NASA Contractor Report 173237
ICASE REPORT NO. 87-3

[CASE

ON A CRITERION FOR VORTEX BREAKDOWN

(KASA-CE-178232) CN A CRITEEICN FOR VORTEX N87-180(28
EBREAKDCWN Final Feport (NASA) <4
CSCL 20D
Unclas
G3/34 43279

R. E. Spall
T. B. Gatski
C. E. Grosch

Contract No. NAS1-18107
January 1987

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING
NASA Langley Research Center, Hampton, Virginia 23665

Operated by the Universitics Space Research Association

NANASA

National Aeronautics and
Space Administration

Langley Resesrch Center
Hampton, Virginia 23665




Ok A CRITERION FOR YORTEX BREAKDOXK

R. E. Spall
Department of Mechanical Engineering and Mechanics
01d Dominion University, Norfolk, VA 23508
T. B. Gatski
Viscous Flow Branch
NASA Langley Research Center, Hampton, VA 23665-5225
C. E. Grosch
Departments of Oceanography and Computer Science
01d Dominion University, Norfolk, VA 23508
and
ICASE, NASA Langley Research Center, Hampton, VA 23665-5225
Abstract
A criterion for the onset of vortex breakdown is proposed. Based upon

previous experimental, computational, and theoretical studies, an appropriately
defined local Rossby number is used to delineate the region where breakdown
occurs. In addition, new numerical results are presented which further validate
this criterion. A number of previous theoretical studies concentrating on
inviscid standing-wave analyses for trailing wing-tip vortices are reviewed and
reinterpreted in terms of the Rossby number criterion. Consistent with previous
studies, the physical basis for the onset of breakdown is identified as the
ability of the flow to sustain such waves. Previous computational results are
reviewed and re-evaluated in terms of the proposed breakdown criterion. As a
result, the cause of breakdown occurring near the inflow computational boundary,
common to several numerical studies, {s identified. Finally, previous

experimental studies of vortex breakdown for both leading edge and trailing

wing-tip vortices are reviewed and quantified in terms of the Rossby number

criterion.
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1. Introduction

Yortices can be generated in many ways. Of specific interest are vortices
generated by a finite plate or sharp-edged body at a non-zero angle of attack.
These vortices are often highly stable structures characterized by a strong
axial flow. Other examples of vortices with a strong axial velocity component
include tornadoes and waterspouts, intake vortices, and swirling flow in pipes
and tubes.

Leading-edge vortices shed from a delta wing induce a velocity field that
results in increased 1ift and stability of the wing. However, under certain
conditions related to the angle of attack of the wing, these vortices can
undergo a sudden and drastic change in structure known as vortex breakdown.

This breakdown can adversely alter the aerodynamic characteristics of the

wing. A similar vortex bursting phenomena has been observed for trailing wing-
tip vortices, which is desirable because these vortices represent a hazard to
smaller aircraft in areas of dense air traffic. The fundamental difference
between these two classes of vortices lies in their circumferential velocity
distributions. Far downstream, as was shown by Batche]or,1 the circumferential
velocity profile of the wing-tip vortex behaves like the two-dimensional
Burgers' vortex; whereas Ha11Z has shown that the circumferential velocity
distribution of the leading-edge vortex can be approximated using the concept of
a viscous subcore very near the axis surrounded by an inviscid rotational
conical flow region. Thus, the radial gradients of the circumferential velocity
near the axis of the leading-edge vortices are much larger than those of the
wing-tip vortices.

The ability to control these vortical structures is an important and active
area of research. For example, it is desirable to delay the process over a

delta wing and accelerate it for trailing-tip vortices. Unfortunately, a



comprehensive scheme to describe the breakdown process znd the parameters
effecting it is presently lacking, although several theories have been proposed.
Vortex breakdown was first observed experimentally by Peckham and
Atkinson.3 They observed that vortices shed from a delta wing at high angles of
attack appeared to "bell out" and dissipate several core diameters downstream
from the trailing edge of the wing. Since then, vortex breakdown has been
observed in swirling flows in straight pipes, nozzles and diffusers, combustion
chambers, and tornadoes. Seven types of breakdown have been identified

4

experimentally,” ranging from a mild "spiral" type to a strong "bubble" type

breakdown. Observations in the early 1960's spurred considerable effort to
develop a theoretical explanation for the vortex breakdown phenomena. Three
different classes of phenomena have been suggested as the cause or explanation

of breakdown. These are: (1) the concept of a critical s‘cate,s”8 (

10-12

2) analogy

to boundary-layer separation,z’9 (3) hydrodynamic instability.

The critical state theory is based upon the possibility that a columnar
vortex can s&pport axisymmetric standing waves. The supercritical state has
low-swirl velocities and the flow is unable to support these waves. Subcritical
flows have high-swirl velocities and are able to support waves. Vortex
breakdown can be thought of as the ability of the flow to sustain standing
waves.

In Hall's? theory, the breakdown phenomena is taken to correspond to a
failure of the quasi-cylindrical approximation. The idea being that when
streamwise gradients in the vortex become large the quasi-cylindrical
approximation must fail, thus signaling breakdown. This is considered to be
analogous to the failure of the boundary-layer equations which signals an
impending separation.

Stability theory only allows one to fnvestigate the amplification or decay
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of infinitesmally small disturbances imposed on the base vortex flow. Breakdown
is then assumed to be analogous to laminar-turbulent transition. Of course, as
pointed out by Leibovich,13 breakdown can occur with Tittle sign of instability
and a vortex flow may become unstable and not undergo breékdown.

The purpose of this paper 1s to show that the existence of a critical
condition for vortex breakdown can be described in terms of a fundamental local
flow parameter. A common idea among several previous theoretical studies will

14 concerning the stability

be identified and an analogy to the ideas of Taylor
of Couette flow will be noted. The identification of the Rossby number as the
key parameter will be discussed and its close relationship with the ideas set
forth in previous studies by others is examined. Finally, the Rossby number
criterion will be applied to previous computational and experimental results and
the numerical results of the present investigators.

2. Previous Theoretical Results

Throughout the remainder of this paper we use a cylindrical polar
coordinate system, (r, 8, z), and corresponding velocity components, U in the
radial (r) direction, V in the circumferential (e) direction, and W in the
axial (z) direction. In discussing previous work, we adopt the (r, o, z)
convention.

Squire8 appears to be the first to have performed a theoretical analysis of
vortex breakdown. He suggested that if standing waves were able to exist on a
vortex core then small disturbances, present downstream, could propagate
upstream and cause breakdown. This is analogous to the earlier work of Tay]orl4
on the stability of circular Couctte flow. There, a linear stability analysis
was performed to ascertain the ability of the base flow to support axisymmetric

standing-wave disturbances. In all of the cases studied, Squire assumed that

the vortex flow was inviscid and axisymmetric. He then sought to determine



conditions under which an inviscid, axisymmetric, steady perturbation to the
flow could exist. This condition, which was necessary for the existence of a
standing wave, was taken to mark the transition between subcritical and
supercritical states. Two of the cases studied by Squire are relevant to the
present study.
In the first case W was taken to be a constant. V was taken to be that of

a solid body rotation inside a core of unit radius and that of a potential
vortex outside. That is

Y=V, r O«<rgl

V=V./r r>1l (1)
with V  a constant. He found that for standing waves to exist a swirl
parameter, "k" the ratio of the maximum swirl speed to the axial speed, had to
satisfy a criterion

k =V . /W2 1.20 (2)

max
When k = 1.20 the wave is infinitely long but has a finite wavelength for
k > 1.20.

In the second case W was also taken to be a constant, but

v 2
V=2 (l-eT) (3)

with V, a nondimensional parameter. Again, Squire found that there was a
condition on the swirl parameter "k" for the existence of a standing wave. The
condition was

k = Vpax/M 2 1.00, (4)
where we note that

Vo = 0.638 Vg (5)

m

Benjamin5 examined this phenomena from a different point of view. He
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considered vortex breakdown to be a finite transition between two dynamically
conjugate states of flow. There is subcritical flow, which is defined as the
state that is able to support standing waves, and a conjugate supercritical flow
which is unable to support standing waves. In this context the work of Squire
gives a condition marking the interface between these two states. As in the
work of Squire, a universal characteristic parameter was defined which
delineates the critical regions of the flow. This parameter, denoted by N, is
the ratio of the absolute phase velocities of long wavelength waves which

propogate in the axial direction, i.e.,

C, +C_
N = ——r (6)

+ -

Here C, and C_ are the phase velocities of the waves which propogate with and
against the flow, respectively. For N > 1 the flow conditions are supercritical
and for N < 1, subcritical.

Benjamin applied this theory to a specific vortex flow, defined by W a
constant and

v

Vo r 0¢<rxl

V=V,/r l1«rgR (7)
If R+ =, this is just the combined vortex studied by Squire. Benjamin found
that the critical condition was of the same form as Squire's

Vnax/M = constant (8)
The precise value of the constant depends on the value of R but lies between
1.92 when R = 1 and 1.20 when R = . Thus Benjamin, although starting from a
different perspective, arrived at the same critical condition for a combined
vortex as did Squire.

As a variation of the phase velocity criterion of Benjamin, Tsai and



Widna1115 examined a group velocity criterion which follows more directly from
the view that the breakdown occurs due to a wave trapping mecham’sm.16 Their
investigation was of swirling pipe flows where the radial and axial velocity
distributions can both be fit to exponential profiles. They used the least
squares fit of Garg and Leibovich17 to calcu:ate the dispersion relation from
linear parallel stability theory. The group velocity associated with the
various flow profiles was then calculated. The results showed that upstream of
breakdown the group velocity of both the symmetric and asymmetric modes was
directed downstream. Even though their criticality condition of zero group
velocity proved an accurate guide for the various types of bfeakdown, they were
unable to establish a relationship between vortex breakdown and wave trapping.
Finally to complete this brief review of previous theoretical studies, a

18 is considered. There, both

recent paper by Ito, Suematsu, and Hayase
stationary and unsteady vortex breakdown were examined. They considered the
stability of a columnar vortex to small amplitude disturbances. The
disturbances can be axisymmetric as well as asymmetric and steady or unsteady.
Their analysis yields a criterion for breakdown from the requirement for the
existence of solutions to their disturbance equations. A comparison of these
results with those of Benjamin for the same case of a finite-radius pipe
containing a rigid-body rotation gives the same criterion for breakdown. The
jmportant aspect of the Ito et a118 work 1ies in their interpretive criterion.
Their non-dimensionalization leads to the Rossby number as the relevant
parameter. For example, in the case of swirling pipe flow consisting of a solid
body rotation, the relevant scales are the axial velocity W, pipe radius r and
constant angular velocity of the flow, g .

It is advantageous to summarize this section by placing these theoretical

analyses into perspective. As has been shown there is quantitative agreement




5 and Ito et a118 for the various test

among the results of Squire,8 Benjamin,
problems that have been examined. These analyses have been constrained by
either the scope of the analysis (linear, parallel, inviscid) or the narrow
class of flows that have been considered. In the study of Tsai and widna11,15
the calculation of group velocity is an added task. This is generally not
feasible in engineering applications where a criterion based solely on mean
quantities may be necessary. Nevertheless, these analyses indicate that a
criterion for vortex breakdown is available. In section 4, this Rossby number
criterion is applied to a variety of computational and experimental, confined
and unconfined flows and its range of applicability is examined. However,
before proceeding with this analysis it is instructive to examine the large
number of computational studies which have been performed.
3. Previous Mumerical Studies

Numerical simulations of vortex breakdown abound.lg'23 In all these cases
the flows were restricted to have axial symmetry and a relatively low range of
Reynolds numbers. In general, geometries and boundary conditions were chosen to
reflect experimentally observed flows. The purpose of the computational
experiments was to obtain information concerning the structure of the breakdown
region and the various parameters affecting its development. A possible
criticism of these nhmerical experiments 1s that when breakdown occurs, it
invariably does so within a few core diameters of the inflow plane. Due to the
existence of an inflow boundary layer inherent in all numerical calculations of
this type the results in this region must be suspect. This has been pointed out
by Leibovich,24 but has continued to plague subsequent numerical results.

21 solved the steady axisymmetric Navier-Stokes

Grabowski and Berger
equations for a free vortex approximated by a two parameter family of assumed

inflow velocity distributions. These were the polynomial profiles given by



25 in nis integral analysis, embedded in an irrotational flow. The

Mager
equations of motion were written in terms of stretched coordinates in the radial
and axjal directions. The conditions 3(Ur)/3r = 0, V = const/R and W = 1 were
chosen at the radial boundary, R. At inflow, a parameter, a, allows for wake-
like or jet-like axial velocity profiles. The artifical compressibility
technique was used to solve the equations of motion. Solutions were obtained
which were characteristic of vortex breakdown for Reynolds numbers based on
axial velocity and characteristic core radius, up to 200. These solutions were
obtained with inflow conditions that were, in many cases, subcritical. The
results indicate that breakdown is enhanced by increasing the swirl, and is
relatively Reynolds number independent.

Kopecky and Torrance20

considered axisymmetric swirling flow through a
‘cy1indrica1 tube. This distribution of swirl velocity at inflow behaves as a
solid body near the axis and a potential vortex away from the axis, representing
a solution to the Navier-Stokes equations for the limiting case of Reynolds
number approaching infinity. A parametric study was performed with Reynolds
numbers, based on axial velocity at the outer computational boundary and tube
radius, ranging from 50 to 500; and swirl ratios from 0.4 to 10. The
development of a recirculation zone was demonstrated as the swirl was increased
for fixed Reynolds number and viscous core diameter. Similar results were
obtained when the core diameter and swirl ratio were fixed while the Reynolds
number was increased. In all cases, the breakdown appeared to form very near
the inflow boundary.

A1l of the numerical work completed after that of Kopecky and Torrance,20

and Grabowski and Ber'gerz1

appears redundant. The authors report breakdown near
or at the inflow plane, which appears to be the greatest shortcoming of all

these results. The variation of the breakdown behavior to changes in Reynolds




number, swirl and axial velocity is similar. In addition, the assumption of
axial symmetry limits the usefulness of the results. These discrepancies must
be resolved before the relationship between numerically generated breakdown and
that observed experimentally can be accurately evaluated.
4. Breakdown Criterion

It is apparent from previous theoretical work that a criticality condition
can be established for the onset of breakdown. However, from an examination of
the computational studies that have been performed and the experimental studies
to be reviewed in this section, it appears that no such criterion has been
systematically applied to the various results. In general, the computations are
suspect due to the breakdown occurring very close to the inflow boundary. The
intent in this section is to show that an appropriately defined local Rossby
number can be used to determine the critica]ityqof'the flow. This choice is

> studies can be

motivated by the fact that both the Squire8 and Benjamin
reinterpreted in terms of this parameter and the recent work of Ito et a118
explicitly expresses the result in terms of a Rossby number.

The Rossby number must be defined in a consistent manner with respect to

the basic type of vortex flow being considered. It is defined as

Ro

L (9)
rQ

where W, r* and q represent a characteristic velocity, length, and rotation
rate, respectively. For the velocity profiles consistent with swirling flows,
leading edge, and trailing wing-tip vortices we define r* as the radial distance
at which the swirl velocity is a maximum. As pointed out by Leibovich,13 this
is a characteristic viscous length scale appropriate for swirling flows. W

represents the axial velocity at r*. This 1s justified by the fact that it is a
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consistent velocity scale for both uniform and radially varying axial velocity
profiles, and it is also consistent with the “"swirl velocity scale" implied by

r*n. A characteristic property of trailing wing-tip vortices is the solid body
rotation occurring near the vortex centerline. This rotation rate is considered
to be the characteristic rate, g, of the vortex. The wing-tip vortices are
often described in terms of the two-dimensional Burgers' vortex given as

Vir) == (1 - exp (-a r2/2v)) (10)

S|>x

Where a is an adjustable constant associated with the core size, v is the
kinematic viscosity, and K is proportional to the circulation. Here, @ is

taken as the limit of V/r as r + 0, i.e.,
= i ! = ak
Q —r11m0( - ) V2N (11)

The characteristic length is taken as

2y

r* =
a

(12)

which turns out to be close to the radius of maximum swirl velocity. For the

8 and Benjamin5 the

case of the combined vortex considered by Squire
characteristic radius, r*, is 1. Note that the parameter "k" given by Squire
for the combined vortex is the inverse of the Rossby number, since the
characteristic rate of rotation is given by the solid body rotation of the
vortex core, Vo.
Figure 1 is a plot of the Rossby number versus Reynolds number for a
variety of computational and experimental studies of swirling flows and trailing

wing-tip vortices. Throughout the figure, the open symbols denote no breakdown
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and the solid symbols denote breakdown. For these computational and confined
experimental studies, breakdown is defined as stagnation of the axial velocity
on the axis. For the unconfined experimental studies, breakdown is defined as a
rapid expansion of the core coupled with a strong deceleration of the axial
velocity. The Reynolds number is defined here in terms of the viscous length
scale r* and the axial velocity W at the radius r*. A third parameter
associated with such flows is the Eckman number, or a "rotational"” Reynolds
number but in this context it is not an independent parameter. It is, of
course, apparent that the Rossby number parameter is expressible in terms of the
less fundamental swirl ratio parameter if the chosen characteristic velocities
are consistent with the Rossby number definition. For example, in the combined
vortex nr* is equal to V...; whereas, for Burger's vortex, and vortices in
general, Qr* is not equal to Vmax' The data in the figure show that the
computational work to date has been performed at relatively low Reynolds numbers
compared to the experimental studies. Since the results are Reynolds number
dependent in the range of computational test cases, direct application of
inviscid theory in this range is invalid.

The authors have performed numerical calculations using a numerical
algorithm for which an axisymmetry condition is not a prerequisite for
solution. The algorithm is the three-dimensional extension of the earlier work

27 using vorticity-velocity variables and a compact

of Gatski, Grosch, and Rose,
discretization of the Navier-Stokes equations. Application of this algorithm to
the numerical study of the breakdown phenomena for a variety of flow conditions
and parameters forms a part of the doctoral dissertation of R. E. Spall. For a
Reynolds number of 200 and a Rossby number of 0.5, breakdown occurred at the

inflow plane. For the same Reynolds number and a Rossby number of 0.72, a

decrease in axial velocity occurs near inflow, but does not result in
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breakdown. In addition, for a Reynolds number of 50 and Rossby number of 0.5,
breakdown occurred at inflow.

The experimental studies have been conducted for both confined and
unconfined flows at higher Reynolds number. Figure 1 shows the results for the
confined flows of Garg and Leibovichl’ which are characteristic of the wing-tip
class of vortices. Since the data was fit to Burgers' vortex, the Rossby number
is easily obtained. Here the Reynolds numbers ranged from 1288 to 2150. The
data points representing the bubble form of breakdown are taken approximately 21
cm upstream from the breakdown point and within 6 cm of the beginning of the
divergent section of the duct. A single set of data was available from the
study of Uchida and Nakamura.28 This is a confined flow with axisymmetric
breakdown occurring at a Rossby number of 0.64. The data point from Singh and

26 §s for an unconfined trailing wing-tip vortex of a laminar flow wing.

Uberoi
In this case the minimum axial velocity rapidly decreases to 0.3 W_, which
suggests vortexbreak down.

The points representing the spiral form are taken near the front of the
bubble but occur further downstream ( ~ 15 cm). Here, the data show a drop in
Rossby number as the breakdown point is reached. Note the spiral form of
. breakdown seems to occur at a higher Rossby number than the bubble form. This
is not surprising since the stability mechanisms responsible for this type of
breakdown are different than the bubble-type breakdown. Thus, a new higher
critical Rossby number is apparently needed as a threshold value for the onset
of the spiral form of breakdown.

Figure 2 displays the relationship between Rossby number and Reynolds
number for the leading-edge class of vortices. The experimental data was

30

obtained from reports by Owen and Peake,29 Anders, and Verhaagen and

Kruisbrink.31 Once again open symbols denote no breakdown and closed symbols

denote breakdown.

L ame
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In the study of Owen and Peake,29

axial core blowing was introduced into
vortices shed from delta wings in order to study its effect on breakdown. The
symbols in Figure 2 representing this data are variations based on a blowing
coefficient, Cu, at fixed streanmwise stations % = 3 and %-= 4 (¢ is the chord
length of the delta wing). As Cu increases, the corresponding axial velocity
increases and the Rossby number increases past critical. They state that
breakdown occurs for the case Cu = 0.0, while for Cu = 0.05 and 0.12 the flow

30 the variation

is stabilized and no breakdown occurs. For the study of Anders,
of the data in Figure 2 is parameterized by the angle of attack of the delta
wing. The results for the two angles of attack, a = 19.3° and o = 28.9°, at
essentially the same downstream location, are shown in the figure. As shown the
higher angle of attack causes breakdown to occur closer to the wing leading

k31 measured the flow properties of the core to

edge. Verbaagen and Kruisbrin
support and validate the development of mathematical models. They report that
no breakdown occurred. It is important to note that for this class of vortices,
as well as for the trailing wing-tip vortices, the Reynolds number range over
which the Rossby number criterion holds is significant.

Although the data is sparse and the evaluation of the Rossby number
approximate, one may conclude that vortex breakdown for leading-edge vortices
occurs at a higher Rossby number than for trailing wing-tip vortices. This may
be due to the fact that the swirl velocity profiles are of a different type.

Far downstream, the flow outside the core of a trailing wing-tip vortex is
nearly irrotational. For a leading-edge vortex, the flow at the edge of the
core is rotational and nearly inviscid. In addition, the leading-edge vortex
contains a narrow viscous subcore where the radial gradients of the

circumferential velocity are extremely large. In contrast, the wing-tip vortex

approaches a solid body rotation as the axis is approached. Upstream of
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breakdown both type vortices can generally be approximated as quasi-
cylindrical. The authors can find no analyses that seeks standing-wave
solutions to profiles applicable to leading-edge vortices. If these were
available, an analytic Rossby number criterion could be obtained. Based on
experimental results, it should be near unity.
5. Conclusions

The results shown in Figure 1 make it apparent that experimentally,
analytically, and computationally, the critical Rossby number for the symmetric
form of trailing wing-tip vortex breakdown for Reynolds numbers greater than 50

is about 0.65. For lower Reynolds numbers, the value of the critical Rossby

number is lowered, undoubtedly due to the increased damping effects of viscosity

on the wave motions.

Figure 1 sheds 1ight on the proper way to perform computational
experiments. The inflow profile should correspond to a Rossby number greater
than the critical value. This prevents the possibility of wave-like solutions
near the inflow thus precluding breakdown. A mechanism, either inherent in the
dynamics of the flow or externally imposed, must then modify the local Rossby
number as the flow evolves in the streamwise direction. For example, the decay
of a jet-like axial flow due to viscosity or the imposition of an adverse
pressure gradient might be sufficient to lower the local Rossby number. Once
the critical condition is achieved the possibility of wave-like solutions
arises. One would expect a wave propogating upstream to become trapped at this
location. If, on the other hand, the Rossby number at inflow is less than the
critical value, axisymmetric waves can be expected to propogate to the inflow
boundary. Here, the velocity profiles are fixed, thus acting as an "artifical”
critical condition. Thus breakdown occurs at this point.

This scenario for numerical computations corresponds to the way in which




15

experiments conducted in tubes have been carried out. A supercritical flow is
drawn towards critical as it evolves downstream due to the slight expansion of
the tube. At the critical station, breakdown occurs.

The theoretical analysis of Squire, Benjamin and Ito et al reduce to a
criterion for the existence of axisymmetric standing waves based on a Rossby
number. The exponential profile, (Eq. (10), which most closely models
experimental flows, yields a critical Rossby number of 0.64. This value is
shown as a dashed line in Figure 1. The experimental data of Garg and
Liebovich,17 interpreted in terms of a Rossby number, shows that the bubble form
of breakdown occurs when the local Rossby number falls in the range of 0.63 to
0.67, whereas the spiral form of breakdown occurs when the local Rossby number
falls to 0.7. From the available data, the local Rossby number was initially
below 0.7 for the cases involving the bubble-type breakdown. Numerical
experiments reveal a high Reynolds number 1imit (Re > 50) of about Ro = 0.6 for
breakdown to occur. For lower Reynolds numbers, a lower Rossby number is
required to initiate breakdown.

The situation is less clear for the class of leading-edge vortices of
Figure 2. In this case the data is sparse and, when obtainable, it is more
difficult to cast in terms of the Rossby number and Reynolds number. However,
the data that is shown was obtained from a more diverse parameter base. For

example, in the study of Owen and Peake,29 core blowing was the variable

30 angle of attack was the relevant

parameter and in the study of Anders,
variable parameter; nevertheless, in both cases, the available data was
consistent with the concept of a Rossby number criterion.

It is apparent from the results of this paper that retarding or precluding

vortex breakdown is a practical and viable objective. This altering of the

vortex characteristics can be accomplished by either reducing the characteristic
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rotation rate of the vortex or enhancing the streamwise velocity. The rotation
rate can be reduced, for example, by imposing transverse pressure gradients, or
the streamwise velocity can be enhanced by imposing streamwise pressure
gradients. In either approach the effective measure is the Rossby number.
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Fiqure Captions

Rossby Number Dependence of Wing-Tip Vortices.

Rossby Number Dependence of Leading-Edge Yortices.
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