A VLSI Architecture of a Binary Updown Counter

I. S. Reed
University of Southern California

I. S. Hsu and T. K. Truong
Communications Systems Research Section

In this article, a new pipeline binary updown counter with many bits is developed which can be used in a variety of applications. One such application includes the design of a digital correlator for very long baseline interferometry (VLBI) [1].

The advantage of the presently conceived approach over the previous techniques is that the number of logic operations involved in the design of the new binary updown counter can be reduced substantially. The architecture design using these methods is regular, simple, expandable and, therefore, naturally suitable for VLSI implementation.

II. A New Algorithm for a Binary Updown Counter

In this section, a new algorithm is developed for the implementation of a binary updown counter. This algorithm is illustrated by an example for a 3-bit case. However, the same structure clearly can be extended to the more general cases.
Let the input to this counter have three values, namely, -1, 0, and 1. The input is fed into the counter sequentially. Also let \(A_n(t) \) denote the value of the \(n \)th bit of a clocked counter at time \(t \). Then it can be verified easily by the techniques in [2] that

\[
A_n(t) = A_n(t-1) \oplus ((U \cdot P_n) \cup (D \cdot Q_n))
\]

(1)

where there is no loss of generality to assume time \(t \) is integer-valued and where \(A_n(t-1) \) is the value of the \(n \)th bit of an updown counter at time \(t-1 \). Also in Eq. (1) the symbol “\(\oplus \)” denotes “exclusive OR” operation. The symbol “\(\cup \)” denotes “AND” operation and the symbol “\(\cup \)” is the “inclusive OR” operation. If \(U = 0 \) and \(D = 1 \), then the input is “-1”. If both \(U \) and \(D \) equal zero, then the input is “0”. In Eq. (1), \(P_n \) represents product of \(A_k \)'s, for \(1 \leq k \leq n-1 \), while \(Q_n \) is the product of \(\overline{A}_k \)'s, for \(1 \leq k \leq n-1 \), where \(\overline{A}_k \) is the complemented value of \(A_k \). Both \(P_n \) and \(Q_n \) are expressed as the following two equations:

\[
P_n = A_{n-1} A_{n-2} \cdots A_1
\]

(2-a)

\[
Q_n = \overline{A}_{n-1} \overline{A}_{n-2} \cdots \overline{A}_1
\]

(2-b)

Equation (2) can be rewritten in a recursive form as

\[
P_n = P_{n-1} \cdot A_{n-1}
\]

(3-a)

and

\[
Q_n = Q_{n-1} \cdot \overline{A}_{n-1}
\]

(3-b)

with the initial values \(P_1 = 1 \) and \(Q_1 = 1 \). Intuitively, Eq. (1) can be described as follows:

If the input to the counter is a “0”, then the contents of the counter should remain unchanged. It is easily verified from Eq. (1) that \(A_n(t) = A_n(t-1) \) with \(U = D = 0 \).

If the input is “0”, both \(U \) and \(D \) equal “0” according to the previous assignments. This will null the second term in Eq. (1) and by the property of “exclusive OR”, one yields \(A_n(t) = A_n(t-1) \).

On the other hand, if the input is “1”, then \(U = 1, D = 0 \). The second term of Eq. (1) \((U \cdot P_n) \cup (D \cdot Q_n)\), is then changed to \((1 \cdot P_n) \cup (0 \cdot Q_n) = P_n\). This equals 1 if \(P_n = 1 \) which implies \(A_1 = A_2 = \cdots = A_{n-1} \). In counting up, the value of \(n \)th bit changes from zero to one if (1) input to the counter is a “1” and (2) the value of bit 1 to bit \(n-1 \) are all ones. This fact is truthfully reflected by Eq. (1). A similar argument applies to the case when the input to the counter is a “-1”, i.e., the counter is counting down.

III. Example of the New Updown Counter

We illustrate the new algorithm with the design of a 3-bit binary updown counter.

The truth table of a 3-bit binary updown counter is shown in Table 1. Where \(A_i(t) \) for \(i = 1, 2, 3 \) denotes value of \(i \)th bit of the counter at time \(t \). To verify this truth table, consider, for illustration the 4th row in Table 1.

In this row,

\[
D = 0, \quad U = 1, \quad A_3(t) = 0, \quad A_2(t) = 1, \quad A_1(t) = 1.
\]

This corresponds to the case for which the contents of counter is digit 3 in binary and the input is “1”. Obviously, the next value should equal four. Namely, \(A_3(t+1) = 1, A_2(t+1) = 0 \), and \(A_1(t+1) = 0 \).

Substituting these values of \(A_i \), for \(i = 1, 2, 3 \), as well as the values \(U = 1, D = 0 \) into Eq. (1), yields the following results:

\[
A_3(t+1) = A_3(t) \oplus (U \cdot P_3 \cup D \cdot Q_3)
\]

\[
= 0 \oplus (1 \cdot 1 \cup 0 \cdot 0)
\]

\[
= 0 \oplus 1
\]

\[
= 1
\]

In the above substitutions one uses the fact that

\[
P_3 = A_1 \cdot A_2 = 1
\]

and

\[
Q_3 = \overline{A}_1 \cdot \overline{A}_2 = 0.
\]

Also,

\[
A_2(t+1) = A_2(t) \oplus ((U \cdot P_2) \cup (D \cdot Q_2))
\]

\[
= 1 \oplus ((1 \cdot 1) \cup (0 \cdot 0))
\]

\[
= 1 \oplus 1
\]

\[
= 0
\]
\[A_{i}(t+1) = A_{i}(t) \oplus ((U \cdot P_{i}) \cup (D \cdot Q_{i})) \]

\[= 1 \oplus ((1 \cdot 1) \cup (0 \cdot 0)) \]

\[= 1 \oplus 1 \]

\[= 0 \]

The rest-states of Table 1 can be verified in a similar manner.

IV. A VLSI Architecture for Implementing an n-bit Binary Updown Counter

In this section, a VLSI architecture is developed for an \(n \)-bit binary updown counter. This VLSI counter is composed of \(n \) basic cells as well as a data mapping programmable logic array (PLA) [3]. The \(i \)th basic cell carries out the operations for calculating \(P_{i}, Q_{i}, \) and \(A_{i} \).

Figure 1 shows a pipeline architecture for an \(n \)-bit binary updown counter. It is composed of \(n \) basic cells and a data conversion PLA. Input to the data conversion PLA is either 1, 0 or \(-1\). These three values are represented as 01, 00 and 10 respectively in binary representation. It is true that if the input numbers are represented in accordance with this format, then this PLA is not needed. However, it is required in general to match to the outside system. Output of this PLA are values of \(U \) and \(D \). As described in the previous section, if input value is a “1” then \(U = 1 \) and \(D = 0 \). If input is a “-1”, then \(U = 0 \) and \(D = 1 \). Both \(U \) and \(D \) are zero if input is a “0”. In Fig. 2, a block diagram as well as a table illustrate the relationship between the input and output of this PLA.

Inputs to the \(i \)th basic cell are \(U, D, P_{i} \) and \(Q_{i} \) while the outputs are \(U, D, P_{i+1}, Q_{i+1} \) and \(A_{i+1} \). Outputs \(P_{i+1} \) and \(Q_{i+1} \) are obtained by the calculation of Eqs. (2a) and (2b). \(A_{i+1} \) is the intermediate value of a switch bit of this counter.

For an \(n \)-bit binary updown counter, \(n \) identical basic cells are required in the design.

Figure 3 shows the logic diagram of a basic cell in Fig. 1. This basic cell consists of three one-bit shift registers where registers labeled as \(RQ_{i} \) and \(RP_{i} \) are used to store values of \(Q_{i} \) and \(P_{i} \) respectively. Register \(RA_{i} \) stores value of \(A_{i} \). The output of \(RA_{i} \) is sent to an XOR circuit for calculating the value of \(A_{i}(t+1) \). In the mean time, \(A_{i} \) together with its complementary value \(\bar{A}_{i} \) is sent to two AND gates for the calculation of \(P_{i+1} \) and \(Q_{i+1} \). Figure 4 shows the logic diagram of a one-bit shift register. The two-phase clocking scheme is adopted in this design for the ease of timing control.

As was described previously, the initial values of \(P_{n} \) and \(Q_{n} \) are \(P_{1} = Q_{1} = 1 \). Therefore the inputs to registers of the first basic cell \(RP_{1} \) and \(RQ_{1} \) are tied to VDD which is always at logic value “one”.

Figure 5 shows the pin assignment of an \(n \)-bit binary updown counter. Where VDD and GND are power pins, \(\phi_{1} \) and \(\phi_{2} \) are two inputs for the non-overlapping clocks. \(A_{i} \) for \(1 < i < n \) are the output pins representing the results of counting. The final value is obtained \(n \) time units after the last input fed into the counter. Figure 6 shows the layout of a 64-bit binary updown counter. This was carried out by using the CAD system described in [8]. The total chip area is approximately 6000 \(\times \) 5700 \(\mu \)m\(^2\). The area occupied by the counter circuit is only 2800 \(\times \) 2600 \(\mu \)m\(^2\). The difference is due to the large number of input and output pads needed to interface with the outside world.

V. Conclusion

An efficient architecture has been developed for the VLSI implementation of a binary updown counter. The architecture is easily extensible in the number of bits counted. A 64-bit binary updown counter is designed according to this new algorithm. It is demonstrated in this article that a 64-bit binary updown counter can be realized easily on a single VLSI chip with current NMOS technology.
References

Table 1. The change of state of a 3-bit binary updown counter and U and D values

<table>
<thead>
<tr>
<th>D</th>
<th>U</th>
<th>$A_3(t)$</th>
<th>$A_2(t)$</th>
<th>$A_1(t)$</th>
<th>$A_3(t+1)$</th>
<th>$A_2(t+1)$</th>
<th>$A_1(t+1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Fig. 1. Pipeline architecture for an n-bit binary updown counter

Fig. 2. Block diagram and truth table of a data conversion PLA

<table>
<thead>
<tr>
<th>d_1</th>
<th>d_2</th>
<th>U</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Fig. 3. Logic diagram of a basic cell of an n-bit updown counter

Fig. 4. Logic diagram of a 1-bit shift register

Fig. 5. Pin assignment diagram of an n-bit binary updown counter
Fig. 6. VLSI layout of a 64-bit updown counter