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1. INTRODUCTION 

This assessment study report summarizes the available information dealing 

with semiconductor lasers capable of operating at 0.67-, 1.44-, 1.93-, and 

2.5-ym wavelengths and then presents recommendations as to the most promising 

system for each wavelength. 

at room temperature in the pulsed mode at a relatively low duty cycle and with 

high output power. 

A major assumption is that the lasers will operate 

Unfortunately, most published results describe devices that do not have 

the exact desired wavelengths. Therefore, this report deals primarily with the 

possibility of modifying the described device material compositions to meet 

specifications. In addition, some totally new compositions are proposed. 
The first experimental demonstrations of semiconductor lasers were prepared 

with GaAs p-n junctions in 1962. They operated in the pulsed mode at 77 K [l-31. 
Since then, a lot of effort has gone into achieving room temperature cw operation. 

It was found that a double heterojunction (DH) was necessary to reduce the thres- 
hold current. Furthermore, lateral confinement of the active lasing region into 

a narrow width stripe has become a common technique [4,5]. Although the subject 
devices do not have to operate in the cw mode, the DH and a stripe geometry are 
necessary for higher output power, reduced current drive, beam definition, and 

operating life. 

A gieat deal of e f f ~ r t  has also been applied towards extending laser 

operating life and improving reliability. 

improved remarkably with the development of techniques that remove mechanical 

strain, provide passivation, exclude oxygen from the growth atmosphere, improve 
ohmic contacts, and control crystalline degradation and catastrophic facet 

damage [6-131. Even though the subject devices do not require very long life, 

all the techniques mentioned above improve the maximum power output limit. 

The reliability of DH lasers was 

A number of papers have been written on lasers that operate near the 
required wavelengths. For the short wavelengths (-0.67 ym), there is need for 

a very sharply focused beam for high density optical information storage, such 

as audio or video disc players and optical printers [14]. This need arises 

because the focussed area becomes smaller for the shorter wavelengths, thus 

yielding higher energy density and higher resolution. Therefore, short wave- 

length lasers are actively being investigated and very encouraging laboratory 

experiments have been reported. 

" ~ ~ C E 3 i I ' i G  PAGE Fe~j;:( ~ 4 0 ~  FIWIED 
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The intermediate region of 1.44 pm is close to the 1.3- and 1.55-pm ranges 

where present optical fiber communication systems are being developed for 

optical fibers with low transmission loss (0.47 dB/km) and zero dispersion at 

h = 1.3 pm and even lower loss (0.2 dB/km) at h = 1.55 pm [14-171. 
InP lasers for communication purposes are very well developed, and control of 
the wavelength by changing the material composition is very well established 

[14]. 
great confidence of success. 

The InGaAsP/ 

Therefore, InGaAsP can be selected for 1.44-pm wavelength devices with 

For the 1.93- to 2.5-pm range, there are attempts to develop longer 

wavelength lasers for communication purposes because of Rayleigh scattering, 

the intrinsic loss mechanism due to non-uniformities in the refractive index 
which decreases with a factor of h . In present quartz fibers, however, the 
signal above 1.7 pm is strongly attenuated due to the molecular vibration of 
Si, 0 ,  and (OH). Consequently, there is a search for new fiber materials [14] 

to replace quartz, and lasers in this wavelength will no doubt become 

important in the future. 

-4 

There is also a need for longer wavelength sources in spectrometry, or 

photometry, to analyze gaseous molecules whose characteristic absorptions are 

in the 1- to *lO-pm range. However, commercial demands in both the gaseous 

analysis and fiber communication field are not large now, and research in the 
longer wavelength region is not very active. 

2. STRUCTURE OF HIGH POWER PULSE LASERS 

2.1. Double Heterostructure 

The energy band structure of an efficient high power laser (Fig. 1) should 

contain a double heterojunction [17]. The active layer, in which light amplifi- 

cation takes place, is sandwiched between two cladding layers that have higher 

energy bandgaps than the active layer; one cladding layer is doped p-type and 
the other n-type. 

trons are injected from the n-type cladding layer into the active layer and 

holes are injected from the p-type cladding into the active layer. 

When a forward bias voltage is applied to the junction, elec- 

Since the p-type cladding is a large energy wall for injected electrons, 

it blocks the flow of electrons while the n-type cladding layer blocks the flow 

of holes. In this way, electron-hole recombination is limited to the active 

10 
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(a) BEFORE JUNCTION FORMATION 

CLADDING 
CLADDING ACTIVE LAYER 
LAYER LAYER 

ENERGY BARRIER 
FOR ELECTRONS 

BARRIER 

n+ 
(b)  JUNCTION WITH ZERO BIAS 

( C )  JUNCTION WITH FORWARD BIAS 

Figure  1. Energy band diagram of a double he te ro junc t ion:  (a) Before 

high bandgap n , low bandgap n ,  and h igh  bandgap P m a t e r i a l s  
a r e  combined; (b)  Af t e r  junc t ion  i s  formed, t h e  sharp  notch 
and s t e p  may be smoothed o u t  by i n t e r d i f f s u i o n  of atoms 
o r  mel t ing each o the r .  Fermi l e v e l  comes on a common 
l i n e  a t  zero b i a s  condi t ion;  (c) A t  a forward b i a s  condi- 
t i o n ,  e l e c t r o n s  and holes  a r e  i n j e c t e d  i n t o  t h e  a c t i v e  
reg ion  and blocked by t h e  energy wa l l .  

+ 

region.  The r e f r a c t i v e  index of t h e  ac t ive  l a y e r  must be h igher  t han  t h a t  of 

t h e  c ladding  l a y e r ,  so t h a t  t h e  a c t i v e  layer  can func t ion  a s  an  o p t i c a l  wave- 

guide i n  t r app ing  t h e  r a d i a t i o n .  Thus, the quantum e f f i c i e n c y  of a DH laser 

is very  h igh  and t h i s  s t r u c t u r e  has t o  be a prime choice f o r  e f f i c i e n t  high 

power l a s e r s .  

The d i f f e r e n c e  i n  t h e  bandgaps of a c t i v e  and cladding l a y e r s  should be 

more than  t e n  times t h e  thermal energy, kT = 26 meV a t  T = 300 K ,  because t h e  

11 



carrier is energized roughly up to the kT value and the energy walls have to 

block the higher energy carriers in the thermal distribution, even when the 

energy wall is reduced at forward bias conditions. If the energy wall is not 
high enough, some of the recombination takes place outside the active region. 

The resultant radiation has a different wavelength and cannot be guided into 

the active region. A high energy wall can be realized by choosing a higher 
energy bandgap material for the cladding layer, but the higher bandgap mate- 

rial does not necessarily have a lower refractive index (this is discussed in 

detail in Section 2.2).  

Another requirement for the DH structure is the matching of the lattice 
constants for epitaxially grown active and cladding materials. When the 

lattice mismatch in the DH structure is appreciable, lattice defects grow 
rapidly to form dark lines or spot defects due to the heat generated by non- 

radiative recombination and residual stress [14,17]. However, lattice 

matching of the active or cladding material to the substrate material is 

not always necessary because of the use of a "graded scheme'' in which the 

lattice constant gradually varies from that of the cladding material to that of 

the substrate through the insertion of a graded-composition intermediate 

layer. 

2.2. Lateral Structure Definition 

The DH discussions above deal with the compositional variations in the 
depth direction. This section considers structural variations in the plane 

parallel to the junction. 

A number of studies have been devoted to methods for constraining lateral 

modes to obtain effective coupling into fiber cores. The lateral structure of 

the active region of suitable lasers is usually a stripe geometry, achieved by 

either gain guiding or index guiding. 

The width of the stripe can be made narrow enough to obtain single mode 

operation, but the present high power pulse laser does not have to operate in a 

single mode. If the stripe width is large, i.e., 8 mils, multiple near-field 

spots are formed in the 8-mil-long facet region. An ideal lens set at its focal 

length (i.e., 1 inch) converts the radiation from lasing spots into parallel 

beams, but the beam has 0.46O lateral divergence, which means the beam spreads 

to an 8-foot-wide region at a 1000-foot distance. To reduce the horizontal 

1 

i 
I 

I 

I 

1 

I 

I 
I 

I 

I 

I 
~ 

I 1 
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i 
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divergence of the beam coming out from an appropriate lens, the width of the 

stripe has to be reduced. 

The simplest way of confining the active layer width is to use the oxide 

stripe geometry in which guiding action in the lateral direction is obtained by 

gain guiding produced by constricting the current region (Fig. 2 ) .  

METALLIZATION 
DIELECTRIC 

P CLADDING 

ACTIVE 

N CLADDING 

1 O O p i  t' / \ SUBSTRATE 

l l +  METAL L I Z AT1 0 N 

OPTICAL GAIN-/ 
REGION 

Figure 2 .  Cross-sectional view of an oxide stripe laser with 
double heterostructure. The light is guided in 
the high gain region of high current density. 

2.3. -. Improvement - of Pulse Power Output [14,17] 

2 . 3 . 1 .  Kinks 

When the forward current is increased, the measured output does not neces- 

sarily increase. The output-current curve of gain-guided lasers sometimes shows 

an unstable change of the gradient, called a kink. This kink is associated with 

mode hopping, and it can be suppressed by reducing the stripe width to the point 

where only one mode can exist (typically less than 10 pm). It is also possible 

to have a wide gain-guided emitting region by properly phasing each emission and 

in essence making a phased array. 

wide-stripe lasers may not be objectionable in the present application. 

However, mode hopping associated with 

2 . 3 . 2 .  Larger Energy Wall to Suppress Carrier Leakage 

For narrow stripe-width lasers, the output power can be seen to saturate 

at some high current level. At a large forward bias condition (Fig. la), the 
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energy wall of the DH structure is reduced [18-201. Also, the concentration of 

high energy carriers increases due to the increased temperature or the hot 

electron effect at a high injection level 1211. 
becomes predominant when free carrier absorption or Auger recombination [22] is 
large at a high injection condition because the recombination energy cannot be 

radiated to the outside. Carrier leakage tends to occur in such a high tempera- 

ture condition. The increase of  threshold current with increasing temperature 

results in decreased optical gain. An effective solution to carrier leakage is 
increasing the height of the energy wall height. 

The carrier heating effect 

2.3.3. Improvement of  Facet Structure 

At a high output power level, the facet degrades due to a photochemical 

reaction with water vapor or oxygen adsorption and also catastrophic damage. 

Passivation by A1 0 or Si0 coating on the facet doubles the maximum power 

level to approximately 10 to 14 MW/cm2 of 100-nsec pulses for GaAs/AlGaAs 

lasers[23]. To reduce absorption at the facet region, the bandgap at the 
facet region can be slightly enlarged by variations in impurity doping [24]. 
In this case, a maximum output of 10 to 20 MW/cm2 for 100 nsec pulses was 
observed, which is 1.5 to 1.8 W for a 10-vm-wide stripe. 

2 3  2 

3. MATERIAL SELECTION AND SUITABLE COMBINATIONS 

As described earlier, the necessary conditions for material combinations for 

double heterostructures are 

(1) a suitable bandgap combination, which means the active region has a 
lower bandgap with direct transitions, 

(2) a suitable refractive index combination, which means the active region 

has a higher indexs, and 

(3) lattice constants of the active and cladding layers that agree and 
match those of the substrate directly or gradually. 

To select materials from combinations of  commonly used 111-V elements-- 
In, Ga, Al, As, Sb, and P--A. Sasaki et a1 [25] compiled two charts (Fig. 3 
and 4). 
constant; the other presents the relative dielectric constant. These two 

charts include all the combinations of the often-used 111-V elements. Figure 3 

One shows the direct and indirect energy bandgaps and the lattice 

14 



shows the bandgap by curved solid lines for direct transition and by curved 

dotted lines for phonon-assisted indirect transition. The straight lines show 

that any point on the line has the same lattice constant as that of a corner 

binary material, which is often used for the substrate. All the arbitrary 

equal-lattice-constant lines are parallel in a material region. 

a square or triangle area is expressed by a certain ratio of the mixture of 

binary materials. The basic concept, equations and parameters used for drawing 

these curves are given in Appendix A. 

A point inside 

The relative dielectric constant, & which is directly related to the r’ 
refractive index n through n Z d&r, is given in Fig. 4. 

The material for the active region should be chosen from the specified 

wavelength A using the relationship 

Eg(ev) = 1.2399/A (pm) . 

Therefore, suitable bandgaps are 1.85 eV (A = 0.67 pm), 0.86 eV 
(A = 1.44 pm), 0.64 eV (A = 1.93 pm), 0.496 eV (A = 2 . 5  pm). With Fig. 3, the 
composition of each active layer material can be determined from a point 

showing the necessary bandgap value on an equal lattice constant line drawn 

from a corner where there is a name of a binary material. 
For example, for active layer material that emits 1-pm wavelength radiation, 

find a line of 1.24 eV that starts from a little below InP--which is on the 

uppermost horizontal line--and extends in the left-down direction, passing 

near the GaAs point and further down near the GaSb point. Also, another branch 

starts as above, but proceeds to the right in the downward direction and ends a 

little above the other InP point at the bottom central region. The line 

encompasses five square regions and two triangle regions. Thus, seven different 

material regions are chosen. (Actually, three more square regions and two 

triangle regions, including a 1.24-eV line, are found in the right-hand side 

regions, but the discussion is similar.) 

The substrate material whose lattice constant matches the material to be 

grown can be found as follows. The left part of the 1.24-eV line intersects 
with a straight line starting from InP in the GaP-InP-GaAs-InAs square region 
(InGaAsP) and also intersects in the GaP-GaAs-GaSb triangle region (GaAsSbP). 

The right part of the 1.24-eV line intersects with three parallel straight lines 

starting from InAs, GaSb, and AsSb in both the InAlAsSb and InAlSbP square 

15 



ORIGINAL 
OF POOR 

LINE 

Figure 3 .  Variations of energy gap and band structure with 
respect to composition for 111-V mixed semi- 
conductors. Thin solid, broken, and dotted lines 
denote equi-energy gaps of r ,  X, and L valleys, 
respectively. Thus, the band structure in the 
region of thin solid lines is direct. The thick 
solid line is the borderline between and X or 
L valleys, and the thick broken line is the border- 
line between X and L valleys. 
dot line is an equilattice-constant line. The 
numerical values indicate energy gaps in eV. 

The thin dash-and- 

3 

Figure 4 .  Variations in relative dielectric constants with re- 
spect to composition for 111-V mixed semiconductors. 
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The refractive index for the cladding material has to be lower than that of the 
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The line shape or gradient is totally different for AlAsSbP, AlGaAsP, 

InGaAlP, InAlAsP, InGaAsSb regions marked by x in Fig. 4. This should be 

noted for selection of new material combinations. 

Actually, most researchers discuss the bandgap for DH structures, but 
not the refractive index, and some published articles proposed laser structures 

with the wrong combination, while some textbooks and review papers give the 

incorrect impression that a lower refractive index is always caused by a 

higher bandgap [14,17]. 

The reason for this belief is the concept, called Moss' rule [26], which 
says energy level separations are inversely proportional to the square of the 

dielectric constant, so that the threshold wavelength of the absorption edge 

or E would be given by the approximate relation [27] 
g 

4 n E = constant. 
g 

Moss' concept, however, is only a rough rule. Actual values for 111-V 

binary materials do not lie only on a smooth curve. There are several cases 

with higher bandgap materials having higher refractive indexes as seen in Fig. 

5. 

good. 

4 The agreement between the constant n E curve and real values is not very 

4. PROPOSED LASER STRUCTURES 

4.1. 0.67-pm Wavelength Region 

In this section, we apply the concepts discussed above to obtain detailed 

recommendations concerning suitable materials for the desired wavelengths. 

First, The 0.67-pm wavelength corresponds to the bandgap of 1.85 eV. 
1.85-eV lines have to be found in Fig. 3 ,  and then intercepts located on the 

substrate line starting from available binary substrates. 

numbered 1, 2, 3 in Figs. 3 and 4. The material compositions are (1) 

A1O. 35Ga0. 55*'O. 98'0.02 ' 
and (3 )  In0. gA1O. qSbO. 24'0.76 
slightly longer than the designed value because the temperature rise at a high 

injection level tends to reduce the bandgap. 

These points are 

for GaAs substrates, In0. 46Ga0. 54'0. 95AS0. 05 
for InP substrates. The lasing wavelength is 

Therefore, slightly larger energy 
lines, such as 1.9 eV, have to be considered. 

18 



The material (1) has a very small amount of P and belongs to the AlGaAs 
category, about which a number of reports are available. The material (2) was 

also reported for short wavelength devices. The material (3) was not found in 

the literature. This material should be excluded because the point is close to 

the indirect transition boundary, and the materials on the substrate line from 

InP show higher dielectric constant for higher band gap regions as seen in 
Figs. 3 and 4. 

There are other intercept points between 1.85-eV (or 1.9-eV) lines and 

AlAs or GaAs substrate lines. The materials on AlAs lines should be excluded 

from investigation because AlAs is deliquescent. The GaAs line and the 1.9-eV 

line intercept at the point 2' on the side of the uppermost triangle region 

formed by Gap, Id?, A1P points, and this material (Gao.51no.5P) is discussed in 

the following section. Also, the 1.9-eV line and the GaAs line intercept at 

another point on the side of the right-bottom-corner-square region formed by 

InSb, GaSb, Gap, InP. The cladding material on this GaAs line does not make a 

good DH structure because the bandgap difference is too small. This covers all 

the possible material combinations for a 0.67-pm device, which will now be 

taken up in more detail. 

4.1.1. InGaP/InGaAlP on GaAs Substrate 

The InGa41P system is shown in the triangular areas located at the upper- 

most regions in Figs. 3 and 4. Only the peitinent regions are enlsrged and 

shown in Fig. 6(a) and (b). The GaAs substrate line covers the range from 

1.91 to 2.15 eV in the direct transition region whose material composition is 

1n0.5(Gal-x x 0 . 5  
indirect transition region with 2.15 to 2.26 eV. 

A1 ) P with 0 < x < 0.47. The range of 0.47 < x < 1 is in the 

Even though the lowest bandgap on the GaAs line (point 2') is a little 

higher than the specified bandgap of 1.85 eV, the actually observed wavelength 

is 0.68 to 0.69 pm [28-311 for In0.5Ga0.5P due to the heating of the active 

layer. 

of A1 into the active and cladding materials. The shortest wavelength laser 

with A = 0.626 pm is observed when x = 0.17 [30]. However, this active-cladding 

material combination does not seem to provide the right optical guide struc- 

ture, since higher bandgap material with a higher A1 concentration has a higher 

refractive index, as seen in Fig. 6(b). 

This longer wavelength can be tuned to 0.67 pm by adding a small amount 
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Figure 6. (a) Energy bandgap diagram of InGaAlP. The 
point 2' is active and 2" is cladding material, 
and (b) Dielectic constant diagram of InGaAlP 

Nevertheless, very good results were reported recently by K. Kobayashi et 

a1 [ 3 1 ] .  They describe room-temperature cw operation of In 0. gGaO. 5 p/ (A10. 4- 

P laser (points 2 '  and 2" in Fig. 6 ) ,  with a very low threshold 6 '0  .51n0 .5 
current of 4.1 kA/cm2, A = 0.69  pm [ 3 1 ] .  The characteristic temperature T is 

90 K, which means the temperature dependence of J is better than that of the 

commercially available InGaAsP/InP laser, but worse than that of the GaAs/AlGaAs 

lasers. The details on growth conditions have been reported by the same group 

[ 3 2 , 3 3 ] .  

refractive index guide structure, and thus require further discusison. 

0 

th 

These very good results are inconsistent with the use of the wrong 

P than of In0.5Ga0.5P, 
0. qGaO .6)0 .51n0. 5 The higher dielectric constant of (A1 

as seen in Fig. 6(b), originates from the higher dielectric constant of A1P with 

E = 9.78 and the lower dielectric constant of GaP with E = 9.036 in Table 1 by 

Sasaki et al. Other reports give different values [ 3 4 ] ,  such as a minimum E 

value for A1P of 8.5 and a reported maximum E for GaP of 9 . 1 .  As for Alp, growth 

of the pure crystal is difficult because it is unstable in humid air, making the 

data unreliable. The numbers for the dielectric constants by various investiga- 

tors are shown in Table 1.  The values consistently agree for each material 

except for A1P and AlAs. Therefore, the triangle region of InGaAlP in Fig. 4 

or the chart in Fig. 6(b) may not be reliable. The fact that very good laser 

properties were obtained suggests that the DH structure with higher refractive 
index of the active layer is correct. The value of AlAs does not affect the 

result of the discussions because the points are far from all the laser materials. 
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4.1.2. InGaAsP/AlGaAs(P) on GaAs 

The InGaAsP system is shown by the central square region of the three 

uppermost square regions, and AlGaAsP is shown by the next left side square. 

These two square regions are enlarged and shown in Fig. 7. The composition of 

InGaAsP, whose lattice constant matches that of GaAs, is shown by the straight 

A1P GaP 2 I n P  

INDIRECT J BOUNDARY L- DIRECT 

Figure 7. Energy bandgap diagrams for InGaAsP and AlGaAsP. 

line starting from the corner of GaAs; the composition of 1.85 eV on the GaAs 

line is numbered by "2" in Fig. 7. Higher bandgap energy material for cladding 

cannot be chosen from the same material on the GaAs line because the bandgap 

becomes smaller towards GaAs along the line. One possibility is to use AlGaAs, 

which has been investigated in detail. To assure higher bandgap and lower 

index, the A 1  content x of A1 Ga As has to be more than 0.6. x 1-x 
K. Kishino et a1 [ 351 reported on the Ino. 47Ga0. 53A~0. 05Po. 95/Alo. 6Ga0. 4As 

structure (points 2 and 1'  in Fig. 7) with very encouraging results of a 30-mW 
output at room temperature, 100-ns pulse operation, and Jth = 8 kA/cm" at 
A = 0.67 pm. The characteristic temperature, To,  was 53 K. 
stripe was 71 pm [35]. When the width was reduced to 8 pm, cw operation up to 

The width of the 

L 208 K was achieved, but Jth increased to 13 to 25 kA/cm 

of the current [36]. Another group [37] reported details of LPE growth, but 

the laser characteristics were not as good as those of Kishino et al. 

because of the spreading 
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4.1.3. InGaAsP/InGaAsP on GaAs Substrate 

As described in the previous section, the bandgap of InGaAsP lattice 

matched to GaAs ranges from 1.87 to 1.43 eV; cladding material for 1.85-eV 

active material cannot be provided by the same material with different composi- 

tion. When a lower bandgap material (closer to GaAs) is used for the active 

layer, the wavelength becomes longer than 0.67 pm. S .  Mukai et a1 [38] reported 

on this example with 0.704- and 0.725-pm wavelengths. 

0.6’0.4 4.1.4. InGaAsP/InGaAsP on Graded Lattice Constant GaAs 

Layer Substrate 

Commercial GaAs P substrates grown on GaAs are available for LED use. 0.6 0.4 
The lattice constant of GaAso.6Po.4 is different from that of GaAs so that an 

intermediate layer of GaAs P is inserted, with the x value changing from zero 
on the GaAs surface to 0.6 on the final growth surface. The chart for InGaAsP 

was extracted from Fig. 3 and enlarged for Fig. 8. The material compositions 

whose lattice constants match the GaAs P substrate are expressed by the 

straight line starting from the GaAs P point. The bandgap varies from 1.9 0.6 0.4 
to 2.0 eV for direct transition and 2.0 to 2.14 eV for indirect transition. 

Therefore, the active material should be GaAs P or close to this composi- 

tion, and the cladding material should be found from a point with higher 

handgap on the substrate line. 

x l-x 

0.6 0.4 

0.6 0.4’ 

A fairly good result was reported by E .  Kiessel et a: at RCi! [3!?]. ?he 
2 output was 4.3 mW for cw operation at 10°C with J = 6.6 kA/cm at a 0.68-pm 

wavelength using GaAs P for the active material and In 0. 34Ga0. 66 P for the 
cladding (Fig. 8). The operating life was tested for a drive current 20% less 
than Ith, and the output decreased by 40% after 2000 hours of operation. This 

degradation is substantially larger than that of AlGaAs lasers emitting at 

about 0 . 8  pm. The reason for the degradation was thought to be misfit disloca- 

tions propagating from the graded substrate, since so-called cross-hatched 

patterns were seen on all the grown surfaces of each step. Other researchers 

described the same surface pattern [38,40], and detailed crystal growth condi- 

tions were also investigated [41,421. 

th 

0.7 0.3 

However, A. Usui et a1 [42] reported that very high crystalline quality 
P for the 0. 32Ga0. 68 

substrates when the growth 
P for the active material and In 0. 07Ga0. 93AS0 .51 0.49 In 

cladding can be grown on graded GaAs P 0.61 0.39 
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I I rBOUNDARY r DIRECT 

Ga0.6AS0.4P 

(REF 39) 
KRESSEL'S 

GaAs I n A s  

Figure 8 .  Energy bandgap for InGaAsP. The black points are 
short wavelength materials. 

condition is chosen so as to introduce an intentional lattice mismatching of 

3 x 
improvement was not fully understood but they suggested it was cancellation of 

strains between the newly introduced strain and the one in the substrate. The 

laser made under this growth condition showed a lower threshold current than 

Kressel's (5.6 kA/cm2 at h = 0.65 pm) , and degradation was not observed, 
output power was not measured, but cw operation was possible up to -27OC and 

room temperature pulse operation was obtained. 

between the grown layers and the graded substrate. The reason for the 

The 

4.1.5. AlGaAs/AlGaAs on GaAs Substrate 

The most thoroughly investigated laser is AlxGal-xAs, whose bandgap can 

However, there is a problem because the satellite 

be modified to around 1.85 eV. 

E = 1.85  eV at x = 0 .35 .  

band, which is the indirect transition band and is normally located above the 

direct transition band, comes closer and closer to the direct band with increas- 

ing x [14,17,43] so that more injected carriers undergo an indirect (nonradia- 
tive) transition. 

The bandgap increases with increasing x and 

g 
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This indirect transition leads to higher threshold currents with shorter 

wavelength. The best DH lasers grown by LPE [ 4 4 ] ,  M O O  [ 4 5 ] ,  and MBE [ 4 6 ]  

show that the threshold current becomes 14 times higher at the 0.67-pm composi- 

tion compared to that of the long wavelength region [ 4 7 ] .  

degradation was also observed [ 4 3 ] .  

the thermal expansion difference between the substrate and active layer, a 

heating problem aggravated in the cw condition. In pulse operation, heating 
should be much less severe, but the lowered output due to the indirect transi- 

tion is not favorable. 

Short life or 

This is caused by internal stress due t o  

4 . 1 . 6 .  Multi-Quantum Well (MQW) Laser 

The property of quantum wells is explained in various review papers 

[ 4 8 , 4 9 ] .  The principle can be summarized as follows. 

mechanics, an electron confined by a pair of potential barriers is not allowed 

to have continuous energy values but only discrete energies due to the inter- 

action between the barrier distance and the energy-dependent electron wave, 

similar to standing wave phenomena. 

According to quantum 

When an electron or hole in a semiconductor is confined with a lower 

energy state in a very thin layer whose thickness is reduced to the order of 

the de Broglie wavelength, the same phenomenon of discrete energy levels 

appears for carrier momentum in the thickness direction (Fig. 9 ) .  Thus, the 

i i i i i i i i i i m i  energy of electrons and holes is ra ised t o  the lowest allowable level. 

The observed wavelength due to recombination in this thin layer is not neces- 

sarily much shorter than the one corresponding to the bandgap energy, because 

o f  longitudinal optical phonon-assisted transitions which make the wavelength 

longer. Actually, the wavelength is very close to, or slightly shorter than, 

that of the bandgap energy [ 4 8 , 5 0 ] .  

current, which is decreased, and the power output which becomes larger. 

The most striking effects are the threshold 

T. Saku et a1 [ 4 7 ]  have grown various lasers by molecular beam epitaxy 

(MBE) and observed threshold currents for lasing as a function of compositions 
x for AlxGal-xAs MQW (six layers, 100 f i  for each thickness) with a 300-fi thick 

A10.5Ga0.5A~ separation layer. 

0.651 pm for the range of 0.15 < x < 0.35. The conventional bandgap for this 

composition corresponds to 1.6  to 1.85 eV, and the corresponding wavelengths 

are 0.795 to 0.670 pm. 

than given by conventional bandgap energy. 

The observed wavelength varied from 0.728 to 

The actually observed wavelengths are 3 to 6% less 
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POTENTIAL WELL 

/ 
ELECTRON 
WAVES 

HEAVY HOLE / 

(a I (b) 
Figure 9 .  (a) Potential well and electron wavelength (de Broglie 

wavelength = h/p Z Lz, where P is the momentum) and 
(b) Energy states for electrons and holes in a quantum 
well. 

The threshold current density was almost constant for the range of the 

compositions to which the 0.728- to 0.665 pm wavelength corresponds as seen 
in Fig. 10. 

On the other hand, conventional MOO-grown DH lasers corresponding to this 
wavelength range were very different in that the threshold current increased 

very much with increasing A1 content, and the threshold current at 0.67 pm was 
more than one order of magnitude higher. 

MQW laser [ 4 7 ]  was not discussed, but it is very likely that the reduced life 

problem of conventional DH lasers in the short wavelength region (0.67 pm) does 

not appear here because the small threshold current and high quantum efficiency 

of MQW lasers lead to less heating and less internal strain because of the 
thermal expansion difference between the lasing region and substrate. 

The life or degradation of the AlGaAs 

Taking full advantage of the above-mentioned reduced heating, the use of 

a phase-locked multiple array structure (40 stripe array emitters in parallel) 
produced 2.5-W cw power at a 4-A drive current at room temperature [51,52]. 

4.2. 1.44-pm Wavelength Region 

RCA has produced 1.3- and 1.55-pm pulsed high-power lasers with a 500-mW 

output at a 2.0-A current level, 1-ps pulse length, and 100-kHz repetition 

rate. These devices can be modified to the defined wavelength. Therefore, RCA 

decided to use technology based on the InGaAsP system. 

InGaAsP is used a s  the active layer and InP as the cladding layer. 
In these structures, 
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750 700 650 600 
WAVELENGTH (nm) 

Figure 10. Threshold current density at 300 K as a function of lasing 
lasing wavelength for AlGaAs laser diodes. Curve (a) is 
the lowest Jth realized so far by conventional DH laser 
diodes with AlxGal-xAs active layer. Curve (b) is the 

result of MO-CVD grown SQW laser with 40 to 60-nm QW layer. 
Present data are indicated by open and closed circles. 

2 Open circles (JB ) -  Jth f o r  hrnad area diodes (80 x 500 pm ). 

Closed circles (J 

(10 x 200 pm ). 

th; ' 
) ;  Jth for stripe geometry diodes th 2 

4 .2 .1 .  Growth System 

Lasers are grown in an RCA-developed double-barrel VPE reactor (Fig. l l ) ,  

using group V hydride and group I11 metal chlorides. 
two independent gas compositions (InP and the quaternary compound) and their 

respective hydrogen carriers can be set up at the same time. 

for the two different gas compositions are joined to a common growth chamber 

partitioned in half by a quartz plate to prevent the gases from mixing. 

With this type of system, 

The tubulations 

The substrate sits on a sample holder off axis from its positioning rod. 

By turning this rod to the left or to the right of the partition, the substrate 
is exposed to one or the other gas stream. 
doped. 

Each gas stream can be independently 

The thicknesses of the layers are measured by looking with a scanning 
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/ 
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Figure 11. Double-barrel  vapor phase growth r e a c t o r .  Sample 
a c t i o n  can be switched t o  d i f f e r e n t  gases  region.  

e l  t r o n  microscope (SEM) a t  t h e  chemically s t a i n e d  edge o f  an angle-lapl 

su r f ace .  The p r o f i l e  of doping d e n s i t i e s  i s  measured by capaci tance-vol tage 

curves while chemical e t ch ing  i s  being done. N-type doping i s  obta ined  from 

H S and p-type doping from z i n c  metal .  2 
m a t e r i a l  a re  given i n  Table 2. 

Parameters obtained f o r  t h e  1.44-pm 

TABLE 2. THICKNESS AND DOPING DENSITY 

Mate r i a l  Thic knes s Doping Densi ty  

(pm) 

+ 
p -quaternary 0.38 f -0.03 2.2 x Zn 

P-InP 2.40 f -0.5 1.9 x Zn 

n -quaternary 0.175 -+ -0.005 

n-InP 2 t o  3 1.1 x s 
n -1nP s u b s t r a t e  380 0.6-1.0 x 10l8 S 

- 

+ 

4.2.2. Growth Procedure 

The e p i t a x i a l  l aye r s  a r e  depos i ted  on an  InP s u b s t r a t e  t h a t  i s  cleaned and 

pol ish-etched j u s t  p r i o r  t o  growth. 
3 2  of less  than 10 /cm , and is  o r i e n t e d  t o  be 2O o f f  t h e  (100) plane  i n  t h e  <110> 

d i r e c t i o n .  

The s u b s t r a t e  has had an e t c h  p i t  d e n s i t y  

The subs t r a t e  i s  p u t  i n t o  t h e  forechamber of t h e  r e a c t o r .  Af t e r  f l u s h i n g  

wi th  an  i n e r t  gas ,  followed by hydrogen, t h e  s u b s t r a t e  i s  p laced  i n t o  t h e  
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prehea t  s e c t i o n  of t h e  r e a c t o r  and brought up t o  t h e  growth temperature  i n  

an  atmosphere of phosphine. When t h e  sample reaches t h e  des i r ed  temperature  

(695OC), it i s  i n s e r t e d  i n t o  t h e  InP por t ion  of t h e  growth tube  and a b u f f e r  

l a y e r  of n-InP i s  grown. The s u b s t r a t e  is  then  switched t o  t h e  o t h e r  s i d e ,  and 

an  undoped l a y e r  of t h e  1.44-pm quaternary i s  grown. The o t h e r  two l a y e r s  a r e  

grown i n  a s i m i l a r  fash ion .  

4 .2 .3 .  Growth Analysis  

The composition of t h e  a c t i v e  l aye r  i s  determined from t h e  maximum i n  t h e  

photoluminescence (PL) spectrum. Its l a t t i c e  cons tan t  i s  determined by X-ray 

d i f f r a c t i o n  a f t e r  t h e  top  two l a y e r s  a r e  removed by e t ch ing .  Th’e PL peak 

p o s i t i o n  f o r  t h e  wafer used t o  f a b r i c a t e  t h e  p re sen t  l a s e r s  was 1.427 p n ,  and 

t h e  l a t t i c e  cons tan t  mismatch r e l a t i v e  t o  InP was 0.1%. This  measurement 

0.  64Ga0. 36AS0. 74’0.26’ y i e l d s  a composition o f  I n  

For high power, t h e  oxide s t r i p e  conf igura t ion  appears  t o  be advantageous,  

and, t h e r e f o r e ,  it was decided t o  use the same s t r u c t u r e  f o r  t h i s  program. 

The r e s u l t s  achieved a r e  demonstrated i n  F igs .  12 and 13, which show t h e  

pulsed output  power and t h e  pulsed  spectrum obtained from t y p i c a l  devices .  

There is  some d i f f i c u l t y  i n  measuring t h e  power output  under pulsed 

condi t ions .  The Fig .  12 da ta  a r e  believed t o  be accu ra t e  t o  wi th in  10% of t h e  

true v a l i i ~ .  The p u l s e  l ength  i n  t hese  measurements was 400 ns .  
-. i ne  power was determined by f i r s t  measuring t h e  d c  power using by a iarge- 

a r e a  G e  d e t e c t o r  claimed by t h e  manufacturer t o  be c a l i b r a t e d  wi th  t r a c e a b i l i t y  

t o  t h e  Nat iona l  Bureau of Standards.  Next, t h e  d e t e c t o r  was b iased  i n  t h e  

r eve r se  d i r e c t i o n ,  and t h e  same range of powers measured t o  c o r r e c t  f o r  t h e  

d i f f e r e n t  b i a s  mode. Then, t h e  device was operated with 400-ns p u l s e s ,  and t h e  

measurements were repeated a t  low power and c a r r i e d  forward t o  high powers. A t  

t h e  h igher  powers, n e u t r a l  d e n s i t y  f i l t e r s  were used i n  t h e  l i g h t  p a t h  i n  o rde r  

t o  avoid overdr iv ing  t h e  d e t e c t o r ;  t h e  a t t enua t ion  of t h e s e  f i l t e r s  was d e t e r -  

mined i n  indepenent t es t s  a t  t h e  present  wavelength. 

4 .3 .  1.93- and 2.5-pm Wavelength Regions 

The 1.93- and 2.5-pm wavelengths correspond t o  0.64- and 0.496-eV bandgaps, 

which a r e  p re sen t  i n  t h r e e  regions o f  the c h a r t s .  One i s  t h e  upper c e n t r a l  

29 



700 

# 4  
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lO0Opps 

PULSE CURRENT ( A )  

Figure 12. Output power vs pulse current of a typical 1.44-pm 
laser developed under contract. 

#4 
1A 
300 mW I \  

A 

1.44 1.43 1.42 
WAVELENGTH ( p m )  

Figure 13. Emission spectrum of a typical 1.44-pm laser 
developed under contract. 
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square f o r  InGaAsP. 

InSb-GaSb, t h e  next  r i g h t  square made by InAs-AlAs-AlSb-InSb, and t h e  t r i a n g l e  

reg ion  on t h e  l e f t  of t h e  bottom t h r e e  square reg ions .  

between t h e s e  energy l i n e s  and s u b s t r a t e  l i n e s  a r e  marked 4 ,  5 ,  and 6.  

The o t h e r s  are t h e  next lower square made by GaAs-InAs- 

The i n t e r c e p t  p o i n t s  

There a r e  o t h e r  regions of t h e  same ene rg ie s  i n  t h e  r i g h t  s i d e  bottom 

corner ,  which a r e  t h e  t r i a n g l e  of AlSb-InSb-GaSb and t h e  next  lower square of 

GaSb-InSb-InP-Gap. I n  these  two regions,  t h e  0.64-eV l i n e s  i n t e r c e p t  AlSb 

l i n e s .  Because of t h e  d i f f i c u l t y  i n  obtaining AlSb, no l i t e r a t u r e  was found 

f o r  such m a t e r i a l s .  

I n  t h e  next  l e f t  upper t r i a n g l e  of Ids-GaAs-AlAs, t h e r e  a r e  0.64- and 

Although no s u b s t r a t e  l i n e s  i n t e r c e p t  wi th  t h e s e  energy 0.496-eV reg ions .  

l i n e s ,  graded s u b s t r a t e s  can be u s e f u l ,  a s  descr ibed  la te r .  I n  t h i s  way, a l l  

t h e  p o s s i b l e  m a t e r i a l  combinations f o r  longer wavelength reg ions  were searched.  

A t  t h e  longer  wavelengths,  Auger recombination of t h e  in t e rva lence  band 

absorp t ion  type o f t e n  comes i n t o  discussion a s  t h e  source of  non-rad ia t ive  

recombination. The valence band separates  i n t o  two levels due t o  s p i n  o r b i t  

coupling. 

i n j e c t e d  o r  t h e  temperature  is high. I n  t h i s  s i t u a t i o n  e l e c t r o n s  can be 

exc i t ed  from t h e  lower valence band t o  the upper valence band. 

l eng th  l a s e r s ,  t h e  r egu la r  bandgap value tends t o  be equal  t o  t h e  energy 

d i f f e r e n c e  between t h e  separa ted  valence bands. Irr such a hand configuration, 

r a d i a t i o n  energy from t h e  recombination of an  e l ec t ron -ho le  p a i r  can be used 

f o r  e x c i t a t i o n  of a c a r r i e r  from the  lower valence band t o  t h e  upper valence 

band. Because of t h e s e  nonradia t ive  processes ,  a long wavelength l a s e r  o f t e n  

has a lower To,  which means J i s  more inf luenced  by temperature  v a r i a t i o n s .  

The top  of t h e  upper valence band has more ho le s  when c a r r i e r s  a r e  

I n  long wave- 

t h  

4 .3 .1 .  AlGaAsSb/GaSb on GaSb Subs t ra te  

There are  t h r e e  t r i a n g l e s  a t  t h e  upper r i g h t  s i d e  of t h e  c h a r t  i n  F ig .  3 .  

The square reg ion  below t h e  c e n t r a l  t r i a n g l e  of  t h e s e  t h r e e  desc r ibes  AlGaAsSb. 

The en larged  f i g u r e  i s  shown i n  Fig.  14. The s u b s t r a t e  l i n e  s t a r t s  from t h e  

GaSb corner  and has an energy range from 0.721 t o  1 .0  e V  f o r  t h e  d i r e c t  t r a n s i -  

t i o n  band. 

requi red  wavelength. 

s t r u c t u r e  [25,53-561 w i l l  he lp  i n  ac tua l  growth processes  f o r  InGaAsSb/AlGaAsSb 

on GaSb, a u s e f u l  s t r u c t u r e  descr ibed in  t h e  next  s e c t i o n .  

This  corresponds t o  A = 1 .72  t o  1.24 pm and does no t  cover t h e  

However, t h e  published r e p o r t s  on t h i s  l a s e r  o r  d e t e c t o r  
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1 INDIRECT ( X  BAND) 

Figure 14. Energy bandgap diagram for AlGaAsSb. 

4.3.2. InGaAsSb/GaSb on GaSb Substrate 

The square regions for InGaAsSb were extracted from Figs. 3 and 4 and 
enlarged as shown in Figs. 15(a) and (b). The two points are on the GaSb 

substrate line and the other two points are on the InAs substrate line. Each 

point corresponds to 1.93- or 2.5-pm wavelength. When a point on these lines 

moves towards the GaSb region, the bandgap becomes larger, as seen in Fig. 

15(a>. However, the dielectric constant of the corresponding point also 

becomes larger, as seen in Fig. 15(b). This means the higher bandgap material 

has a higher refractive index, and suitable DH structures cannot be formed 
using InGaAsSb with different compositions. 

Nevertheless, there are several reports that did not deal with the 

refractive index and presented a design for a DH structure [57-601. 
DeWinter et a1 [58] describe an investigation on the miscibility gap in the 

In Ga As Sb growth solution. They point out that the miscibility gap 

region is for x > 0.22, and successful LPE growth on GaSb substrate was ob- 
served for the range of 0 < x < 0.217 where the corresponding photoluminescence 

covered the 1.71 < A < 2.3-pm range. 

x 1-x y 1-y 
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GaAs I n A s  GaAs I n A s  

GaSb I n S b  

LAYER 

GaSb I n s  b 

Figure 15. (a) Energy bandgap diagram for InGaAsSb and (b) Dielectric 
constant diagram for InGaAsSb. 

An electron-beam-pumped laser using InGaAsSb grown on GaSb (no cladding) 

and InAs substrates showed a maximum wavelength of 2 . 3 9  pm [61]. 

InGaAsSb was grown by LPE and encountered the miscibility gap limitation. 
reach the 2.5-pm region, VPE or MOCVD may be used to exclude the miscibility 
gap problem. 

A11 the above 

To 

4.3.3. InGaAsSb/AlGaAsSb on GaSb 

The material charts for InGaAsSb are shown in Fig. 15 and the chart for 

AlGaAsSb, in Fig. 14. The GaSb substrate line in the AlGaAsSb region covers 

0.72- to 1.65-eV bandgap, which is larger than that of InGaAsSb, which covers 
0.3 to 0.72 eV on the GaSb substrate line. Figure 15(b) illustrates that the 

dielectric constants of InGaAsSb in the 0.495- to 0.64-eV region on the GaSb 
substrate line are around 14, and it is possible to find a point with a smaller 

dielectric constant than 14 on the GaSb line in the AlGaAsSb square region. 

Therefore, DH structures can be designed. 
N. Kobayashi et a1 [ 6 2 ,  631 reported InGaAsSb/AlGaAsSb on GaSb lasers with 

2 room-temperature pulse operation at a 1.8-pm wavelength with J = 5 kA/cm . th 
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The threshold temperature characteristic was fairly good with T = 112 K, which 0 
is much larger than that of the InGaAsP 1.3-pm laser, which is 53 to 57 K. 
They grew the laser by LPE. 

pm (from photoluminescence [58]), while 2.39 pm was observed by electron beam 

pumping [61]. If VPE or MOCVD is used, the miscibility gap problem will not 
appear and longer wavelength material can be grown. 

The range of wavelengths should cover 1.7 to 2.33 

C. Caneau et a1 [64] reported room temperature pulse operation of 
2 InGaAsSb/AlGaAsSb on a GaSb laser with Jth = 6.9 kA/cm 

A = 2.2 pm, which is the longest wavelength reported in injection lasers using 
this material. 

After optimization, they expect room-temperature cw operation. 

and To = 85 K, at 

The active layer thickness was not optimized at that time. 

B. V. Dutt et a1 [65] reported a method to avoid difficulties in uniform 
growth of AlGaAsSb on GaSb and investigated a photon-pumped InGaAsSb/AlGaAsSb 
laser at 2.02S2.07 pm. 

10- to 5OoC range and obtained T = 65 K. Another report [66] describes only 
0 

LPE growth condition for the InGaAsSblAlGaAsSb on GaSb substrate. 

They investigated the temperature dependence in the 

4.3.4. InAsSbP/InAsSbP on InAs 

The material chart for InAsSbP is given by the lowest of  the three triangles 

in the left side of Fig. 3. The enlarged chart is shown in Fig. 16. Two 

points are seen on the InAs substrate line where the energies are at 0.64 
and 0.496 eV, which express material composition for 1.93- and 2.5-pm lasers. 
The cladding materials should be on a point on the same line, but on a higher 

energy side. When a point for the cladding material falls on the corresponding 
point in the dielectric constant chart, the dielectric constant is lower for 

the higher energy side. 

Although GaSb can provide a lattice matched substrate, meltback of substrate in 

the LPE process will probably occur because of differences in the melt solvent. 

Therefore, InAs should be used for the substrate. 

Therefore, an appropriate DH structure can be designed. 

All the published works on this material describe 3- to 4-pm lasers 
(0.3- to 0.4-eV bandgap). 
2.5 pm. 

in the 3- to 4-pm lasers were attributed to Auger recombination. 
gap is increased to 0.5 to 0.64 eV, the bandgap value may be larger than the 
valence band splitting due to spin orbit coupling, and nonradiative recombina- 
tion may be reduced. 

But it is possible to modify the system for 1.93 to 
The observed high threshold current and strong temperature dependence 

If the band- 
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I n S b  

I n P  

Figure  16. Energy bandgap diagram f o r  InAsSbP. 

N .  Kobayashi e t  a 1  [67]  repor ted  a 3-pm l a s e r  opera ted  a t  77 K wi th  

Jth = 3 kA/cm. 

To = 23 K .  

observed l a s i n g  a c t i o n  a t  300 K.  They compared t h e  ou tpu t  power f o r  d i f f e r e n t  

 device^ ranging from h = 3.5 t o  4.6 pm, ~ n d  they nbserved t h a t  the oiutpi.it pnwer 

dramat i ca l ly  inc reases  wi th  inc reas ing  bandgap i n  t h e  0.272- t o  0.305-eV range 

a s  seen i n  F ig .  17,  suggest ing the  reduction of  nonrad ia t ive  recombination. 

Therefore ,  t h e r e  i s  a p o s s i b i l i t y  t h a t  f a i r l y  good l a s e r s  may be r e a l i z e d  i n  

t h e  1.93- t o  2.5-pm range. 

The threshold  cu r ren t  was very  s e n s i t i v e  t o  temperature ,  wi th  

The measurement was done up t o  145 K.  N. P. Esina e t  a 1  [68 ]  

There are two papers  on LPE growth condi t ion  [ 6 3 , 6 9 ] .  

4.3 .5 .  Various Ternary Mater ia l s  on Graded L a t t i c e  Constant Subs t r a t e  

I n  F ig .  3 ,  t e r n a r y  ma te r i a l s  a r e  expressed by s t r a i g h t  l i n e s  between two 

ad jacen t  b i n a r i e s ,  o r  s i d e s  of t r i a n g l e s  o r  squares .  

a t e r n a r y  i s  s p e c i f i e d  t o  produce a c e r t a i n  l a s i n g  wavelength, t h e  l a t t i c e  

cons t an t  is automat ica l ly  determined, s o  t h a t  it i s  impossible  t o  c o n t r o l  band- 

gap and l a t t i c e  cons tan t  independently.  Therefore ,  a mismatched s u b s t r a t e  i s  

g e n e r a l l y  used whose l a t t i c e  cons tan t  i s  c l o s e  t o  t h a t  of t h e  l a s e r  m a t e r i a l s ,  

I f  a composition of 
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BANDGAP OF I n A ~ l - x - y S b x P y  (eV) 

Figure 17. Output power vs bandgap of InAsSbP on InAs. 

and intermediate layers are inserted whose lattice constant gradually varies 

from the substrate lattice constant to that of the laser material. 

Generally, a graded substrate has some internal mechanical strain and 

misfit dislocations. This leads to relatively short life and less reliability 

compared to a lattice-matched substrate device. However, the present require- 

ment is for high-power pulse operation, and long-life stability is not required. 
Furthermore, control of the growth process of ternaries is easier than that of 

the quaternaries because of fewer components. Also, the quality of the grown 
.layer is sometimes superior to that of quaternaries. Therefore, a ternary DH 
structure using a graded substrate must also be considered. 

for 1.93- and 2.5-pm active layers are InGaAs, InGaSb, InAlAs, InAlSb, InAsP, 
and InSbP, and there are no other possibilities. 

Possible ternaries 

There are several reports on ternary lasers. C. J. Nuese et a1 at RCA 

[70,71] reported cw room-temperature InGaAs/InGaP lasers, and R. E. Nahory [72,73] 
reported GaAsSb/AlGaAsSb. Both have Sl-pm wavelength, and the structure cannot 

be modified to 1.93 or 2.5 pm just by changing the component ratio. 
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H. Tamkin et a1 [74] and A. F. S .  Penna [75] reported In0.53Ga0.47As/ 
As lattice matched to InP, whose wavelength fortunately was very In0. 52A10. 48 

close to 1.55 pm, which is necessary for fiber communication. This structure 

can be modified to 1.93 and 2.5 pn. As seen in Fig. 18, which is the same as 

the central one of the three right upper triangles in Fig. 3, the necessary 

energy points of 0.64 and 0.496 eV are found on the InGaAs ternary line (side 
of triangle). 

I n A s  

'E 

75 1 

AlAs 

INDiRECTJ LBOUNDARY 

Figure 18. Energy bandgap diagram of InAlGaAs. 

The constant lattice parameter line should be drawn from the 0.64-eV point 

(1.93-pm active material) in parallel with the InP substrate line and the 

cladding material is found to be the 1.17-eV point on the InAlAs ternary line. 

The graded intermediate layer has to be inserted between these laser materials 

and the substrate. The substrate material can be either InP or InAs. For 
a 2.5-pm device, a point at 0.496 eV on the InGaAs ternary line and another 

point at 0.75 eV on InAlAs ternary line express active and cladding materials. 

In this case, the substrate should be Ids. 
Among many possible ternaries, InGaAs/InAsP is a strong possibility. RCA, 

as well as other companies, has acquired a lot of experience with this material 

because of their interest in photodetectors using In 
1.3 to 1.6 pm. 

As designed for 0. 57Ga0. 43 
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As seen in Fig. 19, InGaAs is expressed by the lower side line of the 

square region. 

of 1.93 and 2.5 pn. 

means both lattice constants do not match that of InP. The cladding materials 
should be determined from two intercept points between the vertical InAsP line 

and the lines extending from the two active material points in parallel with 

the InP substrate line. 
are shown in Table 3. 

substrate for 2.5-pm devices because the lattice constant is closer to that of 

the In0.82Ga0.18As active material than that of InP. However, InP can also be 

There are two points, 0.64 and 0.495 eV, for active materials 
The points do not agree with the InP substrate line, which 

Examples of material parameters for the laser structures 
One should note here that I d s  may be used for the 

used. 

INDIRECT 1 I BOUNDARY , 
DIRECT 

GaP InP 

GaAs 

X =  1.93pm 

Figure 19. Energy bandgap diagram of InGaAsP. 
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5.  DETECTORS 

Properties required for photodetectors are: 

( 1 )  high sensitivity at the wavelength of the light source, 

(2) wide frequency bandwidth, 

(3) low internal noise, 

( 4 )  low dark current, and 

(5) high long-term operational reliability. 

Devices with such properties are PIN photodiodes (PD) and avalanche 
photodiodes (APD). 

+ The basic PIN photodiode structure is shown in Fig. 20. The p material 
has a wider bandgap so  that the incident light passes through this window and 

surface recombination is suppressed. The PIN junction is reverse biased S O  

that the photo-generated electrons in the I-layer are efficiently collected. 

The thickness of the I-layer is chosen so that the incident light is fully 

absorbed. For high-speed operation, the thickness of  the I-layer may have to 

be made thinner to limit carrier transit-times with the depleted regions. The 

high field region quickly sweeps out the carriers. 

ANTI-REFLECTION COATING 5 METAL 
(ARC 1 / 

n+ 

Figure 20. Structure of PIN photodetector. 

The APD is also a reverse-biased, single-heterojunction device in which 
photogenerated carriers are avalanche multiplied in the pn junction region. 

Although the APD has more sensitivity than PIN-PD because of internal current 
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amplification, it generates more noise. The noise generation factor becomes 

maximum when f3/a = 1, and becomes lower when f3/a >> 1 or f3/a << 1, where CI is 

electron ionization rate and f3 is hole ionization rate. 
The quantum efficiencies of various photodetectors [ 14 ]  are shown in 

Fig. 21, and material parameters are shown in Table 4. The photosensitivities 

of all the materials have thresholds corresponding to the bandgap, as seen in 

Fig. 21. It is important to choose the optimum bandgap material not only for 

maximum sensitivity but also for minimum dark current. A laser material could 
work as a detector, but the bandgap must be somewhat less than that of the 

laser active layer. In addition, device performance has to be considered. 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

WAVELENGTH (pm 1 
Figure 21. Quantum efficiency of various photodetectors 

using different materials. 

5.1. 0.67-pm Devices 

For the 0.67-pm range, Si PIN-PD o r  Si APD should work. The Si detector 

shows maximum quantum efficiency of 90% for PIN-PD and 50% for APD at A = 0.9 

pm. The sensitivity at 0.67 pm decreases only by 15%. Since the Si detector 

is a homojunction device, the absorption coefficient becomes larger at 0.67 pm 

than at A = 0.9 pm. 
structure to improve the sensitivity at 0.67 pm. 

dark current density, as seen in Table 4 .  

Therefore, it is desirable to design a thinner layer 
Si devices have the lowest 
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5.2. 1.44-pm Devices 

For the 1.4-pm range, materials with narrower bandgap than that of Si are 

necessary. Possible materials are Ge, InGaAsP, HgCdTe, AlGaAsSb (Table 3). 

For practical systems in the 1 to 1.7-ym range, there are Ge APD [76] and 
The In0. 53Ga0. 47 

Ge APD is a very useful device for optical communications, designed for the 
1.3- and 1.55-pm range. 

to those of Si APD, but the room temperature dark current density is lo5 times 
larger than that of Si APD. Its excess noise factor is also larger because 

In0. 53Ga0. 47 a/f3 0.5. On the other hand, 
density, and f3/a = 0.25. The PIN-PD is connected to a GaAs FET to obtain 
higher sensitivity [79] and is currently in use. 

As PIN-PD I771 or APD [78] and RCA In0.57Ga0.47As PIN-PDs. 

Its sensitivity and response speed are not inferior 

As/InP APD has a lower dark current 

5.3. 1.93- and 2.5-pm Devices 

The detection of 1.93- or 2.5-pm radiation is best achieved with com- 

pound InGaAs/InAsP photodiodes whose composition and, hence, bandgap, is 

optimized for maximal sensitivity. That is, the bandgap is made just large 

enough to absorb 1.93-pm light efficiently. This strategy also minimizes the 

dark current in the device, since the dark current generally decreases with 
increasing bandgap in a high purity crystalline material. Thus, with maximal 

quantum efficiency and minimal dark current, the diode's sensitivity is 
optimal. 

As has a bandgap of 0.57 eV, which implies a In0. 7Ga0. 3 For example, 

detection threshold wavelength of 2.18 pm. The absorption constant at 1.93 pm 

is of the order of 1 pm-', which means that 1.93-pm radiation will be fully 

absorbed in the first few microns of the active layer. This implies a quantum 

efficiency of 60 to 80 percent, based on our experience with In0.57Ga0.43As 

1.3-1.6-pm photodiodes. 

Infrared detectors are available commercially, but they utilize binary 

III-V compounds such as InAs or InSb or ternary HgCdTe compounds. Their 

bandgaps are much smaller than 0.57 eV (E (InAs) = 0.36 eV; E (InSb) = 0.17 eV) 
and, hence, they have high dark currents. Some require cooling. Because our 
ternary III-V compound photodiodes have the largest possible bandgap, they will 
have lower dark currents, and therefore, better sensitivity than the commercial 

units at any temperature. 

g g 
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For 1.3-  and 1.5-pn light, a PIN photodetector having the structure shown 
in Fig. 22 is used. 

RCA New Products Division. Typically, they have quantum efficiencies of 75% at 

1 . 3  p n  and 80% at 1.55 pm, with dark leakage currents of less than 10 nA for a 

100 pn diameter mesa diode. 

These diodes are presently a commercial product from the 

epi -LAYER 
BANDGAP THICKNESS 

(eV)  (pm) 

1.67pm 
hv 

CARRIER LATTICE 
CONCEN. PARAM. 
(cm-3) ( A )  

1.3 2 p+ I n P  5.86 

0.73 6 - 1n0.53Ga0.47A 5.86 

1.3 125 n+ I n P  SUBSTRATE 5.86 

------- --- 

Figure 22. Structure of PIN photodetector using InGaAs hetero- 
junction of RCA product 

As discussed above, the bandgap of the InGaAs alloy must be optimized for 

1.93- and 2.5-pm detectors. However, for these wavelengths, this alloy cannot 

be lattice matched as a heterojunction to an InP or an InAs substrate. Rather, 

the alloy must be graded in composition from either InP (a = 5.87  8) or I d s  
(a = 6.05 8) .  
The grading procedure has been used in other optoelectronic devices at RCA and 

is a well-proven technology. The composition can be either continuously or step 

As constant composition I-layer. 0. 70Ga0. 30 graded from the substrate to the In 
This alloy has a lattice parameter of 5.936 A and a bandgap of 0.57 eV, which 
corresponds to a wavelength of 2.17  pn (the bandgap must be about 0.070 eV less 
than the laser emission for efficient absorption and detection). 

concentration should be as low as possible to achieve low capacitance devices, 

necessary for sensitive, high-speed detector systems. 

An example of a proposed 1.93-pm detector is shown in Fig. 23. 

The carrier 

+ 
The p layer forms part of the p-n junction for the collection of the photo- 

generated carriers. For present RCA photodetectors, zinc from the zinc-doped 

InP cap layer diffuses during vapor growth about 0 . 5  pn into the InGaAs I-layer. 

The InP cap is a high bandgap layer that acts as a window to pass the 1.55-pm 
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epi -LAYER 
BANDGAP THICKNESS 

(eV) (pm 1 

0.98 2 

0.57 2 

0.57 6 

1.93pm 
hu 

i (cm-3 

CARRIER 
CONCEN. 

p+ In0.70 Ga0.30AS 

STEP GRADED InGaAs 
OR CONTINUOUSLY 
GRADED I n G a A s  

I .3 125 n+ I n P  SUBSTRATE 

0.36 125 n+ I n A s  SUBSTRATE 

L ATT IC E 
PARAM. 

( A )  

5.936 
5.936 

5.936 

5.86 

6.05 

Figure 23. Proposed structure of PIN photodetector using InGaAs 
on graded substrate. 

light and also reduces surface recombination of photogenerated carriers to 

increase the detection efficiency. 

the capping p -layer can be an InAs P alloy, which has the same lattice 0.35 0.65 
parameter as the In0.70Ga0.30 As I-layer and has a larger bandgap, 0.98 eV. 

For the proposed In 0. 70Ga0. 30 As I-layer, 
+ 

The proposed structure of 2.5-pm d e t e c t o r s  is almost the  same as t h a t  f o r  
A s  

".89Ga0.11--- 1.93-prn devices except for the material compositions; which a r e  Tn 

for the I-layer and InAso.78Po.22 for the cap layer. 
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6. CONCLUSIONS 

Appropriate high-power pulse laser structures at 0.67-, 1.44-, 1.93-, and 

2.5-pm wavelengths were investigated mainly from the materials combination 

point of view through discussions, from published reports, and by new analyses. 

For -0.67-pm devices, the technology is rapidly growing and various 

encouraging results have been reported recently. 

The best result is cw room temperature operation with very low threshold 
n 
L current of 4.1 kA/cm using In0~5Ga0~5P/(A10~4Gao~6)o~51no~5P at A = 0.69 pm. 

Also, 30-mW power output at room-temperature pulse operation was reported 

As at A = 0.67 pm. 
0 .  47Ga0. 53AS0. 05'0. !95/A10. gGaO. 4 using In 

Another possibility is an A l o ~ 3 5 G a 0 ~ 6 5 A ~ / A 1 0 ~ 5 G a o ~ 5  As multiple quantum 

well laser in which the threshold current was as low as that of the 0.73-pm 

AlGaAS laser. 

For 1.44-pn lasers, the technologies of 1.3- and 1.55-1111 devices are well 

established and were modified for the composition. Real devices that produced 

700-mW output power for 1.7 A, 400-ns pulse operation at room temperature were 
successfully fabricated. 

For the longer wavelengths of 1.93 and 2.5 pm, a new graded-substrate 

scheme was proposed, in which InGaAs/InAsP is grown on InGaAs graded layer on 

InP or InAs substrate. InGaAsSb/AlGaAsSb on GaSb was reported to lase at 1.8 pm 

with J The same active material showed a maximum 

wavelength at 2.39 pm. This is on the boundary of the miscibility gap for LPE 
growth, and the temperature rise might increase the wavelength up to 2.5 pm. 

Another possibility is to use vapor phase growth, in which the miscibility gap 

does not limit the growth. 

= 5 kA/cm2 and T = 112 K. th 0 
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APPENDIX A .  THEORETICAL BACKGROUND OF THE EQUATIONS 
PUBLISHED BY A .  SASAKI ET AL 1251 

There a r e  two types of qua ternary  mixed semiconductors composed of groups 
v v IIIDIII IIIBIIICV Dv and A I I I B V C V D V  o r A B C  I11 and V elements: A 

Here, t h e  supe r sc r ip t s  I11 and V i n d i c a t e  t h e  group number of t h e  atomic 

elements i n  t h e  pe r iod ic  t a b l e .  

x x 1-x-y x y 1-x-y' 1-x x 1-y y 

According t o  the  formula proposed by Thompson and Wooley [80], t h e  

energy-gap v a r i a t i o n  of t h e  A B C D type  of mixed semiconductor can be 

c a l c u l a t e d  from 
1-x x 1-y y 

where 

and 

x ( 1  - x>  , ABC ci 
= EBCx + E (1 - X )  - AC 

J(EBC + E A C > / 2  
E~~~ 

x ( 1  - XI , ABD 

J ( E ~ ~  + ~ ~ ) / 2  

ci 

EABD = E BD x + E m ( 1  - X )  - 

= ciBCDX + U A C D ( l  - x> I 

ABCD CI 

I 
Here, E i s  the  energy gap and ci i s  a parameter ,  c a l l e d  t h e  "energy gap sag,"  

represent ing  t h e  dev ia t ion  o f  t h e  energy gap curve from t h e  l i n e a r  dependence 

a t  a t  t h e  middle of t h e  composition a s  a func t ion  of t h e  composition x and y ,  I 

which t h e  devia t ion  becomes maximum. The s u b s c r i p t s  AB, ABC, and ABCD denote 

t h e  b ina ry ,  t e r n a r y ,  and quar te rnary  mixed semiconductors,  r e s p e c t i v e l y .  

The energy-gap v a r i a t i o n s  of t h e  AB C D type  o f  m a t e r i a l  can be c a l -  
x y 1-x-y 

cu la t ed  from 

ABC ci 1 
x-Y 9 

- -  - 
E~~~~ x + y E ~ ~ ~ X  + E~~~~ - .I(EABD + EACD),2 

54 



and 

The values of parameter a were taken mostly from experimental data and are 

tabulated in Ref. 25. For unknown parameters, which are X valley for InGaP and 
and X valleys for GaAsP, 0 . 3  was used as proposed by Thomson and Wooley [80]. 

It was assumed that the variation of lattice constant with composition 

follows Vegard's law, which shows linear dependence on the compositions. Thus, 

= (l-x)(l-y)aAC + x(l-y)aBC + (1-x)y am + xy aBD a~~~~ 

B C D type, and for A1-x x 1-y y 

for AB C D type. In Fig. 3 only equal lattice constant lines equal to 
that of a binary compound are shown. 

x y I-x-y 

The refractive index n near wavelength 1 pm is given by n Z ,/E where E r r 
is relitive dielectric constant. The variations of the relative dielectric 

constant with composition have not been theoretically investigated yet. 

Therefore, the formulae adopted for ternary material by Harrison and Hanser 

[81] were applied to quaternary materials. 

- 1  r A D  - 1  E - 1  E 

- 2  E 
AC + (1-x)y & r ABCD = (l-x)(l-y) 

+ 2  r A D + 2  r AC 

E 

E r ABCD 

- 1  r BD - 1  E 

+ 2  
r BC 

r BC 

E 

+ XY & 
~ B D + ~  

+ x(1-Y) & 

for the A1-xBxC1-yDy type, and 

- 1  r A D  - 1  E - 1  E - 1  E 
AC + (1-x-y) E 

r A D  

r AB ~ A C + '  r A D + 2  + 2  + Y E  = x  r ABCD E 

E E r ABCD + ' 
for the AB C D x y 1-x-y type. 
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a t  0.67, 1.44, 1.93, and 2.5 pm. A general. approach t o  t h e  problem i s  
presented, based on curves o f  m a t e r i a l s  p r o p e r t i e s  p u b l i s h e d  by Sasaki e t  a l .  

I t  i s  a l s o  shown t h a t  these curves, a l though u s e f u l ,  may need c o r r e c t i o n  
in c e r t a i n  ranges. It i s  deduced t h a t  c e r t a i n  m a t e r i a l s  combinat ions.  e i t h e r  
proposed i n  t h e  l i t e r a t u r e  o r  a c t u a l l y  t r i e d ,  a r e  n o t  a p p r o p r i a t e  f o r  double 
h e t e r o s t r u c t u r e  l a s e r s  , because t h e  r e f r a c t i v e  index  of t h e  c l a d d i  ng m a t e r i a l  
i s  h i g h e r  than t h e  index  o f  t h e  a c t i v e  m a t e r i a l ,  thus  r e s u l t i n g  i n  no 
waveguiding, and h i g h  t h r e s h o l d  cur ren ts .  
t h e  most p r o m i s i n g  approach t o  t h e  achievement o f  l a s e r  a c t i o n  i n  t h e  f o u r  
wave1 engt  hs mentioned above. 
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