepted J.Electron Microscopy

Technique, Aug(1985).

6. S. L. Shinde, I. E. Reimanis and L. C. De Jonghe, "DegradRtion ii a

Thermal Barrier Coating", submitted to Amer. Ceram.

Soc. , Feb. (1986) .

IL

9



LIST OF FIGURES

FIG 1.	 Changes in the bond-coat aluminum concentration rith

distance from the bond-coat/zirconia	 interface.

2irconia is to the right and the substrate is to the

eft of the bond-coat. The EDX spectra show a'_=!minum

depletion near the bond-coat/zirconia interface.

FIG 2a.	 Alumina grains at the bond-coat/zirconia interface in
0

a TBC heated isothermally at 900 C for 10 hrs. The

EDX spectrum (top left) and the diffraction pattern

(bottom right) established the grains to be alumina.

The adjoining bond-coat grains are depleted in

aluminum (EDX spectrum; top right).

FIG 2b.	 Hickei oxide grain at the bond-coat/zirconia

interface. The composite diffraction pattern is due

to Ni and H10 grains superimposed in the electron

beam.

FIG 3.	 Optical micrographs shoring differences in morphology

of the as sprayed (1), isothermally heated (2), and

cycled (3) TBC's. The arrove in (2) and (3) point to

regions where substrate oxidation has occurred.

FIG 4.	 SEM micrographs of isothermally heated (A) and cycled

(B) TBC's. The results of microanalyses at positions

1.1 through 1.0- and 2.1 and 2.2 are presented in

Table I.
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