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SUMMARY

In this paper the author discusses the problem of optimization of shallow

frame structures which involve a coupling of axial and bending responses. A

shallow arch of a given shape and of given weight is optimized such that its limit

point load is maximized. The cross-sectional area, A(x) and the moment of inertia,

I(x) of the arch obey the relationship I(x) = p [A(x)] n, n = 1,2,3 and p is a

specified constant. Analysis of the arch for its limit point calculation involves

a geometric nonlinear analysis which is performed using a corotatlonal formulation.

The optimization is carried out using a second-order projected Lagrangian

algorithm and the sensitivity derivatives of the critical load parameter with

respect to the areas of the finite elements of the arch are calculated using

implicit differentation. Results are presented for an arch of a specified rise to

span ratio under two different loadings and the limitations of the approach for the
intermediate rise arches are addressed.

INTRODUCTION

With the advent of highly flexible large space structures the nonlinearity of

response of such structures plays a dominant role in the control of such structures.

Naturally, optimization of structures in nonlinear response is gaining prominence.

This paper addresses the issue of optimizing shallow frame structures in nonlinear

response involving a coupling of axial and bending actions. The objective is to

optimize a shallow arch of a given shape and given weight such that its limit point

load is maximized. Besides having to perform a nonlinear analysis in calculating

the limit point load an issue of even greater concern is that of calculating the

sensitivity derivatives of the critical load parameter with respect to the design

variables, namely the cross-sectional areas of the elements of the discretized model

of the arch. Two approaches are available for the calculation of sensitivity

derivatives: the direct and the adjoint approach [I]. In general, the adjoint

approach is preferred for problems involving nonlinear response [2] - [4]. The

popularity of the adjoint approach stems from the fact that the differential

equations governing the adjoint variable are linear even though the corresponding

equilibrium equations in terms of the true displacement variables are nonlinear.

But to date the author is unaware of the use of the adjoint approach for problems

involving limit point instability. The present work outlines a direct approach

÷ This work was supported by the National Science Foundation under Grant No.
ECE-8596016.
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similar to that used by the author and his co-worker in the case of shallow space
trusses [5]. In this approach the sensitivity derivatives of the critical load
parameter are obtained through an implicit differentiation of the nonlinear
equilibrium equations as explained below. The present discussion is restricted to
finite-element models of shallow arches whosecross sections obey the relationship

I(x) = p [A(x)] n , n = 1,2,3, p = specified constant (I)

SENSITIVITY DERIVATIVES OF THE CRITICAL LOAD PARAMETER

Consider a shallow arch under a given distribution of loading. Assume that

_cr is the smallest value of the parameter by which the given distribution of
loading must be scaled in order to produce instability of the arch. The parameter

is then defined by the solution of the following system of equations of a finite-

element model of the arch.

8___ = 0 (2)

8qj.

_2 I = 0 (3)

I _qj _qj

where _ denotes the total potential energy of the model undergoing finite

displacements and qi, i = I, 2 ...N denote the generalized nodal displacements of
the model. The load parameter _ occurs implicitly in Eqs. (2) and (3). Assume

that Ak for k = 1,2... m are the m design variables, which for the arch are the
8_

cross-sectional areas of the finite elements. To obtain 8Ak we proceed as

follows:

Rewrite Eqs. (2) and (3) as

f£(qj.(Ak) , _(Ak) , Ak) = 0
(4)

g (qi(Ak), _(Ak),A k) = 0
(5)

i,£ = I, 2 ... N

k= I, 2 ... m

An implicit differentiation of Eqs. (4) and (5) with respect to A k leads to
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These equations may be written symbolicaily as

(6)

_q

_Ak

(7)

where H is the Hessian matrix of the potential energy of the finite-element model

of the arch, F is the given vector of nodal forces, and G is the row matrix of

derivatives-of the determinant g of the Hessian matrix with respect to nodal

displacements. Equations (7) assume that _g is equal to zero since for constant

directional loading parameter % does not occur explicity in the stability

criterion. The elements of G can be evaluated by using the formula

_g = trace { (adj (H}) [ _q ] }_ql
(8)

_H

where [ -_j] is the matrix obtained by differentiating each element of the deter-

minant of H with respect to a typical component qi. With this, the sensitivity

derivat_ve _--_ can be calculated by the solution of Eqs. (7) at a given (q,_).

Incidently, Eqs. (7) apply everywhere along the loading path including the limit

point. It is only at a bifurcation point that the determinant of H is not differ-

entiable. For very shallow arches instability typically occurs through snap-

through and hence Eqs. (7) clearly apply.
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SPECIALIZATION TO A FRA_ ELEMENT MODEL OF THE ARCH

U

6 : [T]
v

6
w

We illustrate the derivation of the sensitivity derivatives for a finite

element model with 3-D frame elements. For its kinematic description the frame

element uses the co-rotatlonal formulation as outlined in great detail in reference

[6]. According to this formulation, which permits large rigid body motion of the

element, the total motion is decomposed into a rigid body component and a strain-

producing component. For an element p-q of length L, the displacements of the end

q relative to the end p in the body fixed axes can be shown to be i

- L U - U 1Xq Xp q P

!
Yq - yp 0 • [T]p V - V (9)P q P

U i , V i , and W i

z - z
q P W -W

q P

(i = p or q) denote the global displacements of the nodes and

matrix [Tip is [6].

[T]p = [T1(¢x,_y,_z)][T1(Sxp,Syp,Szp)] (1o)

with

[T 1(mx,_y,_z)] =

b

C C C S 8
yz yZ - y

-C S ÷ S S C C C + S S S S C
xz xyz xz xyz xy

S 8 + O 8 C -S C ÷ C S 8 C C
XZ xyz XZ xyz xy

(11)

ci = cos mi' si = sin mi for I = x,y and z. Angles Cx,#y and _z are the initial

orientation angles of the frame element and the angles Oxp , @yp and ezp are the

rigid-body rotations of the end p. In deriving Eqs. (10) Euler angle

transformation is implied with the order of the rotations being mz' my and m x.

Similarly, with the restriction of small relative rotation within the element,

the rotations _x' _y

_x

_y

_z

and V of the end q relative to the end p are
z

[T]p

8xq - 8xp

8yq 0yp

Ozq 8zp

(12)
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E iAe(6u)2 + 12 n [(6Ue = U(p_q) = -_e _ pzAe v)2

Assuming the relative axial and transverse displacements to be linear and
cubic, respectively, the strain energy of the (p-q)th or the e-th element, e =
1,2...m can be shown to be [6].

L2
÷ e _2 _ Le(6v)(_z) ]3 z

Hence

L 2

+ 12 n [(6w)2+ 3 _2 ÷ Le(6w)(_y)] }pyAe y
(13)

m

= _ U e - FTq (14)
e=1

T

where _ = (Up, Vp,Wp,0xp,0yp,ezp, Uq, Vq, Wq, 0xq, 0yq, 0zp). All the expressions

for the evaluation of matrices in Eqs. (7) are now avaJlable and, in principle, can

be evaluated even though the algebra may be rather tedious. The above expressions,

especially the [T]p matrix, can be simplified using the assumption of small rigid
body motions within a load step.

Indeed, Updated Lagrangian formulation for the kinematic description may have

simplified matters quite a bit especially if the expressions are linearized within

a load step but the above expressions using the co-rotational formulation permit

truly large displacements and with an highly efficient algorithm for the solution

of nonlinear equations like for instance the BFGS algorithm [7], it can permit

relatively large load steps resulting in a fewer number of load steps to attain a

given load level.

CONSTRAINED OPTIMIZATION

The optimization problem consists of maximizing the critical value of the load

parameter I subject to the constraint on total volume of the structure and side

constraints on member sizes. Although it is perfectly permissible to pose the

problem as

rain (f(A) = - l) (15)

Subject to

_IT
-- = 0

3qj

(16)

327
I I : 0  17)

_qi3qj
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m

AlL i - V ° = 0 (18)
i=I

A. - A . _>0 (19)
]. m]n

experience suggests the following well-posed problem

min (-_ ) (20)
cr

subject to

m

A. L. - V = 0 (21)
1 1 0

i=I

• - > 0 (22)A]. Ami n =

where Acr is located by incrementing the load parameter and locating its level at

which the determinant of the Hessian vanishes. This can be done by monitoring

either the determinant or the inertia of the eigenvalues of the Hessian matrix H.

Once an interval is located where the critical point is supposed to lie i_s

exact location Is determined by a root-finding technique. With Eqs. (15)-(19)

there is no guarantee that the lowest value of _ that satisfies Eqs. (17) will

always be found.

The problem as posed by Eqs. (20)-(22) is solved by using Powell's variable

metric algorithm for constrained optimization (VMCON) [8]. The required gradient

of the Lagranglan function corresponding to Eqs. (20)-(22) involves the gradient

of the load parameter which is calculated using the expressions derived in the

previous section.

DISCUSSION OF RESULTS AND CONCLUSIONS

The first step was to validate the accuracy of the sensitivity derivatives.

This validation was performed by comparing the analytically calculated derivatives

using the expressions (6)-(8) with those calculated using central differences.

Since no previous studies exist that address the problem being discussed herein, it

was essential to generate a basis for commparison. Such a basis was provided by

designs that corresponded to maximum potential energy of the nonlinear deformations.

Even though previous studies on shallow trusses [5] have confirmed the

non-optimality of such designs they are relatively easy to generate and provide a

basis for comparison with truly optimum designs.

It can be easily verified that designs which correspond to maximum potential

energy satisfy the condition

(Us + n Ub)
e e

Se V = C = constant; e = I, 2...m (23)
e
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s Ub and V are the strain energy due to stretching, the strain energy duewhere Ue, e e

to bendin_and the volume of the eth element,respectively.

Relations (23) can be easily met by a recurrence procedure that evolves
design for the (r÷1)st iteration from that of the rth iteration according to

S p
r I = Ar [ e ]Ae÷ a e S

avg
where

m
Savg : ( [ Us ÷ n ub]/v

e=1 e o

(24)

(25)

a is a constant such that

m

Ar+ I L = V
e e o

e=1

and p is a suitable exponent usually chosen to be equal to I/2. Several designs

for a concentrated load at the crown and a uniformly distributed vertical loading

were generated for n = 1,2,3 using the mathematical programming procedure, VMCON

and the recurrence relations (23)-(24). Table i provides a comparison of these

designs. Differences between the two designs are indeed drastic especially for n =

3. A curious phenomenon was observed during the recurrence procedure namely, that

several non-converged intermediate designs had higher critJ.cal (limit) loads than

the final fully coverged designs with a uniform specJ, fic energy density

distrlbutJ, on. Th._.s is to be expected since the fully converged designs are

non-optlmal. Table 2 provides the material distributions in terms of the

non-dimensional areas of the five frame elements used to model half the arch.

_x
An attempt to optJ.mlze a five element arch model with y(x) = 5 sJ.n i-_ failed

for n = 2,3 because no limit point load could be determined. This is not

surprising since for very low rise to span ratios the arch is likely to behave more

llke a flexible nonlinear beam with no susceptJ.bility to snap-through. Likewise

for arches with high rise to span ratios J.nstability occurs by bifurcation at load

levels far below their limit points and hence the problem belongs to the class of

linear eigenvalue problems. For arches with intermediate rise to span ratios the

type of instability can change from the initial limit point to a bifurcation type

at convergence. In fact the two points may coincide during optimization at which

point the critical load parameter is no longer differentiable with respect to the

design variables. Recourse must be then made to techniques of nondifferentiable

optimization [8].
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Table I. Comparison of Designs for Different Loadings on an Arch

y(x) a sin _x= -- ; a = 10,

L

L = 100

(Acr)OPT / (Acr) unif-

Type

of Design Concentrated Load at the Uniformly Distributed Vertical

Crown Loading

n = I n = 2 n = 3 n = I n = 2 n = 3

VMCON

with Sensitivity

Derivatives

Max. Potential

Energy

with Recurrence

Procedure

1.033

1.047

1.305

1.064

2.15

I.092

1.0013

I.0O5

1.207

1.024

1.932

I.048

Table 2. Material Distributions for the Optimal Arch Designs of Table i Using VMCON

Type of Loading

Concentrated

Load at

the Crown

Uniformly

Distributed

Vertical Loading

n

I

2

3

(Ae)oPT/(Ae)unif"

e = I e = 2 e = 3 e = 4 e = 5

0.8774 0.8662 0.8839 1.0452 1.340

0.7036 0.8370 0.9963 1.1577 1.3153

0.5780 0.8860 1.0700 1.1953 1.2907

0.9471 1.0240 1.0455 1.0080 0.9760

0.7662 0.9526 1.0663 1.1080 1.1168

0.6122 0.9285 1.0927 1.1738 1.2095
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